xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_int.c (revision 2008043f386721d58158e37e0d7e50df8095942d)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * File : ecore_int.c
29  */
30 #include <sys/cdefs.h>
31 #include "bcm_osal.h"
32 #include "ecore.h"
33 #include "ecore_spq.h"
34 #include "reg_addr.h"
35 #include "ecore_gtt_reg_addr.h"
36 #include "ecore_init_ops.h"
37 #include "ecore_rt_defs.h"
38 #include "ecore_int.h"
39 #include "reg_addr.h"
40 #include "ecore_hw.h"
41 #include "ecore_sriov.h"
42 #include "ecore_vf.h"
43 #include "ecore_hw_defs.h"
44 #include "ecore_hsi_common.h"
45 #include "ecore_mcp.h"
46 #include "ecore_dbg_fw_funcs.h"
47 
48 #ifdef DIAG
49 /* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
50  * and so the functions are lacking ecore prefix.
51  * If there would be other clients needing this [or if the content that isn't
52  * really optional there would increase], we'll need to re-think this.
53  */
54 enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
55 							  struct ecore_ptt *ptt,
56 							  enum block_id block,
57 							  enum dbg_attn_type attn_type,
58 							  bool clear_status,
59 							  struct dbg_attn_block_result *results);
60 
61 enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
62 							   struct dbg_attn_block_result *results);
63 
64 const char* dbg_get_status_str(enum dbg_status status);
65 
66 #define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
67 	dbg_read_attn(hwfn, ptt, id, type, clear, results)
68 #define ecore_dbg_parse_attn(hwfn, results) \
69 	dbg_parse_attn(hwfn, results)
70 #define ecore_dbg_get_status_str(status) \
71 	dbg_get_status_str(status)
72 #endif
73 
74 struct ecore_pi_info {
75 	ecore_int_comp_cb_t comp_cb;
76 	void *cookie; /* Will be sent to the completion callback function */
77 };
78 
79 struct ecore_sb_sp_info {
80 	struct ecore_sb_info sb_info;
81 	/* per protocol index data */
82 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
83 };
84 
85 enum ecore_attention_type {
86 	ECORE_ATTN_TYPE_ATTN,
87 	ECORE_ATTN_TYPE_PARITY,
88 };
89 
90 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
91 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
92 
93 struct aeu_invert_reg_bit {
94 	char bit_name[30];
95 
96 #define ATTENTION_PARITY		(1 << 0)
97 
98 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
99 #define ATTENTION_LENGTH_SHIFT		(4)
100 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
101 					 ATTENTION_LENGTH_SHIFT)
102 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
103 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
104 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
105 					 ATTENTION_PARITY)
106 
107 /* Multiple bits start with this offset */
108 #define ATTENTION_OFFSET_MASK		(0x000ff000)
109 #define ATTENTION_OFFSET_SHIFT		(12)
110 
111 #define ATTENTION_BB_MASK		(0x00700000)
112 #define ATTENTION_BB_SHIFT		(20)
113 #define ATTENTION_BB(value)		(value << ATTENTION_BB_SHIFT)
114 #define ATTENTION_BB_DIFFERENT		(1 << 23)
115 
116 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
117 	unsigned int flags;
118 
119 	/* Callback to call if attention will be triggered */
120 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
121 
122 	enum block_id block_index;
123 };
124 
125 struct aeu_invert_reg {
126 	struct aeu_invert_reg_bit bits[32];
127 };
128 
129 #define MAX_ATTN_GRPS		(8)
130 #define NUM_ATTN_REGS		(9)
131 
132 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
133 {
134 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
135 
136 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
137 		tmp);
138 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
139 		 0xffffffff);
140 
141 	return ECORE_SUCCESS;
142 }
143 
144 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
145 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
146 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
147 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
148 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
149 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
150 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
151 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
152 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
153 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
154 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
155 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
156 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK 	(0x1)
157 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
158 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
159 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
160 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
161 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
162 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
163 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
164 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
165 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
166 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
167 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
168 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
169 {
170 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
171 
172 	/* Disabled VF access */
173 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
174 		u32 addr, data;
175 
176 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
177 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
178 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
179 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
180 		DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
181 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
182 			     ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
183 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
184 			     ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
185 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
186 			     ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
187 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
188 			     ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
189 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
190 			     ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
191 			addr);
192 	}
193 
194 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
195 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
196 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
197 		u32 addr, data, length;
198 
199 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
200 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
201 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
202 				PSWHST_REG_INCORRECT_ACCESS_DATA);
203 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
204 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
205 
206 		DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
207 			addr, length,
208 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
209 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
210 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
211 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
212 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
213 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
214 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
215 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
216 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
217 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
218 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
219 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
220 			data);
221 	}
222 
223 	/* TODO - We know 'some' of these are legal due to virtualization,
224 	 * but is it true for all of them?
225 	 */
226 	return ECORE_SUCCESS;
227 }
228 
229 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
230 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
231 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
232 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
233 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
234 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
235 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
236 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
237 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
238 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
239 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
240 static const char* grc_timeout_attn_master_to_str(u8 master)
241 {
242 	switch(master) {
243 	case 1: return "PXP";
244 	case 2: return "MCP";
245 	case 3: return "MSDM";
246 	case 4: return "PSDM";
247 	case 5: return "YSDM";
248 	case 6: return "USDM";
249 	case 7: return "TSDM";
250 	case 8: return "XSDM";
251 	case 9: return "DBU";
252 	case 10: return "DMAE";
253 	default:
254 		return "Unkown";
255 	}
256 }
257 
258 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
259 {
260 	u32 tmp, tmp2;
261 
262 	/* We've already cleared the timeout interrupt register, so we learn
263 	 * of interrupts via the validity register
264 	 */
265 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
266 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
267 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
268 		goto out;
269 
270 	/* Read the GRC timeout information */
271 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
273 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
274 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
275 
276 	DP_NOTICE(p_hwfn->p_dev, false,
277 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
278 		  tmp2, tmp,
279 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
280 						       : "Read from",
281 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
282 		  grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
283 						 ECORE_GRC_ATTENTION_MASTER_SHIFT),
284 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
285 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
286 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
287 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
288 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
289 		  ECORE_GRC_ATTENTION_VF_SHIFT);
290 
291 out:
292 	/* Regardles of anything else, clean the validity bit */
293 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
294 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
295 	return ECORE_SUCCESS;
296 }
297 
298 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
299 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
300 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
301 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
302 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
303 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
304 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
305 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
306 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
307 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
308 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
309 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
310 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
311 
312 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
313 						   struct ecore_ptt *p_ptt)
314 {
315 	u32 tmp;
316 
317 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
318 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
319 		u32 addr_lo, addr_hi, details;
320 
321 		addr_lo = ecore_rd(p_hwfn, p_ptt,
322 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
323 		addr_hi = ecore_rd(p_hwfn, p_ptt,
324 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
325 		details = ecore_rd(p_hwfn, p_ptt,
326 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
327 
328 		DP_NOTICE(p_hwfn, false,
329 			  "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
330 			  addr_hi, addr_lo, details,
331 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
332 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
333 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
334 			  tmp,
335 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
336 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
337 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
338 	}
339 
340 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
341 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
342 		u32 addr_lo, addr_hi, details;
343 
344 		addr_lo = ecore_rd(p_hwfn, p_ptt,
345 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
346 		addr_hi = ecore_rd(p_hwfn, p_ptt,
347 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
348 		details = ecore_rd(p_hwfn, p_ptt,
349 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
350 
351 		DP_NOTICE(p_hwfn, false,
352 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
353 			  addr_hi, addr_lo, details,
354 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
355 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
356 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
357 			  tmp,
358 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
359 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
360 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
361 	}
362 
363 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
364 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
365 		DP_NOTICE(p_hwfn, false, "ICPL error - %08x\n", tmp);
366 
367 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
368 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
369 		u32 addr_hi, addr_lo;
370 
371 		addr_lo = ecore_rd(p_hwfn, p_ptt,
372 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
373 		addr_hi = ecore_rd(p_hwfn, p_ptt,
374 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
375 
376 		DP_NOTICE(p_hwfn, false,
377 			  "ICPL error - %08x [Address %08x:%08x]\n",
378 			  tmp, addr_hi, addr_lo);
379 	}
380 
381 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
382 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
383 		u32 addr_hi, addr_lo, details;
384 
385 		addr_lo = ecore_rd(p_hwfn, p_ptt,
386 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
387 		addr_hi = ecore_rd(p_hwfn, p_ptt,
388 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
389 		details = ecore_rd(p_hwfn, p_ptt,
390 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
391 
392 		DP_NOTICE(p_hwfn, false,
393 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
394 			  details, tmp, addr_hi, addr_lo);
395 	}
396 
397 	/* Clear the indications */
398 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
399 
400 	return ECORE_SUCCESS;
401 }
402 
403 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
404 {
405 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
406 }
407 
408 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
409 {
410 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
411 
412 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
413 
414 	return ECORE_INVAL;
415 }
416 
417 static enum _ecore_status_t
418 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
419 {
420 	DP_INFO(p_hwfn, "General attention 35!\n");
421 
422 	return ECORE_SUCCESS;
423 }
424 
425 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
426 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
427 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
428 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
429 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
430 
431 #define ECORE_DB_REC_COUNT			10
432 #define ECORE_DB_REC_INTERVAL			100
433 
434 /* assumes sticky overflow indication was set for this PF */
435 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
436 					      struct ecore_ptt *p_ptt)
437 {
438 	u8 count = ECORE_DB_REC_COUNT;
439 	u32 usage = 1;
440 
441 	/* wait for usage to zero or count to run out. This is necessary since
442 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
443 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
444 	 * half an EDPM in the queue and other half dropped. Another EDPM
445 	 * doorbell to the same address (from doorbell recovery mechanism or
446 	 * from the doorbelling entity) could have first half dropped and second
447 	 * half interperted as continuation of the first. To prevent such
448 	 * malformed doorbells from reaching the device, flush the queue before
449 	 * releaseing the overflow sticky indication.
