xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_dev.c (revision 1c05a6ea6b849ff95e539c31adea887c644a6a01)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_dev.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "bcm_osal.h"
35 #include "reg_addr.h"
36 #include "ecore_gtt_reg_addr.h"
37 #include "ecore.h"
38 #include "ecore_chain.h"
39 #include "ecore_status.h"
40 #include "ecore_hw.h"
41 #include "ecore_rt_defs.h"
42 #include "ecore_init_ops.h"
43 #include "ecore_int.h"
44 #include "ecore_cxt.h"
45 #include "ecore_spq.h"
46 #include "ecore_init_fw_funcs.h"
47 #include "ecore_sp_commands.h"
48 #include "ecore_dev_api.h"
49 #include "ecore_sriov.h"
50 #include "ecore_vf.h"
51 #include "ecore_ll2.h"
52 #include "ecore_fcoe.h"
53 #include "ecore_iscsi.h"
54 #include "ecore_ooo.h"
55 #include "ecore_mcp.h"
56 #include "ecore_hw_defs.h"
57 #include "mcp_public.h"
58 #include "ecore_roce.h"
59 #include "ecore_iro.h"
60 #include "nvm_cfg.h"
61 #include "ecore_dev_api.h"
62 #include "ecore_dcbx.h"
63 #include "pcics_reg_driver.h"
64 #include "ecore_l2.h"
65 
66 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
67  * registers involved are not split and thus configuration is a race where
68  * some of the PFs configuration might be lost.
69  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
70  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
71  * there's more than a single compiled ecore component in system].
72  */
73 static osal_spinlock_t qm_lock;
74 static bool qm_lock_init = false;
75 
76 /******************** Doorbell Recovery *******************/
77 /* The doorbell recovery mechanism consists of a list of entries which represent
78  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
79  * entity needs to register with the mechanism and provide the parameters
80  * describing it's doorbell, including a location where last used doorbell data
81  * can be found. The doorbell execute function will traverse the list and
82  * doorbell all of the registered entries.
83  */
84 struct ecore_db_recovery_entry {
85 	osal_list_entry_t	list_entry;
86 	void OSAL_IOMEM		*db_addr;
87 	void			*db_data;
88 	enum ecore_db_rec_width	db_width;
89 	enum ecore_db_rec_space	db_space;
90 	u8			hwfn_idx;
91 };
92 
93 /* display a single doorbell recovery entry */
94 static void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
95 				struct ecore_db_recovery_entry *db_entry,
96 				char *action)
97 {
98 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
99 		   action, db_entry, db_entry->db_addr, db_entry->db_data,
100 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
101 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
102 		   db_entry->hwfn_idx);
103 }
104 
105 /* doorbell address sanity (address within doorbell bar range) */
106 static bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr)
107 {
108 	if (db_addr < p_dev->doorbells || db_addr >
109 		(void OSAL_IOMEM *)((uint8_t *)p_dev->doorbells + p_dev->db_size)) {
110 		OSAL_WARN(true,
111 			  "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
112 			  db_addr, p_dev->doorbells,
113 			  (void *)((uint8_t *)p_dev->doorbells + p_dev->db_size));
114 		return false;
115 	} else {
116 		return true;
117 	}
118 }
119 
120 /* find hwfn according to the doorbell address */
121 static struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
122 					  void OSAL_IOMEM *db_addr)
123 {
124 	struct ecore_hwfn *p_hwfn;
125 
126 	/* in CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
127 	if (p_dev->num_hwfns > 1)
128 		p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
129 			&p_dev->hwfns[0] : &p_dev->hwfns[1];
130 	else
131 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
132 
133 	return p_hwfn;
134 }
135 
136 /* add a new entry to the doorbell recovery mechanism */
137 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
138 					   void OSAL_IOMEM *db_addr,
139 					   void *db_data,
140 					   enum ecore_db_rec_width db_width,
141 					   enum ecore_db_rec_space db_space)
142 {
143 	struct ecore_db_recovery_entry *db_entry;
144 	struct ecore_hwfn *p_hwfn;
145 
146 	/* shortcircuit VFs, for now */
147 	if (IS_VF(p_dev)) {
148 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
149 		return ECORE_SUCCESS;
150 	}
151 
152 	/* sanitize doorbell address */
153 	if (!ecore_db_rec_sanity(p_dev, db_addr))
154 		return ECORE_INVAL;
155 
156 	/* obtain hwfn from doorbell address */
157 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
158 
159 	/* create entry */
160 	db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
161 	if (!db_entry) {
162 		DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
163 		return ECORE_NOMEM;
164 	}
165 
166 	/* populate entry */
167 	db_entry->db_addr = db_addr;
168 	db_entry->db_data = db_data;
169 	db_entry->db_width = db_width;
170 	db_entry->db_space = db_space;
171 	db_entry->hwfn_idx = p_hwfn->my_id;
172 
173 	/* display */
174 	ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
175 
176 	/* protect the list */
