1 /* 2 * Copyright (c) 2018-2019 Cavium, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 * POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "bcm_osal.h" 32 #include "ecore.h" 33 #include "reg_addr.h" 34 #include "ecore_sriov.h" 35 #include "ecore_status.h" 36 #include "ecore_hw.h" 37 #include "ecore_hw_defs.h" 38 #include "ecore_int.h" 39 #include "ecore_hsi_eth.h" 40 #include "ecore_l2.h" 41 #include "ecore_vfpf_if.h" 42 #include "ecore_rt_defs.h" 43 #include "ecore_init_ops.h" 44 #include "pcics_reg_driver.h" 45 #include "ecore_gtt_reg_addr.h" 46 #include "ecore_iro.h" 47 #include "ecore_mcp.h" 48 #include "ecore_cxt.h" 49 #include "ecore_vf.h" 50 #include "ecore_init_fw_funcs.h" 51 #include "ecore_sp_commands.h" 52 53 static enum _ecore_status_t ecore_sriov_eqe_event(struct ecore_hwfn *p_hwfn, 54 u8 opcode, 55 __le16 echo, 56 union event_ring_data *data, 57 u8 fw_return_code); 58 59 const char *ecore_channel_tlvs_string[] = { 60 "CHANNEL_TLV_NONE", /* ends tlv sequence */ 61 "CHANNEL_TLV_ACQUIRE", 62 "CHANNEL_TLV_VPORT_START", 63 "CHANNEL_TLV_VPORT_UPDATE", 64 "CHANNEL_TLV_VPORT_TEARDOWN", 65 "CHANNEL_TLV_START_RXQ", 66 "CHANNEL_TLV_START_TXQ", 67 "CHANNEL_TLV_STOP_RXQ", 68 "CHANNEL_TLV_STOP_TXQ", 69 "CHANNEL_TLV_UPDATE_RXQ", 70 "CHANNEL_TLV_INT_CLEANUP", 71 "CHANNEL_TLV_CLOSE", 72 "CHANNEL_TLV_RELEASE", 73 "CHANNEL_TLV_LIST_END", 74 "CHANNEL_TLV_UCAST_FILTER", 75 "CHANNEL_TLV_VPORT_UPDATE_ACTIVATE", 76 "CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH", 77 "CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP", 78 "CHANNEL_TLV_VPORT_UPDATE_MCAST", 79 "CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM", 80 "CHANNEL_TLV_VPORT_UPDATE_RSS", 81 "CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN", 82 "CHANNEL_TLV_VPORT_UPDATE_SGE_TPA", 83 "CHANNEL_TLV_UPDATE_TUNN_PARAM", 84 "CHANNEL_TLV_COALESCE_UPDATE", 85 "CHANNEL_TLV_QID", 86 "CHANNEL_TLV_COALESCE_READ", 87 "CHANNEL_TLV_MAX" 88 }; 89 90 static u8 ecore_vf_calculate_legacy(struct ecore_vf_info *p_vf) 91 { 92 u8 legacy = 0; 93 94 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 95 ETH_HSI_VER_NO_PKT_LEN_TUNN) 96 legacy |= ECORE_QCID_LEGACY_VF_RX_PROD; 97 98 if (!(p_vf->acquire.vfdev_info.capabilities & 99 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 100 legacy |= ECORE_QCID_LEGACY_VF_CID; 101 102 return legacy; 103 } 104 105 /* IOV ramrods */ 106 static enum _ecore_status_t ecore_sp_vf_start(struct ecore_hwfn *p_hwfn, 107 struct ecore_vf_info *p_vf) 108 { 109 struct vf_start_ramrod_data *p_ramrod = OSAL_NULL; 110 struct ecore_spq_entry *p_ent = OSAL_NULL; 111 struct ecore_sp_init_data init_data; 112 enum _ecore_status_t rc = ECORE_NOTIMPL; 113 u8 fp_minor; 114 115 /* Get SPQ entry */ 116 OSAL_MEMSET(&init_data, 0, sizeof(init_data)); 117 init_data.cid = ecore_spq_get_cid(p_hwfn); 118 init_data.opaque_fid = p_vf->opaque_fid; 119 init_data.comp_mode = ECORE_SPQ_MODE_EBLOCK; 120 121 rc = ecore_sp_init_request(p_hwfn, &p_ent, 122 COMMON_RAMROD_VF_START, 123 PROTOCOLID_COMMON, &init_data); 124 if (rc != ECORE_SUCCESS) 125 return rc; 126 127 p_ramrod = &p_ent->ramrod.vf_start; 128 129 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 130 p_ramrod->opaque_fid = OSAL_CPU_TO_LE16(p_vf->opaque_fid); 131 132 switch (p_hwfn->hw_info.personality) { 133 case ECORE_PCI_ETH: 134 p_ramrod->personality = PERSONALITY_ETH; 135 break; 136 case ECORE_PCI_ETH_ROCE: 137 case ECORE_PCI_ETH_IWARP: 138 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 139 break; 140 default: 141 DP_NOTICE(p_hwfn, true, "Unknown VF personality %d\n", 142 p_hwfn->hw_info.personality); 143 return ECORE_INVAL; 144 } 145 146 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 147 if (fp_minor > ETH_HSI_VER_MINOR && 148 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 149 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 150 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 151 p_vf->abs_vf_id, 152 ETH_HSI_VER_MAJOR, fp_minor, 153 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 154 fp_minor = ETH_HSI_VER_MINOR; 155 } 156 157 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 158 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 159 160 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 161 "VF[%d] - Starting using HSI %02x.%02x\n", 162 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 163 164 return ecore_spq_post(p_hwfn, p_ent, OSAL_NULL); 165 } 166 167 static enum _ecore_status_t ecore_sp_vf_stop(struct ecore_hwfn *p_hwfn, 168 u32 concrete_vfid, 169 u16 opaque_vfid) 170 { 171 struct vf_stop_ramrod_data *p_ramrod = OSAL_NULL; 172 struct ecore_spq_entry *p_ent = OSAL_NULL; 173 struct ecore_sp_init_data init_data; 174 enum _ecore_status_t rc = ECORE_NOTIMPL; 175 176 /* Get SPQ entry */ 177 OSAL_MEMSET(&init_data, 0, sizeof(init_data)); 178 init_data.cid = ecore_spq_get_cid(p_hwfn); 179 init_data.opaque_fid = opaque_vfid; 180 init_data.comp_mode = ECORE_SPQ_MODE_EBLOCK; 181 182 rc = ecore_sp_init_request(p_hwfn, &p_ent, 183 COMMON_RAMROD_VF_STOP, 184 PROTOCOLID_COMMON, &init_data); 185 if (rc != ECORE_SUCCESS) 186 return rc; 187 188 p_ramrod = &p_ent->ramrod.vf_stop; 189 190 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 191 192 return ecore_spq_post(p_hwfn, p_ent, OSAL_NULL); 193 } 194 195 bool ecore_iov_is_valid_vfid(struct ecore_hwfn *p_hwfn, int rel_vf_id, 196 bool b_enabled_only, bool b_non_malicious) 197 { 198 if (!p_hwfn->pf_iov_info) { 199 DP_NOTICE(p_hwfn->p_dev, true, "No iov info\n"); 200 return false; 201 } 202 203 if ((rel_vf_id >= p_hwfn->p_dev->p_iov_info->total_vfs) || 204 (rel_vf_id < 0)) 205 return false; 206 207 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 208 b_enabled_only) 209 return false; 210 211 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 212 b_non_malicious) 213 return false; 214 215 return true; 216 } 217 218 struct ecore_vf_info *ecore_iov_get_vf_info(struct ecore_hwfn *p_hwfn, 219 u16 relative_vf_id, 220 bool b_enabled_only) 221 { 222 struct ecore_vf_info *vf = OSAL_NULL; 223 224 if (!p_hwfn->pf_iov_info) { 225 DP_NOTICE(p_hwfn->p_dev, true, "No iov info\n"); 226 return OSAL_NULL; 227 } 228 229 if (ecore_iov_is_valid_vfid(p_hwfn, relative_vf_id, 230 b_enabled_only, false)) 231 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 232 else 233 DP_ERR(p_hwfn, "ecore_iov_get_vf_info: VF[%d] is not enabled\n", 234 relative_vf_id); 235 236 return vf; 237 } 238 239 static struct ecore_queue_cid * 240 ecore_iov_get_vf_rx_queue_cid(struct ecore_vf_queue *p_queue) 241 { 242 int i; 243 244 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 245 if (p_queue->cids[i].p_cid && 246 !p_queue->cids[i].b_is_tx) 247 return p_queue->cids[i].p_cid; 248 } 249 250 return OSAL_NULL; 251 } 252 253 enum ecore_iov_validate_q_mode { 254 ECORE_IOV_VALIDATE_Q_NA, 255 ECORE_IOV_VALIDATE_Q_ENABLE, 256 ECORE_IOV_VALIDATE_Q_DISABLE, 257 }; 258 259 static bool ecore_iov_validate_queue_mode(struct ecore_vf_info *p_vf, 260 u16 qid, 261 enum ecore_iov_validate_q_mode mode, 262 bool b_is_tx) 263 { 264 int i; 265 266 if (mode == ECORE_IOV_VALIDATE_Q_NA) 267 return true; 268 269 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 270 struct ecore_vf_queue_cid *p_qcid; 271 272 p_qcid = &p_vf->vf_queues[qid].cids[i]; 273 274 if (p_qcid->p_cid == OSAL_NULL) 275 continue; 276 277 if (p_qcid->b_is_tx != b_is_tx) 278 continue; 279 280 /* Found. It's enabled. */ 281 return (mode == ECORE_IOV_VALIDATE_Q_ENABLE); 282 } 283 284 /* In case we haven't found any valid cid, then its disabled */ 285 return (mode == ECORE_IOV_VALIDATE_Q_DISABLE); 286 } 287 288 static bool ecore_iov_validate_rxq(struct ecore_hwfn *p_hwfn, 289 struct ecore_vf_info *p_vf, 290 u16 rx_qid, 291 enum ecore_iov_validate_q_mode mode) 292 { 293 if (rx_qid >= p_vf->num_rxqs) { 294 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 295 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 296 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 297 return false; 298 } 299 300 return ecore_iov_validate_queue_mode(p_vf, rx_qid, mode, false); 301 } 302 303 static bool ecore_iov_validate_txq(struct ecore_hwfn *p_hwfn, 304 struct ecore_vf_info *p_vf, 305 u16 tx_qid, 306 enum ecore_iov_validate_q_mode mode) 307 { 308 if (tx_qid >= p_vf->num_txqs) { 309 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 310 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 311 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 312 return false; 313 } 314 315 return ecore_iov_validate_queue_mode(p_vf, tx_qid, mode, true); 316 } 317 318 static bool ecore_iov_validate_sb(struct ecore_hwfn *p_hwfn, 319 struct ecore_vf_info *p_vf, 320 u16 sb_idx) 321 { 322 int i; 323 324 for (i = 0; i < p_vf->num_sbs; i++) 325 if (p_vf->igu_sbs[i] == sb_idx) 326 return true; 327 328 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 329 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 330 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 331 332 return false; 333 } 334 335 /* Is there at least 1 queue open? */ 336 static bool ecore_iov_validate_active_rxq(struct ecore_vf_info *p_vf) 337 { 338 u8 i; 339 340 for (i = 0; i < p_vf->num_rxqs; i++) 341 if (ecore_iov_validate_queue_mode(p_vf, i, 342 ECORE_IOV_VALIDATE_Q_ENABLE, 343 false)) 344 return true; 345 346 return false; 347 } 348 349 static bool ecore_iov_validate_active_txq(struct ecore_vf_info *p_vf) 350 { 351 u8 i; 352 353 for (i = 0; i < p_vf->num_txqs; i++) 354 if (ecore_iov_validate_queue_mode(p_vf, i, 355 ECORE_IOV_VALIDATE_Q_ENABLE, 356 true)) 357 return true; 358 359 return false; 360 } 361 362 enum _ecore_status_t ecore_iov_post_vf_bulletin(struct ecore_hwfn *p_hwfn, 363 int vfid, 364 struct ecore_ptt *p_ptt) 365 { 366 struct ecore_bulletin_content *p_bulletin; 367 int crc_size = sizeof(p_bulletin->crc); 368 struct ecore_dmae_params params; 369 struct ecore_vf_info *p_vf; 370 371 p_vf = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 372 if (!p_vf) 373 return ECORE_INVAL; 374 375 /* TODO - check VF is in a state where it can accept message */ 376 if (!p_vf->vf_bulletin) 377 return ECORE_INVAL; 378 379 p_bulletin = p_vf->bulletin.p_virt; 380 381 /* Increment bulletin board version and compute crc */ 382 p_bulletin->version++; 383 p_bulletin->crc = OSAL_CRC32(0, (u8 *)p_bulletin + crc_size, 384 p_vf->bulletin.size - crc_size); 385 386 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 387 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 388 p_bulletin->version, p_vf->relative_vf_id, 389 p_bulletin->crc); 390 391 /* propagate bulletin board via dmae to vm memory */ 392 OSAL_MEMSET(¶ms, 0, sizeof(params)); 393 params.flags = ECORE_DMAE_FLAG_VF_DST; 394 params.dst_vfid = p_vf->abs_vf_id; 395 return ecore_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 396 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 397 ¶ms); 398 } 399 400 static enum _ecore_status_t ecore_iov_pci_cfg_info(struct ecore_dev *p_dev) 401 { 402 struct ecore_hw_sriov_info *iov = p_dev->p_iov_info; 403 int pos = iov->pos; 404 405 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "sriov ext pos %d\n", pos); 406 OSAL_PCI_READ_CONFIG_WORD(p_dev, 407 pos + PCI_SRIOV_CTRL, 408 &iov->ctrl); 409 410 OSAL_PCI_READ_CONFIG_WORD(p_dev, 411 pos + PCI_SRIOV_TOTAL_VF, 412 &iov->total_vfs); 413 OSAL_PCI_READ_CONFIG_WORD(p_dev, 414 pos + PCI_SRIOV_INITIAL_VF, 415 &iov->initial_vfs); 416 417 OSAL_PCI_READ_CONFIG_WORD(p_dev, 418 pos + PCI_SRIOV_NUM_VF, 419 &iov->num_vfs); 420 if (iov->num_vfs) { 421 /* @@@TODO - in future we might want to add an OSAL here to 422 * allow each OS to decide on its own how to act. 423 */ 424 DP_VERBOSE(p_dev, ECORE_MSG_IOV, 425 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 426 iov->num_vfs = 0; 427 } 428 429 OSAL_PCI_READ_CONFIG_WORD(p_dev, 430 pos + PCI_SRIOV_VF_OFFSET, 431 &iov->offset); 432 433 OSAL_PCI_READ_CONFIG_WORD(p_dev, 434 pos + PCI_SRIOV_VF_STRIDE, 435 &iov->stride); 436 437 OSAL_PCI_READ_CONFIG_WORD(p_dev, 438 pos + PCI_SRIOV_VF_DID, 439 &iov->vf_device_id); 440 441 OSAL_PCI_READ_CONFIG_DWORD(p_dev, 442 pos + PCI_SRIOV_SUP_PGSIZE, 443 &iov->pgsz); 444 445 OSAL_PCI_READ_CONFIG_DWORD(p_dev, 446 pos + PCI_SRIOV_CAP, 447 &iov->cap); 448 449 OSAL_PCI_READ_CONFIG_BYTE(p_dev, 450 pos + PCI_SRIOV_FUNC_LINK, 451 &iov->link); 452 453 DP_VERBOSE(p_dev, ECORE_MSG_IOV, 454 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 455 iov->nres, iov->cap, iov->ctrl, 456 iov->total_vfs, iov->initial_vfs, iov->nr_virtfn, 457 iov->offset, iov->stride, iov->pgsz); 458 459 /* Some sanity checks */ 460 if (iov->num_vfs > NUM_OF_VFS(p_dev) || 461 iov->total_vfs > NUM_OF_VFS(p_dev)) { 462 /* This can happen only due to a bug. In this case we set 463 * num_vfs to zero to avoid memory corruption in the code that 464 * assumes max number of vfs 465 */ 466 DP_NOTICE(p_dev, false, "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 467 iov->num_vfs); 468 469 iov->num_vfs = 0; 470 iov->total_vfs = 0; 471 } 472 473 return ECORE_SUCCESS; 474 } 475 476 static void ecore_iov_setup_vfdb(struct ecore_hwfn *p_hwfn) 477 { 478 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info; 479 struct ecore_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 480 struct ecore_bulletin_content *p_bulletin_virt; 481 dma_addr_t req_p, rply_p, bulletin_p; 482 union pfvf_tlvs *p_reply_virt_addr; 483 union vfpf_tlvs *p_req_virt_addr; 484 u8 idx = 0; 485 486 OSAL_MEMSET(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 487 488 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 489 req_p = p_iov_info->mbx_msg_phys_addr; 490 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 491 rply_p = p_iov_info->mbx_reply_phys_addr; 492 p_bulletin_virt = p_iov_info->p_bulletins; 493 bulletin_p = p_iov_info->bulletins_phys; 494 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 495 DP_ERR(p_hwfn, "ecore_iov_setup_vfdb called without allocating mem first\n"); 496 return; 497 } 498 499 for (idx = 0; idx < p_iov->total_vfs; idx++) { 500 struct ecore_vf_info *vf = &p_iov_info->vfs_array[idx]; 501 u32 concrete; 502 503 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 504 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 505 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 506 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 507 508 #ifdef CONFIG_ECORE_SW_CHANNEL 509 vf->vf_mbx.sw_mbx.request_size = sizeof(union vfpf_tlvs); 510 vf->vf_mbx.sw_mbx.mbx_state = VF_PF_WAIT_FOR_START_REQUEST; 511 #endif 512 vf->state = VF_STOPPED; 513 vf->b_init = false; 514 515 vf->bulletin.phys = idx * 516 sizeof(struct ecore_bulletin_content) + 517 bulletin_p; 518 vf->bulletin.p_virt = p_bulletin_virt + idx; 519 vf->bulletin.size = sizeof(struct ecore_bulletin_content); 520 521 vf->relative_vf_id = idx; 522 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 523 concrete = ecore_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 524 vf->concrete_fid = concrete; 525 /* TODO - need to devise a better way of getting opaque */ 526 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 527 (vf->abs_vf_id << 8); 528 529 vf->num_mac_filters = ECORE_ETH_VF_NUM_MAC_FILTERS; 530 vf->num_vlan_filters = ECORE_ETH_VF_NUM_VLAN_FILTERS; 531 } 532 } 533 534 static enum _ecore_status_t ecore_iov_allocate_vfdb(struct ecore_hwfn *p_hwfn) 535 { 536 struct ecore_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 537 void **p_v_addr; 538 u16 num_vfs = 0; 539 540 num_vfs = p_hwfn->p_dev->p_iov_info->total_vfs; 541 542 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 543 "ecore_iov_allocate_vfdb for %d VFs\n", num_vfs); 544 545 /* Allocate PF Mailbox buffer (per-VF) */ 546 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 547 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 548 *p_v_addr = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 549 &p_iov_info->mbx_msg_phys_addr, 550 p_iov_info->mbx_msg_size); 551 if (!*p_v_addr) 552 return ECORE_NOMEM; 553 554 /* Allocate PF Mailbox Reply buffer (per-VF) */ 555 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 556 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 557 *p_v_addr = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 558 &p_iov_info->mbx_reply_phys_addr, 559 p_iov_info->mbx_reply_size); 560 if (!*p_v_addr) 561 return ECORE_NOMEM; 562 563 p_iov_info->bulletins_size = sizeof(struct ecore_bulletin_content) * 564 num_vfs; 565 p_v_addr = &p_iov_info->p_bulletins; 566 *p_v_addr = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 567 &p_iov_info->bulletins_phys, 568 p_iov_info->bulletins_size); 569 if (!*p_v_addr) 570 return ECORE_NOMEM; 571 572 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 573 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 574 p_iov_info->mbx_msg_virt_addr, 575 (unsigned long long)p_iov_info->mbx_msg_phys_addr, 576 p_iov_info->mbx_reply_virt_addr, 577 (unsigned long long)p_iov_info->mbx_reply_phys_addr, 578 p_iov_info->p_bulletins, 579 (unsigned long long)p_iov_info->bulletins_phys); 580 581 return ECORE_SUCCESS; 582 } 583 584 static void ecore_iov_free_vfdb(struct ecore_hwfn *p_hwfn) 585 { 586 struct ecore_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 587 588 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 589 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 590 p_iov_info->mbx_msg_virt_addr, 591 p_iov_info->mbx_msg_phys_addr, 592 p_iov_info->mbx_msg_size); 593 594 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 595 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 596 p_iov_info->mbx_reply_virt_addr, 597 p_iov_info->mbx_reply_phys_addr, 598 p_iov_info->mbx_reply_size); 599 600 if (p_iov_info->p_bulletins) 601 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 602 p_iov_info->p_bulletins, 603 p_iov_info->bulletins_phys, 604 p_iov_info->bulletins_size); 605 } 606 607 enum _ecore_status_t ecore_iov_alloc(struct ecore_hwfn *p_hwfn) 608 { 609 struct ecore_pf_iov *p_sriov; 610 611 if (!IS_PF_SRIOV(p_hwfn)) { 612 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 613 "No SR-IOV - no need for IOV db\n"); 614 return ECORE_SUCCESS; 615 } 616 617 p_sriov = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sriov)); 618 if (!p_sriov) { 619 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sriov'\n"); 620 return ECORE_NOMEM; 621 } 622 623 p_hwfn->pf_iov_info = p_sriov; 624 625 ecore_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, 626 ecore_sriov_eqe_event); 627 628 return ecore_iov_allocate_vfdb(p_hwfn); 629 } 630 631 void ecore_iov_setup(struct ecore_hwfn *p_hwfn) 632 { 633 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 634 return; 635 636 ecore_iov_setup_vfdb(p_hwfn); 637 } 638 639 void ecore_iov_free(struct ecore_hwfn *p_hwfn) 640 { 641 ecore_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); 642 643 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 644 ecore_iov_free_vfdb(p_hwfn); 645 OSAL_FREE(p_hwfn->p_dev, p_hwfn->pf_iov_info); 646 p_hwfn->pf_iov_info = OSAL_NULL; 647 } 648 } 649 650 void ecore_iov_free_hw_info(struct ecore_dev *p_dev) 651 { 652 OSAL_FREE(p_dev, p_dev->p_iov_info); 653 p_dev->p_iov_info = OSAL_NULL; 654 } 655 656 enum _ecore_status_t ecore_iov_hw_info(struct ecore_hwfn *p_hwfn) 657 { 658 struct ecore_dev *p_dev = p_hwfn->p_dev; 659 int pos; 660 enum _ecore_status_t rc; 661 662 if (IS_VF(p_hwfn->p_dev)) 663 return ECORE_SUCCESS; 664 665 /* Learn the PCI configuration */ 666 pos = OSAL_PCI_FIND_EXT_CAPABILITY(p_hwfn->p_dev, 667 PCI_EXT_CAP_ID_SRIOV); 668 if (!pos) { 669 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, "No PCIe IOV support\n"); 670 return ECORE_SUCCESS; 671 } 672 673 /* Allocate a new struct for IOV information */ 674 /* TODO - can change to VALLOC when its available */ 675 p_dev->p_iov_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, 676 sizeof(*p_dev->p_iov_info)); 677 if (!p_dev->p_iov_info) { 678 DP_NOTICE(p_hwfn, false, 679 "Can't support IOV due to lack of memory\n"); 680 return ECORE_NOMEM; 681 } 682 p_dev->p_iov_info->pos = pos; 683 684 rc = ecore_iov_pci_cfg_info(p_dev); 685 if (rc) 686 return rc; 687 688 /* We want PF IOV to be synonemous with the existence of p_iov_info; 689 * In case the capability is published but there are no VFs, simply 690 * de-allocate the struct. 