xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_dev.c (revision a3422d96bd4c08d07bb6c1984c86578b67ee6a41)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_dev.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 
35 #include "bcm_osal.h"
36 #include "reg_addr.h"
37 #include "ecore_gtt_reg_addr.h"
38 #include "ecore.h"
39 #include "ecore_chain.h"
40 #include "ecore_status.h"
41 #include "ecore_hw.h"
42 #include "ecore_rt_defs.h"
43 #include "ecore_init_ops.h"
44 #include "ecore_int.h"
45 #include "ecore_cxt.h"
46 #include "ecore_spq.h"
47 #include "ecore_init_fw_funcs.h"
48 #include "ecore_sp_commands.h"
49 #include "ecore_dev_api.h"
50 #include "ecore_sriov.h"
51 #include "ecore_vf.h"
52 #include "ecore_ll2.h"
53 #include "ecore_fcoe.h"
54 #include "ecore_iscsi.h"
55 #include "ecore_ooo.h"
56 #include "ecore_mcp.h"
57 #include "ecore_hw_defs.h"
58 #include "mcp_public.h"
59 #include "ecore_roce.h"
60 #include "ecore_iro.h"
61 #include "nvm_cfg.h"
62 #include "ecore_dev_api.h"
63 #include "ecore_dcbx.h"
64 #include "pcics_reg_driver.h"
65 #include "ecore_l2.h"
66 
67 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
68  * registers involved are not split and thus configuration is a race where
69  * some of the PFs configuration might be lost.
70  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
71  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
72  * there's more than a single compiled ecore component in system].
73  */
74 static osal_spinlock_t qm_lock;
75 static bool qm_lock_init = false;
76 
77 /* Configurable */
78 #define ECORE_MIN_DPIS		(4)  /* The minimal number of DPIs required to
79 				      * load the driver. The number was
80 				      * arbitrarily set.
81 				      */
82 
83 /* Derived */
84 #define ECORE_MIN_PWM_REGION	((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
85 
86 enum BAR_ID {
87 	BAR_ID_0,	/* used for GRC */
88 	BAR_ID_1	/* Used for doorbells */
89 };
90 
91 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
92 {
93 	u32 bar_reg = (bar_id == BAR_ID_0 ?
94 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
95 	u32 val;
96 
97 	if (IS_VF(p_hwfn->p_dev)) {
98 		/* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
99 		 * read from actual register, but we're currently not using
100 		 * it for actual doorbelling.
101 		 */
102 		return 1 << 17;
103 	}
104 
105 	val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
106 	if (val)
107 		return 1 << (val + 15);
108 
109 	/* The above registers were updated in the past only in CMT mode. Since
110 	 * they were found to be useful MFW started updating them from 8.7.7.0.
111 	 * In older MFW versions they are set to 0 which means disabled.
112 	 */
113 	if (p_hwfn->p_dev->num_hwfns > 1) {
114 		DP_NOTICE(p_hwfn, false,
115 			  "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
116 		return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
117 	} else {
118 		DP_NOTICE(p_hwfn, false,
119 			  "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
120 		return 512 * 1024;
121 	}
122 }
123 
124 void ecore_init_dp(struct ecore_dev	*p_dev,
125 		   u32			dp_module,
126 		   u8			dp_level,
127 		   void		 *dp_ctx)
128 {
129 	u32 i;
130 
131 	p_dev->dp_level = dp_level;
132 	p_dev->dp_module = dp_module;
133 	p_dev->dp_ctx = dp_ctx;
134 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
135 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
136 
137 		p_hwfn->dp_level = dp_level;
138 		p_hwfn->dp_module = dp_module;
139 		p_hwfn->dp_ctx = dp_ctx;
140 	}
141 }
142 
143 void ecore_init_struct(struct ecore_dev *p_dev)
144 {
145 	u8 i;
146 
147 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
148 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
149 
150 		p_hwfn->p_dev = p_dev;
151 		p_hwfn->my_id = i;
152 		p_hwfn->b_active = false;
153 
154 		OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
155 		OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
156 	}
157 
158 	/* hwfn 0 is always active */
159 	p_dev->hwfns[0].b_active = true;
160 
161 	/* set the default cache alignment to 128 (may be overridden later) */
162 	p_dev->cache_shift = 7;
163 }
164 
165 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
166 {
167 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
168 
169 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
170 	qm_info->qm_pq_params = OSAL_NULL;
171 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
172 	qm_info->qm_vport_params = OSAL_NULL;
173 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
174 	qm_info->qm_port_params = OSAL_NULL;
175 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
176 	qm_info->wfq_data = OSAL_NULL;
177 }
178 
179 void ecore_resc_free(struct ecore_dev *p_dev)
180 {
181 	int i;
182 
183 	if (IS_VF(p_dev)) {
184 		for_each_hwfn(p_dev, i)
185 			ecore_l2_free(&p_dev->hwfns[i]);
186 		return;
187 	}
188 
189 	OSAL_FREE(p_dev, p_dev->fw_data);
190 	p_dev->fw_data = OSAL_NULL;
191 
192 	OSAL_FREE(p_dev, p_dev->reset_stats);
193 	p_dev->reset_stats = OSAL_NULL;
194 
195 	for_each_hwfn(p_dev, i) {
196 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
197 
198 		ecore_cxt_mngr_free(p_hwfn);
199 		ecore_qm_info_free(p_hwfn);
200 		ecore_spq_free(p_hwfn);
201 		ecore_eq_free(p_hwfn);
202 		ecore_consq_free(p_hwfn);
203 		ecore_int_free(p_hwfn);
204 #ifdef CONFIG_ECORE_LL2
205 		ecore_ll2_free(p_hwfn);
206 #endif
207 #ifdef CONFIG_ECORE_FCOE
208 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
209 			ecore_fcoe_free(p_hwfn);
210 #endif
211 #ifdef CONFIG_ECORE_ISCSI
212 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
213 			ecore_iscsi_free(p_hwfn);
214 			ecore_ooo_free(p_hwfn);
215 		}
216 #endif
217 		ecore_iov_free(p_hwfn);
218 		ecore_l2_free(p_hwfn);
219 		ecore_dmae_info_free(p_hwfn);
220 		ecore_dcbx_info_free(p_hwfn);
221 		/* @@@TBD Flush work-queue ?*/
222 	}
223 }
224 
225 /******************** QM initialization *******************/
226 
227 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
228 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
229 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
230 
231 /* determines the physical queue flags for a given PF. */
232 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
233 {
234 	u32 flags;
235 
236 	/* common flags */
237 	flags = PQ_FLAGS_LB;
238 
239 	/* feature flags */
240 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
241 		flags |= PQ_FLAGS_VFS;
242 	if (IS_ECORE_DCQCN(p_hwfn))
243 		flags |= PQ_FLAGS_RLS;
244 
245 	/* protocol flags */
246 	switch (p_hwfn->hw_info.personality) {
247 	case ECORE_PCI_ETH:
248 		flags |= PQ_FLAGS_MCOS;
249 		break;
250 	case ECORE_PCI_FCOE:
251 		flags |= PQ_FLAGS_OFLD;
252 		break;
253 	case ECORE_PCI_ISCSI:
254 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
255 		break;
256 	case ECORE_PCI_ETH_ROCE:
257 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
258 		break;
259 	case ECORE_PCI_ETH_IWARP:
260 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
261 		break;
262 	default:
263 		DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
264 		return 0;
265 	}
266 
267 	return flags;
268 }
269 
270 
271 /* Getters for resource amounts necessary for qm initialization */
272 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
273 {
274 	return p_hwfn->hw_info.num_hw_tc;
275 }
276 
277 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
278 {
279 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
280 }
281 
282 #define NUM_DEFAULT_RLS 1
283 
284 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
285 {
286 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
287 
288 	/* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
289 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
290 				     (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
291 						     ROCE_DCQCN_RP_MAX_QPS));
292 
293 	/* make sure after we reserve the default and VF rls we'll have something left */
294 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
295 		if (IS_ECORE_DCQCN(p_hwfn))
296 			DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
297 		return 0;
298 	}
299 
300 	/* subtract rls necessary for VFs and one default one for the PF */
301 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
302 
303 	return num_pf_rls;
304 }
305 
306 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
307 {
308 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
309 
310 	/* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
311 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
312 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
313 }
314 
315 /* calc amount of PQs according to the requested flags */
316 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
317 {
318 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
319 
320 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
321 	       (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
322 	       (!!(PQ_FLAGS_LB & pq_flags)) +
323 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
324 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
325 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
326 	       (!!(PQ_FLAGS_LLT & pq_flags)) +
327 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
328 }
329 
330 /* initialize the top level QM params */
331 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
332 {
333 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
334 	bool four_port;
335 
336 	/* pq and vport bases for this PF */
337 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
338 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
339 
340 	/* rate limiting and weighted fair queueing are always enabled */
341 	qm_info->vport_rl_en = 1;
342 	qm_info->vport_wfq_en = 1;
343 
344 	/* TC config is different for AH 4 port */
345 	four_port = p_hwfn->p_dev->num_ports_in_engines == MAX_NUM_PORTS_K2;
346 
347 	/* in AH 4 port we have fewer TCs per port */
348 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
349 
350 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
351 	if (!qm_info->ooo_tc)
352 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
353 }
354 
355 /* initialize qm vport params */
356 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
357 {
358 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
359 	u8 i;
360 
361 	/* all vports participate in weighted fair queueing */
362 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
363 		qm_info->qm_vport_params[i].vport_wfq = 1;
364 }
365 
366 /* initialize qm port params */
367 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
368 {
369 	/* Initialize qm port parameters */
370 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engines;
371 
372 	/* indicate how ooo and high pri traffic is dealt with */
373 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
374 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
375 
376 	for (i = 0; i < num_ports; i++) {
377 		struct init_qm_port_params *p_qm_port =
378 			&p_hwfn->qm_info.qm_port_params[i];
379 
380 		p_qm_port->active = 1;
381 		p_qm_port->active_phys_tcs = active_phys_tcs;
382 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
383 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
384 	}
385 }
386 
387 /* Reset the params which must be reset for qm init. QM init may be called as
388  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
389  * params may be affected by the init but would simply recalculate to the same
390  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
391  * affected as these amounts stay the same.
392  */
393 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
394 {
395 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
396 
397 	qm_info->num_pqs = 0;
398 	qm_info->num_vports = 0;
399 	qm_info->num_pf_rls = 0;
400 	qm_info->num_vf_pqs = 0;
401 	qm_info->first_vf_pq = 0;
402 	qm_info->first_mcos_pq = 0;
403 	qm_info->first_rl_pq = 0;
404 }
405 
406 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
407 {
408 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
409 
410 	qm_info->num_vports++;
411 
412 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
413 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
414 }
415 
416 /* initialize a single pq and manage qm_info resources accounting.
417  * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
418  * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
419  */
420 
421 /* flags for pq init */
422 #define PQ_INIT_SHARE_VPORT	(1 << 0)
423 #define PQ_INIT_PF_RL		(1 << 1)
424 #define PQ_INIT_VF_RL		(1 << 2)
425 
426 /* defines for pq init */
427 #define PQ_INIT_DEFAULT_WRR_GROUP	1
428 #define PQ_INIT_DEFAULT_TC		0
429 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
430 
431 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
432 			     struct ecore_qm_info *qm_info,
433 			     u8 tc, u32 pq_init_flags)
434 {
435 	u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
436 
437 	if (pq_idx > max_pq)
438 		DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
439 
440 	/* init pq params */
441 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
442 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
443 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
444 	qm_info->qm_pq_params[pq_idx].rl_valid =
445 		(pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
446 
447 	/* qm params accounting */
448 	qm_info->num_pqs++;
449 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
450 		qm_info->num_vports++;
451 
452 	if (pq_init_flags & PQ_INIT_PF_RL)
453 		qm_info->num_pf_rls++;
454 
455 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
456 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
457 
458 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
459 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
460 }
461 
462 /* get pq index according to PQ_FLAGS */
463 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
464 					     u32 pq_flags)
465 {
466 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
467 
468 	/* Can't have multiple flags set here */
469 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
470 		goto err;
471 
472 	switch (pq_flags) {
473 	case PQ_FLAGS_RLS:
474 		return &qm_info->first_rl_pq;
475 	case PQ_FLAGS_MCOS:
476 		return &qm_info->first_mcos_pq;
477 	case PQ_FLAGS_LB:
478 		return &qm_info->pure_lb_pq;
479 	case PQ_FLAGS_OOO:
480 		return &qm_info->ooo_pq;
481 	case PQ_FLAGS_ACK:
482 		return &qm_info->pure_ack_pq;
483 	case PQ_FLAGS_OFLD:
484 		return &qm_info->offload_pq;
485 	case PQ_FLAGS_LLT:
486 		return &qm_info->low_latency_pq;
487 	case PQ_FLAGS_VFS:
488 		return &qm_info->first_vf_pq;
489 	default:
490 		goto err;
491 	}
492 
493 err:
494 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
495 	return OSAL_NULL;
496 }
497 
498 /* save pq index in qm info */
499 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
500 				  u32 pq_flags, u16 pq_val)
501 {
502 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
503 
504 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
505 }
506 
507 /* get tx pq index, with the PQ TX base already set (ready for context init) */
508 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
509 {
510 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
511 
512 	return *base_pq_idx + CM_TX_PQ_BASE;
513 }
514 
515 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
516 {
517 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
518 
519 	if (tc > max_tc)
520 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
521 
522 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
523 }
524 
525 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
526 {
527 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
528 
529 	if (vf > max_vf)
530 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
531 
532 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
533 }
534 
535 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
536 {
537 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
538 
539 	if (rl > max_rl)
540 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
541 
542 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
543 }
544 
545 /* Functions for creating specific types of pqs */
546 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
547 {
548 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
549 
550 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
551 		return;
552 
553 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
554 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
555 }
556 
557 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
558 {
559 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
560 
561 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
562 		return;
563 
564 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
565 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
566 }
567 
568 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
569 {
570 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
571 
572 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
573 		return;
574 
575 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
576 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
577 }
578 
579 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
580 {
581 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
582 
583 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
584 		return;
585 
586 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
587 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
588 }
589 
590 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
591 {
592 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
593 
594 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
595 		return;
596 
597 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
598 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
599 }
600 
601 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
602 {
603 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
604 	u8 tc_idx;
605 
606 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
607 		return;
608 
609 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
610 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
611 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
612 }
613 
614 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
615 {
616 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
617 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
618 
619 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
620 		return;
621 
622 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
623 	qm_info->num_vf_pqs = num_vfs;
624 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
625 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
626 }
627 
628 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
629 {
630 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
631 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
632 
633 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
634 		return;
635 
636 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
637 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
638 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
639 }
640 
641 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
642 {
643 	/* rate limited pqs, must come first (FW assumption) */
644 	ecore_init_qm_rl_pqs(p_hwfn);
645 
646 	/* pqs for multi cos */
647 	ecore_init_qm_mcos_pqs(p_hwfn);
648 
649 	/* pure loopback pq */
650 	ecore_init_qm_lb_pq(p_hwfn);
651 
652 	/* out of order pq */
653 	ecore_init_qm_ooo_pq(p_hwfn);
654 
655 	/* pure ack pq */
656 	ecore_init_qm_pure_ack_pq(p_hwfn);
657 
658 	/* pq for offloaded protocol */
659 	ecore_init_qm_offload_pq(p_hwfn);
660 
661 	/* low latency pq */
662 	ecore_init_qm_low_latency_pq(p_hwfn);
663 
664 	/* done sharing vports */
665 	ecore_init_qm_advance_vport(p_hwfn);
666 
667 	/* pqs for vfs */
668 	ecore_init_qm_vf_pqs(p_hwfn);
669 }
670 
671 /* compare values of getters against resources amounts */
672 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
673 {
674 	if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
675 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
676 		return ECORE_INVAL;
677 	}
678 
679 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
680 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
681 		return ECORE_INVAL;
682 	}
683 
684 	return ECORE_SUCCESS;
685 }
686 
687 /*
688  * Function for verbose printing of the qm initialization results
689  */
690 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
691 {
692 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
693 	struct init_qm_vport_params *vport;
694 	struct init_qm_port_params *port;
695 	struct init_qm_pq_params *pq;
696 	int i, tc;
697 
698 	/* top level params */
699 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
700 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
701 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
702 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
703 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
704 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
705 
706 	/* port table */
707 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engines; i++) {
708 		port = &(qm_info->qm_port_params[i]);
709 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
710 			   i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
711 	}
712 
713 	/* vport table */
714 	for (i = 0; i < qm_info->num_vports; i++) {
715 		vport = &(qm_info->qm_vport_params[i]);
716 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
717 			   qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
718 		for (tc = 0; tc < NUM_OF_TCS; tc++)
719 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
720 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
721 	}
722 
723 	/* pq table */
724 	for (i = 0; i < qm_info->num_pqs; i++) {
725 		pq = &(qm_info->qm_pq_params[i]);
726 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
727 			   qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
728 	}
729 }
730 
731 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
732 {
733 	/* reset params required for init run */
734 	ecore_init_qm_reset_params(p_hwfn);
735 
736 	/* init QM top level params */
737 	ecore_init_qm_params(p_hwfn);
738 
739 	/* init QM port params */
740 	ecore_init_qm_port_params(p_hwfn);
741 
742 	/* init QM vport params */
743 	ecore_init_qm_vport_params(p_hwfn);
744 
745 	/* init QM physical queue params */
746 	ecore_init_qm_pq_params(p_hwfn);
747 
748 	/* display all that init */
749 	ecore_dp_init_qm_params(p_hwfn);
750 }
751 
752 /* This function reconfigures the QM pf on the fly.
753  * For this purpose we:
754  * 1. reconfigure the QM database
755  * 2. set new values to runtime array
756  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
757  * 4. activate init tool in QM_PF stage
758  * 5. send an sdm_qm_cmd through rbc interface to release the QM
759  */
760 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
761 				     struct ecore_ptt *p_ptt)
762 {
763 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
764 	bool b_rc;
765 	enum _ecore_status_t rc;
766 
767 	/* initialize ecore's qm data structure */
768 	ecore_init_qm_info(p_hwfn);
769 
770 	/* stop PF's qm queues */
771 	OSAL_SPIN_LOCK(&qm_lock);
772 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
773 				      qm_info->start_pq, qm_info->num_pqs);
774 	OSAL_SPIN_UNLOCK(&qm_lock);
775 	if (!b_rc)
776 		return ECORE_INVAL;
777 
778 	/* clear the QM_PF runtime phase leftovers from previous init */
779 	ecore_init_clear_rt_data(p_hwfn);
780 
781 	/* prepare QM portion of runtime array */
782 	ecore_qm_init_pf(p_hwfn);
783 
784 	/* activate init tool on runtime array */
785 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
786 			    p_hwfn->hw_info.hw_mode);
787 	if (rc != ECORE_SUCCESS)
788 		return rc;
789 
790 	/* start PF's qm queues */
791 	OSAL_SPIN_LOCK(&qm_lock);
792 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
793 				      qm_info->start_pq, qm_info->num_pqs);
794 	OSAL_SPIN_UNLOCK(&qm_lock);
795 	if (!b_rc)
796 		return ECORE_INVAL;
797 
798 	return ECORE_SUCCESS;
799 }
800 
801 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
802 {
803 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
804 	enum _ecore_status_t rc;
805 
806 	rc = ecore_init_qm_sanity(p_hwfn);
807 	if (rc != ECORE_SUCCESS)
808 		goto alloc_err;
809 
810 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
811 					    sizeof(struct init_qm_pq_params) *
812 					    ecore_init_qm_get_num_pqs(p_hwfn));
813 	if (!qm_info->qm_pq_params)
814 		goto alloc_err;
815 
816 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
817 					       sizeof(struct init_qm_vport_params) *
818 					       ecore_init_qm_get_num_vports(p_hwfn));
819 	if (!qm_info->qm_vport_params)
820 		goto alloc_err;
821 
822 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
823 					      sizeof(struct init_qm_port_params) *
824 					      p_hwfn->p_dev->num_ports_in_engines);
825 	if (!qm_info->qm_port_params)
826 		goto alloc_err;
827 
828 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
829 					sizeof(struct ecore_wfq_data) *
830 					ecore_init_qm_get_num_vports(p_hwfn));
831 	if (!qm_info->wfq_data)
832 		goto alloc_err;
833 
834 	return ECORE_SUCCESS;
835 
836 alloc_err:
837 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
838 	ecore_qm_info_free(p_hwfn);
839 	return ECORE_NOMEM;
840 }
841 /******************** End QM initialization ***************/
842 
843 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
844 {
845 	enum _ecore_status_t rc = ECORE_SUCCESS;
846 	u32 rdma_tasks, excess_tasks;
847 	u32 line_count;
848 	int i;
849 
850 	if (IS_VF(p_dev)) {
851 		for_each_hwfn(p_dev, i) {
852 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
853 			if (rc != ECORE_SUCCESS)
854 				return rc;
855 		}
856 		return rc;
857 	}
858 
859 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
860 				     sizeof(*p_dev->fw_data));
861 	if (!p_dev->fw_data)
862 		return ECORE_NOMEM;
863 
864 	for_each_hwfn(p_dev, i) {
865 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
866 		u32 n_eqes, num_cons;
867 
868 		/* First allocate the context manager structure */
869 		rc = ecore_cxt_mngr_alloc(p_hwfn);
870 		if (rc)
871 			goto alloc_err;
872 
873 		/* Set the HW cid/tid numbers (in the contest manager)
874 		 * Must be done prior to any further computations.
