xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_dev.c (revision e0c4386e7e71d93b0edc0c8fa156263fc4a8b0b6)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_dev.c
30  */
31 #include <sys/cdefs.h>
32 #include "bcm_osal.h"
33 #include "reg_addr.h"
34 #include "ecore_gtt_reg_addr.h"
35 #include "ecore.h"
36 #include "ecore_chain.h"
37 #include "ecore_status.h"
38 #include "ecore_hw.h"
39 #include "ecore_rt_defs.h"
40 #include "ecore_init_ops.h"
41 #include "ecore_int.h"
42 #include "ecore_cxt.h"
43 #include "ecore_spq.h"
44 #include "ecore_init_fw_funcs.h"
45 #include "ecore_sp_commands.h"
46 #include "ecore_dev_api.h"
47 #include "ecore_sriov.h"
48 #include "ecore_vf.h"
49 #include "ecore_ll2.h"
50 #include "ecore_fcoe.h"
51 #include "ecore_iscsi.h"
52 #include "ecore_ooo.h"
53 #include "ecore_mcp.h"
54 #include "ecore_hw_defs.h"
55 #include "mcp_public.h"
56 #include "ecore_rdma.h"
57 #include "ecore_iro.h"
58 #include "nvm_cfg.h"
59 #include "ecore_dev_api.h"
60 #include "ecore_dcbx.h"
61 #include "pcics_reg_driver.h"
62 #include "ecore_l2.h"
63 #ifndef LINUX_REMOVE
64 #include "ecore_tcp_ip.h"
65 #endif
66 
67 #ifdef _NTDDK_
68 #pragma warning(push)
69 #pragma warning(disable : 28167)
70 #pragma warning(disable : 28123)
71 #endif
72 
73 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
74  * registers involved are not split and thus configuration is a race where
75  * some of the PFs configuration might be lost.
76  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
77  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
78  * there's more than a single compiled ecore component in system].
79  */
80 static osal_spinlock_t qm_lock;
81 static u32 qm_lock_ref_cnt;
82 
83 void ecore_set_ilt_page_size(struct ecore_dev *p_dev, u8 ilt_page_size)
84 {
85 	p_dev->ilt_page_size = ilt_page_size;
86 }
87 
88 /******************** Doorbell Recovery *******************/
89 /* The doorbell recovery mechanism consists of a list of entries which represent
90  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
91  * entity needs to register with the mechanism and provide the parameters
92  * describing it's doorbell, including a location where last used doorbell data
93  * can be found. The doorbell execute function will traverse the list and
94  * doorbell all of the registered entries.
95  */
96 struct ecore_db_recovery_entry {
97 	osal_list_entry_t	list_entry;
98 	void OSAL_IOMEM		*db_addr;
99 	void			*db_data;
100 	enum ecore_db_rec_width	db_width;
101 	enum ecore_db_rec_space	db_space;
102 	u8			hwfn_idx;
103 };
104 
105 /* display a single doorbell recovery entry */
106 static void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
107 				struct ecore_db_recovery_entry *db_entry,
108 				char *action)
109 {
110 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
111 		   action, db_entry, db_entry->db_addr, db_entry->db_data,
112 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
113 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
114 		   db_entry->hwfn_idx);
115 }
116 
117 /* doorbell address sanity (address within doorbell bar range) */
118 static bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
119 			 void *db_data)
120 {
121 	/* make sure doorbell address  is within the doorbell bar */
122 	if (db_addr < p_dev->doorbells || (u8 *)db_addr >
123 			(u8 *)p_dev->doorbells + p_dev->db_size) {
124 		OSAL_WARN(true,
125 			  "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
126 			  db_addr, p_dev->doorbells,
127 			  (u8 *)p_dev->doorbells + p_dev->db_size);
128 		return false;
129 	}
130 
131 	/* make sure doorbell data pointer is not null */
132 	if (!db_data) {
133 		OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
134 		return false;
135 	}
136 
137 	return true;
138 }
139 
140 /* find hwfn according to the doorbell address */
141 static struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
142 					  void OSAL_IOMEM *db_addr)
143 {
144 	struct ecore_hwfn *p_hwfn;
145 
146 	/* in CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
147 	if (ECORE_IS_CMT(p_dev))
148 		p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
149 			&p_dev->hwfns[0] : &p_dev->hwfns[1];
150 	else
151 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
152 
153 	return p_hwfn;
154 }
155 
156 /* add a new entry to the doorbell recovery mechanism */
157 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
158 					   void OSAL_IOMEM *db_addr,
159 					   void *db_data,
160 					   enum ecore_db_rec_width db_width,
161 					   enum ecore_db_rec_space db_space)
162 {
163 	struct ecore_db_recovery_entry *db_entry;
164 	struct ecore_hwfn *p_hwfn;
165 
166 	/* shortcircuit VFs, for now */
167 	if (IS_VF(p_dev)) {
168 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
169 		return ECORE_SUCCESS;
170 	}
171 
172 	/* sanitize doorbell address */
173 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
174 		return ECORE_INVAL;
175 
176 	/* obtain hwfn from doorbell address */
177 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
178 
179 	/* create entry */
180 	db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
181 	if (!db_entry) {
182 		DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
183 		return ECORE_NOMEM;
184 	}
185 
186 	/* populate entry */
187 	db_entry->db_addr = db_addr;
188 	db_entry->db_data = db_data;
189 	db_entry->db_width = db_width;
190 	db_entry->db_space = db_space;
191 	db_entry->hwfn_idx = p_hwfn->my_id;
192 
193 	/* display */
194 	ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
195 
196 	/* protect the list */
197 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
198 	OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
199 			    &p_hwfn->db_recovery_info.list);
200 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
201 
202 	return ECORE_SUCCESS;
203 }
204 
205 /* remove an entry from the doorbell recovery mechanism */
206 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
207 					   void OSAL_IOMEM *db_addr,
208 					   void *db_data)
209 {
210 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
211 	enum _ecore_status_t rc = ECORE_INVAL;
212 	struct ecore_hwfn *p_hwfn;
213 
214 	/* shortcircuit VFs, for now */
215 	if (IS_VF(p_dev)) {
216 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
217 		return ECORE_SUCCESS;
218 	}
219 
220 	/* sanitize doorbell address */
221 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
222 		return ECORE_INVAL;
223 
224 	/* obtain hwfn from doorbell address */
225 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
226 
227 	/* protect the list */
228 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
229 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
230 				 &p_hwfn->db_recovery_info.list,
231 				 list_entry,
232 				 struct ecore_db_recovery_entry) {
233 		/* search according to db_data addr since db_addr is not unique (roce) */
234 		if (db_entry->db_data == db_data) {
235 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
236 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
237 					       &p_hwfn->db_recovery_info.list);
238 			rc = ECORE_SUCCESS;
239 			break;
240 		}
241 	}
242 
243 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
244 
245 	if (rc == ECORE_INVAL) {
246 		/*OSAL_WARN(true,*/
247 		DP_NOTICE(p_hwfn, false,
248 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
249 			  db_data, db_addr);
250 	} else
251 		OSAL_FREE(p_dev, db_entry);
252 
253 	return rc;
254 }
255 
256 /* initialize the doorbell recovery mechanism */
257 static enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
258 {
259 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
260 
261 	/* make sure db_size was set in p_dev */
262 	if (!p_hwfn->p_dev->db_size) {
263 		DP_ERR(p_hwfn->p_dev, "db_size not set\n");
264 		return ECORE_INVAL;
265 	}
266 
267 	OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
268 #ifdef CONFIG_ECORE_LOCK_ALLOC
269 	if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock))
270 		return ECORE_NOMEM;
271 #endif
272 	OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
273 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
274 
275 	return ECORE_SUCCESS;
276 }
277 
278 /* destroy the doorbell recovery mechanism */
279 static void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
280 {
281 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
282 
283 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
284 	if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
285 		DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
286 		while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
287 			db_entry = OSAL_LIST_FIRST_ENTRY(&p_hwfn->db_recovery_info.list,
288 							 struct ecore_db_recovery_entry,
289 							 list_entry);
290 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
291 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
292 					       &p_hwfn->db_recovery_info.list);
293 			OSAL_FREE(p_hwfn->p_dev, db_entry);
294 		}
295 	}
296 #ifdef CONFIG_ECORE_LOCK_ALLOC
297 	OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
298 #endif
299 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
300 }
301 
302 /* print the content of the doorbell recovery mechanism */
303 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
304 {
305 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
306 
307 	DP_NOTICE(p_hwfn, false,
308 		  "Dispalying doorbell recovery database. Counter was %d\n",
309 		  p_hwfn->db_recovery_info.db_recovery_counter);
310 
311 	/* protect the list */
312 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
313 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
314 				 &p_hwfn->db_recovery_info.list,
315 				 list_entry,
316 				 struct ecore_db_recovery_entry) {
317 		ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
318 	}
319 
320 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
321 }
322 
323 /* ring the doorbell of a single doorbell recovery entry */
324 static void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
325 			    struct ecore_db_recovery_entry *db_entry,
326 			    enum ecore_db_rec_exec db_exec)
327 {
328 	if (db_exec != DB_REC_ONCE) {
329 		/* Print according to width */
330 		if (db_entry->db_width == DB_REC_WIDTH_32B)
331 			DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
332 				   "%s doorbell address %p data %x\n",
333 				   db_exec == DB_REC_DRY_RUN ?
334 				   "would have rung" : "ringing",
335 				   db_entry->db_addr,
336 				   *(u32 *)db_entry->db_data);
337 		else
338 			DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
339 				   "%s doorbell address %p data %llx\n",
340 				   db_exec == DB_REC_DRY_RUN ?
341 				   "would have rung" : "ringing",
342 				   db_entry->db_addr,
343 				   (unsigned long long)*(u64 *)(db_entry->db_data));
344 	}
345 
346 	/* Sanity */
347 	if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
348 				 db_entry->db_data))
349 		return;
350 
351 	/* Flush the write combined buffer. Since there are multiple doorbelling
352 	 * entities using the same address, if we don't flush, a transaction
353 	 * could be lost.
354 	 */
355 	OSAL_WMB(p_hwfn->p_dev);
356 
357 	/* Ring the doorbell */
358 	if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
359 		if (db_entry->db_width == DB_REC_WIDTH_32B)
360 			DIRECT_REG_WR(p_hwfn, db_entry->db_addr, *(u32 *)(db_entry->db_data));
361 		else
362 			DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, *(u64 *)(db_entry->db_data));
363 	}
364 
365 	/* Flush the write combined buffer. Next doorbell may come from a
366 	 * different entity to the same address...
367 	 */
368 	OSAL_WMB(p_hwfn->p_dev);
369 }
370 
371 /* traverse the doorbell recovery entry list and ring all the doorbells */
372 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
373 			       enum ecore_db_rec_exec db_exec)
374 {
375 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
376 
377 	if (db_exec != DB_REC_ONCE) {
378 		DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
379 			  p_hwfn->db_recovery_info.db_recovery_counter);
380 
381 		/* track amount of times recovery was executed */
382 		p_hwfn->db_recovery_info.db_recovery_counter++;
383 	}
384 
385 	/* protect the list */
386 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
387 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
388 				 &p_hwfn->db_recovery_info.list,
389 				 list_entry,
390 				 struct ecore_db_recovery_entry) {
391 		ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
392 		if (db_exec == DB_REC_ONCE)
393 			break;
394 	}
395 
396 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
397 }
398 /******************** Doorbell Recovery end ****************/
399 
400 /********************************** NIG LLH ***********************************/
401 
402 enum ecore_llh_filter_type {
403 	ECORE_LLH_FILTER_TYPE_MAC,
404 	ECORE_LLH_FILTER_TYPE_PROTOCOL,
405 };
406 
407 struct ecore_llh_mac_filter {
408 	u8 addr[ETH_ALEN];
409 };
410 
411 struct ecore_llh_protocol_filter {
412 	enum ecore_llh_prot_filter_type_t type;
413 	u16 source_port_or_eth_type;
414 	u16 dest_port;
415 };
416 
417 union ecore_llh_filter {
418 	struct ecore_llh_mac_filter mac;
419 	struct ecore_llh_protocol_filter protocol;
420 };
421 
422 struct ecore_llh_filter_info {
423 	bool b_enabled;
424 	u32 ref_cnt;
425 	enum ecore_llh_filter_type type;
426 	union ecore_llh_filter filter;
427 };
428 
429 struct ecore_llh_info {
430 	/* Number of LLH filters banks */
431 	u8 num_ppfid;
432 
433 #define MAX_NUM_PPFID	8
434 	u8 ppfid_array[MAX_NUM_PPFID];
435 
436 	/* Array of filters arrays:
437 	 * "num_ppfid" elements of filters banks, where each is an array of
438 	 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
439 	 */
440 	struct ecore_llh_filter_info **pp_filters;
441 };
442 
443 static void ecore_llh_free(struct ecore_dev *p_dev)
444 {
445 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
446 	u32 i;
447 
448 	if (p_llh_info != OSAL_NULL) {
449 		if (p_llh_info->pp_filters != OSAL_NULL) {
450 			for (i = 0; i < p_llh_info->num_ppfid; i++)
451 				OSAL_FREE(p_dev, p_llh_info->pp_filters[i]);
452 		}
453 
454 		OSAL_FREE(p_dev, p_llh_info->pp_filters);
455 	}
456 
457 	OSAL_FREE(p_dev, p_llh_info);
458 	p_dev->p_llh_info = OSAL_NULL;
459 }
460 
461 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev)
462 {
463 	struct ecore_llh_info *p_llh_info;
464 	u32 size; u8 i;
465 
466 	p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info));
467 	if (!p_llh_info)
468 		return ECORE_NOMEM;
469 	p_dev->p_llh_info = p_llh_info;
470 
471 	for (i = 0; i < MAX_NUM_PPFID; i++) {
472 		if (!(p_dev->ppfid_bitmap & (0x1 << i)))
473 			continue;
474 
475 		p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
476 		DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n",
477 			   p_llh_info->num_ppfid, i);
478 		p_llh_info->num_ppfid++;
479 	}
480 
481 	size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
482 	p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size);
483 	if (!p_llh_info->pp_filters)
484 		return ECORE_NOMEM;
485 
486 	size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
487 	       sizeof(**p_llh_info->pp_filters);
488 	for (i = 0; i < p_llh_info->num_ppfid; i++) {
489 		p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL,
490 							size);
491 		if (!p_llh_info->pp_filters[i])
492 			return ECORE_NOMEM;
493 	}
494 
495 	return ECORE_SUCCESS;
496 }
497 
498 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev,
499 						    u8 ppfid, u8 filter_idx,
500 						    const char *action)
501 {
502 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
503 
504 	if (ppfid >= p_llh_info->num_ppfid) {
505 		DP_NOTICE(p_dev, false,
506 			  "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
507 			  action, ppfid, p_llh_info->num_ppfid);
508 		return ECORE_INVAL;
509 	}
510 
511 	if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
512 		DP_NOTICE(p_dev, false,
513 			  "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
514 			  action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
515 		return ECORE_INVAL;
516 	}
517 
518 	return ECORE_SUCCESS;
519 }
520 
521 #define ECORE_LLH_INVALID_FILTER_IDX	0xff
522 
523 static enum _ecore_status_t
524 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid,
525 			       union ecore_llh_filter *p_filter,
526 			       u8 *p_filter_idx)
527 {
528 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
529 	struct ecore_llh_filter_info *p_filters;
530 	enum _ecore_status_t rc;
531 	u8 i;
532 
533 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search");
534 	if (rc != ECORE_SUCCESS)
535 		return rc;
536 
537 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
538 
539 	p_filters = p_llh_info->pp_filters[ppfid];
540 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
541 		if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter,
542 				 sizeof(*p_filter))) {
543 			*p_filter_idx = i;
544 			break;
545 		}
546 	}
547 
548 	return ECORE_SUCCESS;
549 }
550 
551 static enum _ecore_status_t
552 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid,
553 			      u8 *p_filter_idx)
554 {
555 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
556 	struct ecore_llh_filter_info *p_filters;
557 	enum _ecore_status_t rc;
558 	u8 i;
559 
560 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx");
561 	if (rc != ECORE_SUCCESS)
562 		return rc;
563 
564 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
565 
566 	p_filters = p_llh_info->pp_filters[ppfid];
567 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
568 		if (!p_filters[i].b_enabled) {
569 			*p_filter_idx = i;
570 			break;
571 		}
572 	}
573 
574 	return ECORE_SUCCESS;
575 }
576 
577 static enum _ecore_status_t
578 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx,
579 			      enum ecore_llh_filter_type type,
580 			      union ecore_llh_filter *p_filter, u32 *p_ref_cnt)
581 {
582 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
583 	struct ecore_llh_filter_info *p_filters;
584 	enum _ecore_status_t rc;
585 
586 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add");
587 	if (rc != ECORE_SUCCESS)
588 		return rc;
589 
590 	p_filters = p_llh_info->pp_filters[ppfid];
591 	if (!p_filters[filter_idx].ref_cnt) {
592 		p_filters[filter_idx].b_enabled = true;
593 		p_filters[filter_idx].type = type;
594 		OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter,
595 			    sizeof(p_filters[filter_idx].filter));
596 	}
597 
598 	*p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
599 
600 	return ECORE_SUCCESS;
601 }
602 
603 static enum _ecore_status_t
604 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid,
605 			    enum ecore_llh_filter_type type,
606 			    union ecore_llh_filter *p_filter,
607 			    u8 *p_filter_idx, u32 *p_ref_cnt)
608 {
609 	enum _ecore_status_t rc;
610 
611 	/* Check if the same filter already exist */
612 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
613 					    p_filter_idx);
614 	if (rc != ECORE_SUCCESS)
615 		return rc;
616 
617 	/* Find a new entry in case of a new filter */
618 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
619 		rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx);
620 		if (rc != ECORE_SUCCESS)
621 			return rc;
622 	}
623 
624 	/* No free entry was found */
625 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
626 		DP_NOTICE(p_dev, false,
627 			  "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
628 			  ppfid);
629 		return ECORE_NORESOURCES;
630 	}
631 
632 	return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type,
633 					     p_filter, p_ref_cnt);
634 }
635 
636 static enum _ecore_status_t
637 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
638 				 u8 filter_idx, u32 *p_ref_cnt)
639 {
640 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
641 	struct ecore_llh_filter_info *p_filters;
642 	enum _ecore_status_t rc;
643 
644 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove");
645 	if (rc != ECORE_SUCCESS)
646 		return rc;
647 
648 	p_filters = p_llh_info->pp_filters[ppfid];
649 	if (!p_filters[filter_idx].ref_cnt) {
650 		DP_NOTICE(p_dev, false,
651 			  "LLH shadow: trying to remove a filter with ref_cnt=0\n");
652 		return ECORE_INVAL;
653 	}
654 
655 	*p_ref_cnt = --p_filters[filter_idx].ref_cnt;
656 	if (!p_filters[filter_idx].ref_cnt)
657 		OSAL_MEM_ZERO(&p_filters[filter_idx],
658 			      sizeof(p_filters[filter_idx]));
659 
660 	return ECORE_SUCCESS;
661 }
662 
663 static enum _ecore_status_t
664 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
665 			       union ecore_llh_filter *p_filter,
666 			       u8 *p_filter_idx, u32 *p_ref_cnt)
667 {
668 	enum _ecore_status_t rc;
669 
670 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
671 					    p_filter_idx);
672 	if (rc != ECORE_SUCCESS)
673 		return rc;
674 
675 	/* No matching filter was found */
676 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
677 		DP_NOTICE(p_dev, false,
678 			  "Failed to find a filter in the LLH shadow\n");
679 		return ECORE_INVAL;
680 	}
681 
682 	return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx,
683 						p_ref_cnt);
684 }
685 
686 static enum _ecore_status_t
687 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid)
688 {
689 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
690 	struct ecore_llh_filter_info *p_filters;
691 	enum _ecore_status_t rc;
692 
693 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all");
694 	if (rc != ECORE_SUCCESS)
695 		return rc;
696 
697 	p_filters = p_llh_info->pp_filters[ppfid];
698 	OSAL_MEM_ZERO(p_filters,
699 		      NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters));
700 
701 	return ECORE_SUCCESS;
702 }
703 
704 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev,
705 					    u8 rel_ppfid, u8 *p_abs_ppfid)
706 {
707 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
708 
709 	if (rel_ppfid >= p_llh_info->num_ppfid) {
710 		DP_NOTICE(p_dev, false,
711 			  "rel_ppfid %d is not valid, available indices are 0..%hhd\n",
712 			  rel_ppfid, (u8)(p_llh_info->num_ppfid - 1));
713 		return ECORE_INVAL;
714 	}
715 
716 	*p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid];
717 
718 	return ECORE_SUCCESS;
719 }
720 
721 static enum _ecore_status_t
722 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
723 {
724 	struct ecore_dev *p_dev = p_hwfn->p_dev;
725 	enum ecore_eng eng;
726 	u8 ppfid;
727 	enum _ecore_status_t rc;
728 
729 	rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt);
730 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
731 		DP_NOTICE(p_hwfn, false,
732 			  "Failed to get the engine affinity configuration\n");
733 		return rc;
734 	}
735 
736 	/* RoCE PF is bound to a single engine */
737 	if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
738 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
739 		rc = ecore_llh_set_roce_affinity(p_dev, eng);
740 		if (rc != ECORE_SUCCESS) {
741 			DP_NOTICE(p_dev, false,
742 				  "Failed to set the RoCE engine affinity\n");
743 			return rc;
744 		}
745 
746 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
747 			   "LLH: Set the engine affinity of RoCE packets as %d\n",
748 			   eng);
749 	}
750 
751 	/* Storage PF is bound to a single engine while L2 PF uses both */
752 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
753 	    ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
754 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
755 	else /* L2_PERSONALITY */
756 		eng = ECORE_BOTH_ENG;
757 
758 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
759 		rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
760 		if (rc != ECORE_SUCCESS) {
761 			DP_NOTICE(p_dev, false,
762 				  "Failed to set the engine affinity of ppfid %d\n",
763 				  ppfid);
764 			return rc;
765 		}
766 	}
767 
768 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
769 		   "LLH: Set the engine affinity of non-RoCE packets as %d\n",
770 		   eng);
771 
772 	return ECORE_SUCCESS;
773 }
774 
775 static enum _ecore_status_t
776 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
777 			   bool avoid_eng_affin)
778 {
779 	struct ecore_dev *p_dev = p_hwfn->p_dev;
780 	enum _ecore_status_t rc;
781 
782 	/* Backwards compatible mode:
783 	 * - RoCE packets     - Use engine 0.
784 	 * - Non-RoCE packets - Use connection based classification for L2 PFs,
785 	 *                      and engine 0 otherwise.
786 	 */
787 	if (avoid_eng_affin) {
788 		enum ecore_eng eng;
789 		u8 ppfid;
790 
791 		if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
792 			eng = ECORE_ENG0;
793 			rc = ecore_llh_set_roce_affinity(p_dev, eng);
794 			if (rc != ECORE_SUCCESS) {
795 				DP_NOTICE(p_dev, false,
796 					  "Failed to set the RoCE engine affinity\n");
797 				return rc;
798 			}
799 
800 			DP_VERBOSE(p_dev, ECORE_MSG_SP,
801 				   "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n",
802 				   eng);
803 		}
804 
805 		eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
806 		       ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0
807 							   : ECORE_BOTH_ENG;
808 		for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
809 			rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
810 			if (rc != ECORE_SUCCESS) {
811 				DP_NOTICE(p_dev, false,
812 					  "Failed to set the engine affinity of ppfid %d\n",
813 					  ppfid);
814 				return rc;
815 			}
816 		}
817 
818 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
819 			   "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n",
820 			   eng);
821 
822 		return ECORE_SUCCESS;
823 	}
824 
825 	return __ecore_llh_set_engine_affin(p_hwfn, p_ptt);
826 }
827 
828 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn,
829 						 struct ecore_ptt *p_ptt,
830 						 bool avoid_eng_affin)
831 {
832 	struct ecore_dev *p_dev = p_hwfn->p_dev;
833 	u8 ppfid, abs_ppfid;
834 	enum _ecore_status_t rc;
835 
836 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
837 		u32 addr;
838 
839 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
840 		if (rc != ECORE_SUCCESS)
841 			return rc;
842 
843 		addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
844 		ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
845 	}
846 
847 	if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
848 	    !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) {
849 		rc = ecore_llh_add_mac_filter(p_dev, 0,
850 					      p_hwfn->hw_info.hw_mac_addr);
851 		if (rc != ECORE_SUCCESS)
852 			DP_NOTICE(p_dev, false,
853 				  "Failed to add an LLH filter with the primary MAC\n");
854 	}
855 
856 	if (ECORE_IS_CMT(p_dev)) {
857 		rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin);
858 		if (rc != ECORE_SUCCESS)
859 			return rc;
860 	}
861 
862 	return ECORE_SUCCESS;
863 }
864 
865 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev)
866 {
867 	return p_dev->p_llh_info->num_ppfid;
868 }
869 
870 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev)
871 {
872 	return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0;
873 }
874 
875 /* TBD - should be removed when these definitions are available in reg_addr.h */
876 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK		0x3
877 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT		0
878 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK		0x3
879 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT	2
880 
881 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev,
882 						  u8 ppfid, enum ecore_eng eng)
883 {
884 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
885 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
886 	u32 addr, val, eng_sel;
887 	enum _ecore_status_t rc = ECORE_SUCCESS;
888 	u8 abs_ppfid;
889 
890 	if (p_ptt == OSAL_NULL)
891 		return ECORE_AGAIN;
892 
893 	if (!ECORE_IS_CMT(p_dev))
894 		goto out;
895 
896 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
897 	if (rc != ECORE_SUCCESS)
898 		goto out;
899 
900 	switch (eng) {
901 	case ECORE_ENG0:
902 		eng_sel = 0;
903 		break;
904 	case ECORE_ENG1:
905 		eng_sel = 1;
906 		break;
907 	case ECORE_BOTH_ENG:
908 		eng_sel = 2;
909 		break;
910 	default:
911 		DP_NOTICE(p_dev, false,
912 			  "Invalid affinity value for ppfid [%d]\n", eng);
913 		rc = ECORE_INVAL;
914 		goto out;
915 	}
916 
917 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
918 	val = ecore_rd(p_hwfn, p_ptt, addr);
919 	SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
920 	ecore_wr(p_hwfn, p_ptt, addr, val);
921 
922 	/* The iWARP affinity is set as the affinity of ppfid 0 */
923 	if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn))
924 		p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0;
925 out:
926 	ecore_ptt_release(p_hwfn, p_ptt);
927 
928 	return rc;
929 }
930 
931 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev,
932 						 enum ecore_eng eng)
933 {
934 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
935 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
936 	u32 addr, val, eng_sel;
937 	enum _ecore_status_t rc = ECORE_SUCCESS;
938 	u8 ppfid, abs_ppfid;
939 
940 	if (p_ptt == OSAL_NULL)
941 		return ECORE_AGAIN;
942 
943 	if (!ECORE_IS_CMT(p_dev))
944 		goto out;
945 
946 	switch (eng) {
947 	case ECORE_ENG0:
948 		eng_sel = 0;
949 		break;
950 	case ECORE_ENG1:
951 		eng_sel = 1;
952 		break;
953 	case ECORE_BOTH_ENG:
954 		eng_sel = 2;
955 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
956 			 0xf /* QP bit 15 */);
957 		break;
958 	default:
959 		DP_NOTICE(p_dev, false,
960 			  "Invalid affinity value for RoCE [%d]\n", eng);
961 		rc = ECORE_INVAL;
962 		goto out;
963 	}
964 
965 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
966 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
967 		if (rc != ECORE_SUCCESS)
968 			goto out;
969 
970 		addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
971 		val = ecore_rd(p_hwfn, p_ptt, addr);
972 		SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
973 		ecore_wr(p_hwfn, p_ptt, addr, val);
974 	}
975 out:
976 	ecore_ptt_release(p_hwfn, p_ptt);
977 
978 	return rc;
979 }
980 
981 struct ecore_llh_filter_e4_details {
982 	u64 value;
983 	u32 mode;
984 	u32 protocol_type;
985 	u32 hdr_sel;
986 	u32 enable;
987 };
988 
989 static enum _ecore_status_t
990 ecore_llh_access_filter_e4(struct ecore_hwfn *p_hwfn,
991 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx,
992 			   struct ecore_llh_filter_e4_details *p_details,
993 			   bool b_write_access)
994 {
995 	u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
996 	struct ecore_dmae_params params;
997 	enum _ecore_status_t rc;
998 	u32 addr;
999 
1000 	/* The NIG/LLH registers that are accessed in this function have only 16
1001 	 * rows which are exposed to a PF. I.e. only the 16 filters of its
1002 	 * default ppfid
1003 	 * Accessing filters of other ppfids requires pretending to other PFs,
1004 	 * and thus the usage of the ecore_ppfid_rd/wr() functions.