691 */ 692 if (!p_dev->p_iov_info->total_vfs) { 693 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 694 "IOV capabilities, but no VFs are published\n"); 695 OSAL_FREE(p_dev, p_dev->p_iov_info); 696 p_dev->p_iov_info = OSAL_NULL; 697 return ECORE_SUCCESS; 698 } 699 700 /* First VF index based on offset is tricky: 701 * - If ARI is supported [likely], offset - (16 - pf_id) would 702 * provide the number for eng0. 2nd engine Vfs would begin 703 * after the first engine's VFs. 704 * - If !ARI, VFs would start on next device. 705 * so offset - (256 - pf_id) would provide the number. 706 * Utilize the fact that (256 - pf_id) is achieved only be later 707 * to diffrentiate between the two. 708 */ 709 710 if (p_hwfn->p_dev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 711 u32 first = p_hwfn->p_dev->p_iov_info->offset + 712 p_hwfn->abs_pf_id - 16; 713 714 p_dev->p_iov_info->first_vf_in_pf = first; 715 716 if (ECORE_PATH_ID(p_hwfn)) 717 p_dev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 718 } else { 719 u32 first = p_hwfn->p_dev->p_iov_info->offset + 720 p_hwfn->abs_pf_id - 256; 721 722 p_dev->p_iov_info->first_vf_in_pf = first; 723 } 724 725 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 726 "First VF in hwfn 0x%08x\n", 727 p_dev->p_iov_info->first_vf_in_pf); 728 729 return ECORE_SUCCESS; 730 } 731 732 static bool _ecore_iov_pf_sanity_check(struct ecore_hwfn *p_hwfn, int vfid, 733 bool b_fail_malicious) 734 { 735 /* Check PF supports sriov */ 736 if (IS_VF(p_hwfn->p_dev) || !IS_ECORE_SRIOV(p_hwfn->p_dev) || 737 !IS_PF_SRIOV_ALLOC(p_hwfn)) 738 return false; 739 740 /* Check VF validity */ 741 if (!ecore_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 742 return false; 743 744 return true; 745 } 746 747 bool ecore_iov_pf_sanity_check(struct ecore_hwfn *p_hwfn, int vfid) 748 { 749 return _ecore_iov_pf_sanity_check(p_hwfn, vfid, true); 750 } 751 752 void ecore_iov_set_vf_to_disable(struct ecore_dev *p_dev, 753 u16 rel_vf_id, 754 u8 to_disable) 755 { 756 struct ecore_vf_info *vf; 757 int i; 758 759 for_each_hwfn(p_dev, i) { 760 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 761 762 vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, false); 763 if (!vf) 764 continue; 765 766 vf->to_disable = to_disable; 767 } 768 } 769 770 void ecore_iov_set_vfs_to_disable(struct ecore_dev *p_dev, 771 u8 to_disable) 772 { 773 u16 i; 774 775 if (!IS_ECORE_SRIOV(p_dev)) 776 return; 777 778 for (i = 0; i < p_dev->p_iov_info->total_vfs; i++) 779 ecore_iov_set_vf_to_disable(p_dev, i, to_disable); 780 } 781 782 #ifndef LINUX_REMOVE 783 /* @@@TBD Consider taking outside of ecore... */ 784 enum _ecore_status_t ecore_iov_set_vf_ctx(struct ecore_hwfn *p_hwfn, 785 u16 vf_id, 786 void *ctx) 787 { 788 enum _ecore_status_t rc = ECORE_SUCCESS; 789 struct ecore_vf_info *vf = ecore_iov_get_vf_info(p_hwfn, vf_id, true); 790 791 if (vf != OSAL_NULL) { 792 vf->ctx = ctx; 793 #ifdef CONFIG_ECORE_SW_CHANNEL 794 vf->vf_mbx.sw_mbx.mbx_state = VF_PF_WAIT_FOR_START_REQUEST; 795 #endif 796 } else { 797 rc = ECORE_UNKNOWN_ERROR; 798 } 799 return rc; 800 } 801 #endif 802 803 static void ecore_iov_vf_pglue_clear_err(struct ecore_hwfn *p_hwfn, 804 struct ecore_ptt *p_ptt, 805 u8 abs_vfid) 806 { 807 ecore_wr(p_hwfn, p_ptt, 808 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 809 1 << (abs_vfid & 0x1f)); 810 } 811 812 static void ecore_iov_vf_igu_reset(struct ecore_hwfn *p_hwfn, 813 struct ecore_ptt *p_ptt, 814 struct ecore_vf_info *vf) 815 { 816 int i; 817 818 /* Set VF masks and configuration - pretend */ 819 ecore_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); 820 821 ecore_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 822 823 /* unpretend */ 824 ecore_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); 825 826 /* iterate over all queues, clear sb consumer */ 827 for (i = 0; i < vf->num_sbs; i++) 828 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 829 vf->igu_sbs[i], 830 vf->opaque_fid, true); 831 } 832 833 static void ecore_iov_vf_igu_set_int(struct ecore_hwfn *p_hwfn, 834 struct ecore_ptt *p_ptt, 835 struct ecore_vf_info *vf, 836 bool enable) 837 { 838 u32 igu_vf_conf; 839 840 ecore_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); 841 842 igu_vf_conf = ecore_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 843 844 if (enable) { 845 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 846 } else { 847 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 848 } 849 850 ecore_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 851 852 /* unpretend */ 853 ecore_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); 854 } 855 856 static enum _ecore_status_t 857 ecore_iov_enable_vf_access_msix(struct ecore_hwfn *p_hwfn, 858 struct ecore_ptt *p_ptt, 859 u8 abs_vf_id, 860 u8 num_sbs) 861 { 862 u8 current_max = 0; 863 int i; 864 865 /* If client overrides this, don't do anything */ 866 if (p_hwfn->p_dev->b_dont_override_vf_msix) 867 return ECORE_SUCCESS; 868 869 /* For AH onward, configuration is per-PF. Find maximum of all 870 * the currently enabled child VFs, and set the number to be that. 871 */ 872 if (!ECORE_IS_BB(p_hwfn->p_dev)) { 873 ecore_for_each_vf(p_hwfn, i) { 874 struct ecore_vf_info *p_vf; 875 876 p_vf = ecore_iov_get_vf_info(p_hwfn, (u16)i, true); 877 if (!p_vf) 878 continue; 879 880 current_max = OSAL_MAX_T(u8, current_max, 881 p_vf->num_sbs); 882 } 883 } 884 885 if (num_sbs > current_max) 886 return ecore_mcp_config_vf_msix(p_hwfn, p_ptt, 887 abs_vf_id, num_sbs); 888 889 return ECORE_SUCCESS; 890 } 891 892 static enum _ecore_status_t ecore_iov_enable_vf_access(struct ecore_hwfn *p_hwfn, 893 struct ecore_ptt *p_ptt, 894 struct ecore_vf_info *vf) 895 { 896 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 897 enum _ecore_status_t rc = ECORE_SUCCESS; 898 899 /* It's possible VF was previously considered malicious - 900 * clear the indication even if we're only going to disable VF. 901 */ 902 vf->b_malicious = false; 903 904 if (vf->to_disable) 905 return ECORE_SUCCESS; 906 907 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, "Enable internal access for vf %x [abs %x]\n", 908 vf->abs_vf_id, ECORE_VF_ABS_ID(p_hwfn, vf)); 909 910 ecore_iov_vf_pglue_clear_err(p_hwfn, p_ptt, 911 ECORE_VF_ABS_ID(p_hwfn, vf)); 912 913 ecore_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 914 915 rc = ecore_iov_enable_vf_access_msix(p_hwfn, p_ptt, 916 vf->abs_vf_id, vf->num_sbs); 917 if (rc != ECORE_SUCCESS) 918 return rc; 919 920 ecore_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); 921 922 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 923 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 924 925 ecore_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 926 p_hwfn->hw_info.hw_mode); 927 928 /* unpretend */ 929 ecore_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); 930 931 vf->state = VF_FREE; 932 933 return rc; 934 } 935 936 /** 937 * @brief ecore_iov_config_perm_table - configure the permission 938 * zone table. 939 * In E4, queue zone permission table size is 320x9. There 940 * are 320 VF queues for single engine device (256 for dual 941 * engine device), and each entry has the following format: 942 * {Valid, VF[7:0]} 943 * @param p_hwfn 944 * @param p_ptt 945 * @param vf 946 * @param enable 947 */ 948 static void ecore_iov_config_perm_table(struct ecore_hwfn *p_hwfn, 949 struct ecore_ptt *p_ptt, 950 struct ecore_vf_info *vf, 951 u8 enable) 952 { 953 u32 reg_addr, val; 954 u16 qzone_id = 0; 955 int qid; 956 957 for (qid = 0; qid < vf->num_rxqs; qid++) { 958 ecore_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 959 &qzone_id); 960 961 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 962 val = enable ? (vf->abs_vf_id | (1 << 8)) : 0; 963 ecore_wr(p_hwfn, p_ptt, reg_addr, val); 964 } 965 } 966 967 static void ecore_iov_enable_vf_traffic(struct ecore_hwfn *p_hwfn, 968 struct ecore_ptt *p_ptt, 969 struct ecore_vf_info *vf) 970 { 971 /* Reset vf in IGU - interrupts are still disabled */ 972 ecore_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 973 974 ecore_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 975 976 /* Permission Table */ 977 ecore_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 978 } 979 980 static u8 ecore_iov_alloc_vf_igu_sbs(struct ecore_hwfn *p_hwfn, 981 struct ecore_ptt *p_ptt, 982 struct ecore_vf_info *vf, 983 u16 num_rx_queues) 984 { 985 struct ecore_igu_block *p_block; 986 struct cau_sb_entry sb_entry; 987 int qid = 0; 988 u32 val = 0; 989 990 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) 991 num_rx_queues = 992 (u16)p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; 993 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; 994 995 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 996 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 997 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 998 999 for (qid = 0; qid < num_rx_queues; qid++) { 1000 p_block = ecore_get_igu_free_sb(p_hwfn, false); 1001 vf->igu_sbs[qid] = p_block->igu_sb_id; 1002 p_block->status &= ~ECORE_IGU_STATUS_FREE; 1003 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 1004 1005 ecore_wr(p_hwfn, p_ptt, 1006 IGU_REG_MAPPING_MEMORY + 1007 sizeof(u32) * p_block->igu_sb_id, val); 1008 1009 /* Configure igu sb in CAU which were marked valid */ 1010 ecore_init_cau_sb_entry(p_hwfn, &sb_entry, 1011 p_hwfn->rel_pf_id, 1012 vf->abs_vf_id, 1); 1013 1014 ecore_dmae_host2grc(p_hwfn, p_ptt, 1015 (u64)(osal_uintptr_t)&sb_entry, 1016 CAU_REG_SB_VAR_MEMORY + 1017 p_block->igu_sb_id * sizeof(u64), 2, 1018 OSAL_NULL /* default parameters */); 1019 } 1020 1021 vf->num_sbs = (u8)num_rx_queues; 1022 1023 return vf->num_sbs; 1024 } 1025 1026 /** 1027 * 1028 * @brief The function invalidates all the VF entries, 1029 * technically this isn't required, but added for 1030 * cleaness and ease of debugging incase a VF attempts to 1031 * produce an interrupt after it has been taken down. 1032 * 1033 * @param p_hwfn 1034 * @param p_ptt 1035 * @param vf 1036 */ 1037 static void ecore_iov_free_vf_igu_sbs(struct ecore_hwfn *p_hwfn, 1038 struct ecore_ptt *p_ptt, 1039 struct ecore_vf_info *vf) 1040 1041 { 1042 struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 1043 int idx, igu_id; 1044 u32 addr, val; 1045 1046 /* Invalidate igu CAM lines and mark them as free */ 1047 for (idx = 0; idx < vf->num_sbs; idx++) { 1048 igu_id = vf->igu_sbs[idx]; 1049 addr = IGU_REG_MAPPING_MEMORY + 1050 sizeof(u32) * igu_id; 1051 1052 val = ecore_rd(p_hwfn, p_ptt, addr); 1053 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 1054 ecore_wr(p_hwfn, p_ptt, addr, val); 1055 1056 p_info->entry[igu_id].status |= ECORE_IGU_STATUS_FREE; 1057 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; 1058 } 1059 1060 vf->num_sbs = 0; 1061 } 1062 1063 void ecore_iov_set_link(struct ecore_hwfn *p_hwfn, 1064 u16 vfid, 1065 struct ecore_mcp_link_params *params, 1066 struct ecore_mcp_link_state *link, 1067 struct ecore_mcp_link_capabilities *p_caps) 1068 { 1069 struct ecore_vf_info *p_vf = ecore_iov_get_vf_info(p_hwfn, vfid, false); 1070 struct ecore_bulletin_content *p_bulletin; 1071 1072 if (!p_vf) 1073 return; 1074 1075 p_bulletin = p_vf->bulletin.p_virt; 1076 p_bulletin->req_autoneg = params->speed.autoneg; 1077 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 1078 p_bulletin->req_forced_speed = params->speed.forced_speed; 1079 p_bulletin->req_autoneg_pause = params->pause.autoneg; 1080 p_bulletin->req_forced_rx = params->pause.forced_rx; 1081 p_bulletin->req_forced_tx = params->pause.forced_tx; 1082 p_bulletin->req_loopback = params->loopback_mode; 1083 1084 p_bulletin->link_up = link->link_up; 1085 p_bulletin->speed = link->speed; 1086 p_bulletin->full_duplex = link->full_duplex; 1087 p_bulletin->autoneg = link->an; 1088 p_bulletin->autoneg_complete = link->an_complete; 1089 p_bulletin->parallel_detection = link->parallel_detection; 1090 p_bulletin->pfc_enabled = link->pfc_enabled; 1091 p_bulletin->partner_adv_speed = link->partner_adv_speed; 1092 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 1093 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 1094 p_bulletin->partner_adv_pause = link->partner_adv_pause; 1095 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 1096 1097 p_bulletin->capability_speed = p_caps->speed_capabilities; 1098 } 1099 1100 enum _ecore_status_t 1101 ecore_iov_init_hw_for_vf(struct ecore_hwfn *p_hwfn, 1102 struct ecore_ptt *p_ptt, 1103 struct ecore_iov_vf_init_params *p_params) 1104 { 1105 struct ecore_mcp_link_capabilities link_caps; 1106 struct ecore_mcp_link_params link_params; 1107 struct ecore_mcp_link_state link_state; 1108 u8 num_of_vf_avaiable_chains = 0; 1109 struct ecore_vf_info *vf = OSAL_NULL; 1110 u16 qid, num_irqs; 1111 enum _ecore_status_t rc = ECORE_SUCCESS; 1112 u32 cids; 1113 u8 i; 1114 1115 vf = ecore_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 1116 if (!vf) { 1117 DP_ERR(p_hwfn, "ecore_iov_init_hw_for_vf : vf is OSAL_NULL\n"); 1118 return ECORE_UNKNOWN_ERROR; 1119 } 1120 1121 if (vf->b_init) { 1122 DP_NOTICE(p_hwfn, true, "VF[%d] is already active.\n", 1123 p_params->rel_vf_id); 1124 return ECORE_INVAL; 1125 } 1126 1127 /* Perform sanity checking on the requested vport/rss */ 1128 if (p_params->vport_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) { 1129 DP_NOTICE(p_hwfn, true, "VF[%d] - can't use VPORT %02x\n", 1130 p_params->rel_vf_id, p_params->vport_id); 1131 return ECORE_INVAL; 1132 } 1133 1134 if ((p_params->num_queues > 1) && 1135 (p_params->rss_eng_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG))) { 1136 DP_NOTICE(p_hwfn, true, "VF[%d] - can't use RSS_ENG %02x\n", 1137 p_params->rel_vf_id, p_params->rss_eng_id); 1138 return ECORE_INVAL; 1139 } 1140 1141 /* TODO - remove this once we get confidence of change */ 1142 if (!p_params->vport_id) { 1143 DP_NOTICE(p_hwfn, false, 1144 "VF[%d] - Unlikely that VF uses vport0. Forgotten?\n", 1145 p_params->rel_vf_id); 1146 } 1147 if ((!p_params->rss_eng_id) && (p_params->num_queues > 1)) { 1148 DP_NOTICE(p_hwfn, false, 1149 "VF[%d] - Unlikely that VF uses RSS_eng0. Forgotten?\n", 1150 p_params->rel_vf_id); 1151 } 1152 vf->vport_id = p_params->vport_id; 1153 vf->rss_eng_id = p_params->rss_eng_id; 1154 1155 /* Since it's possible to relocate SBs, it's a bit difficult to check 1156 * things here. Simply check whether the index falls in the range 1157 * belonging to the PF. 1158 */ 1159 for (i = 0; i < p_params->num_queues; i++) { 1160 qid = p_params->req_rx_queue[i]; 1161 if (qid > (u16)RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) { 1162 DP_NOTICE(p_hwfn, true, 1163 "Can't enable Rx qid [%04x] for VF[%d]: qids [0,,...,0x%04x] available\n", 1164 qid, p_params->rel_vf_id, 1165 (u16)RESC_NUM(p_hwfn, ECORE_L2_QUEUE)); 1166 return ECORE_INVAL; 1167 } 1168 1169 qid = p_params->req_tx_queue[i]; 1170 if (qid > (u16)RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) { 1171 DP_NOTICE(p_hwfn, true, 1172 "Can't enable Tx qid [%04x] for VF[%d]: qids [0,,...,0x%04x] available\n", 1173 qid, p_params->rel_vf_id, 1174 (u16)RESC_NUM(p_hwfn, ECORE_L2_QUEUE)); 1175 return ECORE_INVAL; 1176 } 1177 } 1178 1179 /* Limit number of queues according to number of CIDs */ 1180 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1181 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1182 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1183 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1184 num_irqs = OSAL_MIN_T(u16, p_params->num_queues, ((u16)cids)); 1185 1186 num_of_vf_avaiable_chains = ecore_iov_alloc_vf_igu_sbs(p_hwfn, 1187 p_ptt, 1188 vf, 1189 num_irqs); 1190 if (num_of_vf_avaiable_chains == 0) { 1191 DP_ERR(p_hwfn, "no available igu sbs\n"); 1192 return ECORE_NOMEM; 1193 } 1194 1195 /* Choose queue number and index ranges */ 1196 vf->num_rxqs = num_of_vf_avaiable_chains; 1197 vf->num_txqs = num_of_vf_avaiable_chains; 1198 1199 for (i = 0; i < vf->num_rxqs; i++) { 1200 struct ecore_vf_queue *p_queue = &vf->vf_queues[i]; 1201 1202 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1203 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1204 1205 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1206 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", 1207 vf->relative_vf_id, i, vf->igu_sbs[i], 1208 p_queue->fw_rx_qid, p_queue->fw_tx_qid); 1209 } 1210 1211 /* Update the link configuration in bulletin. 1212 */ 1213 OSAL_MEMCPY(&link_params, ecore_mcp_get_link_params(p_hwfn), 1214 sizeof(link_params)); 1215 OSAL_MEMCPY(&link_state, ecore_mcp_get_link_state(p_hwfn), 1216 sizeof(link_state)); 1217 OSAL_MEMCPY(&link_caps, ecore_mcp_get_link_capabilities(p_hwfn), 1218 sizeof(link_caps)); 1219 ecore_iov_set_link(p_hwfn, p_params->rel_vf_id, 1220 &link_params, &link_state, &link_caps); 1221 1222 rc = ecore_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1223 1224 if (rc == ECORE_SUCCESS) { 1225 vf->b_init = true; 1226 #ifndef REMOVE_DBG 1227 p_hwfn->pf_iov_info->active_vfs[vf->relative_vf_id / 64] |= 1228 (1ULL << (vf->relative_vf_id % 64)); 1229 #endif 1230 1231 if (IS_LEAD_HWFN(p_hwfn)) 1232 p_hwfn->p_dev->p_iov_info->num_vfs++; 1233 } 1234 1235 return rc; 1236 } 1237 1238 enum _ecore_status_t ecore_iov_release_hw_for_vf(struct ecore_hwfn *p_hwfn, 1239 struct ecore_ptt *p_ptt, 1240 u16 rel_vf_id) 1241 { 1242 struct ecore_mcp_link_capabilities caps; 1243 struct ecore_mcp_link_params params; 1244 struct ecore_mcp_link_state link; 1245 struct ecore_vf_info *vf = OSAL_NULL; 1246 1247 vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1248 if (!vf) { 1249 DP_ERR(p_hwfn, "ecore_iov_release_hw_for_vf : vf is NULL\n"); 1250 return ECORE_UNKNOWN_ERROR; 1251 } 1252 1253 if (vf->bulletin.p_virt) 1254 OSAL_MEMSET(vf->bulletin.p_virt, 0, 1255 sizeof(*vf->bulletin.p_virt)); 1256 1257 OSAL_MEMSET(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1258 1259 /* Get the link configuration back in bulletin so 1260 * that when VFs are re-enabled they get the actual 1261 * link configuration. 