xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_int.c (revision a0409676120c1e558d0ade943019934e0f15118d)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * File : ecore_int.c
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "bcm_osal.h"
34 #include "ecore.h"
35 #include "ecore_spq.h"
36 #include "reg_addr.h"
37 #include "ecore_gtt_reg_addr.h"
38 #include "ecore_init_ops.h"
39 #include "ecore_rt_defs.h"
40 #include "ecore_int.h"
41 #include "reg_addr.h"
42 #include "ecore_hw.h"
43 #include "ecore_sriov.h"
44 #include "ecore_vf.h"
45 #include "ecore_hw_defs.h"
46 #include "ecore_hsi_common.h"
47 #include "ecore_mcp.h"
48 #include "ecore_dbg_fw_funcs.h"
49 
50 #ifdef DIAG
51 /* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
52  * and so the functions are lacking ecore prefix.
53  * If there would be other clients needing this [or if the content that isn't
54  * really optional there would increase], we'll need to re-think this.
55  */
56 enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
57 							  struct ecore_ptt *ptt,
58 							  enum block_id block,
59 							  enum dbg_attn_type attn_type,
60 							  bool clear_status,
61 							  struct dbg_attn_block_result *results);
62 
63 enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
64 							   struct dbg_attn_block_result *results);
65 
66 const char* dbg_get_status_str(enum dbg_status status);
67 
68 #define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
69 	dbg_read_attn(hwfn, ptt, id, type, clear, results)
70 #define ecore_dbg_parse_attn(hwfn, results) \
71 	dbg_parse_attn(hwfn, results)
72 #define ecore_dbg_get_status_str(status) \
73 	dbg_get_status_str(status)
74 #endif
75 
76 struct ecore_pi_info {
77 	ecore_int_comp_cb_t comp_cb;
78 	void *cookie; /* Will be sent to the completion callback function */
79 };
80 
81 struct ecore_sb_sp_info {
82 	struct ecore_sb_info sb_info;
83 	/* per protocol index data */
84 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
85 };
86 
87 enum ecore_attention_type {
88 	ECORE_ATTN_TYPE_ATTN,
89 	ECORE_ATTN_TYPE_PARITY,
90 };
91 
92 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
93 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
94 
95 struct aeu_invert_reg_bit {
96 	char bit_name[30];
97 
98 #define ATTENTION_PARITY		(1 << 0)
99 
100 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
101 #define ATTENTION_LENGTH_SHIFT		(4)
102 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
103 					 ATTENTION_LENGTH_SHIFT)
104 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
105 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
106 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
107 					 ATTENTION_PARITY)
108 
109 /* Multiple bits start with this offset */
110 #define ATTENTION_OFFSET_MASK		(0x000ff000)
111 #define ATTENTION_OFFSET_SHIFT		(12)
112 
113 #define ATTENTION_BB_MASK		(0x00700000)
114 #define ATTENTION_BB_SHIFT		(20)
115 #define ATTENTION_BB(value)		(value << ATTENTION_BB_SHIFT)
116 #define ATTENTION_BB_DIFFERENT		(1 << 23)
117 
118 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
119 	unsigned int flags;
120 
121 	/* Callback to call if attention will be triggered */
122 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
123 
124 	enum block_id block_index;
125 };
126 
127 struct aeu_invert_reg {
128 	struct aeu_invert_reg_bit bits[32];
129 };
130 
131 #define MAX_ATTN_GRPS		(8)
132 #define NUM_ATTN_REGS		(9)
133 
134 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
135 {
136 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
137 
138 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
139 		tmp);
140 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
141 		 0xffffffff);
142 
143 	return ECORE_SUCCESS;
144 }
145 
146 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
147 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
148 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
149 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
150 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
151 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
152 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
153 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
154 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
155 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
156 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
157 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
158 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK 	(0x1)
159 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
160 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
161 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
162 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
163 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
164 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
165 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
166 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
167 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
168 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
169 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
170 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
171 {
172 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
173 
174 	/* Disabled VF access */
175 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
176 		u32 addr, data;
177 
178 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
179 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
180 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
181 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
182 		DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
183 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
184 			     ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
185 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
186 			     ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
187 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
188 			     ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
189 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
190 			     ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
191 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
192 			     ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
193 			addr);
194 	}
195 
196 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
197 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
198 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
199 		u32 addr, data, length;
200 
201 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
202 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
203 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
204 				PSWHST_REG_INCORRECT_ACCESS_DATA);
205 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
206 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
207 
208 		DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
209 			addr, length,
210 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
211 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
212 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
213 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
214 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
215 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
216 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
217 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
218 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
219 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
220 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
221 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
222 			data);
223 	}
224 
225 	/* TODO - We know 'some' of these are legal due to virtualization,
226 	 * but is it true for all of them?
227 	 */
228 	return ECORE_SUCCESS;
229 }
230 
231 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
232 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
233 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
234 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
235 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
236 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
237 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
238 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
239 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
240 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
241 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
242 static const char* grc_timeout_attn_master_to_str(u8 master)
243 {
244 	switch(master) {
245 	case 1: return "PXP";
246 	case 2: return "MCP";
247 	case 3: return "MSDM";
248 	case 4: return "PSDM";
249 	case 5: return "YSDM";
250 	case 6: return "USDM";
251 	case 7: return "TSDM";
252 	case 8: return "XSDM";
253 	case 9: return "DBU";
254 	case 10: return "DMAE";
255 	default:
256 		return "Unkown";
257 	}
258 }
259 
260 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
261 {
262 	u32 tmp, tmp2;
263 
264 	/* We've already cleared the timeout interrupt register, so we learn
265 	 * of interrupts via the validity register
266 	 */
267 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
269 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
270 		goto out;
271 
272 	/* Read the GRC timeout information */
273 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
274 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
275 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
276 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
277 
278 	DP_NOTICE(p_hwfn->p_dev, false,
279 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
280 		  tmp2, tmp,
281 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
282 						       : "Read from",
283 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
284 		  grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
285 						 ECORE_GRC_ATTENTION_MASTER_SHIFT),
286 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
287 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
288 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
289 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
290 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
291 		  ECORE_GRC_ATTENTION_VF_SHIFT);
292 
293 out:
294 	/* Regardles of anything else, clean the validity bit */
295 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
296 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
297 	return ECORE_SUCCESS;
298 }
299 
300 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
301 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
302 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
303 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
304 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
305 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
306 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
307 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
308 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
309 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
310 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
311 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
312 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
313 
314 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
315 						   struct ecore_ptt *p_ptt)
316 {
317 	u32 tmp;
318 
319 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
320 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
321 		u32 addr_lo, addr_hi, details;
322 
323 		addr_lo = ecore_rd(p_hwfn, p_ptt,
324 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
325 		addr_hi = ecore_rd(p_hwfn, p_ptt,
326 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
327 		details = ecore_rd(p_hwfn, p_ptt,
328 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
329 
330 		DP_NOTICE(p_hwfn, false,
331 			  "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
332 			  addr_hi, addr_lo, details,
333 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
334 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
335 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
336 			  tmp,
337 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
338 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
339 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
340 	}
341 
342 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
343 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
344 		u32 addr_lo, addr_hi, details;
345 
346 		addr_lo = ecore_rd(p_hwfn, p_ptt,
347 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
348 		addr_hi = ecore_rd(p_hwfn, p_ptt,
349 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
350 		details = ecore_rd(p_hwfn, p_ptt,
351 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
352 
353 		DP_NOTICE(p_hwfn, false,
354 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
355 			  addr_hi, addr_lo, details,
356 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
357 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
358 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
359 			  tmp,
360 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
361 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
362 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
363 	}
364 
365 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
366 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
367 		DP_NOTICE(p_hwfn, false, "ICPL eror - %08x\n", tmp);
368 
369 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
370 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
371 		u32 addr_hi, addr_lo;
372 
373 		addr_lo = ecore_rd(p_hwfn, p_ptt,
374 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
375 		addr_hi = ecore_rd(p_hwfn, p_ptt,
376 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
377 
378 		DP_NOTICE(p_hwfn, false,
379 			  "ICPL eror - %08x [Address %08x:%08x]\n",
380 			  tmp, addr_hi, addr_lo);
381 	}
382 
383 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
384 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
385 		u32 addr_hi, addr_lo, details;
386 
387 		addr_lo = ecore_rd(p_hwfn, p_ptt,
388 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
389 		addr_hi = ecore_rd(p_hwfn, p_ptt,
390 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
391 		details = ecore_rd(p_hwfn, p_ptt,
392 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
393 
394 		DP_NOTICE(p_hwfn, false,
395 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
396 			  details, tmp, addr_hi, addr_lo);
397 	}
398 
399 	/* Clear the indications */
400 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
401 
402 	return ECORE_SUCCESS;
403 }
404 
405 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
406 {
407 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
408 }
409 
410 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
411 {
412 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
413 
414 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
415 
416 	return ECORE_INVAL;
417 }
418 
419 static enum _ecore_status_t
420 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
421 {
422 	DP_INFO(p_hwfn, "General attention 35!\n");
423 
424 	return ECORE_SUCCESS;
425 }
426 
427 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
428 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
429 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
430 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
431 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
432 
433 #define ECORE_DB_REC_COUNT			10
434 #define ECORE_DB_REC_INTERVAL			100
435 
436 /* assumes sticky overflow indication was set for this PF */
437 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
438 					      struct ecore_ptt *p_ptt)
439 {
440 	u8 count = ECORE_DB_REC_COUNT;
441 	u32 usage = 1;
442 
443 	/* wait for usage to zero or count to run out. This is necessary since
444 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
445 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
446 	 * half an EDPM in the queue and other half dropped. Another EDPM
447 	 * doorbell to the same address (from doorbell recovery mechanism or
448 	 * from the doorbelling entity) could have first half dropped and second
449 	 * half interperted as continuation of the first. To prevent such
450 	 * malformed doorbells from reaching the device, flush the queue before
451 	 * releaseing the overflow sticky indication.