1005 	 */
1006 
1007 	/* Filter enable - should be done first when removing a filter */
1008 	if (b_write_access && !p_details->enable) {
1009 		addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1010 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1011 			       p_details->enable);
1012 	}
1013 
1014 	/* Filter value */
1015 	addr = NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 + 2 * filter_idx * 0x4;
1016 	OSAL_MEMSET(&params, 0, sizeof(params));
1017 
1018 	if (b_write_access) {
1019 		params.flags = ECORE_DMAE_FLAG_PF_DST;
1020 		params.dst_pfid = pfid;
1021 		rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
1022 					 (u64)(osal_uintptr_t)&p_details->value,
1023 					 addr, 2 /* size_in_dwords */, &params);
1024 	} else {
1025 		params.flags = ECORE_DMAE_FLAG_PF_SRC |
1026 			       ECORE_DMAE_FLAG_COMPLETION_DST;
1027 		params.src_pfid = pfid;
1028 		rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr,
1029 					 (u64)(osal_uintptr_t)&p_details->value,
1030 					 2 /* size_in_dwords */, &params);
1031 	}
1032 
1033 	if (rc != ECORE_SUCCESS)
1034 		return rc;
1035 
1036 	/* Filter mode */
1037 	addr = NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 + filter_idx * 0x4;
1038 	if (b_write_access)
1039 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode);
1040 	else
1041 		p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1042 						 addr);
1043 
1044 	/* Filter protocol type */
1045 	addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 + filter_idx * 0x4;
1046 	if (b_write_access)
1047 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1048 			       p_details->protocol_type);
1049 	else
1050 		p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt,
1051 							  abs_ppfid, addr);
1052 
1053 	/* Filter header select */
1054 	addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL_BB_K2 + filter_idx * 0x4;
1055 	if (b_write_access)
1056 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1057 			       p_details->hdr_sel);
1058 	else
1059 		p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1060 						    addr);
1061 
1062 	/* Filter enable - should be done last when adding a filter */
1063 	if (!b_write_access || p_details->enable) {
1064 		addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1065 		if (b_write_access)
1066 			ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1067 				       p_details->enable);
1068 		else
1069 			p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt,
1070 							   abs_ppfid, addr);
1071 	}
1072 
1073 	return ECORE_SUCCESS;
1074 }
1075 
1076 static enum _ecore_status_t
1077 ecore_llh_add_filter_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1078 			u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type,
1079 			u32 high, u32 low)
1080 {
1081 	struct ecore_llh_filter_e4_details filter_details;
1082 
1083 	filter_details.enable = 1;
1084 	filter_details.value = ((u64)high << 32) | low;
1085 	filter_details.hdr_sel = 0;
1086 	filter_details.protocol_type = filter_prot_type;
1087 	filter_details.mode = filter_prot_type ?
1088 			      1 : /* protocol-based classification */
1089 			      0;  /* MAC-address based classification */
1090 
1091 	return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1092 					  &filter_details,
1093 					  true /* write access */);
1094 }
1095 
1096 static enum _ecore_status_t
1097 ecore_llh_remove_filter_e4(struct ecore_hwfn *p_hwfn,
1098 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
1099 {
1100 	struct ecore_llh_filter_e4_details filter_details;
1101 
1102 	OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1103 
1104 	return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1105 					  &filter_details,
1106 					  true /* write access */);
1107 }
1108 
1109 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1110  * Should be removed when the function is implemented.
1111  */
1112 static enum _ecore_status_t
1113 ecore_llh_add_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1114 			struct ecore_ptt OSAL_UNUSED *p_ptt,
1115 			u8 OSAL_UNUSED abs_ppfid, u8 OSAL_UNUSED filter_idx,
1116 			u8 OSAL_UNUSED filter_prot_type, u32 OSAL_UNUSED high,
1117 			u32 OSAL_UNUSED low)
1118 {
1119 	ECORE_E5_MISSING_CODE;
1120 
1121 	return ECORE_NOTIMPL;
1122 }
1123 
1124 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1125  * Should be removed when the function is implemented.
1126  */
1127 static enum _ecore_status_t
1128 ecore_llh_remove_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1129 			   struct ecore_ptt OSAL_UNUSED *p_ptt,
1130 			   u8 OSAL_UNUSED abs_ppfid,
1131 			   u8 OSAL_UNUSED filter_idx)
1132 {
1133 	ECORE_E5_MISSING_CODE;
1134 
1135 	return ECORE_NOTIMPL;
1136 }
1137 
1138 static enum _ecore_status_t
1139 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1140 		     u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high,
1141 		     u32 low)
1142 {
1143 	if (ECORE_IS_E4(p_hwfn->p_dev))
1144 		return ecore_llh_add_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1145 					       filter_idx, filter_prot_type,
1146 					       high, low);
1147 	else /* E5 */
1148 		return ecore_llh_add_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1149 					       filter_idx, filter_prot_type,
1150 					       high, low);
1151 }
1152 
1153 static enum _ecore_status_t
1154 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1155 			u8 abs_ppfid, u8 filter_idx)
1156 {
1157 	if (ECORE_IS_E4(p_hwfn->p_dev))
1158 		return ecore_llh_remove_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1159 						  filter_idx);
1160 	else /* E5 */
1161 		return ecore_llh_remove_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1162 						  filter_idx);
1163 }
1164 
1165 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1166 					      u8 mac_addr[ETH_ALEN])
1167 {
1168 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1169 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1170 	union ecore_llh_filter filter;
1171 	u8 filter_idx, abs_ppfid;
1172 	u32 high, low, ref_cnt;
1173 	enum _ecore_status_t rc = ECORE_SUCCESS;
1174 
1175 	if (p_ptt == OSAL_NULL)
1176 		return ECORE_AGAIN;
1177 
1178 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1179 		goto out;
1180 
1181 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1182 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1183 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1184 					 ECORE_LLH_FILTER_TYPE_MAC,
1185 					 &filter, &filter_idx, &ref_cnt);
1186 	if (rc != ECORE_SUCCESS)
1187 		goto err;
1188 
1189 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1190 	if (rc != ECORE_SUCCESS)
1191 		goto err;
1192 
1193 	/* Configure the LLH only in case of a new the filter */
1194 	if (ref_cnt == 1) {
1195 		high = mac_addr[1] | (mac_addr[0] << 8);
1196 		low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1197 		      (mac_addr[2] << 24);
1198 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1199 					  0, high, low);
1200 		if (rc != ECORE_SUCCESS)
1201 			goto err;
1202 	}
1203 
1204 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1205 		   "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1206 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1207 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1208 		   ref_cnt);
1209 
1210 	goto out;
1211 
1212 err:
1213 	DP_NOTICE(p_dev, false,
1214 		  "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n",
1215 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1216 		  mac_addr[4], mac_addr[5], ppfid);
1217 out:
1218 	ecore_ptt_release(p_hwfn, p_ptt);
1219 
1220 	return rc;
1221 }
1222 
1223 static enum _ecore_status_t
1224 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev,
1225 				    enum ecore_llh_prot_filter_type_t type,
1226 				    u16 source_port_or_eth_type, u16 dest_port,
1227 				    u8 *str, osal_size_t str_len)
1228 {
1229 	switch (type) {
1230 	case ECORE_LLH_FILTER_ETHERTYPE:
1231 		OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x",
1232 			      source_port_or_eth_type);
1233 		break;
1234 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1235 		OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x",
1236 			      source_port_or_eth_type);
1237 		break;
1238 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1239 		OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x",
1240 			      source_port_or_eth_type);
1241 		break;
1242 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1243 		OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port);
1244 		break;
1245 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1246 		OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port);
1247 		break;
1248 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1249 		OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1250 			      source_port_or_eth_type, dest_port);
1251 		break;
1252 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1253 		OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1254 			      source_port_or_eth_type, dest_port);
1255 		break;
1256 	default:
1257 		DP_NOTICE(p_dev, true,
1258 			  "Non valid LLH protocol filter type %d\n", type);
1259 		return ECORE_INVAL;
1260 	}
1261 
1262 	return ECORE_SUCCESS;
1263 }
1264 
1265 static enum _ecore_status_t
1266 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev,
1267 				  enum ecore_llh_prot_filter_type_t type,
1268 				  u16 source_port_or_eth_type, u16 dest_port,
1269 				  u32 *p_high, u32 *p_low)
1270 {
1271 	*p_high = 0;
1272 	*p_low = 0;
1273 
1274 	switch (type) {
1275 	case ECORE_LLH_FILTER_ETHERTYPE:
1276 		*p_high = source_port_or_eth_type;
1277 		break;
1278 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1279 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1280 		*p_low = source_port_or_eth_type << 16;
1281 		break;
1282 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1283 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1284 		*p_low = dest_port;
1285 		break;
1286 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1287 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1288 		*p_low = (source_port_or_eth_type << 16) | dest_port;
1289 		break;
1290 	default:
1291 		DP_NOTICE(p_dev, true,
1292 			  "Non valid LLH protocol filter type %d\n", type);
1293 		return ECORE_INVAL;
1294 	}
1295 
1296 	return ECORE_SUCCESS;
1297 }
1298 
1299 enum _ecore_status_t
1300 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1301 			      enum ecore_llh_prot_filter_type_t type,
1302 			      u16 source_port_or_eth_type, u16 dest_port)
1303 {
1304 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1305 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1306 	u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1307 	union ecore_llh_filter filter;
1308 	u32 high, low, ref_cnt;
1309 	enum _ecore_status_t rc = ECORE_SUCCESS;
1310 
1311 	if (p_ptt == OSAL_NULL)
1312 		return ECORE_AGAIN;
1313 
1314 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1315 		goto out;
1316 
1317 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1318 						 source_port_or_eth_type,
1319 						 dest_port, str, sizeof(str));
1320 	if (rc != ECORE_SUCCESS)
1321 		goto err;
1322 
1323 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1324 	filter.protocol.type = type;
1325 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1326 	filter.protocol.dest_port = dest_port;
1327 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1328 					 ECORE_LLH_FILTER_TYPE_PROTOCOL,
1329 					 &filter, &filter_idx, &ref_cnt);
1330 	if (rc != ECORE_SUCCESS)
1331 		goto err;
1332 
1333 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1334 	if (rc != ECORE_SUCCESS)
1335 		goto err;
1336 
1337 	/* Configure the LLH only in case of a new the filter */
1338 	if (ref_cnt == 1) {
1339 		rc = ecore_llh_protocol_filter_to_hilo(p_dev, type,
1340 						       source_port_or_eth_type,
1341 						       dest_port, &high, &low);
1342 		if (rc != ECORE_SUCCESS)
1343 			goto err;
1344 
1345 		type_bitmap = 0x1 << type;
1346 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1347 					  type_bitmap, high, low);
1348 		if (rc != ECORE_SUCCESS)
1349 			goto err;
1350 	}
1351 
1352 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1353 		   "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1354 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1355 
1356 	goto out;
1357 
1358 err:
1359 	DP_NOTICE(p_hwfn, false,
1360 		  "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1361 		  str, ppfid);
1362 out:
1363 	ecore_ptt_release(p_hwfn, p_ptt);
1364 
1365 	return rc;
1366 }
1367 
1368 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1369 				 u8 mac_addr[ETH_ALEN])
1370 {
1371 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1372 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1373 	union ecore_llh_filter filter;
1374 	u8 filter_idx, abs_ppfid;
1375 	enum _ecore_status_t rc = ECORE_SUCCESS;
1376 	u32 ref_cnt;
1377 
1378 	if (p_ptt == OSAL_NULL)
1379 		return;
1380 
1381 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1382 		goto out;
1383 
1384 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1385 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1386 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1387 					    &ref_cnt);
1388 	if (rc != ECORE_SUCCESS)
1389 		goto err;
1390 
1391 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1392 	if (rc != ECORE_SUCCESS)
1393 		goto err;
1394 
1395 	/* Remove from the LLH in case the filter is not in use */
1396 	if (!ref_cnt) {
1397 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1398 					     filter_idx);
1399 		if (rc != ECORE_SUCCESS)
1400 			goto err;
1401 	}
1402 
1403 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1404 		   "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1405 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1406 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1407 		   ref_cnt);
1408 
1409 	goto out;
1410 
1411 err:
1412 	DP_NOTICE(p_dev, false,
1413 		  "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n",
1414 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1415 		  mac_addr[4], mac_addr[5], ppfid);
1416 out:
1417 	ecore_ptt_release(p_hwfn, p_ptt);
1418 }
1419 
1420 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1421 				      enum ecore_llh_prot_filter_type_t type,
1422 				      u16 source_port_or_eth_type,
1423 				      u16 dest_port)
1424 {
1425 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1426 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1427 	u8 filter_idx, abs_ppfid, str[32];
1428 	union ecore_llh_filter filter;
1429 	enum _ecore_status_t rc = ECORE_SUCCESS;
1430 	u32 ref_cnt;
1431 
1432 	if (p_ptt == OSAL_NULL)
1433 		return;
1434 
1435 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1436 		goto out;
1437 
1438 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1439 						 source_port_or_eth_type,
1440 						 dest_port, str, sizeof(str));
1441 	if (rc != ECORE_SUCCESS)
1442 		goto err;
1443 
1444 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1445 	filter.protocol.type = type;
1446 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1447 	filter.protocol.dest_port = dest_port;
1448 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1449 					    &ref_cnt);
1450 	if (rc != ECORE_SUCCESS)
1451 		goto err;
1452 
1453 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1454 	if (rc != ECORE_SUCCESS)
1455 		goto err;
1456 
1457 	/* Remove from the LLH in case the filter is not in use */
1458 	if (!ref_cnt) {
1459 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1460 					     filter_idx);
1461 		if (rc != ECORE_SUCCESS)
1462 			goto err;
1463 	}
1464 
1465 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1466 		   "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1467 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1468 
1469 	goto out;
1470 
1471 err:
1472 	DP_NOTICE(p_dev, false,
1473 		  "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1474 		  str, ppfid);
1475 out:
1476 	ecore_ptt_release(p_hwfn, p_ptt);
1477 }
1478 
1479 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid)
1480 {
1481 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1482 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1483 	u8 filter_idx, abs_ppfid;
1484 	enum _ecore_status_t rc = ECORE_SUCCESS;
1485 
1486 	if (p_ptt == OSAL_NULL)
1487 		return;
1488 
1489 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1490 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1491 		goto out;
1492 
1493 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1494 	if (rc != ECORE_SUCCESS)
1495 		goto out;
1496 
1497 	rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid);
1498 	if (rc != ECORE_SUCCESS)
1499 		goto out;
1500 
1501 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1502 	     filter_idx++) {
1503 		if (ECORE_IS_E4(p_dev))
1504 			rc = ecore_llh_remove_filter_e4(p_hwfn, p_ptt,
1505 							abs_ppfid, filter_idx);
1506 		else /* E5 */
1507 			rc = ecore_llh_remove_filter_e5(p_hwfn, p_ptt,
1508 							abs_ppfid, filter_idx);
1509 		if (rc != ECORE_SUCCESS)
1510 			goto out;
1511 	}
1512 out:
1513 	ecore_ptt_release(p_hwfn, p_ptt);
1514 }
1515 
1516 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev)
1517 {
1518 	u8 ppfid;
1519 
1520 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1521 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1522 		return;
1523 
1524 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++)
1525 		ecore_llh_clear_ppfid_filters(p_dev, ppfid);
1526 }
1527 
1528 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn,
1529 					 struct ecore_ptt *p_ptt, u32 addr,
1530 					 u32 val)
1531 {
1532 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1533 	u8 ppfid, abs_ppfid;
1534 	enum _ecore_status_t rc;
1535 
1536 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1537 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1538 		if (rc != ECORE_SUCCESS)
1539 			return rc;
1540 
1541 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val);
1542 	}
1543 
1544 	return ECORE_SUCCESS;
1545 }
1546 
1547 static enum _ecore_status_t
1548 ecore_llh_dump_ppfid_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1549 			u8 ppfid)
1550 {
1551 	struct ecore_llh_filter_e4_details filter_details;
1552 	u8 abs_ppfid, filter_idx;
1553 	u32 addr;
1554 	enum _ecore_status_t rc;
1555 
1556 	rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid);
1557 	if (rc != ECORE_SUCCESS)
1558 		return rc;
1559 
1560 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
1561 	DP_NOTICE(p_hwfn, false,
1562 		  "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n",
1563 		  p_hwfn->rel_pf_id, ppfid, abs_ppfid,
1564 		  ecore_rd(p_hwfn, p_ptt, addr));
1565 
1566 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1567 	     filter_idx++) {
1568 		OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1569 		rc =  ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1570 						 filter_idx, &filter_details,
1571 						 false /* read access */);
1572 		if (rc != ECORE_SUCCESS)
1573 			return rc;
1574 
1575 		DP_NOTICE(p_hwfn, false,
1576 			  "filter %2hhd: enable %d, value 0x%016llx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n",
1577 			  filter_idx, filter_details.enable,
1578 			  (unsigned long long)filter_details.value, filter_details.mode,
1579 			  filter_details.protocol_type, filter_details.hdr_sel);
1580 	}
1581 
1582 	return ECORE_SUCCESS;
1583 }
1584 
1585 static enum _ecore_status_t
1586 ecore_llh_dump_ppfid_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1587 			struct ecore_ptt OSAL_UNUSED *p_ptt,
1588 			u8 OSAL_UNUSED ppfid)
1589 {
1590 	ECORE_E5_MISSING_CODE;
1591 
1592 	return ECORE_NOTIMPL;
1593 }
1594 
1595 enum _ecore_status_t ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid)
1596 {
1597 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1598 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1599 	enum _ecore_status_t rc;
1600 
1601 	if (p_ptt == OSAL_NULL)
1602 		return ECORE_AGAIN;
1603 
1604 	if (ECORE_IS_E4(p_dev))
1605 		rc = ecore_llh_dump_ppfid_e4(p_hwfn, p_ptt, ppfid);
1606 	else /* E5 */
1607 		rc = ecore_llh_dump_ppfid_e5(p_hwfn, p_ptt, ppfid);
1608 
1609 	ecore_ptt_release(p_hwfn, p_ptt);
1610 
1611 	return rc;
1612 }
1613 
1614 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev)
1615 {
1616 	u8 ppfid;
1617 	enum _ecore_status_t rc;
1618 
1619 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1620 		rc = ecore_llh_dump_ppfid(p_dev, ppfid);
1621 		if (rc != ECORE_SUCCESS)
1622 			return rc;
1623 	}
1624 
1625 	return ECORE_SUCCESS;
1626 }
1627 
1628 /******************************* NIG LLH - End ********************************/
1629 
1630 /* Configurable */
1631 #define ECORE_MIN_DPIS		(4)  /* The minimal number of DPIs required to
1632 				      * load the driver. The number was
1633 				      * arbitrarily set.
1634 				      */
1635 
1636 /* Derived */
1637 #define ECORE_MIN_PWM_REGION	(ECORE_WID_SIZE * ECORE_MIN_DPIS)
1638 
1639 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
1640 			     struct ecore_ptt *p_ptt,
1641 			     enum BAR_ID bar_id)
1642 {
1643 	u32 bar_reg = (bar_id == BAR_ID_0 ?
1644 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1645 	u32 val;
1646 
1647 	if (IS_VF(p_hwfn->p_dev))
1648 		return ecore_vf_hw_bar_size(p_hwfn, bar_id);
1649 
1650 	val = ecore_rd(p_hwfn, p_ptt, bar_reg);
1651 	if (val)
1652 		return 1 << (val + 15);
1653 
1654 	/* The above registers were updated in the past only in CMT mode. Since
1655 	 * they were found to be useful MFW started updating them from 8.7.7.0.
1656 	 * In older MFW versions they are set to 0 which means disabled.
