xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_int.c (revision b37f6c9805edb4b89f0a8c2b78f78a3dcfc0647b)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * File : ecore_int.c
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "bcm_osal.h"
34 #include "ecore.h"
35 #include "ecore_spq.h"
36 #include "reg_addr.h"
37 #include "ecore_gtt_reg_addr.h"
38 #include "ecore_init_ops.h"
39 #include "ecore_rt_defs.h"
40 #include "ecore_int.h"
41 #include "reg_addr.h"
42 #include "ecore_hw.h"
43 #include "ecore_sriov.h"
44 #include "ecore_vf.h"
45 #include "ecore_hw_defs.h"
46 #include "ecore_hsi_common.h"
47 #include "ecore_mcp.h"
48 #include "ecore_dbg_fw_funcs.h"
49 
50 #ifdef DIAG
51 /* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
52  * and so the functions are lacking ecore prefix.
53  * If there would be other clients needing this [or if the content that isn't
54  * really optional there would increase], we'll need to re-think this.
55  */
56 enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
57 							  struct ecore_ptt *ptt,
58 							  enum block_id block,
59 							  enum dbg_attn_type attn_type,
60 							  bool clear_status,
61 							  struct dbg_attn_block_result *results);
62 
63 enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
64 							   struct dbg_attn_block_result *results);
65 
66 const char* dbg_get_status_str(enum dbg_status status);
67 
68 #define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
69 	dbg_read_attn(hwfn, ptt, id, type, clear, results)
70 #define ecore_dbg_parse_attn(hwfn, results) \
71 	dbg_parse_attn(hwfn, results)
72 #define ecore_dbg_get_status_str(status) \
73 	dbg_get_status_str(status)
74 #endif
75 
76 struct ecore_pi_info {
77 	ecore_int_comp_cb_t comp_cb;
78 	void *cookie; /* Will be sent to the completion callback function */
79 };
80 
81 struct ecore_sb_sp_info {
82 	struct ecore_sb_info sb_info;
83 	/* per protocol index data */
84 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
85 };
86 
87 enum ecore_attention_type {
88 	ECORE_ATTN_TYPE_ATTN,
89 	ECORE_ATTN_TYPE_PARITY,
90 };
91 
92 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
93 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
94 
95 struct aeu_invert_reg_bit {
96 	char bit_name[30];
97 
98 #define ATTENTION_PARITY		(1 << 0)
99 
100 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
101 #define ATTENTION_LENGTH_SHIFT		(4)
102 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
103 					 ATTENTION_LENGTH_SHIFT)
104 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
105 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
106 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
107 					 ATTENTION_PARITY)
108 
109 /* Multiple bits start with this offset */
110 #define ATTENTION_OFFSET_MASK		(0x000ff000)
111 #define ATTENTION_OFFSET_SHIFT		(12)
112 
113 #define ATTENTION_BB_MASK		(0x00700000)
114 #define ATTENTION_BB_SHIFT		(20)
115 #define ATTENTION_BB(value)		(value << ATTENTION_BB_SHIFT)
116 #define ATTENTION_BB_DIFFERENT		(1 << 23)
117 
118 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
119 	unsigned int flags;
120 
121 	/* Callback to call if attention will be triggered */
122 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
123 
124 	enum block_id block_index;
125 };
126 
127 struct aeu_invert_reg {
128 	struct aeu_invert_reg_bit bits[32];
129 };
130 
131 #define MAX_ATTN_GRPS		(8)
132 #define NUM_ATTN_REGS		(9)
133 
134 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
135 {
136 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
137 
138 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
139 		tmp);
140 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
141 		 0xffffffff);
142 
143 	return ECORE_SUCCESS;
144 }
145 
146 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
147 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
148 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
149 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
150 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
151 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
152 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
153 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
154 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
155 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
156 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
157 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
158 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK 	(0x1)
159 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
160 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
161 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
162 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
163 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
164 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
165 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
166 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
167 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
168 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
169 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
170 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
171 {
172 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
173 
174 	/* Disabled VF access */
175 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
176 		u32 addr, data;
177 
178 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
179 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
180 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
181 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
182 		DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
183 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
184 			     ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
185 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
186 			     ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
187 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
188 			     ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
189 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
190 			     ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
191 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
192 			     ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
193 			addr);
194 	}
195 
196 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
197 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
198 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
199 		u32 addr, data, length;
200 
201 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
202 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
203 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
204 				PSWHST_REG_INCORRECT_ACCESS_DATA);
205 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
206 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
207 
208 		DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
209 			addr, length,
210 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
211 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
212 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
213 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
214 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
215 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
216 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
217 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
218 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
219 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
220 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
221 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
222 			data);
223 	}
224 
225 	/* TODO - We know 'some' of these are legal due to virtualization,
226 	 * but is it true for all of them?
227 	 */
228 	return ECORE_SUCCESS;
229 }
230 
231 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
232 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
233 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
234 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
235 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
236 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
237 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
238 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
239 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
240 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
241 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
242 static const char* grc_timeout_attn_master_to_str(u8 master)
243 {
244 	switch(master) {
245 	case 1: return "PXP";
246 	case 2: return "MCP";
247 	case 3: return "MSDM";
248 	case 4: return "PSDM";
249 	case 5: return "YSDM";
250 	case 6: return "USDM";
251 	case 7: return "TSDM";
252 	case 8: return "XSDM";
253 	case 9: return "DBU";
254 	case 10: return "DMAE";
255 	default:
256 		return "Unkown";
257 	}
258 }
259 
260 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
261 {
262 	u32 tmp, tmp2;
263 
264 	/* We've already cleared the timeout interrupt register, so we learn
265 	 * of interrupts via the validity register
266 	 */
267 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
269 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
270 		goto out;
271 
272 	/* Read the GRC timeout information */
273 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
274 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
275 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
276 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
277 
278 	DP_NOTICE(p_hwfn->p_dev, false,
279 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
280 		  tmp2, tmp,
281 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
282 						       : "Read from",
283 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
284 		  grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
285 						 ECORE_GRC_ATTENTION_MASTER_SHIFT),
286 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
287 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
288 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
289 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
290 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
291 		  ECORE_GRC_ATTENTION_VF_SHIFT);
292 
293 out:
294 	/* Regardles of anything else, clean the validity bit */
295 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
296 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
297 	return ECORE_SUCCESS;
298 }
299 
300 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
301 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
302 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
303 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
304 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
305 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
306 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
307 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
308 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
309 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
310 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
311 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
312 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
313 static enum _ecore_status_t ecore_pglub_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
314 {
315 	u32 tmp;
316 
317 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
318 		       PGLUE_B_REG_TX_ERR_WR_DETAILS2);
319 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
320 		u32 addr_lo, addr_hi, details;
321 
322 		addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
323 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
324 		addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
325 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
326 		details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
328 
329 		DP_INFO(p_hwfn, "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
330 			addr_hi, addr_lo, details,
331 			(u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
332 			(u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
333 			(u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
334 			tmp,
335 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
336 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
337 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
338 	}
339 
340 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341 		       PGLUE_B_REG_TX_ERR_RD_DETAILS2);
342 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
343 		u32 addr_lo, addr_hi, details;
344 
345 		addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
347 		addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
349 		details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
351 
352 		DP_INFO(p_hwfn, "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
353 			addr_hi, addr_lo, details,
354 			(u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
355 			(u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
356 			(u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
357 			tmp,
358 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
359 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
360 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
361 	}
362 
363 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
364 		       PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
365 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
366 		DP_INFO(p_hwfn, "ICPL eror - %08x\n", tmp);
367 
368 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
369 		       PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
370 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
371 		u32 addr_hi, addr_lo;
372 
373 		addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
374 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
375 		addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
377 
378 		DP_INFO(p_hwfn, "ICPL eror - %08x [Address %08x:%08x]\n",
379 			tmp, addr_hi, addr_lo);
380 	}
381 
382 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
383 		       PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
384 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
385 		u32 addr_hi, addr_lo, details;
386 
387 		addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
388 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
389 		addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
390 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
391 		details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
392 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
393 
394 		DP_INFO(p_hwfn, "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
395 			details, tmp, addr_hi, addr_lo);
396 	}
397 
398 	/* Clear the indications */
399 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
400 		 PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
401 
402 	return ECORE_SUCCESS;
403 }
404 
405 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
406 {
407 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
408 
409 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
410 
411 	return ECORE_INVAL;
412 }
413 
414 static enum _ecore_status_t
415 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
416 {
417 	DP_INFO(p_hwfn, "General attention 35!\n");
418 
419 	return ECORE_SUCCESS;
420 }
421 
422 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
423 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
424 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
425 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
426 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
427 
428 #define ECORE_DB_REC_COUNT			10
429 #define ECORE_DB_REC_INTERVAL			100
430 
431 /* assumes sticky overflow indication was set for this PF */
432 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
433 					      struct ecore_ptt *p_ptt)
434 {
435 	u8 count = ECORE_DB_REC_COUNT;
436 	u32 usage = 1;
437 
438 	/* wait for usage to zero or count to run out. This is necessary since
439 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
440 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
441 	 * half an EDPM in the queue and other half dropped. Another EDPM
442 	 * doorbell to the same address (from doorbell recovery mechanism or
443 	 * from the doorbelling entity) could have first half dropped and second
444 	 * half interperted as continuation of the first. To prevent such
445 	 * malformed doorbells from reaching the device, flush the queue before
446 	 * releaseing the overflow sticky indication.