450 	 */
451 	while (count-- && usage) {
452 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
453 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
454 	}
455 
456 	/* should have been depleted by now */
457 	if (usage) {
458 		DP_NOTICE(p_hwfn->p_dev, false,
459 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
460 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
461 		return ECORE_TIMEOUT;
462 	}
463 
464 	/* flush any pending (e)dpm as they may never arrive */
465 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
466 
467 	/* release overflow sticky indication (stop silently dropping everything) */
468 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
469 
470 	/* repeat all last doorbells (doorbell drop recovery) */
471 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
472 
473 	return ECORE_SUCCESS;
474 }
475 
476 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
477 {
478 	u32 int_sts, first_drop_reason, details, address, overflow,
479 		all_drops_reason;
480 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
481 	enum _ecore_status_t rc;
482 
483 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
484 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
485 		  int_sts);
486 
487 	/* int_sts may be zero since all PFs were interrupted for doorbell
488 	 * overflow but another one already handled it. Can abort here. If
489 	 * This PF also requires overflow recovery we will be interrupted again.
490 	 * The masked almost full indication may also be set. Ignoring.
491 	 */
492 	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
493 		return ECORE_SUCCESS;
494 
495 	/* check if db_drop or overflow happened */
496 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
497 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
498 		/* obtain data about db drop/overflow */
499 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
500 				  DORQ_REG_DB_DROP_REASON) &
501 				  ECORE_DORQ_ATTENTION_REASON_MASK;
502 		details = ecore_rd(p_hwfn, p_ptt,
503 				   DORQ_REG_DB_DROP_DETAILS);
504 		address = ecore_rd(p_hwfn, p_ptt,
505 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
506 		overflow = ecore_rd(p_hwfn, p_ptt,
507 				    DORQ_REG_PF_OVFL_STICKY);
508 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
509 					    DORQ_REG_DB_DROP_DETAILS_REASON);
510 
511 		/* log info */
512 		DP_NOTICE(p_hwfn->p_dev, false,
513 			  "Doorbell drop occurred\n"
514 			  "Address\t\t0x%08x\t(second BAR address)\n"
515 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
516 			  "Size\t\t0x%04x\t\t(in bytes)\n"
517 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
518 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
519 			  "Overflow\t0x%x\t\t(a per PF indication)\n",
520 			  address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
521 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
522 			  first_drop_reason, all_drops_reason, overflow);
523 
524 		/* if this PF caused overflow, initiate recovery */
525 		if (overflow) {
526 			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
527 			if (rc != ECORE_SUCCESS)
528 				return rc;
529 		}
530 
531 		/* clear the doorbell drop details and prepare for next drop */
532 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
533 
534 		/* mark interrupt as handeld (note: even if drop was due to a diffrent
535 		 * reason than overflow we mark as handled)
536 		 */
537 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
538 			 DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
539 
540 		/* if there are no indications otherthan drop indications, success */
541 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
542 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
543 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
544 			return ECORE_SUCCESS;
545 	}
546 
547 	/* some other indication was present - non recoverable */
548 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
549 
550 	return ECORE_INVAL;
551 }
552 
553 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
554 {
555 #ifndef ASIC_ONLY
556 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
557 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
558 				   TM_REG_INT_STS_1);
559 
560 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
561 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
562 			return ECORE_INVAL;
563 
564 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
565 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
566 			DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
567 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
568 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
569 		       TM_REG_INT_MASK_1_PEND_TASK_SCAN;
570 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
571 
572 		return ECORE_SUCCESS;
573 	}
574 #endif
575 
576 	return ECORE_INVAL;
577 }
578 
579 /* Instead of major changes to the data-structure, we have a some 'special'
580  * identifiers for sources that changed meaning between adapters.
581  */
582 enum aeu_invert_reg_special_type {
583 	AEU_INVERT_REG_SPECIAL_CNIG_0,
584 	AEU_INVERT_REG_SPECIAL_CNIG_1,
585 	AEU_INVERT_REG_SPECIAL_CNIG_2,
586 	AEU_INVERT_REG_SPECIAL_CNIG_3,
587 	AEU_INVERT_REG_SPECIAL_MAX,
588 };
589 
590 static struct aeu_invert_reg_bit
591 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
592 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
593 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
594 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
595 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
596 };
597 
598 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
599 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
600 {
601 	{
602 		{	/* After Invert 1 */
603 			{"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
604 		}
605 	},
606 
607 	{
608 		{	/* After Invert 2 */
609 			{"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
610 			{"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
611 			{"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
612 			{"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613 			{"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614 			{"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
615 			{"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
617 			{"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
618 		}
619 	},
620 
621 	{
622 		{	/* After Invert 3 */
623 			{"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
624 		}
625 	},
626 
627 	{
628 		{	/* After Invert 4 */
629 			{"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
630 			{"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
631 			{"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
632 			{"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
633 				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
634 			{"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
635 					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
636 			{"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
637 				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
638 			{"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
639 					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
640 			{"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
641 			{"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
642 			{"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
643 			{"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
644 			{"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
645 			{"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
646 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
647 			{"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
648 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
649 			{"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
650 			{"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
651 			{"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
652 		}
653 	},
654 
655 	{
656 		{	/* After Invert 5 */
657 			{"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
658 			{"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
659 			{"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
660 			{"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
661 			{"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
662 			{"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
663 			{"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
664 			{"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
665 			{"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
666 			{"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
667 			{"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
668 			{"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
669 			{"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
670 			{"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
671 			{"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
672 			{"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
673 		}
674 	},
675 
676 	{
677 		{	/* After Invert 6 */
678 			{"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
679 			{"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
680 			{"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
681 			{"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
682 			{"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
683 			{"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
684 			{"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
685 			{"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
686 			{"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
687 			{"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
688 			{"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
689 			{"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
690 			{"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
691 			{"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
692 			{"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
693 			{"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
694 		}
695 	},
696 
697 	{
698 		{	/* After Invert 7 */
699 			{"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
700 			{"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
701 			{"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
702 			{"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
703 			{"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
704 			{"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
705 			{"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
706 			{"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
707 			{"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
708 			{"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
709 			{"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
710 			{"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
711 			{"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
712 			{"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
713 			{"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
714 			{"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
715 			{"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
716 		}
717 	},
718 
719 	{
720 		{	/* After Invert 8 */
721 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
722 			{"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
723 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
724 			{"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
725 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
726 			{"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
727 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
728 			{"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
729 			{"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
730 			{"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
731 			{"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
732 			{"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
733 			{"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
734 			{"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
735 			{"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
736 			{"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