875 		 */
876 		rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
877 		if (rc)
878 			goto alloc_err;
879 
880 		rc = ecore_alloc_qm_data(p_hwfn);
881 		if (rc)
882 			goto alloc_err;
883 
884 		/* init qm info */
885 		ecore_init_qm_info(p_hwfn);
886 
887 		/* Compute the ILT client partition */
888 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
889 		if (rc) {
890 			DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
891 			/* In case there are not enough ILT lines we reduce the
892 			 * number of RDMA tasks and re-compute.
893 			 */
894 			excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
895 					p_hwfn, line_count);
896 			if (!excess_tasks)
897 				goto alloc_err;
898 
899 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
900 			rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
901 			if (rc)
902 				goto alloc_err;
903 
904 			rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
905 			if (rc) {
906 				DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
907 				       line_count);
908 
909 				goto alloc_err;
910 			}
911 		}
912 
913 		/* CID map / ILT shadow table / T2
914 		 * The talbes sizes are determined by the computations above
915 		 */
916 		rc = ecore_cxt_tables_alloc(p_hwfn);
917 		if (rc)
918 			goto alloc_err;
919 
920 		/* SPQ, must follow ILT because initializes SPQ context */
921 		rc = ecore_spq_alloc(p_hwfn);
922 		if (rc)
923 			goto alloc_err;
924 
925 		/* SP status block allocation */
926 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
927 							   RESERVED_PTT_DPC);
928 
929 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
930 		if (rc)
931 			goto alloc_err;
932 
933 		rc = ecore_iov_alloc(p_hwfn);
934 		if (rc)
935 			goto alloc_err;
936 
937 		/* EQ */
938 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
939 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
940 			/* Calculate the EQ size
941 			 * ---------------------
942 			 * Each ICID may generate up to one event at a time i.e.
943 			 * the event must be handled/cleared before a new one
944 			 * can be generated. We calculate the sum of events per
945 			 * protocol and create an EQ deep enough to handle the
946 			 * worst case:
947 			 * - Core - according to SPQ.
948 			 * - RoCE - per QP there are a couple of ICIDs, one
949 			 *	  responder and one requester, each can
950 			 *	  generate an EQE => n_eqes_qp = 2 * n_qp.
951 			 *	  Each CQ can generate an EQE. There are 2 CQs
952 			 *	  per QP => n_eqes_cq = 2 * n_qp.
953 			 *	  Hence the RoCE total is 4 * n_qp or
954 			 *	  2 * num_cons.
955 			 * - ENet - There can be up to two events per VF. One
956 			 *	  for VF-PF channel and another for VF FLR
957 			 *	  initial cleanup. The number of VFs is
958 			 *	  bounded by MAX_NUM_VFS_BB, and is much
959 			 *	  smaller than RoCE's so we avoid exact
960 			 *	  calculation.
961 			 */
962 			if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
963 				num_cons = ecore_cxt_get_proto_cid_count(
964 					p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
965 				num_cons *= 2;
966 			} else {
967 				num_cons = ecore_cxt_get_proto_cid_count(
968 						p_hwfn, PROTOCOLID_IWARP,
969 						OSAL_NULL);
970 			}
971 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
972 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
973 			num_cons = ecore_cxt_get_proto_cid_count(
974 					p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
975 			n_eqes += 2 * num_cons;
976 		}
977 
978 		if (n_eqes > 0xFFFF) {
979 			DP_ERR(p_hwfn,
980 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
981 			       n_eqes, 0xFFFF);
982 			goto alloc_no_mem;
983 		}
984 
985 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
986 		if (rc)
987 			goto alloc_err;
988 
989 		rc = ecore_consq_alloc(p_hwfn);
990 		if (rc)
991 			goto alloc_err;
992 
993 		rc = ecore_l2_alloc(p_hwfn);
994 		if (rc != ECORE_SUCCESS)
995 			goto alloc_err;
996 
997 #ifdef CONFIG_ECORE_LL2
998 		if (p_hwfn->using_ll2) {
999 			rc = ecore_ll2_alloc(p_hwfn);
1000 			if (rc)
1001 				goto alloc_err;
1002 		}
1003 #endif
1004 #ifdef CONFIG_ECORE_FCOE
1005 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1006 			rc = ecore_fcoe_alloc(p_hwfn);
1007 			if (rc)
1008 				goto alloc_err;
1009 		}
1010 #endif
1011 #ifdef CONFIG_ECORE_ISCSI
1012 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1013 			rc = ecore_iscsi_alloc(p_hwfn);
1014 			if (rc)
1015 				goto alloc_err;
1016 			rc = ecore_ooo_alloc(p_hwfn);
1017 			if (rc)
1018 				goto alloc_err;
1019 		}
1020 #endif
1021 
1022 		/* DMA info initialization */
1023 		rc = ecore_dmae_info_alloc(p_hwfn);
1024 		if (rc) {
1025 			DP_NOTICE(p_hwfn, true,
1026 				  "Failed to allocate memory for dmae_info structure\n");
1027 			goto alloc_err;
1028 		}
1029 
1030 		/* DCBX initialization */
1031 		rc = ecore_dcbx_info_alloc(p_hwfn);
1032 		if (rc) {
1033 			DP_NOTICE(p_hwfn, true,
1034 				  "Failed to allocate memory for dcbx structure\n");
1035 			goto alloc_err;
1036 		}
1037 	}
1038 
1039 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
1040 					 sizeof(*p_dev->reset_stats));
1041 	if (!p_dev->reset_stats) {
1042 		DP_NOTICE(p_dev, true,
1043 			  "Failed to allocate reset statistics\n");
1044 		goto alloc_no_mem;
1045 	}
1046 
1047 	return ECORE_SUCCESS;
1048 
1049 alloc_no_mem:
1050 	rc = ECORE_NOMEM;
1051 alloc_err:
1052 	ecore_resc_free(p_dev);
1053 	return rc;
1054 }
1055 
1056 void ecore_resc_setup(struct ecore_dev *p_dev)
1057 {
1058 	int i;
1059 
1060 	if (IS_VF(p_dev)) {
1061 		for_each_hwfn(p_dev, i)
1062 			ecore_l2_setup(&p_dev->hwfns[i]);
1063 		return;
1064 	}
1065 
1066 	for_each_hwfn(p_dev, i) {
1067 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1068 
1069 		ecore_cxt_mngr_setup(p_hwfn);
1070 		ecore_spq_setup(p_hwfn);
1071 		ecore_eq_setup(p_hwfn);
1072 		ecore_consq_setup(p_hwfn);
1073 
1074 		/* Read shadow of current MFW mailbox */
1075 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1076 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1077 			    p_hwfn->mcp_info->mfw_mb_cur,
1078 			    p_hwfn->mcp_info->mfw_mb_length);
1079 
1080 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1081 
1082 		ecore_l2_setup(p_hwfn);
1083 		ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
1084 #ifdef CONFIG_ECORE_LL2
1085 		if (p_hwfn->using_ll2)
1086 			ecore_ll2_setup(p_hwfn);
1087 #endif
1088 #ifdef CONFIG_ECORE_FCOE
1089 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1090 			ecore_fcoe_setup(p_hwfn);
1091 #endif
1092 #ifdef CONFIG_ECORE_ISCSI
1093 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1094 			ecore_iscsi_setup(p_hwfn);
1095 			ecore_ooo_setup(p_hwfn);
1096 		}
1097 #endif
1098 	}
1099 }
1100 
1101 #define FINAL_CLEANUP_POLL_CNT	(100)
1102 #define FINAL_CLEANUP_POLL_TIME	(10)
1103 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
1104 					 struct ecore_ptt *p_ptt,
1105 					 u16 id, bool is_vf)
1106 {
1107 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1108 	enum _ecore_status_t rc = ECORE_TIMEOUT;
1109 
1110 #ifndef ASIC_ONLY
1111 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
1112 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1113 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
1114 		return ECORE_SUCCESS;
1115 	}
1116 #endif
1117 
1118 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
1119 	       USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1120 
1121 	if (is_vf)
1122 		id += 0x10;
1123 
1124 	command |= X_FINAL_CLEANUP_AGG_INT <<
1125 		   SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1126 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1127 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1128 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1129 
1130 	/* Make sure notification is not set before initiating final cleanup */
1131 	if (REG_RD(p_hwfn, addr)) {
1132 		DP_NOTICE(p_hwfn, false,
1133 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
1134 		REG_WR(p_hwfn, addr, 0);
1135 	}
1136 
1137 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
1138 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
1139 		   id, command);
1140 
1141 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1142 
1143 	/* Poll until completion */
1144 	while (!REG_RD(p_hwfn, addr) && count--)
1145 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
1146 
1147 	if (REG_RD(p_hwfn, addr))
1148 		rc = ECORE_SUCCESS;
1149 	else
1150 		DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
1151 
1152 	/* Cleanup afterwards */
1153 	REG_WR(p_hwfn, addr, 0);
1154 
1155 	return rc;
1156 }
1157 
1158 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
1159 {
1160 	int hw_mode = 0;
1161 
1162 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
1163 		hw_mode |= 1 << MODE_BB;
1164 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
1165 		hw_mode |= 1 << MODE_K2;
1166 	} else {
1167 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
1168 			  p_hwfn->p_dev->type);
1169 		return ECORE_INVAL;
1170 	}
1171 
1172 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
1173 	switch (p_hwfn->p_dev->num_ports_in_engines) {
1174 	case 1:
1175 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1176 		break;
1177 	case 2:
1178 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1179 		break;
1180 	case 4:
1181 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1182 		break;
1183 	default:
1184 		DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
1185 			  p_hwfn->p_dev->num_ports_in_engines);
1186 		return ECORE_INVAL;
1187 	}
1188 
1189 	switch (p_hwfn->p_dev->mf_mode) {
1190 	case ECORE_MF_DEFAULT:
1191 	case ECORE_MF_NPAR:
1192 		hw_mode |= 1 << MODE_MF_SI;
1193 		break;
1194 	case ECORE_MF_OVLAN:
1195 		hw_mode |= 1 << MODE_MF_SD;
1196 		break;
1197 	default:
1198 		DP_NOTICE(p_hwfn, true, "Unsupported MF mode, init as DEFAULT\n");
1199 		hw_mode |= 1 << MODE_MF_SI;
1200 	}
1201 
1202 #ifndef ASIC_ONLY
1203 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1204 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1205 			hw_mode |= 1 << MODE_FPGA;
1206 		} else {
1207 			if (p_hwfn->p_dev->b_is_emul_full)
1208 				hw_mode |= 1 << MODE_EMUL_FULL;
1209 			else
1210 				hw_mode |= 1 << MODE_EMUL_REDUCED;
1211 		}
1212 	} else
1213 #endif
1214 	hw_mode |= 1 << MODE_ASIC;
1215 
1216 	if (p_hwfn->p_dev->num_hwfns > 1)
1217 		hw_mode |= 1 << MODE_100G;
1218 
1219 	p_hwfn->hw_info.hw_mode = hw_mode;
1220 
1221 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
1222 		   "Configuring function for hw_mode: 0x%08x\n",
1223 		   p_hwfn->hw_info.hw_mode);
1224 
1225 	return ECORE_SUCCESS;
1226 }
1227 
1228 #ifndef ASIC_ONLY
1229 /* MFW-replacement initializations for non-ASIC */
1230 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
1231 					       struct ecore_ptt *p_ptt)
1232 {
1233 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1234 	u32 pl_hv = 1;
1235 	int i;
1236 
1237 	if (CHIP_REV_IS_EMUL(p_dev)) {
1238 		if (ECORE_IS_AH(p_dev))
1239 			pl_hv |= 0x600;
1240 		else if (ECORE_IS_E5(p_dev))
1241 			ECORE_E5_MISSING_CODE;
1242 	}
1243 
1244 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
1245 
1246 	if (CHIP_REV_IS_EMUL(p_dev) &&
1247 	    (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
1248 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
1249 			 0x3ffffff);
1250 
1251 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
1252 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
1253 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
1254 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
1255 
1256 	if (CHIP_REV_IS_EMUL(p_dev)) {
1257 		if (ECORE_IS_AH(p_dev)) {
1258 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
1259 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
1260 				 (p_dev->num_ports_in_engines >> 1));
1261 
1262 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
1263 				 p_dev->num_ports_in_engines == 4 ? 0 : 3);
1264 		} else if (ECORE_IS_E5(p_dev)) {
1265 			ECORE_E5_MISSING_CODE;
1266 		}
1267 	}
1268 
1269 	/* Poll on RBC */
1270 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
1271 	for (i = 0; i < 100; i++) {
1272 		OSAL_UDELAY(50);
1273 		if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
1274 			break;
1275 	}
1276 	if (i == 100)
1277 		DP_NOTICE(p_hwfn, true, "RBC done failed to complete in PSWRQ2\n");
1278 
1279 	return ECORE_SUCCESS;
1280 }
1281 #endif
1282 
1283 /* Init run time data for all PFs and their VFs on an engine.
1284  * TBD - for VFs - Once we have parent PF info for each VF in
1285  * shmem available as CAU requires knowledge of parent PF for each VF.
1286  */
1287 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
1288 {
1289 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1290 	int i, igu_sb_id;
1291 
1292 	for_each_hwfn(p_dev, i) {
1293 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1294 		struct ecore_igu_info *p_igu_info;
1295 		struct ecore_igu_block *p_block;
1296 		struct cau_sb_entry sb_entry;
1297 
1298 		p_igu_info = p_hwfn->hw_info.p_igu_info;
1299 
1300 		for (igu_sb_id = 0;
1301 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
1302 		     igu_sb_id++) {
1303 			p_block = &p_igu_info->entry[igu_sb_id];
1304 
1305 			if (!p_block->is_pf)
1306 				continue;
1307 
1308 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
1309 						p_block->function_id,
1310 						0, 0);
1311 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
1312 					 sb_entry);
1313 		}
1314 	}
1315 }
1316 
1317 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
1318 				       struct ecore_ptt *p_ptt)
1319 {
1320 	u32 val, wr_mbs, cache_line_size;
1321 
1322 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
1323 	switch (val) {
1324 	case 0:
1325 		wr_mbs = 128;
1326 		break;
1327 	case 1:
1328 		wr_mbs = 256;
1329 		break;
1330 	case 2:
1331 		wr_mbs = 512;
1332 		break;
1333 	default:
1334 		DP_INFO(p_hwfn,
1335 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1336 			val);
1337 		return;
1338 	}
1339 
1340 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
1341 	switch (cache_line_size) {
1342 	case 32:
1343 		val = 0;
1344 		break;
1345 	case 64:
1346 		val = 1;
1347 		break;
1348 	case 128:
1349 		val = 2;
1350 		break;
1351 	case 256:
1352 		val = 3;
1353 		break;
1354 	default:
1355 		DP_INFO(p_hwfn,
1356 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1357 			cache_line_size);
1358 	}
1359 
1360 	if (OSAL_CACHE_LINE_SIZE > wr_mbs)
1361 		DP_INFO(p_hwfn,
1362 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
1363 			OSAL_CACHE_LINE_SIZE, wr_mbs);
1364 
1365 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
1366 }
1367 
1368 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
1369 						 struct ecore_ptt *p_ptt,
1370 						 int hw_mode)
1371 {
1372 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1373 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1374 	u8 vf_id, max_num_vfs;
1375 	u16 num_pfs, pf_id;
1376 	u32 concrete_fid;
1377 	enum _ecore_status_t rc	= ECORE_SUCCESS;
1378 
1379 	ecore_init_cau_rt_data(p_dev);
1380 
1381 	/* Program GTT windows */
1382 	ecore_gtt_init(p_hwfn);
1383 
1384 #ifndef ASIC_ONLY
1385 	if (CHIP_REV_IS_EMUL(p_dev)) {
1386 		rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
1387 		if (rc != ECORE_SUCCESS)
1388 			return rc;
1389 	}
1390 #endif
1391 
1392 	if (p_hwfn->mcp_info) {
1393 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
1394 			qm_info->pf_rl_en = 1;
1395 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1396 			qm_info->pf_wfq_en = 1;
1397 	}
1398 
1399 	ecore_qm_common_rt_init(p_hwfn,
1400 				p_dev->num_ports_in_engines,
1401 				qm_info->max_phys_tcs_per_port,
1402 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
1403 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
1404 				qm_info->qm_port_params);
1405 
1406 	ecore_cxt_hw_init_common(p_hwfn);
1407 
1408 	ecore_init_cache_line_size(p_hwfn, p_ptt);
1409 
1410 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1411 	if (rc != ECORE_SUCCESS)
1412 		return rc;
1413 
1414 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1415 	 * need to decide with which value, maybe runtime
1416 	 */
1417 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1418 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1419 
1420 	if (ECORE_IS_BB(p_dev)) {
1421 		/* Workaround clears ROCE search for all functions to prevent
1422 		 * involving non intialized function in processing ROCE packet.
1423 		 */
1424 		num_pfs = NUM_OF_ENG_PFS(p_dev);
1425 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1426 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1427 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1428 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1429 		}
1430 		/* pretend to original PF */
1431 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1432 	}
1433 
1434 	/* Workaround for avoiding CCFC execution error when getting packets
1435 	 * with CRC errors, and allowing instead the invoking of the FW error
1436 	 * handler.
1437 	 * This is not done inside the init tool since it currently can't
1438 	 * perform a pretending to VFs.
1439 	 */
1440 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1441 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1442 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1443 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1444 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1445 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1446 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1447 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1448 	}
1449 	/* pretend to original PF */
1450 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1451 
1452 	return rc;
1453 }
1454 
1455 #ifndef ASIC_ONLY
1456 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
1457 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
1458 
1459 #define PMEG_IF_BYTE_COUNT	8
1460 
1461 static void ecore_wr_nw_port(struct ecore_hwfn	*p_hwfn,
1462 			     struct ecore_ptt	*p_ptt,
1463 			     u32		addr,
1464 			     u64		data,
1465 			     u8			reg_type,
1466 			     u8			port)
1467 {
1468 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1469 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1470 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
1471 		   (8 << PMEG_IF_BYTE_COUNT),
1472 		   (reg_type << 25) | (addr << 8) | port,
1473 		   (u32)((data >> 32) & 0xffffffff),
1474 		   (u32)(data & 0xffffffff));
1475 
1476 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
1477 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
1478 		  0xffff00fe) |
1479 		 (8 << PMEG_IF_BYTE_COUNT));
1480 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
1481 		 (reg_type << 25) | (addr << 8) | port);
1482 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
1483 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
1484 		 (data >> 32) & 0xffffffff);
1485 }
1486 
1487 #define XLPORT_MODE_REG	(0x20a)
1488 #define XLPORT_MAC_CONTROL (0x210)
1489 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1490 #define XLPORT_ENABLE_REG (0x20b)
1491 
1492 #define XLMAC_CTRL (0x600)
1493 #define XLMAC_MODE (0x601)
1494 #define XLMAC_RX_MAX_SIZE (0x608)
1495 #define XLMAC_TX_CTRL (0x604)
1496 #define XLMAC_PAUSE_CTRL (0x60d)
1497 #define XLMAC_PFC_CTRL (0x60e)
1498 
1499 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
1500 				    struct ecore_ptt *p_ptt)
1501 {
1502 	u8 loopback = 0, port = p_hwfn->port_id * 2;
1503 
1504 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1505 
1506 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
1507 			 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
1508 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1509 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1510 			 0x40, 0, port); /*XLMAC: SOFT RESET */
1511 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
1512 			 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
1513 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
1514 			 0x3fff, 0, port); /* XLMAC: Max Size */
1515 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1516 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1517 			 0, port);
1518 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
1519 			 0x7c000, 0, port);
1520 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1521 			 0x30ffffc000ULL, 0, port);
1522 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
1523 			 0, port); /* XLMAC: TX_EN, RX_EN */
1524 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
1525 			 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1526 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
1527 			 1, 0, port); /* Enabled Parallel PFC interface */
1528 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
1529 			 0xf, 1, port); /* XLPORT port enable */
1530 }
1531 
1532 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
1533 				       struct ecore_ptt *p_ptt)
1534 {
1535 	u8 port = p_hwfn->port_id;
1536 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
1537 
1538 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1539 
1540 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
1541 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
1542 		 (port <<
1543 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
1544 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
1545 
1546 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
1547 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
1548 
1549 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
1550 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
1551 
1552 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
1553 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
1554 
1555 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
1556 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
1557 
1558 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
1559 		 (0xA <<
1560 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
1561 		 (8 <<
1562 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
1563 
1564 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
1565 		 0xa853);
1566 }
1567 
1568 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1569 				 struct ecore_ptt *p_ptt)
1570 {
1571 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
1572 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
1573 	else /* BB */
1574 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
1575 
1576 	return;
1577 }
1578 
1579 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
1580 			       struct ecore_ptt *p_ptt,  u8 port)
1581 {
1582 	int port_offset = port ? 0x800 : 0;
1583 	u32 xmac_rxctrl	= 0;
1584 
1585 	/* Reset of XMAC */
1586 	/* FIXME: move to common start */
1587 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
1588 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
1589 	OSAL_MSLEEP(1);
1590 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1591 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
1592 
1593 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
1594 
1595 	/* Set the number of ports on the Warp Core to 10G */
1596 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
1597 
1598 	/* Soft reset of XMAC */
1599 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1600 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1601 	OSAL_MSLEEP(1);
1602 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1603 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1604 
1605 	/* FIXME: move to common end */
1606 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1607 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
1608 
1609 	/* Set Max packet size: initialize XMAC block register for port 0 */
1610 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
1611 
1612 	/* CRC append for Tx packets: init XMAC block register for port 1 */
1613 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
1614 
1615 	/* Enable TX and RX: initialize XMAC block register for port 1 */
1616 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
1617 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
1618 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
1619 			       XMAC_REG_RX_CTRL_BB + port_offset);
1620 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
1621 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
1622 }
1623 #endif
1624 
1625 static enum _ecore_status_t
1626 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1627 		       struct ecore_ptt *p_ptt,
1628 		       u32 pwm_region_size,
1629 		       u32 n_cpus)
1630 {
1631 	u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1632 	u32 dpi_bit_shift, dpi_count;
1633 	u32 min_dpis;
1634 
1635 	/* Calculate DPI size
1636 	 * ------------------
1637 	 * The PWM region contains Doorbell Pages. The first is reserverd for
1638 	 * the kernel for, e.g, L2. The others are free to be used by non-
1639 	 * trusted applications, typically from user space. Each page, called a
1640 	 * doorbell page is sectioned into windows that allow doorbells to be
1641 	 * issued in parallel by the kernel/application. The size of such a
1642 	 * window (a.k.a. WID) is 1kB.