447 	 */
448 	while (count-- && usage) {
449 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
450 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
451 	}
452 
453 	/* should have been depleted by now */
454 	if (usage) {
455 		DP_NOTICE(p_hwfn->p_dev, false,
456 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
457 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
458 		return ECORE_TIMEOUT;
459 	}
460 
461 	/* flush any pedning (e)dpm as they may never arrive */
462 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
463 
464 	/* release overflow sticky indication (stop silently dropping everything) */
465 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
466 
467 	/* repeat all last doorbells (doorbell drop recovery) */
468 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
469 
470 	return ECORE_SUCCESS;
471 }
472 
473 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
474 {
475 	u32 int_sts, first_drop_reason, details, address, overflow,
476 		all_drops_reason;
477 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
478 	enum _ecore_status_t rc;
479 
480 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
481 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
482 		  int_sts);
483 
484 	/* check if db_drop or overflow happened */
485 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
486 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
487 
488 		/* obtain data about db drop/overflow */
489 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
490 				  DORQ_REG_DB_DROP_REASON) &
491 				  ECORE_DORQ_ATTENTION_REASON_MASK;
492 		details = ecore_rd(p_hwfn, p_ptt,
493 				   DORQ_REG_DB_DROP_DETAILS);
494 		address = ecore_rd(p_hwfn, p_ptt,
495 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
496 		overflow = ecore_rd(p_hwfn, p_ptt,
497 				    DORQ_REG_PF_OVFL_STICKY);
498 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
499 					    DORQ_REG_DB_DROP_DETAILS_REASON);
500 
501 		/* log info */
502 		DP_NOTICE(p_hwfn->p_dev, false,
503 			  "Doorbell drop occurred\n"
504 			  "Address\t\t0x%08x\t(second BAR address)\n"
505 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
506 			  "Size\t\t0x%04x\t\t(in bytes)\n"
507 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
508 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
509 			  "Overflow\t0x%x\t\t(a per PF indication)\n",
510 			  address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
511 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
512 			  first_drop_reason, all_drops_reason, overflow);
513 
514 		/* if this PF caused overflow, initiate recovery */
515 		if (overflow) {
516 			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
517 			if (rc != ECORE_SUCCESS)
518 				return rc;
519 		}
520 
521 		/* clear the doorbell drop details and prepare for next drop */
522 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
523 
524 		/* mark interrupt as handeld (note: even if drop was due to a diffrent
525 		 * reason than overflow we mark as handled)
526 		 */
527 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
528 			 DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
529 
530 		/* if there are no indications otherthan drop indications, success */
531 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
532 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
533 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
534 			return ECORE_SUCCESS;
535 	}
536 
537 	/* some other indication was present - non recoverable */
538 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
539 
540 	return ECORE_INVAL;
541 }
542 
543 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
544 {
545 #ifndef ASIC_ONLY
546 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
547 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
548 				   TM_REG_INT_STS_1);
549 
550 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
551 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
552 			return ECORE_INVAL;
553 
554 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
555 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
556 			DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
557 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
558 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
559 		       TM_REG_INT_MASK_1_PEND_TASK_SCAN;
560 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
561 
562 		return ECORE_SUCCESS;
563 	}
564 #endif
565 
566 	return ECORE_INVAL;
567 }
568 
569 /* Instead of major changes to the data-structure, we have a some 'special'
570  * identifiers for sources that changed meaning between adapters.
571  */
572 enum aeu_invert_reg_special_type {
573 	AEU_INVERT_REG_SPECIAL_CNIG_0,
574 	AEU_INVERT_REG_SPECIAL_CNIG_1,
575 	AEU_INVERT_REG_SPECIAL_CNIG_2,
576 	AEU_INVERT_REG_SPECIAL_CNIG_3,
577 	AEU_INVERT_REG_SPECIAL_MAX,
578 };
579 
580 static struct aeu_invert_reg_bit
581 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
582 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
583 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
584 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
585 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
586 };
587 
588 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
589 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
590 {
591 	{
592 		{	/* After Invert 1 */
593 			{"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
594 		}
595 	},
596 
597 	{
598 		{	/* After Invert 2 */
599 			{"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
600 			{"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
601 			{"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
602 			{"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
603 			{"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
604 			{"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
605 			{"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
606 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
607 			{"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
608 		}
609 	},
610 
611 	{
612 		{	/* After Invert 3 */
613 			{"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
614 		}
615 	},
616 
617 	{
618 		{	/* After Invert 4 */
619 			{"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
620 			{"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
621 			{"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
622 			{"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
623 				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
624 			{"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
625 					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
626 			{"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
627 				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
628 			{"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
629 					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
630 			{"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
631 			{"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
632 			{"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
633 			{"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
634 			{"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
635 			{"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
636 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
637 			{"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
638 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
639 			{"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
640 			{"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
641 			{"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
642 		}
643 	},
644 
645 	{
646 		{	/* After Invert 5 */
647 			{"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
648 			{"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
649 			{"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
650 			{"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
651 			{"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
652 			{"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
653 			{"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
654 			{"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
655 			{"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
656 			{"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
657 			{"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
658 			{"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
659 			{"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
660 			{"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
661 			{"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
662 			{"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
663 		}
664 	},
665 
666 	{
667 		{	/* After Invert 6 */
668 			{"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
669 			{"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
670 			{"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
671 			{"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
672 			{"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
673 			{"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
674 			{"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
675 			{"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
676 			{"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
677 			{"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
678 			{"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
679 			{"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
680 			{"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
681 			{"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
682 			{"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
683 			{"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
684 		}
685 	},
686 
687 	{
688 		{	/* After Invert 7 */
689 			{"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
690 			{"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
691 			{"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
692 			{"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
693 			{"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
694 			{"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
695 			{"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
696 			{"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
697 			{"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
698 			{"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
699 			{"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
700 			{"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
701 			{"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
702 			{"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
703 			{"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
704 			{"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
705 			{"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
706 		}
707 	},
708 
709 	{
710 		{	/* After Invert 8 */
711 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
712 			{"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
713 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
714 			{"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
715 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
716 			{"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
717 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
718 			{"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
719 			{"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
720 			{"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
721 			{"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
722 			{"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
723 			{"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
724 			{"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
725 			{"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
726 			{"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
727 			{"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
728 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
729 			{"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
730 			{"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
731 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
732 		}
733 	},
734 
735 	{
736 		{	/* After Invert 9 */
737 			{"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
738 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
739 			{"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
740 			{"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
741 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
742 		}
743 	},
744 
745 };
746 
747 static struct aeu_invert_reg_bit *
748 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
749 			struct aeu_invert_reg_bit *p_bit)
750 {
751 	if (!ECORE_IS_BB(p_hwfn->p_dev))
752 		return p_bit;
753 
754 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
755 		return p_bit;
756 
757 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
758 				  ATTENTION_BB_SHIFT];
759 }
760 
761 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
762 				     struct aeu_invert_reg_bit *p_bit)
763 {
764 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
765 		  ATTENTION_PARITY);
766 }
767 
768 #define ATTN_STATE_BITS		(0xfff)
769 #define ATTN_BITS_MASKABLE	(0x3ff)
770 struct ecore_sb_attn_info {
771 	/* Virtual & Physical address of the SB */
772 	struct atten_status_block	*sb_attn;
773 	dma_addr_t			sb_phys;
774 
775 	/* Last seen running index */
776 	u16				index;
777 
778 	/* A mask of the AEU bits resulting in a parity error */
779 	u32				parity_mask[NUM_ATTN_REGS];
780 
781 	/* A pointer to the attention description structure */
782 	struct aeu_invert_reg		*p_aeu_desc;
783 
784 	/* Previously asserted attentions, which are still unasserted */
785 	u16				known_attn;
786 
787 	/* Cleanup address for the link's general hw attention */
788 	u32				mfw_attn_addr;
789 };
790 
791 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
792 				 struct ecore_sb_attn_info *p_sb_desc)
793 {
794 	u16 rc = 0, index;
795 
796 	OSAL_MMIOWB(p_hwfn->p_dev);
797 
798 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
799 	if (p_sb_desc->index != index) {
800 		p_sb_desc->index = index;
801 		rc = ECORE_SB_ATT_IDX;
802 	}
803 
804 	OSAL_MMIOWB(p_hwfn->p_dev);
805 
806 	return rc;
807 }
808 
809 /**
810  * @brief ecore_int_assertion - handles asserted attention bits
811  *
812  * @param p_hwfn
813  * @param asserted_bits newly asserted bits
814  * @return enum _ecore_status_t
815  */
816 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
817 						u16 asserted_bits)
818 {
819 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
820 	u32 igu_mask;
821 
822 	/* Mask the source of the attention in the IGU */
823 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
824 			    IGU_REG_ATTENTION_ENABLE);
825 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
826 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
827 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
828 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
829 
830 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
831 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
832 		   sb_attn_sw->known_attn,
833 		   sb_attn_sw->known_attn | asserted_bits);
834 	sb_attn_sw->known_attn |= asserted_bits;
835 
836 	/* Handle MCP events */
837 	if (asserted_bits & 0x100) {
838 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
839 		/* Clean the MCP attention */
840 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
841 			 sb_attn_sw->mfw_attn_addr, 0);
842 	}
843 
844 	/* FIXME - this will change once we'll have GOOD gtt definitions */
845 	DIRECT_REG_WR(p_hwfn,
846 		      (u8 OSAL_IOMEM*)p_hwfn->regview +
847 		      GTT_BAR0_MAP_REG_IGU_CMD +
848 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
849 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
850 
851 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
852 		   asserted_bits);
853 
854 	return ECORE_SUCCESS;
855 }
856 
857 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
858 				 enum block_id id, enum dbg_attn_type type,
859 				 bool b_clear)
860 {
861 	struct dbg_attn_block_result attn_results;
862 	enum dbg_status status;
863 
864 	OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
865 
866 	status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
867 				     b_clear, &attn_results);
868 #ifdef ATTN_DESC
869 	if (status != DBG_STATUS_OK)
870 		DP_NOTICE(p_hwfn, true,
871 			  "Failed to parse attention information [status: %s]\n",
872 			  ecore_dbg_get_status_str(status));
873 	else
874 		ecore_dbg_parse_attn(p_hwfn, &attn_results);
875 #else
876 	if (status != DBG_STATUS_OK)
877 		DP_NOTICE(p_hwfn, true,
878 			  "Failed to parse attention information [status: %d]\n",
879 			  status);
880 	else
881 		ecore_dbg_print_attn(p_hwfn, &attn_results);
882 #endif
883 }
884 
885 /**
886  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
887  * cause of the attention
888  *
889  * @param p_hwfn
890  * @param p_aeu - descriptor of an AEU bit which caused the attention
891  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
892  *  this bit to this group.