737 			{"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
738 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
739 			{"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
740 			{"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
741 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
742 		}
743 	},
744 
745 	{
746 		{	/* After Invert 9 */
747 			{"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
748 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
749 			{"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
750 			{"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
752 		}
753 	},
754 
755 };
756 
757 static struct aeu_invert_reg_bit *
758 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
759 			struct aeu_invert_reg_bit *p_bit)
760 {
761 	if (!ECORE_IS_BB(p_hwfn->p_dev))
762 		return p_bit;
763 
764 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
765 		return p_bit;
766 
767 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
768 				  ATTENTION_BB_SHIFT];
769 }
770 
771 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
772 				     struct aeu_invert_reg_bit *p_bit)
773 {
774 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
775 		  ATTENTION_PARITY);
776 }
777 
778 #define ATTN_STATE_BITS		(0xfff)
779 #define ATTN_BITS_MASKABLE	(0x3ff)
780 struct ecore_sb_attn_info {
781 	/* Virtual & Physical address of the SB */
782 	struct atten_status_block	*sb_attn;
783 	dma_addr_t			sb_phys;
784 
785 	/* Last seen running index */
786 	u16				index;
787 
788 	/* A mask of the AEU bits resulting in a parity error */
789 	u32				parity_mask[NUM_ATTN_REGS];
790 
791 	/* A pointer to the attention description structure */
792 	struct aeu_invert_reg		*p_aeu_desc;
793 
794 	/* Previously asserted attentions, which are still unasserted */
795 	u16				known_attn;
796 
797 	/* Cleanup address for the link's general hw attention */
798 	u32				mfw_attn_addr;
799 };
800 
801 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
802 				 struct ecore_sb_attn_info *p_sb_desc)
803 {
804 	u16 rc = 0, index;
805 
806 	OSAL_MMIOWB(p_hwfn->p_dev);
807 
808 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
809 	if (p_sb_desc->index != index) {
810 		p_sb_desc->index = index;
811 		rc = ECORE_SB_ATT_IDX;
812 	}
813 
814 	OSAL_MMIOWB(p_hwfn->p_dev);
815 
816 	return rc;
817 }
818 
819 /**
820  * @brief ecore_int_assertion - handles asserted attention bits
821  *
822  * @param p_hwfn
823  * @param asserted_bits newly asserted bits
824  * @return enum _ecore_status_t
825  */
826 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
827 						u16 asserted_bits)
828 {
829 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
830 	u32 igu_mask;
831 
832 	/* Mask the source of the attention in the IGU */
833 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
834 			    IGU_REG_ATTENTION_ENABLE);
835 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
836 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
837 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
838 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
839 
840 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
841 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
842 		   sb_attn_sw->known_attn,
843 		   sb_attn_sw->known_attn | asserted_bits);
844 	sb_attn_sw->known_attn |= asserted_bits;
845 
846 	/* Handle MCP events */
847 	if (asserted_bits & 0x100) {
848 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
849 		/* Clean the MCP attention */
850 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
851 			 sb_attn_sw->mfw_attn_addr, 0);
852 	}
853 
854 	/* FIXME - this will change once we'll have GOOD gtt definitions */
855 	DIRECT_REG_WR(p_hwfn,
856 		      (u8 OSAL_IOMEM*)p_hwfn->regview +
857 		      GTT_BAR0_MAP_REG_IGU_CMD +
858 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
859 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
860 
861 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
862 		   asserted_bits);
863 
864 	return ECORE_SUCCESS;
865 }
866 
867 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
868 				 enum block_id id, enum dbg_attn_type type,
869 				 bool b_clear)
870 {
871 	struct dbg_attn_block_result attn_results;
872 	enum dbg_status status;
873 
874 	OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
875 
876 	status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
877 				     b_clear, &attn_results);
878 #ifdef ATTN_DESC
879 	if (status != DBG_STATUS_OK)
880 		DP_NOTICE(p_hwfn, true,
881 			  "Failed to parse attention information [status: %s]\n",
882 			  ecore_dbg_get_status_str(status));
883 	else
884 		ecore_dbg_parse_attn(p_hwfn, &attn_results);
885 #else
886 	if (status != DBG_STATUS_OK)
887 		DP_NOTICE(p_hwfn, true,
888 			  "Failed to parse attention information [status: %d]\n",
889 			  status);
890 	else
891 		ecore_dbg_print_attn(p_hwfn, &attn_results);
892 #endif
893 }
894 
895 /**
896  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
897  * cause of the attention
898  *
899  * @param p_hwfn
900  * @param p_aeu - descriptor of an AEU bit which caused the attention
901  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
902  *  this bit to this group.
903  * @param bit_index - index of this bit in the aeu_en_reg
904  *
905  * @return enum _ecore_status_t
906  */
907 static enum _ecore_status_t
908 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
909 			      struct aeu_invert_reg_bit *p_aeu,
910 			      u32 aeu_en_reg,
911 			      const char *p_bit_name,
912 			      u32 bitmask)
913 {
914 	enum _ecore_status_t rc = ECORE_INVAL;
915 	bool b_fatal = false;
916 
917 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
918 		p_bit_name, bitmask);
919 
920 	/* Call callback before clearing the interrupt status */
921 	if (p_aeu->cb) {
922 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
923 			p_bit_name);
924 		rc = p_aeu->cb(p_hwfn);
925 	}
926 
927 	if (rc != ECORE_SUCCESS)
928 		b_fatal = true;
929 
930 	/* Print HW block interrupt registers */
931 	if (p_aeu->block_index != MAX_BLOCK_ID)
932 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
933 				     ATTN_TYPE_INTERRUPT, !b_fatal);
934 
935 	/* Reach assertion if attention is fatal */
936 	if (b_fatal) {
937 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
938 			  p_bit_name);
939 
940 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
941 	}
942 
943 	/* Prevent this Attention from being asserted in the future */
944 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
945 	    p_hwfn->p_dev->attn_clr_en) {
946 		u32 val;
947 		u32 mask = ~bitmask;
948 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
949 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
950 		DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
951 			p_bit_name);
952 	}
953 
954 	return rc;
955 }
956 
957 /**
958  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
959  *
960  * @param p_hwfn
961  * @param p_aeu - descriptor of an AEU bit which caused the parity
962  * @param aeu_en_reg - address of the AEU enable register
963  * @param bit_index
964  */
965 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
966 					 struct aeu_invert_reg_bit *p_aeu,
967 					 u32 aeu_en_reg, u8 bit_index)
968 {
969 	u32 block_id = p_aeu->block_index, mask, val;
970 
971 	DP_NOTICE(p_hwfn->p_dev, false,
972 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
973 		  p_aeu->bit_name, aeu_en_reg, bit_index);
974 
975 	if (block_id != MAX_BLOCK_ID) {
976 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
977 
978 		/* In A0, there's a single parity bit for several blocks */
979 		if (block_id == BLOCK_BTB) {
980 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
981 					     ATTN_TYPE_PARITY, false);
982 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
983 					     ATTN_TYPE_PARITY, false);
984 		}
985 	}
986 
987 	/* Prevent this parity error from being re-asserted */
988 	mask = ~(0x1 << bit_index);
989 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
990 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
991 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
992 		p_aeu->bit_name);
993 }
994 
995 /**
996  * @brief - handles deassertion of previously asserted attentions.
997  *
998  * @param p_hwfn
999  * @param deasserted_bits - newly deasserted bits
1000  * @return enum _ecore_status_t
1001  *
1002  */
1003 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1004 						  u16 deasserted_bits)
1005 {
1006 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1007 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1008 	u8 i, j, k, bit_idx;
1009 	enum _ecore_status_t rc = ECORE_SUCCESS;
1010 
1011 	/* Read the attention registers in the AEU */
1012 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1013 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1014 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1015 					  i * 0x4);
1016 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1017 			   "Deasserted bits [%d]: %08x\n",
1018 			   i, aeu_inv_arr[i]);
1019 	}
1020 
1021 	/* Handle parity attentions first */
1022 	for (i = 0; i < NUM_ATTN_REGS; i++)
1023 	{
1024 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1025 		u32 parities;
1026 
1027 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1028 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1029 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1030 
1031 		/* Skip register in which no parity bit is currently set */
1032 		if (!parities)
1033 			continue;
1034 
1035 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1036 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1037 
1038 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1039 			    !!(parities & (1 << bit_idx)))
1040 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1041 							     aeu_en, bit_idx);
1042 
1043 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1044 		}
1045 	}
1046 
1047 	/* Find non-parity cause for attention and act */
1048 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1049 		struct aeu_invert_reg_bit *p_aeu;
1050 
1051 		/* Handle only groups whose attention is currently deasserted */
1052 		if (!(deasserted_bits & (1 << k)))
1053 			continue;
1054 
1055 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1056 			u32 bits;
1057 
1058 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1059 				 i * sizeof(u32) +
1060 				 k * sizeof(u32) * NUM_ATTN_REGS;
1061 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1062 			bits = aeu_inv_arr[i] & en;
1063 
1064 			/* Skip if no bit from this group is currently set */
1065 			if (!bits)
1066 				continue;
1067 
1068 			/* Find all set bits from current register which belong
1069 			 * to current group, making them responsible for the
1070 			 * previous assertion.
1071 			 */
1072 			for (j = 0, bit_idx = 0; bit_idx < 32; j++)
1073 			{
1074 				long unsigned int bitmask;
1075 				u8 bit, bit_len;
1076 
1077 				/* Need to account bits with changed meaning */
1078 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1079 				p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
1080 
1081 				bit = bit_idx;
1082 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1083 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1084 					/* Skip Parity */
1085 					bit++;
1086 					bit_len--;
1087 				}
1088 
1089 				/* Find the bits relating to HW-block, then
1090 				 * shift so they'll become LSB.
1091 				 */
1092 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1093 				bitmask >>= bit;
1094 
1095 				if (bitmask) {
1096 					u32 flags = p_aeu->flags;
1097 					char bit_name[30];
1098 					u8 num;
1099 
1100 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1101 								bit_len);
1102 
1103 					/* Some bits represent more than a
1104 					 * a single interrupt. Correctly print
1105 					 * their name.
1106 					 */
1107 					if (ATTENTION_LENGTH(flags) > 2 ||
1108 					    ((flags & ATTENTION_PAR_INT) &&
1109 					    ATTENTION_LENGTH(flags) > 1))
1110 						OSAL_SNPRINTF(bit_name, 30,
1111 							      p_aeu->bit_name,
1112 							      num);
1113 					else
1114 						OSAL_STRNCPY(bit_name,
1115 							     p_aeu->bit_name,
1116 							     30);
1117 
1118 					/* We now need to pass bitmask in its
1119 					 * correct position.