452 	 */
453 	while (count-- && usage) {
454 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
455 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
456 	}
457 
458 	/* should have been depleted by now */
459 	if (usage) {
460 		DP_NOTICE(p_hwfn->p_dev, false,
461 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
462 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
463 		return ECORE_TIMEOUT;
464 	}
465 
466 	/* flush any pedning (e)dpm as they may never arrive */
467 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
468 
469 	/* release overflow sticky indication (stop silently dropping everything) */
470 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
471 
472 	/* repeat all last doorbells (doorbell drop recovery) */
473 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
474 
475 	return ECORE_SUCCESS;
476 }
477 
478 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
479 {
480 	u32 int_sts, first_drop_reason, details, address, overflow,
481 		all_drops_reason;
482 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
483 	enum _ecore_status_t rc;
484 
485 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
486 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
487 		  int_sts);
488 
489 	/* int_sts may be zero since all PFs were interrupted for doorbell
490 	 * overflow but another one already handled it. Can abort here. If
491 	 * This PF also requires overflow recovery we will be interrupted again.
492 	 * The masked almost full indication may also be set. Ignoring.
493 	 */
494 	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
495 		return ECORE_SUCCESS;
496 
497 	/* check if db_drop or overflow happened */
498 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
499 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
500 		/* obtain data about db drop/overflow */
501 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
502 				  DORQ_REG_DB_DROP_REASON) &
503 				  ECORE_DORQ_ATTENTION_REASON_MASK;
504 		details = ecore_rd(p_hwfn, p_ptt,
505 				   DORQ_REG_DB_DROP_DETAILS);
506 		address = ecore_rd(p_hwfn, p_ptt,
507 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
508 		overflow = ecore_rd(p_hwfn, p_ptt,
509 				    DORQ_REG_PF_OVFL_STICKY);
510 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
511 					    DORQ_REG_DB_DROP_DETAILS_REASON);
512 
513 		/* log info */
514 		DP_NOTICE(p_hwfn->p_dev, false,
515 			  "Doorbell drop occurred\n"
516 			  "Address\t\t0x%08x\t(second BAR address)\n"
517 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
518 			  "Size\t\t0x%04x\t\t(in bytes)\n"
519 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
520 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
521 			  "Overflow\t0x%x\t\t(a per PF indication)\n",
522 			  address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
523 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
524 			  first_drop_reason, all_drops_reason, overflow);
525 
526 		/* if this PF caused overflow, initiate recovery */
527 		if (overflow) {
528 			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
529 			if (rc != ECORE_SUCCESS)
530 				return rc;
531 		}
532 
533 		/* clear the doorbell drop details and prepare for next drop */
534 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
535 
536 		/* mark interrupt as handeld (note: even if drop was due to a diffrent
537 		 * reason than overflow we mark as handled)
538 		 */
539 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
540 			 DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
541 
542 		/* if there are no indications otherthan drop indications, success */
543 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
544 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
545 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
546 			return ECORE_SUCCESS;
547 	}
548 
549 	/* some other indication was present - non recoverable */
550 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
551 
552 	return ECORE_INVAL;
553 }
554 
555 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
556 {
557 #ifndef ASIC_ONLY
558 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
559 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
560 				   TM_REG_INT_STS_1);
561 
562 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
563 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
564 			return ECORE_INVAL;
565 
566 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
567 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
568 			DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
569 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
570 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
571 		       TM_REG_INT_MASK_1_PEND_TASK_SCAN;
572 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
573 
574 		return ECORE_SUCCESS;
575 	}
576 #endif
577 
578 	return ECORE_INVAL;
579 }
580 
581 /* Instead of major changes to the data-structure, we have a some 'special'
582  * identifiers for sources that changed meaning between adapters.
583  */
584 enum aeu_invert_reg_special_type {
585 	AEU_INVERT_REG_SPECIAL_CNIG_0,
586 	AEU_INVERT_REG_SPECIAL_CNIG_1,
587 	AEU_INVERT_REG_SPECIAL_CNIG_2,
588 	AEU_INVERT_REG_SPECIAL_CNIG_3,
589 	AEU_INVERT_REG_SPECIAL_MAX,
590 };
591 
592 static struct aeu_invert_reg_bit
593 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
594 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
595 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
596 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
597 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
598 };
599 
600 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
601 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
602 {
603 	{
604 		{	/* After Invert 1 */
605 			{"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
606 		}
607 	},
608 
609 	{
610 		{	/* After Invert 2 */
611 			{"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
612 			{"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613 			{"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
614 			{"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
615 			{"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616 			{"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
617 			{"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
618 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
619 			{"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
620 		}
621 	},
622 
623 	{
624 		{	/* After Invert 3 */
625 			{"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
626 		}
627 	},
628 
629 	{
630 		{	/* After Invert 4 */
631 			{"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
632 			{"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
633 			{"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
634 			{"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
635 				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
636 			{"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
637 					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
638 			{"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
639 				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
640 			{"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
641 					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
642 			{"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
643 			{"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
644 			{"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
645 			{"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
646 			{"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
647 			{"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
648 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
649 			{"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
650 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
651 			{"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
652 			{"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
653 			{"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
654 		}
655 	},
656 
657 	{
658 		{	/* After Invert 5 */
659 			{"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
660 			{"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
661 			{"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
662 			{"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
663 			{"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
664 			{"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
665 			{"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
666 			{"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
667 			{"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
668 			{"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
669 			{"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
670 			{"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
671 			{"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
672 			{"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
673 			{"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
674 			{"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
675 		}
676 	},
677 
678 	{
679 		{	/* After Invert 6 */
680 			{"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
681 			{"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
682 			{"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
683 			{"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
684 			{"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
685 			{"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
686 			{"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
687 			{"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
688 			{"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
689 			{"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
690 			{"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
691 			{"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
692 			{"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
693 			{"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
694 			{"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
695 			{"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
696 		}
697 	},
698 
699 	{
700 		{	/* After Invert 7 */
701 			{"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
702 			{"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
703 			{"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
704 			{"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
705 			{"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
706 			{"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
707 			{"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
708 			{"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
709 			{"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
710 			{"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
711 			{"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
712 			{"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
713 			{"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
714 			{"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
715 			{"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
716 			{"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
717 			{"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
718 		}
719 	},
720 
721 	{
722 		{	/* After Invert 8 */
723 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
724 			{"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
725 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
726 			{"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
727 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
728 			{"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
729 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
730 			{"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
731 			{"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
732 			{"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
733 			{"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
734 			{"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
735 			{"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
736 			{"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
737 			{"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
738 			{"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