893  * @param bit_index - index of this bit in the aeu_en_reg
894  *
895  * @return enum _ecore_status_t
896  */
897 static enum _ecore_status_t
898 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
899 			      struct aeu_invert_reg_bit *p_aeu,
900 			      u32 aeu_en_reg,
901 			      const char *p_bit_name,
902 			      u32 bitmask)
903 {
904 	enum _ecore_status_t rc = ECORE_INVAL;
905 	bool b_fatal = false;
906 
907 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
908 		p_bit_name, bitmask);
909 
910 	/* Call callback before clearing the interrupt status */
911 	if (p_aeu->cb) {
912 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
913 			p_bit_name);
914 		rc = p_aeu->cb(p_hwfn);
915 	}
916 
917 	if (rc != ECORE_SUCCESS)
918 		b_fatal = true;
919 
920 	/* Print HW block interrupt registers */
921 	if (p_aeu->block_index != MAX_BLOCK_ID)
922 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
923 				     ATTN_TYPE_INTERRUPT, !b_fatal);
924 
925 	/* Reach assertion if attention is fatal */
926 	if (b_fatal) {
927 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
928 			  p_bit_name);
929 
930 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
931 	}
932 
933 	/* Prevent this Attention from being asserted in the future */
934 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
935 	    p_hwfn->p_dev->attn_clr_en) {
936 		u32 val;
937 		u32 mask = ~bitmask;
938 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
939 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
940 		DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
941 			p_bit_name);
942 	}
943 
944 	return rc;
945 }
946 
947 /**
948  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
949  *
950  * @param p_hwfn
951  * @param p_aeu - descriptor of an AEU bit which caused the parity
952  * @param aeu_en_reg - address of the AEU enable register
953  * @param bit_index
954  */
955 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
956 					 struct aeu_invert_reg_bit *p_aeu,
957 					 u32 aeu_en_reg, u8 bit_index)
958 {
959 	u32 block_id = p_aeu->block_index, mask, val;
960 
961 	DP_NOTICE(p_hwfn->p_dev, false,
962 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
963 		  p_aeu->bit_name, aeu_en_reg, bit_index);
964 
965 	if (block_id == MAX_BLOCK_ID)
966 		return;
967 
968 	ecore_int_attn_print(p_hwfn, block_id,
969 			     ATTN_TYPE_PARITY, false);
970 
971 	/* In A0, there's a single parity bit for several blocks */
972 	if (block_id == BLOCK_BTB) {
973 		ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
974 				     ATTN_TYPE_PARITY, false);
975 		ecore_int_attn_print(p_hwfn, BLOCK_MCP,
976 				     ATTN_TYPE_PARITY, false);
977 	}
978 
979 	/* Prevent this parity error from being re-asserted */
980 	mask = ~(0x1 << bit_index);
981 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
982 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
983 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
984 		p_aeu->bit_name);
985 }
986 
987 /**
988  * @brief - handles deassertion of previously asserted attentions.
989  *
990  * @param p_hwfn
991  * @param deasserted_bits - newly deasserted bits
992  * @return enum _ecore_status_t
993  *
994  */
995 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
996 						  u16 deasserted_bits)
997 {
998 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
999 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1000 	u8 i, j, k, bit_idx;
1001 	enum _ecore_status_t rc = ECORE_SUCCESS;
1002 
1003 	/* Read the attention registers in the AEU */
1004 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1005 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1006 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1007 					  i * 0x4);
1008 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1009 			   "Deasserted bits [%d]: %08x\n",
1010 			   i, aeu_inv_arr[i]);
1011 	}
1012 
1013 	/* Handle parity attentions first */
1014 	for (i = 0; i < NUM_ATTN_REGS; i++)
1015 	{
1016 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1017 		u32 parities;
1018 
1019 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1020 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1021 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1022 
1023 		/* Skip register in which no parity bit is currently set */
1024 		if (!parities)
1025 			continue;
1026 
1027 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1028 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1029 
1030 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1031 			    !!(parities & (1 << bit_idx)))
1032 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1033 							     aeu_en, bit_idx);
1034 
1035 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1036 		}
1037 	}
1038 
1039 	/* Find non-parity cause for attention and act */
1040 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1041 		struct aeu_invert_reg_bit *p_aeu;
1042 
1043 		/* Handle only groups whose attention is currently deasserted */
1044 		if (!(deasserted_bits & (1 << k)))
1045 			continue;
1046 
1047 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1048 			u32 bits;
1049 
1050 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1051 				 i * sizeof(u32) +
1052 				 k * sizeof(u32) * NUM_ATTN_REGS;
1053 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1054 			bits = aeu_inv_arr[i] & en;
1055 
1056 			/* Skip if no bit from this group is currently set */
1057 			if (!bits)
1058 				continue;
1059 
1060 			/* Find all set bits from current register which belong
1061 			 * to current group, making them responsible for the
1062 			 * previous assertion.
1063 			 */
1064 			for (j = 0, bit_idx = 0; bit_idx < 32; j++)
1065 			{
1066 				long unsigned int bitmask;
1067 				u8 bit, bit_len;
1068 
1069 				/* Need to account bits with changed meaning */
1070 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1071 				p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
1072 
1073 				bit = bit_idx;
1074 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1075 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1076 					/* Skip Parity */
1077 					bit++;
1078 					bit_len--;
1079 				}
1080 
1081 				/* Find the bits relating to HW-block, then
1082 				 * shift so they'll become LSB.
1083 				 */
1084 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1085 				bitmask >>= bit;
1086 
1087 				if (bitmask) {
1088 					u32 flags = p_aeu->flags;
1089 					char bit_name[30];
1090 					u8 num;
1091 
1092 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1093 								bit_len);
1094 
1095 					/* Some bits represent more than a
1096 					 * a single interrupt. Correctly print
1097 					 * their name.
1098 					 */
1099 					if (ATTENTION_LENGTH(flags) > 2 ||
1100 					    ((flags & ATTENTION_PAR_INT) &&
1101 					    ATTENTION_LENGTH(flags) > 1))
1102 						OSAL_SNPRINTF(bit_name, 30,
1103 							      p_aeu->bit_name,
1104 							      num);
1105 					else
1106 						OSAL_STRNCPY(bit_name,
1107 							     p_aeu->bit_name,
1108 							     30);
1109 
1110 					/* We now need to pass bitmask in its
1111 					 * correct position.