1643 	 * Summary:
1644 	 *    1kB WID x N WIDS = DPI page size
1645 	 *    DPI page size x N DPIs = PWM region size
1646 	 * Notes:
1647 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1648 	 * in order to ensure that two applications won't share the same page.
1649 	 * It also must contain at least one WID per CPU to allow parallelism.
1650 	 * It also must be a power of 2, since it is stored as a bit shift.
1651 	 *
1652 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1653 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1654 	 * containing 4 WIDs.
1655 	 */
1656 	dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1657 	dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1658 	dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1659 	dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1660 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1661 
1662 	dpi_count = pwm_region_size / dpi_page_size;
1663 
1664 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1665 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1666 
1667 	/* Update hwfn */
1668 	p_hwfn->dpi_size = dpi_page_size;
1669 	p_hwfn->dpi_count = dpi_count;
1670 
1671 	/* Update registers */
1672 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1673 
1674 	if (dpi_count < min_dpis)
1675 		return ECORE_NORESOURCES;
1676 
1677 	return ECORE_SUCCESS;
1678 }
1679 
1680 enum ECORE_ROCE_EDPM_MODE {
1681 	ECORE_ROCE_EDPM_MODE_ENABLE	= 0,
1682 	ECORE_ROCE_EDPM_MODE_FORCE_ON	= 1,
1683 	ECORE_ROCE_EDPM_MODE_DISABLE	= 2,
1684 };
1685 
1686 static enum _ecore_status_t
1687 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1688 			      struct ecore_ptt *p_ptt)
1689 {
1690 	u32 pwm_regsize, norm_regsize;
1691 	u32 non_pwm_conn, min_addr_reg1;
1692 	u32 db_bar_size, n_cpus = 1;
1693 	u32 roce_edpm_mode;
1694 	u32 pf_dems_shift;
1695 	enum _ecore_status_t rc = ECORE_SUCCESS;
1696 	u8 cond;
1697 
1698 	db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1699 	if (p_hwfn->p_dev->num_hwfns > 1)
1700 		db_bar_size /= 2;
1701 
1702 	/* Calculate doorbell regions
1703 	 * -----------------------------------
1704 	 * The doorbell BAR is made of two regions. The first is called normal
1705 	 * region and the second is called PWM region. In the normal region
1706 	 * each ICID has its own set of addresses so that writing to that
1707 	 * specific address identifies the ICID. In the Process Window Mode
1708 	 * region the ICID is given in the data written to the doorbell. The
1709 	 * above per PF register denotes the offset in the doorbell BAR in which
1710 	 * the PWM region begins.
1711 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1712 	 * non-PWM connection. The calculation below computes the total non-PWM
1713 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1714 	 * in units of 4,096 bytes.
1715 	 */
1716 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1717 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1718 						     OSAL_NULL) +
1719 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
1720 						     OSAL_NULL);
1721 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1722 	min_addr_reg1 = norm_regsize / 4096;
1723 	pwm_regsize = db_bar_size - norm_regsize;
1724 
1725 	/* Check that the normal and PWM sizes are valid */
1726 	if (db_bar_size < norm_regsize) {
1727 		DP_ERR(p_hwfn->p_dev, "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", db_bar_size, norm_regsize);
1728 		return ECORE_NORESOURCES;
1729 	}
1730 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1731 		DP_ERR(p_hwfn->p_dev, "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size, norm_regsize);
1732 		return ECORE_NORESOURCES;
1733 	}
1734 
1735 	/* Calculate number of DPIs */
1736 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1737 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1738 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1739 		/* Either EDPM is mandatory, or we are attempting to allocate a
1740 		 * WID per CPU.
1741 		 */
1742 		n_cpus = OSAL_NUM_ACTIVE_CPU();
1743 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1744 	}
1745 
1746 	cond = ((rc != ECORE_SUCCESS) &&
1747 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1748 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1749 	if (cond || p_hwfn->dcbx_no_edpm) {
1750 		/* Either EDPM is disabled from user configuration, or it is
1751 		 * disabled via DCBx, or it is not mandatory and we failed to
1752 		 * allocated a WID per CPU.
1753 		 */
1754 		n_cpus = 1;
1755 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1756 
1757 #ifdef CONFIG_ECORE_ROCE
1758 		/* If we entered this flow due to DCBX then the DPM register is
1759 		 * already configured.
1760 		 */
1761 		if (cond)
1762 			ecore_rdma_dpm_bar(p_hwfn, p_ptt);
1763 #endif
1764 	}
1765 
1766 	p_hwfn->wid_count = (u16)n_cpus;
1767 
1768 	DP_INFO(p_hwfn, "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1769 		norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
1770 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1771 		"disabled" : "enabled");
1772 
1773 	/* Check return codes from above calls */
1774 	if (rc != ECORE_SUCCESS) {
1775 		DP_ERR(p_hwfn,
1776 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d. You can try reducing this down to %d via user configuration n_dpi or by disabling EDPM via user configuration roce_edpm\n",
1777 		       p_hwfn->dpi_count,
1778 		       p_hwfn->pf_params.rdma_pf_params.min_dpis,
1779 		       ECORE_MIN_DPIS);
1780 		return ECORE_NORESOURCES;
1781 	}
1782 
1783 	/* Update hwfn */
1784 	p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
1785 						      * calculate the doorbell
1786 						      * address
1787 						      */
1788 
1789 	/* Update registers */
1790 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1791 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1792 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1793 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1794 
1795 	return ECORE_SUCCESS;
1796 }
1797 
1798 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1799 					       struct ecore_ptt *p_ptt,
1800 					       int hw_mode)
1801 {
1802 	enum _ecore_status_t rc	= ECORE_SUCCESS;
1803 
1804 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1805 			    hw_mode);
1806 	if (rc != ECORE_SUCCESS)
1807 		return rc;
1808 #if 0
1809 	/* FW 8.10.5.0 requires us to configure PF_VECTOR and DUALMODE in LLH.
1810 	 * This would hopefully be moved to MFW.
1811 	 */
1812 	if (IS_MF_DEFAULT(p_hwfn) || IS_MF_SI(p_hwfn)) {
1813 		u8 pf_id = 0;
1814 
1815 		if (ecore_hw_init_first_eth(p_hwfn, p_ptt, &pf_id) ==
1816 		    ECORE_SUCCESS) {
1817 			DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP,
1818 				   "PF[%08x] is first eth on engine\n",
1819 				   pf_id);
1820 
1821 			/* We should have configured BIT for ppfid, i.e., the
1822 			 * relative function number in the port. But there's a
1823 			 * bug in LLH in BB where the ppfid is actually engine
1824 			 * based, so we need to take this into account.
1825 			 */
1826 			if (!ECORE_IS_BB(p_hwfn->p_dev))
1827 				pf_id /= p_hwfn->p_dev->num_ports_in_engines;
1828 
1829 			ecore_wr(p_hwfn, p_ptt,
1830 				 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id);
1831 		}
1832 
1833 		/* Take the protocol-based hit vector if there is a hit,
1834 		 * otherwise take the other vector.
1835 		 */
1836 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_CLS_TYPE_DUALMODE, 0x2);
1837 	}
1838 #endif
1839 #ifndef ASIC_ONLY
1840 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1841 		return ECORE_SUCCESS;
1842 
1843 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1844 		if (ECORE_IS_AH(p_hwfn->p_dev))
1845 			return ECORE_SUCCESS;
1846 		else if (ECORE_IS_BB(p_hwfn->p_dev))
1847 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
1848 		else /* E5 */
1849 			ECORE_E5_MISSING_CODE;
1850 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1851 		if (p_hwfn->p_dev->num_hwfns > 1) {
1852 			/* Activate OPTE in CMT */
1853 			u32 val;
1854 
1855 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1856 			val |= 0x10;
1857 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1858 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1859 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1860 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1861 			ecore_wr(p_hwfn, p_ptt,
1862 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1863 			ecore_wr(p_hwfn, p_ptt,
1864 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1865 			ecore_wr(p_hwfn, p_ptt,
1866 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1867 				 0x55555555);
1868 		}
1869 
1870 		ecore_emul_link_init(p_hwfn, p_ptt);
1871 	} else {
1872 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1873 	}
1874 #endif
1875 
1876 	return rc;
1877 }
1878 
1879 static enum _ecore_status_t ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1880 					     struct ecore_ptt *p_ptt,
1881 					      struct ecore_tunnel_info *p_tunn,
1882 					      int hw_mode,
1883 					      bool b_hw_start,
1884 					      enum ecore_int_mode int_mode,
1885 					      bool allow_npar_tx_switch)
1886 {
1887 	u8 rel_pf_id = p_hwfn->rel_pf_id;
1888 	u32 prs_reg;
1889 	enum _ecore_status_t rc	= ECORE_SUCCESS;
1890 	u16 ctrl;
1891 	int pos;
1892 
1893 	if (p_hwfn->mcp_info) {
1894 		struct ecore_mcp_function_info *p_info;
1895 
1896 		p_info = &p_hwfn->mcp_info->func_info;
1897 		if (p_info->bandwidth_min)
1898 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1899 
1900 		/* Update rate limit once we'll actually have a link */
1901 		p_hwfn->qm_info.pf_rl = 100000;
1902 	}
1903 	ecore_cxt_hw_init_pf(p_hwfn);
1904 
1905 	ecore_int_igu_init_rt(p_hwfn);
1906 
1907 	/* Set VLAN in NIG if needed */
1908 	if (hw_mode & (1 << MODE_MF_SD)) {
1909 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1910 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1911 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1912 			     p_hwfn->hw_info.ovlan);
1913 	}
1914 
1915 	/* Enable classification by MAC if needed */
1916 	if (hw_mode & (1 << MODE_MF_SI)) {
1917 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
1918 		STORE_RT_REG(p_hwfn,
1919 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
1920 	}
1921 
1922 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise?*/
1923 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1924 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1925 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1926 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1927 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1928 
1929 	/* perform debug configuration when chip is out of reset */
1930 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1931 
1932 	/* Cleanup chip from previous driver if such remains exist */
1933 	rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1934 	if (rc != ECORE_SUCCESS) {
1935 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1936 		return rc;
1937 	}
1938 
1939 	/* PF Init sequence */
1940 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1941 	if (rc)
1942 		return rc;
1943 
1944 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1945 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1946 	if (rc)
1947 		return rc;
1948 
1949 	/* Pure runtime initializations - directly to the HW  */
1950 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1951 
1952 	/* PCI relaxed ordering causes a decrease in the performance on some
1953 	 * systems. Till a root cause is found, disable this attribute in the
1954 	 * PCI config space.
1955 	 */
1956 	pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1957 	if (!pos) {
1958 		DP_NOTICE(p_hwfn, true,
1959 			  "Failed to find the PCI Express Capability structure in the PCI config space\n");
1960 		return ECORE_IO;
1961 	}
1962 	OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1963 	ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1964 	OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1965 
1966 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1967 	if (rc)
1968 		return rc;
1969 #if 0
1970 	/* FW 8.10.5.0 requires us to configure MSG_INFO in PRS.
1971 	 * This would hopefully be moved to MFW.
1972 	 */
1973 	if (IS_MF_SI(p_hwfn)) {
1974 		u8 pf_id = 0;
1975 		u32 val;
1976 
1977 		if (ecore_hw_init_first_eth(p_hwfn, p_ptt, &pf_id) ==
1978 		    ECORE_SUCCESS) {
1979 			if (p_hwfn->rel_pf_id == pf_id) {
1980 				DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP,
1981 					   "PF[%d] is first ETH on engine\n",
1982 					   pf_id);
1983 				val = 1;
1984 			}
1985 			ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, val);
1986 		}
1987 	}
1988 #endif
1989 	if (b_hw_start) {
1990 		/* enable interrupts */
1991 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1992 		if (rc != ECORE_SUCCESS)
1993 			return rc;
1994 
1995 		/* send function start command */
1996 		rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1997 				       allow_npar_tx_switch);
1998 		if (rc) {
1999 			DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
2000 		} else {
2001 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
2002 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2003 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
2004 
2005 			if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2006 			{
2007 				ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
2008 					 (1 << 2));
2009 				ecore_wr(p_hwfn, p_ptt,
2010 					 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
2011 					 0x100);
2012 			}
2013 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2014 				   "PRS_REG_SEARCH registers after start PFn\n");
2015 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
2016 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2017 				   "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
2018 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
2019 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2020 				   "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
2021 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
2022 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2023 				   "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
2024 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
2025 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2026 				   "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
2027 			prs_reg = ecore_rd(p_hwfn, p_ptt,
2028 					   PRS_REG_SEARCH_TCP_FIRST_FRAG);
2029 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2030 				   "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
2031 				   prs_reg);
2032 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
2033 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2034 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
2035 		}
2036 	}
2037 	return rc;
2038 }
2039 
2040 enum _ecore_status_t ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
2041 					   struct ecore_ptt *p_ptt,
2042 					   u8 enable)
2043 {
2044 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
2045 
2046 	/* Change PF in PXP */
2047 	ecore_wr(p_hwfn, p_ptt,
2048 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
2049 
2050 	/* wait until value is set - try for 1 second every 50us */
2051 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
2052 		val = ecore_rd(p_hwfn, p_ptt,
2053 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
2054 		if (val == set_val)
2055 			break;
2056 
2057 		OSAL_UDELAY(50);
2058 	}
2059 
2060 	if (val != set_val) {
2061 		DP_NOTICE(p_hwfn, true,
2062 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
2063 		return ECORE_UNKNOWN_ERROR;
2064 	}
2065 
2066 	return ECORE_SUCCESS;
2067 }
2068 
2069 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
2070 			struct ecore_ptt *p_main_ptt)
2071 {
2072 	/* Read shadow of current MFW mailbox */
2073 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
2074 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2075 		    p_hwfn->mcp_info->mfw_mb_cur,
2076 		    p_hwfn->mcp_info->mfw_mb_length);
2077 }
2078 
2079 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
2080 				    struct ecore_hw_init_params *p_params)
2081 {
2082 	if (p_params->p_tunn) {
2083 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
2084 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
2085 	}
2086 
2087 	p_hwfn->b_int_enabled = 1;
2088 
2089 	return ECORE_SUCCESS;
2090 }
2091 
2092 static void
2093 ecore_fill_load_req_params(struct ecore_load_req_params *p_load_req,
2094 			   struct ecore_drv_load_params *p_drv_load)
2095 {
2096 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
2097 
2098 	if (p_drv_load != OSAL_NULL) {
2099 		p_load_req->drv_role = p_drv_load->is_crash_kernel ?
2100 				       ECORE_DRV_ROLE_KDUMP :
2101 				       ECORE_DRV_ROLE_OS;
2102 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
2103 		p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
2104 		p_load_req->override_force_load =
2105 			p_drv_load->override_force_load;
2106 	} else {
2107 		p_load_req->drv_role = ECORE_DRV_ROLE_OS;
2108 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
2109 		p_load_req->avoid_eng_reset = false;
2110 		p_load_req->override_force_load =
2111 			ECORE_OVERRIDE_FORCE_LOAD_NONE;
2112 	}
2113 }
2114 
2115 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
2116 				   struct ecore_hw_init_params *p_params)
2117 {
2118 	struct ecore_load_req_params load_req_params;
2119 	u32 load_code, param, drv_mb_param;
2120 	bool b_default_mtu = true;
2121 	struct ecore_hwfn *p_hwfn;
2122 	enum _ecore_status_t rc = ECORE_SUCCESS, mfw_rc;
2123 	int i;
2124 
2125 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && (p_dev->num_hwfns > 1)) {
2126 		DP_NOTICE(p_dev, false,
2127 			  "MSI mode is not supported for CMT devices\n");
2128 		return ECORE_INVAL;
2129 	}
2130 
2131 	if (IS_PF(p_dev)) {
2132 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
2133 		if (rc != ECORE_SUCCESS)
2134 			return rc;
2135 	}
2136 
2137 	for_each_hwfn(p_dev, i) {
2138 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2139 
2140 		/* If management didn't provide a default, set one of our own */
2141 		if (!p_hwfn->hw_info.mtu) {
2142 			p_hwfn->hw_info.mtu = 1500;
2143 			b_default_mtu = false;
2144 		}
2145 
2146 		if (IS_VF(p_dev)) {
2147 			ecore_vf_start(p_hwfn, p_params);
2148 			continue;
2149 		}
2150 
2151 		/* Enable DMAE in PXP */
2152 		rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
2153 		if (rc != ECORE_SUCCESS)
2154 			return rc;
2155 
2156 		rc = ecore_calc_hw_mode(p_hwfn);
2157 		if (rc != ECORE_SUCCESS)
2158 			return rc;
2159 
2160 		ecore_fill_load_req_params(&load_req_params,
2161 					   p_params->p_drv_load_params);
2162 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
2163 					&load_req_params);
2164 		if (rc != ECORE_SUCCESS) {
2165 			DP_NOTICE(p_hwfn, true,
2166 				  "Failed sending a LOAD_REQ command\n");
2167 			return rc;
2168 		}
2169 
2170 		load_code = load_req_params.load_code;
2171 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
2172 			   "Load request was sent. Load code: 0x%x\n",
2173 			   load_code);
2174 
2175 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
2176 
2177 		/* CQ75580:
2178 		 * When comming back from hiberbate state, the registers from
2179 		 * which shadow is read initially are not initialized. It turns
2180 		 * out that these registers get initialized during the call to
2181 		 * ecore_mcp_load_req request. So we need to reread them here
2182 		 * to get the proper shadow register value.
2183 		 * Note: This is a workaround for the missing MFW
2184 		 * initialization. It may be removed once the implementation
2185 		 * is done.
2186 		 */
2187 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
2188 
2189 		/* Only relevant for recovery:
2190 		 * Clear the indication after the LOAD_REQ command is responded
2191 		 * by the MFW.