1262 */ 1263 OSAL_MEMCPY(¶ms, ecore_mcp_get_link_params(p_hwfn), sizeof(params)); 1264 OSAL_MEMCPY(&link, ecore_mcp_get_link_state(p_hwfn), sizeof(link)); 1265 OSAL_MEMCPY(&caps, ecore_mcp_get_link_capabilities(p_hwfn), 1266 sizeof(caps)); 1267 ecore_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1268 1269 /* Forget the VF's acquisition message */ 1270 OSAL_MEMSET(&vf->acquire, 0, sizeof(vf->acquire)); 1271 1272 /* disablng interrupts and resetting permission table was done during 1273 * vf-close, however, we could get here without going through vf_close 1274 */ 1275 /* Disable Interrupts for VF */ 1276 ecore_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1277 1278 /* Reset Permission table */ 1279 ecore_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1280 1281 vf->num_rxqs = 0; 1282 vf->num_txqs = 0; 1283 ecore_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1284 1285 if (vf->b_init) { 1286 vf->b_init = false; 1287 #ifndef REMOVE_DBG 1288 p_hwfn->pf_iov_info->active_vfs[vf->relative_vf_id / 64] &= 1289 ~(1ULL << (vf->relative_vf_id / 64)); 1290 #endif 1291 1292 if (IS_LEAD_HWFN(p_hwfn)) 1293 p_hwfn->p_dev->p_iov_info->num_vfs--; 1294 } 1295 1296 return ECORE_SUCCESS; 1297 } 1298 1299 static bool ecore_iov_tlv_supported(u16 tlvtype) 1300 { 1301 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1302 } 1303 1304 static void ecore_iov_lock_vf_pf_channel(struct ecore_hwfn *p_hwfn, 1305 struct ecore_vf_info *vf, 1306 u16 tlv) 1307 { 1308 /* lock the channel */ 1309 /* mutex_lock(&vf->op_mutex); @@@TBD MichalK - add lock... */ 1310 1311 /* record the locking op */ 1312 /* vf->op_current = tlv; @@@TBD MichalK */ 1313 1314 /* log the lock */ 1315 if (ecore_iov_tlv_supported(tlv)) 1316 DP_VERBOSE(p_hwfn, 1317 ECORE_MSG_IOV, 1318 "VF[%d]: vf pf channel locked by %s\n", 1319 vf->abs_vf_id, 1320 ecore_channel_tlvs_string[tlv]); 1321 else 1322 DP_VERBOSE(p_hwfn, 1323 ECORE_MSG_IOV, 1324 "VF[%d]: vf pf channel locked by %04x\n", 1325 vf->abs_vf_id, tlv); 1326 } 1327 1328 static void ecore_iov_unlock_vf_pf_channel(struct ecore_hwfn *p_hwfn, 1329 struct ecore_vf_info *vf, 1330 u16 expected_tlv) 1331 { 1332 /*WARN(expected_tlv != vf->op_current, 1333 "lock mismatch: expected %s found %s", 1334 channel_tlvs_string[expected_tlv], 1335 channel_tlvs_string[vf->op_current]); 1336 @@@TBD MichalK 1337 */ 1338 1339 /* lock the channel */ 1340 /* mutex_unlock(&vf->op_mutex); @@@TBD MichalK add the lock */ 1341 1342 /* log the unlock */ 1343 if (ecore_iov_tlv_supported(expected_tlv)) 1344 DP_VERBOSE(p_hwfn, 1345 ECORE_MSG_IOV, 1346 "VF[%d]: vf pf channel unlocked by %s\n", 1347 vf->abs_vf_id, 1348 ecore_channel_tlvs_string[expected_tlv]); 1349 else 1350 DP_VERBOSE(p_hwfn, 1351 ECORE_MSG_IOV, 1352 "VF[%d]: vf pf channel unlocked by %04x\n", 1353 vf->abs_vf_id, expected_tlv); 1354 1355 /* record the locking op */ 1356 /* vf->op_current = CHANNEL_TLV_NONE;*/ 1357 } 1358 1359 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1360 void *ecore_add_tlv(u8 **offset, u16 type, u16 length) 1361 { 1362 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1363 1364 tl->type = type; 1365 tl->length = length; 1366 1367 /* Offset should keep pointing to next TLV (the end of the last) */ 1368 *offset += length; 1369 1370 /* Return a pointer to the start of the added tlv */ 1371 return *offset - length; 1372 } 1373 1374 /* list the types and lengths of the tlvs on the buffer */ 1375 void ecore_dp_tlv_list(struct ecore_hwfn *p_hwfn, void *tlvs_list) 1376 { 1377 u16 i = 1, total_length = 0; 1378 struct channel_tlv *tlv; 1379 1380 do { 1381 /* cast current tlv list entry to channel tlv header*/ 1382 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1383 1384 /* output tlv */ 1385 if (ecore_iov_tlv_supported(tlv->type)) 1386 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1387 "TLV number %d: type %s, length %d\n", 1388 i, ecore_channel_tlvs_string[tlv->type], 1389 tlv->length); 1390 else 1391 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1392 "TLV number %d: type %d, length %d\n", 1393 i, tlv->type, tlv->length); 1394 1395 if (tlv->type == CHANNEL_TLV_LIST_END) 1396 return; 1397 1398 /* Validate entry - protect against malicious VFs */ 1399 if (!tlv->length) { 1400 DP_NOTICE(p_hwfn, false, "TLV of length 0 found\n"); 1401 return; 1402 } 1403 1404 total_length += tlv->length; 1405 1406 if (total_length >= sizeof(struct tlv_buffer_size)) { 1407 DP_NOTICE(p_hwfn, false, "TLV ==> Buffer overflow\n"); 1408 return; 1409 } 1410 1411 i++; 1412 } while (1); 1413 } 1414 1415 static void ecore_iov_send_response(struct ecore_hwfn *p_hwfn, 1416 struct ecore_ptt *p_ptt, 1417 struct ecore_vf_info *p_vf, 1418 #ifdef CONFIG_ECORE_SW_CHANNEL 1419 u16 length, 1420 #else 1421 u16 OSAL_UNUSED length, 1422 #endif 1423 u8 status) 1424 { 1425 struct ecore_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1426 struct ecore_dmae_params params; 1427 u8 eng_vf_id; 1428 1429 mbx->reply_virt->default_resp.hdr.status = status; 1430 1431 ecore_dp_tlv_list(p_hwfn, mbx->reply_virt); 1432 1433 #ifdef CONFIG_ECORE_SW_CHANNEL 1434 mbx->sw_mbx.response_size = 1435 length + sizeof(struct channel_list_end_tlv); 1436 1437 if (!p_vf->b_hw_channel) 1438 return; 1439 #endif 1440 1441 eng_vf_id = p_vf->abs_vf_id; 1442 1443 OSAL_MEMSET(¶ms, 0, sizeof(struct ecore_dmae_params)); 1444 params.flags = ECORE_DMAE_FLAG_VF_DST; 1445 params.dst_vfid = eng_vf_id; 1446 1447 ecore_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1448 mbx->req_virt->first_tlv.reply_address + 1449 sizeof(u64), 1450 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4 , 1451 ¶ms); 1452 1453 /* Once PF copies the rc to the VF, the latter can continue and 1454 * and send an additional message. So we have to make sure the 1455 * channel would be re-set to ready prior to that. 1456 */ 1457 REG_WR(p_hwfn, 1458 GTT_BAR0_MAP_REG_USDM_RAM + 1459 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1460 1); 1461 1462 ecore_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1463 mbx->req_virt->first_tlv.reply_address, 1464 sizeof(u64) / 4, ¶ms); 1465 1466 OSAL_IOV_PF_RESP_TYPE(p_hwfn, p_vf->relative_vf_id, status); 1467 } 1468 1469 static u16 ecore_iov_vport_to_tlv(enum ecore_iov_vport_update_flag flag) 1470 { 1471 switch (flag) { 1472 case ECORE_IOV_VP_UPDATE_ACTIVATE: 1473 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1474 case ECORE_IOV_VP_UPDATE_VLAN_STRIP: 1475 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1476 case ECORE_IOV_VP_UPDATE_TX_SWITCH: 1477 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1478 case ECORE_IOV_VP_UPDATE_MCAST: 1479 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1480 case ECORE_IOV_VP_UPDATE_ACCEPT_PARAM: 1481 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1482 case ECORE_IOV_VP_UPDATE_RSS: 1483 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1484 case ECORE_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1485 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1486 case ECORE_IOV_VP_UPDATE_SGE_TPA: 1487 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1488 default: 1489 return 0; 1490 } 1491 } 1492 1493 static u16 ecore_iov_prep_vp_update_resp_tlvs(struct ecore_hwfn *p_hwfn, 1494 struct ecore_vf_info *p_vf, 1495 struct ecore_iov_vf_mbx *p_mbx, 1496 u8 status, u16 tlvs_mask, 1497 u16 tlvs_accepted) 1498 { 1499 struct pfvf_def_resp_tlv *resp; 1500 u16 size, total_len, i; 1501 1502 OSAL_MEMSET(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1503 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1504 size = sizeof(struct pfvf_def_resp_tlv); 1505 total_len = size; 1506 1507 ecore_add_tlv(&p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1508 1509 /* Prepare response for all extended tlvs if they are found by PF */ 1510 for (i = 0; i < ECORE_IOV_VP_UPDATE_MAX; i++) { 1511 if (!(tlvs_mask & (1 << i))) 1512 continue; 1513 1514 resp = ecore_add_tlv(&p_mbx->offset, ecore_iov_vport_to_tlv(i), 1515 size); 1516 1517 if (tlvs_accepted & (1 << i)) 1518 resp->hdr.status = status; 1519 else 1520 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1521 1522 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1523 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1524 p_vf->relative_vf_id, 1525 ecore_iov_vport_to_tlv(i), 1526 resp->hdr.status); 1527 1528 total_len += size; 1529 } 1530 1531 ecore_add_tlv(&p_mbx->offset, CHANNEL_TLV_LIST_END, 1532 sizeof(struct channel_list_end_tlv)); 1533 1534 return total_len; 1535 } 1536 1537 static void ecore_iov_prepare_resp(struct ecore_hwfn *p_hwfn, 1538 struct ecore_ptt *p_ptt, 1539 struct ecore_vf_info *vf_info, 1540 u16 type, u16 length, u8 status) 1541 { 1542 struct ecore_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1543 1544 mbx->offset = (u8 *)mbx->reply_virt; 1545 1546 ecore_add_tlv(&mbx->offset, type, length); 1547 ecore_add_tlv(&mbx->offset, CHANNEL_TLV_LIST_END, 1548 sizeof(struct channel_list_end_tlv)); 1549 1550 ecore_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1551 } 1552 1553 struct ecore_public_vf_info * ecore_iov_get_public_vf_info(struct ecore_hwfn *p_hwfn, 1554 u16 relative_vf_id, 1555 bool b_enabled_only) 1556 { 1557 struct ecore_vf_info *vf = OSAL_NULL; 1558 1559 vf = ecore_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1560 if (!vf) 1561 return OSAL_NULL; 1562 1563 return &vf->p_vf_info; 1564 } 1565 1566 static void ecore_iov_vf_cleanup(struct ecore_hwfn *p_hwfn, 1567 struct ecore_vf_info *p_vf) 1568 { 1569 u32 i, j; 1570 1571 p_vf->vf_bulletin = 0; 1572 p_vf->vport_instance = 0; 1573 p_vf->configured_features = 0; 1574 1575 /* If VF previously requested less resources, go back to default */ 1576 p_vf->num_rxqs = p_vf->num_sbs; 1577 p_vf->num_txqs = p_vf->num_sbs; 1578 1579 p_vf->num_active_rxqs = 0; 1580 1581 for (i = 0; i < ECORE_MAX_VF_CHAINS_PER_PF; i++) { 1582 struct ecore_vf_queue *p_queue = &p_vf->vf_queues[i]; 1583 1584 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { 1585 if (!p_queue->cids[j].p_cid) 1586 continue; 1587 1588 ecore_eth_queue_cid_release(p_hwfn, 1589 p_queue->cids[j].p_cid); 1590 p_queue->cids[j].p_cid = OSAL_NULL; 1591 } 1592 } 1593 1594 OSAL_MEMSET(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1595 OSAL_MEMSET(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1596 OSAL_IOV_VF_CLEANUP(p_hwfn, p_vf->relative_vf_id); 1597 } 1598 1599 /* Returns either 0, or log(size) */ 1600 static u32 ecore_iov_vf_db_bar_size(struct ecore_hwfn *p_hwfn, 1601 struct ecore_ptt *p_ptt) 1602 { 1603 u32 val = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); 1604 1605 if (val) 1606 return val + 11; 1607 return 0; 1608 } 1609 1610 static void 1611 ecore_iov_vf_mbx_acquire_resc_cids(struct ecore_hwfn *p_hwfn, 1612 struct ecore_ptt *p_ptt, 1613 struct ecore_vf_info *p_vf, 1614 struct vf_pf_resc_request *p_req, 1615 struct pf_vf_resc *p_resp) 1616 { 1617 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; 1618 u8 db_size = DB_ADDR_VF(1, DQ_DEMS_LEGACY) - 1619 DB_ADDR_VF(0, DQ_DEMS_LEGACY); 1620 u32 bar_size; 1621 1622 p_resp->num_cids = OSAL_MIN_T(u8, p_req->num_cids, num_vf_cons); 1623 1624 /* If VF didn't bother asking for QIDs than don't bother limiting 1625 * number of CIDs. The VF doesn't care about the number, and this 1626 * has the likely result of causing an additional acquisition. 1627 */ 1628 if (!(p_vf->acquire.vfdev_info.capabilities & 1629 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 1630 return; 1631 1632 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount 1633 * that would make sure doorbells for all CIDs fall within the bar. 1634 * If it doesn't, make sure regview window is sufficient. 1635 */ 1636 if (p_vf->acquire.vfdev_info.capabilities & 1637 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { 1638 bar_size = ecore_iov_vf_db_bar_size(p_hwfn, p_ptt); 1639 if (bar_size) 1640 bar_size = 1 << bar_size; 1641 1642 if (ECORE_IS_CMT(p_hwfn->p_dev)) 1643 bar_size /= 2; 1644 } else { 1645 bar_size = PXP_VF_BAR0_DQ_LENGTH; 1646 } 1647 1648 if (bar_size / db_size < 256) 1649 p_resp->num_cids = OSAL_MIN_T(u8, p_resp->num_cids, 1650 (u8)(bar_size / db_size)); 1651 } 1652 1653 static u8 ecore_iov_vf_mbx_acquire_resc(struct ecore_hwfn *p_hwfn, 1654 struct ecore_ptt *p_ptt, 1655 struct ecore_vf_info *p_vf, 1656 struct vf_pf_resc_request *p_req, 1657 struct pf_vf_resc *p_resp) 1658 { 1659 u8 i; 1660 1661 /* Queue related information */ 1662 p_resp->num_rxqs = p_vf->num_rxqs; 1663 p_resp->num_txqs = p_vf->num_txqs; 1664 p_resp->num_sbs = p_vf->num_sbs; 1665 1666 for (i = 0; i < p_resp->num_sbs; i++) { 1667 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1668 /* TODO - what's this sb_qid field? Is it deprecated? 1669 * or is there an ecore_client that looks at this? 1670 */ 1671 p_resp->hw_sbs[i].sb_qid = 0; 1672 } 1673 1674 /* These fields are filled for backward compatibility. 1675 * Unused by modern vfs. 1676 */ 1677 for (i = 0; i < p_resp->num_rxqs; i++) { 1678 ecore_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1679 (u16 *)&p_resp->hw_qid[i]); 1680 p_resp->cid[i] = i; 1681 } 1682 1683 /* Filter related information */ 1684 p_resp->num_mac_filters = OSAL_MIN_T(u8, p_vf->num_mac_filters, 1685 p_req->num_mac_filters); 1686 p_resp->num_vlan_filters = OSAL_MIN_T(u8, p_vf->num_vlan_filters, 1687 p_req->num_vlan_filters); 1688 1689 ecore_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); 1690 1691 /* This isn't really needed/enforced, but some legacy VFs might depend 1692 * on the correct filling of this field. 1693 */ 1694 p_resp->num_mc_filters = ECORE_MAX_MC_ADDRS; 1695 1696 /* Validate sufficient resources for VF */ 1697 if (p_resp->num_rxqs < p_req->num_rxqs || 1698 p_resp->num_txqs < p_req->num_txqs || 1699 p_resp->num_sbs < p_req->num_sbs || 1700 p_resp->num_mac_filters < p_req->num_mac_filters || 1701 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1702 p_resp->num_mc_filters < p_req->num_mc_filters || 1703 p_resp->num_cids < p_req->num_cids) { 1704 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1705 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", 1706 p_vf->abs_vf_id, 1707 p_req->num_rxqs, p_resp->num_rxqs, 1708 p_req->num_rxqs, p_resp->num_txqs, 1709 p_req->num_sbs, p_resp->num_sbs, 1710 p_req->num_mac_filters, p_resp->num_mac_filters, 1711 p_req->num_vlan_filters, p_resp->num_vlan_filters, 1712 p_req->num_mc_filters, p_resp->num_mc_filters, 1713 p_req->num_cids, p_resp->num_cids); 1714 1715 /* Some legacy OSes are incapable of correctly handling this 1716 * failure. 1717 */ 1718 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1719 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1720 (p_vf->acquire.vfdev_info.os_type == 1721 VFPF_ACQUIRE_OS_WINDOWS)) 1722 return PFVF_STATUS_SUCCESS; 1723 1724 return PFVF_STATUS_NO_RESOURCE; 1725 } 1726 1727 return PFVF_STATUS_SUCCESS; 1728 } 1729 1730 static void ecore_iov_vf_mbx_acquire_stats(struct pfvf_stats_info *p_stats) 1731 { 1732 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1733 OFFSETOF(struct mstorm_vf_zone, 1734 non_trigger.eth_queue_stat); 1735 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1736 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1737 OFFSETOF(struct ustorm_vf_zone, 1738 non_trigger.eth_queue_stat); 1739 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1740 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1741 OFFSETOF(struct pstorm_vf_zone, 1742 non_trigger.eth_queue_stat); 1743 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1744 p_stats->tstats.address = 0; 1745 p_stats->tstats.len = 0; 1746 } 1747 1748 static void ecore_iov_vf_mbx_acquire(struct ecore_hwfn *p_hwfn, 1749 struct ecore_ptt *p_ptt, 1750 struct ecore_vf_info *vf) 1751 { 1752 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 1753 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1754 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1755 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1756 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1757 struct pf_vf_resc *resc = &resp->resc; 1758 enum _ecore_status_t rc; 1759 1760 OSAL_MEMSET(resp, 0, sizeof(*resp)); 1761 1762 /* Write the PF version so that VF would know which version 1763 * is supported - might be later overriden. This guarantees that 1764 * VF could recognize legacy PF based on lack of versions in reply. 1765 */ 1766 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1767 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1768 1769 /* TODO - not doing anything is bad since we'll assert, but this isn't 1770 * necessarily the right behavior - perhaps we should have allowed some 1771 * versatility here. 1772 */ 1773 if (vf->state != VF_FREE && 1774 vf->state != VF_STOPPED) { 1775 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1776 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1777 vf->abs_vf_id, vf->state); 1778 goto out; 1779 } 1780 1781 /* Validate FW compatibility */ 1782 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1783 if (req->vfdev_info.capabilities & 1784 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1785 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1786 1787 /* This legacy support would need to be removed once 1788 * the major has changed. 1789 */ 1790 OSAL_BUILD_BUG_ON(ETH_HSI_VER_MAJOR != 3); 1791 1792 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1793 "VF[%d] is pre-fastpath HSI\n", 1794 vf->abs_vf_id); 1795 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1796 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1797 } else { 1798 DP_INFO(p_hwfn, 1799 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n", 1800 vf->abs_vf_id, 1801 req->vfdev_info.eth_fp_hsi_major, 1802 req->vfdev_info.eth_fp_hsi_minor, 1803 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1804 1805 goto out; 1806 } 1807 } 1808 1809 /* On 100g PFs, prevent old VFs from loading */ 1810 if (ECORE_IS_CMT(p_hwfn->p_dev) && 1811 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1812 DP_INFO(p_hwfn, "VF[%d] is running an old driver that doesn't support 100g\n", 1813 vf->abs_vf_id); 1814 goto out; 1815 } 1816 1817 #ifndef __EXTRACT__LINUX__ 1818 if (OSAL_IOV_VF_ACQUIRE(p_hwfn, vf->relative_vf_id) != ECORE_SUCCESS) { 1819 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1820 goto out; 1821 } 1822 #endif 1823 1824 /* Store the acquire message */ 1825 OSAL_MEMCPY(&vf->acquire, req, sizeof(vf->acquire)); 1826 1827 vf->opaque_fid = req->vfdev_info.opaque_fid; 1828 1829 vf->vf_bulletin = req->bulletin_addr; 1830 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1831 vf->bulletin.size : req->bulletin_size; 1832 1833 /* fill in pfdev info */ 1834 pfdev_info->chip_num = p_hwfn->p_dev->chip_num; 1835 pfdev_info->db_size = 0; /* @@@ TBD MichalK Vf Doorbells */ 1836 pfdev_info->indices_per_sb = PIS_PER_SB_E4; 1837 1838 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1839 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1840 if (ECORE_IS_CMT(p_hwfn->p_dev)) 1841 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1842 1843 /* Share our ability to use multiple queue-ids only with VFs 1844 * that request it. 1845 */ 1846 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) 1847 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; 1848 1849 /* Share the sizes of the bars with VF */ 1850 resp->pfdev_info.bar_size = (u8)ecore_iov_vf_db_bar_size(p_hwfn, 1851 p_ptt); 1852 1853 ecore_iov_vf_mbx_acquire_stats(&pfdev_info->stats_info); 1854 1855 OSAL_MEMCPY(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, 1856 ETH_ALEN); 1857 1858 pfdev_info->fw_major = FW_MAJOR_VERSION; 1859 pfdev_info->fw_minor = FW_MINOR_VERSION; 1860 pfdev_info->fw_rev = FW_REVISION_VERSION; 1861 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1862 1863 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1864 * this field. 