1120 					 */
1121 					bitmask <<= bit;
1122 
1123 					/* Handle source of the attention */
1124 					ecore_int_deassertion_aeu_bit(p_hwfn,
1125 								      p_aeu,
1126 								      aeu_en,
1127 								      bit_name,
1128 								      bitmask);
1129 				}
1130 
1131 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1132 			}
1133 		}
1134 	}
1135 
1136 	/* Clear IGU indication for the deasserted bits */
1137 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1138 	DIRECT_REG_WR(p_hwfn,
1139 		      (u8 OSAL_IOMEM*)p_hwfn->regview +
1140 				      GTT_BAR0_MAP_REG_IGU_CMD +
1141 				      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1142 					IGU_CMD_INT_ACK_BASE) << 3),
1143 		      ~((u32)deasserted_bits));
1144 
1145 	/* Unmask deasserted attentions in IGU */
1146 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1147 			    IGU_REG_ATTENTION_ENABLE);
1148 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1149 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1150 
1151 	/* Clear deassertion from inner state */
1152 	sb_attn_sw->known_attn &= ~deasserted_bits;
1153 
1154 	return rc;
1155 }
1156 
1157 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1158 {
1159 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1160 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1161 	u16 index = 0, asserted_bits, deasserted_bits;
1162 	u32 attn_bits = 0, attn_acks = 0;
1163 	enum _ecore_status_t rc = ECORE_SUCCESS;
1164 
1165 	/* Read current attention bits/acks - safeguard against attentions
1166 	 * by guaranting work on a synchronized timeframe
1167 	 */
1168 	do {
1169 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1170 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1171 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1172 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1173 	p_sb_attn->sb_index = index;
1174 
1175 	/* Attention / Deassertion are meaningful (and in correct state)
1176 	 * only when they differ and consistent with known state - deassertion
1177 	 * when previous attention & current ack, and assertion when current
1178 	 * attention with no previous attention
1179 	 */
1180 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1181 			~p_sb_attn_sw->known_attn;
1182 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1183 			  p_sb_attn_sw->known_attn;
1184 
1185 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1186 		DP_INFO(p_hwfn,
1187 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1188 			index, attn_bits, attn_acks, asserted_bits,
1189 			deasserted_bits, p_sb_attn_sw->known_attn);
1190 	else if (asserted_bits == 0x100)
1191 		DP_INFO(p_hwfn,
1192 			"MFW indication via attention\n");
1193 	else
1194 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1195 			   "MFW indication [deassertion]\n");
1196 
1197 	if (asserted_bits) {
1198 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1199 		if (rc)
1200 			return rc;
1201 	}
1202 
1203 	if (deasserted_bits)
1204 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1205 
1206 	return rc;
1207 }
1208 
1209 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1210 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1211 {
1212 	struct igu_prod_cons_update igu_ack = { 0 };
1213 
1214 	igu_ack.sb_id_and_flags =
1215 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1216 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1217 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1218 		 (IGU_SEG_ACCESS_ATTN <<
1219 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1220 
1221 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1222 
1223 	/* Both segments (interrupts & acks) are written to same place address;
1224 	 * Need to guarantee all commands will be received (in-order) by HW.
1225 	 */
1226 	OSAL_MMIOWB(p_hwfn->p_dev);
1227 	OSAL_BARRIER(p_hwfn->p_dev);
1228 }
1229 
1230 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1231 {
1232 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1233 	struct ecore_pi_info *pi_info = OSAL_NULL;
1234 	struct ecore_sb_attn_info *sb_attn;
1235 	struct ecore_sb_info *sb_info;
1236 	int arr_size;
1237 	u16 rc = 0;
1238 
1239 	if (!p_hwfn)
1240 		return;
1241 
1242 	if (!p_hwfn->p_sp_sb) {
1243 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1244 		return;
1245 	}
1246 
1247 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1248 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1249 	if (!sb_info) {
1250 		DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1251 		return;
1252 	}
1253 
1254 	if (!p_hwfn->p_sb_attn) {
1255 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1256 		return;
1257 	}
1258 	sb_attn =  p_hwfn->p_sb_attn;
1259 
1260 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1261 		   p_hwfn, p_hwfn->my_id);
1262 
1263 	/* Disable ack for def status block. Required both for msix +
1264 	 * inta in non-mask mode, in inta does no harm.
1265 	 */
1266 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1267 
1268 	/* Gather Interrupts/Attentions information */
1269 	if (!sb_info->sb_virt) {
1270 		DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1271 	} else {
1272 		u32 tmp_index = sb_info->sb_ack;
1273 		rc = ecore_sb_update_sb_idx(sb_info);
1274 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1275 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1276 			   tmp_index, sb_info->sb_ack);
1277 	}
1278 
1279 	if (!sb_attn || !sb_attn->sb_attn) {
1280 		DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1281 	} else {
1282 		u16 tmp_index = sb_attn->index;
1283 
1284 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1285 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1286 			   "Attention indices: 0x%08x --> 0x%08x\n",
1287 			   tmp_index, sb_attn->index);
1288 	}
1289 
1290 	/* Check if we expect interrupts at this time. if not just ack them */
1291 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1292 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1293 		return;
1294 	}
1295 
1296 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1297 	if (!p_hwfn->p_dpc_ptt) {
1298 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1299 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1300 		return;
1301 	}
1302 
1303 	if (rc & ECORE_SB_ATT_IDX)
1304 		ecore_int_attentions(p_hwfn);
1305 
1306 	if (rc & ECORE_SB_IDX) {
1307 		int pi;
1308 
1309 		/* Since we only looked at the SB index, it's possible more
1310 		 * than a single protocol-index on the SB incremented.
1311 		 * Iterate over all configured protocol indices and check
1312 		 * whether something happened for each.
1313 		 */
1314 		for (pi = 0; pi < arr_size; pi++) {
1315 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1316 			if (pi_info->comp_cb != OSAL_NULL)
1317 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1318 		}
1319 	}
1320 
1321 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1322 		/* This should be done before the interrupts are enabled,
1323 		 * since otherwise a new attention will be generated.
1324 		 */
1325 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1326 	}
1327 
1328 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1329 }
1330 
1331 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1332 {
1333 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1334 
1335 	if (!p_sb)
1336 		return;
1337 
1338 	if (p_sb->sb_attn) {
1339 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1340 				       p_sb->sb_phys,
1341 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1342 	}
1343 
1344 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1345 	p_hwfn->p_sb_attn = OSAL_NULL;
1346 }
1347 
1348 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1349 				    struct ecore_ptt *p_ptt)
1350 {
1351 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1352 
1353 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1354 
1355 	sb_info->index = 0;
1356 	sb_info->known_attn = 0;
1357 
1358 	/* Configure Attention Status Block in IGU */
1359 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1360 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1361 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1362 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1363 }
1364 
1365 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1366 				   struct ecore_ptt *p_ptt,
1367 				   void *sb_virt_addr,
1368 				   dma_addr_t sb_phy_addr)
1369 {
1370 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1371 	int i, j, k;
1372 
1373 	sb_info->sb_attn = sb_virt_addr;
1374 	sb_info->sb_phys = sb_phy_addr;
1375 
1376 	/* Set the pointer to the AEU descriptors */
1377 	sb_info->p_aeu_desc = aeu_descs;
1378 
1379 	/* Calculate Parity Masks */
1380 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1381 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1382 		/* j is array index, k is bit index */
1383 		for (j = 0, k = 0; k < 32; j++) {
1384 			struct aeu_invert_reg_bit *p_aeu;
1385 
1386 			p_aeu = &aeu_descs[i].bits[j];
1387 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1388 				sb_info->parity_mask[i] |= 1 << k;
1389 
1390 			k += ATTENTION_LENGTH(p_aeu->flags);
1391 		}
1392 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1393 			   "Attn Mask [Reg %d]: 0x%08x\n",
1394 			   i, sb_info->parity_mask[i]);
1395 	}
1396 
1397 	/* Set the address of cleanup for the mcp attention */
1398 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1399 				 MISC_REG_AEU_GENERAL_ATTN_0;
1400 
1401 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1402 }
1403 
1404 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1405 						    struct ecore_ptt *p_ptt)
1406 {
1407 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1408 	struct ecore_sb_attn_info *p_sb;
1409 	dma_addr_t p_phys = 0;
1410 	void *p_virt;
1411 
1412 	/* SB struct */
1413 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1414 	if (!p_sb) {
1415 		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1416 		return ECORE_NOMEM;
1417 	}
1418 
1419 	/* SB ring  */
1420 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1421 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1422 	if (!p_virt) {
1423 		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1424 		OSAL_FREE(p_dev, p_sb);
1425 		return ECORE_NOMEM;
1426 	}
1427 
1428 	/* Attention setup */
1429 	p_hwfn->p_sb_attn = p_sb;
1430 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1431 
1432 	return ECORE_SUCCESS;
1433 }
1434 
1435 /* coalescing timeout = timeset << (timer_res + 1) */
1436 #define ECORE_CAU_DEF_RX_USECS 24
1437 #define ECORE_CAU_DEF_TX_USECS 48
1438 
1439 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1440 			     struct cau_sb_entry *p_sb_entry,
1441 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1442 {