1112 					 */
1113 					bitmask <<= bit;
1114 
1115 					/* Handle source of the attention */
1116 					ecore_int_deassertion_aeu_bit(p_hwfn,
1117 								      p_aeu,
1118 								      aeu_en,
1119 								      bit_name,
1120 								      bitmask);
1121 				}
1122 
1123 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1124 			}
1125 		}
1126 	}
1127 
1128 	/* Clear IGU indication for the deasserted bits */
1129 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1130 	DIRECT_REG_WR(p_hwfn,
1131 		      (u8 OSAL_IOMEM*)p_hwfn->regview +
1132 				      GTT_BAR0_MAP_REG_IGU_CMD +
1133 				      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1134 					IGU_CMD_INT_ACK_BASE) << 3),
1135 		      ~((u32)deasserted_bits));
1136 
1137 	/* Unmask deasserted attentions in IGU */
1138 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1139 			    IGU_REG_ATTENTION_ENABLE);
1140 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1141 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1142 
1143 	/* Clear deassertion from inner state */
1144 	sb_attn_sw->known_attn &= ~deasserted_bits;
1145 
1146 	return rc;
1147 }
1148 
1149 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1150 {
1151 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1152 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1153 	u16 index = 0, asserted_bits, deasserted_bits;
1154 	u32 attn_bits = 0, attn_acks = 0;
1155 	enum _ecore_status_t rc = ECORE_SUCCESS;
1156 
1157 	/* Read current attention bits/acks - safeguard against attentions
1158 	 * by guaranting work on a synchronized timeframe
1159 	 */
1160 	do {
1161 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1162 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1163 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1164 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1165 	p_sb_attn->sb_index = index;
1166 
1167 	/* Attention / Deassertion are meaningful (and in correct state)
1168 	 * only when they differ and consistent with known state - deassertion
1169 	 * when previous attention & current ack, and assertion when current
1170 	 * attention with no previous attention
1171 	 */
1172 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1173 			~p_sb_attn_sw->known_attn;
1174 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1175 			  p_sb_attn_sw->known_attn;
1176 
1177 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1178 		DP_INFO(p_hwfn,
1179 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1180 			index, attn_bits, attn_acks, asserted_bits,
1181 			deasserted_bits, p_sb_attn_sw->known_attn);
1182 	else if (asserted_bits == 0x100)
1183 		DP_INFO(p_hwfn,
1184 			"MFW indication via attention\n");
1185 	else
1186 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1187 			   "MFW indication [deassertion]\n");
1188 
1189 	if (asserted_bits) {
1190 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1191 		if (rc)
1192 			return rc;
1193 	}
1194 
1195 	if (deasserted_bits)
1196 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1197 
1198 	return rc;
1199 }
1200 
1201 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1202 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1203 {
1204 	struct igu_prod_cons_update igu_ack = { 0 };
1205 
1206 	igu_ack.sb_id_and_flags =
1207 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1208 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1209 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1210 		 (IGU_SEG_ACCESS_ATTN <<
1211 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1212 
1213 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1214 
1215 	/* Both segments (interrupts & acks) are written to same place address;
1216 	 * Need to guarantee all commands will be received (in-order) by HW.
1217 	 */
1218 	OSAL_MMIOWB(p_hwfn->p_dev);
1219 	OSAL_BARRIER(p_hwfn->p_dev);
1220 }
1221 
1222 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1223 {
1224 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1225 	struct ecore_pi_info *pi_info = OSAL_NULL;
1226 	struct ecore_sb_attn_info *sb_attn;
1227 	struct ecore_sb_info *sb_info;
1228 	int arr_size;
1229 	u16 rc = 0;
1230 
1231 	if (!p_hwfn)
1232 		return;
1233 
1234 	if (!p_hwfn->p_sp_sb) {
1235 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1236 		return;
1237 	}
1238 
1239 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1240 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1241 	if (!sb_info) {
1242 		DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1243 		return;
1244 	}
1245 
1246 	if (!p_hwfn->p_sb_attn) {
1247 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1248 		return;
1249 	}
1250 	sb_attn =  p_hwfn->p_sb_attn;
1251 
1252 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1253 		   p_hwfn, p_hwfn->my_id);
1254 
1255 	/* Disable ack for def status block. Required both for msix +
1256 	 * inta in non-mask mode, in inta does no harm.
1257 	 */
1258 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1259 
1260 	/* Gather Interrupts/Attentions information */
1261 	if (!sb_info->sb_virt) {
1262 		DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1263 	} else {
1264 		u32 tmp_index = sb_info->sb_ack;
1265 		rc = ecore_sb_update_sb_idx(sb_info);
1266 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1267 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1268 			   tmp_index, sb_info->sb_ack);
1269 	}
1270 
1271 	if (!sb_attn || !sb_attn->sb_attn) {
1272 		DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1273 	} else {
1274 		u16 tmp_index = sb_attn->index;
1275 
1276 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1277 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1278 			   "Attention indices: 0x%08x --> 0x%08x\n",
1279 			   tmp_index, sb_attn->index);
1280 	}
1281 
1282 	/* Check if we expect interrupts at this time. if not just ack them */
1283 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1284 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1285 		return;
1286 	}
1287 
1288 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1289 	if (!p_hwfn->p_dpc_ptt) {
1290 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1291 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1292 		return;
1293 	}
1294 
1295 	if (rc & ECORE_SB_ATT_IDX)
1296 		ecore_int_attentions(p_hwfn);
1297 
1298 	if (rc & ECORE_SB_IDX) {
1299 		int pi;
1300 
1301 		/* Since we only looked at the SB index, it's possible more
1302 		 * than a single protocol-index on the SB incremented.
1303 		 * Iterate over all configured protocol indices and check
1304 		 * whether something happened for each.
1305 		 */
1306 		for (pi = 0; pi < arr_size; pi++) {
1307 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1308 			if (pi_info->comp_cb != OSAL_NULL)
1309 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1310 		}
1311 	}
1312 
1313 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1314 		/* This should be done before the interrupts are enabled,
1315 		 * since otherwise a new attention will be generated.
1316 		 */
1317 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1318 	}
1319 
1320 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1321 }
1322 
1323 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1324 {
1325 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1326 
1327 	if (!p_sb)
1328 		return;
1329 
1330 	if (p_sb->sb_attn) {
1331 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1332 				       p_sb->sb_phys,
1333 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1334 	}
1335 
1336 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1337 	p_hwfn->p_sb_attn = OSAL_NULL;
1338 }
1339 
1340 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1341 				    struct ecore_ptt *p_ptt)
1342 {
1343 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1344 
1345 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1346 
1347 	sb_info->index = 0;
1348 	sb_info->known_attn = 0;
1349 
1350 	/* Configure Attention Status Block in IGU */
1351 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1352 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1353 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1354 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1355 }
1356 
1357 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1358 				   struct ecore_ptt *p_ptt,
1359 				   void *sb_virt_addr,
1360 				   dma_addr_t sb_phy_addr)
1361 {
1362 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1363 	int i, j, k;
1364 
1365 	sb_info->sb_attn = sb_virt_addr;
1366 	sb_info->sb_phys = sb_phy_addr;
1367 
1368 	/* Set the pointer to the AEU descriptors */
1369 	sb_info->p_aeu_desc = aeu_descs;
1370 
1371 	/* Calculate Parity Masks */
1372 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1373 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1374 		/* j is array index, k is bit index */
1375 		for (j = 0, k = 0; k < 32; j++) {
1376 			struct aeu_invert_reg_bit *p_aeu;
1377 
1378 			p_aeu = &aeu_descs[i].bits[j];
1379 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1380 				sb_info->parity_mask[i] |= 1 << k;
1381 
1382 			k += ATTENTION_LENGTH(p_aeu->flags);
1383 		}
1384 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1385 			   "Attn Mask [Reg %d]: 0x%08x\n",
1386 			   i, sb_info->parity_mask[i]);
1387 	}
1388 
1389 	/* Set the address of cleanup for the mcp attention */
1390 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1391 				 MISC_REG_AEU_GENERAL_ATTN_0;
1392 
1393 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1394 }
1395 
1396 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1397 						    struct ecore_ptt *p_ptt)
1398 {
1399 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1400 	struct ecore_sb_attn_info *p_sb;
1401 	dma_addr_t p_phys = 0;
1402 	void *p_virt;
1403 
1404 	/* SB struct */
1405 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1406 	if (!p_sb) {
1407 		DP_NOTICE(p_dev, true, "Failed to allocate `struct ecore_sb_attn_info'\n");
1408 		return ECORE_NOMEM;
1409 	}
1410 
1411 	/* SB ring  */
1412 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1413 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1414 	if (!p_virt) {
1415 		DP_NOTICE(p_dev, true, "Failed to allocate status block (attentions)\n");
1416 		OSAL_FREE(p_dev, p_sb);
1417 		return ECORE_NOMEM;
1418 	}
1419 
1420 	/* Attention setup */
1421 	p_hwfn->p_sb_attn = p_sb;
1422 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1423 
1424 	return ECORE_SUCCESS;
1425 }
1426 
1427 /* coalescing timeout = timeset << (timer_res + 1) */
1428 #define ECORE_CAU_DEF_RX_USECS 24
1429 #define ECORE_CAU_DEF_TX_USECS 48
1430 
1431 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1432 			     struct cau_sb_entry *p_sb_entry,
1433 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1434 {
1435 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1436 	u32 cau_state;
1437 	u8 timer_res;