1865 */ 1866 pfdev_info->minor_fp_hsi = OSAL_MIN_T(u8, ETH_HSI_VER_MINOR, 1867 req->vfdev_info.eth_fp_hsi_minor); 1868 pfdev_info->os_type = OSAL_IOV_GET_OS_TYPE(); 1869 ecore_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, 1870 OSAL_NULL); 1871 1872 pfdev_info->dev_type = p_hwfn->p_dev->type; 1873 pfdev_info->chip_rev = p_hwfn->p_dev->chip_rev; 1874 1875 /* Fill resources available to VF; Make sure there are enough to 1876 * satisfy the VF's request. 1877 */ 1878 vfpf_status = ecore_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1879 &req->resc_request, resc); 1880 if (vfpf_status != PFVF_STATUS_SUCCESS) 1881 goto out; 1882 1883 /* Start the VF in FW */ 1884 rc = ecore_sp_vf_start(p_hwfn, vf); 1885 if (rc != ECORE_SUCCESS) { 1886 DP_NOTICE(p_hwfn, true, "Failed to start VF[%02x]\n", 1887 vf->abs_vf_id); 1888 vfpf_status = PFVF_STATUS_FAILURE; 1889 goto out; 1890 } 1891 1892 /* Fill agreed size of bulletin board in response, and post 1893 * an initial image to the bulletin board. 1894 */ 1895 resp->bulletin_size = vf->bulletin.size; 1896 ecore_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1897 1898 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1899 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1900 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1901 vf->abs_vf_id, resp->pfdev_info.chip_num, 1902 resp->pfdev_info.db_size, resp->pfdev_info.indices_per_sb, 1903 (unsigned long long)resp->pfdev_info.capabilities, resc->num_rxqs, 1904 resc->num_txqs, resc->num_sbs, resc->num_mac_filters, 1905 resc->num_vlan_filters); 1906 1907 vf->state = VF_ACQUIRED; 1908 1909 out: 1910 /* Prepare Response */ 1911 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1912 sizeof(struct pfvf_acquire_resp_tlv), 1913 vfpf_status); 1914 } 1915 1916 static enum _ecore_status_t __ecore_iov_spoofchk_set(struct ecore_hwfn *p_hwfn, 1917 struct ecore_vf_info *p_vf, bool val) 1918 { 1919 struct ecore_sp_vport_update_params params; 1920 enum _ecore_status_t rc; 1921 1922 if (val == p_vf->spoof_chk) { 1923 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1924 "Spoofchk value[%d] is already configured\n", 1925 val); 1926 return ECORE_SUCCESS; 1927 } 1928 1929 OSAL_MEMSET(¶ms, 0, sizeof(struct ecore_sp_vport_update_params)); 1930 params.opaque_fid = p_vf->opaque_fid; 1931 params.vport_id = p_vf->vport_id; 1932 params.update_anti_spoofing_en_flg = 1; 1933 params.anti_spoofing_en = val; 1934 1935 rc = ecore_sp_vport_update(p_hwfn, ¶ms, ECORE_SPQ_MODE_EBLOCK, 1936 OSAL_NULL); 1937 if (rc == ECORE_SUCCESS) { 1938 p_vf->spoof_chk = val; 1939 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1940 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1941 "Spoofchk val[%d] configured\n", val); 1942 } else { 1943 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1944 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1945 val, p_vf->relative_vf_id); 1946 } 1947 1948 return rc; 1949 } 1950 1951 static enum _ecore_status_t ecore_iov_reconfigure_unicast_vlan(struct ecore_hwfn *p_hwfn, 1952 struct ecore_vf_info *p_vf) 1953 { 1954 struct ecore_filter_ucast filter; 1955 enum _ecore_status_t rc = ECORE_SUCCESS; 1956 int i; 1957 1958 OSAL_MEMSET(&filter, 0, sizeof(filter)); 1959 filter.is_rx_filter = 1; 1960 filter.is_tx_filter = 1; 1961 filter.vport_to_add_to = p_vf->vport_id; 1962 filter.opcode = ECORE_FILTER_ADD; 1963 1964 /* Reconfigure vlans */ 1965 for (i = 0; i < ECORE_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1966 if (!p_vf->shadow_config.vlans[i].used) 1967 continue; 1968 1969 filter.type = ECORE_FILTER_VLAN; 1970 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1971 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 1972 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1973 filter.vlan, p_vf->relative_vf_id); 1974 rc = ecore_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1975 &filter, ECORE_SPQ_MODE_CB, OSAL_NULL); 1976 if (rc) { 1977 DP_NOTICE(p_hwfn, true, "Failed to configure VLAN [%04x] to VF [%04x]\n", 1978 filter.vlan, 1979 p_vf->relative_vf_id); 1980 break; 1981 } 1982 } 1983 1984 return rc; 1985 } 1986 1987 static enum _ecore_status_t 1988 ecore_iov_reconfigure_unicast_shadow(struct ecore_hwfn *p_hwfn, 1989 struct ecore_vf_info *p_vf, 1990 u64 events) 1991 { 1992 enum _ecore_status_t rc = ECORE_SUCCESS; 1993 1994 /*TODO - what about MACs? */ 1995 1996 if ((events & (1 << VLAN_ADDR_FORCED)) && 1997 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1998 rc = ecore_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1999 2000 return rc; 2001 } 2002 2003 static enum _ecore_status_t 2004 ecore_iov_configure_vport_forced(struct ecore_hwfn *p_hwfn, 2005 struct ecore_vf_info *p_vf, 2006 u64 events) 2007 { 2008 enum _ecore_status_t rc = ECORE_SUCCESS; 2009 struct ecore_filter_ucast filter; 2010 2011 if (!p_vf->vport_instance) 2012 return ECORE_INVAL; 2013 2014 if (events & (1 << MAC_ADDR_FORCED)) { 2015 /* Since there's no way [currently] of removing the MAC, 2016 * we can always assume this means we need to force it. 2017 */ 2018 OSAL_MEMSET(&filter, 0, sizeof(filter)); 2019 filter.type = ECORE_FILTER_MAC; 2020 filter.opcode = ECORE_FILTER_REPLACE; 2021 filter.is_rx_filter = 1; 2022 filter.is_tx_filter = 1; 2023 filter.vport_to_add_to = p_vf->vport_id; 2024 OSAL_MEMCPY(filter.mac, 2025 p_vf->bulletin.p_virt->mac, 2026 ETH_ALEN); 2027 2028 rc = ecore_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 2029 &filter, 2030 ECORE_SPQ_MODE_CB, OSAL_NULL); 2031 if (rc) { 2032 DP_NOTICE(p_hwfn, true, 2033 "PF failed to configure MAC for VF\n"); 2034 return rc; 2035 } 2036 2037 p_vf->configured_features |= 1 << MAC_ADDR_FORCED; 2038 } 2039 2040 if (events & (1 << VLAN_ADDR_FORCED)) { 2041 struct ecore_sp_vport_update_params vport_update; 2042 u8 removal; 2043 int i; 2044 2045 OSAL_MEMSET(&filter, 0, sizeof(filter)); 2046 filter.type = ECORE_FILTER_VLAN; 2047 filter.is_rx_filter = 1; 2048 filter.is_tx_filter = 1; 2049 filter.vport_to_add_to = p_vf->vport_id; 2050 filter.vlan = p_vf->bulletin.p_virt->pvid; 2051 filter.opcode = filter.vlan ? ECORE_FILTER_REPLACE : 2052 ECORE_FILTER_FLUSH; 2053 2054 /* Send the ramrod */ 2055 rc = ecore_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 2056 &filter, 2057 ECORE_SPQ_MODE_CB, OSAL_NULL); 2058 if (rc) { 2059 DP_NOTICE(p_hwfn, true, 2060 "PF failed to configure VLAN for VF\n"); 2061 return rc; 2062 } 2063 2064 /* Update the default-vlan & silent vlan stripping */ 2065 OSAL_MEMSET(&vport_update, 0, sizeof(vport_update)); 2066 vport_update.opaque_fid = p_vf->opaque_fid; 2067 vport_update.vport_id = p_vf->vport_id; 2068 vport_update.update_default_vlan_enable_flg = 1; 2069 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 2070 vport_update.update_default_vlan_flg = 1; 2071 vport_update.default_vlan = filter.vlan; 2072 2073 vport_update.update_inner_vlan_removal_flg = 1; 2074 removal = filter.vlan ? 2075 1 : p_vf->shadow_config.inner_vlan_removal; 2076 vport_update.inner_vlan_removal_flg = removal; 2077 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 2078 rc = ecore_sp_vport_update(p_hwfn, &vport_update, 2079 ECORE_SPQ_MODE_EBLOCK, 2080 OSAL_NULL); 2081 if (rc) { 2082 DP_NOTICE(p_hwfn, true, 2083 "PF failed to configure VF vport for vlan\n"); 2084 return rc; 2085 } 2086 2087 /* Update all the Rx queues */ 2088 for (i = 0; i < ECORE_MAX_VF_CHAINS_PER_PF; i++) { 2089 struct ecore_vf_queue *p_queue = &p_vf->vf_queues[i]; 2090 struct ecore_queue_cid *p_cid = OSAL_NULL; 2091 2092 /* There can be at most 1 Rx queue on qzone. Find it */ 2093 p_cid = ecore_iov_get_vf_rx_queue_cid(p_queue); 2094 if (p_cid == OSAL_NULL) 2095 continue; 2096 2097 rc = ecore_sp_eth_rx_queues_update(p_hwfn, 2098 (void **)&p_cid, 2099 1, 0, 1, 2100 ECORE_SPQ_MODE_EBLOCK, 2101 OSAL_NULL); 2102 if (rc) { 2103 DP_NOTICE(p_hwfn, true, 2104 "Failed to send Rx update fo queue[0x%04x]\n", 2105 p_cid->rel.queue_id); 2106 return rc; 2107 } 2108 } 2109 2110 if (filter.vlan) 2111 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 2112 else 2113 p_vf->configured_features &= ~(1 << VLAN_ADDR_FORCED); 2114 } 2115 2116 /* If forced features are terminated, we need to configure the shadow 2117 * configuration back again. 2118 */ 2119 if (events) 2120 ecore_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 2121 2122 return rc; 2123 } 2124 2125 static void ecore_iov_vf_mbx_start_vport(struct ecore_hwfn *p_hwfn, 2126 struct ecore_ptt *p_ptt, 2127 struct ecore_vf_info *vf) 2128 { 2129 struct ecore_sp_vport_start_params params = {0}; 2130 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 2131 struct vfpf_vport_start_tlv *start; 2132 u8 status = PFVF_STATUS_SUCCESS; 2133 struct ecore_vf_info *vf_info; 2134 u64 *p_bitmap; 2135 int sb_id; 2136 enum _ecore_status_t rc; 2137 2138 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vf->relative_vf_id, true); 2139 if (!vf_info) { 2140 DP_NOTICE(p_hwfn->p_dev, true, 2141 "Failed to get VF info, invalid vfid [%d]\n", 2142 vf->relative_vf_id); 2143 return; 2144 } 2145 2146 vf->state = VF_ENABLED; 2147 start = &mbx->req_virt->start_vport; 2148 2149 ecore_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 2150 2151 /* Initialize Status block in CAU */ 2152 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 2153 if (!start->sb_addr[sb_id]) { 2154 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2155 "VF[%d] did not fill the address of SB %d\n", 2156 vf->relative_vf_id, sb_id); 2157 break; 2158 } 2159 2160 ecore_int_cau_conf_sb(p_hwfn, p_ptt, 2161 start->sb_addr[sb_id], 2162 vf->igu_sbs[sb_id], 2163 vf->abs_vf_id, 1); 2164 } 2165 2166 vf->mtu = start->mtu; 2167 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 2168 2169 /* Take into consideration configuration forced by hypervisor; 2170 * If none is configured, use the supplied VF values [for old 2171 * vfs that would still be fine, since they passed '0' as padding]. 2172 */ 2173 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 2174 if (!(*p_bitmap & (1 << VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 2175 u8 vf_req = start->only_untagged; 2176 2177 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 2178 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 2179 } 2180 2181 params.tpa_mode = start->tpa_mode; 2182 params.remove_inner_vlan = start->inner_vlan_removal; 2183 params.tx_switching = true; 2184 params.zero_placement_offset = start->zero_placement_offset; 2185 2186 #ifndef ASIC_ONLY 2187 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) { 2188 DP_NOTICE(p_hwfn, false, "FPGA: Don't configure VF for Tx-switching [no pVFC]\n"); 2189 params.tx_switching = false; 2190 } 2191 #endif 2192 2193 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 2194 params.drop_ttl0 = false; 2195 params.concrete_fid = vf->concrete_fid; 2196 params.opaque_fid = vf->opaque_fid; 2197 params.vport_id = vf->vport_id; 2198 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 2199 params.mtu = vf->mtu; 2200 params.check_mac = true; 2201 2202 #ifndef ECORE_UPSTREAM 2203 rc = OSAL_IOV_PRE_START_VPORT(p_hwfn, vf->relative_vf_id, ¶ms); 2204 if (rc != ECORE_SUCCESS) { 2205 DP_ERR(p_hwfn, "OSAL_IOV_PRE_START_VPORT returned error %d\n", rc); 2206 status = PFVF_STATUS_FAILURE; 2207 goto exit; 2208 } 2209 #endif 2210 2211 rc = ecore_sp_eth_vport_start(p_hwfn, ¶ms); 2212 if (rc != ECORE_SUCCESS) { 2213 DP_ERR(p_hwfn, "ecore_iov_vf_mbx_start_vport returned error %d\n", rc); 2214 status = PFVF_STATUS_FAILURE; 2215 } else { 2216 vf->vport_instance++; 2217 2218 /* Force configuration if needed on the newly opened vport */ 2219 ecore_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 2220 OSAL_IOV_POST_START_VPORT(p_hwfn, vf->relative_vf_id, 2221 vf->vport_id, vf->opaque_fid); 2222 __ecore_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 2223 } 2224 #ifndef ECORE_UPSTREAM 2225 exit: 2226 #endif 2227 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 2228 sizeof(struct pfvf_def_resp_tlv), status); 2229 } 2230 2231 static void ecore_iov_vf_mbx_stop_vport(struct ecore_hwfn *p_hwfn, 2232 struct ecore_ptt *p_ptt, 2233 struct ecore_vf_info *vf) 2234 { 2235 u8 status = PFVF_STATUS_SUCCESS; 2236 enum _ecore_status_t rc; 2237 2238 OSAL_IOV_VF_VPORT_STOP(p_hwfn, vf); 2239 vf->vport_instance--; 2240 vf->spoof_chk = false; 2241 2242 if ((ecore_iov_validate_active_rxq(vf)) || 2243 (ecore_iov_validate_active_txq(vf))) { 2244 vf->b_malicious = true; 2245 DP_NOTICE(p_hwfn, 2246 false, " VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n", 2247 vf->abs_vf_id); 2248 status = PFVF_STATUS_MALICIOUS; 2249 goto out; 2250 } 2251 2252 rc = ecore_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 2253 if (rc != ECORE_SUCCESS) { 2254 DP_ERR(p_hwfn, "ecore_iov_vf_mbx_stop_vport returned error %d\n", 2255 rc); 2256 status = PFVF_STATUS_FAILURE; 2257 } 2258 2259 /* Forget the configuration on the vport */ 2260 vf->configured_features = 0; 2261 OSAL_MEMSET(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 2262 2263 out: 2264 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 2265 sizeof(struct pfvf_def_resp_tlv), status); 2266 } 2267 2268 static void ecore_iov_vf_mbx_start_rxq_resp(struct ecore_hwfn *p_hwfn, 2269 struct ecore_ptt *p_ptt, 2270 struct ecore_vf_info *vf, 2271 u8 status, bool b_legacy) 2272 { 2273 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 2274 struct pfvf_start_queue_resp_tlv *p_tlv; 2275 struct vfpf_start_rxq_tlv *req; 2276 u16 length; 2277 2278 mbx->offset = (u8 *)mbx->reply_virt; 2279 2280 /* Taking a bigger struct instead of adding a TLV to list was a 2281 * mistake, but one which we're now stuck with, as some older 2282 * clients assume the size of the previous response. 2283 */ 2284 if (!b_legacy) 2285 length = sizeof(*p_tlv); 2286 else 2287 length = sizeof(struct pfvf_def_resp_tlv); 2288 2289 p_tlv = ecore_add_tlv(&mbx->offset, CHANNEL_TLV_START_RXQ, length); 2290 ecore_add_tlv(&mbx->offset, CHANNEL_TLV_LIST_END, 2291 sizeof(struct channel_list_end_tlv)); 2292 2293 /* Update the TLV with the response */ 2294 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2295 req = &mbx->req_virt->start_rxq; 2296 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 2297 OFFSETOF(struct mstorm_vf_zone, 2298 non_trigger.eth_rx_queue_producers) + 2299 sizeof(struct eth_rx_prod_data) * req->rx_qid; 2300 } 2301 2302 ecore_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2303 } 2304 2305 static u8 ecore_iov_vf_mbx_qid(struct ecore_hwfn *p_hwfn, 2306 struct ecore_vf_info *p_vf, bool b_is_tx) 2307 { 2308 struct ecore_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; 2309 struct vfpf_qid_tlv *p_qid_tlv; 2310 2311 /* Search for the qid if the VF published if its going to provide it */ 2312 if (!(p_vf->acquire.vfdev_info.capabilities & 2313 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { 2314 if (b_is_tx) 2315 return ECORE_IOV_LEGACY_QID_TX; 2316 else 2317 return ECORE_IOV_LEGACY_QID_RX; 2318 } 2319 2320 p_qid_tlv = (struct vfpf_qid_tlv *) 2321 ecore_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2322 CHANNEL_TLV_QID); 2323 if (p_qid_tlv == OSAL_NULL) { 2324 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2325 "VF[%2x]: Failed to provide qid\n", 2326 p_vf->relative_vf_id); 2327 2328 return ECORE_IOV_QID_INVALID; 2329 } 2330 2331 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { 2332 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2333 "VF[%02x]: Provided qid out-of-bounds %02x\n", 2334 p_vf->relative_vf_id, p_qid_tlv->qid); 2335 return ECORE_IOV_QID_INVALID; 2336 } 2337 2338 return p_qid_tlv->qid; 2339 } 2340 2341 static void ecore_iov_vf_mbx_start_rxq(struct ecore_hwfn *p_hwfn, 2342 struct ecore_ptt *p_ptt, 2343 struct ecore_vf_info *vf) 2344 { 2345 struct ecore_queue_start_common_params params; 2346 struct ecore_queue_cid_vf_params vf_params; 2347 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 2348 u8 status = PFVF_STATUS_NO_RESOURCE; 2349 u8 qid_usage_idx, vf_legacy = 0; 2350 struct ecore_vf_queue *p_queue; 2351 struct vfpf_start_rxq_tlv *req; 2352 struct ecore_queue_cid *p_cid; 2353 struct ecore_sb_info sb_dummy; 2354 enum _ecore_status_t rc; 2355 2356 req = &mbx->req_virt->start_rxq; 2357 2358 if (!ecore_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 2359 ECORE_IOV_VALIDATE_Q_DISABLE) || 2360 !ecore_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2361 goto out; 2362 2363 qid_usage_idx = ecore_iov_vf_mbx_qid(p_hwfn, vf, false); 2364 if (qid_usage_idx == ECORE_IOV_QID_INVALID) 2365 goto out; 2366 2367 p_queue = &vf->vf_queues[req->rx_qid]; 2368 if (p_queue->cids[qid_usage_idx].p_cid) 2369 goto out; 2370 2371 vf_legacy = ecore_vf_calculate_legacy(vf); 2372 2373 /* Acquire a new queue-cid */ 2374 OSAL_MEMSET(¶ms, 0, sizeof(params)); 2375 params.queue_id = (u8)p_queue->fw_rx_qid; 2376 params.vport_id = vf->vport_id; 2377 params.stats_id = vf->abs_vf_id + 0x10; 2378 2379 /* Since IGU index is passed via sb_info, construct a dummy one */ 2380 OSAL_MEM_ZERO(&sb_dummy, sizeof(sb_dummy)); 2381 sb_dummy.igu_sb_id = req->hw_sb; 2382 params.p_sb = &sb_dummy; 2383 params.sb_idx = req->sb_index; 2384 2385 OSAL_MEM_ZERO(&vf_params, sizeof(vf_params)); 2386 vf_params.vfid = vf->relative_vf_id; 2387 vf_params.vf_qid = (u8)req->rx_qid; 2388 vf_params.vf_legacy = vf_legacy; 2389 vf_params.qid_usage_idx = qid_usage_idx; 2390 2391 p_cid = ecore_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2392 ¶ms, true, &vf_params); 2393 if (p_cid == OSAL_NULL) 2394 goto out; 2395 2396 /* Legacy VFs have their Producers in a different location, which they 2397 * calculate on their own and clean the producer prior to this. 2398 */ 2399 if (!(vf_legacy & ECORE_QCID_LEGACY_VF_RX_PROD)) 2400 REG_WR(p_hwfn, 2401 GTT_BAR0_MAP_REG_MSDM_RAM + 2402 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2403 0); 2404 2405 rc = ecore_eth_rxq_start_ramrod(p_hwfn, p_cid, 2406 req->bd_max_bytes, 2407 req->rxq_addr, 2408 req->cqe_pbl_addr, 2409 req->cqe_pbl_size); 2410 if (rc != ECORE_SUCCESS) { 2411 status = PFVF_STATUS_FAILURE; 2412 ecore_eth_queue_cid_release(p_hwfn, p_cid); 2413 } else { 2414 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2415 p_queue->cids[qid_usage_idx].b_is_tx = false; 2416 status = PFVF_STATUS_SUCCESS; 2417 vf->num_active_rxqs++; 2418 } 2419 2420 out: 2421 ecore_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, 2422 !!