177 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
178 	OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
179 			    &p_hwfn->db_recovery_info.list);
180 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
181 
182 	return ECORE_SUCCESS;
183 }
184 
185 /* remove an entry from the doorbell recovery mechanism */
186 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
187 					   void OSAL_IOMEM *db_addr,
188 					   void *db_data)
189 {
190 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
191 	enum _ecore_status_t rc = ECORE_INVAL;
192 	struct ecore_hwfn *p_hwfn;
193 
194 	/* shortcircuit VFs, for now */
195 	if (IS_VF(p_dev)) {
196 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
197 		return ECORE_SUCCESS;
198 	}
199 
200 	/* sanitize doorbell address */
201 	if (!ecore_db_rec_sanity(p_dev, db_addr))
202 		return ECORE_INVAL;
203 
204 	/* obtain hwfn from doorbell address */
205 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
206 
207 	/* protect the list */
208 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
209 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
210 				 &p_hwfn->db_recovery_info.list,
211 				 list_entry,
212 				 struct ecore_db_recovery_entry) {
213 
214 		/* search according to db_data addr since db_addr is not unique (roce) */
215 		if (db_entry->db_data == db_data) {
216 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
217 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
218 					       &p_hwfn->db_recovery_info.list);
219 			rc = ECORE_SUCCESS;
220 			break;
221 		}
222 	}
223 
224 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
225 
226 	if (rc == ECORE_INVAL) {
227 		OSAL_WARN(true, "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
228 			  db_data, db_addr);
229 	} else {
230 		OSAL_FREE(p_dev, db_entry);
231 	}
232 
233 	return rc;
234 }
235 
236 /* initialize the doorbell recovery mechanism */
237 static void ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
238 {
239 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
240 	OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
241 #ifdef CONFIG_ECORE_LOCK_ALLOC
242 	OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock);
243 #endif
244 	OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
245 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
246 }
247 
248 /* destroy the doorbell recovery mechanism */
249 static void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
250 {
251 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
252 
253 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
254 	if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
255 		DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
256 		while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
257 			db_entry = OSAL_LIST_FIRST_ENTRY(&p_hwfn->db_recovery_info.list,
258 							 struct ecore_db_recovery_entry,
259 							 list_entry);
260 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
261 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
262 					       &p_hwfn->db_recovery_info.list);
263 			OSAL_FREE(p_hwfn->p_dev, db_entry);
264 		}
265 	}
266 #ifdef CONFIG_ECORE_LOCK_ALLOC
267 	OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
268 #endif
269 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
270 }
271 
272 /* print the content of the doorbell recovery mechanism */
273 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
274 {
275 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
276 
277 	DP_NOTICE(p_hwfn, false,
278 		  "Dispalying doorbell recovery database. Counter was %d\n",
279 		  p_hwfn->db_recovery_info.db_recovery_counter);
280 
281 	/* protect the list */
282 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
283 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
284 				 &p_hwfn->db_recovery_info.list,
285 				 list_entry,
286 				 struct ecore_db_recovery_entry) {
287 		ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
288 	}
289 
290 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
291 }
292 
293 /* ring the doorbell of a single doorbell recovery entry */
294 static void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
295 			    struct ecore_db_recovery_entry *db_entry,
296 			    enum ecore_db_rec_exec db_exec)
297 {
298 	/* Print according to width */
299 	if (db_entry->db_width == DB_REC_WIDTH_32B)
300 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %x\n",
301 			   db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing",
302 			   db_entry->db_addr, *(u32 *)db_entry->db_data);
303 	else
304 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %llx\n",
305 			   db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing",
306 			   db_entry->db_addr, (unsigned long long)*(u64 *)(db_entry->db_data));
307 
308 	/* Sanity */
309 	if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr))
310 		return;
311 
312 	/* Flush the write combined buffer. Since there are multiple doorbelling
313 	 * entities using the same address, if we don't flush, a transaction
314 	 * could be lost.