1438 
1439 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1440 
1441 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1442 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1443 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1444 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1445 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1446 
1447 	cau_state = CAU_HC_DISABLE_STATE;
1448 
1449 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1450 		cau_state = CAU_HC_ENABLE_STATE;
1451 		if (!p_dev->rx_coalesce_usecs)
1452 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1453 		if (!p_dev->tx_coalesce_usecs)
1454 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1455 	}
1456 
1457 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1458 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1459 		timer_res = 0;
1460 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1461 		timer_res = 1;
1462 	else
1463 		timer_res = 2;
1464 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1465 
1466 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1467 		timer_res = 0;
1468 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1469 		timer_res = 1;
1470 	else
1471 		timer_res = 2;
1472 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1473 
1474 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1475 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1476 }
1477 
1478 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1479 				   struct ecore_ptt *p_ptt,
1480 				   u16 igu_sb_id, u32 pi_index,
1481 				   enum ecore_coalescing_fsm coalescing_fsm,
1482 				   u8 timeset)
1483 {
1484 	struct cau_pi_entry pi_entry;
1485 	u32 sb_offset, pi_offset;
1486 
1487 	if (IS_VF(p_hwfn->p_dev))
1488 		return;/* @@@TBD MichalK- VF CAU... */
1489 
1490 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1491 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1492 
1493 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1494 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1495 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1496 	else
1497 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1498 
1499 	pi_offset = sb_offset + pi_index;
1500 	if (p_hwfn->hw_init_done) {
1501 		ecore_wr(p_hwfn, p_ptt,
1502 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1503 			 *((u32 *)&(pi_entry)));
1504 	} else {
1505 		STORE_RT_REG(p_hwfn,
1506 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1507 			     *((u32 *)&(pi_entry)));
1508 	}
1509 }
1510 
1511 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1512 			   struct ecore_ptt *p_ptt,
1513 			   struct ecore_sb_info *p_sb, u32 pi_index,
1514 			   enum ecore_coalescing_fsm coalescing_fsm,
1515 			   u8 timeset)
1516 {
1517 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1518 			       pi_index, coalescing_fsm, timeset);
1519 }
1520 
1521 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1522 			   struct ecore_ptt *p_ptt,
1523 			   dma_addr_t sb_phys, u16 igu_sb_id,
1524 			   u16 vf_number, u8 vf_valid)
1525 {
1526 	struct cau_sb_entry sb_entry;
1527 
1528 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1529 				vf_number, vf_valid);
1530 
1531 	if (p_hwfn->hw_init_done) {
1532 		/* Wide-bus, initialize via DMAE */
1533 		u64 phys_addr = (u64)sb_phys;
1534 
1535 		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1536 				    CAU_REG_SB_ADDR_MEMORY +
1537 				    igu_sb_id * sizeof(u64), 2, 0);
1538 		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1539 				    CAU_REG_SB_VAR_MEMORY +
1540 				    igu_sb_id * sizeof(u64), 2, 0);
1541 	} else {
1542 		/* Initialize Status Block Address */
1543 		STORE_RT_REG_AGG(p_hwfn,
1544 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1545 				 sb_phys);
1546 
1547 		STORE_RT_REG_AGG(p_hwfn,
1548 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1549 				 sb_entry);
1550 	}
1551 
1552 	/* Configure pi coalescing if set */
1553 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1554 		/* eth will open queues for all tcs, so configure all of them
1555 		 * properly, rather than just the active ones
1556 		 */
1557 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1558 
1559 		u8 timeset, timer_res;
1560 		u8 i;
1561 
1562 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1563 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1564 			timer_res = 0;
1565 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1566 			timer_res = 1;
1567 		else
1568 			timer_res = 2;
1569 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1570 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1571 				       ECORE_COAL_RX_STATE_MACHINE,
1572 				       timeset);
1573 
1574 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1575 			timer_res = 0;
1576 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1577 			timer_res = 1;
1578 		else
1579 			timer_res = 2;
1580 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1581 		for (i = 0; i < num_tc; i++) {
1582 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1583 					       igu_sb_id, TX_PI(i),
1584 					       ECORE_COAL_TX_STATE_MACHINE,
1585 					       timeset);
1586 		}
1587 	}
1588 }
1589 
1590 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1591 			       struct ecore_ptt *p_ptt,
1592 			       struct ecore_sb_info *sb_info)
1593 {
1594 	/* zero status block and ack counter */
1595 	sb_info->sb_ack = 0;
1596 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1597 
1598 	if (IS_PF(p_hwfn->p_dev))
1599 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1600 				      sb_info->igu_sb_id, 0, 0);
1601 }
1602 
1603 struct ecore_igu_block *
1604 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1605 {
1606 	struct ecore_igu_block *p_block;
1607 	u16 igu_id;
1608 
1609 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1610 	     igu_id++) {
1611 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1612 
1613 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1614 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1615 			continue;
1616 
1617 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1618 		    b_is_pf)
1619 			return p_block;
1620 	}
1621 
1622 	return OSAL_NULL;
1623 }
1624 
1625 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1626 				  u16 vector_id)
1627 {
1628 	struct ecore_igu_block *p_block;
1629 	u16 igu_id;
1630 
1631 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1632 	     igu_id++) {
1633 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1634 
1635 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1636 		    !p_block->is_pf ||
1637 		    p_block->vector_number != vector_id)
1638 			continue;
1639 
1640 		return igu_id;
1641 	}
1642 
1643 	return ECORE_SB_INVALID_IDX;
1644 }
1645 
1646 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1647 {
1648 	u16 igu_sb_id;
1649 
1650 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1651 	if (sb_id == ECORE_SP_SB_ID)
1652 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1653 	else if (IS_PF(p_hwfn->p_dev))
1654 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1655 	else
1656 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1657 
1658 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1659 		DP_NOTICE(p_hwfn, true,
1660 			  "Slowpath SB vector %04x doesn't exist\n",
1661 			  sb_id);
1662 	else if (sb_id == ECORE_SP_SB_ID)
1663 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1664 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1665 	else
1666 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1667 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1668 
1669 	return igu_sb_id;
1670 }
1671 
1672 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1673 				       struct ecore_ptt *p_ptt,
1674 				       struct ecore_sb_info *sb_info,
1675 				       void *sb_virt_addr,
1676 				       dma_addr_t sb_phy_addr,
1677 				       u16 sb_id)
1678 {
1679 	sb_info->sb_virt = sb_virt_addr;
1680 	sb_info->sb_phys = sb_phy_addr;
1681 
1682 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1683 
1684 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1685 		return ECORE_INVAL;
1686 
1687 	/* Let the igu info reference the client's SB info */
1688 	if (sb_id != ECORE_SP_SB_ID) {
1689 		if (IS_PF(p_hwfn->p_dev)) {
1690 			struct ecore_igu_info *p_info;
1691 			struct ecore_igu_block *p_block;
1692 
1693 			p_info = p_hwfn->hw_info.p_igu_info;
1694 			p_block = &p_info->entry[sb_info->igu_sb_id];
1695 
1696 			p_block->sb_info = sb_info;
1697 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1698 			p_info->usage.free_cnt--;
1699 		} else {
1700 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1701 		}
1702 	}
1703 
1704 #ifdef ECORE_CONFIG_DIRECT_HWFN
1705 	sb_info->p_hwfn = p_hwfn;
1706 #endif
1707 	sb_info->p_dev = p_hwfn->p_dev;
1708 
1709 	/* The igu address will hold the absolute address that needs to be
1710 	 * written to for a specific status block
1711 	 */
1712 	if (IS_PF(p_hwfn->p_dev)) {
1713 		sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1714 				    GTT_BAR0_MAP_REG_IGU_CMD +
1715 				    (sb_info->igu_sb_id << 3);
1716 
1717 	} else {
1718 		sb_info->igu_addr =
1719 			(u8 OSAL_IOMEM*)p_hwfn->regview +
1720 			PXP_VF_BAR0_START_IGU +
1721 			((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1722 	}
1723 
1724 	sb_info->flags |= ECORE_SB_INFO_INIT;
1725 
1726 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1727 
1728 	return ECORE_SUCCESS;
1729 }
1730 
1731 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1732 					  struct ecore_sb_info *sb_info,
1733 					  u16 sb_id)
1734 {
1735 	struct ecore_igu_info *p_info;
1736 	struct ecore_igu_block *p_block;
1737 
1738 	if (sb_info == OSAL_NULL)
1739 		return ECORE_SUCCESS;
1740 
1741 	/* zero status block and ack counter */
1742 	sb_info->sb_ack = 0;
1743 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1744 
1745 	if (IS_VF(p_hwfn->p_dev)) {
1746 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1747 		return ECORE_SUCCESS;
1748 	}
1749 
1750 	p_info = p_hwfn->hw_info.p_igu_info;
1751 	p_block = &p_info->entry[sb_info->igu_sb_id];
1752 
1753 	/* Vector 0 is reserved to Default SB */
1754 	if (p_block->vector_number == 0) {
1755 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1756 		return ECORE_INVAL;
1757 	}
1758 
1759 	/* Lose reference to client's SB info, and fix counters */
1760 	p_block->sb_info = OSAL_NULL;
1761 	p_block->status |= ECORE_IGU_STATUS_FREE;
1762 	p_info->usage.free_cnt++;
1763 
1764 	return ECORE_SUCCESS;
1765 }
1766 
1767 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1768 {
1769 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1770 
1771 	if (!p_sb)
1772 		return;
1773 
1774 	if (p_sb->sb_info.sb_virt) {
1775 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1776 				       p_sb->sb_info.sb_virt,
1777 				       p_sb->sb_info.sb_phys,
1778 				       SB_ALIGNED_SIZE(p_hwfn));