739 			{"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
740 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
741 			{"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
742 			{"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
743 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
744 		}
745 	},
746 
747 	{
748 		{	/* After Invert 9 */
749 			{"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
750 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
751 			{"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
752 			{"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
753 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
754 		}
755 	},
756 
757 };
758 
759 static struct aeu_invert_reg_bit *
760 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
761 			struct aeu_invert_reg_bit *p_bit)
762 {
763 	if (!ECORE_IS_BB(p_hwfn->p_dev))
764 		return p_bit;
765 
766 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
767 		return p_bit;
768 
769 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
770 				  ATTENTION_BB_SHIFT];
771 }
772 
773 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
774 				     struct aeu_invert_reg_bit *p_bit)
775 {
776 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
777 		  ATTENTION_PARITY);
778 }
779 
780 #define ATTN_STATE_BITS		(0xfff)
781 #define ATTN_BITS_MASKABLE	(0x3ff)
782 struct ecore_sb_attn_info {
783 	/* Virtual & Physical address of the SB */
784 	struct atten_status_block	*sb_attn;
785 	dma_addr_t			sb_phys;
786 
787 	/* Last seen running index */
788 	u16				index;
789 
790 	/* A mask of the AEU bits resulting in a parity error */
791 	u32				parity_mask[NUM_ATTN_REGS];
792 
793 	/* A pointer to the attention description structure */
794 	struct aeu_invert_reg		*p_aeu_desc;
795 
796 	/* Previously asserted attentions, which are still unasserted */
797 	u16				known_attn;
798 
799 	/* Cleanup address for the link's general hw attention */
800 	u32				mfw_attn_addr;
801 };
802 
803 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
804 				 struct ecore_sb_attn_info *p_sb_desc)
805 {
806 	u16 rc = 0, index;
807 
808 	OSAL_MMIOWB(p_hwfn->p_dev);
809 
810 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
811 	if (p_sb_desc->index != index) {
812 		p_sb_desc->index = index;
813 		rc = ECORE_SB_ATT_IDX;
814 	}
815 
816 	OSAL_MMIOWB(p_hwfn->p_dev);
817 
818 	return rc;
819 }
820 
821 /**
822  * @brief ecore_int_assertion - handles asserted attention bits
823  *
824  * @param p_hwfn
825  * @param asserted_bits newly asserted bits
826  * @return enum _ecore_status_t
827  */
828 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
829 						u16 asserted_bits)
830 {
831 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
832 	u32 igu_mask;
833 
834 	/* Mask the source of the attention in the IGU */
835 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
836 			    IGU_REG_ATTENTION_ENABLE);
837 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
838 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
839 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
840 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
841 
842 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
843 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
844 		   sb_attn_sw->known_attn,
845 		   sb_attn_sw->known_attn | asserted_bits);
846 	sb_attn_sw->known_attn |= asserted_bits;
847 
848 	/* Handle MCP events */
849 	if (asserted_bits & 0x100) {
850 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
851 		/* Clean the MCP attention */
852 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
853 			 sb_attn_sw->mfw_attn_addr, 0);
854 	}
855 
856 	/* FIXME - this will change once we'll have GOOD gtt definitions */
857 	DIRECT_REG_WR(p_hwfn,
858 		      (u8 OSAL_IOMEM*)p_hwfn->regview +
859 		      GTT_BAR0_MAP_REG_IGU_CMD +
860 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
861 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
862 
863 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
864 		   asserted_bits);
865 
866 	return ECORE_SUCCESS;
867 }
868 
869 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
870 				 enum block_id id, enum dbg_attn_type type,
871 				 bool b_clear)
872 {
873 	struct dbg_attn_block_result attn_results;
874 	enum dbg_status status;
875 
876 	OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
877 
878 	status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
879 				     b_clear, &attn_results);
880 #ifdef ATTN_DESC
881 	if (status != DBG_STATUS_OK)
882 		DP_NOTICE(p_hwfn, true,
883 			  "Failed to parse attention information [status: %s]\n",
884 			  ecore_dbg_get_status_str(status));
885 	else
886 		ecore_dbg_parse_attn(p_hwfn, &attn_results);
887 #else
888 	if (status != DBG_STATUS_OK)
889 		DP_NOTICE(p_hwfn, true,
890 			  "Failed to parse attention information [status: %d]\n",
891 			  status);
892 	else
893 		ecore_dbg_print_attn(p_hwfn, &attn_results);
894 #endif
895 }
896 
897 /**
898  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
899  * cause of the attention
900  *
901  * @param p_hwfn
902  * @param p_aeu - descriptor of an AEU bit which caused the attention
903  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
904  *  this bit to this group.
905  * @param bit_index - index of this bit in the aeu_en_reg
906  *
907  * @return enum _ecore_status_t
908  */
909 static enum _ecore_status_t
910 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
911 			      struct aeu_invert_reg_bit *p_aeu,
912 			      u32 aeu_en_reg,
913 			      const char *p_bit_name,
914 			      u32 bitmask)
915 {
916 	enum _ecore_status_t rc = ECORE_INVAL;
917 	bool b_fatal = false;
918 
919 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
920 		p_bit_name, bitmask);
921 
922 	/* Call callback before clearing the interrupt status */
923 	if (p_aeu->cb) {
924 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
925 			p_bit_name);
926 		rc = p_aeu->cb(p_hwfn);
927 	}
928 
929 	if (rc != ECORE_SUCCESS)
930 		b_fatal = true;
931 
932 	/* Print HW block interrupt registers */
933 	if (p_aeu->block_index != MAX_BLOCK_ID)
934 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
935 				     ATTN_TYPE_INTERRUPT, !b_fatal);
936 
937 	/* Reach assertion if attention is fatal */
938 	if (b_fatal) {
939 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
940 			  p_bit_name);
941 
942 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
943 	}
944 
945 	/* Prevent this Attention from being asserted in the future */
946 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
947 	    p_hwfn->p_dev->attn_clr_en) {
948 		u32 val;
949 		u32 mask = ~bitmask;
950 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
951 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
952 		DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
953 			p_bit_name);
954 	}
955 
956 	return rc;
957 }
958 
959 /**
960  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
961  *
962  * @param p_hwfn
963  * @param p_aeu - descriptor of an AEU bit which caused the parity
964  * @param aeu_en_reg - address of the AEU enable register
965  * @param bit_index
966  */
967 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
968 					 struct aeu_invert_reg_bit *p_aeu,
969 					 u32 aeu_en_reg, u8 bit_index)
970 {
971 	u32 block_id = p_aeu->block_index, mask, val;
972 
973 	DP_NOTICE(p_hwfn->p_dev, false,
974 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
975 		  p_aeu->bit_name, aeu_en_reg, bit_index);
976 
977 	if (block_id != MAX_BLOCK_ID) {
978 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
979 
980 		/* In A0, there's a single parity bit for several blocks */
981 		if (block_id == BLOCK_BTB) {
982 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
983 					     ATTN_TYPE_PARITY, false);
984 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
985 					     ATTN_TYPE_PARITY, false);
986 		}
987 	}
988 
989 	/* Prevent this parity error from being re-asserted */
990 	mask = ~(0x1 << bit_index);
991 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
992 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
993 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
994 		p_aeu->bit_name);
995 }
996 
997 /**
998  * @brief - handles deassertion of previously asserted attentions.
999  *
1000  * @param p_hwfn
1001  * @param deasserted_bits - newly deasserted bits
1002  * @return enum _ecore_status_t
1003  *
1004  */
1005 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1006 						  u16 deasserted_bits)
1007 {
1008 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1009 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1010 	u8 i, j, k, bit_idx;
1011 	enum _ecore_status_t rc = ECORE_SUCCESS;
1012 
1013 	/* Read the attention registers in the AEU */
1014 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1015 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1016 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1017 					  i * 0x4);
1018 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1019 			   "Deasserted bits [%d]: %08x\n",
1020 			   i, aeu_inv_arr[i]);
1021 	}
1022 
1023 	/* Handle parity attentions first */
1024 	for (i = 0; i < NUM_ATTN_REGS; i++)
1025 	{
1026 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1027 		u32 parities;
1028 
1029 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1030 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1031 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1032 
1033 		/* Skip register in which no parity bit is currently set */
1034 		if (!parities)
1035 			continue;
1036 
1037 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1038 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1039 
1040 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1041 			    !!(parities & (1 << bit_idx)))
1042 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1043 							     aeu_en, bit_idx);
1044 
1045 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1046 		}
1047 	}
1048 
1049 	/* Find non-parity cause for attention and act */
1050 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1051 		struct aeu_invert_reg_bit *p_aeu;
1052 
1053 		/* Handle only groups whose attention is currently deasserted */
1054 		if (!(deasserted_bits & (1 << k)))
1055 			continue;
1056 
1057 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1058 			u32 bits;
1059 
1060 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1061 				 i * sizeof(u32) +
1062 				 k * sizeof(u32) * NUM_ATTN_REGS;
1063 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1064 			bits = aeu_inv_arr[i] & en;
1065 
1066 			/* Skip if no bit from this group is currently set */
1067 			if (!bits)
1068 				continue;
1069 
1070 			/* Find all set bits from current register which belong
1071 			 * to current group, making them responsible for the
1072 			 * previous assertion.
1073 			 */
1074 			for (j = 0, bit_idx = 0; bit_idx < 32; j++)
1075 			{
1076 				long unsigned int bitmask;
1077 				u8 bit, bit_len;
1078 
1079 				/* Need to account bits with changed meaning */
1080 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1081 				p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
1082 
1083 				bit = bit_idx;
1084 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1085 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1086 					/* Skip Parity */
1087 					bit++;
1088 					bit_len--;
1089 				}
1090 
1091 				/* Find the bits relating to HW-block, then
1092 				 * shift so they'll become LSB.
1093 				 */
1094 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1095 				bitmask >>= bit;
1096 
1097 				if (bitmask) {
1098 					u32 flags = p_aeu->flags;
1099 					char bit_name[30];
1100 					u8 num;
1101 
1102 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1103 								bit_len);
1104 
1105 					/* Some bits represent more than a
1106 					 * a single interrupt. Correctly print
1107 					 * their name.
1108 					 */
1109 					if (ATTENTION_LENGTH(flags) > 2 ||
1110 					    ((flags & ATTENTION_PAR_INT) &&
1111 					    ATTENTION_LENGTH(flags) > 1))
1112 						OSAL_SNPRINTF(bit_name, 30,
1113 							      p_aeu->bit_name,
1114 							      num);
1115 					else
1116 						OSAL_STRNCPY(bit_name,
1117 							     p_aeu->bit_name,
1118 							     30);
1119 
1120 					/* We now need to pass bitmask in its
1121 					 * correct position.