2192 		 */
2193 		p_dev->recov_in_prog = false;
2194 
2195 		p_hwfn->first_on_engine = (load_code ==
2196 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
2197 
2198 		if (!qm_lock_init) {
2199 			OSAL_SPIN_LOCK_INIT(&qm_lock);
2200 			qm_lock_init = true;
2201 		}
2202 
2203 		switch (load_code) {
2204 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
2205 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
2206 					     p_hwfn->hw_info.hw_mode);
2207 			if (rc != ECORE_SUCCESS)
2208 				break;
2209 			/* Fall into */
2210 		case FW_MSG_CODE_DRV_LOAD_PORT:
2211 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
2212 						p_hwfn->hw_info.hw_mode);
2213 			if (rc != ECORE_SUCCESS)
2214 				break;
2215 			/* Fall into */
2216 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
2217 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
2218 					      p_params->p_tunn,
2219 					      p_hwfn->hw_info.hw_mode,
2220 					      p_params->b_hw_start,
2221 					      p_params->int_mode,
2222 					      p_params->allow_npar_tx_switch);
2223 			break;
2224 		default:
2225 			DP_NOTICE(p_hwfn, false,
2226 				  "Unexpected load code [0x%08x]", load_code);
2227 			rc = ECORE_NOTIMPL;
2228 			break;
2229 		}
2230 
2231 		if (rc != ECORE_SUCCESS)
2232 			DP_NOTICE(p_hwfn, true,
2233 				  "init phase failed for loadcode 0x%x (rc %d)\n",
2234 				  load_code, rc);
2235 
2236 		/* ACK mfw regardless of success or failure of initialization */
2237 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2238 				       DRV_MSG_CODE_LOAD_DONE,
2239 				       0, &load_code, &param);
2240 
2241 		/* Check the return value of the ecore_hw_init_*() function */
2242 		if (rc != ECORE_SUCCESS)
2243 			return rc;
2244 
2245 		/* Check the return value of the LOAD_DONE command */
2246 		if (mfw_rc != ECORE_SUCCESS) {
2247 			DP_NOTICE(p_hwfn, true,
2248 				  "Failed sending a LOAD_DONE command\n");
2249 			return mfw_rc;
2250 		}
2251 
2252 		/* Check if there is a DID mismatch between nvm-cfg/efuse */
2253 		if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR)
2254 			DP_NOTICE(p_hwfn, false,
2255 				  "warning: device configuration is not supported on this board type. The device may not function as expected.\n");
2256 
2257 		/* send DCBX attention request command */
2258 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
2259 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
2260 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2261 				       DRV_MSG_CODE_SET_DCBX,
2262 				       1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
2263 				       &load_code, &param);
2264 		if (mfw_rc != ECORE_SUCCESS) {
2265 			DP_NOTICE(p_hwfn, true,
2266 				  "Failed to send DCBX attention request\n");
2267 			return mfw_rc;
2268 		}
2269 
2270 		p_hwfn->hw_init_done = true;
2271 	}
2272 
2273 	if (IS_PF(p_dev)) {
2274 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2275 		drv_mb_param = STORM_FW_VERSION;
2276 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2277 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
2278 				   drv_mb_param, &load_code, &param);
2279 		if (rc != ECORE_SUCCESS)
2280 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
2281 
2282 		if (!b_default_mtu) {
2283 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
2284 						      p_hwfn->hw_info.mtu);
2285 			if (rc != ECORE_SUCCESS)
2286 				DP_INFO(p_hwfn, "Failed to update default mtu\n");
2287 		}
2288 
2289 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
2290 						      p_hwfn->p_main_ptt,
2291 						      ECORE_OV_DRIVER_STATE_DISABLED);
2292 		if (rc != ECORE_SUCCESS)
2293 			DP_INFO(p_hwfn, "Failed to update driver state\n");
2294 
2295 		rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
2296 						 ECORE_OV_ESWITCH_VEB);
2297 		if (rc != ECORE_SUCCESS)
2298 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
2299 	}
2300 
2301 	return rc;
2302 }
2303 
2304 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
2305 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
2306 				 struct ecore_hwfn *p_hwfn,
2307 				 struct ecore_ptt *p_ptt)
2308 {
2309 	int i;
2310 
2311 	/* close timers */
2312 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
2313 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
2314 	for (i = 0;
2315 	     i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
2316 	     i++) {
2317 		if ((!ecore_rd(p_hwfn, p_ptt,
2318 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
2319 		    (!ecore_rd(p_hwfn, p_ptt,
2320 			       TM_REG_PF_SCAN_ACTIVE_TASK)))
2321 			break;
2322 
2323 		/* Dependent on number of connection/tasks, possibly
2324 		 * 1ms sleep is required between polls
2325 		 */
2326 		OSAL_MSLEEP(1);
2327 	}
2328 
2329 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
2330 		return;
2331 
2332 	DP_NOTICE(p_hwfn, true,
2333 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
2334 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
2335 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
2336 }
2337 
2338 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
2339 {
2340 	int j;
2341 
2342 	for_each_hwfn(p_dev, j) {
2343 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2344 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2345 
2346 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2347 	}
2348 }
2349 
2350 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
2351 						 struct ecore_ptt *p_ptt,
2352 						 u32 addr, u32 expected_val)
2353 {
2354 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
2355 
2356 	if (val != expected_val) {
2357 		DP_NOTICE(p_hwfn, true,
2358 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
2359 			  addr, val, expected_val);
2360 		return ECORE_UNKNOWN_ERROR;
2361 	}
2362 
2363 	return ECORE_SUCCESS;
2364 }
2365 
2366 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
2367 {
2368 	struct ecore_hwfn *p_hwfn;
2369 	struct ecore_ptt *p_ptt;
2370 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
2371 	int j;
2372 
2373 	for_each_hwfn(p_dev, j) {
2374 		p_hwfn = &p_dev->hwfns[j];
2375 		p_ptt = p_hwfn->p_main_ptt;
2376 
2377 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
2378 
2379 		if (IS_VF(p_dev)) {
2380 			ecore_vf_pf_int_cleanup(p_hwfn);
2381 			rc = ecore_vf_pf_reset(p_hwfn);
2382 			if (rc != ECORE_SUCCESS) {
2383 				DP_NOTICE(p_hwfn, true,
2384 					  "ecore_vf_pf_reset failed. rc = %d.\n",
2385 					  rc);
2386 				rc2 = ECORE_UNKNOWN_ERROR;
2387 			}
2388 			continue;
2389 		}
2390 
2391 		/* mark the hw as uninitialized... */
2392 		p_hwfn->hw_init_done = false;
2393 
2394 		/* Send unload command to MCP */
2395 		if (!p_dev->recov_in_prog) {
2396 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
2397 			if (rc != ECORE_SUCCESS) {
2398 				DP_NOTICE(p_hwfn, true,
2399 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
2400 					  rc);
2401 				rc2 = ECORE_UNKNOWN_ERROR;
2402 			}
2403 		}
2404 
2405 		OSAL_DPC_SYNC(p_hwfn);
2406 
2407 		/* After this point no MFW attentions are expected, e.g. prevent
2408 		 * race between pf stop and dcbx pf update.
2409 		 */
2410 
2411 		rc = ecore_sp_pf_stop(p_hwfn);
2412 		if (rc != ECORE_SUCCESS) {
2413 			DP_NOTICE(p_hwfn, true,
2414 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
2415 				  rc);
2416 			rc2 = ECORE_UNKNOWN_ERROR;
2417 		}
2418 
2419 		/* perform debug action after PF stop was sent */
2420 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
2421 
2422 		/* close NIG to BRB gate */
2423 		ecore_wr(p_hwfn, p_ptt,
2424 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2425 
2426 		/* close parser */
2427 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2428 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2429 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2430 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2431 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2432 
2433 		/* @@@TBD - clean transmission queues (5.b) */
2434 		/* @@@TBD - clean BTB (5.c) */
2435 
2436 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2437 
2438 		/* @@@TBD - verify DMAE requests are done (8) */
2439 
2440 		/* Disable Attention Generation */
2441 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
2442 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2443 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2444 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
2445 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
2446 		if (rc != ECORE_SUCCESS) {
2447 			DP_NOTICE(p_hwfn, true,
2448 				  "Failed to return IGU CAM to default\n");
2449 			rc2 = ECORE_UNKNOWN_ERROR;
2450 		}
2451 
2452 		/* Need to wait 1ms to guarantee SBs are cleared */
2453 		OSAL_MSLEEP(1);
2454 
2455 		if (!p_dev->recov_in_prog) {
2456 			ecore_verify_reg_val(p_hwfn, p_ptt,
2457 					     QM_REG_USG_CNT_PF_TX, 0);
2458 			ecore_verify_reg_val(p_hwfn, p_ptt,
2459 					     QM_REG_USG_CNT_PF_OTHER, 0);
2460 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
2461 		}
2462 
2463 		/* Disable PF in HW blocks */
2464 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
2465 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
2466 
2467 		if (!p_dev->recov_in_prog) {
2468 			ecore_mcp_unload_done(p_hwfn, p_ptt);
2469 			if (rc != ECORE_SUCCESS) {
2470 				DP_NOTICE(p_hwfn, true,
2471 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
2472 					  rc);
2473 				rc2 = ECORE_UNKNOWN_ERROR;
2474 			}
2475 		}
2476 	} /* hwfn loop */
2477 
2478 	if (IS_PF(p_dev)) {
2479 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2480 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
2481 
2482 		/* Disable DMAE in PXP - in CMT, this should only be done for
2483 		 * first hw-function, and only after all transactions have
2484 		 * stopped for all active hw-functions.
2485 		 */
2486 		rc = ecore_change_pci_hwfn(p_hwfn, p_ptt, false);
2487 		if (rc != ECORE_SUCCESS) {
2488 			DP_NOTICE(p_hwfn, true,
2489 				  "ecore_change_pci_hwfn failed. rc = %d.\n",
2490 				  rc);
2491 			rc2 = ECORE_UNKNOWN_ERROR;
2492 		}
2493 	}
2494 
2495 	return rc2;
2496 }
2497 
2498 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
2499 {
2500 	int j;
2501 
2502 	for_each_hwfn(p_dev, j) {
2503 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2504 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2505 
2506 		if (IS_VF(p_dev)) {
2507 			ecore_vf_pf_int_cleanup(p_hwfn);
2508 			continue;
2509 		}
2510 
2511 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
2512 
2513 		ecore_wr(p_hwfn, p_ptt,
2514 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2515 
2516 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2517 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2518 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2519 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2520 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2521 
2522 		/* @@@TBD - clean transmission queues (5.b) */
2523 		/* @@@TBD - clean BTB (5.c) */
2524 
2525 		/* @@@TBD - verify DMAE requests are done (8) */
2526 
2527 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
2528 		/* Need to wait 1ms to guarantee SBs are cleared */
2529 		OSAL_MSLEEP(1);
2530 	}
2531 }
2532 
2533 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
2534 {
2535 	struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2536 
2537 	if (IS_VF(p_hwfn->p_dev))
2538 		return;
2539 
2540 	/* If roce info is allocated it means roce is initialized and should
2541 	 * be enabled in searcher.
2542 	 */
2543 	if (p_hwfn->p_rdma_info) {
2544 		if (p_hwfn->b_rdma_enabled_in_prs)
2545 			ecore_wr(p_hwfn, p_ptt,
2546 				 p_hwfn->rdma_prs_search_reg, 0x1);
2547 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
2548 	}
2549 
2550 	/* Re-open incoming traffic */
2551 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2552 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
2553 }
2554 /* TEMP macro to be removed when wol code revisted */
2555 #define ECORE_WOL_WR(_p_hwfn, _p_ptt, _offset, _val) ECORE_IS_BB(_p_hwfn->p_dev) ? \
2556 	ecore_wr(_p_hwfn, _p_ptt, _offset, _val) : \
2557 	ecore_mcp_wol_wr(_p_hwfn, _p_ptt, _offset, _val);
2558 
2559 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev,
2560 	const bool b_enable,
2561 	u32 reg_idx,
2562 	u32 pattern_size,
2563 	u32 crc)
2564 {
2565 	struct ecore_hwfn *hwfn = &p_dev->hwfns[0];
2566 	u32 reg_len = 0;
2567 	u32 reg_crc = 0;
2568 
2569 	/* Get length and CRC register offsets */
2570 	switch (reg_idx)
2571 	{
2572 	case 0:
2573 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
2574 				WOL_REG_ACPI_PAT_0_LEN_K2_E5;
2575 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
2576 				WOL_REG_ACPI_PAT_0_CRC_K2_E5;
2577 		break;
2578 	case 1:
2579 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
2580 				WOL_REG_ACPI_PAT_1_LEN_K2_E5;
2581 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
2582 				WOL_REG_ACPI_PAT_1_CRC_K2_E5;
2583 		break;
2584 	case 2:
2585 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
2586 				WOL_REG_ACPI_PAT_2_LEN_K2_E5;
2587 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
2588 				WOL_REG_ACPI_PAT_2_CRC_K2_E5;
2589 		break;
2590 	case 3:
2591 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
2592 				WOL_REG_ACPI_PAT_3_LEN_K2_E5;
2593 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
2594 				WOL_REG_ACPI_PAT_3_CRC_K2_E5;
2595 		break;
2596 	case 4:
2597 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
2598 				WOL_REG_ACPI_PAT_4_LEN_K2_E5;
2599 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
2600 				WOL_REG_ACPI_PAT_4_CRC_K2_E5;
2601 		break;
2602 	case 5:
2603 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
2604 				WOL_REG_ACPI_PAT_5_LEN_K2_E5;
2605 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
2606 				WOL_REG_ACPI_PAT_5_CRC_K2_E5;
2607 		break;
2608 	case 6:
2609 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
2610 				WOL_REG_ACPI_PAT_6_LEN_K2_E5;
2611 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
2612 				WOL_REG_ACPI_PAT_6_CRC_K2_E5;
2613 		break;
2614 	case 7:
2615 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
2616 				WOL_REG_ACPI_PAT_7_LEN_K2_E5;
2617 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
2618 				WOL_REG_ACPI_PAT_7_CRC_K2_E5;
2619 		break;
2620 	default:
2621 		return ECORE_UNKNOWN_ERROR;
2622 	}
2623 
2624 	/* Allign pattern size to 4 */
2625 	while (pattern_size % 4)
2626 	{
2627 		pattern_size++;
2628 	}
2629 	/* write pattern length */
2630 	ECORE_WOL_WR(hwfn, hwfn->p_main_ptt, reg_len, pattern_size);
2631 
2632 	/* write crc value*/
2633 	ECORE_WOL_WR(hwfn, hwfn->p_main_ptt, reg_crc, crc);
2634 
2635 	DP_INFO(p_dev,
2636 		"ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
2637 		"reg_len[0x%x=0x%x]\n",
2638 		reg_idx, reg_crc, crc, reg_len, pattern_size);
2639 
2640 	return ECORE_SUCCESS;
2641 }
2642 
2643 void ecore_wol_buffer_clear(struct ecore_dev *p_dev)
2644 {
2645 	struct ecore_hwfn *hwfn = &p_dev->hwfns[0];
2646 	const u32 wake_buffer_clear_offset =
2647 		ECORE_IS_BB(p_dev) ?
2648 		NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
2649 
2650 	DP_INFO(p_dev,
2651 		"ecore_wol_buffer_clear: reset "
2652 		"REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
2653 		wake_buffer_clear_offset);
2654 
2655 	ECORE_WOL_WR(hwfn, hwfn->p_main_ptt, wake_buffer_clear_offset, 1);
2656 	ECORE_WOL_WR(hwfn, hwfn->p_main_ptt, wake_buffer_clear_offset, 0);
2657 }
2658 
2659 enum _ecore_status_t ecore_get_wake_info(struct ecore_dev *p_dev,
2660 	struct ecore_wake_info *wake_info)
2661 {
2662 	struct ecore_hwfn *hwfn = &p_dev->hwfns[0];
2663 	u32 *buf = OSAL_NULL;
2664 	u32 i    = 0;
2665 	const u32 reg_wake_buffer_offest =
2666 		ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
2667 			WOL_REG_WAKE_BUFFER_K2_E5;
2668 
2669 	wake_info->wk_info    = ecore_rd(hwfn, hwfn->p_main_ptt,
2670 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
2671 				WOL_REG_WAKE_INFO_K2_E5);
2672 	wake_info->wk_details = ecore_rd(hwfn, hwfn->p_main_ptt,
2673 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
2674 				WOL_REG_WAKE_DETAILS_K2_E5);
2675 	wake_info->wk_pkt_len = ecore_rd(hwfn, hwfn->p_main_ptt,
2676 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
2677 				WOL_REG_WAKE_PKT_LEN_K2_E5);
2678 
2679 	DP_INFO(p_dev,
2680 		"ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
2681 		"REG_WAKE_DETAILS=0x%08x "
2682 		"REG_WAKE_PKT_LEN=0x%08x\n",
2683 		wake_info->wk_info,
2684 		wake_info->wk_details,
2685 		wake_info->wk_pkt_len);
2686 
2687 	buf = (u32 *)wake_info->wk_buffer;
2688 
2689 	for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
2690 	{
2691 		if ((i*sizeof(u32)) >=  sizeof(wake_info->wk_buffer))
2692 		{
2693 			DP_INFO(p_dev,
2694 				"ecore_get_wake_info: i index to 0 high=%d\n",
2695 				 i);
2696 			break;
2697 		}
2698 		buf[i] = ecore_rd(hwfn, hwfn->p_main_ptt,
2699 				  reg_wake_buffer_offest + (i * sizeof(u32)));
2700 		DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
2701 			i, buf[i]);
2702 	}
2703 
2704 	ecore_wol_buffer_clear(p_dev);
2705 
2706 	return ECORE_SUCCESS;
2707 }
2708 
2709 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2710 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2711 {
2712 	ecore_ptt_pool_free(p_hwfn);
2713 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2714 	p_hwfn->hw_info.p_igu_info = OSAL_NULL;
2715 }
2716 
2717 /* Setup bar access */
2718 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2719 {
2720 	/* clear indirect access */
2721 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
2722 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2723 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
2724 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2725 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
2726 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2727 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
2728 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2729 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
2730 	} else {
2731 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2732 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2733 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2734 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2735 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2736 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2737 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2738 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2739 	}
2740 
2741 	/* Clean Previous errors if such exist */
2742 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2743 		 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
2744 		 1 << p_hwfn->abs_pf_id);
2745 
2746 	/* enable internal target-read */
2747 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2748 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2749 }
2750 
2751 static void get_function_id(struct ecore_hwfn *p_hwfn)
2752 {
2753 	/* ME Register */
2754 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
2755 						  PXP_PF_ME_OPAQUE_ADDR);
2756 
2757 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2758 
2759 	/* Bits 16-19 from the ME registers are the pf_num */
2760 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2761 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2762 				      PXP_CONCRETE_FID_PFID);
2763 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2764 				    PXP_CONCRETE_FID_PORT);
2765 
2766 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2767 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2768 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2769 }
2770 
2771 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2772 {
2773 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2774 	struct ecore_sb_cnt_info sb_cnt;
2775 	u32 non_l2_sbs = 0;
2776 
2777 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
2778 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
2779 
2780 #ifdef CONFIG_ECORE_ROCE
2781 	/* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
2782 	 * status blocks equally between L2 / RoCE but with consideration as
2783 	 * to how many l2 queues / cnqs we have
2784 	 */
2785 	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2786 		u32 max_cnqs;
2787 
2788 		feat_num[ECORE_RDMA_CNQ] =
2789 			OSAL_MIN_T(u32,
2790 				   sb_cnt.cnt / 2,
2791 				   RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
2792 
2793 		/* Upper layer might require less */
2794 		max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
2795 		if (max_cnqs) {
2796 			if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
2797 				max_cnqs = 0;
2798 			feat_num[ECORE_RDMA_CNQ] =
2799 				OSAL_MIN_T(u32,
2800 					   feat_num[ECORE_RDMA_CNQ],
2801 					   max_cnqs);
2802 		}
2803 
2804 		non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
2805 	}
2806 #endif
2807 
2808 	/* L2 Queues require each: 1 status block. 1 L2 queue */
2809 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
2810 		/* Start by allocating VF queues, then PF's */
2811 		feat_num[ECORE_VF_L2_QUE] =
2812 			OSAL_MIN_T(u32,
2813 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
2814 				   sb_cnt.iov_cnt);
2815 		feat_num[ECORE_PF_L2_QUE] =
2816 			OSAL_MIN_T(u32,
2817 				   sb_cnt.cnt - non_l2_sbs,
2818 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
2819 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
2820 	}
2821 
2822 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
2823 		feat_num[ECORE_FCOE_CQ] =
2824 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
2825 							     ECORE_CMDQS_CQS));
2826 
2827 	if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
2828 		feat_num[ECORE_ISCSI_CQ] =
2829 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
2830 							     ECORE_CMDQS_CQS));
2831 
2832 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2833 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
2834 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2835 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
2836 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
2837 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
2838 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
2839 		   (int)sb_cnt.cnt);
2840 }
2841 
2842 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2843 {
2844 	switch (res_id) {
2845 	case ECORE_L2_QUEUE:
2846 		return "L2_QUEUE";
2847 	case ECORE_VPORT:
2848 		return "VPORT";
2849 	case ECORE_RSS_ENG:
2850 		return "RSS_ENG";
2851 	case ECORE_PQ:
2852 		return "PQ";
2853 	case ECORE_RL:
2854 		return "RL";
2855 	case ECORE_MAC:
2856 		return "MAC";
2857 	case ECORE_VLAN:
2858 		return "VLAN";
2859 	case ECORE_RDMA_CNQ_RAM:
2860 		return "RDMA_CNQ_RAM";
2861 	case ECORE_ILT:
2862 		return "ILT";
2863 	case ECORE_LL2_QUEUE:
2864 		return "LL2_QUEUE";
2865 	case ECORE_CMDQS_CQS:
2866 		return "CMDQS_CQS";
2867 	case ECORE_RDMA_STATS_QUEUE:
2868 		return "RDMA_STATS_QUEUE";
2869 	case ECORE_BDQ:
2870 		return "BDQ";
2871 	case ECORE_SB:
2872 		return "SB";
2873 	default:
2874 		return "UNKNOWN_RESOURCE";
2875 	}
2876 }
2877 
2878 static enum _ecore_status_t
2879 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
2880 			      enum ecore_resources res_id, u32 resc_max_val,
2881 			      u32 *p_mcp_resp)
2882 {
2883 	enum _ecore_status_t rc;
2884 
2885 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_hwfn->p_main_ptt, res_id,
2886 					resc_max_val, p_mcp_resp);
2887 	if (rc != ECORE_SUCCESS) {
2888 		DP_NOTICE(p_hwfn, true,
2889 			  "MFW response failure for a max value setting of resource %d [%s]\n",
2890 			  res_id, ecore_hw_get_resc_name(res_id));
2891 		return rc;
2892 	}
2893 
2894 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
2895 		DP_INFO(p_hwfn,
2896 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
2897 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
2898 
2899 	return ECORE_SUCCESS;
2900 }
2901 
2902 static enum _ecore_status_t
2903 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn)
2904 {
2905 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2906 	u32 resc_max_val, mcp_resp;
2907 	u8 res_id;
2908 	enum _ecore_status_t rc;
2909 
2910 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2911 		switch (res_id) {
2912 		case ECORE_LL2_QUEUE:
2913 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
2914 			break;
2915 		case ECORE_RDMA_CNQ_RAM:
2916 			/* No need for a case for ECORE_CMDQS_CQS since
2917 			 * CNQ/CMDQS are the same resource.