1657 	 */
1658 	if (ECORE_IS_CMT(p_hwfn->p_dev)) {
1659 		DP_INFO(p_hwfn,
1660 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1661 		return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1662 	} else {
1663 		DP_INFO(p_hwfn,
1664 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1665 		return 512 * 1024;
1666 	}
1667 }
1668 
1669 void ecore_init_dp(struct ecore_dev	*p_dev,
1670 		   u32			dp_module,
1671 		   u8			dp_level,
1672 		   void		 *dp_ctx)
1673 {
1674 	u32 i;
1675 
1676 	p_dev->dp_level = dp_level;
1677 	p_dev->dp_module = dp_module;
1678 	p_dev->dp_ctx = dp_ctx;
1679 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1680 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1681 
1682 		p_hwfn->dp_level = dp_level;
1683 		p_hwfn->dp_module = dp_module;
1684 		p_hwfn->dp_ctx = dp_ctx;
1685 	}
1686 }
1687 
1688 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev)
1689 {
1690 	u8 i;
1691 
1692 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1693 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1694 
1695 		p_hwfn->p_dev = p_dev;
1696 		p_hwfn->my_id = i;
1697 		p_hwfn->b_active = false;
1698 
1699 #ifdef CONFIG_ECORE_LOCK_ALLOC
1700 		if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock))
1701 			goto handle_err;
1702 #endif
1703 		OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock);
1704 	}
1705 
1706 	/* hwfn 0 is always active */
1707 	p_dev->hwfns[0].b_active = true;
1708 
1709 	/* set the default cache alignment to 128 (may be overridden later) */
1710 	p_dev->cache_shift = 7;
1711 
1712 	p_dev->ilt_page_size = ECORE_DEFAULT_ILT_PAGE_SIZE;
1713 
1714 	return ECORE_SUCCESS;
1715 #ifdef CONFIG_ECORE_LOCK_ALLOC
1716 handle_err:
1717 	while (--i) {
1718 		struct ecore_hwfn *p_hwfn = OSAL_NULL;
1719 
1720 		p_hwfn = &p_dev->hwfns[i];
1721 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
1722 	}
1723 	return ECORE_NOMEM;
1724 #endif
1725 }
1726 
1727 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
1728 {
1729 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1730 
1731 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
1732 	qm_info->qm_pq_params = OSAL_NULL;
1733 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
1734 	qm_info->qm_vport_params = OSAL_NULL;
1735 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
1736 	qm_info->qm_port_params = OSAL_NULL;
1737 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
1738 	qm_info->wfq_data = OSAL_NULL;
1739 }
1740 
1741 void ecore_resc_free(struct ecore_dev *p_dev)
1742 {
1743 	int i;
1744 
1745 	if (IS_VF(p_dev)) {
1746 		for_each_hwfn(p_dev, i)
1747 			ecore_l2_free(&p_dev->hwfns[i]);
1748 		return;
1749 	}
1750 
1751 	OSAL_FREE(p_dev, p_dev->fw_data);
1752 	p_dev->fw_data = OSAL_NULL;
1753 
1754 	OSAL_FREE(p_dev, p_dev->reset_stats);
1755 	p_dev->reset_stats = OSAL_NULL;
1756 
1757 	ecore_llh_free(p_dev);
1758 
1759 	for_each_hwfn(p_dev, i) {
1760 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1761 
1762 		ecore_cxt_mngr_free(p_hwfn);
1763 		ecore_qm_info_free(p_hwfn);
1764 		ecore_spq_free(p_hwfn);
1765 		ecore_eq_free(p_hwfn);
1766 		ecore_consq_free(p_hwfn);
1767 		ecore_int_free(p_hwfn);
1768 #ifdef CONFIG_ECORE_LL2
1769 		ecore_ll2_free(p_hwfn);
1770 #endif
1771 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1772 			ecore_fcoe_free(p_hwfn);
1773 
1774 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1775 			ecore_iscsi_free(p_hwfn);
1776 			ecore_ooo_free(p_hwfn);
1777 		}
1778 
1779 #ifdef CONFIG_ECORE_ROCE
1780 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1781 			ecore_rdma_info_free(p_hwfn);
1782 #endif
1783 		ecore_iov_free(p_hwfn);
1784 		ecore_l2_free(p_hwfn);
1785 		ecore_dmae_info_free(p_hwfn);
1786 		ecore_dcbx_info_free(p_hwfn);
1787 		/* @@@TBD Flush work-queue ?*/
1788 
1789 		/* destroy doorbell recovery mechanism */
1790 		ecore_db_recovery_teardown(p_hwfn);
1791 	}
1792 }
1793 
1794 /******************** QM initialization *******************/
1795 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
1796 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
1797 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
1798 
1799 /* determines the physical queue flags for a given PF. */
1800 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
1801 {
1802 	u32 flags;
1803 
1804 	/* common flags */
1805 	flags = PQ_FLAGS_LB;
1806 
1807 	/* feature flags */
1808 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
1809 		flags |= PQ_FLAGS_VFS;
1810 	if (IS_ECORE_DCQCN(p_hwfn))
1811 		flags |= PQ_FLAGS_RLS;
1812 
1813 	/* protocol flags */
1814 	switch (p_hwfn->hw_info.personality) {
1815 	case ECORE_PCI_ETH:
1816 		flags |= PQ_FLAGS_MCOS;
1817 		break;
1818 	case ECORE_PCI_FCOE:
1819 		flags |= PQ_FLAGS_OFLD;
1820 		break;
1821 	case ECORE_PCI_ISCSI:
1822 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1823 		break;
1824 	case ECORE_PCI_ETH_ROCE:
1825 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1826 		break;
1827 	case ECORE_PCI_ETH_IWARP:
1828 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1829 		break;
1830 	default:
1831 		DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
1832 		return 0;
1833 	}
1834 
1835 	return flags;
1836 }
1837 
1838 /* Getters for resource amounts necessary for qm initialization */
1839 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
1840 {
1841 	return p_hwfn->hw_info.num_hw_tc;
1842 }
1843 
1844 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
1845 {
1846 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
1847 }
1848 
1849 #define NUM_DEFAULT_RLS 1
1850 
1851 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
1852 {
1853 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
1854 
1855 	/* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
1856 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
1857 				     (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
1858 						     ROCE_DCQCN_RP_MAX_QPS));
1859 
1860 	/* make sure after we reserve the default and VF rls we'll have something left */
1861 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
1862 		if (IS_ECORE_DCQCN(p_hwfn))
1863 			DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
1864 		return 0;
1865 	}
1866 
1867 	/* subtract rls necessary for VFs and one default one for the PF */
1868 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1869 
1870 	return num_pf_rls;
1871 }
1872 
1873 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
1874 {
1875 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1876 
1877 	/* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
1878 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1879 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
1880 }
1881 
1882 /* calc amount of PQs according to the requested flags */
1883 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
1884 {
1885 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1886 
1887 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1888 	       (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
1889 	       (!!(PQ_FLAGS_LB & pq_flags)) +
1890 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
1891 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
1892 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
1893 	       (!!(PQ_FLAGS_LLT & pq_flags)) +
1894 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
1895 }
1896 
1897 /* initialize the top level QM params */
1898 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
1899 {
1900 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1901 	bool four_port;
1902 
1903 	/* pq and vport bases for this PF */
1904 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
1905 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
1906 
1907 	/* rate limiting and weighted fair queueing are always enabled */
1908 	qm_info->vport_rl_en = 1;
1909 	qm_info->vport_wfq_en = 1;
1910 
1911 	/* TC config is different for AH 4 port */
1912 	four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1913 
1914 	/* in AH 4 port we have fewer TCs per port */
1915 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
1916 
1917 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
1918 	if (!qm_info->ooo_tc)
1919 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
1920 }
1921 
1922 /* initialize qm vport params */
1923 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
1924 {
1925 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1926 	u8 i;
1927 
1928 	/* all vports participate in weighted fair queueing */
1929 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
1930 		qm_info->qm_vport_params[i].vport_wfq = 1;
1931 }
1932 
1933 /* initialize qm port params */
1934 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
1935 {
1936 	/* Initialize qm port parameters */
1937 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
1938 
1939 	/* indicate how ooo and high pri traffic is dealt with */
1940 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1941 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
1942 
1943 	for (i = 0; i < num_ports; i++) {
1944 		struct init_qm_port_params *p_qm_port =
1945 			&p_hwfn->qm_info.qm_port_params[i];
1946 
1947 		p_qm_port->active = 1;
1948 		p_qm_port->active_phys_tcs = active_phys_tcs;
1949 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
1950 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
1951 	}
1952 }
1953 
1954 /* Reset the params which must be reset for qm init. QM init may be called as
1955  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1956  * params may be affected by the init but would simply recalculate to the same
1957  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1958  * affected as these amounts stay the same.
1959  */
1960 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
1961 {
1962 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1963 
1964 	qm_info->num_pqs = 0;
1965 	qm_info->num_vports = 0;
1966 	qm_info->num_pf_rls = 0;
1967 	qm_info->num_vf_pqs = 0;
1968 	qm_info->first_vf_pq = 0;
1969 	qm_info->first_mcos_pq = 0;
1970 	qm_info->first_rl_pq = 0;
1971 }
1972 
1973 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
1974 {
1975 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1976 
1977 	qm_info->num_vports++;
1978 
1979 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1980 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
1981 }
1982 
1983 /* initialize a single pq and manage qm_info resources accounting.
1984  * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
1985  * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
1986  */
1987 
1988 /* flags for pq init */
1989 #define PQ_INIT_SHARE_VPORT	(1 << 0)
1990 #define PQ_INIT_PF_RL		(1 << 1)
1991 #define PQ_INIT_VF_RL		(1 << 2)
1992 
1993 /* defines for pq init */
1994 #define PQ_INIT_DEFAULT_WRR_GROUP	1
1995 #define PQ_INIT_DEFAULT_TC		0
1996 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
1997 
1998 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
1999 			     struct ecore_qm_info *qm_info,
2000 			     u8 tc, u32 pq_init_flags)
2001 {
2002 	u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
2003 
2004 	if (pq_idx > max_pq)
2005 		DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
2006 
2007 	/* init pq params */
2008 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
2009 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
2010 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
2011 	qm_info->qm_pq_params[pq_idx].rl_valid =
2012 		(pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
2013 
2014 	/* qm params accounting */
2015 	qm_info->num_pqs++;
2016 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
2017 		qm_info->num_vports++;
2018 
2019 	if (pq_init_flags & PQ_INIT_PF_RL)
2020 		qm_info->num_pf_rls++;
2021 
2022 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
2023 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
2024 
2025 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
2026 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
2027 }
2028 
2029 /* get pq index according to PQ_FLAGS */
2030 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
2031 					     u32 pq_flags)
2032 {
2033 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2034 
2035 	/* Can't have multiple flags set here */
2036 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
2037 		goto err;
2038 
2039 	switch (pq_flags) {
2040 	case PQ_FLAGS_RLS:
2041 		return &qm_info->first_rl_pq;
2042 	case PQ_FLAGS_MCOS:
2043 		return &qm_info->first_mcos_pq;
2044 	case PQ_FLAGS_LB:
2045 		return &qm_info->pure_lb_pq;
2046 	case PQ_FLAGS_OOO:
2047 		return &qm_info->ooo_pq;
2048 	case PQ_FLAGS_ACK:
2049 		return &qm_info->pure_ack_pq;
2050 	case PQ_FLAGS_OFLD:
2051 		return &qm_info->offload_pq;
2052 	case PQ_FLAGS_LLT:
2053 		return &qm_info->low_latency_pq;
2054 	case PQ_FLAGS_VFS:
2055 		return &qm_info->first_vf_pq;
2056 	default:
2057 		goto err;
2058 	}
2059 
2060 err:
2061 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
2062 	return OSAL_NULL;
2063 }
2064 
2065 /* save pq index in qm info */
2066 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
2067 				  u32 pq_flags, u16 pq_val)
2068 {
2069 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2070 
2071 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
2072 }
2073 
2074 /* get tx pq index, with the PQ TX base already set (ready for context init) */
2075 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
2076 {
2077 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2078 
2079 	return *base_pq_idx + CM_TX_PQ_BASE;
2080 }
2081 
2082 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
2083 {
2084 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
2085 
2086 	if (tc > max_tc)
2087 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
2088 
2089 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
2090 }
2091 
2092 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
2093 {
2094 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
2095 
2096 	if (vf > max_vf)
2097 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
2098 
2099 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
2100 }
2101 
2102 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
2103 {
2104 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
2105 
2106 	if (rl > max_rl)
2107 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
2108 
2109 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
2110 }
2111 
2112 /* Functions for creating specific types of pqs */
2113 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
2114 {
2115 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2116 
2117 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
2118 		return;
2119 
2120 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
2121 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
2122 }
2123 
2124 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
2125 {
2126 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2127 
2128 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
2129 		return;
2130 
2131 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
2132 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
2133 }
2134 
2135 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
2136 {
2137 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2138 
2139 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
2140 		return;
2141 
2142 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
2143 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2144 }
2145 
2146 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
2147 {
2148 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2149 
2150 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
2151 		return;
2152 
2153 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
2154 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2155 }
2156 
2157 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
2158 {
2159 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2160 
2161 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
2162 		return;
2163 
2164 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
2165 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2166 }
2167 
2168 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
2169 {
2170 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2171 	u8 tc_idx;
2172 
2173 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
2174 		return;
2175 
2176 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
2177 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
2178 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
2179 }
2180 
2181 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
2182 {
2183 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2184 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
2185 
2186 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
2187 		return;
2188 
2189 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
2190 	qm_info->num_vf_pqs = num_vfs;
2191 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
2192 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
2193 }
2194 
2195 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
2196 {
2197 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
2198 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2199 
2200 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
2201 		return;
2202 
2203 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
2204 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
2205 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
2206 }
2207 
2208 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
2209 {
2210 	/* rate limited pqs, must come first (FW assumption) */
2211 	ecore_init_qm_rl_pqs(p_hwfn);
2212 
2213 	/* pqs for multi cos */
2214 	ecore_init_qm_mcos_pqs(p_hwfn);
2215 
2216 	/* pure loopback pq */
2217 	ecore_init_qm_lb_pq(p_hwfn);
2218 
2219 	/* out of order pq */
2220 	ecore_init_qm_ooo_pq(p_hwfn);
2221 
2222 	/* pure ack pq */
2223 	ecore_init_qm_pure_ack_pq(p_hwfn);
2224 
2225 	/* pq for offloaded protocol */
2226 	ecore_init_qm_offload_pq(p_hwfn);
2227 
2228 	/* low latency pq */
2229 	ecore_init_qm_low_latency_pq(p_hwfn);
2230 
2231 	/* done sharing vports */
2232 	ecore_init_qm_advance_vport(p_hwfn);
2233 
2234 	/* pqs for vfs */
2235 	ecore_init_qm_vf_pqs(p_hwfn);
2236 }
2237 
2238 /* compare values of getters against resources amounts */
2239 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
2240 {
2241 	if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
2242 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
2243 		return ECORE_INVAL;
2244 	}
2245 
2246 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
2247 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
2248 		return ECORE_INVAL;
2249 	}
2250 
2251 	return ECORE_SUCCESS;
2252 }
2253 
2254 /*
2255  * Function for verbose printing of the qm initialization results
2256  */
2257 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
2258 {
2259 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2260 	struct init_qm_vport_params *vport;
2261 	struct init_qm_port_params *port;
2262 	struct init_qm_pq_params *pq;
2263 	int i, tc;
2264 
2265 	/* top level params */
2266 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
2267 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
2268 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2269 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2270 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2271 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
2272 
2273 	/* port table */
2274 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
2275 		port = &(qm_info->qm_port_params[i]);
2276 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2277 			   i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
2278 	}
2279 
2280 	/* vport table */
2281 	for (i = 0; i < qm_info->num_vports; i++) {
2282 		vport = &(qm_info->qm_vport_params[i]);
2283 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
2284 			   qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
2285 		for (tc = 0; tc < NUM_OF_TCS; tc++)
2286 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
2287 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
2288 	}
2289 
2290 	/* pq table */
2291 	for (i = 0; i < qm_info->num_pqs; i++) {
2292 		pq = &(qm_info->qm_pq_params[i]);
2293 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
2294 			   qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
2295 	}
2296 }
2297 
2298 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
2299 {
2300 	/* reset params required for init run */
2301 	ecore_init_qm_reset_params(p_hwfn);
2302 
2303 	/* init QM top level params */
2304 	ecore_init_qm_params(p_hwfn);
2305 
2306 	/* init QM port params */
2307 	ecore_init_qm_port_params(p_hwfn);
2308 
2309 	/* init QM vport params */
2310 	ecore_init_qm_vport_params(p_hwfn);
2311 
2312 	/* init QM physical queue params */
2313 	ecore_init_qm_pq_params(p_hwfn);
2314 
2315 	/* display all that init */
2316 	ecore_dp_init_qm_params(p_hwfn);
2317 }
2318 
2319 /* This function reconfigures the QM pf on the fly.
2320  * For this purpose we:
2321  * 1. reconfigure the QM database
2322  * 2. set new values to runtime array
2323  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2324  * 4. activate init tool in QM_PF stage
2325  * 5. send an sdm_qm_cmd through rbc interface to release the QM
2326  */
2327 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
2328 				     struct ecore_ptt *p_ptt)
2329 {
2330 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2331 	bool b_rc;
2332 	enum _ecore_status_t rc;
2333 
2334 	/* initialize ecore's qm data structure */
2335 	ecore_init_qm_info(p_hwfn);
2336 
2337 	/* stop PF's qm queues */
2338 	OSAL_SPIN_LOCK(&qm_lock);
2339 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2340 				      qm_info->start_pq, qm_info->num_pqs);
2341 	OSAL_SPIN_UNLOCK(&qm_lock);
2342 	if (!b_rc)
2343 		return ECORE_INVAL;
2344 
2345 	/* clear the QM_PF runtime phase leftovers from previous init */
2346 	ecore_init_clear_rt_data(p_hwfn);
2347 
2348 	/* prepare QM portion of runtime array */
2349 	ecore_qm_init_pf(p_hwfn, p_ptt, false);
2350 
2351 	/* activate init tool on runtime array */
2352 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2353 			    p_hwfn->hw_info.hw_mode);
2354 	if (rc != ECORE_SUCCESS)
2355 		return rc;
2356 
2357 	/* start PF's qm queues */
2358 	OSAL_SPIN_LOCK(&qm_lock);
2359 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2360 				      qm_info->start_pq, qm_info->num_pqs);
2361 	OSAL_SPIN_UNLOCK(&qm_lock);
2362 	if (!b_rc)
2363 		return ECORE_INVAL;
2364 
2365 	return ECORE_SUCCESS;
2366 }
2367 
2368 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
2369 {
2370 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2371 	enum _ecore_status_t rc;
2372 
2373 	rc = ecore_init_qm_sanity(p_hwfn);
2374 	if (rc != ECORE_SUCCESS)
2375 		goto alloc_err;
2376 
2377 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2378 					    sizeof(struct init_qm_pq_params) *
2379 					    ecore_init_qm_get_num_pqs(p_hwfn));
2380 	if (!qm_info->qm_pq_params)
2381 		goto alloc_err;
2382 
2383 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2384 					       sizeof(struct init_qm_vport_params) *
2385 					       ecore_init_qm_get_num_vports(p_hwfn));
2386 	if (!qm_info->qm_vport_params)
2387 		goto alloc_err;
2388 
2389 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2390 					      sizeof(struct init_qm_port_params) *
2391 					      p_hwfn->p_dev->num_ports_in_engine);
2392 	if (!qm_info->qm_port_params)
2393 		goto alloc_err;
2394 
2395 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2396 					sizeof(struct ecore_wfq_data) *
2397 					ecore_init_qm_get_num_vports(p_hwfn));
2398 	if (!qm_info->wfq_data)
2399 		goto alloc_err;
2400 
2401 	return ECORE_SUCCESS;
2402 
2403 alloc_err:
2404 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
2405 	ecore_qm_info_free(p_hwfn);
2406 	return ECORE_NOMEM;
2407 }
2408 /******************** End QM initialization ***************/
2409 
2410 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
2411 {
2412 	u32 rdma_tasks, excess_tasks;
2413 	u32 line_count;
2414 	enum _ecore_status_t rc = ECORE_SUCCESS;
2415 	int i;
2416 
2417 	if (IS_VF(p_dev)) {
2418 		for_each_hwfn(p_dev, i) {
2419 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
2420 			if (rc != ECORE_SUCCESS)
2421 				return rc;
2422 		}
2423 		return rc;
2424 	}
2425 
2426 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2427 				     sizeof(*p_dev->fw_data));
2428 	if (!p_dev->fw_data)
2429 		return ECORE_NOMEM;
2430 
2431 	for_each_hwfn(p_dev, i) {
2432 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2433 		u32 n_eqes, num_cons;
2434 
2435 		/* initialize the doorbell recovery mechanism */
2436 		rc = ecore_db_recovery_setup(p_hwfn);
2437 		if (rc)
2438 			goto alloc_err;
2439 
2440 		/* First allocate the context manager structure */
2441 		rc = ecore_cxt_mngr_alloc(p_hwfn);
2442 		if (rc)
2443 			goto alloc_err;
2444 
2445 		/* Set the HW cid/tid numbers (in the context manager)
2446 		 * Must be done prior to any further computations.
2447 		 */
2448 		rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2449 		if (rc)
2450 			goto alloc_err;
2451 
2452 		rc = ecore_alloc_qm_data(p_hwfn);
2453 		if (rc)
2454 			goto alloc_err;
2455 
2456 		/* init qm info */
2457 		ecore_init_qm_info(p_hwfn);
2458 
2459 		/* Compute the ILT client partition */
2460 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2461 		if (rc) {
2462 			DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
2463 			/* In case there are not enough ILT lines we reduce the
2464 			 * number of RDMA tasks and re-compute.
2465 			 */
2466 			excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
2467 					p_hwfn, line_count);
2468 			if (!excess_tasks)
2469 				goto alloc_err;
2470 
2471 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2472 			rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
2473 			if (rc)
2474 				goto alloc_err;
2475 
2476 			rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2477 			if (rc) {
2478 				DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
2479 				       line_count);
2480 
2481 				goto alloc_err;
2482 			}
2483 		}
2484 
2485 		/* CID map / ILT shadow table / T2
2486 		 * The talbes sizes are determined by the computations above
2487 		 */
2488 		rc = ecore_cxt_tables_alloc(p_hwfn);
2489 		if (rc)
2490 			goto alloc_err;
2491 
2492 		/* SPQ, must follow ILT because initializes SPQ context */
2493 		rc = ecore_spq_alloc(p_hwfn);
2494 		if (rc)
2495 			goto alloc_err;
2496 
2497 		/* SP status block allocation */
2498 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2499 							   RESERVED_PTT_DPC);
2500 
2501 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2502 		if (rc)
2503 			goto alloc_err;
2504 
2505 		rc = ecore_iov_alloc(p_hwfn);
2506 		if (rc)
2507 			goto alloc_err;
2508 
2509 		/* EQ */
2510 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
2511 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2512 			u32 n_srq = ecore_cxt_get_total_srq_count(p_hwfn);
2513 
2514 			/* Calculate the EQ size
2515 			 * ---------------------
2516 			 * Each ICID may generate up to one event at a time i.e.
2517 			 * the event must be handled/cleared before a new one
2518 			 * can be generated. We calculate the sum of events per
2519 			 * protocol and create an EQ deep enough to handle the
2520 			 * worst case:
2521 			 * - Core - according to SPQ.
2522 			 * - RoCE - per QP there are a couple of ICIDs, one
2523 			 *	  responder and one requester, each can
2524 			 *	  generate max 2 EQE (err+qp_destroyed) =>
2525 			 *	  n_eqes_qp = 4 * n_qp.
2526 			 *	  Each CQ can generate an EQE. There are 2 CQs
2527 			 *	  per QP => n_eqes_cq = 2 * n_qp.
2528 			 *	  Hence the RoCE total is 6 * n_qp or
2529 			 *	  3 * num_cons.
2530 			 *	  On top of that one eqe shoule be added for
2531 			 *	  each XRC SRQ and SRQ.
2532 			 * - iWARP - can generate three async per QP (error
2533 			 *	  detected and qp in error) and an
2534 			 	  additional error per CQ. 4* num_cons.
2535 			 	  On top of that one eqe shoule be added for
2536 			 *	  each SRQ and XRC SRQ.
2537 			 * - ENet - There can be up to two events per VF. One
2538 			 *	  for VF-PF channel and another for VF FLR
2539 			 *	  initial cleanup. The number of VFs is
2540 			 *	  bounded by MAX_NUM_VFS_BB, and is much
2541 			 *	  smaller than RoCE's so we avoid exact
2542 			 *	  calculation.
2543 			 */
2544 			if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
2545 				num_cons = ecore_cxt_get_proto_cid_count(
2546 					p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
2547 				num_cons *= 3;
2548 			} else {
2549 				num_cons = ecore_cxt_get_proto_cid_count(
2550 						p_hwfn, PROTOCOLID_IWARP,
2551 						OSAL_NULL);
2552 				num_cons *= 4;
2553 			}
2554 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq;
2555 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2556 			num_cons = ecore_cxt_get_proto_cid_count(
2557 					p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
2558 			n_eqes += 2 * num_cons;
2559 		}
2560 
2561 		if (n_eqes > 0xFF00) {
2562 			DP_ERR(p_hwfn, "EQs maxing out at 0xFF00 elements\n");
2563 			n_eqes = 0xFF00;
2564 		}
2565 
2566 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
2567 		if (rc)
2568 			goto alloc_err;
2569 
2570 		rc = ecore_consq_alloc(p_hwfn);
2571 		if (rc)
2572 			goto alloc_err;
2573 
2574 		rc = ecore_l2_alloc(p_hwfn);
2575 		if (rc != ECORE_SUCCESS)
2576 			goto alloc_err;
2577 
2578 #ifdef CONFIG_ECORE_LL2
2579 		if (p_hwfn->using_ll2) {
2580 			rc = ecore_ll2_alloc(p_hwfn);
2581 			if (rc)
2582 				goto alloc_err;
2583 		}
2584 #endif
2585 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
2586 			rc = ecore_fcoe_alloc(p_hwfn);
2587 			if (rc)
2588 				goto alloc_err;
2589 		}
2590 
2591 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2592 			rc = ecore_iscsi_alloc(p_hwfn);
2593 			if (rc)
2594 				goto alloc_err;
2595 
2596 			rc = ecore_ooo_alloc(p_hwfn);
2597 			if (rc)
2598 				goto alloc_err;
2599 		}
2600 #ifdef CONFIG_ECORE_ROCE
2601 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2602 			rc = ecore_rdma_info_alloc(p_hwfn);
2603 			if (rc)
2604 				goto alloc_err;
2605 		}
2606 #endif
2607 
2608 		/* DMA info initialization */
2609 		rc = ecore_dmae_info_alloc(p_hwfn);
2610 		if (rc) {
2611 			DP_NOTICE(p_hwfn, false,
2612 				  "Failed to allocate memory for dmae_info structure\n");
2613 			goto alloc_err;
2614 		}
2615 
2616 		/* DCBX initialization */
2617 		rc = ecore_dcbx_info_alloc(p_hwfn);
2618 		if (rc) {
2619 			DP_NOTICE(p_hwfn, false,
2620 				  "Failed to allocate memory for dcbx structure\n");
2621 			goto alloc_err;
2622 		}
2623 	}
2624 
2625 	rc = ecore_llh_alloc(p_dev);
2626 	if (rc != ECORE_SUCCESS) {
2627 		DP_NOTICE(p_dev, false,
2628 			  "Failed to allocate memory for the llh_info structure\n");
2629 		goto alloc_err;
2630 	}
2631 
2632 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2633 					 sizeof(*p_dev->reset_stats));
2634 	if (!p_dev->reset_stats) {
2635 		DP_NOTICE(p_dev, false,
2636 			  "Failed to allocate reset statistics\n");
2637 		goto alloc_no_mem;
2638 	}
2639 
2640 	return ECORE_SUCCESS;
2641 
2642 alloc_no_mem:
2643 	rc = ECORE_NOMEM;
2644 alloc_err:
2645 	ecore_resc_free(p_dev);
2646 	return rc;
2647 }
2648 
2649 void ecore_resc_setup(struct ecore_dev *p_dev)
2650 {
2651 	int i;
2652 
2653 	if (IS_VF(p_dev)) {
2654 		for_each_hwfn(p_dev, i)
2655 			ecore_l2_setup(&p_dev->hwfns[i]);
2656 		return;
2657 	}
2658 
2659 	for_each_hwfn(p_dev, i) {
2660 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2661 
2662 		ecore_cxt_mngr_setup(p_hwfn);
2663 		ecore_spq_setup(p_hwfn);
2664 		ecore_eq_setup(p_hwfn);
2665 		ecore_consq_setup(p_hwfn);
2666 
2667 		/* Read shadow of current MFW mailbox */
2668 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2669 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2670 			    p_hwfn->mcp_info->mfw_mb_cur,
2671 			    p_hwfn->mcp_info->mfw_mb_length);
2672 
2673 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2674 
2675 		ecore_l2_setup(p_hwfn);
2676 		ecore_iov_setup(p_hwfn);
2677 #ifdef CONFIG_ECORE_LL2
2678 		if (p_hwfn->using_ll2)
2679 			ecore_ll2_setup(p_hwfn);
2680 #endif
2681 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2682 			ecore_fcoe_setup(p_hwfn);
2683 
2684 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2685 			ecore_iscsi_setup(p_hwfn);
2686 			ecore_ooo_setup(p_hwfn);
2687 		}
2688 	}
2689 }
2690 
2691 #define FINAL_CLEANUP_POLL_CNT	(100)
2692 #define FINAL_CLEANUP_POLL_TIME	(10)
2693 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
2694 					 struct ecore_ptt *p_ptt,
2695 					 u16 id, bool is_vf)
2696 {
2697 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2698 	enum _ecore_status_t rc = ECORE_TIMEOUT;
2699 
2700 #ifndef ASIC_ONLY
2701 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
2702 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2703 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
2704 		return ECORE_SUCCESS;
2705 	}
2706 #endif
2707 
2708 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
2709 	       USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2710 
2711 	if (is_vf)
2712 		id += 0x10;
2713 
2714 	command |= X_FINAL_CLEANUP_AGG_INT <<
2715 		   SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2716 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2717 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2718 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2719 
2720 	/* Make sure notification is not set before initiating final cleanup */
2721 	if (REG_RD(p_hwfn, addr)) {
2722 		DP_NOTICE(p_hwfn, false,
2723 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2724 		REG_WR(p_hwfn, addr, 0);
2725 	}
2726 
2727 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
2728 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2729 		   id, command);
2730 
2731 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2732 
2733 	/* Poll until completion */
2734 	while (!REG_RD(p_hwfn, addr) && count--)
2735 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
2736 
2737 	if (REG_RD(p_hwfn, addr))
2738 		rc = ECORE_SUCCESS;
2739 	else
2740 		DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
2741 
2742 	/* Cleanup afterwards */
2743 	REG_WR(p_hwfn, addr, 0);
2744 
2745 	return rc;
2746 }
2747 
2748 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
2749 {
2750 	int hw_mode = 0;
2751 
2752 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
2753 		hw_mode |= 1 << MODE_BB;
2754 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
2755 		hw_mode |= 1 << MODE_K2;
2756 	} else if (ECORE_IS_E5(p_hwfn->p_dev)) {
2757 		hw_mode |= 1 << MODE_E5;
2758 	} else {
2759 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
2760 			  p_hwfn->p_dev->type);
2761 		return ECORE_INVAL;
2762 	}
2763 
2764 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
2765 	switch (p_hwfn->p_dev->num_ports_in_engine) {
2766 	case 1:
2767 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2768 		break;
2769 	case 2:
2770 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2771 		break;
2772 	case 4:
2773 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2774 		break;
2775 	default:
2776 		DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
2777 			  p_hwfn->p_dev->num_ports_in_engine);
2778 		return ECORE_INVAL;
2779 	}
2780 
2781 	if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS,
2782 			  &p_hwfn->p_dev->mf_bits))
2783 		hw_mode |= 1 << MODE_MF_SD;
2784 	else
2785 		hw_mode |= 1 << MODE_MF_SI;
2786 
2787 #ifndef ASIC_ONLY
2788 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2789 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2790 			hw_mode |= 1 << MODE_FPGA;
2791 		} else {
2792 			if (p_hwfn->p_dev->b_is_emul_full)
2793 				hw_mode |= 1 << MODE_EMUL_FULL;
2794 			else
2795 				hw_mode |= 1 << MODE_EMUL_REDUCED;
2796 		}
2797 	} else
2798 #endif
2799 	hw_mode |= 1 << MODE_ASIC;
2800 
2801 	if (ECORE_IS_CMT(p_hwfn->p_dev))
2802 		hw_mode |= 1 << MODE_100G;
2803 
2804 	p_hwfn->hw_info.hw_mode = hw_mode;
2805 
2806 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
2807 		   "Configuring function for hw_mode: 0x%08x\n",
2808 		   p_hwfn->hw_info.hw_mode);
2809 
2810 	return ECORE_SUCCESS;
2811 }
2812 
2813 #ifndef ASIC_ONLY
2814 /* MFW-replacement initializations for non-ASIC */
2815 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
2816 					       struct ecore_ptt *p_ptt)
2817 {
2818 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2819 	u32 pl_hv = 1;
2820 	int i;
2821 
2822 	if (CHIP_REV_IS_EMUL(p_dev)) {
2823 		if (ECORE_IS_AH(p_dev))
2824 			pl_hv |= 0x600;
2825 		else if (ECORE_IS_E5(p_dev))
2826 			ECORE_E5_MISSING_CODE;
2827 	}
2828 
2829 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
2830 
2831 	if (CHIP_REV_IS_EMUL(p_dev) &&
2832 	    (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
2833 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
2834 			 0x3ffffff);
2835 
2836 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
2837 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
2838 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
2839 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
2840 
2841 	if (CHIP_REV_IS_EMUL(p_dev)) {
2842 		if (ECORE_IS_AH(p_dev)) {
2843 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
2844 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
2845 				 (p_dev->num_ports_in_engine >> 1));
2846 
2847 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
2848 				 p_dev->num_ports_in_engine == 4 ? 0 : 3);
2849 		} else if (ECORE_IS_E5(p_dev)) {
2850 			ECORE_E5_MISSING_CODE;
2851 		}
2852 
2853 		/* Poll on RBC */
2854 		ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
2855 		for (i = 0; i < 100; i++) {
2856 			OSAL_UDELAY(50);
2857 			if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
2858 				break;
2859 		}
2860 		if (i == 100)
2861 			DP_NOTICE(p_hwfn, true,
2862 				  "RBC done failed to complete in PSWRQ2\n");
2863 	}
2864 
2865 	return ECORE_SUCCESS;
2866 }
2867 #endif
2868 
2869 /* Init run time data for all PFs and their VFs on an engine.