1122 					 */
1123 					bitmask <<= bit;
1124 
1125 					/* Handle source of the attention */
1126 					ecore_int_deassertion_aeu_bit(p_hwfn,
1127 								      p_aeu,
1128 								      aeu_en,
1129 								      bit_name,
1130 								      bitmask);
1131 				}
1132 
1133 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1134 			}
1135 		}
1136 	}
1137 
1138 	/* Clear IGU indication for the deasserted bits */
1139 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1140 	DIRECT_REG_WR(p_hwfn,
1141 		      (u8 OSAL_IOMEM*)p_hwfn->regview +
1142 				      GTT_BAR0_MAP_REG_IGU_CMD +
1143 				      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1144 					IGU_CMD_INT_ACK_BASE) << 3),
1145 		      ~((u32)deasserted_bits));
1146 
1147 	/* Unmask deasserted attentions in IGU */
1148 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1149 			    IGU_REG_ATTENTION_ENABLE);
1150 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1151 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1152 
1153 	/* Clear deassertion from inner state */
1154 	sb_attn_sw->known_attn &= ~deasserted_bits;
1155 
1156 	return rc;
1157 }
1158 
1159 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1160 {
1161 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1162 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1163 	u16 index = 0, asserted_bits, deasserted_bits;
1164 	u32 attn_bits = 0, attn_acks = 0;
1165 	enum _ecore_status_t rc = ECORE_SUCCESS;
1166 
1167 	/* Read current attention bits/acks - safeguard against attentions
1168 	 * by guaranting work on a synchronized timeframe
1169 	 */
1170 	do {
1171 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1172 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1173 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1174 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1175 	p_sb_attn->sb_index = index;
1176 
1177 	/* Attention / Deassertion are meaningful (and in correct state)
1178 	 * only when they differ and consistent with known state - deassertion
1179 	 * when previous attention & current ack, and assertion when current
1180 	 * attention with no previous attention
1181 	 */
1182 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1183 			~p_sb_attn_sw->known_attn;
1184 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1185 			  p_sb_attn_sw->known_attn;
1186 
1187 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1188 		DP_INFO(p_hwfn,
1189 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1190 			index, attn_bits, attn_acks, asserted_bits,
1191 			deasserted_bits, p_sb_attn_sw->known_attn);
1192 	else if (asserted_bits == 0x100)
1193 		DP_INFO(p_hwfn,
1194 			"MFW indication via attention\n");
1195 	else
1196 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1197 			   "MFW indication [deassertion]\n");
1198 
1199 	if (asserted_bits) {
1200 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1201 		if (rc)
1202 			return rc;
1203 	}
1204 
1205 	if (deasserted_bits)
1206 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1207 
1208 	return rc;
1209 }
1210 
1211 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1212 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1213 {
1214 	struct igu_prod_cons_update igu_ack = { 0 };
1215 
1216 	igu_ack.sb_id_and_flags =
1217 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1218 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1219 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1220 		 (IGU_SEG_ACCESS_ATTN <<
1221 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1222 
1223 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1224 
1225 	/* Both segments (interrupts & acks) are written to same place address;
1226 	 * Need to guarantee all commands will be received (in-order) by HW.
1227 	 */
1228 	OSAL_MMIOWB(p_hwfn->p_dev);
1229 	OSAL_BARRIER(p_hwfn->p_dev);
1230 }
1231 
1232 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1233 {
1234 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1235 	struct ecore_pi_info *pi_info = OSAL_NULL;
1236 	struct ecore_sb_attn_info *sb_attn;
1237 	struct ecore_sb_info *sb_info;
1238 	int arr_size;
1239 	u16 rc = 0;
1240 
1241 	if (!p_hwfn)
1242 		return;
1243 
1244 	if (!p_hwfn->p_sp_sb) {
1245 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1246 		return;
1247 	}
1248 
1249 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1250 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1251 	if (!sb_info) {
1252 		DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1253 		return;
1254 	}
1255 
1256 	if (!p_hwfn->p_sb_attn) {
1257 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1258 		return;
1259 	}
1260 	sb_attn =  p_hwfn->p_sb_attn;
1261 
1262 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1263 		   p_hwfn, p_hwfn->my_id);
1264 
1265 	/* Disable ack for def status block. Required both for msix +
1266 	 * inta in non-mask mode, in inta does no harm.
1267 	 */
1268 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1269 
1270 	/* Gather Interrupts/Attentions information */
1271 	if (!sb_info->sb_virt) {
1272 		DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1273 	} else {
1274 		u32 tmp_index = sb_info->sb_ack;
1275 		rc = ecore_sb_update_sb_idx(sb_info);
1276 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1277 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1278 			   tmp_index, sb_info->sb_ack);
1279 	}
1280 
1281 	if (!sb_attn || !sb_attn->sb_attn) {
1282 		DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1283 	} else {
1284 		u16 tmp_index = sb_attn->index;
1285 
1286 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1287 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1288 			   "Attention indices: 0x%08x --> 0x%08x\n",
1289 			   tmp_index, sb_attn->index);
1290 	}
1291 
1292 	/* Check if we expect interrupts at this time. if not just ack them */
1293 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1294 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1295 		return;
1296 	}
1297 
1298 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1299 	if (!p_hwfn->p_dpc_ptt) {
1300 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1301 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1302 		return;
1303 	}
1304 
1305 	if (rc & ECORE_SB_ATT_IDX)
1306 		ecore_int_attentions(p_hwfn);
1307 
1308 	if (rc & ECORE_SB_IDX) {
1309 		int pi;
1310 
1311 		/* Since we only looked at the SB index, it's possible more
1312 		 * than a single protocol-index on the SB incremented.
1313 		 * Iterate over all configured protocol indices and check
1314 		 * whether something happened for each.
1315 		 */
1316 		for (pi = 0; pi < arr_size; pi++) {
1317 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1318 			if (pi_info->comp_cb != OSAL_NULL)
1319 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1320 		}
1321 	}
1322 
1323 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1324 		/* This should be done before the interrupts are enabled,
1325 		 * since otherwise a new attention will be generated.
1326 		 */
1327 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1328 	}
1329 
1330 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1331 }
1332 
1333 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1334 {
1335 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1336 
1337 	if (!p_sb)
1338 		return;
1339 
1340 	if (p_sb->sb_attn) {
1341 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1342 				       p_sb->sb_phys,
1343 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1344 	}
1345 
1346 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1347 	p_hwfn->p_sb_attn = OSAL_NULL;
1348 }
1349 
1350 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1351 				    struct ecore_ptt *p_ptt)
1352 {
1353 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1354 
1355 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1356 
1357 	sb_info->index = 0;
1358 	sb_info->known_attn = 0;
1359 
1360 	/* Configure Attention Status Block in IGU */
1361 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1362 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1363 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1364 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1365 }
1366 
1367 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1368 				   struct ecore_ptt *p_ptt,
1369 				   void *sb_virt_addr,
1370 				   dma_addr_t sb_phy_addr)
1371 {
1372 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1373 	int i, j, k;
1374 
1375 	sb_info->sb_attn = sb_virt_addr;
1376 	sb_info->sb_phys = sb_phy_addr;
1377 
1378 	/* Set the pointer to the AEU descriptors */
1379 	sb_info->p_aeu_desc = aeu_descs;
1380 
1381 	/* Calculate Parity Masks */
1382 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1383 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1384 		/* j is array index, k is bit index */
1385 		for (j = 0, k = 0; k < 32; j++) {
1386 			struct aeu_invert_reg_bit *p_aeu;
1387 
1388 			p_aeu = &aeu_descs[i].bits[j];
1389 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1390 				sb_info->parity_mask[i] |= 1 << k;
1391 
1392 			k += ATTENTION_LENGTH(p_aeu->flags);
1393 		}
1394 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1395 			   "Attn Mask [Reg %d]: 0x%08x\n",
1396 			   i, sb_info->parity_mask[i]);
1397 	}
1398 
1399 	/* Set the address of cleanup for the mcp attention */
1400 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1401 				 MISC_REG_AEU_GENERAL_ATTN_0;
1402 
1403 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1404 }
1405 
1406 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1407 						    struct ecore_ptt *p_ptt)
1408 {
1409 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1410 	struct ecore_sb_attn_info *p_sb;
1411 	dma_addr_t p_phys = 0;
1412 	void *p_virt;
1413 
1414 	/* SB struct */
1415 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1416 	if (!p_sb) {
1417 		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1418 		return ECORE_NOMEM;
1419 	}
1420 
1421 	/* SB ring  */
1422 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1423 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1424 	if (!p_virt) {
1425 		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1426 		OSAL_FREE(p_dev, p_sb);
1427 		return ECORE_NOMEM;
1428 	}
1429 
1430 	/* Attention setup */
1431 	p_hwfn->p_sb_attn = p_sb;
1432 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1433 
1434 	return ECORE_SUCCESS;
1435 }
1436 
1437 /* coalescing timeout = timeset << (timer_res + 1) */
1438 #define ECORE_CAU_DEF_RX_USECS 24
1439 #define ECORE_CAU_DEF_TX_USECS 48
1440 
1441 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1442 			     struct cau_sb_entry *p_sb_entry,
1443 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1444 {