2918 			 */
2919 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
2920 			break;
2921 		case ECORE_RDMA_STATS_QUEUE:
2922 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
2923 					    : RDMA_NUM_STATISTIC_COUNTERS_BB;
2924 			break;
2925 		case ECORE_BDQ:
2926 			resc_max_val = BDQ_NUM_RESOURCES;
2927 			break;
2928 		default:
2929 			continue;
2930 		}
2931 
2932 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, res_id,
2933 						   resc_max_val, &mcp_resp);
2934 		if (rc != ECORE_SUCCESS)
2935 			return rc;
2936 
2937 		/* There's no point to continue to the next resource if the
2938 		 * command is not supported by the MFW.
2939 		 * We do continue if the command is supported but the resource
2940 		 * is unknown to the MFW. Such a resource will be later
2941 		 * configured with the default allocation values.
2942 		 */
2943 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
2944 			return ECORE_NOTIMPL;
2945 	}
2946 
2947 	return ECORE_SUCCESS;
2948 }
2949 
2950 static
2951 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
2952 					    enum ecore_resources res_id,
2953 					    u32 *p_resc_num, u32 *p_resc_start)
2954 {
2955 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2956 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2957 
2958 	switch (res_id) {
2959 	case ECORE_L2_QUEUE:
2960 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2961 				      MAX_NUM_L2_QUEUES_BB) / num_funcs;
2962 		break;
2963 	case ECORE_VPORT:
2964 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2965 				      MAX_NUM_VPORTS_BB) / num_funcs;
2966 		break;
2967 	case ECORE_RSS_ENG:
2968 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2969 				      ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2970 		break;
2971 	case ECORE_PQ:
2972 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2973 				      MAX_QM_TX_QUEUES_BB) / num_funcs;
2974 		*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
2975 		break;
2976 	case ECORE_RL:
2977 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2978 		break;
2979 	case ECORE_MAC:
2980 	case ECORE_VLAN:
2981 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2982 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2983 		break;
2984 	case ECORE_ILT:
2985 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2986 				      PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2987 		break;
2988 	case ECORE_LL2_QUEUE:
2989 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2990 		break;
2991 	case ECORE_RDMA_CNQ_RAM:
2992 	case ECORE_CMDQS_CQS:
2993 		/* CNQ/CMDQS are the same resource */
2994 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
2995 		break;
2996 	case ECORE_RDMA_STATS_QUEUE:
2997 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
2998 				      RDMA_NUM_STATISTIC_COUNTERS_BB) /
2999 			      num_funcs;
3000 		break;
3001 	case ECORE_BDQ:
3002 		if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
3003 		    p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
3004 			*p_resc_num = 0;
3005 		else
3006 			*p_resc_num = 1;
3007 		break;
3008 	case ECORE_SB:
3009 		/* Since we want its value to reflect whether MFW supports
3010 		 * the new scheme, have a default of 0.
3011 		 */
3012 		*p_resc_num = 0;
3013 		break;
3014 	default:
3015 		return ECORE_INVAL;
3016 	}
3017 
3018 	switch (res_id) {
3019 	case ECORE_BDQ:
3020 		if (!*p_resc_num)
3021 			*p_resc_start = 0;
3022 		else if (p_hwfn->p_dev->num_ports_in_engines == 4)
3023 			*p_resc_start = p_hwfn->port_id;
3024 		else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
3025 			*p_resc_start = p_hwfn->port_id;
3026 		else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3027 			*p_resc_start = p_hwfn->port_id + 2;
3028 		break;
3029 	default:
3030 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
3031 		break;
3032 	}
3033 
3034 	return ECORE_SUCCESS;
3035 }
3036 
3037 static enum _ecore_status_t
3038 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
3039 			 bool drv_resc_alloc)
3040 {
3041 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
3042 	u32 mcp_resp, *p_resc_num, *p_resc_start;
3043 	enum _ecore_status_t rc;
3044 
3045 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
3046 	p_resc_start = &RESC_START(p_hwfn, res_id);
3047 
3048 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
3049 				    &dflt_resc_start);
3050 	if (rc != ECORE_SUCCESS) {
3051 		DP_ERR(p_hwfn,
3052 		       "Failed to get default amount for resource %d [%s]\n",
3053 			res_id, ecore_hw_get_resc_name(res_id));
3054 		return rc;
3055 	}
3056 
3057 #ifndef ASIC_ONLY
3058 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
3059 		*p_resc_num = dflt_resc_num;
3060 		*p_resc_start = dflt_resc_start;
3061 		goto out;
3062 	}
3063 #endif
3064 
3065 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
3066 				     &mcp_resp, p_resc_num, p_resc_start);
3067 	if (rc != ECORE_SUCCESS) {
3068 		DP_NOTICE(p_hwfn, true,
3069 			  "MFW response failure for an allocation request for resource %d [%s]\n",
3070 			  res_id, ecore_hw_get_resc_name(res_id));
3071 		return rc;
3072 	}
3073 
3074 	/* Default driver values are applied in the following cases:
3075 	 * - The resource allocation MB command is not supported by the MFW
3076 	 * - There is an internal error in the MFW while processing the request
3077 	 * - The resource ID is unknown to the MFW
3078 	 */
3079 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3080 		DP_INFO(p_hwfn,
3081 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
3082 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
3083 			dflt_resc_num, dflt_resc_start);
3084 		*p_resc_num = dflt_resc_num;
3085 		*p_resc_start = dflt_resc_start;
3086 		goto out;
3087 	}
3088 
3089 	if ((*p_resc_num != dflt_resc_num ||
3090 	     *p_resc_start != dflt_resc_start) &&
3091 	    res_id != ECORE_SB) {
3092 		DP_INFO(p_hwfn,
3093 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
3094 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
3095 			*p_resc_start, dflt_resc_num, dflt_resc_start,
3096 			drv_resc_alloc ? " - Applying default values" : "");
3097 		if (drv_resc_alloc) {
3098 			*p_resc_num = dflt_resc_num;
3099 			*p_resc_start = dflt_resc_start;
3100 		}
3101 	}
3102 out:
3103 	/* PQs have to divide by 8 [that's the HW granularity].
3104 	 * Reduce number so it would fit.
3105 	 */
3106 	if ((res_id == ECORE_PQ) &&
3107 	    ((*p_resc_num % 8) || (*p_resc_start % 8))) {
3108 		DP_INFO(p_hwfn,
3109 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
3110 			*p_resc_num, (*p_resc_num) & ~0x7,
3111 			*p_resc_start, (*p_resc_start) & ~0x7);
3112 		*p_resc_num &= ~0x7;
3113 		*p_resc_start &= ~0x7;
3114 	}
3115 
3116 	return ECORE_SUCCESS;
3117 }
3118 
3119 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
3120 						   bool drv_resc_alloc)
3121 {
3122 	enum _ecore_status_t rc;
3123 	u8 res_id;
3124 
3125 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
3126 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
3127 		if (rc != ECORE_SUCCESS)
3128 			return rc;
3129 	}
3130 
3131 	return ECORE_SUCCESS;
3132 }
3133 
3134 #define ECORE_RESC_ALLOC_LOCK_RETRY_CNT		10
3135 #define ECORE_RESC_ALLOC_LOCK_RETRY_INTVL_US	10000 /* 10 msec */
3136 
3137 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
3138 					      bool drv_resc_alloc)
3139 {
3140 	struct ecore_resc_unlock_params resc_unlock_params;
3141 	struct ecore_resc_lock_params resc_lock_params;
3142 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
3143 	u8 res_id;
3144 	enum _ecore_status_t rc;
3145 #ifndef ASIC_ONLY
3146 	u32 *resc_start = p_hwfn->hw_info.resc_start;
3147 	u32 *resc_num = p_hwfn->hw_info.resc_num;
3148 	/* For AH, an equal share of the ILT lines between the maximal number of
3149 	 * PFs is not enough for RoCE. This would be solved by the future
3150 	 * resource allocation scheme, but isn't currently present for
3151 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
3152 	 * to work - the BB number of ILT lines divided by its max PFs number.
3153 	 */
3154 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
3155 #endif
3156 
3157 	/* Setting the max values of the soft resources and the following
3158 	 * resources allocation queries should be atomic. Since several PFs can
3159 	 * run in parallel - a resource lock is needed.
3160 	 * If either the resource lock or resource set value commands are not
3161 	 * supported - skip the the max values setting, release the lock if
3162 	 * needed, and proceed to the queries. Other failures, including a
3163 	 * failure to acquire the lock, will cause this function to fail.
3164 	 * Old drivers that don't acquire the lock can run in parallel, and
3165 	 * their allocation values won't be affected by the updated max values.
3166 	 */
3167 	OSAL_MEM_ZERO(&resc_lock_params, sizeof(resc_lock_params));
3168 	resc_lock_params.resource = ECORE_RESC_LOCK_RESC_ALLOC;
3169 	resc_lock_params.retry_num = ECORE_RESC_ALLOC_LOCK_RETRY_CNT;
3170 	resc_lock_params.retry_interval = ECORE_RESC_ALLOC_LOCK_RETRY_INTVL_US;
3171 	resc_lock_params.sleep_b4_retry = true;
3172 	OSAL_MEM_ZERO(&resc_unlock_params, sizeof(resc_unlock_params));
3173 	resc_unlock_params.resource = ECORE_RESC_LOCK_RESC_ALLOC;
3174 
3175 	rc = ecore_mcp_resc_lock(p_hwfn, p_hwfn->p_main_ptt, &resc_lock_params);
3176 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
3177 		return rc;
3178 	} else if (rc == ECORE_NOTIMPL) {
3179 		DP_INFO(p_hwfn,
3180 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
3181 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
3182 		DP_NOTICE(p_hwfn, false,
3183 			  "Failed to acquire the resource lock for the resource allocation commands\n");
3184 		return ECORE_BUSY;
3185 	} else {
3186 		rc = ecore_hw_set_soft_resc_size(p_hwfn);
3187 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
3188 			DP_NOTICE(p_hwfn, false,
3189 				  "Failed to set the max values of the soft resources\n");
3190 			goto unlock_and_exit;
3191 		} else if (rc == ECORE_NOTIMPL) {
3192 			DP_INFO(p_hwfn,
3193 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
3194 			rc = ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
3195 						   &resc_unlock_params);
3196 			if (rc != ECORE_SUCCESS)
3197 				DP_INFO(p_hwfn,
3198 					"Failed to release the resource lock for the resource allocation commands\n");
3199 		}
3200 	}
3201 
3202 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
3203 	if (rc != ECORE_SUCCESS)
3204 		goto unlock_and_exit;
3205 
3206 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
3207 		rc = ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
3208 					   &resc_unlock_params);
3209 		if (rc != ECORE_SUCCESS)
3210 			DP_INFO(p_hwfn,
3211 				"Failed to release the resource lock for the resource allocation commands\n");
3212 	}
3213 
3214 #ifndef ASIC_ONLY
3215 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
3216 		/* Reduced build contains less PQs */
3217 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
3218 			resc_num[ECORE_PQ] = 32;
3219 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
3220 					       p_hwfn->enabled_func_idx;
3221 		}
3222 
3223 		/* For AH emulation, since we have a possible maximal number of
3224 		 * 16 enabled PFs, in case there are not enough ILT lines -
3225 		 * allocate only first PF as RoCE and have all the other ETH
3226 		 * only with less ILT lines.
3227 		 */
3228 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
3229 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
3230 							 resc_num[ECORE_ILT],
3231 							 roce_min_ilt_lines);
3232 	}
3233 
3234 	/* Correct the common ILT calculation if PF0 has more */
3235 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
3236 	    p_hwfn->p_dev->b_is_emul_full &&
3237 	    p_hwfn->rel_pf_id &&
3238 	    resc_num[ECORE_ILT] < roce_min_ilt_lines)
3239 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
3240 					 resc_num[ECORE_ILT];
3241 #endif
3242 
3243 	/* Sanity for ILT */
3244 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
3245 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
3246 		DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
3247 			  RESC_START(p_hwfn, ECORE_ILT),
3248 			  RESC_END(p_hwfn, ECORE_ILT) - 1);
3249 		return ECORE_INVAL;
3250 	}
3251 
3252 	/* This will also learn the number of SBs from MFW */
3253 	if (ecore_int_igu_reset_cam(p_hwfn, p_hwfn->p_main_ptt))
3254 		return ECORE_INVAL;
3255 
3256 	ecore_hw_set_feat(p_hwfn);
3257 
3258 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3259 		   "The numbers for each resource are:\n");
3260 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
3261 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
3262 			   ecore_hw_get_resc_name(res_id),
3263 			   RESC_NUM(p_hwfn, res_id),
3264 			   RESC_START(p_hwfn, res_id));
3265 
3266 	return ECORE_SUCCESS;
3267 
3268 unlock_and_exit:
3269 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
3270 		ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
3271 				      &resc_unlock_params);
3272 	return rc;
3273 }
3274 
3275 static enum _ecore_status_t
3276 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
3277 		      struct ecore_ptt *p_ptt,
3278 		      struct ecore_hw_prepare_params *p_params)
3279 {
3280 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
3281 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
3282 	struct ecore_mcp_link_capabilities *p_caps;
3283 	struct ecore_mcp_link_params *link;
3284 	enum _ecore_status_t rc;
3285 
3286 	/* Read global nvm_cfg address */
3287 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
3288 
3289 	/* Verify MCP has initialized it */
3290 	if (!nvm_cfg_addr) {
3291 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
3292 		if (p_params->b_relaxed_probe)
3293 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
3294 		return ECORE_INVAL;
3295 	}
3296 
3297 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
3298 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
3299 
3300 	addr = MCP_REG_SCRATCH  + nvm_cfg1_offset +
3301 		   OFFSETOF(struct nvm_cfg1, glob) +
3302 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
3303 
3304 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
3305 
3306 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
3307 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
3308 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
3309 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
3310 		break;
3311 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
3312 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
3313 		break;
3314 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
3315 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
3316 		break;
3317 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
3318 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
3319 		break;
3320 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
3321 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
3322 		break;
3323 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
3324 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
3325 		break;
3326 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
3327 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
3328 		break;
3329 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
3330 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
3331 		break;
3332 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
3333 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
3334 		break;
3335 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
3336 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
3337 		break;
3338 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
3339 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
3340 		break;
3341 	default:
3342 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
3343 			  core_cfg);
3344 		break;
3345 	}
3346 
3347 	/* Read DCBX configuration */
3348 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3349 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3350 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
3351 			     port_cfg_addr +
3352 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
3353 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
3354 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
3355 	switch (dcbx_mode) {
3356 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
3357 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
3358 		break;
3359 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
3360 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
3361 		break;
3362 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
3363 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
3364 		break;
3365 	default:
3366 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
3367 	}
3368 
3369 	/* Read default link configuration */
3370 	link = &p_hwfn->mcp_info->link_input;
3371 	p_caps = &p_hwfn->mcp_info->link_capabilities;
3372 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3373 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3374 	link_temp = ecore_rd(p_hwfn, p_ptt,
3375 			     port_cfg_addr +
3376 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
3377 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
3378 	link->speed.advertised_speeds = link_temp;
3379 	p_caps->speed_capabilities = link->speed.advertised_speeds;
3380 
3381 	link_temp = ecore_rd(p_hwfn, p_ptt,
3382 				 port_cfg_addr +
3383 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
3384 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
3385 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
3386 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
3387 		link->speed.autoneg = true;
3388 		break;
3389 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
3390 		link->speed.forced_speed = 1000;
3391 		break;
3392 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
3393 		link->speed.forced_speed = 10000;
3394 		break;
3395 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
3396 		link->speed.forced_speed = 25000;
3397 		break;
3398 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
3399 		link->speed.forced_speed = 40000;
3400 		break;
3401 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
3402 		link->speed.forced_speed = 50000;
3403 		break;
3404 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
3405 		link->speed.forced_speed = 100000;
3406 		break;
3407 	default:
3408 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
3409 			  link_temp);
3410 	}
3411 
3412 	p_caps->default_speed = link->speed.forced_speed;
3413 	p_caps->default_speed_autoneg = link->speed.autoneg;
3414 
3415 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
3416 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
3417 	link->pause.autoneg = !!(link_temp &
3418 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
3419 	link->pause.forced_rx = !!(link_temp &
3420 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
3421 	link->pause.forced_tx = !!(link_temp &
3422 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
3423 	link->loopback_mode = 0;
3424 
3425 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
3426 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
3427 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
3428 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
3429 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
3430 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
3431 		link->eee.enable = true;
3432 		switch (link_temp) {
3433 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
3434 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
3435 			link->eee.enable = false;
3436 			break;
3437 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
3438 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
3439 			break;
3440 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
3441 			p_caps->eee_lpi_timer =
3442 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
3443 			break;
3444 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
3445 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
3446 			break;
3447 		}
3448 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
3449 		link->eee.tx_lpi_enable = link->eee.enable;
3450 		if (link->eee.enable)
3451 			link->eee.adv_caps = ECORE_EEE_1G_ADV |
3452 						ECORE_EEE_10G_ADV;
3453 	} else {
3454 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
3455 	}
3456 
3457 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3458 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
3459 		   link->speed.forced_speed, link->speed.advertised_speeds,
3460 		   link->speed.autoneg, link->pause.autoneg,
3461 		   p_caps->default_eee, p_caps->eee_lpi_timer);
3462 
3463 	/* Read Multi-function information from shmem */
3464 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3465 		   OFFSETOF(struct nvm_cfg1, glob) +
3466 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
3467 
3468 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
3469 
3470 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
3471 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
3472 
3473 	switch (mf_mode) {
3474 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
3475 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
3476 		break;
3477 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
3478 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
3479 		break;
3480 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
3481 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
3482 		break;
3483 	}
3484 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
3485 		p_hwfn->p_dev->mf_mode);
3486 
3487 	/* Read Multi-function information from shmem */
3488 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3489 		   OFFSETOF(struct nvm_cfg1, glob) +
3490 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
3491 
3492 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
3493 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
3494 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
3495 				 &p_hwfn->hw_info.device_capabilities);
3496 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
3497 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
3498 				 &p_hwfn->hw_info.device_capabilities);
3499 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
3500 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
3501 				 &p_hwfn->hw_info.device_capabilities);
3502 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
3503 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
3504 				 &p_hwfn->hw_info.device_capabilities);
3505 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
3506 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
3507 				 &p_hwfn->hw_info.device_capabilities);
3508 
3509 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
3510 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3511 		rc = ECORE_SUCCESS;
3512 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3513 	}
3514 
3515 	return rc;
3516 }
3517 
3518 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
3519 				struct ecore_ptt *p_ptt)
3520 {
3521 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
3522 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
3523 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3524 
3525 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
3526 
3527 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
3528 	 * in the other bits are selected.