315 	 */
316 	OSAL_WMB(p_hwfn->p_dev);
317 
318 	/* Ring the doorbell */
319 	if (db_exec == DB_REC_REAL_DEAL) {
320 		if (db_entry->db_width == DB_REC_WIDTH_32B)
321 			DIRECT_REG_WR(p_hwfn, db_entry->db_addr, *(u32 *)(db_entry->db_data));
322 		else
323 			DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, *(u64 *)(db_entry->db_data));
324 	}
325 
326 	/* Flush the write combined buffer. Next doorbell may come from a
327 	 * different entity to the same address...
328 	 */
329 	OSAL_WMB(p_hwfn->p_dev);
330 }
331 
332 /* traverse the doorbell recovery entry list and ring all the doorbells */
333 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
334 			       enum ecore_db_rec_exec db_exec)
335 {
336 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
337 
338 	DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
339 		  p_hwfn->db_recovery_info.db_recovery_counter);
340 
341 	/* protect the list */
342 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
343 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
344 				 &p_hwfn->db_recovery_info.list,
345 				 list_entry,
346 				 struct ecore_db_recovery_entry)
347 		ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
348 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
349 
350 	/* track amount of times recovery was executed */
351 	p_hwfn->db_recovery_info.db_recovery_counter++;
352 }
353 /******************** Doorbell Recovery end ****************/
354 
355 /* Configurable */
356 #define ECORE_MIN_DPIS		(4)  /* The minimal number of DPIs required to
357 				      * load the driver. The number was
358 				      * arbitrarily set.
359 				      */
360 
361 /* Derived */
362 #define ECORE_MIN_PWM_REGION	(ECORE_WID_SIZE * ECORE_MIN_DPIS)
363 
364 enum BAR_ID {
365 	BAR_ID_0,	/* used for GRC */
366 	BAR_ID_1	/* Used for doorbells */
367 };
368 
369 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
370 			     struct ecore_ptt *p_ptt,
371 			     enum BAR_ID bar_id)
372 {
373 	u32 bar_reg = (bar_id == BAR_ID_0 ?
374 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
375 	u32 val;
376 
377 	if (IS_VF(p_hwfn->p_dev)) {
378 		/* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
379 		 * read from actual register, but we're currently not using
380 		 * it for actual doorbelling.
381 		 */
382 		return 1 << 17;
383 	}
384 
385 	val = ecore_rd(p_hwfn, p_ptt, bar_reg);
386 	if (val)
387 		return 1 << (val + 15);
388 
389 	/* The above registers were updated in the past only in CMT mode. Since
390 	 * they were found to be useful MFW started updating them from 8.7.7.0.
391 	 * In older MFW versions they are set to 0 which means disabled.
392 	 */
393 	if (p_hwfn->p_dev->num_hwfns > 1) {
394 		DP_INFO(p_hwfn,
395 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
396 		return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
397 	} else {
398 		DP_INFO(p_hwfn,
399 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
400 		return 512 * 1024;
401 	}
402 }
403 
404 void ecore_init_dp(struct ecore_dev	*p_dev,
405 		   u32			dp_module,
406 		   u8			dp_level,
407 		   void		 *dp_ctx)
408 {
409 	u32 i;
410 
411 	p_dev->dp_level = dp_level;
412 	p_dev->dp_module = dp_module;
413 	p_dev->dp_ctx = dp_ctx;
414 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
415 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
416 
417 		p_hwfn->dp_level = dp_level;
418 		p_hwfn->dp_module = dp_module;
419 		p_hwfn->dp_ctx = dp_ctx;
420 	}
421 }
422 
423 void ecore_init_struct(struct ecore_dev *p_dev)
424 {
425 	u8 i;
426 
427 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
428 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
429 
430 		p_hwfn->p_dev = p_dev;
431 		p_hwfn->my_id = i;
432 		p_hwfn->b_active = false;
433 
434 #ifdef CONFIG_ECORE_LOCK_ALLOC
435 		OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
436 #endif
437 		OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
438 	}
439 
440 	/* hwfn 0 is always active */
441 	p_dev->hwfns[0].b_active = true;
442 
443 	/* set the default cache alignment to 128 (may be overridden later) */
444 	p_dev->cache_shift = 7;
445 }
446 
447 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
448 {
449 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
450 
451 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
452 	qm_info->qm_pq_params = OSAL_NULL;
453 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
454 	qm_info->qm_vport_params = OSAL_NULL;
455 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
456 	qm_info->qm_port_params = OSAL_NULL;
457 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
458 	qm_info->wfq_data = OSAL_NULL;
459 }
460 
461 void ecore_resc_free(struct ecore_dev *p_dev)
462 {
463 	int i;
464 
465 	if (IS_VF(p_dev)) {
466 		for_each_hwfn(p_dev, i)
467 			ecore_l2_free(&p_dev->hwfns[i]);
468 		return;
469 	}
470 
471 	OSAL_FREE(p_dev, p_dev->fw_data);
472 	p_dev->fw_data = OSAL_NULL;
473 
474 	OSAL_FREE(p_dev, p_dev->reset_stats);
475 	p_dev->reset_stats = OSAL_NULL;
476 
477 	for_each_hwfn(p_dev, i) {
478 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
479 
480 		ecore_cxt_mngr_free(p_hwfn);
481 		ecore_qm_info_free(p_hwfn);
482 		ecore_spq_free(p_hwfn);
483 		ecore_eq_free(p_hwfn);
484 		ecore_consq_free(p_hwfn);
485 		ecore_int_free(p_hwfn);
486 #ifdef CONFIG_ECORE_LL2
487 		ecore_ll2_free(p_hwfn);
488 #endif
489 #ifdef CONFIG_ECORE_FCOE
490 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
491 			ecore_fcoe_free(p_hwfn);
492 #endif
493 #ifdef CONFIG_ECORE_ISCSI
494 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
495 			ecore_iscsi_free(p_hwfn);
496 			ecore_ooo_free(p_hwfn);
497 		}
498 #endif
499 		ecore_iov_free(p_hwfn);