1445 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1446 	u32 cau_state;
1447 	u8 timer_res;
1448 
1449 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1450 
1451 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1452 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1453 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1454 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1455 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1456 
1457 	cau_state = CAU_HC_DISABLE_STATE;
1458 
1459 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1460 		cau_state = CAU_HC_ENABLE_STATE;
1461 		if (!p_dev->rx_coalesce_usecs)
1462 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1463 		if (!p_dev->tx_coalesce_usecs)
1464 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1465 	}
1466 
1467 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1468 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1469 		timer_res = 0;
1470 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1471 		timer_res = 1;
1472 	else
1473 		timer_res = 2;
1474 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1475 
1476 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1477 		timer_res = 0;
1478 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1479 		timer_res = 1;
1480 	else
1481 		timer_res = 2;
1482 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1483 
1484 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1485 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1486 }
1487 
1488 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1489 				   struct ecore_ptt *p_ptt,
1490 				   u16 igu_sb_id, u32 pi_index,
1491 				   enum ecore_coalescing_fsm coalescing_fsm,
1492 				   u8 timeset)
1493 {
1494 	struct cau_pi_entry pi_entry;
1495 	u32 sb_offset, pi_offset;
1496 
1497 	if (IS_VF(p_hwfn->p_dev))
1498 		return;/* @@@TBD MichalK- VF CAU... */
1499 
1500 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1501 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1502 
1503 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1504 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1505 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1506 	else
1507 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1508 
1509 	pi_offset = sb_offset + pi_index;
1510 	if (p_hwfn->hw_init_done) {
1511 		ecore_wr(p_hwfn, p_ptt,
1512 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1513 			 *((u32 *)&(pi_entry)));
1514 	} else {
1515 		STORE_RT_REG(p_hwfn,
1516 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1517 			     *((u32 *)&(pi_entry)));
1518 	}
1519 }
1520 
1521 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1522 			   struct ecore_ptt *p_ptt,
1523 			   struct ecore_sb_info *p_sb, u32 pi_index,
1524 			   enum ecore_coalescing_fsm coalescing_fsm,
1525 			   u8 timeset)
1526 {
1527 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1528 			       pi_index, coalescing_fsm, timeset);
1529 }
1530 
1531 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1532 			   struct ecore_ptt *p_ptt,
1533 			   dma_addr_t sb_phys, u16 igu_sb_id,
1534 			   u16 vf_number, u8 vf_valid)
1535 {
1536 	struct cau_sb_entry sb_entry;
1537 
1538 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1539 				vf_number, vf_valid);
1540 
1541 	if (p_hwfn->hw_init_done) {
1542 		/* Wide-bus, initialize via DMAE */
1543 		u64 phys_addr = (u64)sb_phys;
1544 
1545 		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1546 				    CAU_REG_SB_ADDR_MEMORY +
1547 				    igu_sb_id * sizeof(u64), 2,
1548 				    OSAL_NULL /* default parameters */);
1549 		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1550 				    CAU_REG_SB_VAR_MEMORY +
1551 				    igu_sb_id * sizeof(u64), 2,
1552 				    OSAL_NULL /* default parameters */);
1553 	} else {
1554 		/* Initialize Status Block Address */
1555 		STORE_RT_REG_AGG(p_hwfn,
1556 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1557 				 sb_phys);
1558 
1559 		STORE_RT_REG_AGG(p_hwfn,
1560 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1561 				 sb_entry);
1562 	}
1563 
1564 	/* Configure pi coalescing if set */
1565 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1566 		/* eth will open queues for all tcs, so configure all of them
1567 		 * properly, rather than just the active ones
1568 		 */
1569 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1570 
1571 		u8 timeset, timer_res;
1572 		u8 i;
1573 
1574 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1575 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1576 			timer_res = 0;
1577 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1578 			timer_res = 1;
1579 		else
1580 			timer_res = 2;
1581 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1582 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1583 				       ECORE_COAL_RX_STATE_MACHINE,
1584 				       timeset);
1585 
1586 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1587 			timer_res = 0;
1588 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1589 			timer_res = 1;
1590 		else
1591 			timer_res = 2;
1592 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1593 		for (i = 0; i < num_tc; i++) {
1594 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1595 					       igu_sb_id, TX_PI(i),
1596 					       ECORE_COAL_TX_STATE_MACHINE,
1597 					       timeset);
1598 		}
1599 	}
1600 }
1601 
1602 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1603 			       struct ecore_ptt *p_ptt,
1604 			       struct ecore_sb_info *sb_info)
1605 {
1606 	/* zero status block and ack counter */
1607 	sb_info->sb_ack = 0;
1608 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1609 
1610 	if (IS_PF(p_hwfn->p_dev))
1611 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1612 				      sb_info->igu_sb_id, 0, 0);
1613 }
1614 
1615 struct ecore_igu_block *
1616 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1617 {
1618 	struct ecore_igu_block *p_block;
1619 	u16 igu_id;
1620 
1621 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1622 	     igu_id++) {
1623 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1624 
1625 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1626 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1627 			continue;
1628 
1629 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1630 		    b_is_pf)
1631 			return p_block;
1632 	}
1633 
1634 	return OSAL_NULL;
1635 }
1636 
1637 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1638 				  u16 vector_id)
1639 {
1640 	struct ecore_igu_block *p_block;
1641 	u16 igu_id;
1642 
1643 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1644 	     igu_id++) {
1645 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1646 
1647 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1648 		    !p_block->is_pf ||
1649 		    p_block->vector_number != vector_id)
1650 			continue;
1651 
1652 		return igu_id;
1653 	}
1654 
1655 	return ECORE_SB_INVALID_IDX;
1656 }
1657 
1658 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1659 {
1660 	u16 igu_sb_id;
1661 
1662 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1663 	if (sb_id == ECORE_SP_SB_ID)
1664 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1665 	else if (IS_PF(p_hwfn->p_dev))
1666 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1667 	else
1668 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1669 
1670 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1671 		DP_NOTICE(p_hwfn, true,
1672 			  "Slowpath SB vector %04x doesn't exist\n",
1673 			  sb_id);
1674 	else if (sb_id == ECORE_SP_SB_ID)
1675 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1676 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1677 	else
1678 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1679 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1680 
1681 	return igu_sb_id;
1682 }
1683 
1684 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1685 				       struct ecore_ptt *p_ptt,
1686 				       struct ecore_sb_info *sb_info,
1687 				       void *sb_virt_addr,
1688 				       dma_addr_t sb_phy_addr,
1689 				       u16 sb_id)
1690 {
1691 	sb_info->sb_virt = sb_virt_addr;
1692 	sb_info->sb_phys = sb_phy_addr;
1693 
1694 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1695 
1696 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1697 		return ECORE_INVAL;
1698 
1699 	/* Let the igu info reference the client's SB info */
1700 	if (sb_id != ECORE_SP_SB_ID) {
1701 		if (IS_PF(p_hwfn->p_dev)) {
1702 			struct ecore_igu_info *p_info;
1703 			struct ecore_igu_block *p_block;
1704 
1705 			p_info = p_hwfn->hw_info.p_igu_info;
1706 			p_block = &p_info->entry[sb_info->igu_sb_id];
1707 
1708 			p_block->sb_info = sb_info;
1709 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1710 			p_info->usage.free_cnt--;
1711 		} else {
1712 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1713 		}
1714 	}
1715 
1716 #ifdef ECORE_CONFIG_DIRECT_HWFN
1717 	sb_info->p_hwfn = p_hwfn;
1718 #endif
1719 	sb_info->p_dev = p_hwfn->p_dev;
1720 
1721 	/* The igu address will hold the absolute address that needs to be
1722 	 * written to for a specific status block
1723 	 */
1724 	if (IS_PF(p_hwfn->p_dev)) {
1725 		sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1726 				    GTT_BAR0_MAP_REG_IGU_CMD +
1727 				    (sb_info->igu_sb_id << 3);
1728 
1729 	} else {
1730 		sb_info->igu_addr =
1731 			(u8 OSAL_IOMEM*)p_hwfn->regview +
1732 			PXP_VF_BAR0_START_IGU +
1733 			((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1734 	}
1735 
1736 	sb_info->flags |= ECORE_SB_INFO_INIT;
1737 
1738 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1739 
1740 	return ECORE_SUCCESS;
1741 }
1742 
1743 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1744 					  struct ecore_sb_info *sb_info,
1745 					  u16 sb_id)
1746 {
1747 	struct ecore_igu_info *p_info;
1748 	struct ecore_igu_block *p_block;
1749 
1750 	if (sb_info == OSAL_NULL)
1751 		return ECORE_SUCCESS;
1752 
1753 	/* zero status block and ack counter */
1754 	sb_info->sb_ack = 0;
1755 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1756 
1757 	if (IS_VF(p_hwfn->p_dev)) {
1758 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1759 		return ECORE_SUCCESS;
1760 	}
1761 
1762 	p_info = p_hwfn->hw_info.p_igu_info;
1763 	p_block = &p_info->entry[sb_info->igu_sb_id];
1764 
1765 	/* Vector 0 is reserved to Default SB */
1766 	if (p_block->vector_number == 0) {
1767 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1768 		return ECORE_INVAL;
1769 	}
1770 
1771 	/* Lose reference to client's SB info, and fix counters */
1772 	p_block->sb_info = OSAL_NULL;
1773 	p_block->status |= ECORE_IGU_STATUS_FREE;
1774 	p_info->usage.free_cnt++;
1775 
1776 	return ECORE_SUCCESS;
1777 }
1778 
1779 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1780 {