2870  * TBD - for VFs - Once we have parent PF info for each VF in
2871  * shmem available as CAU requires knowledge of parent PF for each VF.
2872  */
2873 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
2874 {
2875 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2876 	int i, igu_sb_id;
2877 
2878 	for_each_hwfn(p_dev, i) {
2879 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2880 		struct ecore_igu_info *p_igu_info;
2881 		struct ecore_igu_block *p_block;
2882 		struct cau_sb_entry sb_entry;
2883 
2884 		p_igu_info = p_hwfn->hw_info.p_igu_info;
2885 
2886 		for (igu_sb_id = 0;
2887 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
2888 		     igu_sb_id++) {
2889 			p_block = &p_igu_info->entry[igu_sb_id];
2890 
2891 			if (!p_block->is_pf)
2892 				continue;
2893 
2894 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
2895 						p_block->function_id,
2896 						0, 0);
2897 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2898 					 sb_entry);
2899 		}
2900 	}
2901 }
2902 
2903 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
2904 				       struct ecore_ptt *p_ptt)
2905 {
2906 	u32 val, wr_mbs, cache_line_size;
2907 
2908 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2909 	switch (val) {
2910 	case 0:
2911 		wr_mbs = 128;
2912 		break;
2913 	case 1:
2914 		wr_mbs = 256;
2915 		break;
2916 	case 2:
2917 		wr_mbs = 512;
2918 		break;
2919 	default:
2920 		DP_INFO(p_hwfn,
2921 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2922 			val);
2923 		return;
2924 	}
2925 
2926 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
2927 	switch (cache_line_size) {
2928 	case 32:
2929 		val = 0;
2930 		break;
2931 	case 64:
2932 		val = 1;
2933 		break;
2934 	case 128:
2935 		val = 2;
2936 		break;
2937 	case 256:
2938 		val = 3;
2939 		break;
2940 	default:
2941 		DP_INFO(p_hwfn,
2942 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2943 			cache_line_size);
2944 	}
2945 
2946 	if (OSAL_CACHE_LINE_SIZE > wr_mbs)
2947 		DP_INFO(p_hwfn,
2948 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2949 			OSAL_CACHE_LINE_SIZE, wr_mbs);
2950 
2951 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2952 	if (val > 0) {
2953 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2954 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2955 	}
2956 }
2957 
2958 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
2959 						 struct ecore_ptt *p_ptt,
2960 						 int hw_mode)
2961 {
2962 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2963 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2964 	u8 vf_id, max_num_vfs;
2965 	u16 num_pfs, pf_id;
2966 	u32 concrete_fid;
2967 	enum _ecore_status_t rc	= ECORE_SUCCESS;
2968 
2969 	ecore_init_cau_rt_data(p_dev);
2970 
2971 	/* Program GTT windows */
2972 	ecore_gtt_init(p_hwfn, p_ptt);
2973 
2974 #ifndef ASIC_ONLY
2975 	if (CHIP_REV_IS_EMUL(p_dev)) {
2976 		rc = ecore_hw_init_chip(p_hwfn, p_ptt);
2977 		if (rc != ECORE_SUCCESS)
2978 			return rc;
2979 	}
2980 #endif
2981 
2982 	if (p_hwfn->mcp_info) {
2983 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
2984 			qm_info->pf_rl_en = 1;
2985 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
2986 			qm_info->pf_wfq_en = 1;
2987 	}
2988 
2989 	ecore_qm_common_rt_init(p_hwfn,
2990 				p_dev->num_ports_in_engine,
2991 				qm_info->max_phys_tcs_per_port,
2992 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
2993 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
2994 				qm_info->qm_port_params);
2995 
2996 	ecore_cxt_hw_init_common(p_hwfn);
2997 
2998 	ecore_init_cache_line_size(p_hwfn, p_ptt);
2999 
3000 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn),
3001 			    hw_mode);
3002 	if (rc != ECORE_SUCCESS)
3003 		return rc;
3004 
3005 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
3006 	 * need to decide with which value, maybe runtime
3007 	 */
3008 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
3009 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
3010 
3011 	if (ECORE_IS_BB(p_dev)) {
3012 		/* Workaround clears ROCE search for all functions to prevent
3013 		 * involving non initialized function in processing ROCE packet.
3014 		 */
3015 		num_pfs = NUM_OF_ENG_PFS(p_dev);
3016 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
3017 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
3018 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3019 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3020 		}
3021 		/* pretend to original PF */
3022 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3023 	}
3024 
3025 	/* Workaround for avoiding CCFC execution error when getting packets
3026 	 * with CRC errors, and allowing instead the invoking of the FW error
3027 	 * handler.
3028 	 * This is not done inside the init tool since it currently can't
3029 	 * perform a pretending to VFs.
3030 	 */
3031 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
3032 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
3033 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
3034 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
3035 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
3036 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
3037 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
3038 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
3039 	}
3040 	/* pretend to original PF */
3041 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3042 
3043 	return rc;
3044 }
3045 
3046 #ifndef ASIC_ONLY
3047 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
3048 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
3049 
3050 #define PMEG_IF_BYTE_COUNT	8
3051 
3052 static void ecore_wr_nw_port(struct ecore_hwfn	*p_hwfn,
3053 			     struct ecore_ptt	*p_ptt,
3054 			     u32		addr,
3055 			     u64		data,
3056 			     u8			reg_type,
3057 			     u8			port)
3058 {
3059 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3060 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
3061 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
3062 		   (8 << PMEG_IF_BYTE_COUNT),
3063 		   (reg_type << 25) | (addr << 8) | port,
3064 		   (u32)((data >> 32) & 0xffffffff),
3065 		   (u32)(data & 0xffffffff));
3066 
3067 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
3068 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
3069 		  0xffff00fe) |
3070 		 (8 << PMEG_IF_BYTE_COUNT));
3071 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
3072 		 (reg_type << 25) | (addr << 8) | port);
3073 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
3074 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
3075 		 (data >> 32) & 0xffffffff);
3076 }
3077 
3078 #define XLPORT_MODE_REG	(0x20a)
3079 #define XLPORT_MAC_CONTROL (0x210)
3080 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
3081 #define XLPORT_ENABLE_REG (0x20b)
3082 
3083 #define XLMAC_CTRL (0x600)
3084 #define XLMAC_MODE (0x601)
3085 #define XLMAC_RX_MAX_SIZE (0x608)
3086 #define XLMAC_TX_CTRL (0x604)
3087 #define XLMAC_PAUSE_CTRL (0x60d)
3088 #define XLMAC_PFC_CTRL (0x60e)
3089 
3090 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
3091 				    struct ecore_ptt *p_ptt)
3092 {
3093 	u8 loopback = 0, port = p_hwfn->port_id * 2;
3094 
3095 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3096 
3097 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
3098 			 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
3099 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
3100 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
3101 			 0x40, 0, port); /*XLMAC: SOFT RESET */
3102 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
3103 			 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
3104 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
3105 			 0x3fff, 0, port); /* XLMAC: Max Size */
3106 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
3107 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
3108 			 0, port);
3109 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
3110 			 0x7c000, 0, port);
3111 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
3112 			 0x30ffffc000ULL, 0, port);
3113 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
3114 			 0, port); /* XLMAC: TX_EN, RX_EN */
3115 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
3116 			 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
3117 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
3118 			 1, 0, port); /* Enabled Parallel PFC interface */
3119 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
3120 			 0xf, 1, port); /* XLPORT port enable */
3121 }
3122 
3123 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
3124 				       struct ecore_ptt *p_ptt)
3125 {
3126 	u8 port = p_hwfn->port_id;
3127 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
3128 
3129 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3130 
3131 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
3132 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
3133 		 (port <<
3134 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
3135 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
3136 
3137 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
3138 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
3139 
3140 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
3141 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
3142 
3143 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
3144 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
3145 
3146 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
3147 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
3148 
3149 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
3150 		 (0xA <<
3151 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
3152 		 (8 <<
3153 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
3154 
3155 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
3156 		 0xa853);
3157 }
3158 
3159 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
3160 				 struct ecore_ptt *p_ptt)
3161 {
3162 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
3163 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
3164 	else /* BB */
3165 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
3166 
3167 	return;
3168 }
3169 
3170 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
3171 			       struct ecore_ptt *p_ptt,  u8 port)
3172 {
3173 	int port_offset = port ? 0x800 : 0;
3174 	u32 xmac_rxctrl	= 0;
3175 
3176 	/* Reset of XMAC */
3177 	/* FIXME: move to common start */
3178 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
3179 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
3180 	OSAL_MSLEEP(1);
3181 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3182 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
3183 
3184 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
3185 
3186 	/* Set the number of ports on the Warp Core to 10G */
3187 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
3188 
3189 	/* Soft reset of XMAC */
3190 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3191 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3192 	OSAL_MSLEEP(1);
3193 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3194 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3195 
3196 	/* FIXME: move to common end */
3197 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3198 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
3199 
3200 	/* Set Max packet size: initialize XMAC block register for port 0 */
3201 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
3202 
3203 	/* CRC append for Tx packets: init XMAC block register for port 1 */
3204 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
3205 
3206 	/* Enable TX and RX: initialize XMAC block register for port 1 */
3207 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
3208 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
3209 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
3210 			       XMAC_REG_RX_CTRL_BB + port_offset);
3211 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
3212 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
3213 }
3214 #endif
3215 
3216 static enum _ecore_status_t
3217 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
3218 		       struct ecore_ptt *p_ptt,
3219 		       u32 pwm_region_size,
3220 		       u32 n_cpus)
3221 {
3222 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
3223 	u32 min_dpis;
3224 	u32 n_wids;
3225 
3226 	/* Calculate DPI size
3227 	 * ------------------
3228 	 * The PWM region contains Doorbell Pages. The first is reserverd for
3229 	 * the kernel for, e.g, L2. The others are free to be used by non-
3230 	 * trusted applications, typically from user space. Each page, called a
3231 	 * doorbell page is sectioned into windows that allow doorbells to be
3232 	 * issued in parallel by the kernel/application. The size of such a
3233 	 * window (a.k.a. WID) is 1kB.
3234 	 * Summary:
3235 	 *    1kB WID x N WIDS = DPI page size
3236 	 *    DPI page size x N DPIs = PWM region size
3237 	 * Notes:
3238 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
3239 	 * in order to ensure that two applications won't share the same page.
3240 	 * It also must contain at least one WID per CPU to allow parallelism.
3241 	 * It also must be a power of 2, since it is stored as a bit shift.
3242 	 *
3243 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
3244 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
3245 	 * containing 4 WIDs.
3246 	 */
3247 	n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
3248 	dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
3249 	dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & ~(OSAL_PAGE_SIZE - 1);
3250 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
3251 	dpi_count = pwm_region_size / dpi_page_size;
3252 
3253 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
3254 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
3255 
3256 	/* Update hwfn */
3257 	p_hwfn->dpi_size = dpi_page_size;
3258 	p_hwfn->dpi_count = dpi_count;
3259 
3260 	/* Update registers */
3261 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
3262 
3263 	if (dpi_count < min_dpis)
3264 		return ECORE_NORESOURCES;
3265 
3266 	return ECORE_SUCCESS;
3267 }
3268 
3269 enum ECORE_ROCE_EDPM_MODE {
3270 	ECORE_ROCE_EDPM_MODE_ENABLE	= 0,
3271 	ECORE_ROCE_EDPM_MODE_FORCE_ON	= 1,
3272 	ECORE_ROCE_EDPM_MODE_DISABLE	= 2,
3273 };
3274 
3275 static enum _ecore_status_t
3276 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
3277 			      struct ecore_ptt *p_ptt)
3278 {
3279 	struct ecore_rdma_pf_params *p_rdma_pf_params;
3280 	u32 pwm_regsize, norm_regsize;
3281 	u32 non_pwm_conn, min_addr_reg1;
3282 	u32 db_bar_size, n_cpus = 1;
3283 	u32 roce_edpm_mode;
3284 	u32 pf_dems_shift;
3285 	enum _ecore_status_t rc = ECORE_SUCCESS;
3286 	u8 cond;
3287 
3288 	db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
3289 	if (ECORE_IS_CMT(p_hwfn->p_dev))
3290 		db_bar_size /= 2;
3291 
3292 	/* Calculate doorbell regions
3293 	 * -----------------------------------
3294 	 * The doorbell BAR is made of two regions. The first is called normal
3295 	 * region and the second is called PWM region. In the normal region
3296 	 * each ICID has its own set of addresses so that writing to that
3297 	 * specific address identifies the ICID. In the Process Window Mode
3298 	 * region the ICID is given in the data written to the doorbell. The
3299 	 * above per PF register denotes the offset in the doorbell BAR in which
3300 	 * the PWM region begins.
3301 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
3302 	 * non-PWM connection. The calculation below computes the total non-PWM
3303 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
3304 	 * in units of 4,096 bytes.
3305 	 */
3306 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
3307 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
3308 						     OSAL_NULL) +
3309 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
3310 						     OSAL_NULL);
3311 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, OSAL_PAGE_SIZE);
3312 	min_addr_reg1 = norm_regsize / 4096;
3313 	pwm_regsize = db_bar_size - norm_regsize;
3314 
3315 	/* Check that the normal and PWM sizes are valid */
3316 	if (db_bar_size < norm_regsize) {
3317 		DP_ERR(p_hwfn->p_dev,
3318 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
3319 		       db_bar_size, norm_regsize);
3320 		return ECORE_NORESOURCES;
3321 	}
3322 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
3323 		DP_ERR(p_hwfn->p_dev,
3324 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
3325 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
3326 		       norm_regsize);
3327 		return ECORE_NORESOURCES;
3328 	}
3329 
3330 	p_rdma_pf_params = &p_hwfn->pf_params.rdma_pf_params;
3331 
3332 	/* Calculate number of DPIs */
3333 	if (ECORE_IS_IWARP_PERSONALITY(p_hwfn))
3334 		p_rdma_pf_params->roce_edpm_mode =  ECORE_ROCE_EDPM_MODE_DISABLE;
3335 
3336 	if (p_rdma_pf_params->roce_edpm_mode <= ECORE_ROCE_EDPM_MODE_DISABLE) {
3337 		roce_edpm_mode = p_rdma_pf_params->roce_edpm_mode;
3338 	} else {
3339 		DP_ERR(p_hwfn->p_dev,
3340 		       "roce edpm mode was configured to an illegal value of %u. Resetting it to 0-Enable EDPM if BAR size is adequate\n",
3341 		       p_rdma_pf_params->roce_edpm_mode);
3342 		roce_edpm_mode = 0;
3343 	}
3344 
3345 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
3346 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
3347 		/* Either EDPM is mandatory, or we are attempting to allocate a
3348 		 * WID per CPU.
3349 		 */
3350 		n_cpus = OSAL_NUM_CPUS();
3351 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3352 	}
3353 
3354 	cond = ((rc != ECORE_SUCCESS) &&
3355 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
3356 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
3357 	if (cond || p_hwfn->dcbx_no_edpm) {
3358 		/* Either EDPM is disabled from user configuration, or it is
3359 		 * disabled via DCBx, or it is not mandatory and we failed to
3360 		 * allocated a WID per CPU.
3361 		 */
3362 		n_cpus = 1;
3363 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3364 
3365 #ifdef CONFIG_ECORE_ROCE
3366 		/* If we entered this flow due to DCBX then the DPM register is
3367 		 * already configured.
3368 		 */
3369 		if (cond)
3370 			ecore_rdma_dpm_bar(p_hwfn, p_ptt);
3371 #endif
3372 	}
3373 
3374 	p_hwfn->wid_count = (u16)n_cpus;
3375 
3376 	/* Check return codes from above calls */
3377 	if (rc != ECORE_SUCCESS) {
3378 #ifndef LINUX_REMOVE
3379 		DP_ERR(p_hwfn,
3380 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via user configuration min_dpis or by disabling EDPM via user configuration roce_edpm_mode\n",
3381 		       p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3382 		       ECORE_MIN_DPIS);
3383 #else
3384 		DP_ERR(p_hwfn,
3385 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via the module parameter min_rdma_dpis or by disabling EDPM by setting the module parameter roce_edpm to 2\n",
3386 		       p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3387 		       ECORE_MIN_DPIS);
3388 #endif
3389 		DP_ERR(p_hwfn,
3390 		       "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3391 		       norm_regsize, pwm_regsize, p_hwfn->dpi_size,
3392 		       p_hwfn->dpi_count,
3393 		       ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3394 		       "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3395 
3396 		return ECORE_NORESOURCES;
3397 	}
3398 
3399 	DP_INFO(p_hwfn,
3400 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3401 		norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
3402 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3403 		"disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3404 
3405 	/* Update hwfn */
3406 	p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
3407 						      * calculate the doorbell
3408 						      * address
3409 						      */
3410 
3411 	/* Update registers */
3412 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
3413 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
3414 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
3415 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
3416 
3417 	return ECORE_SUCCESS;
3418 }
3419 
3420 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
3421 					       struct ecore_ptt *p_ptt,
3422 					       int hw_mode)
3423 {
3424 	enum _ecore_status_t rc	= ECORE_SUCCESS;
3425 
3426 	/* In CMT the gate should be cleared by the 2nd hwfn */
3427 	if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn))
3428 		STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
3429 
3430 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
3431 			    hw_mode);
3432 	if (rc != ECORE_SUCCESS)
3433 		return rc;
3434 
3435 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
3436 
3437 #ifndef ASIC_ONLY
3438 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
3439 		return ECORE_SUCCESS;
3440 
3441 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
3442 		if (ECORE_IS_AH(p_hwfn->p_dev))
3443 			return ECORE_SUCCESS;
3444 		else if (ECORE_IS_BB(p_hwfn->p_dev))
3445 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
3446 		else /* E5 */
3447 			ECORE_E5_MISSING_CODE;
3448 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3449 		if (ECORE_IS_CMT(p_hwfn->p_dev)) {
3450 			/* Activate OPTE in CMT */
3451 			u32 val;
3452 
3453 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
3454 			val |= 0x10;
3455 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
3456 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
3457 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
3458 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
3459 			ecore_wr(p_hwfn, p_ptt,
3460 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
3461 			ecore_wr(p_hwfn, p_ptt,
3462 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
3463 			ecore_wr(p_hwfn, p_ptt,
3464 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
3465 				 0x55555555);
3466 		}
3467 
3468 		ecore_emul_link_init(p_hwfn, p_ptt);
3469 	} else {
3470 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
3471 	}
3472 #endif
3473 
3474 	return rc;
3475 }
3476 
3477 static enum _ecore_status_t
3478 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3479 		 int hw_mode, struct ecore_hw_init_params *p_params)
3480 {
3481 	u8 rel_pf_id = p_hwfn->rel_pf_id;
3482 	u32 prs_reg;
3483 	enum _ecore_status_t rc	= ECORE_SUCCESS;
3484 	u16 ctrl;
3485 	int pos;
3486 
3487 	if (p_hwfn->mcp_info) {
3488 		struct ecore_mcp_function_info *p_info;
3489 
3490 		p_info = &p_hwfn->mcp_info->func_info;
3491 		if (p_info->bandwidth_min)
3492 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
3493 
3494 		/* Update rate limit once we'll actually have a link */
3495 		p_hwfn->qm_info.pf_rl = 100000;
3496 	}
3497 	ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
3498 
3499 	ecore_int_igu_init_rt(p_hwfn);
3500 
3501 	/* Set VLAN in NIG if needed */
3502 	if (hw_mode & (1 << MODE_MF_SD)) {
3503 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
3504 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
3505 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
3506 			     p_hwfn->hw_info.ovlan);
3507 
3508 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3509 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
3510 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
3511 			     1);
3512 	}
3513 
3514 	/* Enable classification by MAC if needed */
3515 	if (hw_mode & (1 << MODE_MF_SI)) {
3516 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
3517 		STORE_RT_REG(p_hwfn,
3518 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
3519 	}
3520 
3521 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise?*/
3522 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
3523 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
3524 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
3525 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
3526 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
3527 
3528 	/* perform debug configuration when chip is out of reset */
3529 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
3530 
3531 	/* Sanity check before the PF init sequence that uses DMAE */
3532 	rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
3533 	if (rc)
3534 		return rc;
3535 
3536 	/* PF Init sequence */
3537 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
3538 	if (rc)
3539 		return rc;
3540 
3541 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
3542 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
3543 	if (rc)
3544 		return rc;
3545 
3546 	/* Pure runtime initializations - directly to the HW  */
3547 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
3548 
3549 	/* PCI relaxed ordering is generally beneficial for performance,
3550 	 * but can hurt performance or lead to instability on some setups.
3551 	 * If management FW is taking care of it go with that, otherwise
3552 	 * disable to be on the safe side.