500 		ecore_l2_free(p_hwfn);
501 		ecore_dmae_info_free(p_hwfn);
502 		ecore_dcbx_info_free(p_hwfn);
503 		/* @@@TBD Flush work-queue ?*/
504 
505 		/* destroy doorbell recovery mechanism */
506 		ecore_db_recovery_teardown(p_hwfn);
507 	}
508 }
509 
510 /******************** QM initialization *******************/
511 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
512 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
513 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
514 
515 /* determines the physical queue flags for a given PF. */
516 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
517 {
518 	u32 flags;
519 
520 	/* common flags */
521 	flags = PQ_FLAGS_LB;
522 
523 	/* feature flags */
524 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
525 		flags |= PQ_FLAGS_VFS;
526 	if (IS_ECORE_DCQCN(p_hwfn))
527 		flags |= PQ_FLAGS_RLS;
528 
529 	/* protocol flags */
530 	switch (p_hwfn->hw_info.personality) {
531 	case ECORE_PCI_ETH:
532 		flags |= PQ_FLAGS_MCOS;
533 		break;
534 	case ECORE_PCI_FCOE:
535 		flags |= PQ_FLAGS_OFLD;
536 		break;
537 	case ECORE_PCI_ISCSI:
538 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
539 		break;
540 	case ECORE_PCI_ETH_ROCE:
541 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
542 		break;
543 	case ECORE_PCI_ETH_IWARP:
544 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
545 		break;
546 	default:
547 		DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
548 		return 0;
549 	}
550 
551 	return flags;
552 }
553 
554 
555 /* Getters for resource amounts necessary for qm initialization */
556 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
557 {
558 	return p_hwfn->hw_info.num_hw_tc;
559 }
560 
561 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
562 {
563 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
564 }
565 
566 #define NUM_DEFAULT_RLS 1
567 
568 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
569 {
570 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
571 
572 	/* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
573 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
574 				     (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
575 						     ROCE_DCQCN_RP_MAX_QPS));
576 
577 	/* make sure after we reserve the default and VF rls we'll have something left */
578 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
579 		if (IS_ECORE_DCQCN(p_hwfn))
580 			DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
581 		return 0;
582 	}
583 
584 	/* subtract rls necessary for VFs and one default one for the PF */
585 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
586 
587 	return num_pf_rls;
588 }
589 
590 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
591 {
592 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
593 
594 	/* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
595 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
596 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
597 }
598 
599 /* calc amount of PQs according to the requested flags */
600 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
601 {
602 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
603 
604 	return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
605 	       (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
606 	       (!!(PQ_FLAGS_LB & pq_flags)) +
607 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
608 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
609 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
610 	       (!!(PQ_FLAGS_LLT & pq_flags)) +
611 	       (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
612 }
613 
614 /* initialize the top level QM params */
615 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
616 {
617 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
618 	bool four_port;
619 
620 	/* pq and vport bases for this PF */
621 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
622 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
623 
624 	/* rate limiting and weighted fair queueing are always enabled */
625 	qm_info->vport_rl_en = 1;
626 	qm_info->vport_wfq_en = 1;
627 
628 	/* TC config is different for AH 4 port */
629 	four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
630 
631 	/* in AH 4 port we have fewer TCs per port */
632 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
633 
634 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
635 	if (!qm_info->ooo_tc)
636 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
637 }
638 
639 /* initialize qm vport params */
640 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
641 {
642 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
643 	u8 i;
644 
645 	/* all vports participate in weighted fair queueing */
646 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
647 		qm_info->qm_vport_params[i].vport_wfq = 1;
648 }
649 
650 /* initialize qm port params */
651 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
652 {
653 	/* Initialize qm port parameters */
654 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
655 
656 	/* indicate how ooo and high pri traffic is dealt with */
657 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
658 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
659 
660 	for (i = 0; i < num_ports; i++) {
661 		struct init_qm_port_params *p_qm_port =
662 			&p_hwfn->qm_info.qm_port_params[i];
663 
664 		p_qm_port->active = 1;
665 		p_qm_port->active_phys_tcs = active_phys_tcs;
666 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
667 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
668 	}
669 }
670 
671 /* Reset the params which must be reset for qm init. QM init may be called as