1781 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1782 
1783 	if (!p_sb)
1784 		return;
1785 
1786 	if (p_sb->sb_info.sb_virt) {
1787 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1788 				       p_sb->sb_info.sb_virt,
1789 				       p_sb->sb_info.sb_phys,
1790 				       SB_ALIGNED_SIZE(p_hwfn));
1791 	}
1792 
1793 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1794 	p_hwfn->p_sp_sb = OSAL_NULL;
1795 }
1796 
1797 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1798 						  struct ecore_ptt *p_ptt)
1799 {
1800 	struct ecore_sb_sp_info *p_sb;
1801 	dma_addr_t p_phys = 0;
1802 	void *p_virt;
1803 
1804 	/* SB struct */
1805 	p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1806 	if (!p_sb) {
1807 		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1808 		return ECORE_NOMEM;
1809 	}
1810 
1811 	/* SB ring  */
1812 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1813 					 &p_phys,
1814 					 SB_ALIGNED_SIZE(p_hwfn));
1815 	if (!p_virt) {
1816 		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1817 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1818 		return ECORE_NOMEM;
1819 	}
1820 
1821 	/* Status Block setup */
1822 	p_hwfn->p_sp_sb = p_sb;
1823 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1824 			  p_virt, p_phys, ECORE_SP_SB_ID);
1825 
1826 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1827 
1828 	return ECORE_SUCCESS;
1829 }
1830 
1831 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1832 					   ecore_int_comp_cb_t comp_cb,
1833 					   void *cookie,
1834 					   u8 *sb_idx,
1835 					   __le16 **p_fw_cons)
1836 {
1837 	struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1838 	enum _ecore_status_t rc = ECORE_NOMEM;
1839 	u8 pi;
1840 
1841 	/* Look for a free index */
1842 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1843 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1844 			continue;
1845 
1846 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1847 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1848 		*sb_idx = pi;
1849 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1850 		rc = ECORE_SUCCESS;
1851 		break;
1852 	}
1853 
1854 	return rc;
1855 }
1856 
1857 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1858 					     u8 pi)
1859 {
1860 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1861 
1862 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1863 		return ECORE_NOMEM;
1864 
1865 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1866 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1867 
1868 	return ECORE_SUCCESS;
1869 }
1870 
1871 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1872 {
1873 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1874 }
1875 
1876 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1877 			      struct ecore_ptt	*p_ptt,
1878 			      enum ecore_int_mode int_mode)
1879 {
1880 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1881 
1882 #ifndef ASIC_ONLY
1883 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1884 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1885 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1886 	}
1887 #endif
1888 
1889 	p_hwfn->p_dev->int_mode = int_mode;
1890 	switch (p_hwfn->p_dev->int_mode) {
1891 	case ECORE_INT_MODE_INTA:
1892 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1893 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1894 		break;
1895 
1896 	case ECORE_INT_MODE_MSI:
1897 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1898 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1899 		break;
1900 
1901 	case ECORE_INT_MODE_MSIX:
1902 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1903 		break;
1904 	case ECORE_INT_MODE_POLL:
1905 		break;
1906 	}
1907 
1908 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1909 }
1910 
1911 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1912 				      struct ecore_ptt *p_ptt)
1913 {
1914 #ifndef ASIC_ONLY
1915 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1916 		DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1917 		return;
1918 	}
1919 #endif
1920 
1921 	/* Configure AEU signal change to produce attentions */
1922 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1923 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1924 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1925 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1926 
1927 	/* Flush the writes to IGU */
1928 	OSAL_MMIOWB(p_hwfn->p_dev);
1929 
1930 	/* Unmask AEU signals toward IGU */
1931 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1932 }
1933 
1934 enum _ecore_status_t
1935 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1936 			  enum ecore_int_mode int_mode)
1937 {
1938 	enum _ecore_status_t rc = ECORE_SUCCESS;
1939 
1940 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1941 
1942 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1943 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1944 		if (rc != ECORE_SUCCESS) {
1945 			DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1946 			return ECORE_NORESOURCES;
1947 		}
1948 		p_hwfn->b_int_requested = true;
1949 	}
1950 
1951 	/* Enable interrupt Generation */
1952 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1953 
1954 	p_hwfn->b_int_enabled = 1;
1955 
1956 	return rc;
1957 }
1958 
1959 void ecore_int_igu_disable_int(struct ecore_hwfn	*p_hwfn,
1960 			       struct ecore_ptt		*p_ptt)
1961 {
1962 	p_hwfn->b_int_enabled = 0;
1963 
1964 	if (IS_VF(p_hwfn->p_dev))
1965 		return;
1966 
1967 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1968 }
1969 
1970 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1971 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1972 				     struct ecore_ptt *p_ptt,
1973 				     u16 igu_sb_id,
1974 				     bool cleanup_set,
1975 				     u16 opaque_fid)
1976 {
1977 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1978 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1979 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1980 	u8  type = 0; /* FIXME MichalS type??? */
1981 
1982 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1983 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1984 
1985 	/* USE Control Command Register to perform cleanup. There is an
1986 	 * option to do this using IGU bar, but then it can't be used for VFs.
1987 	 */
1988 
1989 	/* Set the data field */
1990 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1991 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1992 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1993 
1994 	/* Set the control register */
1995 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1996 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1997 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1998 
1999 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2000 
2001 	OSAL_BARRIER(p_hwfn->p_dev);
2002 
2003 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2004 
2005 	/* Flush the write to IGU */
2006 	OSAL_MMIOWB(p_hwfn->p_dev);
2007 
2008 	/* calculate where to read the status bit from */
2009 	sb_bit = 1 << (igu_sb_id % 32);
2010 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2011 
2012 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2013 
2014 	/* Now wait for the command to complete */
2015 	while (--sleep_cnt) {
2016 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2017 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2018 			break;
2019 		OSAL_MSLEEP(5);
2020 	}
2021 
2022 	if (!sleep_cnt)
2023 		DP_NOTICE(p_hwfn, true,
2024 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2025 			  val, igu_sb_id);
2026 }
2027 
2028 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2029 				       struct ecore_ptt *p_ptt,
2030 				       u16 igu_sb_id, u16 opaque, bool b_set)
2031 {
2032 	struct ecore_igu_block *p_block;
2033 	int pi, i;
2034 
2035 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2036 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2037 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2038 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2039 		   p_block->vector_number);
2040 
2041 	/* Set */
2042 	if (b_set)
2043 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2044 
2045 	/* Clear */
2046 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2047 
2048 	/* Wait for the IGU SB to cleanup */
2049 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2050 		u32 val;
2051 
2052 		val = ecore_rd(p_hwfn, p_ptt,
2053 			       IGU_REG_WRITE_DONE_PENDING +
2054 			       ((igu_sb_id / 32) * 4));
2055 		if (val & (1 << (igu_sb_id % 32)))
2056 			OSAL_UDELAY(10);
2057 		else
2058 			break;
2059 	}
2060 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2061 		DP_NOTICE(p_hwfn, true,
2062 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2063 			  igu_sb_id);
2064 
2065 	/* Clear the CAU for the SB */
2066 	for (pi = 0; pi < 12; pi++)
2067 		ecore_wr(p_hwfn, p_ptt,
2068 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2069 }
2070 
2071 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2072 				 struct ecore_ptt *p_ptt,
2073 				 bool b_set,
2074 				 bool b_slowpath)
2075 {
2076 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2077 	struct ecore_igu_block *p_block;
2078 	u16 igu_sb_id = 0;
2079 	u32 val = 0;
2080 
2081 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2082 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2083 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2084 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2085 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2086 	/* end temporary */
2087 
2088 	for (igu_sb_id = 0;
2089 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2090 	     igu_sb_id++) {
2091 		p_block = &p_info->entry[igu_sb_id];
2092 
2093 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2094 		    !p_block->is_pf ||
2095 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2096 			continue;
2097 
2098 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2099 						  p_hwfn->hw_info.opaque_fid,
2100 						  b_set);
2101 	}
2102 
2103 	if (b_slowpath)
2104 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2105 						  p_info->igu_dsb_id,
2106 						  p_hwfn->hw_info.opaque_fid,
2107 						  b_set);
2108 }
2109 
2110 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2111 			    struct ecore_ptt *p_ptt)
2112 {
2113 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2114 	struct ecore_igu_block *p_block;
2115 	int pf_sbs, vf_sbs;
2116 	u16 igu_sb_id;
2117 	u32 val, rval;
2118 
2119 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2120 		/* We're using an old MFW - have to prevent any switching
2121 		 * of SBs between PF and VFs as later driver wouldn't be
2122 		 * able to tell which belongs to which.