1443 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1444 	u32 cau_state;
1445 	u8 timer_res;
1446 
1447 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1448 
1449 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1450 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1451 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1452 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1453 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1454 
1455 	cau_state = CAU_HC_DISABLE_STATE;
1456 
1457 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1458 		cau_state = CAU_HC_ENABLE_STATE;
1459 		if (!p_dev->rx_coalesce_usecs)
1460 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1461 		if (!p_dev->tx_coalesce_usecs)
1462 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1463 	}
1464 
1465 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1466 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1467 		timer_res = 0;
1468 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1469 		timer_res = 1;
1470 	else
1471 		timer_res = 2;
1472 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1473 
1474 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1475 		timer_res = 0;
1476 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1477 		timer_res = 1;
1478 	else
1479 		timer_res = 2;
1480 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1481 
1482 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1483 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1484 }
1485 
1486 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1487 				   struct ecore_ptt *p_ptt,
1488 				   u16 igu_sb_id, u32 pi_index,
1489 				   enum ecore_coalescing_fsm coalescing_fsm,
1490 				   u8 timeset)
1491 {
1492 	struct cau_pi_entry pi_entry;
1493 	u32 sb_offset, pi_offset;
1494 
1495 	if (IS_VF(p_hwfn->p_dev))
1496 		return;/* @@@TBD MichalK- VF CAU... */
1497 
1498 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1499 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1500 
1501 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1502 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1503 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1504 	else
1505 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1506 
1507 	pi_offset = sb_offset + pi_index;
1508 	if (p_hwfn->hw_init_done) {
1509 		ecore_wr(p_hwfn, p_ptt,
1510 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1511 			 *((u32 *)&(pi_entry)));
1512 	} else {
1513 		STORE_RT_REG(p_hwfn,
1514 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1515 			     *((u32 *)&(pi_entry)));
1516 	}
1517 }
1518 
1519 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1520 			   struct ecore_ptt *p_ptt,
1521 			   struct ecore_sb_info *p_sb, u32 pi_index,
1522 			   enum ecore_coalescing_fsm coalescing_fsm,
1523 			   u8 timeset)
1524 {
1525 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1526 			       pi_index, coalescing_fsm, timeset);
1527 }
1528 
1529 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1530 			   struct ecore_ptt *p_ptt,
1531 			   dma_addr_t sb_phys, u16 igu_sb_id,
1532 			   u16 vf_number, u8 vf_valid)
1533 {
1534 	struct cau_sb_entry sb_entry;
1535 
1536 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1537 				vf_number, vf_valid);
1538 
1539 	if (p_hwfn->hw_init_done) {
1540 		/* Wide-bus, initialize via DMAE */
1541 		u64 phys_addr = (u64)sb_phys;
1542 
1543 		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1544 				    CAU_REG_SB_ADDR_MEMORY +
1545 				    igu_sb_id * sizeof(u64), 2,
1546 				    OSAL_NULL /* default parameters */);
1547 		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1548 				    CAU_REG_SB_VAR_MEMORY +
1549 				    igu_sb_id * sizeof(u64), 2,
1550 				    OSAL_NULL /* default parameters */);
1551 	} else {
1552 		/* Initialize Status Block Address */
1553 		STORE_RT_REG_AGG(p_hwfn,
1554 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1555 				 sb_phys);
1556 
1557 		STORE_RT_REG_AGG(p_hwfn,
1558 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1559 				 sb_entry);
1560 	}
1561 
1562 	/* Configure pi coalescing if set */
1563 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1564 		/* eth will open queues for all tcs, so configure all of them
1565 		 * properly, rather than just the active ones
1566 		 */
1567 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1568 
1569 		u8 timeset, timer_res;
1570 		u8 i;
1571 
1572 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1573 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1574 			timer_res = 0;
1575 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1576 			timer_res = 1;
1577 		else
1578 			timer_res = 2;
1579 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1580 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1581 				       ECORE_COAL_RX_STATE_MACHINE,
1582 				       timeset);
1583 
1584 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1585 			timer_res = 0;
1586 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1587 			timer_res = 1;
1588 		else
1589 			timer_res = 2;
1590 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1591 		for (i = 0; i < num_tc; i++) {
1592 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1593 					       igu_sb_id, TX_PI(i),
1594 					       ECORE_COAL_TX_STATE_MACHINE,
1595 					       timeset);
1596 		}
1597 	}
1598 }
1599 
1600 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1601 			       struct ecore_ptt *p_ptt,
1602 			       struct ecore_sb_info *sb_info)
1603 {
1604 	/* zero status block and ack counter */
1605 	sb_info->sb_ack = 0;
1606 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1607 
1608 	if (IS_PF(p_hwfn->p_dev))
1609 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1610 				      sb_info->igu_sb_id, 0, 0);
1611 }
1612 
1613 struct ecore_igu_block *
1614 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1615 {
1616 	struct ecore_igu_block *p_block;
1617 	u16 igu_id;
1618 
1619 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1620 	     igu_id++) {
1621 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1622 
1623 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1624 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1625 			continue;
1626 
1627 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1628 		    b_is_pf)
1629 			return p_block;
1630 	}
1631 
1632 	return OSAL_NULL;
1633 }
1634 
1635 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1636 				  u16 vector_id)
1637 {
1638 	struct ecore_igu_block *p_block;
1639 	u16 igu_id;
1640 
1641 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1642 	     igu_id++) {
1643 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1644 
1645 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1646 		    !p_block->is_pf ||
1647 		    p_block->vector_number != vector_id)
1648 			continue;
1649 
1650 		return igu_id;
1651 	}
1652 
1653 	return ECORE_SB_INVALID_IDX;
1654 }
1655 
1656 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1657 {
1658 	u16 igu_sb_id;
1659 
1660 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1661 	if (sb_id == ECORE_SP_SB_ID)
1662 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1663 	else if (IS_PF(p_hwfn->p_dev))
1664 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1665 	else
1666 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1667 
1668 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1669 		DP_NOTICE(p_hwfn, true,
1670 			  "Slowpath SB vector %04x doesn't exist\n",
1671 			  sb_id);
1672 	else if (sb_id == ECORE_SP_SB_ID)
1673 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1674 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1675 	else
1676 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1677 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1678 
1679 	return igu_sb_id;
1680 }
1681 
1682 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1683 				       struct ecore_ptt *p_ptt,
1684 				       struct ecore_sb_info *sb_info,
1685 				       void *sb_virt_addr,
1686 				       dma_addr_t sb_phy_addr,
1687 				       u16 sb_id)
1688 {
1689 	sb_info->sb_virt = sb_virt_addr;
1690 	sb_info->sb_phys = sb_phy_addr;
1691 
1692 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1693 
1694 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1695 		return ECORE_INVAL;
1696 
1697 	/* Let the igu info reference the client's SB info */
1698 	if (sb_id != ECORE_SP_SB_ID) {
1699 		if (IS_PF(p_hwfn->p_dev)) {
1700 			struct ecore_igu_info *p_info;
1701 			struct ecore_igu_block *p_block;
1702 
1703 			p_info = p_hwfn->hw_info.p_igu_info;
1704 			p_block = &p_info->entry[sb_info->igu_sb_id];
1705 
1706 			p_block->sb_info = sb_info;
1707 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1708 			p_info->usage.free_cnt--;
1709 		} else {
1710 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1711 		}
1712 	}
1713 
1714 #ifdef ECORE_CONFIG_DIRECT_HWFN
1715 	sb_info->p_hwfn = p_hwfn;
1716 #endif
1717 	sb_info->p_dev = p_hwfn->p_dev;
1718 
1719 	/* The igu address will hold the absolute address that needs to be
1720 	 * written to for a specific status block
1721 	 */
1722 	if (IS_PF(p_hwfn->p_dev)) {
1723 		sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1724 				    GTT_BAR0_MAP_REG_IGU_CMD +
1725 				    (sb_info->igu_sb_id << 3);
1726 
1727 	} else {
1728 		sb_info->igu_addr =
1729 			(u8 OSAL_IOMEM*)p_hwfn->regview +
1730 			PXP_VF_BAR0_START_IGU +
1731 			((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1732 	}
1733 
1734 	sb_info->flags |= ECORE_SB_INFO_INIT;
1735 
1736 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1737 
1738 	return ECORE_SUCCESS;
1739 }
1740 
1741 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1742 					  struct ecore_sb_info *sb_info,
1743 					  u16 sb_id)
1744 {
1745 	struct ecore_igu_info *p_info;
1746 	struct ecore_igu_block *p_block;
1747 
1748 	if (sb_info == OSAL_NULL)
1749 		return ECORE_SUCCESS;
1750 
1751 	/* zero status block and ack counter */
1752 	sb_info->sb_ack = 0;
1753 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1754 
1755 	if (IS_VF(p_hwfn->p_dev)) {
1756 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1757 		return ECORE_SUCCESS;
1758 	}
1759 
1760 	p_info = p_hwfn->hw_info.p_igu_info;
1761 	p_block = &p_info->entry[sb_info->igu_sb_id];
1762 
1763 	/* Vector 0 is reserved to Default SB */
1764 	if (p_block->vector_number == 0) {
1765 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1766 		return ECORE_INVAL;
1767 	}
1768 
1769 	/* Lose reference to client's SB info, and fix counters */
1770 	p_block->sb_info = OSAL_NULL;
1771 	p_block->status |= ECORE_IGU_STATUS_FREE;
1772 	p_info->usage.free_cnt++;
1773 
1774 	return ECORE_SUCCESS;
1775 }
1776 
1777 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1778 {