672  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
673  * params may be affected by the init but would simply recalculate to the same
674  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
675  * affected as these amounts stay the same.
676  */
677 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
678 {
679 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
680 
681 	qm_info->num_pqs = 0;
682 	qm_info->num_vports = 0;
683 	qm_info->num_pf_rls = 0;
684 	qm_info->num_vf_pqs = 0;
685 	qm_info->first_vf_pq = 0;
686 	qm_info->first_mcos_pq = 0;
687 	qm_info->first_rl_pq = 0;
688 }
689 
690 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
691 {
692 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
693 
694 	qm_info->num_vports++;
695 
696 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
697 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
698 }
699 
700 /* initialize a single pq and manage qm_info resources accounting.
701  * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
702  * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
703  */
704 
705 /* flags for pq init */
706 #define PQ_INIT_SHARE_VPORT	(1 << 0)
707 #define PQ_INIT_PF_RL		(1 << 1)
708 #define PQ_INIT_VF_RL		(1 << 2)
709 
710 /* defines for pq init */
711 #define PQ_INIT_DEFAULT_WRR_GROUP	1
712 #define PQ_INIT_DEFAULT_TC		0
713 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
714 
715 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
716 			     struct ecore_qm_info *qm_info,
717 			     u8 tc, u32 pq_init_flags)
718 {
719 	u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
720 
721 	if (pq_idx > max_pq)
722 		DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
723 
724 	/* init pq params */
725 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
726 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
727 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
728 	qm_info->qm_pq_params[pq_idx].rl_valid =
729 		(pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
730 
731 	/* qm params accounting */
732 	qm_info->num_pqs++;
733 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
734 		qm_info->num_vports++;
735 
736 	if (pq_init_flags & PQ_INIT_PF_RL)
737 		qm_info->num_pf_rls++;
738 
739 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
740 		DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
741 
742 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
743 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
744 }
745 
746 /* get pq index according to PQ_FLAGS */
747 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
748 					     u32 pq_flags)
749 {
750 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
751 
752 	/* Can't have multiple flags set here */
753 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
754 		goto err;
755 
756 	switch (pq_flags) {
757 	case PQ_FLAGS_RLS:
758 		return &qm_info->first_rl_pq;
759 	case PQ_FLAGS_MCOS:
760 		return &qm_info->first_mcos_pq;
761 	case PQ_FLAGS_LB:
762 		return &qm_info->pure_lb_pq;
763 	case PQ_FLAGS_OOO:
764 		return &qm_info->ooo_pq;
765 	case PQ_FLAGS_ACK:
766 		return &qm_info->pure_ack_pq;
767 	case PQ_FLAGS_OFLD:
768 		return &qm_info->offload_pq;
769 	case PQ_FLAGS_LLT:
770 		return &qm_info->low_latency_pq;
771 	case PQ_FLAGS_VFS:
772 		return &qm_info->first_vf_pq;
773 	default:
774 		goto err;
775 	}
776 
777 err:
778 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
779 	return OSAL_NULL;
780 }
781 
782 /* save pq index in qm info */
783 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
784 				  u32 pq_flags, u16 pq_val)
785 {
786 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
787 
788 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
789 }
790 
791 /* get tx pq index, with the PQ TX base already set (ready for context init) */
792 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
793 {
794 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
795 
796 	return *base_pq_idx + CM_TX_PQ_BASE;
797 }
798 
799 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
800 {
801 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
802 
803 	if (tc > max_tc)
804 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
805 
806 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
807 }
808 
809 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
810 {
811 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
812 
813 	if (vf > max_vf)
814 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
815 
816 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
817 }
818 
819 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
820 {
821 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
822 
823 	if (rl > max_rl)
824 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
825 
826 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
827 }
828 
829 /* Functions for creating specific types of pqs */
830 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
831 {
832 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
833 
834 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
835 		return;
836 
837 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
838 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
839 }
840 
841 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
842 {
843 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
844 
845 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
846 		return;
847 
848 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
849 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
850 }
851 
852 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
853 {
854 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
855 