2123 		 */
2124 		p_info->b_allow_pf_vf_change = false;
2125 	} else {
2126 		/* Use the numbers the MFW have provided -
2127 		 * don't forget MFW accounts for the default SB as well.
2128 		 */
2129 		p_info->b_allow_pf_vf_change = true;
2130 
2131 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2132 			DP_INFO(p_hwfn,
2133 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2134 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2135 				p_info->usage.cnt);
2136 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2137 		}
2138 
2139 		/* TODO - how do we learn about VF SBs from MFW? */
2140 		if (IS_PF_SRIOV(p_hwfn)) {
2141 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2142 
2143 			if (vfs != p_info->usage.iov_cnt)
2144 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2145 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2146 					   p_info->usage.iov_cnt, vfs);
2147 
2148 			/* At this point we know how many SBs we have totally
2149 			 * in IGU + number of PF SBs. So we can validate that
2150 			 * we'd have sufficient for VF.
2151 			 */
2152 			if (vfs > p_info->usage.free_cnt +
2153 				  p_info->usage.free_cnt_iov -
2154 				  p_info->usage.cnt) {
2155 				DP_NOTICE(p_hwfn, true,
2156 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2157 					  p_info->usage.free_cnt +
2158 					  p_info->usage.free_cnt_iov,
2159 					  p_info->usage.cnt, vfs);
2160 				return ECORE_INVAL;
2161 			}
2162 		}
2163 	}
2164 
2165 	/* Cap the number of VFs SBs by the number of VFs */
2166 	if (IS_PF_SRIOV(p_hwfn))
2167 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2168 
2169 	/* Mark all SBs as free, now in the right PF/VFs division */
2170 	p_info->usage.free_cnt = p_info->usage.cnt;
2171 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2172 	p_info->usage.orig = p_info->usage.cnt;
2173 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2174 
2175 	/* We now proceed to re-configure the IGU cam to reflect the initial
2176 	 * configuration. We can start with the Default SB.
2177 	 */
2178 	pf_sbs = p_info->usage.cnt;
2179 	vf_sbs = p_info->usage.iov_cnt;
2180 
2181 	for (igu_sb_id = p_info->igu_dsb_id;
2182 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2183 	     igu_sb_id++) {
2184 		p_block = &p_info->entry[igu_sb_id];
2185 		val = 0;
2186 
2187 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2188 			continue;
2189 
2190 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2191 			p_block->function_id = p_hwfn->rel_pf_id;
2192 			p_block->is_pf = 1;
2193 			p_block->vector_number = 0;
2194 			p_block->status = ECORE_IGU_STATUS_VALID |
2195 					  ECORE_IGU_STATUS_PF |
2196 					  ECORE_IGU_STATUS_DSB;
2197 		} else if (pf_sbs) {
2198 			pf_sbs--;
2199 			p_block->function_id = p_hwfn->rel_pf_id;
2200 			p_block->is_pf = 1;
2201 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2202 			p_block->status = ECORE_IGU_STATUS_VALID |
2203 					  ECORE_IGU_STATUS_PF |
2204 					  ECORE_IGU_STATUS_FREE;
2205 		} else if (vf_sbs) {
2206 			p_block->function_id =
2207 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2208 				p_info->usage.iov_cnt - vf_sbs;
2209 			p_block->is_pf = 0;
2210 			p_block->vector_number = 0;
2211 			p_block->status = ECORE_IGU_STATUS_VALID |
2212 					  ECORE_IGU_STATUS_FREE;
2213 			vf_sbs--;
2214 		} else {
2215 			p_block->function_id = 0;
2216 			p_block->is_pf = 0;
2217 			p_block->vector_number = 0;
2218 		}
2219 
2220 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2221 			  p_block->function_id);
2222 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2223 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2224 			  p_block->vector_number);
2225 
2226 		/* VF entries would be enabled when VF is initializaed */
2227 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2228 
2229 		rval = ecore_rd(p_hwfn, p_ptt,
2230 				IGU_REG_MAPPING_MEMORY +
2231 				sizeof(u32) * igu_sb_id);
2232 
2233 		if (rval != val) {
2234 			ecore_wr(p_hwfn, p_ptt,
2235 				 IGU_REG_MAPPING_MEMORY +
2236 				 sizeof(u32) * igu_sb_id,
2237 				 val);
2238 
2239 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2240 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2241 				   igu_sb_id, p_block->function_id,
2242 				   p_block->is_pf, p_block->vector_number,
2243 				   rval, val);
2244 		}
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2251 				    struct ecore_ptt *p_ptt)
2252 {
2253 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2254 
2255 	/* Return all the usage indications to default prior to the reset;
2256 	 * The reset expects the !orig to reflect the initial status of the
2257 	 * SBs, and would re-calculate the originals based on those.
2258 	 */
2259 	p_cnt->cnt = p_cnt->orig;
2260 	p_cnt->free_cnt = p_cnt->orig;
2261 	p_cnt->iov_cnt = p_cnt->iov_orig;
2262 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2263 	p_cnt->orig = 0;
2264 	p_cnt->iov_orig = 0;
2265 
2266 	/* TODO - we probably need to re-configure the CAU as well... */
2267 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2268 }
2269 
2270 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2271 					 struct ecore_ptt *p_ptt,
2272 					 u16 igu_sb_id)
2273 {
2274 	u32 val = ecore_rd(p_hwfn, p_ptt,
2275 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2276 	struct ecore_igu_block *p_block;
2277 
2278 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2279 
2280 	/* Fill the block information */
2281 	p_block->function_id = GET_FIELD(val,
2282 					 IGU_MAPPING_LINE_FUNCTION_NUMBER);
2283 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2284 	p_block->vector_number = GET_FIELD(val,
2285 					   IGU_MAPPING_LINE_VECTOR_NUMBER);
2286 	p_block->igu_sb_id = igu_sb_id;
2287 }
2288 
2289 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2290 					    struct ecore_ptt *p_ptt)
2291 {
2292 	struct ecore_igu_info *p_igu_info;
2293 	struct ecore_igu_block *p_block;
2294 	u32 min_vf = 0, max_vf = 0;
2295 	u16 igu_sb_id;
2296 
2297 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2298 						 GFP_KERNEL,
2299 						 sizeof(*p_igu_info));
2300 	if (!p_hwfn->hw_info.p_igu_info)
2301 		return ECORE_NOMEM;
2302 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2303 
2304 	/* Distinguish between existent and onn-existent default SB */
2305 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2306 
2307 	/* Find the range of VF ids whose SB belong to this PF */
2308 	if (p_hwfn->p_dev->p_iov_info) {
2309 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2310 
2311 		min_vf = p_iov->first_vf_in_pf;
2312 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2313 	}
2314 
2315 	for (igu_sb_id = 0;
2316 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2317 	     igu_sb_id++) {
2318 		/* Read current entry; Notice it might not belong to this PF */
2319 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2320 		p_block = &p_igu_info->entry[igu_sb_id];
2321 
2322 		if ((p_block->is_pf) &&
2323 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2324 			p_block->status = ECORE_IGU_STATUS_PF |
2325 					  ECORE_IGU_STATUS_VALID |
2326 					  ECORE_IGU_STATUS_FREE;
2327 
2328 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2329 				p_igu_info->usage.cnt++;
2330 		} else if (!(p_block->is_pf) &&
2331 			   (p_block->function_id >= min_vf) &&
2332 			   (p_block->function_id < max_vf)) {
2333 			/* Available for VFs of this PF */
2334 			p_block->status = ECORE_IGU_STATUS_VALID |
2335 					  ECORE_IGU_STATUS_FREE;
2336 
2337 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2338 				p_igu_info->usage.iov_cnt++;
2339 		}
2340 
2341 		/* Mark the First entry belonging to the PF or its VFs
2342 		 * as the default SB [we'll reset IGU prior to first usage].
2343 		 */
2344 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2345 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2346 			p_igu_info->igu_dsb_id = igu_sb_id;
2347 			p_block->status |= ECORE_IGU_STATUS_DSB;
2348 		}
2349 
2350 		/* While this isn't suitable for all clients, limit number
2351 		 * of prints by having each PF print only its entries with the
2352 		 * exception of PF0 which would print everything.