1779 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1780 
1781 	if (!p_sb)
1782 		return;
1783 
1784 	if (p_sb->sb_info.sb_virt) {
1785 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1786 				       p_sb->sb_info.sb_virt,
1787 				       p_sb->sb_info.sb_phys,
1788 				       SB_ALIGNED_SIZE(p_hwfn));
1789 	}
1790 
1791 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1792 	p_hwfn->p_sp_sb = OSAL_NULL;
1793 }
1794 
1795 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1796 						  struct ecore_ptt *p_ptt)
1797 {
1798 	struct ecore_sb_sp_info *p_sb;
1799 	dma_addr_t p_phys = 0;
1800 	void *p_virt;
1801 
1802 	/* SB struct */
1803 	p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1804 	if (!p_sb) {
1805 		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1806 		return ECORE_NOMEM;
1807 	}
1808 
1809 	/* SB ring  */
1810 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1811 					 &p_phys,
1812 					 SB_ALIGNED_SIZE(p_hwfn));
1813 	if (!p_virt) {
1814 		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1815 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1816 		return ECORE_NOMEM;
1817 	}
1818 
1819 	/* Status Block setup */
1820 	p_hwfn->p_sp_sb = p_sb;
1821 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1822 			  p_virt, p_phys, ECORE_SP_SB_ID);
1823 
1824 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1825 
1826 	return ECORE_SUCCESS;
1827 }
1828 
1829 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1830 					   ecore_int_comp_cb_t comp_cb,
1831 					   void *cookie,
1832 					   u8 *sb_idx,
1833 					   __le16 **p_fw_cons)
1834 {
1835 	struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1836 	enum _ecore_status_t rc = ECORE_NOMEM;
1837 	u8 pi;
1838 
1839 	/* Look for a free index */
1840 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1841 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1842 			continue;
1843 
1844 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1845 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1846 		*sb_idx = pi;
1847 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1848 		rc = ECORE_SUCCESS;
1849 		break;
1850 	}
1851 
1852 	return rc;
1853 }
1854 
1855 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1856 					     u8 pi)
1857 {
1858 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1859 
1860 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1861 		return ECORE_NOMEM;
1862 
1863 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1864 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1865 
1866 	return ECORE_SUCCESS;
1867 }
1868 
1869 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1870 {
1871 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1872 }
1873 
1874 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1875 			      struct ecore_ptt	*p_ptt,
1876 			      enum ecore_int_mode int_mode)
1877 {
1878 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1879 
1880 #ifndef ASIC_ONLY
1881 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1882 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1883 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1884 	}
1885 #endif
1886 
1887 	p_hwfn->p_dev->int_mode = int_mode;
1888 	switch (p_hwfn->p_dev->int_mode) {
1889 	case ECORE_INT_MODE_INTA:
1890 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1891 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1892 		break;
1893 
1894 	case ECORE_INT_MODE_MSI:
1895 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1896 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1897 		break;
1898 
1899 	case ECORE_INT_MODE_MSIX:
1900 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1901 		break;
1902 	case ECORE_INT_MODE_POLL:
1903 		break;
1904 	}
1905 
1906 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1907 }
1908 
1909 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1910 				      struct ecore_ptt *p_ptt)
1911 {
1912 #ifndef ASIC_ONLY
1913 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1914 		DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1915 		return;
1916 	}
1917 #endif
1918 
1919 	/* Configure AEU signal change to produce attentions */
1920 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1921 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1922 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1923 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1924 
1925 	/* Flush the writes to IGU */
1926 	OSAL_MMIOWB(p_hwfn->p_dev);
1927 
1928 	/* Unmask AEU signals toward IGU */
1929 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1930 }
1931 
1932 enum _ecore_status_t
1933 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1934 			  enum ecore_int_mode int_mode)
1935 {
1936 	enum _ecore_status_t rc = ECORE_SUCCESS;
1937 
1938 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1939 
1940 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1941 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1942 		if (rc != ECORE_SUCCESS) {
1943 			DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1944 			return ECORE_NORESOURCES;
1945 		}
1946 		p_hwfn->b_int_requested = true;
1947 	}
1948 
1949 	/* Enable interrupt Generation */
1950 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1951 
1952 	p_hwfn->b_int_enabled = 1;
1953 
1954 	return rc;
1955 }
1956 
1957 void ecore_int_igu_disable_int(struct ecore_hwfn	*p_hwfn,
1958 			       struct ecore_ptt		*p_ptt)
1959 {
1960 	p_hwfn->b_int_enabled = 0;
1961 
1962 	if (IS_VF(p_hwfn->p_dev))
1963 		return;
1964 
1965 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1966 }
1967 
1968 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1969 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1970 				     struct ecore_ptt *p_ptt,
1971 				     u16 igu_sb_id,
1972 				     bool cleanup_set,
1973 				     u16 opaque_fid)
1974 {
1975 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1976 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1977 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1978 	u8  type = 0; /* FIXME MichalS type??? */
1979 
1980 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1981 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1982 
1983 	/* USE Control Command Register to perform cleanup. There is an
1984 	 * option to do this using IGU bar, but then it can't be used for VFs.
1985 	 */
1986 
1987 	/* Set the data field */
1988 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1989 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1990 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1991 
1992 	/* Set the control register */
1993 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1994 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1995 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1996 
1997 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1998 
1999 	OSAL_BARRIER(p_hwfn->p_dev);
2000 
2001 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2002 
2003 	/* Flush the write to IGU */
2004 	OSAL_MMIOWB(p_hwfn->p_dev);
2005 
2006 	/* calculate where to read the status bit from */
2007 	sb_bit = 1 << (igu_sb_id % 32);
2008 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2009 
2010 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2011 
2012 	/* Now wait for the command to complete */
2013 	while (--sleep_cnt) {
2014 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2015 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2016 			break;
2017 		OSAL_MSLEEP(5);
2018 	}
2019 
2020 	if (!sleep_cnt)
2021 		DP_NOTICE(p_hwfn, true,
2022 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2023 			  val, igu_sb_id);
2024 }
2025 
2026 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2027 				       struct ecore_ptt *p_ptt,
2028 				       u16 igu_sb_id, u16 opaque, bool b_set)
2029 {
2030 	struct ecore_igu_block *p_block;
2031 	int pi, i;
2032 
2033 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2034 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2035 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2036 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2037 		   p_block->vector_number);
2038 
2039 	/* Set */
2040 	if (b_set)
2041 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2042 
2043 	/* Clear */
2044 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2045 
2046 	/* Wait for the IGU SB to cleanup */
2047 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2048 		u32 val;
2049 
2050 		val = ecore_rd(p_hwfn, p_ptt,
2051 			       IGU_REG_WRITE_DONE_PENDING +
2052 			       ((igu_sb_id / 32) * 4));
2053 		if (val & (1 << (igu_sb_id % 32)))
2054 			OSAL_UDELAY(10);
2055 		else
2056 			break;
2057 	}
2058 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2059 		DP_NOTICE(p_hwfn, true,
2060 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2061 			  igu_sb_id);
2062 
2063 	/* Clear the CAU for the SB */
2064 	for (pi = 0; pi < 12; pi++)
2065 		ecore_wr(p_hwfn, p_ptt,
2066 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2067 }
2068 
2069 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2070 				 struct ecore_ptt *p_ptt,
2071 				 bool b_set,
2072 				 bool b_slowpath)
2073 {
2074 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2075 	struct ecore_igu_block *p_block;
2076 	u16 igu_sb_id = 0;
2077 	u32 val = 0;
2078 
2079 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2080 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2081 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2082 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2083 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2084 	/* end temporary */
2085 
2086 	for (igu_sb_id = 0;
2087 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2088 	     igu_sb_id++) {
2089 		p_block = &p_info->entry[igu_sb_id];
2090 
2091 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2092 		    !p_block->is_pf ||
2093 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2094 			continue;
2095 
2096 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2097 						  p_hwfn->hw_info.opaque_fid,
2098 						  b_set);
2099 	}
2100 
2101 	if (b_slowpath)
2102 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2103 						  p_info->igu_dsb_id,
2104 						  p_hwfn->hw_info.opaque_fid,
2105 						  b_set);
2106 }
2107 
2108 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2109 			    struct ecore_ptt *p_ptt)
2110 {
2111 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2112 	struct ecore_igu_block *p_block;
2113 	int pf_sbs, vf_sbs;
2114 	u16 igu_sb_id;
2115 	u32 val, rval;
2116 
2117 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2118 		/* We're using an old MFW - have to prevent any switching
2119 		 * of SBs between PF and VFs as later driver wouldn't be
2120 		 * able to tell which belongs to which.