1779 	}
1780 
1781 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1782 	p_hwfn->p_sp_sb = OSAL_NULL;
1783 }
1784 
1785 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1786 						  struct ecore_ptt *p_ptt)
1787 {
1788 	struct ecore_sb_sp_info *p_sb;
1789 	dma_addr_t p_phys = 0;
1790 	void *p_virt;
1791 
1792 	/* SB struct */
1793 	p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1794 	if (!p_sb) {
1795 		DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_sb_info'\n");
1796 		return ECORE_NOMEM;
1797 	}
1798 
1799 	/* SB ring  */
1800 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1801 					 &p_phys,
1802 					 SB_ALIGNED_SIZE(p_hwfn));
1803 	if (!p_virt) {
1804 		DP_NOTICE(p_hwfn, true, "Failed to allocate status block\n");
1805 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1806 		return ECORE_NOMEM;
1807 	}
1808 
1809 
1810 	/* Status Block setup */
1811 	p_hwfn->p_sp_sb = p_sb;
1812 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1813 			  p_virt, p_phys, ECORE_SP_SB_ID);
1814 
1815 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1816 
1817 	return ECORE_SUCCESS;
1818 }
1819 
1820 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1821 					   ecore_int_comp_cb_t comp_cb,
1822 					   void *cookie,
1823 					   u8 *sb_idx,
1824 					   __le16 **p_fw_cons)
1825 {
1826 	struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1827 	enum _ecore_status_t rc = ECORE_NOMEM;
1828 	u8 pi;
1829 
1830 	/* Look for a free index */
1831 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1832 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1833 			continue;
1834 
1835 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1836 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1837 		*sb_idx = pi;
1838 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1839 		rc = ECORE_SUCCESS;
1840 		break;
1841 	}
1842 
1843 	return rc;
1844 }
1845 
1846 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1847 					     u8 pi)
1848 {
1849 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1850 
1851 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1852 		return ECORE_NOMEM;
1853 
1854 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1855 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1856 
1857 	return ECORE_SUCCESS;
1858 }
1859 
1860 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1861 {
1862 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1863 }
1864 
1865 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1866 			      struct ecore_ptt	*p_ptt,
1867 			      enum ecore_int_mode int_mode)
1868 {
1869 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1870 
1871 #ifndef ASIC_ONLY
1872 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1873 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1874 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1875 	}
1876 #endif
1877 
1878 	p_hwfn->p_dev->int_mode = int_mode;
1879 	switch (p_hwfn->p_dev->int_mode) {
1880 	case ECORE_INT_MODE_INTA:
1881 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1882 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1883 		break;
1884 
1885 	case ECORE_INT_MODE_MSI:
1886 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1887 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1888 		break;
1889 
1890 	case ECORE_INT_MODE_MSIX:
1891 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1892 		break;
1893 	case ECORE_INT_MODE_POLL:
1894 		break;
1895 	}
1896 
1897 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1898 }
1899 
1900 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1901 				      struct ecore_ptt *p_ptt)
1902 {
1903 #ifndef ASIC_ONLY
1904 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1905 		DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1906 		return;
1907 	}
1908 #endif
1909 
1910 	/* Configure AEU signal change to produce attentions */
1911 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1912 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1913 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1914 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1915 
1916 	/* Flush the writes to IGU */
1917 	OSAL_MMIOWB(p_hwfn->p_dev);
1918 
1919 	/* Unmask AEU signals toward IGU */
1920 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1921 }
1922 
1923 enum _ecore_status_t
1924 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1925 			  enum ecore_int_mode int_mode)
1926 {
1927 	enum _ecore_status_t rc = ECORE_SUCCESS;
1928 	u32 tmp;
1929 
1930 	/* @@@tmp - Starting with MFW 8.2.1.0 we've started hitting AVS stop
1931 	 * attentions. Since we're waiting for BRCM answer regarding this
1932 	 * attention, in the meanwhile we simply mask it.
1933 	 */
1934 	tmp = ecore_rd(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0);
1935 	tmp &= ~0x800;
1936 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0, tmp);
1937 
1938 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1939 
1940 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1941 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1942 		if (rc != ECORE_SUCCESS) {
1943 			DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1944 			return ECORE_NORESOURCES;
1945 		}
1946 		p_hwfn->b_int_requested = true;
1947 	}
1948 
1949 	/* Enable interrupt Generation */
1950 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1951 
1952 	p_hwfn->b_int_enabled = 1;
1953 
1954 	return rc;
1955 }
1956 
1957 void ecore_int_igu_disable_int(struct ecore_hwfn	*p_hwfn,
1958 			       struct ecore_ptt		*p_ptt)
1959 {
1960 	p_hwfn->b_int_enabled = 0;
1961 
1962 	if (IS_VF(p_hwfn->p_dev))
1963 		return;
1964 
1965 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1966 }
1967 
1968 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1969 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1970 				     struct ecore_ptt *p_ptt,
1971 				     u16 igu_sb_id,
1972 				     bool cleanup_set,
1973 				     u16 opaque_fid)
1974 {
1975 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1976 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1977 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1978 	u8  type = 0; /* FIXME MichalS type??? */
1979 
1980 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1981 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1982 
1983 	/* USE Control Command Register to perform cleanup. There is an
1984 	 * option to do this using IGU bar, but then it can't be used for VFs.
1985 	 */
1986 
1987 	/* Set the data field */
1988 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1989 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1990 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1991 
1992 	/* Set the control register */
1993 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1994 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1995 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1996 
1997 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1998 
1999 	OSAL_BARRIER(p_hwfn->p_dev);
2000 
2001 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2002 
2003 	/* Flush the write to IGU */
2004 	OSAL_MMIOWB(p_hwfn->p_dev);
2005 
2006 	/* calculate where to read the status bit from */
2007 	sb_bit = 1 << (igu_sb_id % 32);
2008 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2009 
2010 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2011 
2012 	/* Now wait for the command to complete */
2013 	while (--sleep_cnt) {
2014 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2015 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2016 			break;
2017 		OSAL_MSLEEP(5);
2018 	}
2019 
2020 	if (!sleep_cnt)
2021 		DP_NOTICE(p_hwfn, true,
2022 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2023 			  val, igu_sb_id);
2024 }
2025 
2026 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2027 				       struct ecore_ptt *p_ptt,
2028 				       u16 igu_sb_id, u16 opaque, bool b_set)
2029 {
2030 	struct ecore_igu_block *p_block;
2031 	int pi, i;
2032 
2033 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2034 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2035 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2036 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2037 		   p_block->vector_number);
2038 
2039 	/* Set */
2040 	if (b_set)
2041 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2042 
2043 	/* Clear */
2044 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2045 
2046 	/* Wait for the IGU SB to cleanup */
2047 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2048 		u32 val;
2049 
2050 		val = ecore_rd(p_hwfn, p_ptt,
2051 			       IGU_REG_WRITE_DONE_PENDING +
2052 			       ((igu_sb_id / 32) * 4));
2053 		if (val & (1 << (igu_sb_id % 32)))
2054 			OSAL_UDELAY(10);
2055 		else
2056 			break;
2057 	}
2058 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2059 		DP_NOTICE(p_hwfn, true,
2060 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2061 			  igu_sb_id);
2062 
2063 	/* Clear the CAU for the SB */
2064 	for (pi = 0; pi < 12; pi++)
2065 		ecore_wr(p_hwfn, p_ptt,
2066 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2067 }
2068 
2069 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2070 				 struct ecore_ptt *p_ptt,
2071 				 bool b_set,
2072 				 bool b_slowpath)
2073 {
2074 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2075 	struct ecore_igu_block *p_block;
2076 	u16 igu_sb_id = 0;
2077 	u32 val = 0;
2078 
2079 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2080 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2081 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2082 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2083 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2084 	/* end temporary */
2085 
2086 	for (igu_sb_id = 0;
2087 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2088 	     igu_sb_id++) {
2089 		p_block = &p_info->entry[igu_sb_id];
2090 
2091 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2092 		    !p_block->is_pf ||
2093 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2094 			continue;
2095 
2096 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2097 						  p_hwfn->hw_info.opaque_fid,
2098 						  b_set);
2099 	}
2100 
2101 	if (b_slowpath)
2102 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2103 						  p_info->igu_dsb_id,
2104 						  p_hwfn->hw_info.opaque_fid,
2105 						  b_set);
2106 }
2107 
2108 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2109 			    struct ecore_ptt *p_ptt)
2110 {
2111 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2112 	struct ecore_igu_block *p_block;
2113 	int pf_sbs, vf_sbs;
2114 	u16 igu_sb_id;
2115 	u32 val, rval;
2116 
2117 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2118 		/* We're using an old MFW - have to prevent any switching
2119 		 * of SBs between PF and VFs as later driver wouldn't be
2120 		 * able to tell which belongs to which.