(vf_legacy & 2423 ECORE_QCID_LEGACY_VF_RX_PROD)); 2424 } 2425 2426 static void 2427 ecore_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2428 struct ecore_tunnel_info *p_tun, 2429 u16 tunn_feature_mask) 2430 { 2431 p_resp->tunn_feature_mask = tunn_feature_mask; 2432 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2433 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2434 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2435 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2436 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2437 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2438 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2439 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2440 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2441 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2442 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2443 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2444 } 2445 2446 static void 2447 __ecore_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2448 struct ecore_tunn_update_type *p_tun, 2449 enum ecore_tunn_mode mask, u8 tun_cls) 2450 { 2451 if (p_req->tun_mode_update_mask & (1 << mask)) { 2452 p_tun->b_update_mode = true; 2453 2454 if (p_req->tunn_mode & (1 << mask)) 2455 p_tun->b_mode_enabled = true; 2456 } 2457 2458 p_tun->tun_cls = tun_cls; 2459 } 2460 2461 static void 2462 ecore_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2463 struct ecore_tunn_update_type *p_tun, 2464 struct ecore_tunn_update_udp_port *p_port, 2465 enum ecore_tunn_mode mask, 2466 u8 tun_cls, u8 update_port, u16 port) 2467 { 2468 if (update_port) { 2469 p_port->b_update_port = true; 2470 p_port->port = port; 2471 } 2472 2473 __ecore_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2474 } 2475 2476 static bool 2477 ecore_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2478 { 2479 bool b_update_requested = false; 2480 2481 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2482 p_req->update_geneve_port || p_req->update_vxlan_port) 2483 b_update_requested = true; 2484 2485 return b_update_requested; 2486 } 2487 2488 static void ecore_iov_vf_mbx_update_tunn_param(struct ecore_hwfn *p_hwfn, 2489 struct ecore_ptt *p_ptt, 2490 struct ecore_vf_info *p_vf) 2491 { 2492 struct ecore_tunnel_info *p_tun = &p_hwfn->p_dev->tunnel; 2493 struct ecore_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2494 struct pfvf_update_tunn_param_tlv *p_resp; 2495 struct vfpf_update_tunn_param_tlv *p_req; 2496 enum _ecore_status_t rc = ECORE_SUCCESS; 2497 u8 status = PFVF_STATUS_SUCCESS; 2498 bool b_update_required = false; 2499 struct ecore_tunnel_info tunn; 2500 u16 tunn_feature_mask = 0; 2501 int i; 2502 2503 mbx->offset = (u8 *)mbx->reply_virt; 2504 2505 OSAL_MEM_ZERO(&tunn, sizeof(tunn)); 2506 p_req = &mbx->req_virt->tunn_param_update; 2507 2508 if (!ecore_iov_pf_validate_tunn_param(p_req)) { 2509 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2510 "No tunnel update requested by VF\n"); 2511 status = PFVF_STATUS_FAILURE; 2512 goto send_resp; 2513 } 2514 2515 tunn.b_update_rx_cls = p_req->update_tun_cls; 2516 tunn.b_update_tx_cls = p_req->update_tun_cls; 2517 2518 ecore_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2519 ECORE_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2520 p_req->update_vxlan_port, 2521 p_req->vxlan_port); 2522 ecore_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2523 ECORE_MODE_L2GENEVE_TUNN, 2524 p_req->l2geneve_clss, 2525 p_req->update_geneve_port, 2526 p_req->geneve_port); 2527 __ecore_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2528 ECORE_MODE_IPGENEVE_TUNN, 2529 p_req->ipgeneve_clss); 2530 __ecore_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2531 ECORE_MODE_L2GRE_TUNN, 2532 p_req->l2gre_clss); 2533 __ecore_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2534 ECORE_MODE_IPGRE_TUNN, 2535 p_req->ipgre_clss); 2536 2537 /* If PF modifies VF's req then it should 2538 * still return an error in case of partial configuration 2539 * or modified configuration as opposed to requested one. 2540 */ 2541 rc = OSAL_PF_VALIDATE_MODIFY_TUNN_CONFIG(p_hwfn, &tunn_feature_mask, 2542 &b_update_required, &tunn); 2543 2544 if (rc != ECORE_SUCCESS) 2545 status = PFVF_STATUS_FAILURE; 2546 2547 /* If ECORE client is willing to update anything ? */ 2548 if (b_update_required) { 2549 u16 geneve_port; 2550 2551 rc = ecore_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, 2552 ECORE_SPQ_MODE_EBLOCK, 2553 OSAL_NULL); 2554 if (rc != ECORE_SUCCESS) 2555 status = PFVF_STATUS_FAILURE; 2556 2557 geneve_port = p_tun->geneve_port.port; 2558 ecore_for_each_vf(p_hwfn, i) { 2559 ecore_iov_bulletin_set_udp_ports(p_hwfn, i, 2560 p_tun->vxlan_port.port, 2561 geneve_port); 2562 } 2563 } 2564 2565 send_resp: 2566 p_resp = ecore_add_tlv(&mbx->offset, 2567 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2568 2569 ecore_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2570 ecore_add_tlv(&mbx->offset, CHANNEL_TLV_LIST_END, 2571 sizeof(struct channel_list_end_tlv)); 2572 2573 ecore_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2574 } 2575 2576 static void ecore_iov_vf_mbx_start_txq_resp(struct ecore_hwfn *p_hwfn, 2577 struct ecore_ptt *p_ptt, 2578 struct ecore_vf_info *p_vf, 2579 u32 cid, 2580 u8 status) 2581 { 2582 struct ecore_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2583 struct pfvf_start_queue_resp_tlv *p_tlv; 2584 bool b_legacy = false; 2585 u16 length; 2586 2587 mbx->offset = (u8 *)mbx->reply_virt; 2588 2589 /* Taking a bigger struct instead of adding a TLV to list was a 2590 * mistake, but one which we're now stuck with, as some older 2591 * clients assume the size of the previous response. 2592 */ 2593 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2594 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2595 b_legacy = true; 2596 2597 if (!b_legacy) 2598 length = sizeof(*p_tlv); 2599 else 2600 length = sizeof(struct pfvf_def_resp_tlv); 2601 2602 p_tlv = ecore_add_tlv(&mbx->offset, CHANNEL_TLV_START_TXQ, length); 2603 ecore_add_tlv(&mbx->offset, CHANNEL_TLV_LIST_END, 2604 sizeof(struct channel_list_end_tlv)); 2605 2606 /* Update the TLV with the response */ 2607 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) 2608 p_tlv->offset = DB_ADDR_VF(cid, DQ_DEMS_LEGACY); 2609 2610 ecore_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2611 } 2612 2613 static void ecore_iov_vf_mbx_start_txq(struct ecore_hwfn *p_hwfn, 2614 struct ecore_ptt *p_ptt, 2615 struct ecore_vf_info *vf) 2616 { 2617 struct ecore_queue_start_common_params params; 2618 struct ecore_queue_cid_vf_params vf_params; 2619 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 2620 u8 status = PFVF_STATUS_NO_RESOURCE; 2621 struct ecore_vf_queue *p_queue; 2622 struct vfpf_start_txq_tlv *req; 2623 struct ecore_queue_cid *p_cid; 2624 struct ecore_sb_info sb_dummy; 2625 u8 qid_usage_idx, vf_legacy; 2626 u32 cid = 0; 2627 enum _ecore_status_t rc; 2628 u16 pq; 2629 2630 OSAL_MEMSET(¶ms, 0, sizeof(params)); 2631 req = &mbx->req_virt->start_txq; 2632 2633 if (!ecore_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2634 ECORE_IOV_VALIDATE_Q_NA) || 2635 !ecore_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2636 goto out; 2637 2638 qid_usage_idx = ecore_iov_vf_mbx_qid(p_hwfn, vf, true); 2639 if (qid_usage_idx == ECORE_IOV_QID_INVALID) 2640 goto out; 2641 2642 p_queue = &vf->vf_queues[req->tx_qid]; 2643 if (p_queue->cids[qid_usage_idx].p_cid) 2644 goto out; 2645 2646 vf_legacy = ecore_vf_calculate_legacy(vf); 2647 2648 /* Acquire a new queue-cid */ 2649 params.queue_id = p_queue->fw_tx_qid; 2650 params.vport_id = vf->vport_id; 2651 params.stats_id = vf->abs_vf_id + 0x10; 2652 2653 /* Since IGU index is passed via sb_info, construct a dummy one */ 2654 OSAL_MEM_ZERO(&sb_dummy, sizeof(sb_dummy)); 2655 sb_dummy.igu_sb_id = req->hw_sb; 2656 params.p_sb = &sb_dummy; 2657 params.sb_idx = req->sb_index; 2658 2659 OSAL_MEM_ZERO(&vf_params, sizeof(vf_params)); 2660 vf_params.vfid = vf->relative_vf_id; 2661 vf_params.vf_qid = (u8)req->tx_qid; 2662 vf_params.vf_legacy = vf_legacy; 2663 vf_params.qid_usage_idx = qid_usage_idx; 2664 2665 p_cid = ecore_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2666 ¶ms, false, &vf_params); 2667 if (p_cid == OSAL_NULL) 2668 goto out; 2669 2670 pq = ecore_get_cm_pq_idx_vf(p_hwfn, 2671 vf->relative_vf_id); 2672 rc = ecore_eth_txq_start_ramrod(p_hwfn, p_cid, 2673 req->pbl_addr, req->pbl_size, pq); 2674 if (rc != ECORE_SUCCESS) { 2675 status = PFVF_STATUS_FAILURE; 2676 ecore_eth_queue_cid_release(p_hwfn, p_cid); 2677 } else { 2678 status = PFVF_STATUS_SUCCESS; 2679 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2680 p_queue->cids[qid_usage_idx].b_is_tx = true; 2681 cid = p_cid->cid; 2682 } 2683 2684 out: 2685 ecore_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, 2686 cid, status); 2687 } 2688 2689 static enum _ecore_status_t ecore_iov_vf_stop_rxqs(struct ecore_hwfn *p_hwfn, 2690 struct ecore_vf_info *vf, 2691 u16 rxq_id, 2692 u8 qid_usage_idx, 2693 bool cqe_completion) 2694 { 2695 struct ecore_vf_queue *p_queue; 2696 enum _ecore_status_t rc = ECORE_SUCCESS; 2697 2698 if (!ecore_iov_validate_rxq(p_hwfn, vf, rxq_id, 2699 ECORE_IOV_VALIDATE_Q_NA)) { 2700 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2701 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", 2702 vf->relative_vf_id, rxq_id, qid_usage_idx); 2703 return ECORE_INVAL; 2704 } 2705 2706 p_queue = &vf->vf_queues[rxq_id]; 2707 2708 /* We've validated the index and the existence of the active RXQ - 2709 * now we need to make sure that it's using the correct qid. 2710 */ 2711 if (!p_queue->cids[qid_usage_idx].p_cid || 2712 p_queue->cids[qid_usage_idx].b_is_tx) { 2713 struct ecore_queue_cid *p_cid; 2714 2715 p_cid = ecore_iov_get_vf_rx_queue_cid(p_queue); 2716 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2717 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", 2718 vf->relative_vf_id, rxq_id, qid_usage_idx, 2719 rxq_id, p_cid->qid_usage_idx); 2720 return ECORE_INVAL; 2721 } 2722 2723 /* Now that we know we have a valid Rx-queue - close it */ 2724 rc = ecore_eth_rx_queue_stop(p_hwfn, 2725 p_queue->cids[qid_usage_idx].p_cid, 2726 false, cqe_completion); 2727 if (rc != ECORE_SUCCESS) 2728 return rc; 2729 2730 p_queue->cids[qid_usage_idx].p_cid = OSAL_NULL; 2731 vf->num_active_rxqs--; 2732 2733 return ECORE_SUCCESS; 2734 } 2735 2736 static enum _ecore_status_t ecore_iov_vf_stop_txqs(struct ecore_hwfn *p_hwfn, 2737 struct ecore_vf_info *vf, 2738 u16 txq_id, 2739 u8 qid_usage_idx) 2740 { 2741 struct ecore_vf_queue *p_queue; 2742 enum _ecore_status_t rc = ECORE_SUCCESS; 2743 2744 if (!ecore_iov_validate_txq(p_hwfn, vf, txq_id, 2745 ECORE_IOV_VALIDATE_Q_NA)) 2746 return ECORE_INVAL; 2747 2748 p_queue = &vf->vf_queues[txq_id]; 2749 if (!p_queue->cids[qid_usage_idx].p_cid || 2750 !p_queue->cids[qid_usage_idx].b_is_tx) 2751 return ECORE_INVAL; 2752 2753 rc = ecore_eth_tx_queue_stop(p_hwfn, 2754 p_queue->cids[qid_usage_idx].p_cid); 2755 if (rc != ECORE_SUCCESS) 2756 return rc; 2757 2758 p_queue->cids[qid_usage_idx].p_cid = OSAL_NULL; 2759 return ECORE_SUCCESS; 2760 } 2761 2762 static void ecore_iov_vf_mbx_stop_rxqs(struct ecore_hwfn *p_hwfn, 2763 struct ecore_ptt *p_ptt, 2764 struct ecore_vf_info *vf) 2765 { 2766 u16 length = sizeof(struct pfvf_def_resp_tlv); 2767 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 2768 u8 status = PFVF_STATUS_FAILURE; 2769 struct vfpf_stop_rxqs_tlv *req; 2770 u8 qid_usage_idx; 2771 enum _ecore_status_t rc; 2772 2773 /* Starting with CHANNEL_TLV_QID, it's assumed the 'num_rxqs' 2774 * would be one. Since no older ecore passed multiple queues 2775 * using this API, sanitize on the value. 2776 */ 2777 req = &mbx->req_virt->stop_rxqs; 2778 if (req->num_rxqs != 1) { 2779 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2780 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2781 vf->relative_vf_id); 2782 status = PFVF_STATUS_NOT_SUPPORTED; 2783 goto out; 2784 } 2785 2786 /* Find which qid-index is associated with the queue */ 2787 qid_usage_idx = ecore_iov_vf_mbx_qid(p_hwfn, vf, false); 2788 if (qid_usage_idx == ECORE_IOV_QID_INVALID) 2789 goto out; 2790 2791 rc = ecore_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2792 qid_usage_idx, req->cqe_completion); 2793 if (rc == ECORE_SUCCESS) 2794 status = PFVF_STATUS_SUCCESS; 2795 out: 2796 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2797 length, status); 2798 } 2799 2800 static void ecore_iov_vf_mbx_stop_txqs(struct ecore_hwfn *p_hwfn, 2801 struct ecore_ptt *p_ptt, 2802 struct ecore_vf_info *vf) 2803 { 2804 u16 length = sizeof(struct pfvf_def_resp_tlv); 2805 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 2806 u8 status = PFVF_STATUS_FAILURE; 2807 struct vfpf_stop_txqs_tlv *req; 2808 u8 qid_usage_idx; 2809 enum _ecore_status_t rc; 2810 2811 /* Starting with CHANNEL_TLV_QID, it's assumed the 'num_txqs' 2812 * would be one. Since no older ecore passed multiple queues 2813 * using this API, sanitize on the value. 2814 */ 2815 req = &mbx->req_virt->stop_txqs; 2816 if (req->num_txqs != 1) { 2817 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2818 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2819 vf->relative_vf_id); 2820 status = PFVF_STATUS_NOT_SUPPORTED; 2821 goto out; 2822 } 2823 2824 /* Find which qid-index is associated with the queue */ 2825 qid_usage_idx = ecore_iov_vf_mbx_qid(p_hwfn, vf, true); 2826 if (qid_usage_idx == ECORE_IOV_QID_INVALID) 2827 goto out; 2828 2829 rc = ecore_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, 2830 qid_usage_idx); 2831 if (rc == ECORE_SUCCESS) 2832 status = PFVF_STATUS_SUCCESS; 2833 2834 out: 2835 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2836 length, status); 2837 } 2838 2839 static void ecore_iov_vf_mbx_update_rxqs(struct ecore_hwfn *p_hwfn, 2840 struct ecore_ptt *p_ptt, 2841 struct ecore_vf_info *vf) 2842 { 2843 struct ecore_queue_cid *handlers[ECORE_MAX_VF_CHAINS_PER_PF]; 2844 u16 length = sizeof(struct pfvf_def_resp_tlv); 2845 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 2846 struct vfpf_update_rxq_tlv *req; 2847 u8 status = PFVF_STATUS_FAILURE; 2848 u8 complete_event_flg; 2849 u8 complete_cqe_flg; 2850 u8 qid_usage_idx; 2851 enum _ecore_status_t rc; 2852 u16 i; 2853 2854 req = &mbx->req_virt->update_rxq; 2855 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2856 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2857 2858 qid_usage_idx = ecore_iov_vf_mbx_qid(p_hwfn, vf, false); 2859 if (qid_usage_idx == ECORE_IOV_QID_INVALID) 2860 goto out; 2861 2862 /* Starting with the addition of CHANNEL_TLV_QID, this API started 2863 * expecting a single queue at a time. Validate this. 2864 */ 2865 if ((vf->acquire.vfdev_info.capabilities & 2866 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && 2867 req->num_rxqs != 1) { 2868 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2869 "VF[%d] supports QIDs but sends multiple queues\n", 2870 vf->relative_vf_id); 2871 goto out; 2872 } 2873 2874 /* Validate inputs - for the legacy case this is still true since 2875 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. 2876 */ 2877 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { 2878 if (!ecore_iov_validate_rxq(p_hwfn, vf, i, 2879 ECORE_IOV_VALIDATE_Q_NA) || 2880 !vf->vf_queues[i].cids[qid_usage_idx].p_cid || 2881 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { 2882 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2883 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2884 vf->relative_vf_id, req->rx_qid, 2885 req->num_rxqs); 2886 goto out; 2887 } 2888 } 2889 2890 for (i = 0; i < req->num_rxqs; i++) { 2891 u16 qid = req->rx_qid + i; 2892 2893 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; 2894 } 2895 2896 rc = ecore_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2897 req->num_rxqs, 2898 complete_cqe_flg, 2899 complete_event_flg, 2900 ECORE_SPQ_MODE_EBLOCK, 2901 OSAL_NULL); 2902 if (rc != ECORE_SUCCESS) 2903 goto out; 2904 2905 status = PFVF_STATUS_SUCCESS; 2906 out: 2907 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2908 length, status); 2909 } 2910 2911 void *ecore_iov_search_list_tlvs(struct ecore_hwfn *p_hwfn, 2912 void *p_tlvs_list, u16 req_type) 2913 { 2914 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2915 int len = 0; 2916 2917 do { 2918 if (!p_tlv->length) { 2919 DP_NOTICE(p_hwfn, true, 2920 "Zero length TLV found\n"); 2921 return OSAL_NULL; 2922 } 2923 2924 if (p_tlv->type == req_type) { 2925 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2926 "Extended tlv type %s, length %d found\n", 2927 ecore_channel_tlvs_string[p_tlv->type], 2928 p_tlv->length); 2929 return p_tlv; 2930 } 2931 2932 len += p_tlv->length; 2933 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2934 2935 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2936 DP_NOTICE(p_hwfn, true, 2937 "TLVs has overrun the buffer size\n"); 2938 return OSAL_NULL; 2939 } 2940 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2941 2942 return OSAL_NULL; 2943 } 2944 2945 static void 2946 ecore_iov_vp_update_act_param(struct ecore_hwfn *p_hwfn, 2947 struct ecore_sp_vport_update_params *p_data, 2948 struct ecore_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2949 { 2950 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2951 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2952 2953 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2954 ecore_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2955 tlv); 2956 if (!p_act_tlv) 2957 return; 2958 2959 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2960 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2961 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2962 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2963 *tlvs_mask |= 1 << ECORE_IOV_VP_UPDATE_ACTIVATE; 2964 } 2965 2966 static void 2967 ecore_iov_vp_update_vlan_param(struct ecore_hwfn *p_hwfn, 2968 struct ecore_sp_vport_update_params *p_data, 2969 struct ecore_vf_info *p_vf, 2970 struct ecore_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2971 { 2972 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2973 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2974 2975 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2976 ecore_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2977 tlv); 2978 if (!p_vlan_tlv) 2979 return; 2980 2981 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2982 2983 /* Ignore the VF request if we're forcing a vlan */ 2984 if (!