2121 		 */
2122 		p_info->b_allow_pf_vf_change = false;
2123 	} else {
2124 		/* Use the numbers the MFW have provided -
2125 		 * don't forget MFW accounts for the default SB as well.
2126 		 */
2127 		p_info->b_allow_pf_vf_change = true;
2128 
2129 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2130 			DP_INFO(p_hwfn,
2131 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2132 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2133 				p_info->usage.cnt);
2134 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2135 		}
2136 
2137 		/* TODO - how do we learn about VF SBs from MFW? */
2138 		if (IS_PF_SRIOV(p_hwfn)) {
2139 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2140 
2141 			if (vfs != p_info->usage.iov_cnt)
2142 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2143 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2144 					   p_info->usage.iov_cnt, vfs);
2145 
2146 			/* At this point we know how many SBs we have totally
2147 			 * in IGU + number of PF SBs. So we can validate that
2148 			 * we'd have sufficient for VF.
2149 			 */
2150 			if (vfs > p_info->usage.free_cnt +
2151 				  p_info->usage.free_cnt_iov -
2152 				  p_info->usage.cnt) {
2153 				DP_NOTICE(p_hwfn, true,
2154 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2155 					  p_info->usage.free_cnt +
2156 					  p_info->usage.free_cnt_iov,
2157 					  p_info->usage.cnt, vfs);
2158 				return ECORE_INVAL;
2159 			}
2160 		}
2161 	}
2162 
2163 	/* Cap the number of VFs SBs by the number of VFs */
2164 	if (IS_PF_SRIOV(p_hwfn))
2165 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2166 
2167 	/* Mark all SBs as free, now in the right PF/VFs division */
2168 	p_info->usage.free_cnt = p_info->usage.cnt;
2169 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2170 	p_info->usage.orig = p_info->usage.cnt;
2171 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2172 
2173 	/* We now proceed to re-configure the IGU cam to reflect the initial
2174 	 * configuration. We can start with the Default SB.
2175 	 */
2176 	pf_sbs = p_info->usage.cnt;
2177 	vf_sbs = p_info->usage.iov_cnt;
2178 
2179 	for (igu_sb_id = p_info->igu_dsb_id;
2180 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2181 	     igu_sb_id++) {
2182 		p_block = &p_info->entry[igu_sb_id];
2183 		val = 0;
2184 
2185 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2186 			continue;
2187 
2188 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2189 			p_block->function_id = p_hwfn->rel_pf_id;
2190 			p_block->is_pf = 1;
2191 			p_block->vector_number = 0;
2192 			p_block->status = ECORE_IGU_STATUS_VALID |
2193 					  ECORE_IGU_STATUS_PF |
2194 					  ECORE_IGU_STATUS_DSB;
2195 		} else if (pf_sbs) {
2196 			pf_sbs--;
2197 			p_block->function_id = p_hwfn->rel_pf_id;
2198 			p_block->is_pf = 1;
2199 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2200 			p_block->status = ECORE_IGU_STATUS_VALID |
2201 					  ECORE_IGU_STATUS_PF |
2202 					  ECORE_IGU_STATUS_FREE;
2203 		} else if (vf_sbs) {
2204 			p_block->function_id =
2205 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2206 				p_info->usage.iov_cnt - vf_sbs;
2207 			p_block->is_pf = 0;
2208 			p_block->vector_number = 0;
2209 			p_block->status = ECORE_IGU_STATUS_VALID |
2210 					  ECORE_IGU_STATUS_FREE;
2211 			vf_sbs--;
2212 		} else {
2213 			p_block->function_id = 0;
2214 			p_block->is_pf = 0;
2215 			p_block->vector_number = 0;
2216 		}
2217 
2218 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2219 			  p_block->function_id);
2220 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2221 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2222 			  p_block->vector_number);
2223 
2224 		/* VF entries would be enabled when VF is initializaed */
2225 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2226 
2227 		rval = ecore_rd(p_hwfn, p_ptt,
2228 				IGU_REG_MAPPING_MEMORY +
2229 				sizeof(u32) * igu_sb_id);
2230 
2231 		if (rval != val) {
2232 			ecore_wr(p_hwfn, p_ptt,
2233 				 IGU_REG_MAPPING_MEMORY +
2234 				 sizeof(u32) * igu_sb_id,
2235 				 val);
2236 
2237 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2238 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2239 				   igu_sb_id, p_block->function_id,
2240 				   p_block->is_pf, p_block->vector_number,
2241 				   rval, val);
2242 		}
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2249 				    struct ecore_ptt *p_ptt)
2250 {
2251 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2252 
2253 	/* Return all the usage indications to default prior to the reset;
2254 	 * The reset expects the !orig to reflect the initial status of the
2255 	 * SBs, and would re-calculate the originals based on those.
2256 	 */
2257 	p_cnt->cnt = p_cnt->orig;
2258 	p_cnt->free_cnt = p_cnt->orig;
2259 	p_cnt->iov_cnt = p_cnt->iov_orig;
2260 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2261 	p_cnt->orig = 0;
2262 	p_cnt->iov_orig = 0;
2263 
2264 	/* TODO - we probably need to re-configure the CAU as well... */
2265 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2266 }
2267 
2268 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2269 					 struct ecore_ptt *p_ptt,
2270 					 u16 igu_sb_id)
2271 {
2272 	u32 val = ecore_rd(p_hwfn, p_ptt,
2273 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2274 	struct ecore_igu_block *p_block;
2275 
2276 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2277 
2278 	/* Fill the block information */
2279 	p_block->function_id = GET_FIELD(val,
2280 					 IGU_MAPPING_LINE_FUNCTION_NUMBER);
2281 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2282 	p_block->vector_number = GET_FIELD(val,
2283 					   IGU_MAPPING_LINE_VECTOR_NUMBER);
2284 	p_block->igu_sb_id = igu_sb_id;
2285 }
2286 
2287 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2288 					    struct ecore_ptt *p_ptt)
2289 {
2290 	struct ecore_igu_info *p_igu_info;
2291 	struct ecore_igu_block *p_block;
2292 	u32 min_vf = 0, max_vf = 0;
2293 	u16 igu_sb_id;
2294 
2295 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2296 						 GFP_KERNEL,
2297 						 sizeof(*p_igu_info));
2298 	if (!p_hwfn->hw_info.p_igu_info)
2299 		return ECORE_NOMEM;
2300 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2301 
2302 	/* Distinguish between existent and onn-existent default SB */
2303 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2304 
2305 	/* Find the range of VF ids whose SB belong to this PF */
2306 	if (p_hwfn->p_dev->p_iov_info) {
2307 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2308 
2309 		min_vf = p_iov->first_vf_in_pf;
2310 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2311 	}
2312 
2313 	for (igu_sb_id = 0;
2314 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2315 	     igu_sb_id++) {
2316 		/* Read current entry; Notice it might not belong to this PF */
2317 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2318 		p_block = &p_igu_info->entry[igu_sb_id];
2319 
2320 		if ((p_block->is_pf) &&
2321 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2322 			p_block->status = ECORE_IGU_STATUS_PF |
2323 					  ECORE_IGU_STATUS_VALID |
2324 					  ECORE_IGU_STATUS_FREE;
2325 
2326 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2327 				p_igu_info->usage.cnt++;
2328 		} else if (!(p_block->is_pf) &&
2329 			   (p_block->function_id >= min_vf) &&
2330 			   (p_block->function_id < max_vf)) {
2331 			/* Available for VFs of this PF */
2332 			p_block->status = ECORE_IGU_STATUS_VALID |
2333 					  ECORE_IGU_STATUS_FREE;
2334 
2335 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2336 				p_igu_info->usage.iov_cnt++;
2337 		}
2338 
2339 		/* Mark the First entry belonging to the PF or its VFs
2340 		 * as the default SB [we'll reset IGU prior to first usage].
2341 		 */
2342 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2343 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2344 			p_igu_info->igu_dsb_id = igu_sb_id;
2345 			p_block->status |= ECORE_IGU_STATUS_DSB;
2346 		}
2347 
2348 		/* While this isn't suitable for all clients, limit number
2349 		 * of prints by having each PF print only its entries with the
2350 		 * exception of PF0 which would print everything.