3529 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
3530 	 * '0' only for enabled functions (function 0 always exists and
3531 	 * enabled).
3532 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
3533 	 * the number of functions for both hwfns is learnt from the same bits.
3534 	 */
3535 	if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
3536 		reg_function_hide = ecore_rd(p_hwfn, p_ptt,
3537 					     MISCS_REG_FUNCTION_HIDE_BB_K2);
3538 	} else { /* E5 */
3539 		reg_function_hide = 0;
3540 		ECORE_E5_MISSING_CODE;
3541 	}
3542 
3543 	if (reg_function_hide & 0x1) {
3544 		if (ECORE_IS_BB(p_dev)) {
3545 			if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
3546 				num_funcs = 0;
3547 				eng_mask = 0xaaaa;
3548 			} else {
3549 				num_funcs = 1;
3550 				eng_mask = 0x5554;
3551 			}
3552 		} else {
3553 			num_funcs = 1;
3554 			eng_mask = 0xfffe;
3555 		}
3556 
3557 		/* Get the number of the enabled functions on the engine */
3558 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
3559 		while (tmp) {
3560 			if (tmp & 0x1)
3561 				num_funcs++;
3562 			tmp >>= 0x1;
3563 		}
3564 
3565 		/* Get the PF index within the enabled functions */
3566 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
3567 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
3568 		while (tmp) {
3569 			if (tmp & 0x1)
3570 				enabled_func_idx--;
3571 			tmp >>= 0x1;
3572 		}
3573 	}
3574 
3575 	p_hwfn->num_funcs_on_engine = num_funcs;
3576 	p_hwfn->enabled_func_idx = enabled_func_idx;
3577 
3578 #ifndef ASIC_ONLY
3579 	if (CHIP_REV_IS_FPGA(p_dev)) {
3580 		DP_NOTICE(p_hwfn, false,
3581 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
3582 		p_hwfn->num_funcs_on_engine = 4;
3583 	}
3584 #endif
3585 
3586 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3587 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
3588 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
3589 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
3590 }
3591 
3592 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
3593 				      struct ecore_ptt *p_ptt)
3594 {
3595 	u32 port_mode;
3596 
3597 #ifndef ASIC_ONLY
3598 	/* Read the port mode */
3599 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3600 		port_mode = 4;
3601 	else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
3602 		 (p_hwfn->p_dev->num_hwfns > 1))
3603 		/* In CMT on emulation, assume 1 port */
3604 		port_mode = 1;
3605 	else
3606 #endif
3607 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
3608 
3609 	if (port_mode < 3) {
3610 		p_hwfn->p_dev->num_ports_in_engines = 1;
3611 	} else if (port_mode <= 5) {
3612 		p_hwfn->p_dev->num_ports_in_engines = 2;
3613 	} else {
3614 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
3615 			  p_hwfn->p_dev->num_ports_in_engines);
3616 
3617 		/* Default num_ports_in_engines to something */
3618 		p_hwfn->p_dev->num_ports_in_engines = 1;
3619 	}
3620 }
3621 
3622 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
3623 					 struct ecore_ptt *p_ptt)
3624 {
3625 	u32 port;
3626 	int i;
3627 
3628 	p_hwfn->p_dev->num_ports_in_engines = 0;
3629 
3630 #ifndef ASIC_ONLY
3631 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3632 		port = ecore_rd(p_hwfn, p_ptt,
3633 				MISCS_REG_ECO_RESERVED);
3634 		switch ((port & 0xf000) >> 12) {
3635 		case 1:
3636 			p_hwfn->p_dev->num_ports_in_engines = 1;
3637 			break;
3638 		case 3:
3639 			p_hwfn->p_dev->num_ports_in_engines = 2;
3640 			break;
3641 		case 0xf:
3642 			p_hwfn->p_dev->num_ports_in_engines = 4;
3643 			break;
3644 		default:
3645 			DP_NOTICE(p_hwfn, false,
3646 				  "Unknown port mode in ECO_RESERVED %08x\n",
3647 				  port);
3648 		}
3649 	} else
3650 #endif
3651 	for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
3652 		port = ecore_rd(p_hwfn, p_ptt,
3653 				CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
3654 		if (port & 1)
3655 			p_hwfn->p_dev->num_ports_in_engines++;
3656 	}
3657 }
3658 
3659 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
3660 				   struct ecore_ptt *p_ptt)
3661 {
3662 	if (ECORE_IS_BB(p_hwfn->p_dev))
3663 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
3664 	else
3665 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
3666 }
3667 
3668 static enum _ecore_status_t
3669 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3670 		  enum ecore_pci_personality personality,
3671 		  struct ecore_hw_prepare_params *p_params)
3672 {
3673 	bool drv_resc_alloc = p_params->drv_resc_alloc;
3674 	enum _ecore_status_t rc;
3675 
3676 	/* Since all information is common, only first hwfns should do this */
3677 	if (IS_LEAD_HWFN(p_hwfn)) {
3678 		rc = ecore_iov_hw_info(p_hwfn);
3679 		if (rc != ECORE_SUCCESS) {
3680 			if (p_params->b_relaxed_probe)
3681 				p_params->p_relaxed_res =
3682 						ECORE_HW_PREPARE_BAD_IOV;
3683 			else
3684 				return rc;
3685 		}
3686 	}
3687 
3688 	/* TODO In get_hw_info, amoungst others:
3689 	 * Get MCP FW revision and determine according to it the supported
3690 	 * featrues (e.g. DCB)
3691 	 * Get boot mode
3692 	 * ecore_get_pcie_width_speed, WOL capability.
3693 	 * Number of global CQ-s (for storage
3694 	 */
3695 	ecore_hw_info_port_num(p_hwfn, p_ptt);
3696 
3697 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
3698 
3699 #ifndef ASIC_ONLY
3700 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
3701 #endif
3702 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
3703 	if (rc != ECORE_SUCCESS)
3704 		return rc;
3705 #ifndef ASIC_ONLY
3706 	}
3707 #endif
3708 
3709 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
3710 	if (rc != ECORE_SUCCESS) {
3711 		if (p_params->b_relaxed_probe)
3712 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
3713 		else
3714 			return rc;
3715 	}
3716 
3717 #ifndef ASIC_ONLY
3718 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
3719 #endif
3720 	OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
3721 		    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
3722 #ifndef ASIC_ONLY
3723 	} else {
3724 		static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
3725 
3726 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
3727 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
3728 	}
3729 #endif
3730 
3731 	if (ecore_mcp_is_init(p_hwfn)) {
3732 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
3733 			p_hwfn->hw_info.ovlan =
3734 				p_hwfn->mcp_info->func_info.ovlan;
3735 
3736 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
3737 	}
3738 
3739 	if (personality != ECORE_PCI_DEFAULT) {
3740 		p_hwfn->hw_info.personality = personality;
3741 	} else if (ecore_mcp_is_init(p_hwfn)) {
3742 		enum ecore_pci_personality protocol;
3743 
3744 		protocol = p_hwfn->mcp_info->func_info.protocol;
3745 		p_hwfn->hw_info.personality = protocol;
3746 	}
3747 
3748 #ifndef ASIC_ONLY
3749 	/* To overcome ILT lack for emulation, until at least until we'll have
3750 	 * a definite answer from system about it, allow only PF0 to be RoCE.
3751 	 */
3752 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
3753 		if (!p_hwfn->rel_pf_id)
3754 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
3755 		else
3756 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
3757 	}
3758 #endif
3759 
3760 	/* although in BB some constellations may support more than 4 tcs,
3761 	 * that can result in performance penalty in some cases. 4
3762 	 * represents a good tradeoff between performance and flexibility.
3763 	 */
3764 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
3765 
3766 	/* start out with a single active tc. This can be increased either
3767 	 * by dcbx negotiation or by upper layer driver
3768 	 */
3769 	p_hwfn->hw_info.num_active_tc = 1;
3770 
3771 	ecore_get_num_funcs(p_hwfn, p_ptt);
3772 
3773 	if (ecore_mcp_is_init(p_hwfn))
3774 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
3775 
3776 	/* In case of forcing the driver's default resource allocation, calling
3777 	 * ecore_hw_get_resc() should come after initializing the personality
3778 	 * and after getting the number of functions, since the calculation of
3779 	 * the resources/features depends on them.
3780 	 * This order is not harmful if not forcing.
3781 	 */
3782 	rc = ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
3783 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3784 		rc = ECORE_SUCCESS;
3785 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3786 	}
3787 
3788 	return rc;
3789 }
3790 
3791 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
3792 {
3793 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3794 	u16 device_id_mask;
3795 	u32 tmp;
3796 
3797 	/* Read Vendor Id / Device Id */
3798 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
3799 				  &p_dev->vendor_id);
3800 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
3801 				  &p_dev->device_id);
3802 
3803 	/* Determine type */
3804 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
3805 	switch (device_id_mask) {
3806 	case ECORE_DEV_ID_MASK_BB:
3807 		p_dev->type = ECORE_DEV_TYPE_BB;
3808 		break;
3809 	case ECORE_DEV_ID_MASK_AH:
3810 		p_dev->type = ECORE_DEV_TYPE_AH;
3811 		break;
3812 	default:
3813 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
3814 			  p_dev->device_id);
3815 		return ECORE_ABORTED;
3816 	}
3817 
3818 	p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3819 					MISCS_REG_CHIP_NUM);
3820 	p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3821 					MISCS_REG_CHIP_REV);
3822 
3823 	MASK_FIELD(CHIP_REV, p_dev->chip_rev);
3824 
3825 	/* Learn number of HW-functions */
3826 	tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3827 		       MISCS_REG_CMT_ENABLED_FOR_PAIR);
3828 
3829 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
3830 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
3831 		p_dev->num_hwfns = 2;
3832 	} else {
3833 		p_dev->num_hwfns = 1;
3834 	}
3835 
3836 #ifndef ASIC_ONLY
3837 	if (CHIP_REV_IS_EMUL(p_dev)) {
3838 		/* For some reason we have problems with this register
3839 		 * in B0 emulation; Simply assume no CMT
3840 		 */
3841 		DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
3842 		p_dev->num_hwfns = 1;
3843 	}
3844 #endif
3845 
3846 	p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3847 				       MISCS_REG_CHIP_TEST_REG) >> 4;
3848 	MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
3849 	p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3850 					  MISCS_REG_CHIP_METAL);
3851 	MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
3852 	DP_INFO(p_dev->hwfns,
3853 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
3854 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
3855 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
3856 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
3857 		p_dev->chip_metal);
3858 
3859 	if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
3860 		DP_NOTICE(p_dev->hwfns, false,
3861 			  "The chip type/rev (BB A0) is not supported!\n");
3862 		return ECORE_ABORTED;
3863 	}
3864 
3865 #ifndef ASIC_ONLY
3866 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
3867 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3868 			 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
3869 
3870 	if (CHIP_REV_IS_EMUL(p_dev)) {
3871 		tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3872 			       MISCS_REG_ECO_RESERVED);
3873 		if (tmp & (1 << 29)) {
3874 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
3875 			p_dev->b_is_emul_full = true;
3876 		} else {
3877 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
3878 		}
3879 	}
3880 #endif
3881 
3882 	return ECORE_SUCCESS;
3883 }
3884 
3885 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
3886 {
3887 	int j;
3888 
3889 	if (IS_VF(p_dev))
3890 		return;
3891 
3892 	for_each_hwfn(p_dev, j) {
3893 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3894 
3895 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
3896 
3897 		p_hwfn->hw_init_done = false;
3898 		p_hwfn->first_on_engine = false;
3899 
3900 		ecore_ptt_invalidate(p_hwfn);
3901 	}
3902 }
3903 
3904 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
3905 {
3906 	int j = 0;
3907 
3908 	if (IS_VF(p_dev))
3909 		return;
3910 
3911 	for_each_hwfn(p_dev, j) {
3912 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3913 		struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
3914 
3915 		ecore_hw_hwfn_prepare(p_hwfn);
3916 
3917 		if (!p_ptt)
3918 			DP_NOTICE(p_hwfn, true, "ptt acquire failed\n");
3919 		else {
3920 			ecore_load_mcp_offsets(p_hwfn, p_ptt);
3921 			ecore_ptt_release(p_hwfn, p_ptt);
3922 		}
3923 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
3924 	}
3925 }
3926 
3927 static enum _ecore_status_t ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
3928 						    void OSAL_IOMEM *p_regview,
3929 						    void OSAL_IOMEM *p_doorbells,
3930 						    struct ecore_hw_prepare_params *p_params)
3931 {
3932 	struct ecore_mdump_retain_data mdump_retain;
3933 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3934 	struct ecore_mdump_info mdump_info;
3935 	enum _ecore_status_t rc = ECORE_SUCCESS;
3936 
3937 	/* Split PCI bars evenly between hwfns */
3938 	p_hwfn->regview = p_regview;
3939 	p_hwfn->doorbells = p_doorbells;
3940 
3941 	if (IS_VF(p_dev))
3942 		return ecore_vf_hw_prepare(p_hwfn);
3943 
3944 	/* Validate that chip access is feasible */
3945 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
3946 		DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
3947 		if (p_params->b_relaxed_probe)
3948 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
3949 		return ECORE_INVAL;
3950 	}
3951 
3952 	get_function_id(p_hwfn);
3953 
3954 	/* Allocate PTT pool */
3955 	rc = ecore_ptt_pool_alloc(p_hwfn);
3956 	if (rc) {
3957 		DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
3958 		if (p_params->b_relaxed_probe)
3959 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3960 		goto err0;
3961 	}
3962 
3963 	/* Allocate the main PTT */
3964 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
3965 
3966 	/* First hwfn learns basic information, e.g., number of hwfns */
3967 	if (!p_hwfn->my_id) {
3968 		rc = ecore_get_dev_info(p_dev);
3969 		if (rc != ECORE_SUCCESS) {
3970 			if (p_params->b_relaxed_probe)
3971 				p_params->p_relaxed_res =
3972 					ECORE_HW_PREPARE_FAILED_DEV;
3973 			goto err1;
3974 		}
3975 	}
3976 
3977 	ecore_hw_hwfn_prepare(p_hwfn);
3978 
3979 	/* Initialize MCP structure */
3980 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
3981 	if (rc) {
3982 		DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
3983 		if (p_params->b_relaxed_probe)
3984 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3985 		goto err1;
3986 	}
3987 
3988 	/* Read the device configuration information from the HW and SHMEM */
3989 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3990 			       p_params->personality, p_params);
3991 	if (rc) {
3992 		DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3993 		goto err2;
3994 	}
3995 
3996 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
3997 	 * called, since among others it sets the ports number in an engine.
3998 	 */
3999 	if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
4000 	    !p_dev->recov_in_prog) {
4001 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
4002 		if (rc != ECORE_SUCCESS)
4003 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
4004 	}
4005 
4006 	/* Check if mdump logs/data are present and update the epoch value */
4007 	if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
4008 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
4009 					      &mdump_info);
4010 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
4011 			DP_NOTICE(p_hwfn, false,
4012 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
4013 
4014 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
4015 						&mdump_retain);
4016 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
4017 			DP_NOTICE(p_hwfn, false,
4018 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
4019 				  mdump_retain.epoch, mdump_retain.pf,
4020 				  mdump_retain.status);
4021 
4022 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
4023 					   p_params->epoch);
4024 	}
4025 
4026 	/* Allocate the init RT array and initialize the init-ops engine */
4027 	rc = ecore_init_alloc(p_hwfn);
4028 	if (rc) {
4029 		DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
4030 		if (p_params->b_relaxed_probe)
4031 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
4032 		goto err2;
4033 	}
4034 
4035 #ifndef ASIC_ONLY
4036 	if (CHIP_REV_IS_FPGA(p_dev)) {
4037 		DP_NOTICE(p_hwfn, false,
4038 			  "FPGA: workaround; Prevent DMAE parities\n");
4039 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
4040 			 7);
4041 
4042 		DP_NOTICE(p_hwfn, false,
4043 			  "FPGA: workaround: Set VF bar0 size\n");
4044 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4045 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
4046 	}
4047 #endif
4048 
4049 	return rc;
4050 err2:
4051 	if (IS_LEAD_HWFN(p_hwfn))
4052 		ecore_iov_free_hw_info(p_dev);
4053 	ecore_mcp_free(p_hwfn);
4054 err1:
4055 	ecore_hw_hwfn_free(p_hwfn);
4056 err0:
4057 	return rc;
4058 }
4059 
4060 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
4061 				      struct ecore_hw_prepare_params *p_params)
4062 {
4063 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4064 	enum _ecore_status_t rc;
4065 
4066 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
4067 	p_dev->allow_mdump = p_params->allow_mdump;
4068 
4069 	if (p_params->b_relaxed_probe)
4070 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
4071 
4072 	/* Store the precompiled init data ptrs */
4073 	if (IS_PF(p_dev))
4074 		ecore_init_iro_array(p_dev);
4075 
4076 	/* Initialize the first hwfn - will learn number of hwfns */
4077 	rc = ecore_hw_prepare_single(p_hwfn,
4078 				     p_dev->regview,
4079 				     p_dev->doorbells, p_params);
4080 	if (rc != ECORE_SUCCESS)
4081 		return rc;
4082 
4083 	p_params->personality = p_hwfn->hw_info.personality;
4084 
4085 	/* initilalize 2nd hwfn if necessary */
4086 	if (p_dev->num_hwfns > 1) {
4087 		void OSAL_IOMEM *p_regview, *p_doorbell;
4088 		u8 OSAL_IOMEM *addr;
4089 
4090 		/* adjust bar offset for second engine */
4091 		addr = (u8 OSAL_IOMEM *)p_dev->regview +
4092 					ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
4093 		p_regview = (void OSAL_IOMEM *)addr;
4094 
4095 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
4096 					ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
4097 		p_doorbell = (void OSAL_IOMEM *)addr;
4098 
4099 		/* prepare second hw function */
4100 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
4101 					     p_doorbell, p_params);
4102 
4103 		/* in case of error, need to free the previously
4104 		 * initiliazed hwfn 0.
4105 		 */
4106 		if (rc != ECORE_SUCCESS) {
4107 			if (p_params->b_relaxed_probe)
4108 				p_params->p_relaxed_res =
4109 						ECORE_HW_PREPARE_FAILED_ENG2;
4110 
4111 			if (IS_PF(p_dev)) {
4112 				ecore_init_free(p_hwfn);
4113 				ecore_mcp_free(p_hwfn);
4114 				ecore_hw_hwfn_free(p_hwfn);
4115 			} else {
4116 				DP_NOTICE(p_dev, true, "What do we need to free when VF hwfn1 init fails\n");
4117 			}
4118 			return rc;
4119 		}
4120 	}
4121 
4122 	return rc;
4123 }
4124 
4125 void ecore_hw_remove(struct ecore_dev *p_dev)
4126 {
4127 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4128 	int i;
4129 
4130 	if (IS_PF(p_dev))
4131 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
4132 						 ECORE_OV_DRIVER_STATE_NOT_LOADED);
4133 
4134 	for_each_hwfn(p_dev, i) {
4135 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4136 
4137 		if (IS_VF(p_dev)) {
4138 			ecore_vf_pf_release(p_hwfn);
4139 			continue;
4140 		}
4141 
4142 		ecore_init_free(p_hwfn);
4143 		ecore_hw_hwfn_free(p_hwfn);
4144 		ecore_mcp_free(p_hwfn);
4145 
4146 		OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
4147 	}
4148 
4149 	ecore_iov_free_hw_info(p_dev);
4150 }
4151 
4152 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
4153 				      struct ecore_chain *p_chain)
4154 {
4155 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
4156 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
4157 	struct ecore_chain_next *p_next;
4158 	u32 size, i;
4159 
4160 	if (!p_virt)
4161 		return;
4162 
4163 	size = p_chain->elem_size * p_chain->usable_per_page;
4164 
4165 	for (i = 0; i < p_chain->page_cnt; i++) {
4166 		if (!p_virt)
4167 			break;
4168 
4169 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
4170 		p_virt_next = p_next->next_virt;
4171 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
4172 
4173 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
4174 				       ECORE_CHAIN_PAGE_SIZE);
4175 
4176 		p_virt = p_virt_next;
4177 		p_phys = p_phys_next;
4178 	}
4179 }
4180 
4181 static void ecore_chain_free_single(struct ecore_dev *p_dev,
4182 				    struct ecore_chain *p_chain)
4183 {
4184 	if (!p_chain->p_virt_addr)
4185 		return;
4186 
4187 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
4188 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
4189 }
4190 
4191 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
4192 				 struct ecore_chain *p_chain)
4193 {
4194 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
4195 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
4196 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
4197 
4198 	if (!pp_virt_addr_tbl)
4199 		return;
4200 
4201 	if (!p_pbl_virt)
4202 		goto out;
4203 
4204 	for (i = 0; i < page_cnt; i++) {
4205 		if (!pp_virt_addr_tbl[i])
4206 			break;
4207 
4208 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
4209 				       *(dma_addr_t *)p_pbl_virt,
4210 				       ECORE_CHAIN_PAGE_SIZE);
4211 
4212 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
4213 	}
4214 
4215 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
4216 
4217 	if (!p_chain->b_external_pbl) {
4218 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
4219 				       p_chain->pbl_sp.p_phys_table, pbl_size);
4220 	}
4221 out:
4222 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
4223 	p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
4224 }
4225 
4226 void ecore_chain_free(struct ecore_dev *p_dev,
4227 		      struct ecore_chain *p_chain)
4228 {
4229 	switch (p_chain->mode) {
4230 	case ECORE_CHAIN_MODE_NEXT_PTR:
4231 		ecore_chain_free_next_ptr(p_dev, p_chain);
4232 		break;
4233 	case ECORE_CHAIN_MODE_SINGLE:
4234 		ecore_chain_free_single(p_dev, p_chain);
4235 		break;
4236 	case ECORE_CHAIN_MODE_PBL:
4237 		ecore_chain_free_pbl(p_dev, p_chain);
4238 		break;
4239 	}
4240 }
4241 
4242 static enum _ecore_status_t
4243 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
4244 			       enum ecore_chain_cnt_type cnt_type,
4245 			       osal_size_t elem_size, u32 page_cnt)
4246 {
4247 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
4248 
4249 	/* The actual chain size can be larger than the maximal possible value
4250 	 * after rounding up the requested elements number to pages, and after
4251 	 * taking into acount the unusuable elements (next-ptr elements).