2353 		 */
2354 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2355 		    (p_hwfn->abs_pf_id == 0))
2356 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2357 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2358 				   igu_sb_id, p_block->function_id,
2359 				   p_block->is_pf, p_block->vector_number);
2360 	}
2361 
2362 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2363 		DP_NOTICE(p_hwfn, true,
2364 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2365 			  p_igu_info->igu_dsb_id);
2366 		return ECORE_INVAL;
2367 	}
2368 
2369 	/* All non default SB are considered free at this point */
2370 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2371 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2372 
2373 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2374 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2375 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2376 		   p_igu_info->usage.iov_cnt);
2377 
2378 	return ECORE_SUCCESS;
2379 }
2380 
2381 enum _ecore_status_t
2382 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2383 			  u16 sb_id, bool b_to_vf)
2384 {
2385 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2386 	struct ecore_igu_block *p_block = OSAL_NULL;
2387 	u16 igu_sb_id = 0, vf_num = 0;
2388 	u32 val = 0;
2389 
2390 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2391 		return ECORE_INVAL;
2392 
2393 	if (sb_id == ECORE_SP_SB_ID)
2394 		return ECORE_INVAL;
2395 
2396 	if (!p_info->b_allow_pf_vf_change) {
2397 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2398 		return ECORE_INVAL;
2399 	}
2400 
2401 	/* If we're moving a SB from PF to VF, the client had to specify
2402 	 * which vector it wants to move.
2403 	 */
2404 	if (b_to_vf) {
2405 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2406 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2407 			return ECORE_INVAL;
2408 	}
2409 
2410 	/* If we're moving a SB from VF to PF, need to validate there isn't
2411 	 * already a line configured for that vector.
2412 	 */
2413 	if (!b_to_vf) {
2414 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2415 		    ECORE_SB_INVALID_IDX)
2416 			return ECORE_INVAL;
2417 	}
2418 
2419 	/* We need to validate that the SB can actually be relocated.
2420 	 * This would also handle the previous case where we've explicitly
2421 	 * stated which IGU SB needs to move.
2422 	 */
2423 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2424 	     igu_sb_id++) {
2425 		p_block = &p_info->entry[igu_sb_id];
2426 
2427 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2428 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2429 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2430 			if (b_to_vf)
2431 				return ECORE_INVAL;
2432 			else
2433 				continue;
2434 		}
2435 
2436 		break;
2437 	}
2438 
2439 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2440 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2441 			   "Failed to find a free SB to move\n");
2442 		return ECORE_INVAL;
2443 	}
2444 
2445 	if (p_block == OSAL_NULL) {
2446 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2447 			   "SB address (p_block) is NULL\n");
2448 		return ECORE_INVAL;
2449 	}
2450 
2451 	/* At this point, p_block points to the SB we want to relocate */
2452 	if (b_to_vf) {
2453 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2454 
2455 		/* It doesn't matter which VF number we choose, since we're
2456 		 * going to disable the line; But let's keep it in range.
2457 		 */
2458 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2459 
2460 		p_block->function_id = (u8)vf_num;
2461 		p_block->is_pf = 0;
2462 		p_block->vector_number = 0;
2463 
2464 		p_info->usage.cnt--;
2465 		p_info->usage.free_cnt--;
2466 		p_info->usage.iov_cnt++;
2467 		p_info->usage.free_cnt_iov++;
2468 
2469 		/* TODO - if SBs aren't really the limiting factor,
2470 		 * then it might not be accurate [in the since that
2471 		 * we might not need decrement the feature].
2472 		 */
2473 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2474 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2475 	} else {
2476 		p_block->status |= ECORE_IGU_STATUS_PF;
2477 		p_block->function_id = p_hwfn->rel_pf_id;
2478 		p_block->is_pf = 1;
2479 		p_block->vector_number = sb_id + 1;
2480 
2481 		p_info->usage.cnt++;
2482 		p_info->usage.free_cnt++;
2483 		p_info->usage.iov_cnt--;
2484 		p_info->usage.free_cnt_iov--;
2485 
2486 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2487 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2488 	}
2489 
2490 	/* Update the IGU and CAU with the new configuration */
2491 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2492 		  p_block->function_id);
2493 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2494 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2495 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2496 		  p_block->vector_number);
2497 
2498 	ecore_wr(p_hwfn, p_ptt,
2499 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2500 		 val);
2501 
2502 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2503 			      igu_sb_id, vf_num,
2504 			      p_block->is_pf ? 0 : 1);
2505 
2506 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2507 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2508 		   igu_sb_id, p_block->function_id,
2509 		   p_block->is_pf, p_block->vector_number);
2510 
2511 	return ECORE_SUCCESS;
2512 }
2513 
2514 /**
2515  * @brief Initialize igu runtime registers
2516  *
2517  * @param p_hwfn
2518  */
2519 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2520 {
2521 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2522 
2523 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2524 }
2525 
2526 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2527 			  IGU_CMD_INT_ACK_BASE)
2528 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2529 			  IGU_CMD_INT_ACK_BASE)
2530 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2531 {
2532 	u32 intr_status_hi = 0, intr_status_lo = 0;
2533 	u64 intr_status = 0;
2534 
2535 	intr_status_lo = REG_RD(p_hwfn,
2536 				GTT_BAR0_MAP_REG_IGU_CMD +
2537 				LSB_IGU_CMD_ADDR * 8);
2538 	intr_status_hi = REG_RD(p_hwfn,
2539 				GTT_BAR0_MAP_REG_IGU_CMD +
2540 				MSB_IGU_CMD_ADDR * 8);
2541 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2542 
2543 	return intr_status;
2544 }
2545 
2546 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2547 {
2548 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2549 	p_hwfn->b_sp_dpc_enabled = true;
2550 }
2551 
2552 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2553 {
2554 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2555 	if (!p_hwfn->sp_dpc)
2556 		return ECORE_NOMEM;
2557 
2558 	return ECORE_SUCCESS;
2559 }
2560 
2561 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2562 {
2563 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2564 	p_hwfn->sp_dpc = OSAL_NULL;
2565 }
2566 
2567 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2568 				     struct ecore_ptt *p_ptt)
2569 {
2570 	enum _ecore_status_t rc = ECORE_SUCCESS;
2571 
2572 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2573 	if (rc != ECORE_SUCCESS) {
2574 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2575 		return rc;
2576 	}
2577 
2578 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2579 	if (rc != ECORE_SUCCESS) {
2580 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2581 		return rc;
2582 	}
2583 
2584 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2585 	if (rc != ECORE_SUCCESS)
2586 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2587 
2588 	return rc;
2589 }
2590 
2591 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2592 {
2593 	ecore_int_sp_sb_free(p_hwfn);
2594 	ecore_int_sb_attn_free(p_hwfn);
2595 	ecore_int_sp_dpc_free(p_hwfn);
2596 }
2597 
2598 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2599 {
2600 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2601 		return;
2602 
2603 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2604 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2605 	ecore_int_sp_dpc_setup(p_hwfn);
2606 }
2607 
2608 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2609 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2610 {
2611 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2612 
2613 	if (!p_igu_info || !p_sb_cnt_info)
2614 		return;
2615 
2616 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2617 		    sizeof(*p_sb_cnt_info));
2618 }
2619 
2620 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2621 {
2622 	int i;
2623 
2624 	for_each_hwfn(p_dev, i)
2625 		p_dev->hwfns[i].b_int_requested = false;
2626 }
2627 
2628 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2629 {
2630 	p_dev->attn_clr_en = clr_enable;
2631 }
2632 
2633 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2634 					     struct ecore_ptt *p_ptt,
2635 					     u8 timer_res, u16 sb_id, bool tx)
2636 {
2637 	struct cau_sb_entry sb_entry;
2638 	enum _ecore_status_t rc;
2639 
2640 	if (!p_hwfn->hw_init_done) {
2641 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2642 		return ECORE_INVAL;
2643 	}
2644 
2645 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2646 				 sb_id * sizeof(u64),
2647 				 (u64)(osal_uintptr_t)&sb_entry, 2,
2648 				 OSAL_NULL /* default parameters */);
2649 	if (rc != ECORE_SUCCESS) {
2650 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2651 		return rc;
2652 	}
2653 
2654 	if (tx)
2655 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2656 	else
2657 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2658 
2659 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2660 				 (u64)(osal_uintptr_t)&sb_entry,
2661 				 CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2662 				 OSAL_NULL /* default parameters */);
2663 	if (rc != ECORE_SUCCESS) {
2664 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2665 		return rc;
2666 	}
2667 
2668 	return rc;
2669 }
2670 
2671 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2672 					  struct ecore_ptt *p_ptt,
2673 					  struct ecore_sb_info *p_sb,
2674 					  struct ecore_sb_info_dbg *p_info)
2675 {
2676 	u16 sbid = p_sb->igu_sb_id;
2677 	int i;
2678 
2679 	if (IS_VF(p_hwfn->p_dev))
2680 		return ECORE_INVAL;
2681 
2682 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2683 		return ECORE_INVAL;
2684 
2685 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2686 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2687 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2688 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2689 
2690 	for (i = 0; i < PIS_PER_SB_E4; i++)
2691 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2692 					      CAU_REG_PI_MEMORY +
2693 					      sbid * 4 * PIS_PER_SB_E4 + i * 4);
2694 
2695 	return ECORE_SUCCESS;
2696 }
2697