2351 		 */
2352 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2353 		    (p_hwfn->abs_pf_id == 0))
2354 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2355 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2356 				   igu_sb_id, p_block->function_id,
2357 				   p_block->is_pf, p_block->vector_number);
2358 	}
2359 
2360 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2361 		DP_NOTICE(p_hwfn, true,
2362 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2363 			  p_igu_info->igu_dsb_id);
2364 		return ECORE_INVAL;
2365 	}
2366 
2367 	/* All non default SB are considered free at this point */
2368 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2369 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2370 
2371 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2372 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2373 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2374 		   p_igu_info->usage.iov_cnt);
2375 
2376 	return ECORE_SUCCESS;
2377 }
2378 
2379 enum _ecore_status_t
2380 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2381 			  u16 sb_id, bool b_to_vf)
2382 {
2383 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2384 	struct ecore_igu_block *p_block = OSAL_NULL;
2385 	u16 igu_sb_id = 0, vf_num = 0;
2386 	u32 val = 0;
2387 
2388 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2389 		return ECORE_INVAL;
2390 
2391 	if (sb_id == ECORE_SP_SB_ID)
2392 		return ECORE_INVAL;
2393 
2394 	if (!p_info->b_allow_pf_vf_change) {
2395 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2396 		return ECORE_INVAL;
2397 	}
2398 
2399 	/* If we're moving a SB from PF to VF, the client had to specify
2400 	 * which vector it wants to move.
2401 	 */
2402 	if (b_to_vf) {
2403 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2404 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2405 			return ECORE_INVAL;
2406 	}
2407 
2408 	/* If we're moving a SB from VF to PF, need to validate there isn't
2409 	 * already a line configured for that vector.
2410 	 */
2411 	if (!b_to_vf) {
2412 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2413 		    ECORE_SB_INVALID_IDX)
2414 			return ECORE_INVAL;
2415 	}
2416 
2417 	/* We need to validate that the SB can actually be relocated.
2418 	 * This would also handle the previous case where we've explicitly
2419 	 * stated which IGU SB needs to move.
2420 	 */
2421 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2422 	     igu_sb_id++) {
2423 		p_block = &p_info->entry[igu_sb_id];
2424 
2425 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2426 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2427 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2428 			if (b_to_vf)
2429 				return ECORE_INVAL;
2430 			else
2431 				continue;
2432 		}
2433 
2434 		break;
2435 	}
2436 
2437 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2438 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2439 			   "Failed to find a free SB to move\n");
2440 		return ECORE_INVAL;
2441 	}
2442 
2443 	if (p_block == OSAL_NULL) {
2444 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2445 			   "SB address (p_block) is NULL\n");
2446 		return ECORE_INVAL;
2447 	}
2448 
2449 	/* At this point, p_block points to the SB we want to relocate */
2450 	if (b_to_vf) {
2451 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2452 
2453 		/* It doesn't matter which VF number we choose, since we're
2454 		 * going to disable the line; But let's keep it in range.
2455 		 */
2456 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2457 
2458 		p_block->function_id = (u8)vf_num;
2459 		p_block->is_pf = 0;
2460 		p_block->vector_number = 0;
2461 
2462 		p_info->usage.cnt--;
2463 		p_info->usage.free_cnt--;
2464 		p_info->usage.iov_cnt++;
2465 		p_info->usage.free_cnt_iov++;
2466 
2467 		/* TODO - if SBs aren't really the limiting factor,
2468 		 * then it might not be accurate [in the since that
2469 		 * we might not need decrement the feature].
2470 		 */
2471 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2472 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2473 	} else {
2474 		p_block->status |= ECORE_IGU_STATUS_PF;
2475 		p_block->function_id = p_hwfn->rel_pf_id;
2476 		p_block->is_pf = 1;
2477 		p_block->vector_number = sb_id + 1;
2478 
2479 		p_info->usage.cnt++;
2480 		p_info->usage.free_cnt++;
2481 		p_info->usage.iov_cnt--;
2482 		p_info->usage.free_cnt_iov--;
2483 
2484 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2485 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2486 	}
2487 
2488 	/* Update the IGU and CAU with the new configuration */
2489 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2490 		  p_block->function_id);
2491 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2492 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2493 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2494 		  p_block->vector_number);
2495 
2496 	ecore_wr(p_hwfn, p_ptt,
2497 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2498 		 val);
2499 
2500 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2501 			      igu_sb_id, vf_num,
2502 			      p_block->is_pf ? 0 : 1);
2503 
2504 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2505 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2506 		   igu_sb_id, p_block->function_id,
2507 		   p_block->is_pf, p_block->vector_number);
2508 
2509 	return ECORE_SUCCESS;
2510 }
2511 
2512 /**
2513  * @brief Initialize igu runtime registers
2514  *
2515  * @param p_hwfn
2516  */
2517 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2518 {
2519 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2520 
2521 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2522 }
2523 
2524 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2525 			  IGU_CMD_INT_ACK_BASE)
2526 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2527 			  IGU_CMD_INT_ACK_BASE)
2528 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2529 {
2530 	u32 intr_status_hi = 0, intr_status_lo = 0;
2531 	u64 intr_status = 0;
2532 
2533 	intr_status_lo = REG_RD(p_hwfn,
2534 				GTT_BAR0_MAP_REG_IGU_CMD +
2535 				LSB_IGU_CMD_ADDR * 8);
2536 	intr_status_hi = REG_RD(p_hwfn,
2537 				GTT_BAR0_MAP_REG_IGU_CMD +
2538 				MSB_IGU_CMD_ADDR * 8);
2539 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2540 
2541 	return intr_status;
2542 }
2543 
2544 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2545 {
2546 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2547 	p_hwfn->b_sp_dpc_enabled = true;
2548 }
2549 
2550 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2551 {
2552 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2553 	if (!p_hwfn->sp_dpc)
2554 		return ECORE_NOMEM;
2555 
2556 	return ECORE_SUCCESS;
2557 }
2558 
2559 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2560 {
2561 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2562 	p_hwfn->sp_dpc = OSAL_NULL;
2563 }
2564 
2565 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2566 				     struct ecore_ptt *p_ptt)
2567 {
2568 	enum _ecore_status_t rc = ECORE_SUCCESS;
2569 
2570 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2571 	if (rc != ECORE_SUCCESS) {
2572 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2573 		return rc;
2574 	}
2575 
2576 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2577 	if (rc != ECORE_SUCCESS) {
2578 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2579 		return rc;
2580 	}
2581 
2582 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2583 	if (rc != ECORE_SUCCESS)
2584 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2585 
2586 	return rc;
2587 }
2588 
2589 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2590 {
2591 	ecore_int_sp_sb_free(p_hwfn);
2592 	ecore_int_sb_attn_free(p_hwfn);
2593 	ecore_int_sp_dpc_free(p_hwfn);
2594 }
2595 
2596 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2597 {
2598 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2599 		return;
2600 
2601 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2602 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2603 	ecore_int_sp_dpc_setup(p_hwfn);
2604 }
2605 
2606 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2607 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2608 {
2609 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2610 
2611 	if (!p_igu_info || !p_sb_cnt_info)
2612 		return;
2613 
2614 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2615 		    sizeof(*p_sb_cnt_info));
2616 }
2617 
2618 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2619 {
2620 	int i;
2621 
2622 	for_each_hwfn(p_dev, i)
2623 		p_dev->hwfns[i].b_int_requested = false;
2624 }
2625 
2626 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2627 {
2628 	p_dev->attn_clr_en = clr_enable;
2629 }
2630 
2631 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2632 					     struct ecore_ptt *p_ptt,
2633 					     u8 timer_res, u16 sb_id, bool tx)
2634 {
2635 	struct cau_sb_entry sb_entry;
2636 	enum _ecore_status_t rc;
2637 
2638 	if (!p_hwfn->hw_init_done) {
2639 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2640 		return ECORE_INVAL;
2641 	}
2642 
2643 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2644 				 sb_id * sizeof(u64),
2645 				 (u64)(osal_uintptr_t)&sb_entry, 2,
2646 				 OSAL_NULL /* default parameters */);
2647 	if (rc != ECORE_SUCCESS) {
2648 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2649 		return rc;
2650 	}
2651 
2652 	if (tx)
2653 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2654 	else
2655 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2656 
2657 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2658 				 (u64)(osal_uintptr_t)&sb_entry,
2659 				 CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2660 				 OSAL_NULL /* default parameters */);
2661 	if (rc != ECORE_SUCCESS) {
2662 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2663 		return rc;
2664 	}
2665 
2666 	return rc;
2667 }
2668 
2669 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2670 					  struct ecore_ptt *p_ptt,
2671 					  struct ecore_sb_info *p_sb,
2672 					  struct ecore_sb_info_dbg *p_info)
2673 {
2674 	u16 sbid = p_sb->igu_sb_id;
2675 	int i;
2676 
2677 	if (IS_VF(p_hwfn->p_dev))
2678 		return ECORE_INVAL;
2679 
2680 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2681 		return ECORE_INVAL;
2682 
2683 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2684 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2685 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2686 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2687 
2688 	for (i = 0; i < PIS_PER_SB_E4; i++)
2689 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2690 					      CAU_REG_PI_MEMORY +
2691 					      sbid * 4 * PIS_PER_SB_E4 + i * 4);
2692 
2693 	return ECORE_SUCCESS;
2694 }
2695