(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) { 2985 p_data->update_inner_vlan_removal_flg = 1; 2986 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2987 } 2988 2989 *tlvs_mask |= 1 << ECORE_IOV_VP_UPDATE_VLAN_STRIP; 2990 } 2991 2992 static void 2993 ecore_iov_vp_update_tx_switch(struct ecore_hwfn *p_hwfn, 2994 struct ecore_sp_vport_update_params *p_data, 2995 struct ecore_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2996 { 2997 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2998 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2999 3000 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 3001 ecore_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 3002 tlv); 3003 if (!p_tx_switch_tlv) 3004 return; 3005 3006 #ifndef ASIC_ONLY 3007 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) { 3008 DP_NOTICE(p_hwfn, false, "FPGA: Ignore tx-switching configuration originating from VFs\n"); 3009 return; 3010 } 3011 #endif 3012 3013 p_data->update_tx_switching_flg = 1; 3014 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 3015 *tlvs_mask |= 1 << ECORE_IOV_VP_UPDATE_TX_SWITCH; 3016 } 3017 3018 static void 3019 ecore_iov_vp_update_mcast_bin_param(struct ecore_hwfn *p_hwfn, 3020 struct ecore_sp_vport_update_params *p_data, 3021 struct ecore_iov_vf_mbx *p_mbx, 3022 u16 *tlvs_mask) 3023 { 3024 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 3025 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 3026 3027 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 3028 ecore_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 3029 tlv); 3030 if (!p_mcast_tlv) 3031 return; 3032 3033 p_data->update_approx_mcast_flg = 1; 3034 OSAL_MEMCPY(p_data->bins, p_mcast_tlv->bins, 3035 sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS); 3036 *tlvs_mask |= 1 << ECORE_IOV_VP_UPDATE_MCAST; 3037 } 3038 3039 static void 3040 ecore_iov_vp_update_accept_flag(struct ecore_hwfn *p_hwfn, 3041 struct ecore_sp_vport_update_params *p_data, 3042 struct ecore_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 3043 { 3044 struct ecore_filter_accept_flags *p_flags = &p_data->accept_flags; 3045 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 3046 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 3047 3048 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 3049 ecore_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 3050 tlv); 3051 if (!p_accept_tlv) 3052 return; 3053 3054 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 3055 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 3056 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 3057 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 3058 *tlvs_mask |= 1 << ECORE_IOV_VP_UPDATE_ACCEPT_PARAM; 3059 } 3060 3061 static void 3062 ecore_iov_vp_update_accept_any_vlan(struct ecore_hwfn *p_hwfn, 3063 struct ecore_sp_vport_update_params *p_data, 3064 struct ecore_iov_vf_mbx *p_mbx, 3065 u16 *tlvs_mask) 3066 { 3067 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 3068 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 3069 3070 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 3071 ecore_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 3072 tlv); 3073 if (!p_accept_any_vlan) 3074 return; 3075 3076 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 3077 p_data->update_accept_any_vlan_flg = 3078 p_accept_any_vlan->update_accept_any_vlan_flg; 3079 *tlvs_mask |= 1 << ECORE_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 3080 } 3081 3082 static void 3083 ecore_iov_vp_update_rss_param(struct ecore_hwfn *p_hwfn, 3084 struct ecore_vf_info *vf, 3085 struct ecore_sp_vport_update_params *p_data, 3086 struct ecore_rss_params *p_rss, 3087 struct ecore_iov_vf_mbx *p_mbx, 3088 u16 *tlvs_mask, u16 *tlvs_accepted) 3089 { 3090 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 3091 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 3092 bool b_reject = false; 3093 u16 table_size; 3094 u16 i, q_idx; 3095 3096 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 3097 ecore_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 3098 tlv); 3099 if (!p_rss_tlv) { 3100 p_data->rss_params = OSAL_NULL; 3101 return; 3102 } 3103 3104 OSAL_MEMSET(p_rss, 0, sizeof(struct ecore_rss_params)); 3105 3106 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 3107 VFPF_UPDATE_RSS_CONFIG_FLAG); 3108 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 3109 VFPF_UPDATE_RSS_CAPS_FLAG); 3110 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 3111 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 3112 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 3113 VFPF_UPDATE_RSS_KEY_FLAG); 3114 3115 p_rss->rss_enable = p_rss_tlv->rss_enable; 3116 p_rss->rss_eng_id = vf->rss_eng_id; 3117 p_rss->rss_caps = p_rss_tlv->rss_caps; 3118 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 3119 OSAL_MEMCPY(p_rss->rss_key, p_rss_tlv->rss_key, 3120 sizeof(p_rss->rss_key)); 3121 3122 table_size = OSAL_MIN_T(u16, OSAL_ARRAY_SIZE(p_rss->rss_ind_table), 3123 (1 << p_rss_tlv->rss_table_size_log)); 3124 3125 for (i = 0; i < table_size; i++) { 3126 struct ecore_queue_cid *p_cid; 3127 3128 q_idx = p_rss_tlv->rss_ind_table[i]; 3129 if (!ecore_iov_validate_rxq(p_hwfn, vf, q_idx, 3130 ECORE_IOV_VALIDATE_Q_ENABLE)) { 3131 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3132 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 3133 vf->relative_vf_id, q_idx); 3134 b_reject = true; 3135 goto out; 3136 } 3137 3138 p_cid = ecore_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); 3139 p_rss->rss_ind_table[i] = p_cid; 3140 } 3141 3142 p_data->rss_params = p_rss; 3143 out: 3144 *tlvs_mask |= 1 << ECORE_IOV_VP_UPDATE_RSS; 3145 if (!b_reject) 3146 *tlvs_accepted |= 1 << ECORE_IOV_VP_UPDATE_RSS; 3147 } 3148 3149 static void 3150 ecore_iov_vp_update_sge_tpa_param(struct ecore_hwfn *p_hwfn, 3151 struct ecore_sp_vport_update_params *p_data, 3152 struct ecore_sge_tpa_params *p_sge_tpa, 3153 struct ecore_iov_vf_mbx *p_mbx, 3154 u16 *tlvs_mask) 3155 { 3156 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 3157 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 3158 3159 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 3160 ecore_iov_search_list_tlvs(p_hwfn, 3161 p_mbx->req_virt, tlv); 3162 3163 if (!p_sge_tpa_tlv) { 3164 p_data->sge_tpa_params = OSAL_NULL; 3165 return; 3166 } 3167 3168 OSAL_MEMSET(p_sge_tpa, 0, sizeof(struct ecore_sge_tpa_params)); 3169 3170 p_sge_tpa->update_tpa_en_flg = 3171 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 3172 VFPF_UPDATE_TPA_EN_FLAG); 3173 p_sge_tpa->update_tpa_param_flg = 3174 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 3175 VFPF_UPDATE_TPA_PARAM_FLAG); 3176 3177 p_sge_tpa->tpa_ipv4_en_flg = 3178 !!(p_sge_tpa_tlv->sge_tpa_flags & 3179 VFPF_TPA_IPV4_EN_FLAG); 3180 p_sge_tpa->tpa_ipv6_en_flg = 3181 !!(p_sge_tpa_tlv->sge_tpa_flags & 3182 VFPF_TPA_IPV6_EN_FLAG); 3183 p_sge_tpa->tpa_pkt_split_flg = 3184 !!(p_sge_tpa_tlv->sge_tpa_flags & 3185 VFPF_TPA_PKT_SPLIT_FLAG); 3186 p_sge_tpa->tpa_hdr_data_split_flg = 3187 !!(p_sge_tpa_tlv->sge_tpa_flags & 3188 VFPF_TPA_HDR_DATA_SPLIT_FLAG); 3189 p_sge_tpa->tpa_gro_consistent_flg = 3190 !!(p_sge_tpa_tlv->sge_tpa_flags & 3191 VFPF_TPA_GRO_CONSIST_FLAG); 3192 3193 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 3194 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 3195 p_sge_tpa->tpa_min_size_to_start = 3196 p_sge_tpa_tlv->tpa_min_size_to_start; 3197 p_sge_tpa->tpa_min_size_to_cont = 3198 p_sge_tpa_tlv->tpa_min_size_to_cont; 3199 p_sge_tpa->max_buffers_per_cqe = 3200 p_sge_tpa_tlv->max_buffers_per_cqe; 3201 3202 p_data->sge_tpa_params = p_sge_tpa; 3203 3204 *tlvs_mask |= 1 << ECORE_IOV_VP_UPDATE_SGE_TPA; 3205 } 3206 3207 static void ecore_iov_vf_mbx_vport_update(struct ecore_hwfn *p_hwfn, 3208 struct ecore_ptt *p_ptt, 3209 struct ecore_vf_info *vf) 3210 { 3211 struct ecore_rss_params *p_rss_params = OSAL_NULL; 3212 struct ecore_sp_vport_update_params params; 3213 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 3214 struct ecore_sge_tpa_params sge_tpa_params; 3215 u16 tlvs_mask = 0, tlvs_accepted = 0; 3216 u8 status = PFVF_STATUS_SUCCESS; 3217 u16 length; 3218 enum _ecore_status_t rc; 3219 3220 /* Valiate PF can send such a request */ 3221 if (!vf->vport_instance) { 3222 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3223 "No VPORT instance available for VF[%d], failing vport update\n", 3224 vf->abs_vf_id); 3225 status = PFVF_STATUS_FAILURE; 3226 goto out; 3227 } 3228 3229 p_rss_params = OSAL_VZALLOC(p_hwfn->p_dev, sizeof(*p_rss_params)); 3230 if (p_rss_params == OSAL_NULL) { 3231 status = PFVF_STATUS_FAILURE; 3232 goto out; 3233 } 3234 3235 OSAL_MEMSET(¶ms, 0, sizeof(params)); 3236 params.opaque_fid = vf->opaque_fid; 3237 params.vport_id = vf->vport_id; 3238 params.rss_params = OSAL_NULL; 3239 3240 /* Search for extended tlvs list and update values 3241 * from VF in struct ecore_sp_vport_update_params. 3242 */ 3243 ecore_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3244 ecore_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 3245 ecore_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 3246 ecore_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3247 ecore_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 3248 ecore_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 3249 ecore_iov_vp_update_sge_tpa_param(p_hwfn, ¶ms, 3250 &sge_tpa_params, mbx, &tlvs_mask); 3251 3252 tlvs_accepted = tlvs_mask; 3253 3254 /* Some of the extended TLVs need to be validated first; In that case, 3255 * they can update the mask without updating the accepted [so that 3256 * PF could communicate to VF it has rejected request]. 3257 */ 3258 ecore_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 3259 mbx, &tlvs_mask, &tlvs_accepted); 3260 3261 /* Just log a message if there is no single extended tlv in buffer. 3262 * When all features of vport update ramrod would be requested by VF 3263 * as extended TLVs in buffer then an error can be returned in response 3264 * if there is no extended TLV present in buffer. 3265 */ 3266 if (OSAL_IOV_VF_VPORT_UPDATE(p_hwfn, vf->relative_vf_id, 3267 ¶ms, &tlvs_accepted) != 3268 ECORE_SUCCESS) { 3269 tlvs_accepted = 0; 3270 status = PFVF_STATUS_NOT_SUPPORTED; 3271 goto out; 3272 } 3273 3274 if (!tlvs_accepted) { 3275 if (tlvs_mask) 3276 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3277 "Upper-layer prevents said VF configuration\n"); 3278 else 3279 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3280 "No feature tlvs found for vport update\n"); 3281 status = PFVF_STATUS_NOT_SUPPORTED; 3282 goto out; 3283 } 3284 3285 rc = ecore_sp_vport_update(p_hwfn, ¶ms, ECORE_SPQ_MODE_EBLOCK, 3286 OSAL_NULL); 3287 3288 if (rc) 3289 status = PFVF_STATUS_FAILURE; 3290 3291 out: 3292 OSAL_VFREE(p_hwfn->p_dev, p_rss_params); 3293 length = ecore_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 3294 tlvs_mask, tlvs_accepted); 3295 ecore_iov_send_response(p_hwfn, p_ptt, vf, length, status); 3296 } 3297 3298 static enum _ecore_status_t ecore_iov_vf_update_vlan_shadow(struct ecore_hwfn *p_hwfn, 3299 struct ecore_vf_info *p_vf, 3300 struct ecore_filter_ucast *p_params) 3301 { 3302 int i; 3303 3304 /* First remove entries and then add new ones */ 3305 if (p_params->opcode == ECORE_FILTER_REMOVE) { 3306 for (i = 0; i < ECORE_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3307 if (p_vf->shadow_config.vlans[i].used && 3308 p_vf->shadow_config.vlans[i].vid == 3309 p_params->vlan) { 3310 p_vf->shadow_config.vlans[i].used = false; 3311 break; 3312 } 3313 if (i == ECORE_ETH_VF_NUM_VLAN_FILTERS + 1) { 3314 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3315 "VF [%d] - Tries to remove a non-existing vlan\n", 3316 p_vf->relative_vf_id); 3317 return ECORE_INVAL; 3318 } 3319 } else if (p_params->opcode == ECORE_FILTER_REPLACE || 3320 p_params->opcode == ECORE_FILTER_FLUSH) { 3321 for (i = 0; i < ECORE_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3322 p_vf->shadow_config.vlans[i].used = false; 3323 } 3324 3325 /* In forced mode, we're willing to remove entries - but we don't add 3326 * new ones. 3327 */ 3328 if (p_vf->bulletin.p_virt->valid_bitmap & (1 << VLAN_ADDR_FORCED)) 3329 return ECORE_SUCCESS; 3330 3331 if (p_params->opcode == ECORE_FILTER_ADD || 3332 p_params->opcode == ECORE_FILTER_REPLACE) { 3333 for (i = 0; i < ECORE_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 3334 if (p_vf->shadow_config.vlans[i].used) 3335 continue; 3336 3337 p_vf->shadow_config.vlans[i].used = true; 3338 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 3339 break; 3340 } 3341 3342 if (i == ECORE_ETH_VF_NUM_VLAN_FILTERS + 1) { 3343 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3344 "VF [%d] - Tries to configure more than %d vlan filters\n", 3345 p_vf->relative_vf_id, 3346 ECORE_ETH_VF_NUM_VLAN_FILTERS + 1); 3347 return ECORE_INVAL; 3348 } 3349 } 3350 3351 return ECORE_SUCCESS; 3352 } 3353 3354 static enum _ecore_status_t ecore_iov_vf_update_mac_shadow(struct ecore_hwfn *p_hwfn, 3355 struct ecore_vf_info *p_vf, 3356 struct ecore_filter_ucast *p_params) 3357 { 3358 char empty_mac[ETH_ALEN]; 3359 int i; 3360 3361 OSAL_MEM_ZERO(empty_mac, ETH_ALEN); 3362 3363 /* If we're in forced-mode, we don't allow any change */ 3364 /* TODO - this would change if we were ever to implement logic for 3365 * removing a forced MAC altogether [in which case, like for vlans, 3366 * we should be able to re-trace previous configuration. 3367 */ 3368 if (p_vf->bulletin.p_virt->valid_bitmap & (1 << MAC_ADDR_FORCED)) 3369 return ECORE_SUCCESS; 3370 3371 /* First remove entries and then add new ones */ 3372 if (p_params->opcode == ECORE_FILTER_REMOVE) { 3373 for (i = 0; i < ECORE_ETH_VF_NUM_MAC_FILTERS; i++) { 3374 if (!OSAL_MEMCMP(p_vf->shadow_config.macs[i], 3375 p_params->mac, ETH_ALEN)) { 3376 OSAL_MEM_ZERO(p_vf->shadow_config.macs[i], 3377 ETH_ALEN); 3378 break; 3379 } 3380 } 3381 3382 if (i == ECORE_ETH_VF_NUM_MAC_FILTERS) { 3383 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3384 "MAC isn't configured\n"); 3385 return ECORE_INVAL; 3386 } 3387 } else if (p_params->opcode == ECORE_FILTER_REPLACE || 3388 p_params->opcode == ECORE_FILTER_FLUSH) { 3389 for (i = 0; i < ECORE_ETH_VF_NUM_MAC_FILTERS; i++) 3390 OSAL_MEM_ZERO(p_vf->shadow_config.macs[i], ETH_ALEN); 3391 } 3392 3393 /* List the new MAC address */ 3394 if (p_params->opcode != ECORE_FILTER_ADD && 3395 p_params->opcode != ECORE_FILTER_REPLACE) 3396 return ECORE_SUCCESS; 3397 3398 for (i = 0; i < ECORE_ETH_VF_NUM_MAC_FILTERS; i++) { 3399 if (!OSAL_MEMCMP(p_vf->shadow_config.macs[i], 3400 empty_mac, ETH_ALEN)) { 3401 OSAL_MEMCPY(p_vf->shadow_config.macs[i], 3402 p_params->mac, ETH_ALEN); 3403 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3404 "Added MAC at %d entry in shadow\n", i); 3405 break; 3406 } 3407 } 3408 3409 if (i == ECORE_ETH_VF_NUM_MAC_FILTERS) { 3410 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3411 "No available place for MAC\n"); 3412 return ECORE_INVAL; 3413 } 3414 3415 return ECORE_SUCCESS; 3416 } 3417 3418 static enum _ecore_status_t 3419 ecore_iov_vf_update_unicast_shadow(struct ecore_hwfn *p_hwfn, 3420 struct ecore_vf_info *p_vf, 3421 struct ecore_filter_ucast *p_params) 3422 { 3423 enum _ecore_status_t rc = ECORE_SUCCESS; 3424 3425 if (p_params->type == ECORE_FILTER_MAC) { 3426 rc = ecore_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 3427 if (rc != ECORE_SUCCESS) 3428 return rc; 3429 } 3430 3431 if (p_params->type == ECORE_FILTER_VLAN) 3432 rc = ecore_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 3433 3434 return rc; 3435 } 3436 3437 static void ecore_iov_vf_mbx_ucast_filter(struct ecore_hwfn *p_hwfn, 3438 struct ecore_ptt *p_ptt, 3439 struct ecore_vf_info *vf) 3440 { 3441 struct ecore_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3442 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 3443 struct vfpf_ucast_filter_tlv *req; 3444 u8 status = PFVF_STATUS_SUCCESS; 3445 struct ecore_filter_ucast params; 3446 enum _ecore_status_t rc; 3447 3448 /* Prepare the unicast filter params */ 3449 OSAL_MEMSET(¶ms, 0, sizeof(struct ecore_filter_ucast)); 3450 req = &mbx->req_virt->ucast_filter; 3451 params.opcode = (enum ecore_filter_opcode)req->opcode; 3452 params.type = (enum ecore_filter_ucast_type)req->type; 3453 3454 /* @@@TBD - We might need logic on HV side in determining this */ 3455 params.is_rx_filter = 1; 3456 params.is_tx_filter = 1; 3457 params.vport_to_remove_from = vf->vport_id; 3458 params.vport_to_add_to = vf->vport_id; 3459 OSAL_MEMCPY(params.mac, req->mac, ETH_ALEN); 3460 params.vlan = req->vlan; 3461 3462 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3463 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 3464 vf->abs_vf_id, params.opcode, params.type, 3465 params.is_rx_filter ? "RX" : "", 3466 params.is_tx_filter ? "TX" : "", 3467 params.vport_to_add_to, 3468 params.mac[0], params.mac[1], params.mac[2], 3469 params.mac[3], params.mac[4], params.mac[5], params.vlan); 3470 3471 if (!vf->vport_instance) { 3472 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3473 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3474 vf->abs_vf_id); 3475 status = PFVF_STATUS_FAILURE; 3476 goto out; 3477 } 3478 3479 /* Update shadow copy of the VF configuration. In case shadow indicates 3480 * the action should be blocked return success to VF to imitate the 3481 * firmware behaviour in such case. 3482 */ 3483 if (ecore_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms) != 3484 ECORE_SUCCESS) 3485 goto out; 3486 3487 /* Determine if the unicast filtering is acceptible by PF */ 3488 if ((p_bulletin->valid_bitmap & (1 << VLAN_ADDR_FORCED)) && 3489 (params.type == ECORE_FILTER_VLAN || 3490 params.type == ECORE_FILTER_MAC_VLAN)) { 3491 /* Once VLAN is forced or PVID is set, do not allow 3492 * to add/replace any further VLANs. 3493 */ 3494 if (params.opcode == ECORE_FILTER_ADD || 3495 params.opcode == ECORE_FILTER_REPLACE) 3496 status = PFVF_STATUS_FORCED; 3497 goto out; 3498 } 3499 3500 if ((p_bulletin->valid_bitmap & (1 << MAC_ADDR_FORCED)) && 3501 (params.type == ECORE_FILTER_MAC || 3502 params.type == ECORE_FILTER_MAC_VLAN)) { 3503 if (OSAL_MEMCMP(p_bulletin->mac, params.mac, ETH_ALEN) || 3504 (params.opcode != ECORE_FILTER_ADD && 3505 params.opcode != ECORE_FILTER_REPLACE)) 3506 status = PFVF_STATUS_FORCED; 3507 goto out; 3508 } 3509 3510 rc = OSAL_IOV_CHK_UCAST(p_hwfn, vf->relative_vf_id, ¶ms); 3511 if (rc == ECORE_EXISTS) { 3512 goto out; 3513 } else if (rc == ECORE_INVAL) { 3514 status = PFVF_STATUS_FAILURE; 3515 goto out; 3516 } 3517 3518 rc = ecore_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3519 ECORE_SPQ_MODE_CB, OSAL_NULL); 3520 if (rc) 3521 status = PFVF_STATUS_FAILURE; 3522 3523 out: 3524 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3525 sizeof(struct pfvf_def_resp_tlv), status); 3526 } 3527 3528 static void ecore_iov_vf_mbx_int_cleanup(struct ecore_hwfn *p_hwfn, 3529 struct ecore_ptt *p_ptt, 3530 struct ecore_vf_info *vf) 3531 { 3532 int i; 3533 3534 /* Reset the SBs */ 3535 for (i = 0; i < vf->num_sbs; i++) 3536 ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3537 vf->igu_sbs[i], 3538 vf->opaque_fid, false); 3539 3540 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3541 sizeof(struct pfvf_def_resp_tlv), 3542 PFVF_STATUS_SUCCESS); 3543 } 3544 3545 static void ecore_iov_vf_mbx_close(struct ecore_hwfn *p_hwfn, 3546 struct ecore_ptt *p_ptt, 3547 struct ecore_vf_info *vf) 3548 { 3549 u16 length = sizeof(struct pfvf_def_resp_tlv); 3550 u8 status = PFVF_STATUS_SUCCESS; 3551 3552 /* Disable Interrupts for VF */ 3553 ecore_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3554 3555 /* Reset Permission table */ 3556 ecore_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3557 3558 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3559 length, status); 3560 } 3561 3562 static void ecore_iov_vf_mbx_release(struct ecore_hwfn *p_hwfn, 3563 struct ecore_ptt *p_ptt, 3564 struct ecore_vf_info *p_vf) 3565 { 3566 u16 length = sizeof(struct pfvf_def_resp_tlv); 3567 u8 status = PFVF_STATUS_SUCCESS; 3568 enum _ecore_status_t rc = ECORE_SUCCESS; 3569 3570 ecore_iov_vf_cleanup(p_hwfn, p_vf); 3571 3572 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3573 /* Stopping the VF */ 3574 rc = ecore_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3575 p_vf->opaque_fid); 3576 3577 if (rc != ECORE_SUCCESS) { 3578 DP_ERR(p_hwfn, "ecore_sp_vf_stop returned error %d\n", 3579 rc); 3580 status = PFVF_STATUS_FAILURE; 3581 } 3582 3583 p_vf->state = VF_STOPPED; 3584 } 3585 3586 ecore_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3587 length, status); 3588 } 3589 3590 static void ecore_iov_vf_pf_get_coalesce(struct ecore_hwfn *p_hwfn, 3591 struct ecore_ptt *p_ptt, 3592 struct ecore_vf_info *p_vf) 3593 { 3594 struct ecore_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3595 struct pfvf_read_coal_resp_tlv *p_resp; 3596 struct vfpf_read_coal_req_tlv *req; 3597 u8 status = PFVF_STATUS_FAILURE; 3598 struct ecore_vf_queue *p_queue; 3599 struct ecore_queue_cid *p_cid; 3600 enum _ecore_status_t rc = ECORE_SUCCESS; 3601 u16 coal = 0, qid, i; 3602 bool b_is_rx; 3603 3604 mbx->offset = (u8 *)mbx->reply_virt; 3605 req = &mbx->req_virt->read_coal_req; 3606 