4252 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
4253 	 * size/capacity fields are of a u32 type.
4254 	 */
4255 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
4256 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
4257 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
4258 	     chain_size > ECORE_U32_MAX)) {
4259 		DP_NOTICE(p_dev, true,
4260 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
4261 			  (unsigned long long)chain_size);
4262 		return ECORE_INVAL;
4263 	}
4264 
4265 	return ECORE_SUCCESS;
4266 }
4267 
4268 static enum _ecore_status_t
4269 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4270 {
4271 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
4272 	dma_addr_t p_phys = 0;
4273 	u32 i;
4274 
4275 	for (i = 0; i < p_chain->page_cnt; i++) {
4276 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
4277 						 ECORE_CHAIN_PAGE_SIZE);
4278 		if (!p_virt) {
4279 			DP_NOTICE(p_dev, true,
4280 				  "Failed to allocate chain memory\n");
4281 			return ECORE_NOMEM;
4282 		}
4283 
4284 		if (i == 0) {
4285 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
4286 			ecore_chain_reset(p_chain);
4287 		} else {
4288 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4289 						       p_virt, p_phys);
4290 		}
4291 
4292 		p_virt_prev = p_virt;
4293 	}
4294 	/* Last page's next element should point to the beginning of the
4295 	 * chain.
4296 	 */
4297 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4298 				       p_chain->p_virt_addr,
4299 				       p_chain->p_phys_addr);
4300 
4301 	return ECORE_SUCCESS;
4302 }
4303 
4304 static enum _ecore_status_t
4305 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4306 {
4307 	dma_addr_t p_phys = 0;
4308 	void *p_virt = OSAL_NULL;
4309 
4310 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
4311 	if (!p_virt) {
4312 		DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
4313 		return ECORE_NOMEM;
4314 	}
4315 
4316 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
4317 	ecore_chain_reset(p_chain);
4318 
4319 	return ECORE_SUCCESS;
4320 }
4321 
4322 static enum _ecore_status_t
4323 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
4324 		      struct ecore_chain *p_chain,
4325 		      struct ecore_chain_ext_pbl *ext_pbl)
4326 {
4327 	void *p_virt = OSAL_NULL;
4328 	u8 *p_pbl_virt = OSAL_NULL;
4329 	void **pp_virt_addr_tbl = OSAL_NULL;
4330 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
4331 	u32 page_cnt = p_chain->page_cnt, size, i;
4332 
4333 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
4334 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
4335 	if (!pp_virt_addr_tbl) {
4336 		DP_NOTICE(p_dev, true,
4337 			  "Failed to allocate memory for the chain virtual addresses table\n");
4338 		return ECORE_NOMEM;
4339 	}
4340 
4341 	/* The allocation of the PBL table is done with its full size, since it
4342 	 * is expected to be successive.
4343 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
4344 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
4345 	 * should be saved to allow its freeing during the error flow.
4346 	 */
4347 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
4348 
4349 	if (ext_pbl == OSAL_NULL) {
4350 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
4351 	} else {
4352 		p_pbl_virt = ext_pbl->p_pbl_virt;
4353 		p_pbl_phys = ext_pbl->p_pbl_phys;
4354 		p_chain->b_external_pbl = true;
4355 	}
4356 
4357 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
4358 				 pp_virt_addr_tbl);
4359 	if (!p_pbl_virt) {
4360 		DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
4361 		return ECORE_NOMEM;
4362 	}
4363 
4364 	for (i = 0; i < page_cnt; i++) {
4365 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
4366 						 ECORE_CHAIN_PAGE_SIZE);
4367 		if (!p_virt) {
4368 			DP_NOTICE(p_dev, true,
4369 				  "Failed to allocate chain memory\n");
4370 			return ECORE_NOMEM;
4371 		}
4372 
4373 		if (i == 0) {
4374 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
4375 			ecore_chain_reset(p_chain);
4376 		}
4377 
4378 		/* Fill the PBL table with the physical address of the page */
4379 		*(dma_addr_t *)p_pbl_virt = p_phys;
4380 		/* Keep the virtual address of the page */
4381 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
4382 
4383 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
4384 	}
4385 
4386 	return ECORE_SUCCESS;
4387 }
4388 
4389 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
4390 				       enum ecore_chain_use_mode intended_use,
4391 				       enum ecore_chain_mode mode,
4392 				       enum ecore_chain_cnt_type cnt_type,
4393 				       u32 num_elems, osal_size_t elem_size,
4394 				       struct ecore_chain *p_chain,
4395 				       struct ecore_chain_ext_pbl *ext_pbl)
4396 {
4397 	u32 page_cnt;
4398 	enum _ecore_status_t rc = ECORE_SUCCESS;
4399 
4400 	if (mode == ECORE_CHAIN_MODE_SINGLE)
4401 		page_cnt = 1;
4402 	else
4403 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
4404 
4405 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
4406 					    page_cnt);
4407 	if (rc) {
4408 		DP_NOTICE(p_dev, true,
4409 			  "Cannot allocate a chain with the given arguments:\n"
4410 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
4411 			  intended_use, mode, cnt_type, num_elems, elem_size);
4412 		return rc;
4413 	}
4414 
4415 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
4416 				mode, cnt_type, p_dev->dp_ctx);
4417 
4418 	switch (mode) {
4419 	case ECORE_CHAIN_MODE_NEXT_PTR:
4420 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
4421 		break;
4422 	case ECORE_CHAIN_MODE_SINGLE:
4423 		rc = ecore_chain_alloc_single(p_dev, p_chain);
4424 		break;
4425 	case ECORE_CHAIN_MODE_PBL:
4426 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
4427 		break;
4428 	}
4429 	if (rc)
4430 		goto nomem;
4431 
4432 	return ECORE_SUCCESS;
4433 
4434 nomem:
4435 	ecore_chain_free(p_dev, p_chain);
4436 	return rc;
4437 }
4438 
4439 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
4440 				       u16 src_id, u16 *dst_id)
4441 {
4442 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
4443 		u16 min, max;
4444 
4445 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
4446 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
4447 		DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
4448 			  src_id, min, max);
4449 
4450 		return ECORE_INVAL;
4451 	}
4452 
4453 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
4454 
4455 	return ECORE_SUCCESS;
4456 }
4457 
4458 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
4459 				    u8 src_id, u8 *dst_id)
4460 {
4461 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
4462 		u8 min, max;
4463 
4464 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
4465 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
4466 		DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
4467 			  src_id, min, max);
4468 
4469 		return ECORE_INVAL;
4470 	}
4471 
4472 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
4473 
4474 	return ECORE_SUCCESS;
4475 }
4476 
4477 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
4478 				      u8 src_id, u8 *dst_id)
4479 {
4480 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
4481 		u8 min, max;
4482 
4483 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
4484 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
4485 		DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
4486 			  src_id, min, max);
4487 
4488 		return ECORE_INVAL;
4489 	}
4490 
4491 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
4492 
4493 	return ECORE_SUCCESS;
4494 }
4495 
4496 static enum _ecore_status_t
4497 ecore_llh_add_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4498 			       struct ecore_ptt *p_ptt, u32 high, u32 low,
4499 			       u32 *p_entry_num)
4500 {
4501 	u32 en;
4502 	int i;
4503 
4504 	/* Find a free entry and utilize it */
4505 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4506 		en = ecore_rd(p_hwfn, p_ptt,
4507 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4508 			      i * sizeof(u32));
4509 		if (en)
4510 			continue;
4511 		ecore_wr(p_hwfn, p_ptt,
4512 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4513 			 2 * i * sizeof(u32), low);
4514 		ecore_wr(p_hwfn, p_ptt,
4515 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4516 			 (2 * i + 1) * sizeof(u32), high);
4517 		ecore_wr(p_hwfn, p_ptt,
4518 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4519 			 i * sizeof(u32), 0);
4520 		ecore_wr(p_hwfn, p_ptt,
4521 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4522 			 i * sizeof(u32), 0);
4523 		ecore_wr(p_hwfn, p_ptt,
4524 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4525 			 i * sizeof(u32), 1);
4526 		break;
4527 	}
4528 
4529 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4530 		return ECORE_NORESOURCES;
4531 
4532 	*p_entry_num = i;
4533 
4534 	return ECORE_SUCCESS;
4535 }
4536 
4537 static enum _ecore_status_t
4538 ecore_llh_add_mac_filter_e5(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
4539 			    u32 high, u32 low, u32 *p_entry_num)
4540 {
4541 	ECORE_E5_MISSING_CODE;
4542 
4543 	return ECORE_NOTIMPL;
4544 }
4545 
4546 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
4547 					  struct ecore_ptt *p_ptt, u8 *p_filter)
4548 {
4549 	u32 high, low, entry_num;
4550 	enum _ecore_status_t rc;
4551 
4552 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4553 		return ECORE_SUCCESS;
4554 
4555 	high = p_filter[1] | (p_filter[0] << 8);
4556 	low = p_filter[5] | (p_filter[4] << 8) |
4557 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4558 
4559 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4560 		rc = ecore_llh_add_mac_filter_bb_ah(p_hwfn, p_ptt, high, low,
4561 						    &entry_num);
4562 	else /* E5 */
4563 		rc = ecore_llh_add_mac_filter_e5(p_hwfn, p_ptt, high, low,
4564 						 &entry_num);
4565 	if (rc != ECORE_SUCCESS) {
4566 		DP_NOTICE(p_hwfn, false,
4567 			  "Failed to find an empty LLH filter to utilize\n");
4568 		return rc;
4569 	}
4570 
4571 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4572 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx is added at %d\n",
4573 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4574 		   p_filter[4], p_filter[5], entry_num);
4575 
4576 	return ECORE_SUCCESS;
4577 }
4578 
4579 static enum _ecore_status_t
4580 ecore_llh_remove_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4581 				  struct ecore_ptt *p_ptt, u32 high, u32 low,
4582 				  u32 *p_entry_num)
4583 {
4584 	int i;
4585 
4586 	/* Find the entry and clean it */
4587 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4588 		if (ecore_rd(p_hwfn, p_ptt,
4589 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4590 			     2 * i * sizeof(u32)) != low)
4591 			continue;
4592 		if (ecore_rd(p_hwfn, p_ptt,
4593 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4594 			     (2 * i + 1) * sizeof(u32)) != high)
4595 			continue;
4596 
4597 		ecore_wr(p_hwfn, p_ptt,
4598 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4599 		ecore_wr(p_hwfn, p_ptt,
4600 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4601 			 2 * i * sizeof(u32), 0);
4602 		ecore_wr(p_hwfn, p_ptt,
4603 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4604 			 (2 * i + 1) * sizeof(u32), 0);
4605 		break;
4606 	}
4607 
4608 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4609 		return ECORE_INVAL;
4610 
4611 	*p_entry_num = i;
4612 
4613 	return ECORE_SUCCESS;
4614 }
4615 
4616 static enum _ecore_status_t
4617 ecore_llh_remove_mac_filter_e5(struct ecore_hwfn *p_hwfn,
4618 			       struct ecore_ptt *p_ptt, u32 high, u32 low,
4619 			       u32 *p_entry_num)
4620 {
4621 	ECORE_E5_MISSING_CODE;
4622 
4623 	return ECORE_NOTIMPL;
4624 }
4625 
4626 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
4627 			     struct ecore_ptt *p_ptt, u8 *p_filter)
4628 {
4629 	u32 high, low, entry_num;
4630 	enum _ecore_status_t rc;
4631 
4632 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4633 		return;
4634 
4635 	high = p_filter[1] | (p_filter[0] << 8);
4636 	low = p_filter[5] | (p_filter[4] << 8) |
4637 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4638 
4639 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4640 		rc = ecore_llh_remove_mac_filter_bb_ah(p_hwfn, p_ptt, high,
4641 						       low, &entry_num);
4642 	else /* E5 */
4643 		rc = ecore_llh_remove_mac_filter_e5(p_hwfn, p_ptt, high, low,
4644 						    &entry_num);
4645 	if (rc != ECORE_SUCCESS) {
4646 		DP_NOTICE(p_hwfn, false,
4647 			  "Tried to remove a non-configured filter [MAC %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx]\n",
4648 			  p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4649 			  p_filter[4], p_filter[5]);
4650 		return;
4651 	}
4652 
4653 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4654 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx was removed from %d\n",
4655 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4656 		   p_filter[4], p_filter[5], entry_num);
4657 }
4658 
4659 static enum _ecore_status_t
4660 ecore_llh_add_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4661 				    struct ecore_ptt *p_ptt,
4662 				    enum ecore_llh_port_filter_type_t type,
4663 				    u32 high, u32 low, u32 *p_entry_num)
4664 {
4665 	u32 en;
4666 	int i;
4667 
4668 	/* Find a free entry and utilize it */
4669 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4670 		en = ecore_rd(p_hwfn, p_ptt,
4671 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4672 			      i * sizeof(u32));
4673 		if (en)
4674 			continue;
4675 		ecore_wr(p_hwfn, p_ptt,
4676 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4677 			 2 * i * sizeof(u32), low);
4678 		ecore_wr(p_hwfn, p_ptt,
4679 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4680 			 (2 * i + 1) * sizeof(u32), high);
4681 		ecore_wr(p_hwfn, p_ptt,
4682 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4683 			 i * sizeof(u32), 1);
4684 		ecore_wr(p_hwfn, p_ptt,
4685 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4686 			 i * sizeof(u32), 1 << type);
4687 		ecore_wr(p_hwfn, p_ptt,
4688 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 1);
4689 		break;
4690 	}
4691 
4692 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4693 		return ECORE_NORESOURCES;
4694 
4695 	*p_entry_num = i;
4696 
4697 	return ECORE_SUCCESS;
4698 }
4699 
4700 static enum _ecore_status_t
4701 ecore_llh_add_protocol_filter_e5(struct ecore_hwfn *p_hwfn,
4702 				 struct ecore_ptt *p_ptt,
4703 				 enum ecore_llh_port_filter_type_t type,
4704 				 u32 high, u32 low, u32 *p_entry_num)
4705 {
4706 	ECORE_E5_MISSING_CODE;
4707 
4708 	return ECORE_NOTIMPL;
4709 }
4710 
4711 enum _ecore_status_t
4712 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
4713 			      struct ecore_ptt *p_ptt,
4714 			      u16 source_port_or_eth_type,
4715 			      u16 dest_port,
4716 			      enum ecore_llh_port_filter_type_t type)
4717 {
4718 	u32 high, low, entry_num;
4719 	enum _ecore_status_t rc;
4720 
4721 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4722 		return ECORE_SUCCESS;
4723 
4724 	high = 0;
4725 	low = 0;
4726 	switch (type) {
4727 	case ECORE_LLH_FILTER_ETHERTYPE:
4728 		high = source_port_or_eth_type;
4729 		break;
4730 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4731 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4732 		low = source_port_or_eth_type << 16;
4733 		break;
4734 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4735 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4736 		low = dest_port;
4737 		break;
4738 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4739 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4740 		low = (source_port_or_eth_type << 16) | dest_port;
4741 		break;
4742 	default:
4743 		DP_NOTICE(p_hwfn, true,
4744 			  "Non valid LLH protocol filter type %d\n", type);
4745 		return ECORE_INVAL;
4746 	}
4747 
4748 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4749 		rc = ecore_llh_add_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
4750 							 high, low, &entry_num);
4751 	else /* E5 */
4752 		rc = ecore_llh_add_protocol_filter_e5(p_hwfn, p_ptt, type, high,
4753 						      low, &entry_num);
4754 	if (rc != ECORE_SUCCESS) {
4755 		DP_NOTICE(p_hwfn, false,
4756 			  "Failed to find an empty LLH filter to utilize\n");
4757 		return rc;
4758 	}
4759 
4760 	switch (type) {
4761 	case ECORE_LLH_FILTER_ETHERTYPE:
4762 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4763 			   "ETH type %x is added at %d\n",
4764 			   source_port_or_eth_type, entry_num);
4765 		break;
4766 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4767 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4768 			   "TCP src port %x is added at %d\n",
4769 			   source_port_or_eth_type, entry_num);
4770 		break;
4771 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4772 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4773 			   "UDP src port %x is added at %d\n",
4774 			   source_port_or_eth_type, entry_num);
4775 		break;
4776 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4777 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4778 			   "TCP dst port %x is added at %d\n",
4779 			   dest_port, entry_num);
4780 		break;
4781 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4782 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4783 			   "UDP dst port %x is added at %d\n",
4784 			   dest_port, entry_num);
4785 		break;
4786 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4787 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4788 			   "TCP src/dst ports %x/%x are added at %d\n",
4789 			   source_port_or_eth_type, dest_port, entry_num);
4790 		break;
4791 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4792 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4793 			   "UDP src/dst ports %x/%x are added at %d\n",
4794 			   source_port_or_eth_type, dest_port, entry_num);
4795 			break;
4796 	}
4797 
4798 	return ECORE_SUCCESS;
4799 }
4800 
4801 static enum _ecore_status_t
4802 ecore_llh_remove_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4803 				       struct ecore_ptt *p_ptt,
4804 				       enum ecore_llh_port_filter_type_t type,
4805 				       u32 high, u32 low, u32 *p_entry_num)
4806 {
4807 	int i;
4808 
4809 	/* Find the entry and clean it */
4810 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4811 		if (!ecore_rd(p_hwfn, p_ptt,
4812 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4813 			      i * sizeof(u32)))
4814 			continue;
4815 		if (!ecore_rd(p_hwfn, p_ptt,
4816 			      NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4817 			      i * sizeof(u32)))
4818 			continue;
4819 		if (!(ecore_rd(p_hwfn, p_ptt,
4820 			       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4821 			       i * sizeof(u32)) & (1 << type)))
4822 			continue;
4823 		if (ecore_rd(p_hwfn, p_ptt,
4824 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4825 			     2 * i * sizeof(u32)) != low)
4826 			continue;
4827 		if (ecore_rd(p_hwfn, p_ptt,
4828 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4829 			     (2 * i + 1) * sizeof(u32)) != high)
4830 			continue;
4831 
4832 		ecore_wr(p_hwfn, p_ptt,
4833 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4834 		ecore_wr(p_hwfn, p_ptt,
4835 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4836 			 i * sizeof(u32), 0);
4837 		ecore_wr(p_hwfn, p_ptt,
4838 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4839 			 i * sizeof(u32), 0);
4840 		ecore_wr(p_hwfn, p_ptt,
4841 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4842 			 2 * i * sizeof(u32), 0);
4843 		ecore_wr(p_hwfn, p_ptt,
4844 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4845 			 (2 * i + 1) * sizeof(u32), 0);
4846 		break;
4847 	}
4848 
4849 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4850 		return ECORE_INVAL;
4851 
4852 	*p_entry_num = i;
4853 
4854 	return ECORE_SUCCESS;
4855 }
4856 
4857 static enum _ecore_status_t
4858 ecore_llh_remove_protocol_filter_e5(struct ecore_hwfn *p_hwfn,
4859 				    struct ecore_ptt *p_ptt,
4860 				    enum ecore_llh_port_filter_type_t type,
4861 				    u32 high, u32 low, u32 *p_entry_num)
4862 {
4863 	ECORE_E5_MISSING_CODE;
4864 
4865 	return ECORE_NOTIMPL;
4866 }
4867 
4868 void
4869 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
4870 				 struct ecore_ptt *p_ptt,
4871 				 u16 source_port_or_eth_type,
4872 				 u16 dest_port,
4873 				 enum ecore_llh_port_filter_type_t type)
4874 {
4875 	u32 high, low, entry_num;
4876 	enum _ecore_status_t rc;
4877 
4878 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4879 		return;
4880 
4881 	high = 0;
4882 	low = 0;
4883 	switch (type) {
4884 	case ECORE_LLH_FILTER_ETHERTYPE:
4885 		high = source_port_or_eth_type;
4886 		break;
4887 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4888 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4889 		low = source_port_or_eth_type << 16;
4890 		break;
4891 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4892 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4893 		low = dest_port;
4894 		break;
4895 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4896 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4897 		low = (source_port_or_eth_type << 16) | dest_port;
4898 		break;
4899 	default:
4900 		DP_NOTICE(p_hwfn, true,
4901 			  "Non valid LLH protocol filter type %d\n", type);
4902 		return;
4903 	}
4904 
4905 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4906 		rc = ecore_llh_remove_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
4907 							    high, low,
4908 							    &entry_num);
4909 	else /* E5 */
4910 		rc = ecore_llh_remove_protocol_filter_e5(p_hwfn, p_ptt, type,
4911 							 high, low, &entry_num);
4912 	if (rc != ECORE_SUCCESS) {
4913 		DP_NOTICE(p_hwfn, false,
4914 			  "Tried to remove a non-configured filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x]\n",
4915 			  type, source_port_or_eth_type, dest_port);
4916 		return;
4917 	}
4918 
4919 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4920 		   "Protocol filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x] was removed from %d\n",
4921 		   type, source_port_or_eth_type, dest_port, entry_num);
4922 }
4923 
4924 static void ecore_llh_clear_all_filters_bb_ah(struct ecore_hwfn *p_hwfn,
4925 					      struct ecore_ptt *p_ptt)
4926 {
4927 	int i;
4928 
4929 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4930 		ecore_wr(p_hwfn, p_ptt,
4931 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2  +
4932 			 i * sizeof(u32), 0);
4933 		ecore_wr(p_hwfn, p_ptt,
4934 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4935 			 2 * i * sizeof(u32), 0);
4936 		ecore_wr(p_hwfn, p_ptt,
4937 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4938 			 (2 * i + 1) * sizeof(u32), 0);
4939 	}
4940 }
4941 
4942 static void ecore_llh_clear_all_filters_e5(struct ecore_hwfn *p_hwfn,
4943 					   struct ecore_ptt *p_ptt)
4944 {
4945 	ECORE_E5_MISSING_CODE;
4946 }
4947 
4948 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
4949 			     struct ecore_ptt *p_ptt)
4950 {
4951 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4952 		return;
4953 
4954 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4955 		ecore_llh_clear_all_filters_bb_ah(p_hwfn, p_ptt);
4956 	else /* E5 */
4957 		ecore_llh_clear_all_filters_e5(p_hwfn, p_ptt);
4958 }
4959 
4960 enum _ecore_status_t
4961 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
4962 				  struct ecore_ptt *p_ptt)
4963 {
4964 	if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
4965 		ecore_wr(p_hwfn, p_ptt,
4966 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
4967 			 1 << p_hwfn->abs_pf_id / 2);
4968 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
4969 		return ECORE_SUCCESS;
4970 	} else {
4971 		DP_NOTICE(p_hwfn, false,
4972 			  "This function can't be set as default\n");
4973 		return ECORE_INVAL;
4974 	}
4975 }
4976 
4977 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
4978 					       struct ecore_ptt *p_ptt,
4979 					       u32 hw_addr, void *p_eth_qzone,
4980 					       osal_size_t eth_qzone_size,
4981 					       u8 timeset)
4982 {
4983 	struct coalescing_timeset *p_coal_timeset;
4984 
4985 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
4986 		DP_NOTICE(p_hwfn, true,
4987 			  "Coalescing configuration not enabled\n");
4988 		return ECORE_INVAL;
4989 	}
4990 
4991 	p_coal_timeset = p_eth_qzone;
4992 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
4993 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
4994 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
4995 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
4996 
4997 	return ECORE_SUCCESS;
4998 }
4999 
5000 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
5001 					      u16 rx_coal, u16 tx_coal,
5002 					      void *p_handle)
5003 {
5004 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
5005 	enum _ecore_status_t rc = ECORE_SUCCESS;
5006 	struct ecore_ptt *p_ptt;
5007 
5008 	/* TODO - Configuring a single queue's coalescing but
5009 	 * claiming all queues are abiding same configuration
5010 	 * for PF and VF both.