856 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
857 		return;
858 
859 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
860 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
861 }
862 
863 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
864 {
865 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
866 
867 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
868 		return;
869 
870 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
871 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
872 }
873 
874 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
875 {
876 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
877 
878 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
879 		return;
880 
881 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
882 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
883 }
884 
885 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
886 {
887 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
888 	u8 tc_idx;
889 
890 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
891 		return;
892 
893 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
894 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
895 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
896 }
897 
898 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
899 {
900 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
901 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
902 
903 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
904 		return;
905 
906 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
907 	qm_info->num_vf_pqs = num_vfs;
908 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
909 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
910 }
911 
912 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
913 {
914 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
915 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
916 
917 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
918 		return;
919 
920 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
921 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
922 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
923 }
924 
925 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
926 {
927 	/* rate limited pqs, must come first (FW assumption) */
928 	ecore_init_qm_rl_pqs(p_hwfn);
929 
930 	/* pqs for multi cos */
931 	ecore_init_qm_mcos_pqs(p_hwfn);
932 
933 	/* pure loopback pq */
934 	ecore_init_qm_lb_pq(p_hwfn);
935 
936 	/* out of order pq */
937 	ecore_init_qm_ooo_pq(p_hwfn);
938 
939 	/* pure ack pq */
940 	ecore_init_qm_pure_ack_pq(p_hwfn);
941 
942 	/* pq for offloaded protocol */
943 	ecore_init_qm_offload_pq(p_hwfn);
944 
945 	/* low latency pq */
946 	ecore_init_qm_low_latency_pq(p_hwfn);
947 
948 	/* done sharing vports */
949 	ecore_init_qm_advance_vport(p_hwfn);
950 
951 	/* pqs for vfs */
952 	ecore_init_qm_vf_pqs(p_hwfn);
953 }
954 
955 /* compare values of getters against resources amounts */
956 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
957 {
958 	if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
959 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
960 		return ECORE_INVAL;
961 	}
962 
963 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
964 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
965 		return ECORE_INVAL;
966 	}
967 
968 	return ECORE_SUCCESS;
969 }
970 
971 /*
972  * Function for verbose printing of the qm initialization results
973  */
974 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
975 {
976 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
977 	struct init_qm_vport_params *vport;
978 	struct init_qm_port_params *port;
979 	struct init_qm_pq_params *pq;
980 	int i, tc;
981 
982 	/* top level params */
983 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
984 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
985 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
986 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
987 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
988 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
989 
990 	/* port table */
991 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
992 		port = &(qm_info->qm_port_params[i]);
993 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
994 			   i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
995 	}
996 
997 	/* vport table */
998 	for (i = 0; i < qm_info->num_vports; i++) {
999 		vport = &(qm_info->qm_vport_params[i]);
1000 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
1001 			   qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
1002 		for (tc = 0; tc < NUM_OF_TCS; tc++)
1003 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
1004 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
1005 	}
1006 
1007 	/* pq table */
1008 	for (i = 0; i < qm_info->num_pqs; i++) {
1009 		pq = &(qm_info->qm_pq_params[i]);
1010 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
1011 			   qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
1012 	}
1013 }
1014 
1015 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
1016 {
1017 	/* reset params required for init run */
1018 	ecore_init_qm_reset_params(p_hwfn);
1019 
1020 	/* init QM top level params */
1021 	ecore_init_qm_params(p_hwfn);
1022 
1023 	/* init QM port params */
1024 	ecore_init_qm_port_params(p_hwfn);
1025 
1026 	/* init QM vport params */
1027 	ecore_init_qm_vport_params(p_hwfn);
1028 
1029 	/* init QM physical queue params */
1030 	ecore_init_qm_pq_params(p_hwfn);
1031 
1032 	/* display all that init */
1033 	ecore_dp_init_qm_params(p_hwfn);
1034 }
1035 
1036 /* This function reconfigures the QM pf on the fly.