3553 	 */
3554 	pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
3555 	if (!pos) {
3556 		DP_NOTICE(p_hwfn, true,
3557 			  "Failed to find the PCI Express Capability structure in the PCI config space\n");
3558 		return ECORE_IO;
3559 	}
3560 
3561 	OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
3562 
3563 	if (p_params->pci_rlx_odr_mode == ECORE_ENABLE_RLX_ODR) {
3564 		ctrl |= PCI_EXP_DEVCTL_RELAX_EN;
3565 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3566 					   pos + PCI_EXP_DEVCTL, ctrl);
3567 	} else if (p_params->pci_rlx_odr_mode == ECORE_DISABLE_RLX_ODR) {
3568 		ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3569 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3570 					   pos + PCI_EXP_DEVCTL, ctrl);
3571 	} else if (ecore_mcp_rlx_odr_supported(p_hwfn)) {
3572 		DP_INFO(p_hwfn, "PCI relax ordering configured by MFW\n");
3573 	} else {
3574 		ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3575 		OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3576 					   pos + PCI_EXP_DEVCTL, ctrl);
3577 	}
3578 
3579 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
3580 	if (rc != ECORE_SUCCESS)
3581 		return rc;
3582 
3583 	/* Use the leading hwfn since in CMT only NIG #0 is operational */
3584 	if (IS_LEAD_HWFN(p_hwfn)) {
3585 		rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt,
3586 					  p_params->avoid_eng_affin);
3587 		if (rc != ECORE_SUCCESS)
3588 			return rc;
3589 	}
3590 
3591 	if (p_params->b_hw_start) {
3592 		/* enable interrupts */
3593 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode);
3594 		if (rc != ECORE_SUCCESS)
3595 			return rc;
3596 
3597 		/* send function start command */
3598 		rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn,
3599 				       p_params->allow_npar_tx_switch);
3600 		if (rc) {
3601 			DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
3602 			return rc;
3603 		}
3604 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3605 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3606 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3607 
3608 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3609 		{
3610 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
3611 					(1 << 2));
3612 			ecore_wr(p_hwfn, p_ptt,
3613 					PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
3614 					0x100);
3615 		}
3616 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3617 				"PRS_REG_SEARCH registers after start PFn\n");
3618 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
3619 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3620 				"PRS_REG_SEARCH_TCP: %x\n", prs_reg);
3621 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
3622 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3623 				"PRS_REG_SEARCH_UDP: %x\n", prs_reg);
3624 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
3625 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3626 				"PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
3627 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
3628 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3629 				"PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
3630 		prs_reg = ecore_rd(p_hwfn, p_ptt,
3631 				PRS_REG_SEARCH_TCP_FIRST_FRAG);
3632 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3633 				"PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
3634 				prs_reg);
3635 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3636 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3637 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3638 	}
3639 	return ECORE_SUCCESS;
3640 }
3641 
3642 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
3643 						  struct ecore_ptt *p_ptt,
3644 						  bool b_enable)
3645 {
3646 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
3647 
3648 	/* Configure the PF's internal FID_enable for master transactions */
3649 	ecore_wr(p_hwfn, p_ptt,
3650 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
3651 
3652 	/* Wait until value is set - try for 1 second every 50us */
3653 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
3654 		val = ecore_rd(p_hwfn, p_ptt,
3655 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
3656 		if (val == set_val)
3657 			break;
3658 
3659 		OSAL_UDELAY(50);
3660 	}
3661 
3662 	if (val != set_val) {
3663 		DP_NOTICE(p_hwfn, true,
3664 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
3665 		return ECORE_UNKNOWN_ERROR;
3666 	}
3667 
3668 	return ECORE_SUCCESS;
3669 }
3670 
3671 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
3672 			struct ecore_ptt *p_main_ptt)
3673 {
3674 	/* Read shadow of current MFW mailbox */
3675 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
3676 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
3677 		    p_hwfn->mcp_info->mfw_mb_cur,
3678 		    p_hwfn->mcp_info->mfw_mb_length);
3679 }
3680 
3681 static enum _ecore_status_t
3682 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn,
3683 			   struct ecore_load_req_params *p_load_req,
3684 			   struct ecore_drv_load_params *p_drv_load)
3685 {
3686 	/* Make sure that if ecore-client didn't provide inputs, all the
3687 	 * expected defaults are indeed zero.
3688 	 */
3689 	OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
3690 	OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
3691 	OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
3692 
3693 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
3694 
3695 	if (p_drv_load == OSAL_NULL)
3696 		goto out;
3697 
3698 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
3699 			       ECORE_DRV_ROLE_KDUMP :
3700 			       ECORE_DRV_ROLE_OS;
3701 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
3702 	p_load_req->override_force_load = p_drv_load->override_force_load;
3703 
3704 	/* Old MFW versions don't support timeout values other than default and
3705 	 * none, so these values are replaced according to the fall-back action.
3706 	 */
3707 
3708 	if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT ||
3709 	    p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE ||
3710 	    (p_hwfn->mcp_info->capabilities &
3711 	     FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) {
3712 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
3713 		goto out;
3714 	}
3715 
3716 	switch (p_drv_load->mfw_timeout_fallback) {
3717 	case ECORE_TO_FALLBACK_TO_NONE:
3718 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE;
3719 		break;
3720 	case ECORE_TO_FALLBACK_TO_DEFAULT:
3721 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
3722 		break;
3723 	case ECORE_TO_FALLBACK_FAIL_LOAD:
3724 		DP_NOTICE(p_hwfn, false,
3725 			  "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n",
3726 			  p_drv_load->mfw_timeout_val,
3727 			  ECORE_LOAD_REQ_LOCK_TO_DEFAULT,
3728 			  ECORE_LOAD_REQ_LOCK_TO_NONE);
3729 		return ECORE_ABORTED;
3730 	}
3731 
3732 	DP_INFO(p_hwfn,
3733 		"Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n",
3734 		p_drv_load->mfw_timeout_val,
3735 		(p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ?
3736 		"default" : "none",
3737 		p_load_req->timeout_val);
3738 out:
3739 	return ECORE_SUCCESS;
3740 }
3741 
3742 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
3743 				    struct ecore_hw_init_params *p_params)
3744 {
3745 	if (p_params->p_tunn) {
3746 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
3747 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
3748 	}
3749 
3750 	p_hwfn->b_int_enabled = 1;
3751 
3752 	return ECORE_SUCCESS;
3753 }
3754 
3755 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
3756 				   struct ecore_ptt *p_ptt)
3757 {
3758 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3759 		 1 << p_hwfn->abs_pf_id);
3760 }
3761 
3762 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
3763 				   struct ecore_hw_init_params *p_params)
3764 {
3765 	struct ecore_load_req_params load_req_params;
3766 	u32 load_code, resp, param, drv_mb_param;
3767 	bool b_default_mtu = true;
3768 	struct ecore_hwfn *p_hwfn;
3769 	enum _ecore_status_t rc = ECORE_SUCCESS, cancel_load;
3770 	u16 ether_type;
3771 	int i;
3772 
3773 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
3774 		DP_NOTICE(p_dev, false,
3775 			  "MSI mode is not supported for CMT devices\n");
3776 		return ECORE_INVAL;
3777 	}
3778 
3779 	if (IS_PF(p_dev)) {
3780 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
3781 		if (rc != ECORE_SUCCESS)
3782 			return rc;
3783 	}
3784 
3785 	for_each_hwfn(p_dev, i) {
3786 		p_hwfn = &p_dev->hwfns[i];
3787 
3788 		/* If management didn't provide a default, set one of our own */
3789 		if (!p_hwfn->hw_info.mtu) {
3790 			p_hwfn->hw_info.mtu = 1500;
3791 			b_default_mtu = false;
3792 		}
3793 
3794 		if (IS_VF(p_dev)) {
3795 			ecore_vf_start(p_hwfn, p_params);
3796 			continue;
3797 		}
3798 
3799 		rc = ecore_calc_hw_mode(p_hwfn);
3800 		if (rc != ECORE_SUCCESS)
3801 			return rc;
3802 
3803 		if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3804 						   &p_dev->mf_bits) ||
3805 				     OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING,
3806 						   &p_dev->mf_bits))) {
3807 			if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3808 					  &p_dev->mf_bits))
3809 				ether_type = ETH_P_8021Q;
3810 			else
3811 				ether_type = ETH_P_8021AD;
3812 			STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3813 				     ether_type);
3814 			STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3815 				     ether_type);
3816 			STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3817 				     ether_type);
3818 			STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3819 				     ether_type);
3820 		}
3821 
3822 		rc = ecore_fill_load_req_params(p_hwfn, &load_req_params,
3823 						p_params->p_drv_load_params);
3824 		if (rc != ECORE_SUCCESS)
3825 			return rc;
3826 
3827 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3828 					&load_req_params);
3829 		if (rc != ECORE_SUCCESS) {
3830 			DP_NOTICE(p_hwfn, false,
3831 				  "Failed sending a LOAD_REQ command\n");
3832 			return rc;
3833 		}
3834 
3835 		load_code = load_req_params.load_code;
3836 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
3837 			   "Load request was sent. Load code: 0x%x\n",
3838 			   load_code);
3839 
3840 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3841 
3842 		/* CQ75580:
3843 		 * When coming back from hibernate state, the registers from
3844 		 * which shadow is read initially are not initialized. It turns
3845 		 * out that these registers get initialized during the call to
3846 		 * ecore_mcp_load_req request. So we need to reread them here
3847 		 * to get the proper shadow register value.
3848 		 * Note: This is a workaround for the missing MFW
3849 		 * initialization. It may be removed once the implementation
3850 		 * is done.
3851 		 */
3852 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3853 
3854 		/* Only relevant for recovery:
3855 		 * Clear the indication after the LOAD_REQ command is responded
3856 		 * by the MFW.
3857 		 */
3858 		p_dev->recov_in_prog = false;
3859 
3860 		if (!qm_lock_ref_cnt) {
3861 #ifdef CONFIG_ECORE_LOCK_ALLOC
3862 			rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock);
3863 			if (rc) {
3864 				DP_ERR(p_hwfn, "qm_lock allocation failed\n");
3865 				goto qm_lock_fail;
3866 			}
3867 #endif
3868 			OSAL_SPIN_LOCK_INIT(&qm_lock);
3869 		}
3870 		++qm_lock_ref_cnt;
3871 
3872 		/* Clean up chip from previous driver if such remains exist.
3873 		 * This is not needed when the PF is the first one on the
3874 		 * engine, since afterwards we are going to init the FW.
3875 		 */
3876 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3877 			rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3878 						 p_hwfn->rel_pf_id, false);
3879 			if (rc != ECORE_SUCCESS) {
3880 				ecore_hw_err_notify(p_hwfn,
3881 						    ECORE_HW_ERR_RAMROD_FAIL);
3882 				goto load_err;
3883 			}
3884 		}
3885 
3886 		/* Log and clear previous pglue_b errors if such exist */
3887 		ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3888 
3889 		/* Enable the PF's internal FID_enable in the PXP */
3890 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3891 						  true);
3892 		if (rc != ECORE_SUCCESS)
3893 			goto load_err;
3894 
3895 		/* Clear the pglue_b was_error indication.
3896 		 * In E4 it must be done after the BME and the internal
3897 		 * FID_enable for the PF are set, since VDMs may cause the
3898 		 * indication to be set again.
3899 		 */
3900 		ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3901 
3902 		switch (load_code) {
3903 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
3904 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3905 						  p_hwfn->hw_info.hw_mode);
3906 			if (rc != ECORE_SUCCESS)
3907 				break;
3908 			/* Fall into */
3909 		case FW_MSG_CODE_DRV_LOAD_PORT:
3910 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3911 						p_hwfn->hw_info.hw_mode);
3912 			if (rc != ECORE_SUCCESS)
3913 				break;
3914 			/* Fall into */
3915 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3916 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3917 					      p_hwfn->hw_info.hw_mode,
3918 					      p_params);
3919 			break;
3920 		default:
3921 			DP_NOTICE(p_hwfn, false,
3922 				  "Unexpected load code [0x%08x]", load_code);
3923 			rc = ECORE_NOTIMPL;
3924 			break;
3925 		}
3926 
3927 		if (rc != ECORE_SUCCESS) {
3928 			DP_NOTICE(p_hwfn, false,
3929 				  "init phase failed for loadcode 0x%x (rc %d)\n",
3930 				  load_code, rc);
3931 			goto load_err;
3932 		}
3933 
3934 		rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3935 		if (rc != ECORE_SUCCESS) {
3936 			DP_NOTICE(p_hwfn, false, "Sending load done failed, rc = %d\n", rc);
3937 			if (rc == ECORE_NOMEM) {
3938 				DP_NOTICE(p_hwfn, false,
3939 					  "Sending load done was failed due to memory allocation failure\n");
3940 				goto load_err;
3941 			}
3942 			return rc;
3943 		}
3944 
3945 		/* send DCBX attention request command */
3946 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
3947 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
3948 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3949 				   DRV_MSG_CODE_SET_DCBX,
3950 				   1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
3951 				   &param);
3952 		if (rc != ECORE_SUCCESS) {
3953 			DP_NOTICE(p_hwfn, false,
3954 				  "Failed to send DCBX attention request\n");
3955 			return rc;
3956 		}
3957 
3958 		p_hwfn->hw_init_done = true;
3959 	}
3960 
3961 	if (IS_PF(p_dev)) {
3962 		/* Get pre-negotiated values for stag, bandwidth etc. */
3963 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3964 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3965 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3966 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3967 				   DRV_MSG_CODE_GET_OEM_UPDATES,
3968 				   1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3969 				   &resp, &param);
3970 		if (rc != ECORE_SUCCESS)
3971 			DP_NOTICE(p_hwfn, false,
3972 				  "Failed to send GET_OEM_UPDATES attention request\n");
3973 	}
3974 
3975 	if (IS_PF(p_dev)) {
3976 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3977 		drv_mb_param = STORM_FW_VERSION;
3978 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3979 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3980 				   drv_mb_param, &resp, &param);
3981 		if (rc != ECORE_SUCCESS)
3982 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
3983 
3984 		if (!b_default_mtu) {
3985 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3986 						      p_hwfn->hw_info.mtu);
3987 			if (rc != ECORE_SUCCESS)
3988 				DP_INFO(p_hwfn, "Failed to update default mtu\n");
3989 		}
3990 
3991 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
3992 						      p_hwfn->p_main_ptt,
3993 						      ECORE_OV_DRIVER_STATE_DISABLED);
3994 		if (rc != ECORE_SUCCESS)
3995 			DP_INFO(p_hwfn, "Failed to update driver state\n");
3996 
3997 		rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
3998 						 ECORE_OV_ESWITCH_VEB);
3999 		if (rc != ECORE_SUCCESS)
4000 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
4001 	}
4002 
4003 	return rc;
4004 
4005 load_err:
4006 	--qm_lock_ref_cnt;
4007 #ifdef CONFIG_ECORE_LOCK_ALLOC
4008 	if (!qm_lock_ref_cnt)
4009 		OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4010 qm_lock_fail:
4011 #endif
4012 	/* The MFW load lock should be released also when initialization fails.
4013 	 * If supported, use a cancel_load request to update the MFW with the
4014 	 * load failure.
4015 	 */
4016 	cancel_load = ecore_mcp_cancel_load_req(p_hwfn, p_hwfn->p_main_ptt);
4017 	if (cancel_load == ECORE_NOTIMPL) {
4018 		DP_INFO(p_hwfn,
4019 			"Send a load done request instead of cancel load\n");
4020 		ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
4021 	}
4022 	return rc;
4023 }
4024 
4025 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
4026 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
4027 				 struct ecore_hwfn *p_hwfn,
4028 				 struct ecore_ptt *p_ptt)
4029 {
4030 	int i;
4031 
4032 	/* close timers */
4033 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
4034 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
4035 	for (i = 0;
4036 	     i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
4037 	     i++) {
4038 		if ((!ecore_rd(p_hwfn, p_ptt,
4039 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
4040 		    (!ecore_rd(p_hwfn, p_ptt,
4041 			       TM_REG_PF_SCAN_ACTIVE_TASK)))
4042 			break;
4043 
4044 		/* Dependent on number of connection/tasks, possibly
4045 		 * 1ms sleep is required between polls
4046 		 */
4047 		OSAL_MSLEEP(1);
4048 	}
4049 
4050 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
4051 		return;
4052 
4053 	DP_NOTICE(p_hwfn, false,
4054 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
4055 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
4056 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
4057 }
4058 
4059 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
4060 {
4061 	int j;
4062 
4063 	for_each_hwfn(p_dev, j) {
4064 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4065 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
4066 
4067 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4068 	}
4069 }
4070 
4071 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
4072 						 struct ecore_ptt *p_ptt,
4073 						 u32 addr, u32 expected_val)
4074 {
4075 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
4076 
4077 	if (val != expected_val) {
4078 		DP_NOTICE(p_hwfn, true,
4079 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
4080 			  addr, val, expected_val);
4081 		return ECORE_UNKNOWN_ERROR;
4082 	}
4083 
4084 	return ECORE_SUCCESS;
4085 }
4086 
4087 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
4088 {
4089 	struct ecore_hwfn *p_hwfn;
4090 	struct ecore_ptt *p_ptt;
4091 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
4092 	int j;
4093 
4094 	for_each_hwfn(p_dev, j) {
4095 		p_hwfn = &p_dev->hwfns[j];
4096 		p_ptt = p_hwfn->p_main_ptt;
4097 
4098 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
4099 
4100 		if (IS_VF(p_dev)) {
4101 			ecore_vf_pf_int_cleanup(p_hwfn);
4102 			rc = ecore_vf_pf_reset(p_hwfn);
4103 			if (rc != ECORE_SUCCESS) {
4104 				DP_NOTICE(p_hwfn, true,
4105 					  "ecore_vf_pf_reset failed. rc = %d.\n",
4106 					  rc);
4107 				rc2 = ECORE_UNKNOWN_ERROR;
4108 			}
4109 			continue;
4110 		}
4111 
4112 		/* mark the hw as uninitialized... */
4113 		p_hwfn->hw_init_done = false;
4114 
4115 		/* Send unload command to MCP */
4116 		if (!p_dev->recov_in_prog) {
4117 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
4118 			if (rc != ECORE_SUCCESS) {
4119 				DP_NOTICE(p_hwfn, false,
4120 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
4121 					  rc);
4122 				rc2 = ECORE_UNKNOWN_ERROR;
4123 			}
4124 		}
4125 
4126 		OSAL_DPC_SYNC(p_hwfn);
4127 
4128 		/* After this point no MFW attentions are expected, e.g. prevent
4129 		 * race between pf stop and dcbx pf update.
4130 		 */
4131 
4132 		rc = ecore_sp_pf_stop(p_hwfn);
4133 		if (rc != ECORE_SUCCESS) {
4134 			DP_NOTICE(p_hwfn, false,
4135 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
4136 				  rc);
4137 			rc2 = ECORE_UNKNOWN_ERROR;
4138 		}
4139 
4140 		/* perform debug action after PF stop was sent */
4141 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
4142 
4143 		/* close NIG to BRB gate */
4144 		ecore_wr(p_hwfn, p_ptt,
4145 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4146 
4147 		/* close parser */
4148 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4149 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4150 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4151 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4152 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4153 
4154 		/* @@@TBD - clean transmission queues (5.b) */
4155 		/* @@@TBD - clean BTB (5.c) */
4156 
4157 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4158 
4159 		/* @@@TBD - verify DMAE requests are done (8) */
4160 
4161 		/* Disable Attention Generation */
4162 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
4163 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
4164 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
4165 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
4166 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
4167 		if (rc != ECORE_SUCCESS) {
4168 			DP_NOTICE(p_hwfn, true,
4169 				  "Failed to return IGU CAM to default\n");
4170 			rc2 = ECORE_UNKNOWN_ERROR;
4171 		}
4172 
4173 		/* Need to wait 1ms to guarantee SBs are cleared */
4174 		OSAL_MSLEEP(1);
4175 
4176 		if (!p_dev->recov_in_prog) {
4177 			ecore_verify_reg_val(p_hwfn, p_ptt,
4178 					     QM_REG_USG_CNT_PF_TX, 0);
4179 			ecore_verify_reg_val(p_hwfn, p_ptt,
4180 					     QM_REG_USG_CNT_PF_OTHER, 0);
4181 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
4182 		}
4183 
4184 		/* Disable PF in HW blocks */
4185 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
4186 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
4187 
4188 		if (IS_LEAD_HWFN(p_hwfn) &&
4189 		    OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
4190 		    !ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4191 			ecore_llh_remove_mac_filter(p_dev, 0,
4192 						    p_hwfn->hw_info.hw_mac_addr);
4193 
4194 		--qm_lock_ref_cnt;
4195 #ifdef CONFIG_ECORE_LOCK_ALLOC
4196 		if (!qm_lock_ref_cnt)
4197 			OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4198 #endif
4199 
4200 		if (!p_dev->recov_in_prog) {
4201 			rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4202 			if (rc == ECORE_NOMEM) {
4203 				DP_NOTICE(p_hwfn, false,
4204 					 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n");
4205 				rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4206 			}
4207 			if (rc != ECORE_SUCCESS) {
4208 				DP_NOTICE(p_hwfn, false,
4209 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
4210 					  rc);
4211 				rc2 = ECORE_UNKNOWN_ERROR;
4212 			}
4213 		}
4214 	} /* hwfn loop */
4215 
4216 	if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
4217 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
4218 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
4219 
4220 		 /* Clear the PF's internal FID_enable in the PXP.
4221 		  * In CMT this should only be done for first hw-function, and
4222 		  * only after all transactions have stopped for all active
4223 		  * hw-functions.
4224 		  */
4225 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
4226 						  false);
4227 		if (rc != ECORE_SUCCESS) {
4228 			DP_NOTICE(p_hwfn, true,
4229 				  "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
4230 				  rc);
4231 			rc2 = ECORE_UNKNOWN_ERROR;
4232 		}
4233 	}
4234 
4235 	return rc2;
4236 }
4237 
4238 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
4239 {
4240 	int j;
4241 
4242 	for_each_hwfn(p_dev, j) {
4243 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4244 		struct ecore_ptt *p_ptt;
4245 
4246 		if (IS_VF(p_dev)) {
4247 			ecore_vf_pf_int_cleanup(p_hwfn);
4248 			continue;
4249 		}
4250 		p_ptt = ecore_ptt_acquire(p_hwfn);
4251 		if (!p_ptt)
4252 			return ECORE_AGAIN;
4253 
4254 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
4255 
4256 		ecore_wr(p_hwfn, p_ptt,
4257 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4258 
4259 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4260 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4261 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4262 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4263 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4264 
4265 		/* @@@TBD - clean transmission queues (5.b) */
4266 		/* @@@TBD - clean BTB (5.c) */
4267 
4268 		/* @@@TBD - verify DMAE requests are done (8) */
4269 
4270 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
4271 		/* Need to wait 1ms to guarantee SBs are cleared */
4272 		OSAL_MSLEEP(1);
4273 		ecore_ptt_release(p_hwfn, p_ptt);
4274 	}
4275 
4276 	return ECORE_SUCCESS;
4277 }
4278 
4279 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
4280 {
4281 	struct ecore_ptt *p_ptt;
4282 
4283 	if (IS_VF(p_hwfn->p_dev))
4284 		return ECORE_SUCCESS;
4285 
4286 	p_ptt = ecore_ptt_acquire(p_hwfn);
4287 	if (!p_ptt)
4288 		return ECORE_AGAIN;
4289 
4290 	/* If roce info is allocated it means roce is initialized and should
4291 	 * be enabled in searcher.