3607 qid = req->qid; 3608 b_is_rx = req->is_rx ? true : false; 3609 3610 if (b_is_rx) { 3611 if (!ecore_iov_validate_rxq(p_hwfn, p_vf, qid, 3612 ECORE_IOV_VALIDATE_Q_ENABLE)) { 3613 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3614 "VF[%d]: Invalid Rx queue_id = %d\n", 3615 p_vf->abs_vf_id, qid); 3616 goto send_resp; 3617 } 3618 3619 p_cid = ecore_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); 3620 rc = ecore_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3621 if (rc != ECORE_SUCCESS) 3622 goto send_resp; 3623 } else { 3624 if (!ecore_iov_validate_txq(p_hwfn, p_vf, qid, 3625 ECORE_IOV_VALIDATE_Q_ENABLE)) { 3626 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3627 "VF[%d]: Invalid Tx queue_id = %d\n", 3628 p_vf->abs_vf_id, qid); 3629 goto send_resp; 3630 } 3631 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3632 p_queue = &p_vf->vf_queues[qid]; 3633 if ((p_queue->cids[i].p_cid == OSAL_NULL) || 3634 (!p_queue->cids[i].b_is_tx)) 3635 continue; 3636 3637 p_cid = p_queue->cids[i].p_cid; 3638 3639 rc = ecore_get_txq_coalesce(p_hwfn, p_ptt, 3640 p_cid, &coal); 3641 if (rc != ECORE_SUCCESS) 3642 goto send_resp; 3643 break; 3644 } 3645 } 3646 3647 status = PFVF_STATUS_SUCCESS; 3648 3649 send_resp: 3650 p_resp = ecore_add_tlv(&mbx->offset, CHANNEL_TLV_COALESCE_READ, 3651 sizeof(*p_resp)); 3652 p_resp->coal = coal; 3653 3654 ecore_add_tlv(&mbx->offset, CHANNEL_TLV_LIST_END, 3655 sizeof(struct channel_list_end_tlv)); 3656 3657 ecore_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 3658 } 3659 3660 static void ecore_iov_vf_pf_set_coalesce(struct ecore_hwfn *p_hwfn, 3661 struct ecore_ptt *p_ptt, 3662 struct ecore_vf_info *vf) 3663 { 3664 struct ecore_iov_vf_mbx *mbx = &vf->vf_mbx; 3665 enum _ecore_status_t rc = ECORE_SUCCESS; 3666 struct vfpf_update_coalesce *req; 3667 u8 status = PFVF_STATUS_FAILURE; 3668 struct ecore_queue_cid *p_cid; 3669 u16 rx_coal, tx_coal; 3670 u16 qid; 3671 int i; 3672 3673 req = &mbx->req_virt->update_coalesce; 3674 3675 rx_coal = req->rx_coal; 3676 tx_coal = req->tx_coal; 3677 qid = req->qid; 3678 3679 if (!ecore_iov_validate_rxq(p_hwfn, vf, qid, 3680 ECORE_IOV_VALIDATE_Q_ENABLE) && 3681 rx_coal) { 3682 DP_ERR(p_hwfn, "VF[%d]: Invalid Rx queue_id = %d\n", 3683 vf->abs_vf_id, qid); 3684 goto out; 3685 } 3686 3687 if (!ecore_iov_validate_txq(p_hwfn, vf, qid, 3688 ECORE_IOV_VALIDATE_Q_ENABLE) && 3689 tx_coal) { 3690 DP_ERR(p_hwfn, "VF[%d]: Invalid Tx queue_id = %d\n", 3691 vf->abs_vf_id, qid); 3692 goto out; 3693 } 3694 3695 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3696 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3697 vf->abs_vf_id, rx_coal, tx_coal, qid); 3698 3699 if (rx_coal) { 3700 p_cid = ecore_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3701 3702 rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3703 if (rc != ECORE_SUCCESS) { 3704 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3705 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3706 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3707 goto out; 3708 } 3709 vf->rx_coal = rx_coal; 3710 } 3711 3712 /* TODO - in future, it might be possible to pass this in a per-cid 3713 * granularity. For now, do this for all Tx queues. 3714 */ 3715 if (tx_coal) { 3716 struct ecore_vf_queue *p_queue = &vf->vf_queues[qid]; 3717 3718 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3719 if (p_queue->cids[i].p_cid == OSAL_NULL) 3720 continue; 3721 3722 if (!p_queue->cids[i].b_is_tx) 3723 continue; 3724 3725 rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3726 p_queue->cids[i].p_cid); 3727 if (rc != ECORE_SUCCESS) { 3728 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3729 "VF[%d]: Unable to set tx queue coalesce\n", 3730 vf->abs_vf_id); 3731 goto out; 3732 } 3733 } 3734 vf->tx_coal = tx_coal; 3735 } 3736 3737 status = PFVF_STATUS_SUCCESS; 3738 out: 3739 ecore_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, 3740 sizeof(struct pfvf_def_resp_tlv), status); 3741 } 3742 3743 enum _ecore_status_t 3744 ecore_iov_pf_configure_vf_queue_coalesce(struct ecore_hwfn *p_hwfn, 3745 u16 rx_coal, u16 tx_coal, 3746 u16 vf_id, u16 qid) 3747 { 3748 struct ecore_queue_cid *p_cid; 3749 struct ecore_vf_info *vf; 3750 struct ecore_ptt *p_ptt; 3751 int i, rc = 0; 3752 3753 if (!ecore_iov_is_valid_vfid(p_hwfn, vf_id, true, true)) { 3754 DP_NOTICE(p_hwfn, true, 3755 "VF[%d] - Can not set coalescing: VF is not active\n", 3756 vf_id); 3757 return ECORE_INVAL; 3758 } 3759 3760 vf = &p_hwfn->pf_iov_info->vfs_array[vf_id]; 3761 p_ptt = ecore_ptt_acquire(p_hwfn); 3762 if (!p_ptt) 3763 return ECORE_AGAIN; 3764 3765 if (!ecore_iov_validate_rxq(p_hwfn, vf, qid, 3766 ECORE_IOV_VALIDATE_Q_ENABLE) && 3767 rx_coal) { 3768 DP_ERR(p_hwfn, "VF[%d]: Invalid Rx queue_id = %d\n", 3769 vf->abs_vf_id, qid); 3770 goto out; 3771 } 3772 3773 if (!ecore_iov_validate_txq(p_hwfn, vf, qid, 3774 ECORE_IOV_VALIDATE_Q_ENABLE) && 3775 tx_coal) { 3776 DP_ERR(p_hwfn, "VF[%d]: Invalid Tx queue_id = %d\n", 3777 vf->abs_vf_id, qid); 3778 goto out; 3779 } 3780 3781 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3782 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3783 vf->abs_vf_id, rx_coal, tx_coal, qid); 3784 3785 if (rx_coal) { 3786 p_cid = ecore_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3787 3788 rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3789 if (rc != ECORE_SUCCESS) { 3790 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3791 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3792 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3793 goto out; 3794 } 3795 vf->rx_coal = rx_coal; 3796 } 3797 3798 /* TODO - in future, it might be possible to pass this in a per-cid 3799 * granularity. For now, do this for all Tx queues. 3800 */ 3801 if (tx_coal) { 3802 struct ecore_vf_queue *p_queue = &vf->vf_queues[qid]; 3803 3804 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3805 if (p_queue->cids[i].p_cid == OSAL_NULL) 3806 continue; 3807 3808 if (!p_queue->cids[i].b_is_tx) 3809 continue; 3810 3811 rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3812 p_queue->cids[i].p_cid); 3813 if (rc != ECORE_SUCCESS) { 3814 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3815 "VF[%d]: Unable to set tx queue coalesce\n", 3816 vf->abs_vf_id); 3817 goto out; 3818 } 3819 } 3820 vf->tx_coal = tx_coal; 3821 } 3822 3823 out: 3824 ecore_ptt_release(p_hwfn, p_ptt); 3825 3826 return rc; 3827 } 3828 3829 static enum _ecore_status_t 3830 ecore_iov_vf_flr_poll_dorq(struct ecore_hwfn *p_hwfn, 3831 struct ecore_vf_info *p_vf, 3832 struct ecore_ptt *p_ptt) 3833 { 3834 int cnt; 3835 u32 val; 3836 3837 ecore_fid_pretend(p_hwfn, p_ptt, (u16)p_vf->concrete_fid); 3838 3839 for (cnt = 0; cnt < 50; cnt++) { 3840 val = ecore_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3841 if (!val) 3842 break; 3843 OSAL_MSLEEP(20); 3844 } 3845 ecore_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); 3846 3847 if (cnt == 50) { 3848 DP_ERR(p_hwfn, "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3849 p_vf->abs_vf_id, val); 3850 return ECORE_TIMEOUT; 3851 } 3852 3853 return ECORE_SUCCESS; 3854 } 3855 3856 static enum _ecore_status_t 3857 ecore_iov_vf_flr_poll_pbf(struct ecore_hwfn *p_hwfn, 3858 struct ecore_vf_info *p_vf, 3859 struct ecore_ptt *p_ptt) 3860 { 3861 u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4]; 3862 int i, cnt; 3863 3864 /* Read initial consumers & producers */ 3865 for (i = 0; i < MAX_NUM_VOQS_E4; i++) { 3866 u32 prod; 3867 3868 cons[i] = ecore_rd(p_hwfn, p_ptt, 3869 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3870 i * 0x40); 3871 prod = ecore_rd(p_hwfn, p_ptt, 3872 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 3873 i * 0x40); 3874 distance[i] = prod - cons[i]; 3875 } 3876 3877 /* Wait for consumers to pass the producers */ 3878 i = 0; 3879 for (cnt = 0; cnt < 50; cnt++) { 3880 for (; i < MAX_NUM_VOQS_E4; i++) { 3881 u32 tmp; 3882 3883 tmp = ecore_rd(p_hwfn, p_ptt, 3884 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3885 i * 0x40); 3886 if (distance[i] > tmp - cons[i]) 3887 break; 3888 } 3889 3890 if (i == MAX_NUM_VOQS_E4) 3891 break; 3892 3893 OSAL_MSLEEP(20); 3894 } 3895 3896 if (cnt == 50) { 3897 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3898 p_vf->abs_vf_id, i); 3899 return ECORE_TIMEOUT; 3900 } 3901 3902 return ECORE_SUCCESS; 3903 } 3904 3905 static enum _ecore_status_t ecore_iov_vf_flr_poll(struct ecore_hwfn *p_hwfn, 3906 struct ecore_vf_info *p_vf, 3907 struct ecore_ptt *p_ptt) 3908 { 3909 enum _ecore_status_t rc; 3910 3911 /* TODO - add SRC and TM polling once we add storage IOV */ 3912 3913 rc = ecore_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3914 if (rc) 3915 return rc; 3916 3917 rc = ecore_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3918 if (rc) 3919 return rc; 3920 3921 return ECORE_SUCCESS; 3922 } 3923 3924 static enum _ecore_status_t 3925 ecore_iov_execute_vf_flr_cleanup(struct ecore_hwfn *p_hwfn, 3926 struct ecore_ptt *p_ptt, 3927 u16 rel_vf_id, 3928 u32 *ack_vfs) 3929 { 3930 struct ecore_vf_info *p_vf; 3931 enum _ecore_status_t rc = ECORE_SUCCESS; 3932 3933 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3934 if (!p_vf) 3935 return ECORE_SUCCESS; 3936 3937 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3938 (1ULL << (rel_vf_id % 64))) { 3939 u16 vfid = p_vf->abs_vf_id; 3940 3941 /* TODO - should we lock channel? */ 3942 3943 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 3944 "VF[%d] - Handling FLR\n", vfid); 3945 3946 ecore_iov_vf_cleanup(p_hwfn, p_vf); 3947 3948 /* If VF isn't active, no need for anything but SW */ 3949 if (!p_vf->b_init) 3950 goto cleanup; 3951 3952 /* TODO - what to do in case of failure? */ 3953 rc = ecore_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3954 if (rc != ECORE_SUCCESS) 3955 goto cleanup; 3956 3957 rc = ecore_final_cleanup(p_hwfn, p_ptt, vfid, true); 3958 if (rc) { 3959 /* TODO - what's now? What a mess.... */ 3960 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", 3961 vfid); 3962 return rc; 3963 } 3964 3965 /* Workaround to make VF-PF channel ready, as FW 3966 * doesn't do that as a part of FLR. 3967 */ 3968 REG_WR(p_hwfn, 3969 GTT_BAR0_MAP_REG_USDM_RAM + 3970 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3971 3972 /* VF_STOPPED has to be set only after final cleanup 3973 * but prior to re-enabling the VF. 3974 */ 3975 p_vf->state = VF_STOPPED; 3976 3977 rc = ecore_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3978 if (rc) { 3979 /* TODO - again, a mess... */ 3980 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3981 vfid); 3982 return rc; 3983 } 3984 cleanup: 3985 /* Mark VF for ack and clean pending state */ 3986 if (p_vf->state == VF_RESET) 3987 p_vf->state = VF_STOPPED; 3988 ack_vfs[vfid / 32] |= (1 << (vfid % 32)); 3989 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3990 ~(1ULL << (rel_vf_id % 64)); 3991 p_vf->vf_mbx.b_pending_msg = false; 3992 } 3993 3994 return rc; 3995 } 3996 3997 enum _ecore_status_t ecore_iov_vf_flr_cleanup(struct ecore_hwfn *p_hwfn, 3998 struct ecore_ptt *p_ptt) 3999 4000 { 4001 u32 ack_vfs[VF_MAX_STATIC / 32]; 4002 enum _ecore_status_t rc = ECORE_SUCCESS; 4003 u16 i; 4004 4005 OSAL_MEMSET(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 4006 4007 /* Since BRB <-> PRS interface can't be tested as part of the flr 4008 * polling due to HW limitations, simply sleep a bit. And since 4009 * there's no need to wait per-vf, do it before looping. 4010 */ 4011 OSAL_MSLEEP(100); 4012 4013 for (i = 0; i < p_hwfn->p_dev->p_iov_info->total_vfs; i++) 4014 ecore_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 4015 4016 rc = ecore_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 4017 return rc; 4018 } 4019 4020 #ifndef LINUX_REMOVE 4021 enum _ecore_status_t 4022 ecore_iov_single_vf_flr_cleanup(struct ecore_hwfn *p_hwfn, 4023 struct ecore_ptt *p_ptt, 4024 u16 rel_vf_id) 4025 4026 { 4027 u32 ack_vfs[VF_MAX_STATIC / 32]; 4028 enum _ecore_status_t rc = ECORE_SUCCESS; 4029 4030 OSAL_MEMSET(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 4031 4032 /* Wait instead of polling the BRB <-> PRS interface */ 4033 OSAL_MSLEEP(100); 4034 4035 ecore_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, rel_vf_id, ack_vfs); 4036 4037 rc = ecore_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 4038 return rc; 4039 } 4040 #endif 4041 4042 bool ecore_iov_mark_vf_flr(struct ecore_hwfn *p_hwfn, 4043 u32 *p_disabled_vfs) 4044 { 4045 bool found = false; 4046 u16 i; 4047 4048 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, "Marking FLR-ed VFs\n"); 4049 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 4050 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4051 "[%08x,...,%08x]: %08x\n", 4052 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 4053 4054 if (!p_hwfn->p_dev->p_iov_info) { 4055 DP_NOTICE(p_hwfn, true, "VF flr but no IOV\n"); 4056 return false; 4057 } 4058 4059 /* Mark VFs */ 4060 for (i = 0; i < p_hwfn->p_dev->p_iov_info->total_vfs; i++) { 4061 struct ecore_vf_info *p_vf; 4062 u8 vfid; 4063 4064 p_vf = ecore_iov_get_vf_info(p_hwfn, i, false); 4065 if (!p_vf) 4066 continue; 4067 4068 vfid = p_vf->abs_vf_id; 4069 if ((1 << (vfid % 32)) & p_disabled_vfs[vfid / 32]) { 4070 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 4071 u16 rel_vf_id = p_vf->relative_vf_id; 4072 4073 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4074 "VF[%d] [rel %d] got FLR-ed\n", 4075 vfid, rel_vf_id); 4076 4077 p_vf->state = VF_RESET; 4078 4079 /* No need to lock here, since pending_flr should 4080 * only change here and before ACKing MFw. Since 4081 * MFW will not trigger an additional attention for 4082 * VF flr until ACKs, we're safe. 4083 */ 4084 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 4085 found = true; 4086 } 4087 } 4088 4089 return found; 4090 } 4091 4092 void ecore_iov_get_link(struct ecore_hwfn *p_hwfn, 4093 u16 vfid, 4094 struct ecore_mcp_link_params *p_params, 4095 struct ecore_mcp_link_state *p_link, 4096 struct ecore_mcp_link_capabilities *p_caps) 4097 { 4098 struct ecore_vf_info *p_vf = ecore_iov_get_vf_info(p_hwfn, vfid, false); 4099 struct ecore_bulletin_content *p_bulletin; 4100 4101 if (!p_vf) 4102 return; 4103 4104 p_bulletin = p_vf->bulletin.p_virt; 4105 4106 if (p_params) 4107 __ecore_vf_get_link_params(p_params, p_bulletin); 4108 if (p_link) 4109 __ecore_vf_get_link_state(p_link, p_bulletin); 4110 if (p_caps) 4111 __ecore_vf_get_link_caps(p_caps, p_bulletin); 4112 } 4113 4114 void ecore_iov_process_mbx_req(struct ecore_hwfn *p_hwfn, 4115 struct ecore_ptt *p_ptt, 4116 int vfid) 4117 { 4118 struct ecore_iov_vf_mbx *mbx; 4119 struct ecore_vf_info *p_vf; 4120 4121 p_vf = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4122 if (!p_vf) 4123 return; 4124 4125 mbx = &p_vf->vf_mbx; 4126 4127 /* ecore_iov_process_mbx_request */ 4128 #ifndef CONFIG_ECORE_SW_CHANNEL 4129 if (!mbx->b_pending_msg) { 4130 DP_NOTICE(p_hwfn, true, 4131 "VF[%02x]: Trying to process mailbox message when none is pending\n", 4132 p_vf->abs_vf_id); 4133 return; 4134 } 4135 mbx->b_pending_msg = false; 4136 #endif 4137 4138 mbx->first_tlv = mbx->req_virt->first_tlv; 4139 4140 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4141 "VF[%02x]: Processing mailbox message [type %04x]\n", 4142 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 4143 4144 OSAL_IOV_VF_MSG_TYPE(p_hwfn, 4145 p_vf->relative_vf_id, 4146 mbx->first_tlv.tl.type); 4147 4148 /* Lock the per vf op mutex and note the locker's identity. 4149 * The unlock will take place in mbx response. 4150 */ 4151 ecore_iov_lock_vf_pf_channel(p_hwfn, p_vf, 4152 mbx->first_tlv.tl.type); 4153 4154 /* check if tlv type is known */ 4155 if (ecore_iov_tlv_supported(mbx->first_tlv.tl.type) && 4156 !p_vf->b_malicious) { 4157 /* switch on the opcode */ 4158 switch (mbx->first_tlv.tl.type) { 4159 case CHANNEL_TLV_ACQUIRE: 4160 ecore_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 4161 break; 4162 case CHANNEL_TLV_VPORT_START: 4163 ecore_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 4164 break; 4165 case CHANNEL_TLV_VPORT_TEARDOWN: 4166 ecore_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 4167 break; 4168 case CHANNEL_TLV_START_RXQ: 4169 ecore_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 4170 break; 4171 case CHANNEL_TLV_START_TXQ: 4172 ecore_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 4173 break; 4174 case CHANNEL_TLV_STOP_RXQS: 4175 ecore_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 4176 break; 4177 case CHANNEL_TLV_STOP_TXQS: 4178 ecore_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 4179 break; 4180 case CHANNEL_TLV_UPDATE_RXQ: 4181 ecore_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 4182 break; 4183 case CHANNEL_TLV_VPORT_UPDATE: 4184 ecore_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 4185 break; 4186 case CHANNEL_TLV_UCAST_FILTER: 4187 ecore_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 4188 break; 4189 case CHANNEL_TLV_CLOSE: 4190 ecore_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 4191 break; 4192 case CHANNEL_TLV_INT_CLEANUP: 4193 ecore_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 4194 break; 4195 case CHANNEL_TLV_RELEASE: 4196 ecore_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 4197 break; 4198 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 4199 ecore_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 4200 break; 4201 case CHANNEL_TLV_COALESCE_UPDATE: 4202 ecore_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); 4203 break; 4204 case CHANNEL_TLV_COALESCE_READ: 4205 ecore_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); 4206 break; 4207 } 4208 } else if (ecore_iov_tlv_supported(mbx->first_tlv.tl.type)) { 4209 /* If we've received a message from a VF we consider malicious 4210 * we ignore the messasge unless it's one for RELEASE, in which 4211 * case we'll let it have the benefit of doubt, allowing the 4212 * next loaded driver to start again. 4213 */ 4214 if (mbx->first_tlv.tl.type == CHANNEL_TLV_RELEASE) { 4215 /* TODO - initiate FLR, remove malicious indication */ 4216 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4217 "VF [%02x] - considered malicious, but wanted to RELEASE. TODO\n", 4218 p_vf->abs_vf_id); 4219 } else { 4220 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4221 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 4222 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 4223 } 4224 4225 ecore_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 4226 mbx->first_tlv.tl.type, 4227 sizeof(struct pfvf_def_resp_tlv), 4228 PFVF_STATUS_MALICIOUS); 4229 } else { 4230 /* unknown TLV - this may belong to a VF driver from the future 4231 * - a version written after this PF driver was written, which 4232 * supports features unknown as of yet. Too bad since we don't 4233 * support them. Or this may be because someone wrote a crappy 4234 * VF driver and is sending garbage over the channel. 4235 */ 4236 DP_NOTICE(p_hwfn, false, 4237 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 4238 p_vf->abs_vf_id, 4239 mbx->first_tlv.tl.type, 4240 mbx->first_tlv.tl.length, 4241 mbx->first_tlv.padding, 4242 (unsigned long long)mbx->first_tlv.reply_address); 4243 4244 /* Try replying in case reply address matches the acquisition's 4245 * posted address. 