2121 		 */
2122 		p_info->b_allow_pf_vf_change = false;
2123 	} else {
2124 		/* Use the numbers the MFW have provided -
2125 		 * don't forget MFW accounts for the default SB as well.
2126 		 */
2127 		p_info->b_allow_pf_vf_change = true;
2128 
2129 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2130 			DP_INFO(p_hwfn,
2131 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2132 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2133 				p_info->usage.cnt);
2134 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2135 		}
2136 
2137 		/* TODO - how do we learn about VF SBs from MFW? */
2138 		if (IS_PF_SRIOV(p_hwfn)) {
2139 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2140 
2141 			if (vfs != p_info->usage.iov_cnt)
2142 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2143 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2144 					   p_info->usage.iov_cnt, vfs);
2145 
2146 			/* At this point we know how many SBs we have totally
2147 			 * in IGU + number of PF SBs. So we can validate that
2148 			 * we'd have sufficient for VF.
2149 			 */
2150 			if (vfs > p_info->usage.free_cnt +
2151 				  p_info->usage.free_cnt_iov -
2152 				  p_info->usage.cnt) {
2153 				DP_NOTICE(p_hwfn, true,
2154 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2155 					  p_info->usage.free_cnt +
2156 					  p_info->usage.free_cnt_iov,
2157 					  p_info->usage.cnt, vfs);
2158 				return ECORE_INVAL;
2159 			}
2160 
2161 			/* Currently cap the number of VFs SBs by the
2162 			 * number of VFs.
2163 			 */
2164 			p_info->usage.iov_cnt = vfs;
2165 		}
2166 	}
2167 
2168 	/* Mark all SBs as free, now in the right PF/VFs division */
2169 	p_info->usage.free_cnt = p_info->usage.cnt;
2170 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2171 	p_info->usage.orig = p_info->usage.cnt;
2172 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2173 
2174 	/* We now proceed to re-configure the IGU cam to reflect the initial
2175 	 * configuration. We can start with the Default SB.
2176 	 */
2177 	pf_sbs = p_info->usage.cnt;
2178 	vf_sbs = p_info->usage.iov_cnt;
2179 
2180 	for (igu_sb_id = p_info->igu_dsb_id;
2181 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2182 	     igu_sb_id++) {
2183 		p_block = &p_info->entry[igu_sb_id];
2184 		val = 0;
2185 
2186 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2187 			continue;
2188 
2189 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2190 			p_block->function_id = p_hwfn->rel_pf_id;
2191 			p_block->is_pf = 1;
2192 			p_block->vector_number = 0;
2193 			p_block->status = ECORE_IGU_STATUS_VALID |
2194 					  ECORE_IGU_STATUS_PF |
2195 					  ECORE_IGU_STATUS_DSB;
2196 		} else if (pf_sbs) {
2197 			pf_sbs--;
2198 			p_block->function_id = p_hwfn->rel_pf_id;
2199 			p_block->is_pf = 1;
2200 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2201 			p_block->status = ECORE_IGU_STATUS_VALID |
2202 					  ECORE_IGU_STATUS_PF |
2203 					  ECORE_IGU_STATUS_FREE;
2204 		} else if (vf_sbs) {
2205 			p_block->function_id =
2206 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2207 				p_info->usage.iov_cnt - vf_sbs;
2208 			p_block->is_pf = 0;
2209 			p_block->vector_number = 0;
2210 			p_block->status = ECORE_IGU_STATUS_VALID |
2211 					  ECORE_IGU_STATUS_FREE;
2212 			vf_sbs--;
2213 		} else {
2214 			p_block->function_id = 0;
2215 			p_block->is_pf = 0;
2216 			p_block->vector_number = 0;
2217 		}
2218 
2219 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2220 			  p_block->function_id);
2221 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2222 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2223 			  p_block->vector_number);
2224 
2225 		/* VF entries would be enabled when VF is initializaed */
2226 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2227 
2228 		rval = ecore_rd(p_hwfn, p_ptt,
2229 				IGU_REG_MAPPING_MEMORY +
2230 				sizeof(u32) * igu_sb_id);
2231 
2232 		if (rval != val) {
2233 			ecore_wr(p_hwfn, p_ptt,
2234 				 IGU_REG_MAPPING_MEMORY +
2235 				 sizeof(u32) * igu_sb_id,
2236 				 val);
2237 
2238 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2239 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2240 				   igu_sb_id, p_block->function_id,
2241 				   p_block->is_pf, p_block->vector_number,
2242 				   rval, val);
2243 		}
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2250 				    struct ecore_ptt *p_ptt)
2251 {
2252 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2253 
2254 	/* Return all the usage indications to default prior to the reset;
2255 	 * The reset expects the !orig to reflect the initial status of the
2256 	 * SBs, and would re-calculate the originals based on those.
2257 	 */
2258 	p_cnt->cnt = p_cnt->orig;
2259 	p_cnt->free_cnt = p_cnt->orig;
2260 	p_cnt->iov_cnt = p_cnt->iov_orig;
2261 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2262 	p_cnt->orig = 0;
2263 	p_cnt->iov_orig = 0;
2264 
2265 	/* TODO - we probably need to re-configure the CAU as well... */
2266 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2267 }
2268 
2269 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2270 					 struct ecore_ptt *p_ptt,
2271 					 u16 igu_sb_id)
2272 {
2273 	u32 val = ecore_rd(p_hwfn, p_ptt,
2274 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2275 	struct ecore_igu_block *p_block;
2276 
2277 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2278 
2279 	/* Fill the block information */
2280 	p_block->function_id = GET_FIELD(val,
2281 					 IGU_MAPPING_LINE_FUNCTION_NUMBER);
2282 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2283 	p_block->vector_number = GET_FIELD(val,
2284 					   IGU_MAPPING_LINE_VECTOR_NUMBER);
2285 	p_block->igu_sb_id = igu_sb_id;
2286 }
2287 
2288 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2289 					    struct ecore_ptt *p_ptt)
2290 {
2291 	struct ecore_igu_info *p_igu_info;
2292 	struct ecore_igu_block *p_block;
2293 	u32 min_vf = 0, max_vf = 0;
2294 	u16 igu_sb_id;
2295 
2296 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2297 						 GFP_KERNEL,
2298 						 sizeof(*p_igu_info));
2299 	if (!p_hwfn->hw_info.p_igu_info)
2300 		return ECORE_NOMEM;
2301 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2302 
2303 	/* Distinguish between existent and onn-existent default SB */
2304 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2305 
2306 	/* Find the range of VF ids whose SB belong to this PF */
2307 	if (p_hwfn->p_dev->p_iov_info) {
2308 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2309 
2310 		min_vf = p_iov->first_vf_in_pf;
2311 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2312 	}
2313 
2314 	for (igu_sb_id = 0;
2315 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2316 	     igu_sb_id++) {
2317 		/* Read current entry; Notice it might not belong to this PF */
2318 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2319 		p_block = &p_igu_info->entry[igu_sb_id];
2320 
2321 		if ((p_block->is_pf) &&
2322 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2323 			p_block->status = ECORE_IGU_STATUS_PF |
2324 					  ECORE_IGU_STATUS_VALID |
2325 					  ECORE_IGU_STATUS_FREE;
2326 
2327 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2328 				p_igu_info->usage.cnt++;
2329 		} else if (!(p_block->is_pf) &&
2330 			   (p_block->function_id >= min_vf) &&
2331 			   (p_block->function_id < max_vf)) {
2332 			/* Available for VFs of this PF */
2333 			p_block->status = ECORE_IGU_STATUS_VALID |
2334 					  ECORE_IGU_STATUS_FREE;
2335 
2336 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2337 				p_igu_info->usage.iov_cnt++;
2338 		}
2339 
2340 		/* Mark the First entry belonging to the PF or its VFs
2341 		 * as the default SB [we'll reset IGU prior to first usage].
2342 		 */
2343 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2344 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2345 			p_igu_info->igu_dsb_id = igu_sb_id;
2346 			p_block->status |= ECORE_IGU_STATUS_DSB;
2347 		}
2348 
2349 		/* While this isn't suitable for all clients, limit number
2350 		 * of prints by having each PF print only its entries with the
2351 		 * exception of PF0 which would print everything.