4292 	 */
4293 	if (p_hwfn->p_rdma_info &&
4294 	    p_hwfn->p_rdma_info->active &&
4295 	    p_hwfn->b_rdma_enabled_in_prs)
4296 		ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
4297 
4298 	/* Re-open incoming traffic */
4299 	ecore_wr(p_hwfn, p_ptt,
4300 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
4301 	ecore_ptt_release(p_hwfn, p_ptt);
4302 
4303 	return ECORE_SUCCESS;
4304 }
4305 
4306 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev, u32 reg_idx,
4307 					u32 pattern_size, u32 crc)
4308 {
4309 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4310 	enum _ecore_status_t rc = ECORE_SUCCESS;
4311 	struct ecore_ptt *p_ptt;
4312 	u32 reg_len = 0;
4313 	u32 reg_crc = 0;
4314 
4315 	p_ptt = ecore_ptt_acquire(p_hwfn);
4316 	if (!p_ptt)
4317 		return ECORE_AGAIN;
4318 
4319 	/* Get length and CRC register offsets */
4320 	switch (reg_idx)
4321 	{
4322 	case 0:
4323 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
4324 				WOL_REG_ACPI_PAT_0_LEN_K2_E5;
4325 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
4326 				WOL_REG_ACPI_PAT_0_CRC_K2_E5;
4327 		break;
4328 	case 1:
4329 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
4330 				WOL_REG_ACPI_PAT_1_LEN_K2_E5;
4331 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
4332 				WOL_REG_ACPI_PAT_1_CRC_K2_E5;
4333 		break;
4334 	case 2:
4335 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
4336 				WOL_REG_ACPI_PAT_2_LEN_K2_E5;
4337 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
4338 				WOL_REG_ACPI_PAT_2_CRC_K2_E5;
4339 		break;
4340 	case 3:
4341 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
4342 				WOL_REG_ACPI_PAT_3_LEN_K2_E5;
4343 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
4344 				WOL_REG_ACPI_PAT_3_CRC_K2_E5;
4345 		break;
4346 	case 4:
4347 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
4348 				WOL_REG_ACPI_PAT_4_LEN_K2_E5;
4349 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
4350 				WOL_REG_ACPI_PAT_4_CRC_K2_E5;
4351 		break;
4352 	case 5:
4353 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
4354 				WOL_REG_ACPI_PAT_5_LEN_K2_E5;
4355 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
4356 				WOL_REG_ACPI_PAT_5_CRC_K2_E5;
4357 		break;
4358 	case 6:
4359 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
4360 				WOL_REG_ACPI_PAT_6_LEN_K2_E5;
4361 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
4362 				WOL_REG_ACPI_PAT_6_CRC_K2_E5;
4363 		break;
4364 	case 7:
4365 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
4366 				WOL_REG_ACPI_PAT_7_LEN_K2_E5;
4367 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
4368 				WOL_REG_ACPI_PAT_7_CRC_K2_E5;
4369 		break;
4370 	default:
4371 		rc = ECORE_UNKNOWN_ERROR;
4372 		goto out;
4373 	}
4374 
4375 	/* Allign pattern size to 4 */
4376 	while (pattern_size % 4)
4377 		pattern_size++;
4378 
4379 	/* Write pattern length and crc value */
4380 	if (ECORE_IS_BB(p_dev)) {
4381 		rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4382 		if (rc != ECORE_SUCCESS) {
4383 			DP_NOTICE(p_hwfn, false,
4384 				  "Failed to update the ACPI pattern length\n");
4385 			return rc;
4386 		}
4387 
4388 		rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_crc, crc);
4389 		if (rc != ECORE_SUCCESS) {
4390 			DP_NOTICE(p_hwfn, false,
4391 				  "Failed to update the ACPI pattern crc value\n");
4392 			return rc;
4393 		}
4394 	} else {
4395 		ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4396 		ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_crc, crc);
4397 	}
4398 
4399 	DP_INFO(p_dev,
4400 		"ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
4401 		"reg_len[0x%x=0x%x]\n",
4402 		reg_idx, reg_crc, crc, reg_len, pattern_size);
4403 out:
4404 	 ecore_ptt_release(p_hwfn, p_ptt);
4405 
4406 	return rc;
4407 }
4408 
4409 void ecore_wol_buffer_clear(struct ecore_hwfn *p_hwfn,
4410 			    struct ecore_ptt *p_ptt)
4411 {
4412 	const u32 wake_buffer_clear_offset =
4413 		ECORE_IS_BB(p_hwfn->p_dev) ?
4414 		NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
4415 
4416 	DP_INFO(p_hwfn->p_dev,
4417 		"ecore_wol_buffer_clear: reset "
4418 		"REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
4419 		wake_buffer_clear_offset);
4420 
4421 	if (ECORE_IS_BB(p_hwfn->p_dev)) {
4422 		ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4423 		ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4424 	} else {
4425 		ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4426 		ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4427 	}
4428 }
4429 
4430 enum _ecore_status_t ecore_get_wake_info(struct ecore_hwfn *p_hwfn,
4431 					 struct ecore_ptt *p_ptt,
4432 					 struct ecore_wake_info *wake_info)
4433 {
4434 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4435 	u32 *buf = OSAL_NULL;
4436 	u32 i    = 0;
4437 	const u32 reg_wake_buffer_offest =
4438 		ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
4439 			WOL_REG_WAKE_BUFFER_K2_E5;
4440 
4441 	wake_info->wk_info    = ecore_rd(p_hwfn, p_ptt,
4442 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
4443 				WOL_REG_WAKE_INFO_K2_E5);
4444 	wake_info->wk_details = ecore_rd(p_hwfn, p_ptt,
4445 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
4446 				WOL_REG_WAKE_DETAILS_K2_E5);
4447 	wake_info->wk_pkt_len = ecore_rd(p_hwfn, p_ptt,
4448 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
4449 				WOL_REG_WAKE_PKT_LEN_K2_E5);
4450 
4451 	DP_INFO(p_dev,
4452 		"ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
4453 		"REG_WAKE_DETAILS=0x%08x "
4454 		"REG_WAKE_PKT_LEN=0x%08x\n",
4455 		wake_info->wk_info,
4456 		wake_info->wk_details,
4457 		wake_info->wk_pkt_len);
4458 
4459 	buf = (u32 *)wake_info->wk_buffer;
4460 
4461 	for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
4462 	{
4463 		if ((i*sizeof(u32)) >=  sizeof(wake_info->wk_buffer))
4464 		{
4465 			DP_INFO(p_dev,
4466 				"ecore_get_wake_info: i index to 0 high=%d\n",
4467 				 i);
4468 			break;
4469 		}
4470 		buf[i] = ecore_rd(p_hwfn, p_ptt,
4471 				  reg_wake_buffer_offest + (i * sizeof(u32)));
4472 		DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
4473 			i, buf[i]);
4474 	}
4475 
4476 	ecore_wol_buffer_clear(p_hwfn, p_ptt);
4477 
4478 	return ECORE_SUCCESS;
4479 }
4480 
4481 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
4482 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
4483 {
4484 	ecore_ptt_pool_free(p_hwfn);
4485 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
4486 	p_hwfn->hw_info.p_igu_info = OSAL_NULL;
4487 }
4488 
4489 /* Setup bar access */
4490 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
4491 {
4492 	/* clear indirect access */
4493 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
4494 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4495 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
4496 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4497 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
4498 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4499 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
4500 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4501 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
4502 	} else {
4503 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4504 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
4505 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4506 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
4507 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4508 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
4509 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4510 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
4511 	}
4512 
4513 	/* Clean previous pglue_b errors if such exist */
4514 	ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
4515 
4516 	/* enable internal target-read */
4517 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4518 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
4519 }
4520 
4521 static void get_function_id(struct ecore_hwfn *p_hwfn)
4522 {
4523 	/* ME Register */
4524 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
4525 						  PXP_PF_ME_OPAQUE_ADDR);
4526 
4527 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
4528 
4529 	/* Bits 16-19 from the ME registers are the pf_num */
4530 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
4531 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4532 				      PXP_CONCRETE_FID_PFID);
4533 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4534 				    PXP_CONCRETE_FID_PORT);
4535 
4536 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4537 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
4538 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
4539 }
4540 
4541 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
4542 {
4543 	u32 *feat_num = p_hwfn->hw_info.feat_num;
4544 	struct ecore_sb_cnt_info sb_cnt;
4545 	u32 non_l2_sbs = 0;
4546 
4547 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
4548 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
4549 
4550 #ifdef CONFIG_ECORE_ROCE
4551 	/* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
4552 	 * status blocks equally between L2 / RoCE but with consideration as
4553 	 * to how many l2 queues / cnqs we have
4554 	 */
4555 	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
4556 #ifndef __EXTRACT__LINUX__THROW__
4557 		u32 max_cnqs;
4558 #endif
4559 
4560 		feat_num[ECORE_RDMA_CNQ] =
4561 			OSAL_MIN_T(u32,
4562 				   sb_cnt.cnt / 2,
4563 				   RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
4564 
4565 #ifndef __EXTRACT__LINUX__THROW__
4566 		/* Upper layer might require less */
4567 		max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
4568 		if (max_cnqs) {
4569 			if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
4570 				max_cnqs = 0;
4571 			feat_num[ECORE_RDMA_CNQ] =
4572 				OSAL_MIN_T(u32,
4573 					   feat_num[ECORE_RDMA_CNQ],
4574 					   max_cnqs);
4575 		}
4576 #endif
4577 
4578 		non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
4579 	}
4580 #endif
4581 
4582 	/* L2 Queues require each: 1 status block. 1 L2 queue */
4583 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
4584 		/* Start by allocating VF queues, then PF's */
4585 		feat_num[ECORE_VF_L2_QUE] =
4586 			OSAL_MIN_T(u32,
4587 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
4588 				   sb_cnt.iov_cnt);
4589 		feat_num[ECORE_PF_L2_QUE] =
4590 			OSAL_MIN_T(u32,
4591 				   sb_cnt.cnt - non_l2_sbs,
4592 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
4593 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
4594 	}
4595 
4596 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4597 		feat_num[ECORE_FCOE_CQ] =
4598 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4599 							     ECORE_CMDQS_CQS));
4600 
4601 	if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
4602 		feat_num[ECORE_ISCSI_CQ] =
4603 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4604 							     ECORE_CMDQS_CQS));
4605 
4606 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4607 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
4608 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
4609 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
4610 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
4611 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
4612 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
4613 		   (int)sb_cnt.cnt);
4614 }
4615 
4616 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
4617 {
4618 	switch (res_id) {
4619 	case ECORE_L2_QUEUE:
4620 		return "L2_QUEUE";
4621 	case ECORE_VPORT:
4622 		return "VPORT";
4623 	case ECORE_RSS_ENG:
4624 		return "RSS_ENG";
4625 	case ECORE_PQ:
4626 		return "PQ";
4627 	case ECORE_RL:
4628 		return "RL";
4629 	case ECORE_MAC:
4630 		return "MAC";
4631 	case ECORE_VLAN:
4632 		return "VLAN";
4633 	case ECORE_RDMA_CNQ_RAM:
4634 		return "RDMA_CNQ_RAM";
4635 	case ECORE_ILT:
4636 		return "ILT";
4637 	case ECORE_LL2_QUEUE:
4638 		return "LL2_QUEUE";
4639 	case ECORE_CMDQS_CQS:
4640 		return "CMDQS_CQS";
4641 	case ECORE_RDMA_STATS_QUEUE:
4642 		return "RDMA_STATS_QUEUE";
4643 	case ECORE_BDQ:
4644 		return "BDQ";
4645 	case ECORE_SB:
4646 		return "SB";
4647 	default:
4648 		return "UNKNOWN_RESOURCE";
4649 	}
4650 }
4651 
4652 static enum _ecore_status_t
4653 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4654 			      struct ecore_ptt *p_ptt,
4655 			      enum ecore_resources res_id,
4656 			      u32 resc_max_val,
4657 			      u32 *p_mcp_resp)
4658 {
4659 	enum _ecore_status_t rc;
4660 
4661 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
4662 					resc_max_val, p_mcp_resp);
4663 	if (rc != ECORE_SUCCESS) {
4664 		DP_NOTICE(p_hwfn, false,
4665 			  "MFW response failure for a max value setting of resource %d [%s]\n",
4666 			  res_id, ecore_hw_get_resc_name(res_id));
4667 		return rc;
4668 	}
4669 
4670 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
4671 		DP_INFO(p_hwfn,
4672 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
4673 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
4674 
4675 	return ECORE_SUCCESS;
4676 }
4677 
4678 static enum _ecore_status_t
4679 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4680 			    struct ecore_ptt *p_ptt)
4681 {
4682 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4683 	u32 resc_max_val, mcp_resp;
4684 	u8 res_id;
4685 	enum _ecore_status_t rc;
4686 
4687 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4688 		switch (res_id) {
4689 		case ECORE_LL2_QUEUE:
4690 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
4691 			break;
4692 		case ECORE_RDMA_CNQ_RAM:
4693 			/* No need for a case for ECORE_CMDQS_CQS since
4694 			 * CNQ/CMDQS are the same resource.
4695 			 */
4696 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
4697 			break;
4698 		case ECORE_RDMA_STATS_QUEUE:
4699 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
4700 					    : RDMA_NUM_STATISTIC_COUNTERS_BB;
4701 			break;
4702 		case ECORE_BDQ:
4703 			resc_max_val = BDQ_NUM_RESOURCES;
4704 			break;
4705 		default:
4706 			continue;
4707 		}
4708 
4709 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
4710 						   resc_max_val, &mcp_resp);
4711 		if (rc != ECORE_SUCCESS)
4712 			return rc;
4713 
4714 		/* There's no point to continue to the next resource if the
4715 		 * command is not supported by the MFW.
4716 		 * We do continue if the command is supported but the resource
4717 		 * is unknown to the MFW. Such a resource will be later
4718 		 * configured with the default allocation values.
4719 		 */
4720 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
4721 			return ECORE_NOTIMPL;
4722 	}
4723 
4724 	return ECORE_SUCCESS;
4725 }
4726 
4727 static
4728 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
4729 					    enum ecore_resources res_id,
4730 					    u32 *p_resc_num, u32 *p_resc_start)
4731 {
4732 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
4733 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4734 
4735 	switch (res_id) {
4736 	case ECORE_L2_QUEUE:
4737 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
4738 				      MAX_NUM_L2_QUEUES_BB) / num_funcs;
4739 		break;
4740 	case ECORE_VPORT:
4741 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
4742 				      MAX_NUM_VPORTS_BB) / num_funcs;
4743 		break;
4744 	case ECORE_RSS_ENG:
4745 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
4746 				      ETH_RSS_ENGINE_NUM_BB) / num_funcs;
4747 		break;
4748 	case ECORE_PQ:
4749 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
4750 				      MAX_QM_TX_QUEUES_BB) / num_funcs;
4751 		*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
4752 		break;
4753 	case ECORE_RL:
4754 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
4755 		break;
4756 	case ECORE_MAC:
4757 	case ECORE_VLAN:
4758 		/* Each VFC resource can accommodate both a MAC and a VLAN */
4759 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
4760 		break;
4761 	case ECORE_ILT:
4762 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
4763 				      PXP_NUM_ILT_RECORDS_BB) / num_funcs;
4764 		break;
4765 	case ECORE_LL2_QUEUE:
4766 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
4767 		break;
4768 	case ECORE_RDMA_CNQ_RAM:
4769 	case ECORE_CMDQS_CQS:
4770 		/* CNQ/CMDQS are the same resource */
4771 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
4772 		break;
4773 	case ECORE_RDMA_STATS_QUEUE:
4774 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
4775 				      RDMA_NUM_STATISTIC_COUNTERS_BB) /
4776 			      num_funcs;
4777 		break;
4778 	case ECORE_BDQ:
4779 		if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
4780 		    p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
4781 			*p_resc_num = 0;
4782 		else
4783 			*p_resc_num = 1;
4784 		break;
4785 	case ECORE_SB:
4786 		/* Since we want its value to reflect whether MFW supports
4787 		 * the new scheme, have a default of 0.
4788 		 */
4789 		*p_resc_num = 0;
4790 		break;
4791 	default:
4792 		return ECORE_INVAL;
4793 	}
4794 
4795 	switch (res_id) {
4796 	case ECORE_BDQ:
4797 		if (!*p_resc_num)
4798 			*p_resc_start = 0;
4799 		else if (p_hwfn->p_dev->num_ports_in_engine == 4)
4800 			*p_resc_start = p_hwfn->port_id;
4801 		else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
4802 			*p_resc_start = p_hwfn->port_id;
4803 		else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
4804 			*p_resc_start = p_hwfn->port_id + 2;
4805 		break;
4806 	default:
4807 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
4808 		break;
4809 	}
4810 
4811 	return ECORE_SUCCESS;
4812 }
4813 
4814 static enum _ecore_status_t
4815 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
4816 			 bool drv_resc_alloc)
4817 {
4818 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
4819 	u32 mcp_resp, *p_resc_num, *p_resc_start;
4820 	enum _ecore_status_t rc;
4821 
4822 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
4823 	p_resc_start = &RESC_START(p_hwfn, res_id);
4824 
4825 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
4826 				    &dflt_resc_start);
4827 	if (rc != ECORE_SUCCESS) {
4828 		DP_ERR(p_hwfn,
4829 		       "Failed to get default amount for resource %d [%s]\n",
4830 			res_id, ecore_hw_get_resc_name(res_id));
4831 		return rc;
4832 	}
4833 
4834 #ifndef ASIC_ONLY
4835 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4836 		*p_resc_num = dflt_resc_num;
4837 		*p_resc_start = dflt_resc_start;
4838 		goto out;
4839 	}
4840 #endif
4841 
4842 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
4843 				     &mcp_resp, p_resc_num, p_resc_start);
4844 	if (rc != ECORE_SUCCESS) {
4845 		DP_NOTICE(p_hwfn, false,
4846 			  "MFW response failure for an allocation request for resource %d [%s]\n",
4847 			  res_id, ecore_hw_get_resc_name(res_id));
4848 		return rc;
4849 	}
4850 
4851 	/* Default driver values are applied in the following cases:
4852 	 * - The resource allocation MB command is not supported by the MFW
4853 	 * - There is an internal error in the MFW while processing the request
4854 	 * - The resource ID is unknown to the MFW
4855 	 */
4856 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
4857 		DP_INFO(p_hwfn,
4858 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
4859 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
4860 			dflt_resc_num, dflt_resc_start);
4861 		*p_resc_num = dflt_resc_num;
4862 		*p_resc_start = dflt_resc_start;
4863 		goto out;
4864 	}
4865 
4866 	if ((*p_resc_num != dflt_resc_num ||
4867 	     *p_resc_start != dflt_resc_start) &&
4868 	    res_id != ECORE_SB) {
4869 		DP_INFO(p_hwfn,
4870 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
4871 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
4872 			*p_resc_start, dflt_resc_num, dflt_resc_start,
4873 			drv_resc_alloc ? " - Applying default values" : "");
4874 		if (drv_resc_alloc) {
4875 			*p_resc_num = dflt_resc_num;
4876 			*p_resc_start = dflt_resc_start;
4877 		}
4878 	}
4879 out:
4880 	/* PQs have to divide by 8 [that's the HW granularity].
4881 	 * Reduce number so it would fit.
4882 	 */
4883 	if ((res_id == ECORE_PQ) &&
4884 	    ((*p_resc_num % 8) || (*p_resc_start % 8))) {
4885 		DP_INFO(p_hwfn,
4886 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
4887 			*p_resc_num, (*p_resc_num) & ~0x7,
4888 			*p_resc_start, (*p_resc_start) & ~0x7);
4889 		*p_resc_num &= ~0x7;
4890 		*p_resc_start &= ~0x7;
4891 	}
4892 
4893 	return ECORE_SUCCESS;
4894 }
4895 
4896 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
4897 						   bool drv_resc_alloc)
4898 {
4899 	enum _ecore_status_t rc;
4900 	u8 res_id;
4901 
4902 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4903 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
4904 		if (rc != ECORE_SUCCESS)
4905 			return rc;
4906 	}
4907 
4908 	return ECORE_SUCCESS;
4909 }
4910 
4911 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn,
4912 						      struct ecore_ptt *p_ptt)
4913 {
4914 	u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn);
4915 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4916 	enum _ecore_status_t rc;
4917 
4918 	rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
4919 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL)
4920 		return rc;
4921 	else if (rc == ECORE_NOTIMPL)
4922 		p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4923 
4924 	if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
4925 		DP_INFO(p_hwfn,
4926 			"Fix the PPFID bitmap to inculde the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
4927 			native_ppfid_idx, p_dev->ppfid_bitmap);
4928 		p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4929 	}
4930 
4931 	return ECORE_SUCCESS;
4932 }
4933 
4934 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
4935 					      struct ecore_ptt *p_ptt,
4936 					      bool drv_resc_alloc)
4937 {
4938 	struct ecore_resc_unlock_params resc_unlock_params;
4939 	struct ecore_resc_lock_params resc_lock_params;
4940 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4941 	u8 res_id;
4942 	enum _ecore_status_t rc;
4943 #ifndef ASIC_ONLY
4944 	u32 *resc_start = p_hwfn->hw_info.resc_start;
4945 	u32 *resc_num = p_hwfn->hw_info.resc_num;
4946 	/* For AH, an equal share of the ILT lines between the maximal number of
4947 	 * PFs is not enough for RoCE. This would be solved by the future
4948 	 * resource allocation scheme, but isn't currently present for
4949 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
4950 	 * to work - the BB number of ILT lines divided by its max PFs number.
4951 	 */
4952 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
4953 #endif
4954 
4955 	/* Setting the max values of the soft resources and the following
4956 	 * resources allocation queries should be atomic. Since several PFs can
4957 	 * run in parallel - a resource lock is needed.
4958 	 * If either the resource lock or resource set value commands are not
4959 	 * supported - skip the the max values setting, release the lock if
4960 	 * needed, and proceed to the queries. Other failures, including a
4961 	 * failure to acquire the lock, will cause this function to fail.
4962 	 * Old drivers that don't acquire the lock can run in parallel, and
4963 	 * their allocation values won't be affected by the updated max values.
4964 	 */
4965 
4966 	ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
4967 					 ECORE_RESC_LOCK_RESC_ALLOC, false);
4968 
4969 	/* Changes on top of the default values to accommodate parallel attempts
4970 	 * of several PFs.
4971 	 * [10 x 10 msec by default ==> 20 x 50 msec]
4972 	 */
4973 	resc_lock_params.retry_num *= 2;
4974 	resc_lock_params.retry_interval *= 5;
4975 
4976 	rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
4977 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4978 		return rc;
4979 	} else if (rc == ECORE_NOTIMPL) {
4980 		DP_INFO(p_hwfn,
4981 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
4982 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
4983 		DP_NOTICE(p_hwfn, false,
4984 			  "Failed to acquire the resource lock for the resource allocation commands\n");
4985 		return ECORE_BUSY;
4986 	} else {
4987 		rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
4988 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4989 			DP_NOTICE(p_hwfn, false,
4990 				  "Failed to set the max values of the soft resources\n");
4991 			goto unlock_and_exit;
4992 		} else if (rc == ECORE_NOTIMPL) {
4993 			DP_INFO(p_hwfn,
4994 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
4995 			rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4996 						   &resc_unlock_params);
4997 			if (rc != ECORE_SUCCESS)
4998 				DP_INFO(p_hwfn,
4999 					"Failed to release the resource lock for the resource allocation commands\n");
5000 		}
5001 	}
5002 
5003 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
5004 	if (rc != ECORE_SUCCESS)
5005 		goto unlock_and_exit;
5006 
5007 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
5008 		rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5009 					   &resc_unlock_params);
5010 		if (rc != ECORE_SUCCESS)
5011 			DP_INFO(p_hwfn,
5012 				"Failed to release the resource lock for the resource allocation commands\n");
5013 	}
5014 
5015 	/* PPFID bitmap */
5016 	if (IS_LEAD_HWFN(p_hwfn)) {
5017 		rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
5018 		if (rc != ECORE_SUCCESS)
5019 			return rc;
5020 	}
5021 
5022 #ifndef ASIC_ONLY
5023 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
5024 		/* Reduced build contains less PQs */
5025 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
5026 			resc_num[ECORE_PQ] = 32;
5027 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
5028 					       p_hwfn->enabled_func_idx;
5029 		}
5030 
5031 		/* For AH emulation, since we have a possible maximal number of
5032 		 * 16 enabled PFs, in case there are not enough ILT lines -
5033 		 * allocate only first PF as RoCE and have all the other ETH
5034 		 * only with less ILT lines.
5035 		 */
5036 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
5037 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
5038 							 resc_num[ECORE_ILT],
5039 							 roce_min_ilt_lines);
5040 	}
5041 
5042 	/* Correct the common ILT calculation if PF0 has more */
5043 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
5044 	    p_hwfn->p_dev->b_is_emul_full &&
5045 	    p_hwfn->rel_pf_id &&
5046 	    resc_num[ECORE_ILT] < roce_min_ilt_lines)
5047 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
5048 					 resc_num[ECORE_ILT];
5049 #endif
5050 
5051 	/* Sanity for ILT */
5052 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
5053 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
5054 		DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
5055 			  RESC_START(p_hwfn, ECORE_ILT),
5056 			  RESC_END(p_hwfn, ECORE_ILT) - 1);
5057 		return ECORE_INVAL;
5058 	}
5059 
5060 	/* This will also learn the number of SBs from MFW */
5061 	if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
5062 		return ECORE_INVAL;
5063 
5064 	ecore_hw_set_feat(p_hwfn);
5065 
5066 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5067 		   "The numbers for each resource are:\n");
5068 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
5069 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
5070 			   ecore_hw_get_resc_name(res_id),
5071 			   RESC_NUM(p_hwfn, res_id),
5072 			   RESC_START(p_hwfn, res_id));
5073 
5074 	return ECORE_SUCCESS;
5075 
5076 unlock_and_exit:
5077 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
5078 		ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5079 				      &resc_unlock_params);
5080 	return rc;
5081 }
5082 
5083 static enum _ecore_status_t
5084 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
5085 		      struct ecore_ptt *p_ptt,
5086 		      struct ecore_hw_prepare_params *p_params)
5087 {
5088 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
5089 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
5090 	struct ecore_mcp_link_capabilities *p_caps;
5091 	struct ecore_mcp_link_params *link;
5092 	enum _ecore_status_t rc;
5093 	u32 dcbx_mode;  /* __LINUX__THROW__ */
5094 
5095 	/* Read global nvm_cfg address */
5096 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
5097 
5098 	/* Verify MCP has initialized it */
5099 	if (!nvm_cfg_addr) {
5100 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
5101 		if (p_params->b_relaxed_probe)
5102 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
5103 		return ECORE_INVAL;
5104 	}
5105 
5106 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
5107 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
5108 
5109 	addr = MCP_REG_SCRATCH  + nvm_cfg1_offset +
5110 		   OFFSETOF(struct nvm_cfg1, glob) +
5111 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
5112 
5113 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
5114 
5115 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
5116 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
5117 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
5118 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
5119 		break;
5120 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
5121 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
5122 		break;
5123 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
5124 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
5125 		break;
5126 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
5127 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
5128 		break;
5129 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
5130 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
5131 		break;
5132 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
5133 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
5134 		break;
5135 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
5136 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
5137 		break;
5138 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
5139 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
5140 		break;
5141 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
5142 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
5143 		break;
5144 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
5145 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
5146 		break;
5147 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
5148 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
5149 		break;
5150 	default:
5151 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
5152 			  core_cfg);
5153 		break;
5154 	}
5155 
5156 #ifndef __EXTRACT__LINUX__THROW__
5157 	/* Read DCBX configuration */
5158 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5159 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5160 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
5161 			     port_cfg_addr +
5162 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
5163 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
5164 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
5165 	switch (dcbx_mode) {
5166 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
5167 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
5168 		break;
5169 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
5170 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
5171 		break;
5172 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
5173 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
5174 		break;
5175 	default:
5176 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
5177 	}
5178 #endif
5179 
5180 	/* Read default link configuration */
5181 	link = &p_hwfn->mcp_info->link_input;
5182 	p_caps = &p_hwfn->mcp_info->link_capabilities;
5183 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5184 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5185 	link_temp = ecore_rd(p_hwfn, p_ptt,
5186 			     port_cfg_addr +
5187 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
5188 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
5189 	link->speed.advertised_speeds = link_temp;
5190 	p_caps->speed_capabilities = link->speed.advertised_speeds;
5191 
5192 	link_temp = ecore_rd(p_hwfn, p_ptt,
5193 				 port_cfg_addr +
5194 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
5195 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
5196 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
5197 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
5198 		link->speed.autoneg = true;
5199 		break;
5200 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
5201 		link->speed.forced_speed = 1000;
5202 		break;
5203 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
5204 		link->speed.forced_speed = 10000;
5205 		break;
5206 	case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
5207 		link->speed.forced_speed = 20000;
5208 		break;
5209 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
5210 		link->speed.forced_speed = 25000;
5211 		break;
5212 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
5213 		link->speed.forced_speed = 40000;
5214 		break;
5215 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
5216 		link->speed.forced_speed = 50000;
5217 		break;
5218 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
5219 		link->speed.forced_speed = 100000;
5220 		break;
5221 	default:
5222 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
5223 			  link_temp);
5224 	}
5225 
5226 	p_caps->default_speed = link->speed.forced_speed; /* __LINUX__THROW__ */
5227 	p_caps->default_speed_autoneg = link->speed.autoneg;
5228 
5229 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
5230 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
5231 	link->pause.autoneg = !!(link_temp &
5232 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
5233 	link->pause.forced_rx = !!(link_temp &
5234 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
5235 	link->pause.forced_tx = !!(link_temp &
5236 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
5237 	link->loopback_mode = 0;
5238 
5239 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
5240 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
5241 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
5242 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
5243 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
5244 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
5245 		link->eee.enable = true;
5246 		switch (link_temp) {
5247 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
5248 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
5249 			link->eee.enable = false;
5250 			break;
5251 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
5252 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
5253 			break;
5254 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
5255 			p_caps->eee_lpi_timer =
5256 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
5257 			break;
5258 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
5259 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
5260 			break;
5261 		}
5262 
5263 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
5264 		link->eee.tx_lpi_enable = link->eee.enable;
5265 		link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
5266 	} else {
5267 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
5268 	}
5269 
5270 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5271 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
5272 		   link->speed.forced_speed, link->speed.advertised_speeds,
5273 		   link->speed.autoneg, link->pause.autoneg,
5274 		   p_caps->default_eee, p_caps->eee_lpi_timer);
5275 
5276 	/* Read Multi-function information from shmem */
5277 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5278 		   OFFSETOF(struct nvm_cfg1, glob) +
5279 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
5280 
5281 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
5282 
5283 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
5284 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
5285 
5286 	switch (mf_mode) {
5287 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5288 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
5289 		break;
5290 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5291 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5292 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5293 					 1 << ECORE_MF_UFP_SPECIFIC |
5294 					 1 << ECORE_MF_8021Q_TAGGING;
5295 		break;
5296 	case NVM_CFG1_GLOB_MF_MODE_BD:
5297 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5298 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5299 					 1 << ECORE_MF_8021AD_TAGGING;
5300 		break;
5301 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5302 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5303 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5304 					 1 << ECORE_MF_LL2_NON_UNICAST |
5305 					 1 << ECORE_MF_INTER_PF_SWITCH |
5306 					 1 << ECORE_MF_DISABLE_ARFS;
5307 		break;
5308 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5309 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5310 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5311 					 1 << ECORE_MF_LL2_NON_UNICAST;
5312 		if (ECORE_IS_BB(p_hwfn->p_dev))
5313 			p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
5314 		break;
5315 	}
5316 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
5317 		p_hwfn->p_dev->mf_bits);
5318 
5319 	if (ECORE_IS_CMT(p_hwfn->p_dev))
5320 		p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
5321 
5322 #ifndef __EXTRACT__LINUX__THROW__
5323 	/* It's funny since we have another switch, but it's easier
5324 	 * to throw this away in linux this way. Long term, it might be
5325 	 * better to have have getters for needed ECORE_MF_* fields,
5326 	 * convert client code and eliminate this.