5011 	 */
5012 
5013 #ifdef CONFIG_ECORE_SRIOV
5014 	if (IS_VF(p_hwfn->p_dev))
5015 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
5016 						tx_coal, p_cid);
5017 #endif /* #ifdef CONFIG_ECORE_SRIOV */
5018 
5019 	p_ptt = ecore_ptt_acquire(p_hwfn);
5020 	if (!p_ptt)
5021 		return ECORE_AGAIN;
5022 
5023 	if (rx_coal) {
5024 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
5025 		if (rc)
5026 			goto out;
5027 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
5028 	}
5029 
5030 	if (tx_coal) {
5031 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
5032 		if (rc)
5033 			goto out;
5034 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
5035 	}
5036 out:
5037 	ecore_ptt_release(p_hwfn, p_ptt);
5038 
5039 	return rc;
5040 }
5041 
5042 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
5043 					    struct ecore_ptt *p_ptt,
5044 					    u16 coalesce,
5045 					    struct ecore_queue_cid *p_cid)
5046 {
5047 	struct ustorm_eth_queue_zone eth_qzone;
5048 	u8 timeset, timer_res;
5049 	u32 address;
5050 	enum _ecore_status_t rc;
5051 
5052 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5053 	if (coalesce <= 0x7F)
5054 		timer_res = 0;
5055 	else if (coalesce <= 0xFF)
5056 		timer_res = 1;
5057 	else if (coalesce <= 0x1FF)
5058 		timer_res = 2;
5059 	else {
5060 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5061 		return ECORE_INVAL;
5062 	}
5063 	timeset = (u8)(coalesce >> timer_res);
5064 
5065 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5066 				     p_cid->sb_igu_id, false);
5067 	if (rc != ECORE_SUCCESS)
5068 		goto out;
5069 
5070 	address = BAR0_MAP_REG_USDM_RAM +
5071 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5072 
5073 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5074 				sizeof(struct ustorm_eth_queue_zone), timeset);
5075 	if (rc != ECORE_SUCCESS)
5076 		goto out;
5077 
5078 out:
5079 	return rc;
5080 }
5081 
5082 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
5083 					    struct ecore_ptt *p_ptt,
5084 					    u16 coalesce,
5085 					    struct ecore_queue_cid *p_cid)
5086 {
5087 	struct xstorm_eth_queue_zone eth_qzone;
5088 	u8 timeset, timer_res;
5089 	u32 address;
5090 	enum _ecore_status_t rc;
5091 
5092 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5093 	if (coalesce <= 0x7F)
5094 		timer_res = 0;
5095 	else if (coalesce <= 0xFF)
5096 		timer_res = 1;
5097 	else if (coalesce <= 0x1FF)
5098 		timer_res = 2;
5099 	else {
5100 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5101 		return ECORE_INVAL;
5102 	}
5103 	timeset = (u8)(coalesce >> timer_res);
5104 
5105 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5106 				     p_cid->sb_igu_id, true);
5107 	if (rc != ECORE_SUCCESS)
5108 		goto out;
5109 
5110 	address = BAR0_MAP_REG_XSDM_RAM +
5111 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5112 
5113 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5114 				sizeof(struct xstorm_eth_queue_zone), timeset);
5115 out:
5116 	return rc;
5117 }
5118 
5119 /* Calculate final WFQ values for all vports and configure it.
5120  * After this configuration each vport must have
5121  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
5122  */
5123 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
5124 					       struct ecore_ptt *p_ptt,
5125 					       u32 min_pf_rate)
5126 {
5127 	struct init_qm_vport_params *vport_params;
5128 	int i;
5129 
5130 	vport_params = p_hwfn->qm_info.qm_vport_params;
5131 
5132 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5133 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5134 
5135 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
5136 					    min_pf_rate;
5137 		ecore_init_vport_wfq(p_hwfn, p_ptt,
5138 				     vport_params[i].first_tx_pq_id,
5139 				     vport_params[i].vport_wfq);
5140 	}
5141 }
5142 
5143 static void
5144 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
5145 
5146 {
5147 	int i;
5148 
5149 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
5150 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
5151 }
5152 
5153 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
5154 					     struct ecore_ptt *p_ptt,
5155 					     u32 min_pf_rate)
5156 {
5157 	struct init_qm_vport_params *vport_params;
5158 	int i;
5159 
5160 	vport_params = p_hwfn->qm_info.qm_vport_params;
5161 
5162 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5163 		ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
5164 		ecore_init_vport_wfq(p_hwfn, p_ptt,
5165 				     vport_params[i].first_tx_pq_id,
5166 				     vport_params[i].vport_wfq);
5167 	}
5168 }
5169 
5170 /* This function performs several validations for WFQ
5171  * configuration and required min rate for a given vport
5172  * 1. req_rate must be greater than one percent of min_pf_rate.
5173  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
5174  *    rates to get less than one percent of min_pf_rate.
5175  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
5176  */
5177 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
5178 						 u16 vport_id, u32 req_rate,
5179 						 u32 min_pf_rate)
5180 {
5181 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
5182 	int non_requested_count = 0, req_count = 0, i, num_vports;
5183 
5184 	num_vports = p_hwfn->qm_info.num_vports;
5185 
5186 	/* Accounting for the vports which are configured for WFQ explicitly */
5187 	for (i = 0; i < num_vports; i++) {
5188 		u32 tmp_speed;
5189 
5190 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
5191 			req_count++;
5192 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5193 			total_req_min_rate += tmp_speed;
5194 		}
5195 	}
5196 
5197 	/* Include current vport data as well */
5198 	req_count++;
5199 	total_req_min_rate += req_rate;
5200 	non_requested_count = num_vports - req_count;
5201 
5202 	/* validate possible error cases */
5203 	if (req_rate > min_pf_rate) {
5204 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5205 			   "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5206 			   vport_id, req_rate, min_pf_rate);
5207 		return ECORE_INVAL;
5208 	}
5209 
5210 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
5211 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5212 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5213 			   vport_id, req_rate, min_pf_rate);
5214 		return ECORE_INVAL;
5215 	}
5216 
5217 	/* TBD - for number of vports greater than 100 */
5218 	if (num_vports > ECORE_WFQ_UNIT) {
5219 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5220 			   "Number of vports is greater than %d\n",
5221 			   ECORE_WFQ_UNIT);
5222 		return ECORE_INVAL;
5223 	}
5224 
5225 	if (total_req_min_rate > min_pf_rate) {
5226 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5227 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5228 			   total_req_min_rate, min_pf_rate);
5229 		return ECORE_INVAL;
5230 	}
5231 
5232 	/* Data left for non requested vports */
5233 	total_left_rate = min_pf_rate - total_req_min_rate;
5234 	left_rate_per_vp = total_left_rate / non_requested_count;
5235 
5236 	/* validate if non requested get < 1% of min bw */
5237 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
5238 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5239 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5240 			   left_rate_per_vp, min_pf_rate);
5241 		return ECORE_INVAL;
5242 	}
5243 
5244 	/* now req_rate for given vport passes all scenarios.
5245 	 * assign final wfq rates to all vports.
5246 	 */
5247 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
5248 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
5249 
5250 	for (i = 0; i < num_vports; i++) {
5251 		if (p_hwfn->qm_info.wfq_data[i].configured)
5252 			continue;
5253 
5254 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
5255 	}
5256 
5257 	return ECORE_SUCCESS;
5258 }
5259 
5260 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
5261 				       struct ecore_ptt *p_ptt,
5262 				       u16 vp_id, u32 rate)
5263 {
5264 	struct ecore_mcp_link_state *p_link;
5265 	int rc = ECORE_SUCCESS;
5266 
5267 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
5268 
5269 	if (!p_link->min_pf_rate) {
5270 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
5271 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
5272 		return rc;
5273 	}
5274 
5275 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
5276 
5277 	if (rc == ECORE_SUCCESS)
5278 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
5279 						   p_link->min_pf_rate);
5280 	else
5281 		DP_NOTICE(p_hwfn, false,
5282 			  "Validation failed while configuring min rate\n");
5283 
5284 	return rc;
5285 }
5286 
5287 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
5288 						   struct ecore_ptt *p_ptt,
5289 						   u32 min_pf_rate)
5290 {
5291 	bool use_wfq = false;
5292 	int rc = ECORE_SUCCESS;
5293 	u16 i;
5294 
5295 	/* Validate all pre configured vports for wfq */
5296 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5297 		u32 rate;
5298 
5299 		if (!p_hwfn->qm_info.wfq_data[i].configured)
5300 			continue;
5301 
5302 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
5303 		use_wfq = true;
5304 
5305 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
5306 		if (rc != ECORE_SUCCESS) {
5307 			DP_NOTICE(p_hwfn, false,
5308 				  "WFQ validation failed while configuring min rate\n");
5309 			break;
5310 		}
5311 	}
5312 
5313 	if (rc == ECORE_SUCCESS && use_wfq)
5314 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5315 	else
5316 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5317 
5318 	return rc;
5319 }
5320 
5321 /* Main API for ecore clients to configure vport min rate.
5322  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
5323  * rate - Speed in Mbps needs to be assigned to a given vport.
5324  */
5325 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
5326 {
5327 	int i, rc = ECORE_INVAL;
5328 
5329 	/* TBD - for multiple hardware functions - that is 100 gig */
5330 	if (p_dev->num_hwfns > 1) {
5331 		DP_NOTICE(p_dev, false,
5332 			  "WFQ configuration is not supported for this device\n");
5333 		return rc;
5334 	}
5335 
5336 	for_each_hwfn(p_dev, i) {
5337 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5338 		struct ecore_ptt *p_ptt;
5339 
5340 		p_ptt = ecore_ptt_acquire(p_hwfn);
5341 		if (!p_ptt)
5342 			return ECORE_TIMEOUT;
5343 
5344 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
5345 
5346 		if (rc != ECORE_SUCCESS) {
5347 			ecore_ptt_release(p_hwfn, p_ptt);
5348 			return rc;
5349 		}
5350 
5351 		ecore_ptt_release(p_hwfn, p_ptt);
5352 	}
5353 
5354 	return rc;
5355 }
5356 
5357 /* API to configure WFQ from mcp link change */
5358 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
5359 					   struct ecore_ptt *p_ptt,
5360 					   u32 min_pf_rate)
5361 {
5362 	int i;
5363 
5364 	/* TBD - for multiple hardware functions - that is 100 gig */
5365 	if (p_dev->num_hwfns > 1) {
5366 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
5367 			   "WFQ configuration is not supported for this device\n");
5368 		return;
5369 	}
5370 
5371 	for_each_hwfn(p_dev, i) {
5372 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5373 
5374 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
5375 							min_pf_rate);
5376 	}
5377 }
5378 
5379 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
5380 				       struct ecore_ptt *p_ptt,
5381 				       struct ecore_mcp_link_state *p_link,
5382 				       u8 max_bw)
5383 {
5384 	int rc = ECORE_SUCCESS;
5385 
5386 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
5387 
5388 	if (!p_link->line_speed && (max_bw != 100))
5389 		return rc;
5390 
5391 	p_link->speed = (p_link->line_speed * max_bw) / 100;
5392 	p_hwfn->qm_info.pf_rl = p_link->speed;
5393 
5394 	/* Since the limiter also affects Tx-switched traffic, we don't want it
5395 	 * to limit such traffic in case there's no actual limit.
5396 	 * In that case, set limit to imaginary high boundary.
5397 	 */
5398 	if (max_bw == 100)
5399 		p_hwfn->qm_info.pf_rl = 100000;
5400 
5401 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
5402 			      p_hwfn->qm_info.pf_rl);
5403 
5404 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5405 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
5406 		   p_link->speed);
5407 
5408 	return rc;
5409 }
5410 
5411 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
5412 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
5413 {
5414 	int i, rc = ECORE_INVAL;
5415 
5416 	if (max_bw < 1 || max_bw > 100) {
5417 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
5418 		return rc;
5419 	}
5420 
5421 	for_each_hwfn(p_dev, i) {
5422 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5423 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
5424 		struct ecore_mcp_link_state *p_link;
5425 		struct ecore_ptt *p_ptt;
5426 
5427 		p_link = &p_lead->mcp_info->link_output;
5428 
5429 		p_ptt = ecore_ptt_acquire(p_hwfn);
5430 		if (!p_ptt)
5431 			return ECORE_TIMEOUT;
5432 
5433 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
5434 							p_link, max_bw);
5435 
5436 		ecore_ptt_release(p_hwfn, p_ptt);
5437 
5438 		if (rc != ECORE_SUCCESS)
5439 			break;
5440 	}
5441 
5442 	return rc;
5443 }
5444 
5445 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
5446 				       struct ecore_ptt *p_ptt,
5447 				       struct ecore_mcp_link_state *p_link,
5448 				       u8 min_bw)
5449 {
5450 	int rc = ECORE_SUCCESS;
5451 
5452 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
5453 	p_hwfn->qm_info.pf_wfq = min_bw;
5454 
5455 	if (!p_link->line_speed)
5456 		return rc;
5457 
5458 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
5459 
5460 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
5461 
5462 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5463 		   "Configured MIN bandwidth to be %d Mb/sec\n",
5464 		   p_link->min_pf_rate);
5465 
5466 	return rc;
5467 }
5468 
5469 /* Main API to configure PF min bandwidth where bw range is [1-100] */
5470 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
5471 {
5472 	int i, rc = ECORE_INVAL;
5473 
5474 	if (min_bw < 1 || min_bw > 100) {
5475 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
5476 		return rc;
5477 	}
5478 
5479 	for_each_hwfn(p_dev, i) {
5480 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5481 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
5482 		struct ecore_mcp_link_state *p_link;
5483 		struct ecore_ptt *p_ptt;
5484 
5485 		p_link = &p_lead->mcp_info->link_output;
5486 
5487 		p_ptt = ecore_ptt_acquire(p_hwfn);
5488 		if (!p_ptt)
5489 			return ECORE_TIMEOUT;
5490 
5491 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
5492 							p_link, min_bw);
5493 		if (rc != ECORE_SUCCESS) {
5494 			ecore_ptt_release(p_hwfn, p_ptt);
5495 			return rc;
5496 		}
5497 
5498 		if (p_link->min_pf_rate) {
5499 			u32 min_rate = p_link->min_pf_rate;
5500 
5501 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
5502 								     p_ptt,
5503 								     min_rate);
5504 		}
5505 
5506 		ecore_ptt_release(p_hwfn, p_ptt);
5507 	}
5508 
5509 	return rc;
5510 }
5511 
5512 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
5513 {
5514 	struct ecore_mcp_link_state *p_link;
5515 
5516 	p_link = &p_hwfn->mcp_info->link_output;
5517 
5518 	if (p_link->min_pf_rate)
5519 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
5520 						 p_link->min_pf_rate);
5521 
5522 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
5523 		    sizeof(*p_hwfn->qm_info.wfq_data) *
5524 				p_hwfn->qm_info.num_vports);
5525 }
5526 
5527 int ecore_device_num_engines(struct ecore_dev *p_dev)
5528 {
5529 	return ECORE_IS_BB(p_dev) ? 2 : 1;
5530 }
5531 
5532 int ecore_device_num_ports(struct ecore_dev *p_dev)
5533 {
5534 	/* in CMT always only one port */
5535 	if (p_dev->num_hwfns > 1)
5536 		return 1;
5537 
5538 	return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
5539 }
5540 
5541 void ecore_set_fw_mac_addr(__le16 *fw_msb,
5542 			  __le16 *fw_mid,
5543 			  __le16 *fw_lsb,
5544 			  u8 *mac)
5545 {
5546 	((u8 *)fw_msb)[0] = mac[1];
5547 	((u8 *)fw_msb)[1] = mac[0];
5548 	((u8 *)fw_mid)[0] = mac[3];
5549 	((u8 *)fw_mid)[1] = mac[2];
5550 	((u8 *)fw_lsb)[0] = mac[5];
5551 	((u8 *)fw_lsb)[1] = mac[4];
5552 }
5553