2352 		 */
2353 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2354 		    (p_hwfn->abs_pf_id == 0))
2355 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2356 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2357 				   igu_sb_id, p_block->function_id,
2358 				   p_block->is_pf, p_block->vector_number);
2359 	}
2360 
2361 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2362 		DP_NOTICE(p_hwfn, true,
2363 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2364 			  p_igu_info->igu_dsb_id);
2365 		return ECORE_INVAL;
2366 	}
2367 
2368 	/* All non default SB are considered free at this point */
2369 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2370 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2371 
2372 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2373 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2374 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2375 		   p_igu_info->usage.iov_cnt);
2376 
2377 	return ECORE_SUCCESS;
2378 }
2379 
2380 enum _ecore_status_t
2381 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2382 			  u16 sb_id, bool b_to_vf)
2383 {
2384 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2385 	struct ecore_igu_block *p_block = OSAL_NULL;
2386 	u16 igu_sb_id = 0, vf_num = 0;
2387 	u32 val = 0;
2388 
2389 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2390 		return ECORE_INVAL;
2391 
2392 	if (sb_id == ECORE_SP_SB_ID)
2393 		return ECORE_INVAL;
2394 
2395 	if (!p_info->b_allow_pf_vf_change) {
2396 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2397 		return ECORE_INVAL;
2398 	}
2399 
2400 	/* If we're moving a SB from PF to VF, the client had to specify
2401 	 * which vector it wants to move.
2402 	 */
2403 	if (b_to_vf) {
2404 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2405 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2406 			return ECORE_INVAL;
2407 	}
2408 
2409 	/* If we're moving a SB from VF to PF, need to validate there isn't
2410 	 * already a line configured for that vector.
2411 	 */
2412 	if (!b_to_vf) {
2413 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2414 		    ECORE_SB_INVALID_IDX)
2415 			return ECORE_INVAL;
2416 	}
2417 
2418 	/* We need to validate that the SB can actually be relocated.
2419 	 * This would also handle the previous case where we've explicitly
2420 	 * stated which IGU SB needs to move.
2421 	 */
2422 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2423 	     igu_sb_id++) {
2424 		p_block = &p_info->entry[igu_sb_id];
2425 
2426 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2427 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2428 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2429 			if (b_to_vf)
2430 				return ECORE_INVAL;
2431 			else
2432 				continue;
2433 		}
2434 
2435 		break;
2436 	}
2437 
2438 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2439 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2440 			   "Failed to find a free SB to move\n");
2441 		return ECORE_INVAL;
2442 	}
2443 
2444 	/* At this point, p_block points to the SB we want to relocate */
2445 	if (b_to_vf) {
2446 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2447 
2448 		/* It doesn't matter which VF number we choose, since we're
2449 		 * going to disable the line; But let's keep it in range.
2450 		 */
2451 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2452 
2453 		p_block->function_id = (u8)vf_num;
2454 		p_block->is_pf = 0;
2455 		p_block->vector_number = 0;
2456 
2457 		p_info->usage.cnt--;
2458 		p_info->usage.free_cnt--;
2459 		p_info->usage.iov_cnt++;
2460 		p_info->usage.free_cnt_iov++;
2461 
2462 		/* TODO - if SBs aren't really the limiting factor,
2463 		 * then it might not be accurate [in the since that
2464 		 * we might not need decrement the feature].
2465 		 */
2466 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2467 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2468 	} else {
2469 		p_block->status |= ECORE_IGU_STATUS_PF;
2470 		p_block->function_id = p_hwfn->rel_pf_id;
2471 		p_block->is_pf = 1;
2472 		p_block->vector_number = sb_id + 1;
2473 
2474 		p_info->usage.cnt++;
2475 		p_info->usage.free_cnt++;
2476 		p_info->usage.iov_cnt--;
2477 		p_info->usage.free_cnt_iov--;
2478 
2479 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2480 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2481 	}
2482 
2483 	/* Update the IGU and CAU with the new configuration */
2484 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2485 		  p_block->function_id);
2486 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2487 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2488 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2489 		  p_block->vector_number);
2490 
2491 	ecore_wr(p_hwfn, p_ptt,
2492 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2493 		 val);
2494 
2495 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2496 			      igu_sb_id, vf_num,
2497 			      p_block->is_pf ? 0 : 1);
2498 
2499 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2500 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2501 		   igu_sb_id, p_block->function_id,
2502 		   p_block->is_pf, p_block->vector_number);
2503 
2504 	return ECORE_SUCCESS;
2505 }
2506 
2507 /**
2508  * @brief Initialize igu runtime registers
2509  *
2510  * @param p_hwfn
2511  */
2512 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2513 {
2514 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2515 
2516 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2517 }
2518 
2519 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2520 			  IGU_CMD_INT_ACK_BASE)
2521 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2522 			  IGU_CMD_INT_ACK_BASE)
2523 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2524 {
2525 	u32 intr_status_hi = 0, intr_status_lo = 0;
2526 	u64 intr_status = 0;
2527 
2528 	intr_status_lo = REG_RD(p_hwfn,
2529 				GTT_BAR0_MAP_REG_IGU_CMD +
2530 				LSB_IGU_CMD_ADDR * 8);
2531 	intr_status_hi = REG_RD(p_hwfn,
2532 				GTT_BAR0_MAP_REG_IGU_CMD +
2533 				MSB_IGU_CMD_ADDR * 8);
2534 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2535 
2536 	return intr_status;
2537 }
2538 
2539 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2540 {
2541 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2542 	p_hwfn->b_sp_dpc_enabled = true;
2543 }
2544 
2545 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2546 {
2547 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2548 	if (!p_hwfn->sp_dpc)
2549 		return ECORE_NOMEM;
2550 
2551 	return ECORE_SUCCESS;
2552 }
2553 
2554 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2555 {
2556 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2557 	p_hwfn->sp_dpc = OSAL_NULL;
2558 }
2559 
2560 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2561 				     struct ecore_ptt *p_ptt)
2562 {
2563 	enum _ecore_status_t rc = ECORE_SUCCESS;
2564 
2565 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2566 	if (rc != ECORE_SUCCESS) {
2567 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2568 		return rc;
2569 	}
2570 
2571 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2572 	if (rc != ECORE_SUCCESS) {
2573 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2574 		return rc;
2575 	}
2576 
2577 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2578 	if (rc != ECORE_SUCCESS)
2579 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2580 
2581 	return rc;
2582 }
2583 
2584 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2585 {
2586 	ecore_int_sp_sb_free(p_hwfn);
2587 	ecore_int_sb_attn_free(p_hwfn);
2588 	ecore_int_sp_dpc_free(p_hwfn);
2589 }
2590 
2591 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2592 {
2593 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2594 		return;
2595 
2596 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2597 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2598 	ecore_int_sp_dpc_setup(p_hwfn);
2599 }
2600 
2601 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2602 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2603 {
2604 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2605 
2606 	if (!p_igu_info || !p_sb_cnt_info)
2607 		return;
2608 
2609 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2610 		    sizeof(*p_sb_cnt_info));
2611 }
2612 
2613 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2614 {
2615 	int i;
2616 
2617 	for_each_hwfn(p_dev, i)
2618 		p_dev->hwfns[i].b_int_requested = false;
2619 }
2620 
2621 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2622 {
2623 	p_dev->attn_clr_en = clr_enable;
2624 }
2625 
2626 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2627 					     struct ecore_ptt *p_ptt,
2628 					     u8 timer_res, u16 sb_id, bool tx)
2629 {
2630 	struct cau_sb_entry sb_entry;
2631 	enum _ecore_status_t rc;
2632 
2633 	if (!p_hwfn->hw_init_done) {
2634 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2635 		return ECORE_INVAL;
2636 	}
2637 
2638 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2639 				 sb_id * sizeof(u64),
2640 				 (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2641 	if (rc != ECORE_SUCCESS) {
2642 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2643 		return rc;
2644 	}
2645 
2646 	if (tx)
2647 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2648 	else
2649 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2650 
2651 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2652 				 (u64)(osal_uintptr_t)&sb_entry,
2653 				 CAU_REG_SB_VAR_MEMORY +
2654 				 sb_id * sizeof(u64), 2, 0);
2655 	if (rc != ECORE_SUCCESS) {
2656 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2657 		return rc;
2658 	}
2659 
2660 	return rc;
2661 }
2662 
2663 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2664 					  struct ecore_ptt *p_ptt,
2665 					  struct ecore_sb_info *p_sb,
2666 					  struct ecore_sb_info_dbg *p_info)
2667 {
2668 	u16 sbid = p_sb->igu_sb_id;
2669 	int i;
2670 
2671 	if (IS_VF(p_hwfn->p_dev))
2672 		return ECORE_INVAL;
2673 
2674 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2675 		return ECORE_INVAL;
2676 
2677 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2678 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2679 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2680 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2681 
2682 	for (i = 0; i < PIS_PER_SB_E4; i++)
2683 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2684 					      CAU_REG_PI_MEMORY +
2685 					      sbid * 4 * PIS_PER_SB_E4 + i * 4);
2686 
2687 	return ECORE_SUCCESS;
2688 }
2689