5327 	 */
5328 	switch (mf_mode) {
5329 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5330 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
5331 		break;
5332 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5333 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
5334 		break;
5335 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5336 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
5337 		break;
5338 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5339 		p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
5340 		break;
5341 	}
5342 #endif
5343 
5344 	/* Read Multi-function information from shmem */
5345 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5346 		   OFFSETOF(struct nvm_cfg1, glob) +
5347 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
5348 
5349 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
5350 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
5351 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
5352 				 &p_hwfn->hw_info.device_capabilities);
5353 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
5354 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
5355 				 &p_hwfn->hw_info.device_capabilities);
5356 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
5357 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
5358 				 &p_hwfn->hw_info.device_capabilities);
5359 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
5360 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
5361 				 &p_hwfn->hw_info.device_capabilities);
5362 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
5363 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
5364 				 &p_hwfn->hw_info.device_capabilities);
5365 
5366 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
5367 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5368 		rc = ECORE_SUCCESS;
5369 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5370 	}
5371 
5372 	return rc;
5373 }
5374 
5375 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
5376 				struct ecore_ptt *p_ptt)
5377 {
5378 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
5379 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
5380 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5381 
5382 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
5383 
5384 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
5385 	 * in the other bits are selected.
5386 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
5387 	 * '0' only for enabled functions (function 0 always exists and
5388 	 * enabled).
5389 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
5390 	 * the number of functions for both hwfns is learnt from the same bits.
5391 	 */
5392 	reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
5393 
5394 	if (reg_function_hide & 0x1) {
5395 		if (ECORE_IS_BB(p_dev)) {
5396 			if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
5397 				num_funcs = 0;
5398 				eng_mask = 0xaaaa;
5399 			} else {
5400 				num_funcs = 1;
5401 				eng_mask = 0x5554;
5402 			}
5403 		} else {
5404 			num_funcs = 1;
5405 			eng_mask = 0xfffe;
5406 		}
5407 
5408 		/* Get the number of the enabled functions on the engine */
5409 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
5410 		while (tmp) {
5411 			if (tmp & 0x1)
5412 				num_funcs++;
5413 			tmp >>= 0x1;
5414 		}
5415 
5416 		/* Get the PF index within the enabled functions */
5417 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
5418 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
5419 		while (tmp) {
5420 			if (tmp & 0x1)
5421 				enabled_func_idx--;
5422 			tmp >>= 0x1;
5423 		}
5424 	}
5425 
5426 	p_hwfn->num_funcs_on_engine = num_funcs;
5427 	p_hwfn->enabled_func_idx = enabled_func_idx;
5428 
5429 #ifndef ASIC_ONLY
5430 	if (CHIP_REV_IS_FPGA(p_dev)) {
5431 		DP_NOTICE(p_hwfn, false,
5432 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
5433 		p_hwfn->num_funcs_on_engine = 4;
5434 	}
5435 #endif
5436 
5437 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5438 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
5439 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
5440 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
5441 }
5442 
5443 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
5444 				      struct ecore_ptt *p_ptt)
5445 {
5446 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5447 	u32 port_mode;
5448 
5449 #ifndef ASIC_ONLY
5450 	/* Read the port mode */
5451 	if (CHIP_REV_IS_FPGA(p_dev))
5452 		port_mode = 4;
5453 	else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev))
5454 		/* In CMT on emulation, assume 1 port */
5455 		port_mode = 1;
5456 	else
5457 #endif
5458 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
5459 
5460 	if (port_mode < 3) {
5461 		p_dev->num_ports_in_engine = 1;
5462 	} else if (port_mode <= 5) {
5463 		p_dev->num_ports_in_engine = 2;
5464 	} else {
5465 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
5466 			  p_dev->num_ports_in_engine);
5467 
5468 		/* Default num_ports_in_engine to something */
5469 		p_dev->num_ports_in_engine = 1;
5470 	}
5471 }
5472 
5473 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
5474 					 struct ecore_ptt *p_ptt)
5475 {
5476 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5477 	u32 port;
5478 	int i;
5479 
5480 	p_dev->num_ports_in_engine = 0;
5481 
5482 #ifndef ASIC_ONLY
5483 	if (CHIP_REV_IS_EMUL(p_dev)) {
5484 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5485 		switch ((port & 0xf000) >> 12) {
5486 		case 1:
5487 			p_dev->num_ports_in_engine = 1;
5488 			break;
5489 		case 3:
5490 			p_dev->num_ports_in_engine = 2;
5491 			break;
5492 		case 0xf:
5493 			p_dev->num_ports_in_engine = 4;
5494 			break;
5495 		default:
5496 			DP_NOTICE(p_hwfn, false,
5497 				  "Unknown port mode in ECO_RESERVED %08x\n",
5498 				  port);
5499 		}
5500 	} else
5501 #endif
5502 	for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
5503 		port = ecore_rd(p_hwfn, p_ptt,
5504 				CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
5505 		if (port & 1)
5506 			p_dev->num_ports_in_engine++;
5507 	}
5508 
5509 	if (!p_dev->num_ports_in_engine) {
5510 		DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
5511 
5512 		/* Default num_ports_in_engine to something */
5513 		p_dev->num_ports_in_engine = 1;
5514 	}
5515 }
5516 
5517 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5518 				   struct ecore_ptt *p_ptt)
5519 {
5520 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5521 
5522 	/* Determine the number of ports per engine */
5523 	if (ECORE_IS_BB(p_dev))
5524 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
5525 	else
5526 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
5527 
5528 	/* Get the total number of ports of the device */
5529 	if (ECORE_IS_CMT(p_dev)) {
5530 		/* In CMT there is always only one port */
5531 		p_dev->num_ports = 1;
5532 #ifndef ASIC_ONLY
5533 	} else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) {
5534 		p_dev->num_ports = p_dev->num_ports_in_engine *
5535 				   ecore_device_num_engines(p_dev);
5536 #endif
5537 	} else {
5538 		u32 addr, global_offsize, global_addr;
5539 
5540 		addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
5541 					    PUBLIC_GLOBAL);
5542 		global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
5543 		global_addr = SECTION_ADDR(global_offsize, 0);
5544 		addr = global_addr + OFFSETOF(struct public_global, max_ports);
5545 		p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
5546 	}
5547 }
5548 
5549 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
5550 				   struct ecore_ptt *p_ptt)
5551 {
5552 	struct ecore_mcp_link_capabilities *p_caps;
5553 	u32 eee_status;
5554 
5555 	p_caps = &p_hwfn->mcp_info->link_capabilities;
5556 	if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
5557 		return;
5558 
5559 	p_caps->eee_speed_caps = 0;
5560 	eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
5561 			      OFFSETOF(struct public_port, eee_status));
5562 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
5563 			EEE_SUPPORTED_SPEED_OFFSET;
5564 	if (eee_status & EEE_1G_SUPPORTED)
5565 		p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
5566 	if (eee_status & EEE_10G_ADV)
5567 		p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
5568 }
5569 
5570 static enum _ecore_status_t
5571 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
5572 		  enum ecore_pci_personality personality,
5573 		  struct ecore_hw_prepare_params *p_params)
5574 {
5575 	bool drv_resc_alloc = p_params->drv_resc_alloc;
5576 	enum _ecore_status_t rc;
5577 
5578 	/* Since all information is common, only first hwfns should do this */
5579 	if (IS_LEAD_HWFN(p_hwfn)) {
5580 		rc = ecore_iov_hw_info(p_hwfn);
5581 		if (rc != ECORE_SUCCESS) {
5582 			if (p_params->b_relaxed_probe)
5583 				p_params->p_relaxed_res =
5584 						ECORE_HW_PREPARE_BAD_IOV;
5585 			else
5586 				return rc;
5587 		}
5588 	}
5589 
5590 	if (IS_LEAD_HWFN(p_hwfn))
5591 		ecore_hw_info_port_num(p_hwfn, p_ptt);
5592 
5593 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
5594 
5595 #ifndef ASIC_ONLY
5596 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
5597 #endif
5598 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
5599 	if (rc != ECORE_SUCCESS)
5600 		return rc;
5601 #ifndef ASIC_ONLY
5602 	}
5603 #endif
5604 
5605 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
5606 	if (rc != ECORE_SUCCESS) {
5607 		if (p_params->b_relaxed_probe)
5608 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
5609 		else
5610 			return rc;
5611 	}
5612 
5613 #ifndef ASIC_ONLY
5614 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
5615 #endif
5616 	OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
5617 		    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
5618 #ifndef ASIC_ONLY
5619 	} else {
5620 		static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
5621 
5622 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
5623 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
5624 	}
5625 #endif
5626 
5627 	if (ecore_mcp_is_init(p_hwfn)) {
5628 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
5629 			p_hwfn->hw_info.ovlan =
5630 				p_hwfn->mcp_info->func_info.ovlan;
5631 
5632 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
5633 
5634 		ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
5635 
5636 		ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
5637 	}
5638 
5639 	if (personality != ECORE_PCI_DEFAULT) {
5640 		p_hwfn->hw_info.personality = personality;
5641 	} else if (ecore_mcp_is_init(p_hwfn)) {
5642 		enum ecore_pci_personality protocol;
5643 
5644 		protocol = p_hwfn->mcp_info->func_info.protocol;
5645 		p_hwfn->hw_info.personality = protocol;
5646 	}
5647 
5648 #ifndef ASIC_ONLY
5649 	/* To overcome ILT lack for emulation, until at least until we'll have
5650 	 * a definite answer from system about it, allow only PF0 to be RoCE.
5651 	 */
5652 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
5653 		if (!p_hwfn->rel_pf_id)
5654 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
5655 		else
5656 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
5657 	}
5658 #endif
5659 
5660 	/* although in BB some constellations may support more than 4 tcs,
5661 	 * that can result in performance penalty in some cases. 4
5662 	 * represents a good tradeoff between performance and flexibility.
5663 	 */
5664 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
5665 
5666 	/* start out with a single active tc. This can be increased either
5667 	 * by dcbx negotiation or by upper layer driver
5668 	 */
5669 	p_hwfn->hw_info.num_active_tc = 1;
5670 
5671 	ecore_get_num_funcs(p_hwfn, p_ptt);
5672 
5673 	if (ecore_mcp_is_init(p_hwfn))
5674 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
5675 
5676 	/* In case of forcing the driver's default resource allocation, calling
5677 	 * ecore_hw_get_resc() should come after initializing the personality
5678 	 * and after getting the number of functions, since the calculation of
5679 	 * the resources/features depends on them.
5680 	 * This order is not harmful if not forcing.
5681 	 */
5682 	rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
5683 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5684 		rc = ECORE_SUCCESS;
5685 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5686 	}
5687 
5688 	return rc;
5689 }
5690 
5691 #define ECORE_MAX_DEVICE_NAME_LEN	(8)
5692 
5693 void ecore_get_dev_name(struct ecore_dev *p_dev, u8 *name, u8 max_chars)
5694 {
5695 	u8 n;
5696 
5697 	n = OSAL_MIN_T(u8, max_chars, ECORE_MAX_DEVICE_NAME_LEN);
5698 	OSAL_SNPRINTF(name, n, "%s %c%d", ECORE_IS_BB(p_dev) ? "BB" : "AH",
5699 		      'A' + p_dev->chip_rev, (int)p_dev->chip_metal);
5700 }
5701 
5702 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
5703 					       struct ecore_ptt *p_ptt)
5704 {
5705 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5706 	u16 device_id_mask;
5707 	u32 tmp;
5708 
5709 	/* Read Vendor Id / Device Id */
5710 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
5711 				  &p_dev->vendor_id);
5712 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
5713 				  &p_dev->device_id);
5714 
5715 	/* Determine type */
5716 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
5717 	switch (device_id_mask) {
5718 	case ECORE_DEV_ID_MASK_BB:
5719 		p_dev->type = ECORE_DEV_TYPE_BB;
5720 		break;
5721 	case ECORE_DEV_ID_MASK_AH:
5722 		p_dev->type = ECORE_DEV_TYPE_AH;
5723 		break;
5724 	case ECORE_DEV_ID_MASK_E5:
5725 		p_dev->type = ECORE_DEV_TYPE_E5;
5726 		break;
5727 	default:
5728 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
5729 			  p_dev->device_id);
5730 		return ECORE_ABORTED;
5731 	}
5732 
5733 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
5734 	p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
5735 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
5736 	p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
5737 
5738 	/* Learn number of HW-functions */
5739 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
5740 
5741 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
5742 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
5743 		p_dev->num_hwfns = 2;
5744 	} else {
5745 		p_dev->num_hwfns = 1;
5746 	}
5747 
5748 #ifndef ASIC_ONLY
5749 	if (CHIP_REV_IS_EMUL(p_dev)) {
5750 		/* For some reason we have problems with this register
5751 		 * in B0 emulation; Simply assume no CMT
5752 		 */
5753 		DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
5754 		p_dev->num_hwfns = 1;
5755 	}
5756 #endif
5757 
5758 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
5759 	p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
5760 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
5761 	p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
5762 
5763 	DP_INFO(p_dev->hwfns,
5764 		"Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
5765 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
5766 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
5767 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
5768 		p_dev->chip_metal);
5769 
5770 	if (ECORE_IS_BB_A0(p_dev)) {
5771 		DP_NOTICE(p_dev->hwfns, false,
5772 			  "The chip type/rev (BB A0) is not supported!\n");
5773 		return ECORE_ABORTED;
5774 	}
5775 
5776 #ifndef ASIC_ONLY
5777 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
5778 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
5779 
5780 	if (CHIP_REV_IS_EMUL(p_dev)) {
5781 		tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5782 		if (tmp & (1 << 29)) {
5783 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
5784 			p_dev->b_is_emul_full = true;
5785 		} else {
5786 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
5787 		}
5788 	}
5789 #endif
5790 
5791 	return ECORE_SUCCESS;
5792 }
5793 
5794 #ifndef LINUX_REMOVE
5795 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
5796 {
5797 	int j;
5798 
5799 	if (IS_VF(p_dev))
5800 		return;
5801 
5802 	for_each_hwfn(p_dev, j) {
5803 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5804 
5805 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
5806 
5807 		p_hwfn->hw_init_done = false;
5808 
5809 		ecore_ptt_invalidate(p_hwfn);
5810 	}
5811 }
5812 
5813 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
5814 {
5815 	int j = 0;
5816 
5817 	if (IS_VF(p_dev))
5818 		return;
5819 
5820 	for_each_hwfn(p_dev, j) {
5821 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5822 		struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
5823 
5824 		ecore_hw_hwfn_prepare(p_hwfn);
5825 
5826 		if (!p_ptt)
5827 			DP_NOTICE(p_hwfn, false, "ptt acquire failed\n");
5828 		else {
5829 			ecore_load_mcp_offsets(p_hwfn, p_ptt);
5830 			ecore_ptt_release(p_hwfn, p_ptt);
5831 		}
5832 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
5833 	}
5834 }
5835 
5836 #endif
5837 
5838 static enum _ecore_status_t
5839 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
5840 			void OSAL_IOMEM *p_doorbells, u64 db_phys_addr,
5841 			struct ecore_hw_prepare_params *p_params)
5842 {
5843 	struct ecore_mdump_retain_data mdump_retain;
5844 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5845 	struct ecore_mdump_info mdump_info;
5846 	enum _ecore_status_t rc = ECORE_SUCCESS;
5847 
5848 	/* Split PCI bars evenly between hwfns */
5849 	p_hwfn->regview = p_regview;
5850 	p_hwfn->doorbells = p_doorbells;
5851 	p_hwfn->db_phys_addr = db_phys_addr;
5852 
5853 #ifndef LINUX_REMOVE
5854        p_hwfn->reg_offset = (u8 *)p_hwfn->regview - (u8 *)p_hwfn->p_dev->regview;
5855        p_hwfn->db_offset = (u8 *)p_hwfn->doorbells - (u8 *)p_hwfn->p_dev->doorbells;
5856 #endif
5857 
5858 	if (IS_VF(p_dev))
5859 		return ecore_vf_hw_prepare(p_hwfn);
5860 
5861 	/* Validate that chip access is feasible */
5862 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
5863 		DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
5864 		if (p_params->b_relaxed_probe)
5865 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
5866 		return ECORE_INVAL;
5867 	}
5868 
5869 	get_function_id(p_hwfn);
5870 
5871 	/* Allocate PTT pool */
5872 	rc = ecore_ptt_pool_alloc(p_hwfn);
5873 	if (rc) {
5874 		DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n");
5875 		if (p_params->b_relaxed_probe)
5876 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5877 		goto err0;
5878 	}
5879 
5880 	/* Allocate the main PTT */
5881 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
5882 
5883 	/* First hwfn learns basic information, e.g., number of hwfns */
5884 	if (!p_hwfn->my_id) {
5885 		rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
5886 		if (rc != ECORE_SUCCESS) {
5887 			if (p_params->b_relaxed_probe)
5888 				p_params->p_relaxed_res =
5889 					ECORE_HW_PREPARE_FAILED_DEV;
5890 			goto err1;
5891 		}
5892 	}
5893 
5894 	ecore_hw_hwfn_prepare(p_hwfn);
5895 
5896 	/* Initialize MCP structure */
5897 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
5898 	if (rc) {
5899 		DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n");
5900 		if (p_params->b_relaxed_probe)
5901 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5902 		goto err1;
5903 	}
5904 
5905 	/* Read the device configuration information from the HW and SHMEM */
5906 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
5907 			       p_params->personality, p_params);
5908 	if (rc) {
5909 		DP_NOTICE(p_hwfn, false, "Failed to get HW information\n");
5910 		goto err2;
5911 	}
5912 
5913 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
5914 	 * called, since among others it sets the ports number in an engine.
5915 	 */
5916 	if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
5917 	    !p_dev->recov_in_prog) {
5918 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
5919 		if (rc != ECORE_SUCCESS)
5920 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
5921 	}
5922 
5923 	/* Check if mdump logs/data are present and update the epoch value */
5924 	if (IS_LEAD_HWFN(p_hwfn)) {
5925 #ifndef ASIC_ONLY
5926 		if (!CHIP_REV_IS_EMUL(p_dev)) {
5927 #endif
5928 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
5929 					      &mdump_info);
5930 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
5931 			DP_NOTICE(p_hwfn, false,
5932 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
5933 
5934 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
5935 						&mdump_retain);
5936 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
5937 			DP_NOTICE(p_hwfn, false,
5938 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
5939 				  mdump_retain.epoch, mdump_retain.pf,
5940 				  mdump_retain.status);
5941 
5942 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
5943 					   p_params->epoch);
5944 #ifndef ASIC_ONLY
5945 		}
5946 #endif
5947 	}
5948 
5949 	/* Allocate the init RT array and initialize the init-ops engine */
5950 	rc = ecore_init_alloc(p_hwfn);
5951 	if (rc) {
5952 		DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n");
5953 		if (p_params->b_relaxed_probe)
5954 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5955 		goto err2;
5956 	}
5957 
5958 #ifndef ASIC_ONLY
5959 	if (CHIP_REV_IS_FPGA(p_dev)) {
5960 		DP_NOTICE(p_hwfn, false,
5961 			  "FPGA: workaround; Prevent DMAE parities\n");
5962 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
5963 			 7);
5964 
5965 		DP_NOTICE(p_hwfn, false,
5966 			  "FPGA: workaround: Set VF bar0 size\n");
5967 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5968 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
5969 	}
5970 #endif
5971 
5972 	return rc;
5973 err2:
5974 	if (IS_LEAD_HWFN(p_hwfn))
5975 		ecore_iov_free_hw_info(p_dev);
5976 	ecore_mcp_free(p_hwfn);
5977 err1:
5978 	ecore_hw_hwfn_free(p_hwfn);
5979 err0:
5980 	return rc;
5981 }
5982 
5983 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
5984 				      struct ecore_hw_prepare_params *p_params)
5985 {
5986 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5987 	enum _ecore_status_t rc;
5988 
5989 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
5990 	p_dev->allow_mdump = p_params->allow_mdump;
5991 
5992 	if (p_params->b_relaxed_probe)
5993 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
5994 
5995 	/* Store the precompiled init data ptrs */
5996 	if (IS_PF(p_dev))
5997 		ecore_init_iro_array(p_dev);
5998 
5999 	/* Initialize the first hwfn - will learn number of hwfns */
6000 	rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview,
6001 				     p_dev->doorbells, p_dev->db_phys_addr,
6002 				     p_params);
6003 	if (rc != ECORE_SUCCESS)
6004 		return rc;
6005 
6006 	p_params->personality = p_hwfn->hw_info.personality;
6007 
6008 	/* initilalize 2nd hwfn if necessary */
6009 	if (ECORE_IS_CMT(p_dev)) {
6010 		void OSAL_IOMEM *p_regview, *p_doorbell;
6011 		u8 OSAL_IOMEM *addr;
6012 		u64 db_phys_addr;
6013 		u32 offset;
6014 
6015 		/* adjust bar offset for second engine */
6016 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6017 					   BAR_ID_0) / 2;
6018 		addr = (u8 OSAL_IOMEM *)p_dev->regview + offset;
6019 		p_regview = (void OSAL_IOMEM *)addr;
6020 
6021 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6022 					   BAR_ID_1) / 2;
6023 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset;
6024 		p_doorbell = (void OSAL_IOMEM *)addr;
6025 		db_phys_addr = p_dev->db_phys_addr + offset;
6026 
6027 		/* prepare second hw function */
6028 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
6029 					     p_doorbell, db_phys_addr,
6030 					     p_params);
6031 
6032 		/* in case of error, need to free the previously
6033 		 * initiliazed hwfn 0.
6034 		 */
6035 		if (rc != ECORE_SUCCESS) {
6036 			if (p_params->b_relaxed_probe)
6037 				p_params->p_relaxed_res =
6038 						ECORE_HW_PREPARE_FAILED_ENG2;
6039 
6040 			if (IS_PF(p_dev)) {
6041 				ecore_init_free(p_hwfn);
6042 				ecore_mcp_free(p_hwfn);
6043 				ecore_hw_hwfn_free(p_hwfn);
6044 			} else {
6045 				DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n");
6046 			}
6047 			return rc;
6048 		}
6049 	}
6050 
6051 	return rc;
6052 }
6053 
6054 void ecore_hw_remove(struct ecore_dev *p_dev)
6055 {
6056 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
6057 	int i;
6058 
6059 	if (IS_PF(p_dev))
6060 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
6061 						 ECORE_OV_DRIVER_STATE_NOT_LOADED);
6062 
6063 	for_each_hwfn(p_dev, i) {
6064 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6065 
6066 		if (IS_VF(p_dev)) {
6067 			ecore_vf_pf_release(p_hwfn);
6068 			continue;
6069 		}
6070 
6071 		ecore_init_free(p_hwfn);
6072 		ecore_hw_hwfn_free(p_hwfn);
6073 		ecore_mcp_free(p_hwfn);
6074 
6075 #ifdef CONFIG_ECORE_LOCK_ALLOC
6076 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
6077 #endif
6078 	}
6079 
6080 	ecore_iov_free_hw_info(p_dev);
6081 }
6082 
6083 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
6084 				      struct ecore_chain *p_chain)
6085 {
6086 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
6087 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
6088 	struct ecore_chain_next *p_next;
6089 	u32 size, i;
6090 
6091 	if (!p_virt)
6092 		return;
6093 
6094 	size = p_chain->elem_size * p_chain->usable_per_page;
6095 
6096 	for (i = 0; i < p_chain->page_cnt; i++) {
6097 		if (!p_virt)
6098 			break;
6099 
6100 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
6101 		p_virt_next = p_next->next_virt;
6102 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
6103 
6104 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
6105 				       ECORE_CHAIN_PAGE_SIZE);
6106 
6107 		p_virt = p_virt_next;
6108 		p_phys = p_phys_next;
6109 	}
6110 }
6111 
6112 static void ecore_chain_free_single(struct ecore_dev *p_dev,
6113 				    struct ecore_chain *p_chain)
6114 {
6115 	if (!p_chain->p_virt_addr)
6116 		return;
6117 
6118 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
6119 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
6120 }
6121 
6122 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
6123 				 struct ecore_chain *p_chain)
6124 {
6125 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
6126 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
6127 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
6128 
6129 	if (!pp_virt_addr_tbl)
6130 		return;
6131 
6132 	if (!p_pbl_virt)
6133 		goto out;
6134 
6135 	for (i = 0; i < page_cnt; i++) {
6136 		if (!pp_virt_addr_tbl[i])
6137 			break;
6138 
6139 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
6140 				       *(dma_addr_t *)p_pbl_virt,
6141 				       ECORE_CHAIN_PAGE_SIZE);
6142 
6143 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6144 	}
6145 
6146 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6147 
6148 	if (!p_chain->b_external_pbl) {
6149 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
6150 				       p_chain->pbl_sp.p_phys_table, pbl_size);
6151 	}
6152 out:
6153 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
6154 	p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
6155 }
6156 
6157 void ecore_chain_free(struct ecore_dev *p_dev,
6158 		      struct ecore_chain *p_chain)
6159 {
6160 	switch (p_chain->mode) {
6161 	case ECORE_CHAIN_MODE_NEXT_PTR:
6162 		ecore_chain_free_next_ptr(p_dev, p_chain);
6163 		break;
6164 	case ECORE_CHAIN_MODE_SINGLE:
6165 		ecore_chain_free_single(p_dev, p_chain);
6166 		break;
6167 	case ECORE_CHAIN_MODE_PBL:
6168 		ecore_chain_free_pbl(p_dev, p_chain);
6169 		break;
6170 	}
6171 }
6172 
6173 static enum _ecore_status_t
6174 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
6175 			       enum ecore_chain_cnt_type cnt_type,
6176 			       osal_size_t elem_size, u32 page_cnt)
6177 {
6178 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
6179 
6180 	/* The actual chain size can be larger than the maximal possible value
6181 	 * after rounding up the requested elements number to pages, and after
6182 	 * taking into acount the unusuable elements (next-ptr elements).