4246 */ 4247 if (p_vf->acquire.first_tlv.reply_address && 4248 (mbx->first_tlv.reply_address == 4249 p_vf->acquire.first_tlv.reply_address)) 4250 ecore_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 4251 mbx->first_tlv.tl.type, 4252 sizeof(struct pfvf_def_resp_tlv), 4253 PFVF_STATUS_NOT_SUPPORTED); 4254 else 4255 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4256 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 4257 p_vf->abs_vf_id); 4258 } 4259 4260 ecore_iov_unlock_vf_pf_channel(p_hwfn, p_vf, 4261 mbx->first_tlv.tl.type); 4262 4263 #ifdef CONFIG_ECORE_SW_CHANNEL 4264 mbx->sw_mbx.mbx_state = VF_PF_RESPONSE_READY; 4265 mbx->sw_mbx.response_offset = 0; 4266 #endif 4267 } 4268 4269 void ecore_iov_pf_get_pending_events(struct ecore_hwfn *p_hwfn, 4270 u64 *events) 4271 { 4272 int i; 4273 4274 OSAL_MEM_ZERO(events, sizeof(u64) * ECORE_VF_ARRAY_LENGTH); 4275 4276 ecore_for_each_vf(p_hwfn, i) { 4277 struct ecore_vf_info *p_vf; 4278 4279 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 4280 if (p_vf->vf_mbx.b_pending_msg) 4281 events[i / 64] |= 1ULL << (i % 64); 4282 } 4283 } 4284 4285 static struct ecore_vf_info * 4286 ecore_sriov_get_vf_from_absid(struct ecore_hwfn *p_hwfn, u16 abs_vfid) 4287 { 4288 u8 min = (u8)p_hwfn->p_dev->p_iov_info->first_vf_in_pf; 4289 4290 if (!_ecore_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 4291 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4292 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 4293 abs_vfid); 4294 return OSAL_NULL; 4295 } 4296 4297 return &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min]; 4298 } 4299 4300 static enum _ecore_status_t ecore_sriov_vfpf_msg(struct ecore_hwfn *p_hwfn, 4301 u16 abs_vfid, 4302 struct regpair *vf_msg) 4303 { 4304 struct ecore_vf_info *p_vf = ecore_sriov_get_vf_from_absid(p_hwfn, 4305 abs_vfid); 4306 4307 if (!p_vf) 4308 return ECORE_SUCCESS; 4309 4310 /* List the physical address of the request so that handler 4311 * could later on copy the message from it. 4312 */ 4313 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | 4314 vf_msg->lo; 4315 4316 p_vf->vf_mbx.b_pending_msg = true; 4317 4318 return OSAL_PF_VF_MSG(p_hwfn, p_vf->relative_vf_id); 4319 } 4320 4321 static void ecore_sriov_vfpf_malicious(struct ecore_hwfn *p_hwfn, 4322 struct malicious_vf_eqe_data *p_data) 4323 { 4324 struct ecore_vf_info *p_vf; 4325 4326 p_vf = ecore_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 4327 4328 if (!p_vf) 4329 return; 4330 4331 if (!p_vf->b_malicious) { 4332 DP_NOTICE(p_hwfn, false, 4333 "VF [%d] - Malicious behavior [%02x]\n", 4334 p_vf->abs_vf_id, p_data->err_id); 4335 4336 p_vf->b_malicious = true; 4337 } else { 4338 DP_INFO(p_hwfn, 4339 "VF [%d] - Malicious behavior [%02x]\n", 4340 p_vf->abs_vf_id, p_data->err_id); 4341 } 4342 4343 OSAL_PF_VF_MALICIOUS(p_hwfn, p_vf->relative_vf_id); 4344 } 4345 4346 static enum _ecore_status_t ecore_sriov_eqe_event(struct ecore_hwfn *p_hwfn, 4347 u8 opcode, 4348 __le16 echo, 4349 union event_ring_data *data, 4350 u8 OSAL_UNUSED fw_return_code) 4351 { 4352 switch (opcode) { 4353 case COMMON_EVENT_VF_PF_CHANNEL: 4354 return ecore_sriov_vfpf_msg(p_hwfn, OSAL_LE16_TO_CPU(echo), 4355 &data->vf_pf_channel.msg_addr); 4356 case COMMON_EVENT_VF_FLR: 4357 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4358 "VF-FLR is still not supported\n"); 4359 return ECORE_SUCCESS; 4360 case COMMON_EVENT_MALICIOUS_VF: 4361 ecore_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 4362 return ECORE_SUCCESS; 4363 default: 4364 DP_INFO(p_hwfn->p_dev, "Unknown sriov eqe event 0x%02x\n", 4365 opcode); 4366 return ECORE_INVAL; 4367 } 4368 } 4369 4370 #ifndef LINUX_REMOVE 4371 bool ecore_iov_is_vf_pending_flr(struct ecore_hwfn *p_hwfn, 4372 u16 rel_vf_id) 4373 { 4374 return !!(p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 4375 (1ULL << (rel_vf_id % 64))); 4376 } 4377 #endif 4378 4379 u16 ecore_iov_get_next_active_vf(struct ecore_hwfn *p_hwfn, u16 rel_vf_id) 4380 { 4381 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info; 4382 u16 i; 4383 4384 if (!p_iov) 4385 goto out; 4386 4387 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 4388 if (ecore_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 4389 return i; 4390 4391 out: 4392 return MAX_NUM_VFS_E4; 4393 } 4394 4395 enum _ecore_status_t ecore_iov_copy_vf_msg(struct ecore_hwfn *p_hwfn, 4396 struct ecore_ptt *ptt, 4397 int vfid) 4398 { 4399 struct ecore_dmae_params params; 4400 struct ecore_vf_info *vf_info; 4401 4402 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4403 if (!vf_info) 4404 return ECORE_INVAL; 4405 4406 OSAL_MEMSET(¶ms, 0, sizeof(struct ecore_dmae_params)); 4407 params.flags = ECORE_DMAE_FLAG_VF_SRC | 4408 ECORE_DMAE_FLAG_COMPLETION_DST; 4409 params.src_vfid = vf_info->abs_vf_id; 4410 4411 if (ecore_dmae_host2host(p_hwfn, ptt, 4412 vf_info->vf_mbx.pending_req, 4413 vf_info->vf_mbx.req_phys, 4414 sizeof(union vfpf_tlvs) / 4, 4415 ¶ms)) { 4416 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4417 "Failed to copy message from VF 0x%02x\n", 4418 vfid); 4419 4420 return ECORE_IO; 4421 } 4422 4423 return ECORE_SUCCESS; 4424 } 4425 4426 void ecore_iov_bulletin_set_forced_mac(struct ecore_hwfn *p_hwfn, 4427 u8 *mac, int vfid) 4428 { 4429 struct ecore_vf_info *vf_info; 4430 u64 feature; 4431 4432 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4433 if (!vf_info) { 4434 DP_NOTICE(p_hwfn->p_dev, true, "Can not set forced MAC, invalid vfid [%d]\n", 4435 vfid); 4436 return; 4437 } 4438 if (vf_info->b_malicious) { 4439 DP_NOTICE(p_hwfn->p_dev, false, "Can't set forced MAC to malicious VF [%d]\n", 4440 vfid); 4441 return; 4442 } 4443 4444 feature = 1 << MAC_ADDR_FORCED; 4445 OSAL_MEMCPY(vf_info->bulletin.p_virt->mac, 4446 mac, ETH_ALEN); 4447 4448 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4449 /* Forced MAC will disable MAC_ADDR */ 4450 vf_info->bulletin.p_virt->valid_bitmap &= 4451 ~(1 << VFPF_BULLETIN_MAC_ADDR); 4452 4453 ecore_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4454 } 4455 4456 #ifndef LINUX_REMOVE 4457 enum _ecore_status_t ecore_iov_bulletin_set_mac(struct ecore_hwfn *p_hwfn, 4458 u8 *mac, int vfid) 4459 { 4460 struct ecore_vf_info *vf_info; 4461 u64 feature; 4462 4463 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4464 if (!vf_info) { 4465 DP_NOTICE(p_hwfn->p_dev, true, "Can not set MAC, invalid vfid [%d]\n", 4466 vfid); 4467 return ECORE_INVAL; 4468 } 4469 if (vf_info->b_malicious) { 4470 DP_NOTICE(p_hwfn->p_dev, false, "Can't set MAC to malicious VF [%d]\n", 4471 vfid); 4472 return ECORE_INVAL; 4473 } 4474 4475 if (vf_info->bulletin.p_virt->valid_bitmap & (1 << MAC_ADDR_FORCED)) { 4476 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, "Can not set MAC, Forced MAC is configured\n"); 4477 return ECORE_INVAL; 4478 } 4479 4480 feature = 1 << VFPF_BULLETIN_MAC_ADDR; 4481 OSAL_MEMCPY(vf_info->bulletin.p_virt->mac, 4482 mac, ETH_ALEN); 4483 4484 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4485 4486 return ECORE_SUCCESS; 4487 } 4488 4489 enum _ecore_status_t 4490 ecore_iov_bulletin_set_forced_untagged_default(struct ecore_hwfn *p_hwfn, 4491 bool b_untagged_only, 4492 int vfid) 4493 { 4494 struct ecore_vf_info *vf_info; 4495 u64 feature; 4496 4497 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4498 if (!vf_info) { 4499 DP_NOTICE(p_hwfn->p_dev, true, 4500 "Can not set untagged default, invalid vfid [%d]\n", 4501 vfid); 4502 return ECORE_INVAL; 4503 } 4504 if (vf_info->b_malicious) { 4505 DP_NOTICE(p_hwfn->p_dev, false, 4506 "Can't set untagged default to malicious VF [%d]\n", 4507 vfid); 4508 return ECORE_INVAL; 4509 } 4510 4511 /* Since this is configurable only during vport-start, don't take it 4512 * if we're past that point. 4513 */ 4514 if (vf_info->state == VF_ENABLED) { 4515 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4516 "Can't support untagged change for vfid[%d] - VF is already active\n", 4517 vfid); 4518 return ECORE_INVAL; 4519 } 4520 4521 /* Set configuration; This will later be taken into account during the 4522 * VF initialization. 4523 */ 4524 feature = (1 << VFPF_BULLETIN_UNTAGGED_DEFAULT) | 4525 (1 << VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED); 4526 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4527 4528 vf_info->bulletin.p_virt->default_only_untagged = b_untagged_only ? 1 4529 : 0; 4530 4531 return ECORE_SUCCESS; 4532 } 4533 4534 void ecore_iov_get_vfs_opaque_fid(struct ecore_hwfn *p_hwfn, int vfid, 4535 u16 *opaque_fid) 4536 { 4537 struct ecore_vf_info *vf_info; 4538 4539 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4540 if (!vf_info) 4541 return; 4542 4543 *opaque_fid = vf_info->opaque_fid; 4544 } 4545 #endif 4546 4547 void ecore_iov_bulletin_set_forced_vlan(struct ecore_hwfn *p_hwfn, 4548 u16 pvid, int vfid) 4549 { 4550 struct ecore_vf_info *vf_info; 4551 u64 feature; 4552 4553 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4554 if (!vf_info) { 4555 DP_NOTICE(p_hwfn->p_dev, true, "Can not set forced MAC, invalid vfid [%d]\n", 4556 vfid); 4557 return; 4558 } 4559 if (vf_info->b_malicious) { 4560 DP_NOTICE(p_hwfn->p_dev, false, 4561 "Can't set forced vlan to malicious VF [%d]\n", 4562 vfid); 4563 return; 4564 } 4565 4566 feature = 1 << VLAN_ADDR_FORCED; 4567 vf_info->bulletin.p_virt->pvid = pvid; 4568 if (pvid) 4569 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4570 else 4571 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 4572 4573 ecore_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4574 } 4575 4576 void ecore_iov_bulletin_set_udp_ports(struct ecore_hwfn *p_hwfn, 4577 int vfid, u16 vxlan_port, u16 geneve_port) 4578 { 4579 struct ecore_vf_info *vf_info; 4580 4581 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4582 if (!vf_info) { 4583 DP_NOTICE(p_hwfn->p_dev, true, 4584 "Can not set udp ports, invalid vfid [%d]\n", vfid); 4585 return; 4586 } 4587 4588 if (vf_info->b_malicious) { 4589 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 4590 "Can not set udp ports to malicious VF [%d]\n", 4591 vfid); 4592 return; 4593 } 4594 4595 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 4596 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 4597 } 4598 4599 bool ecore_iov_vf_has_vport_instance(struct ecore_hwfn *p_hwfn, int vfid) 4600 { 4601 struct ecore_vf_info *p_vf_info; 4602 4603 p_vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4604 if (!p_vf_info) 4605 return false; 4606 4607 return !!p_vf_info->vport_instance; 4608 } 4609 4610 bool ecore_iov_is_vf_stopped(struct ecore_hwfn *p_hwfn, int vfid) 4611 { 4612 struct ecore_vf_info *p_vf_info; 4613 4614 p_vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4615 if (!p_vf_info) 4616 return true; 4617 4618 return p_vf_info->state == VF_STOPPED; 4619 } 4620 4621 bool ecore_iov_spoofchk_get(struct ecore_hwfn *p_hwfn, int vfid) 4622 { 4623 struct ecore_vf_info *vf_info; 4624 4625 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4626 if (!vf_info) 4627 return false; 4628 4629 return vf_info->spoof_chk; 4630 } 4631 4632 enum _ecore_status_t ecore_iov_spoofchk_set(struct ecore_hwfn *p_hwfn, 4633 int vfid, bool val) 4634 { 4635 struct ecore_vf_info *vf; 4636 enum _ecore_status_t rc = ECORE_INVAL; 4637 4638 if (!ecore_iov_pf_sanity_check(p_hwfn, vfid)) { 4639 DP_NOTICE(p_hwfn, true, 4640 "SR-IOV sanity check failed, can't set spoofchk\n"); 4641 goto out; 4642 } 4643 4644 vf = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4645 if (!vf) 4646 goto out; 4647 4648 if (!ecore_iov_vf_has_vport_instance(p_hwfn, vfid)) { 4649 /* After VF VPORT start PF will configure spoof check */ 4650 vf->req_spoofchk_val = val; 4651 rc = ECORE_SUCCESS; 4652 goto out; 4653 } 4654 4655 rc = __ecore_iov_spoofchk_set(p_hwfn, vf, val); 4656 4657 out: 4658 return rc; 4659 } 4660 4661 #ifndef LINUX_REMOVE 4662 u8 ecore_iov_vf_chains_per_pf(struct ecore_hwfn *p_hwfn) 4663 { 4664 u8 max_chains_per_vf = p_hwfn->hw_info.max_chains_per_vf; 4665 4666 max_chains_per_vf = (max_chains_per_vf) ? max_chains_per_vf 4667 : ECORE_MAX_VF_CHAINS_PER_PF; 4668 4669 return max_chains_per_vf; 4670 } 4671 4672 void ecore_iov_get_vf_req_virt_mbx_params(struct ecore_hwfn *p_hwfn, 4673 u16 rel_vf_id, 4674 void **pp_req_virt_addr, 4675 u16 *p_req_virt_size) 4676 { 4677 struct ecore_vf_info *vf_info = 4678 ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4679 4680 if (!vf_info) 4681 return; 4682 4683 if (pp_req_virt_addr) 4684 *pp_req_virt_addr = vf_info->vf_mbx.req_virt; 4685 4686 if (p_req_virt_size) 4687 *p_req_virt_size = sizeof(*vf_info->vf_mbx.req_virt); 4688 } 4689 4690 void ecore_iov_get_vf_reply_virt_mbx_params(struct ecore_hwfn *p_hwfn, 4691 u16 rel_vf_id, 4692 void **pp_reply_virt_addr, 4693 u16 *p_reply_virt_size) 4694 { 4695 struct ecore_vf_info *vf_info = 4696 ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4697 4698 if (!vf_info) 4699 return; 4700 4701 if (pp_reply_virt_addr) 4702 *pp_reply_virt_addr = vf_info->vf_mbx.reply_virt; 4703 4704 if (p_reply_virt_size) 4705 *p_reply_virt_size = sizeof(*vf_info->vf_mbx.reply_virt); 4706 } 4707 4708 #ifdef CONFIG_ECORE_SW_CHANNEL 4709 struct ecore_iov_sw_mbx* 4710 ecore_iov_get_vf_sw_mbx(struct ecore_hwfn *p_hwfn, 4711 u16 rel_vf_id) 4712 { 4713 struct ecore_vf_info *vf_info = 4714 ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4715 4716 if (!vf_info) 4717 return OSAL_NULL; 4718 4719 return &vf_info->vf_mbx.sw_mbx; 4720 } 4721 #endif 4722 4723 bool ecore_iov_is_valid_vfpf_msg_length(u32 length) 4724 { 4725 return (length >= sizeof(struct vfpf_first_tlv) && 4726 (length <= sizeof(union vfpf_tlvs))); 4727 } 4728 4729 u32 ecore_iov_pfvf_msg_length(void) 4730 { 4731 return sizeof(union pfvf_tlvs); 4732 } 4733 #endif 4734 4735 u8 *ecore_iov_bulletin_get_forced_mac(struct ecore_hwfn *p_hwfn, 4736 u16 rel_vf_id) 4737 { 4738 struct ecore_vf_info *p_vf; 4739 4740 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4741 if (!p_vf || !p_vf->bulletin.p_virt) 4742 return OSAL_NULL; 4743 4744 if (!(p_vf->bulletin.p_virt->valid_bitmap & (1 << MAC_ADDR_FORCED))) 4745 return OSAL_NULL; 4746 4747 return p_vf->bulletin.p_virt->mac; 4748 } 4749 4750 u16 ecore_iov_bulletin_get_forced_vlan(struct ecore_hwfn *p_hwfn, 4751 u16 rel_vf_id) 4752 { 4753 struct ecore_vf_info *p_vf; 4754 4755 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4756 if (!p_vf || !p_vf->bulletin.p_virt) 4757 return 0; 4758 4759 if (!(p_vf->bulletin.p_virt->valid_bitmap & (1 << VLAN_ADDR_FORCED))) 4760 return 0; 4761 4762 return p_vf->bulletin.p_virt->pvid; 4763 } 4764 4765 enum _ecore_status_t ecore_iov_configure_tx_rate(struct ecore_hwfn *p_hwfn, 4766 struct ecore_ptt *p_ptt, 4767 int vfid, int val) 4768 { 4769 struct ecore_mcp_link_state *p_link; 4770 struct ecore_vf_info *vf; 4771 u8 abs_vp_id = 0; 4772 enum _ecore_status_t rc; 4773 4774 vf = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4775 4776 if (!vf) 4777 return ECORE_INVAL; 4778 4779 rc = ecore_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 4780 if (rc != ECORE_SUCCESS) 4781 return rc; 4782 4783 p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output; 4784 4785 return ecore_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val, 4786 p_link->speed); 4787 } 4788 4789 enum _ecore_status_t ecore_iov_configure_min_tx_rate(struct ecore_dev *p_dev, 4790 int vfid, u32 rate) 4791 { 4792 struct ecore_vf_info *vf; 4793 u8 vport_id; 4794 int i; 4795 4796 for_each_hwfn(p_dev, i) { 4797 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 4798 4799 if (!ecore_iov_pf_sanity_check(p_hwfn, vfid)) { 4800 DP_NOTICE(p_hwfn, true, 4801 "SR-IOV sanity check failed, can't set min rate\n"); 4802 return ECORE_INVAL; 4803 } 4804 } 4805 4806 vf = ecore_iov_get_vf_info(ECORE_LEADING_HWFN(p_dev), (u16)vfid, true); 4807 vport_id = vf->vport_id; 4808 4809 return ecore_configure_vport_wfq(p_dev, vport_id, rate); 4810 } 4811 4812 #ifndef LINUX_REMOVE 4813 enum _ecore_status_t ecore_iov_get_vf_stats(struct ecore_hwfn *p_hwfn, 4814 struct ecore_ptt *p_ptt, 4815 int vfid, 4816 struct ecore_eth_stats *p_stats) 4817 { 4818 struct ecore_vf_info *vf; 4819 4820 vf = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4821 if (!vf) 4822 return ECORE_INVAL; 4823 4824 if (vf->state != VF_ENABLED) 4825 return ECORE_INVAL; 4826 4827 __ecore_get_vport_stats(p_hwfn, p_ptt, p_stats, 4828 vf->abs_vf_id + 0x10, false); 4829 4830 return ECORE_SUCCESS; 4831 } 4832 4833 u8 ecore_iov_get_vf_num_rxqs(struct ecore_hwfn *p_hwfn, 4834 u16 rel_vf_id) 4835 { 4836 struct ecore_vf_info *p_vf; 4837 4838 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4839 if (!p_vf) 4840 return 0; 4841 4842 return p_vf->num_rxqs; 4843 } 4844 4845 u8 ecore_iov_get_vf_num_active_rxqs(struct ecore_hwfn *p_hwfn, 4846 u16 rel_vf_id) 4847 { 4848 struct ecore_vf_info *p_vf; 4849 4850 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4851 if (!p_vf) 4852 return 0; 4853 4854 return p_vf->num_active_rxqs; 4855 } 4856 4857 void *ecore_iov_get_vf_ctx(struct ecore_hwfn *p_hwfn, 4858 u16 rel_vf_id) 4859 { 4860 struct ecore_vf_info *p_vf; 4861 4862 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4863 if (!p_vf) 4864 return OSAL_NULL; 4865 4866 return p_vf->ctx; 4867 } 4868 4869 u8 ecore_iov_get_vf_num_sbs(struct ecore_hwfn *p_hwfn, 4870 u16 rel_vf_id) 4871 { 4872 struct ecore_vf_info *p_vf; 4873 4874 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4875 if (!p_vf) 4876 return 0; 4877 4878 return p_vf->num_sbs; 4879 } 4880 4881 bool ecore_iov_is_vf_wait_for_acquire(struct ecore_hwfn *p_hwfn, 4882 u16 rel_vf_id) 4883 { 4884 struct ecore_vf_info *p_vf; 4885 4886 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4887 if (!p_vf) 4888 return false; 4889 4890 return (p_vf->state == VF_FREE); 4891 } 4892 4893 bool ecore_iov_is_vf_acquired_not_initialized(struct ecore_hwfn *p_hwfn, 4894 u16 rel_vf_id) 4895 { 4896 struct ecore_vf_info *p_vf; 4897 4898 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4899 if (!p_vf) 4900 return false; 4901 4902 return (p_vf->state == VF_ACQUIRED); 4903 } 4904 4905 bool ecore_iov_is_vf_initialized(struct ecore_hwfn *p_hwfn, 4906 u16 rel_vf_id) 4907 { 4908 struct ecore_vf_info *p_vf; 4909 4910 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4911 if (!p_vf) 4912 return false; 4913 4914 return (p_vf->state == VF_ENABLED); 4915 } 4916 4917 bool ecore_iov_is_vf_started(struct ecore_hwfn *p_hwfn, 4918 u16 rel_vf_id) 4919 { 4920 struct ecore_vf_info *p_vf; 4921 4922 p_vf = ecore_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4923 if (!p_vf) 4924 return false; 4925 4926 return (p_vf->state != VF_FREE && p_vf->state != VF_STOPPED); 4927 } 4928 #endif 4929 4930 enum _ecore_status_t 4931 ecore_iov_get_vf_min_rate(struct ecore_hwfn *p_hwfn, int vfid) 4932 { 4933 struct ecore_wfq_data *vf_vp_wfq; 4934 struct ecore_vf_info *vf_info; 4935 4936 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4937 if (!vf_info) 4938 return 0; 4939 4940 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 4941 4942 if (vf_vp_wfq->configured) 4943 return vf_vp_wfq->min_speed; 4944 else 4945 return 0; 4946 } 4947 4948 #ifdef CONFIG_ECORE_SW_CHANNEL 4949 void ecore_iov_set_vf_hw_channel(struct ecore_hwfn *p_hwfn, int vfid, 4950 bool b_is_hw) 4951 { 4952 struct ecore_vf_info *vf_info; 4953 4954 vf_info = ecore_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4955 if (!vf_info) 4956 return; 4957 4958 vf_info->b_hw_channel = b_is_hw; 4959 } 4960 #endif 4961