6183 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
6184 	 * size/capacity fields are of a u32 type.
6185 	 */
6186 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
6187 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
6188 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
6189 	     chain_size > ECORE_U32_MAX)) {
6190 		DP_NOTICE(p_dev, true,
6191 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
6192 			  (unsigned long long)chain_size);
6193 		return ECORE_INVAL;
6194 	}
6195 
6196 	return ECORE_SUCCESS;
6197 }
6198 
6199 static enum _ecore_status_t
6200 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6201 {
6202 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
6203 	dma_addr_t p_phys = 0;
6204 	u32 i;
6205 
6206 	for (i = 0; i < p_chain->page_cnt; i++) {
6207 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6208 						 ECORE_CHAIN_PAGE_SIZE);
6209 		if (!p_virt) {
6210 			DP_NOTICE(p_dev, false,
6211 				  "Failed to allocate chain memory\n");
6212 			return ECORE_NOMEM;
6213 		}
6214 
6215 		if (i == 0) {
6216 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
6217 			ecore_chain_reset(p_chain);
6218 		} else {
6219 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6220 						       p_virt, p_phys);
6221 		}
6222 
6223 		p_virt_prev = p_virt;
6224 	}
6225 	/* Last page's next element should point to the beginning of the
6226 	 * chain.
6227 	 */
6228 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6229 				       p_chain->p_virt_addr,
6230 				       p_chain->p_phys_addr);
6231 
6232 	return ECORE_SUCCESS;
6233 }
6234 
6235 static enum _ecore_status_t
6236 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6237 {
6238 	dma_addr_t p_phys = 0;
6239 	void *p_virt = OSAL_NULL;
6240 
6241 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
6242 	if (!p_virt) {
6243 		DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n");
6244 		return ECORE_NOMEM;
6245 	}
6246 
6247 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
6248 	ecore_chain_reset(p_chain);
6249 
6250 	return ECORE_SUCCESS;
6251 }
6252 
6253 static enum _ecore_status_t
6254 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
6255 		      struct ecore_chain *p_chain,
6256 		      struct ecore_chain_ext_pbl *ext_pbl)
6257 {
6258 	u32 page_cnt = p_chain->page_cnt, size, i;
6259 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
6260 	void **pp_virt_addr_tbl = OSAL_NULL;
6261 	u8 *p_pbl_virt = OSAL_NULL;
6262 	void *p_virt = OSAL_NULL;
6263 
6264 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
6265 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
6266 	if (!pp_virt_addr_tbl) {
6267 		DP_NOTICE(p_dev, false,
6268 			  "Failed to allocate memory for the chain virtual addresses table\n");
6269 		return ECORE_NOMEM;
6270 	}
6271 
6272 	/* The allocation of the PBL table is done with its full size, since it
6273 	 * is expected to be successive.
6274 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
6275 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
6276 	 * should be saved to allow its freeing during the error flow.
6277 	 */
6278 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6279 
6280 	if (ext_pbl == OSAL_NULL) {
6281 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
6282 	} else {
6283 		p_pbl_virt = ext_pbl->p_pbl_virt;
6284 		p_pbl_phys = ext_pbl->p_pbl_phys;
6285 		p_chain->b_external_pbl = true;
6286 	}
6287 
6288 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
6289 				 pp_virt_addr_tbl);
6290 	if (!p_pbl_virt) {
6291 		DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n");
6292 		return ECORE_NOMEM;
6293 	}
6294 
6295 	for (i = 0; i < page_cnt; i++) {
6296 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6297 						 ECORE_CHAIN_PAGE_SIZE);
6298 		if (!p_virt) {
6299 			DP_NOTICE(p_dev, false,
6300 				  "Failed to allocate chain memory\n");
6301 			return ECORE_NOMEM;
6302 		}
6303 
6304 		if (i == 0) {
6305 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
6306 			ecore_chain_reset(p_chain);
6307 		}
6308 
6309 		/* Fill the PBL table with the physical address of the page */
6310 		*(dma_addr_t *)p_pbl_virt = p_phys;
6311 		/* Keep the virtual address of the page */
6312 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
6313 
6314 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6315 	}
6316 
6317 	return ECORE_SUCCESS;
6318 }
6319 
6320 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
6321 				       enum ecore_chain_use_mode intended_use,
6322 				       enum ecore_chain_mode mode,
6323 				       enum ecore_chain_cnt_type cnt_type,
6324 				       u32 num_elems, osal_size_t elem_size,
6325 				       struct ecore_chain *p_chain,
6326 				       struct ecore_chain_ext_pbl *ext_pbl)
6327 {
6328 	u32 page_cnt;
6329 	enum _ecore_status_t rc = ECORE_SUCCESS;
6330 
6331 	if (mode == ECORE_CHAIN_MODE_SINGLE)
6332 		page_cnt = 1;
6333 	else
6334 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
6335 
6336 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
6337 					    page_cnt);
6338 	if (rc) {
6339 		DP_NOTICE(p_dev, false,
6340 			  "Cannot allocate a chain with the given arguments:\n"
6341 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
6342 			  intended_use, mode, cnt_type, num_elems, elem_size);
6343 		return rc;
6344 	}
6345 
6346 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
6347 				mode, cnt_type, p_dev->dp_ctx);
6348 
6349 	switch (mode) {
6350 	case ECORE_CHAIN_MODE_NEXT_PTR:
6351 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
6352 		break;
6353 	case ECORE_CHAIN_MODE_SINGLE:
6354 		rc = ecore_chain_alloc_single(p_dev, p_chain);
6355 		break;
6356 	case ECORE_CHAIN_MODE_PBL:
6357 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
6358 		break;
6359 	}
6360 	if (rc)
6361 		goto nomem;
6362 
6363 	return ECORE_SUCCESS;
6364 
6365 nomem:
6366 	ecore_chain_free(p_dev, p_chain);
6367 	return rc;
6368 }
6369 
6370 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
6371 				       u16 src_id, u16 *dst_id)
6372 {
6373 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
6374 		u16 min, max;
6375 
6376 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
6377 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
6378 		DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
6379 			  src_id, min, max);
6380 
6381 		return ECORE_INVAL;
6382 	}
6383 
6384 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
6385 
6386 	return ECORE_SUCCESS;
6387 }
6388 
6389 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
6390 				    u8 src_id, u8 *dst_id)
6391 {
6392 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
6393 		u8 min, max;
6394 
6395 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
6396 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
6397 		DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
6398 			  src_id, min, max);
6399 
6400 		return ECORE_INVAL;
6401 	}
6402 
6403 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
6404 
6405 	return ECORE_SUCCESS;
6406 }
6407 
6408 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
6409 				      u8 src_id, u8 *dst_id)
6410 {
6411 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
6412 		u8 min, max;
6413 
6414 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
6415 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
6416 		DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
6417 			  src_id, min, max);
6418 
6419 		return ECORE_INVAL;
6420 	}
6421 
6422 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
6423 
6424 	return ECORE_SUCCESS;
6425 }
6426 
6427 enum _ecore_status_t
6428 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
6429 				  struct ecore_ptt *p_ptt)
6430 {
6431 	if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
6432 		ecore_wr(p_hwfn, p_ptt,
6433 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
6434 			 1 << p_hwfn->abs_pf_id / 2);
6435 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
6436 		return ECORE_SUCCESS;
6437 	} else {
6438 		DP_NOTICE(p_hwfn, false,
6439 			  "This function can't be set as default\n");
6440 		return ECORE_INVAL;
6441 	}
6442 }
6443 
6444 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
6445 					       struct ecore_ptt *p_ptt,
6446 					       u32 hw_addr, void *p_eth_qzone,
6447 					       osal_size_t eth_qzone_size,
6448 					       u8 timeset)
6449 {
6450 	struct coalescing_timeset *p_coal_timeset;
6451 
6452 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
6453 		DP_NOTICE(p_hwfn, true,
6454 			  "Coalescing configuration not enabled\n");
6455 		return ECORE_INVAL;
6456 	}
6457 
6458 	p_coal_timeset = p_eth_qzone;
6459 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
6460 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
6461 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
6462 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
6463 
6464 	return ECORE_SUCCESS;
6465 }
6466 
6467 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
6468 					      u16 rx_coal, u16 tx_coal,
6469 					      void *p_handle)
6470 {
6471 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
6472 	enum _ecore_status_t rc = ECORE_SUCCESS;
6473 	struct ecore_ptt *p_ptt;
6474 
6475 	/* TODO - Configuring a single queue's coalescing but
6476 	 * claiming all queues are abiding same configuration
6477 	 * for PF and VF both.
6478 	 */
6479 
6480 #ifdef CONFIG_ECORE_SRIOV
6481 	if (IS_VF(p_hwfn->p_dev))
6482 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
6483 						tx_coal, p_cid);
6484 #endif /* #ifdef CONFIG_ECORE_SRIOV */
6485 
6486 	p_ptt = ecore_ptt_acquire(p_hwfn);
6487 	if (!p_ptt)
6488 		return ECORE_AGAIN;
6489 
6490 	if (rx_coal) {
6491 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
6492 		if (rc)
6493 			goto out;
6494 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
6495 	}
6496 
6497 	if (tx_coal) {
6498 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
6499 		if (rc)
6500 			goto out;
6501 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
6502 	}
6503 out:
6504 	ecore_ptt_release(p_hwfn, p_ptt);
6505 
6506 	return rc;
6507 }
6508 
6509 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
6510 					    struct ecore_ptt *p_ptt,
6511 					    u16 coalesce,
6512 					    struct ecore_queue_cid *p_cid)
6513 {
6514 	struct ustorm_eth_queue_zone eth_qzone;
6515 	u8 timeset, timer_res;
6516 	u32 address;
6517 	enum _ecore_status_t rc;
6518 
6519 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6520 	if (coalesce <= 0x7F)
6521 		timer_res = 0;
6522 	else if (coalesce <= 0xFF)
6523 		timer_res = 1;
6524 	else if (coalesce <= 0x1FF)
6525 		timer_res = 2;
6526 	else {
6527 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6528 		return ECORE_INVAL;
6529 	}
6530 	timeset = (u8)(coalesce >> timer_res);
6531 
6532 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6533 				     p_cid->sb_igu_id, false);
6534 	if (rc != ECORE_SUCCESS)
6535 		goto out;
6536 
6537 	address = BAR0_MAP_REG_USDM_RAM +
6538 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6539 
6540 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6541 				sizeof(struct ustorm_eth_queue_zone), timeset);
6542 	if (rc != ECORE_SUCCESS)
6543 		goto out;
6544 
6545 out:
6546 	return rc;
6547 }
6548 
6549 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
6550 					    struct ecore_ptt *p_ptt,
6551 					    u16 coalesce,
6552 					    struct ecore_queue_cid *p_cid)
6553 {
6554 	struct xstorm_eth_queue_zone eth_qzone;
6555 	u8 timeset, timer_res;
6556 	u32 address;
6557 	enum _ecore_status_t rc;
6558 
6559 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6560 	if (coalesce <= 0x7F)
6561 		timer_res = 0;
6562 	else if (coalesce <= 0xFF)
6563 		timer_res = 1;
6564 	else if (coalesce <= 0x1FF)
6565 		timer_res = 2;
6566 	else {
6567 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6568 		return ECORE_INVAL;
6569 	}
6570 	timeset = (u8)(coalesce >> timer_res);
6571 
6572 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6573 				     p_cid->sb_igu_id, true);
6574 	if (rc != ECORE_SUCCESS)
6575 		goto out;
6576 
6577 	address = BAR0_MAP_REG_XSDM_RAM +
6578 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6579 
6580 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6581 				sizeof(struct xstorm_eth_queue_zone), timeset);
6582 out:
6583 	return rc;
6584 }
6585 
6586 /* Calculate final WFQ values for all vports and configure it.
6587  * After this configuration each vport must have
6588  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
6589  */
6590 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6591 					       struct ecore_ptt *p_ptt,
6592 					       u32 min_pf_rate)
6593 {
6594 	struct init_qm_vport_params *vport_params;
6595 	int i;
6596 
6597 	vport_params = p_hwfn->qm_info.qm_vport_params;
6598 
6599 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6600 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6601 
6602 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
6603 					    min_pf_rate;
6604 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6605 				     vport_params[i].first_tx_pq_id,
6606 				     vport_params[i].vport_wfq);
6607 	}
6608 }
6609 
6610 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
6611 
6612 {
6613 	int i;
6614 
6615 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
6616 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
6617 }
6618 
6619 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6620 					     struct ecore_ptt *p_ptt)
6621 {
6622 	struct init_qm_vport_params *vport_params;
6623 	int i;
6624 
6625 	vport_params = p_hwfn->qm_info.qm_vport_params;
6626 
6627 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6628 		ecore_init_wfq_default_param(p_hwfn);
6629 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6630 				     vport_params[i].first_tx_pq_id,
6631 				     vport_params[i].vport_wfq);
6632 	}
6633 }
6634 
6635 /* This function performs several validations for WFQ
6636  * configuration and required min rate for a given vport
6637  * 1. req_rate must be greater than one percent of min_pf_rate.
6638  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
6639  *    rates to get less than one percent of min_pf_rate.
6640  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
6641  */
6642 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
6643 						 u16 vport_id, u32 req_rate,
6644 						 u32 min_pf_rate)
6645 {
6646 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
6647 	int non_requested_count = 0, req_count = 0, i, num_vports;
6648 
6649 	num_vports = p_hwfn->qm_info.num_vports;
6650 
6651 	/* Accounting for the vports which are configured for WFQ explicitly */
6652 	for (i = 0; i < num_vports; i++) {
6653 		u32 tmp_speed;
6654 
6655 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
6656 			req_count++;
6657 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6658 			total_req_min_rate += tmp_speed;
6659 		}
6660 	}
6661 
6662 	/* Include current vport data as well */
6663 	req_count++;
6664 	total_req_min_rate += req_rate;
6665 	non_requested_count = num_vports - req_count;
6666 
6667 	/* validate possible error cases */
6668 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
6669 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6670 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6671 			   vport_id, req_rate, min_pf_rate);
6672 		return ECORE_INVAL;
6673 	}
6674 
6675 	/* TBD - for number of vports greater than 100 */
6676 	if (num_vports > ECORE_WFQ_UNIT) {
6677 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6678 			   "Number of vports is greater than %d\n",
6679 			   ECORE_WFQ_UNIT);
6680 		return ECORE_INVAL;
6681 	}
6682 
6683 	if (total_req_min_rate > min_pf_rate) {
6684 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6685 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
6686 			   total_req_min_rate, min_pf_rate);
6687 		return ECORE_INVAL;
6688 	}
6689 
6690 	/* Data left for non requested vports */
6691 	total_left_rate = min_pf_rate - total_req_min_rate;
6692 	left_rate_per_vp = total_left_rate / non_requested_count;
6693 
6694 	/* validate if non requested get < 1% of min bw */
6695 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
6696 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6697 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6698 			   left_rate_per_vp, min_pf_rate);
6699 		return ECORE_INVAL;
6700 	}
6701 
6702 	/* now req_rate for given vport passes all scenarios.
6703 	 * assign final wfq rates to all vports.
6704 	 */
6705 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
6706 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
6707 
6708 	for (i = 0; i < num_vports; i++) {
6709 		if (p_hwfn->qm_info.wfq_data[i].configured)
6710 			continue;
6711 
6712 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
6713 	}
6714 
6715 	return ECORE_SUCCESS;
6716 }
6717 
6718 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
6719 				       struct ecore_ptt *p_ptt,
6720 				       u16 vp_id, u32 rate)
6721 {
6722 	struct ecore_mcp_link_state *p_link;
6723 	int rc = ECORE_SUCCESS;
6724 
6725 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
6726 
6727 	if (!p_link->min_pf_rate) {
6728 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
6729 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
6730 		return rc;
6731 	}
6732 
6733 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
6734 
6735 	if (rc == ECORE_SUCCESS)
6736 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
6737 						   p_link->min_pf_rate);
6738 	else
6739 		DP_NOTICE(p_hwfn, false,
6740 			  "Validation failed while configuring min rate\n");
6741 
6742 	return rc;
6743 }
6744 
6745 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
6746 						   struct ecore_ptt *p_ptt,
6747 						   u32 min_pf_rate)
6748 {
6749 	bool use_wfq = false;
6750 	int rc = ECORE_SUCCESS;
6751 	u16 i;
6752 
6753 	/* Validate all pre configured vports for wfq */
6754 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6755 		u32 rate;
6756 
6757 		if (!p_hwfn->qm_info.wfq_data[i].configured)
6758 			continue;
6759 
6760 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
6761 		use_wfq = true;
6762 
6763 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
6764 		if (rc != ECORE_SUCCESS) {
6765 			DP_NOTICE(p_hwfn, false,
6766 				  "WFQ validation failed while configuring min rate\n");
6767 			break;
6768 		}
6769 	}
6770 
6771 	if (rc == ECORE_SUCCESS && use_wfq)
6772 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
6773 	else
6774 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6775 
6776 	return rc;
6777 }
6778 
6779 /* Main API for ecore clients to configure vport min rate.
6780  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
6781  * rate - Speed in Mbps needs to be assigned to a given vport.
6782  */
6783 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
6784 {
6785 	int i, rc = ECORE_INVAL;
6786 
6787 	/* TBD - for multiple hardware functions - that is 100 gig */
6788 	if (ECORE_IS_CMT(p_dev)) {
6789 		DP_NOTICE(p_dev, false,
6790 			  "WFQ configuration is not supported for this device\n");
6791 		return rc;
6792 	}
6793 
6794 	for_each_hwfn(p_dev, i) {
6795 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6796 		struct ecore_ptt *p_ptt;
6797 
6798 		p_ptt = ecore_ptt_acquire(p_hwfn);
6799 		if (!p_ptt)
6800 			return ECORE_TIMEOUT;
6801 
6802 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
6803 
6804 		if (rc != ECORE_SUCCESS) {
6805 			ecore_ptt_release(p_hwfn, p_ptt);
6806 			return rc;
6807 		}
6808 
6809 		ecore_ptt_release(p_hwfn, p_ptt);
6810 	}
6811 
6812 	return rc;
6813 }
6814 
6815 /* API to configure WFQ from mcp link change */
6816 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
6817 					   struct ecore_ptt *p_ptt,
6818 					   u32 min_pf_rate)
6819 {
6820 	int i;
6821 
6822 	/* TBD - for multiple hardware functions - that is 100 gig */
6823 	if (ECORE_IS_CMT(p_dev)) {
6824 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
6825 			   "WFQ configuration is not supported for this device\n");
6826 		return;
6827 	}
6828 
6829 	for_each_hwfn(p_dev, i) {
6830 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6831 
6832 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
6833 							min_pf_rate);
6834 	}
6835 }
6836 
6837 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
6838 				       struct ecore_ptt *p_ptt,
6839 				       struct ecore_mcp_link_state *p_link,
6840 				       u8 max_bw)
6841 {
6842 	int rc = ECORE_SUCCESS;
6843 
6844 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
6845 
6846 	if (!p_link->line_speed && (max_bw != 100))
6847 		return rc;
6848 
6849 	p_link->speed = (p_link->line_speed * max_bw) / 100;
6850 	p_hwfn->qm_info.pf_rl = p_link->speed;
6851 
6852 	/* Since the limiter also affects Tx-switched traffic, we don't want it
6853 	 * to limit such traffic in case there's no actual limit.
6854 	 * In that case, set limit to imaginary high boundary.
6855 	 */
6856 	if (max_bw == 100)
6857 		p_hwfn->qm_info.pf_rl = 100000;
6858 
6859 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
6860 			      p_hwfn->qm_info.pf_rl);
6861 
6862 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6863 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
6864 		   p_link->speed);
6865 
6866 	return rc;
6867 }
6868 
6869 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
6870 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
6871 {
6872 	int i, rc = ECORE_INVAL;
6873 
6874 	if (max_bw < 1 || max_bw > 100) {
6875 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
6876 		return rc;
6877 	}
6878 
6879 	for_each_hwfn(p_dev, i) {
6880 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6881 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6882 		struct ecore_mcp_link_state *p_link;
6883 		struct ecore_ptt *p_ptt;
6884 
6885 		p_link = &p_lead->mcp_info->link_output;
6886 
6887 		p_ptt = ecore_ptt_acquire(p_hwfn);
6888 		if (!p_ptt)
6889 			return ECORE_TIMEOUT;
6890 
6891 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
6892 							p_link, max_bw);
6893 
6894 		ecore_ptt_release(p_hwfn, p_ptt);
6895 
6896 		if (rc != ECORE_SUCCESS)
6897 			break;
6898 	}
6899 
6900 	return rc;
6901 }
6902 
6903 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
6904 				       struct ecore_ptt *p_ptt,
6905 				       struct ecore_mcp_link_state *p_link,
6906 				       u8 min_bw)
6907 {
6908 	int rc = ECORE_SUCCESS;
6909 
6910 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
6911 	p_hwfn->qm_info.pf_wfq = min_bw;
6912 
6913 	if (!p_link->line_speed)
6914 		return rc;
6915 
6916 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
6917 
6918 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
6919 
6920 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6921 		   "Configured MIN bandwidth to be %d Mb/sec\n",
6922 		   p_link->min_pf_rate);
6923 
6924 	return rc;
6925 }
6926 
6927 /* Main API to configure PF min bandwidth where bw range is [1-100] */
6928 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
6929 {
6930 	int i, rc = ECORE_INVAL;
6931 
6932 	if (min_bw < 1 || min_bw > 100) {
6933 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
6934 		return rc;
6935 	}
6936 
6937 	for_each_hwfn(p_dev, i) {
6938 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6939 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6940 		struct ecore_mcp_link_state *p_link;
6941 		struct ecore_ptt *p_ptt;
6942 
6943 		p_link = &p_lead->mcp_info->link_output;
6944 
6945 		p_ptt = ecore_ptt_acquire(p_hwfn);
6946 		if (!p_ptt)
6947 			return ECORE_TIMEOUT;
6948 
6949 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
6950 							p_link, min_bw);
6951 		if (rc != ECORE_SUCCESS) {
6952 			ecore_ptt_release(p_hwfn, p_ptt);
6953 			return rc;
6954 		}
6955 
6956 		if (p_link->min_pf_rate) {
6957 			u32 min_rate = p_link->min_pf_rate;
6958 
6959 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
6960 								     p_ptt,
6961 								     min_rate);
6962 		}
6963 
6964 		ecore_ptt_release(p_hwfn, p_ptt);
6965 	}
6966 
6967 	return rc;
6968 }
6969 
6970 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
6971 {
6972 	struct ecore_mcp_link_state *p_link;
6973 
6974 	p_link = &p_hwfn->mcp_info->link_output;
6975 
6976 	if (p_link->min_pf_rate)
6977 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6978 
6979 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
6980 		    sizeof(*p_hwfn->qm_info.wfq_data) *
6981 				p_hwfn->qm_info.num_vports);
6982 }
6983 
6984 int ecore_device_num_engines(struct ecore_dev *p_dev)
6985 {
6986 	return ECORE_IS_BB(p_dev) ? 2 : 1;
6987 }
6988 
6989 int ecore_device_num_ports(struct ecore_dev *p_dev)
6990 {
6991 	return p_dev->num_ports;
6992 }
6993 
6994 void ecore_set_fw_mac_addr(__le16 *fw_msb,
6995 			  __le16 *fw_mid,
6996 			  __le16 *fw_lsb,
6997 			  u8 *mac)
6998 {
6999 	((u8 *)fw_msb)[0] = mac[1];
7000 	((u8 *)fw_msb)[1] = mac[0];
7001 	((u8 *)fw_mid)[0] = mac[3];
7002 	((u8 *)fw_mid)[1] = mac[2];
7003 	((u8 *)fw_lsb)[0] = mac[5];
7004 	((u8 *)fw_lsb)[1] = mac[4];
7005 }
7006 
7007 void ecore_set_dev_access_enable(struct ecore_dev *p_dev, bool b_enable)
7008 {
7009 	if (p_dev->recov_in_prog != !b_enable) {
7010 		DP_INFO(p_dev, "%s access to the device\n",
7011 			b_enable ?  "Enable" : "Disable");
7012 		p_dev->recov_in_prog = !b_enable;
7013 	}
7014 }
7015 
7016 #ifdef _NTDDK_
7017 #pragma warning(pop)
7018 #endif
7019