1037  * For this purpose we:
1038  * 1. reconfigure the QM database
1039  * 2. set new values to runtime array
1040  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
1041  * 4. activate init tool in QM_PF stage
1042  * 5. send an sdm_qm_cmd through rbc interface to release the QM
1043  */
1044 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
1045 				     struct ecore_ptt *p_ptt)
1046 {
1047 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1048 	bool b_rc;
1049 	enum _ecore_status_t rc;
1050 
1051 	/* initialize ecore's qm data structure */
1052 	ecore_init_qm_info(p_hwfn);
1053 
1054 	/* stop PF's qm queues */
1055 	OSAL_SPIN_LOCK(&qm_lock);
1056 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
1057 				      qm_info->start_pq, qm_info->num_pqs);
1058 	OSAL_SPIN_UNLOCK(&qm_lock);
1059 	if (!b_rc)
1060 		return ECORE_INVAL;
1061 
1062 	/* clear the QM_PF runtime phase leftovers from previous init */
1063 	ecore_init_clear_rt_data(p_hwfn);
1064 
1065 	/* prepare QM portion of runtime array */
1066 	ecore_qm_init_pf(p_hwfn, p_ptt);
1067 
1068 	/* activate init tool on runtime array */
1069 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
1070 			    p_hwfn->hw_info.hw_mode);
1071 	if (rc != ECORE_SUCCESS)
1072 		return rc;
1073 
1074 	/* start PF's qm queues */
1075 	OSAL_SPIN_LOCK(&qm_lock);
1076 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
1077 				      qm_info->start_pq, qm_info->num_pqs);
1078 	OSAL_SPIN_UNLOCK(&qm_lock);
1079 	if (!b_rc)
1080 		return ECORE_INVAL;
1081 
1082 	return ECORE_SUCCESS;
1083 }
1084 
1085 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
1086 {
1087 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1088 	enum _ecore_status_t rc;
1089 
1090 	rc = ecore_init_qm_sanity(p_hwfn);
1091 	if (rc != ECORE_SUCCESS)
1092 		goto alloc_err;
1093 
1094 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1095 					    sizeof(struct init_qm_pq_params) *
1096 					    ecore_init_qm_get_num_pqs(p_hwfn));
1097 	if (!qm_info->qm_pq_params)
1098 		goto alloc_err;
1099 
1100 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1101 					       sizeof(struct init_qm_vport_params) *
1102 					       ecore_init_qm_get_num_vports(p_hwfn));
1103 	if (!qm_info->qm_vport_params)
1104 		goto alloc_err;
1105 
1106 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1107 					      sizeof(struct init_qm_port_params) *
1108 					      p_hwfn->p_dev->num_ports_in_engine);
1109 	if (!qm_info->qm_port_params)
1110 		goto alloc_err;
1111 
1112 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1113 					sizeof(struct ecore_wfq_data) *
1114 					ecore_init_qm_get_num_vports(p_hwfn));
1115 	if (!qm_info->wfq_data)
1116 		goto alloc_err;
1117 
1118 	return ECORE_SUCCESS;
1119 
1120 alloc_err:
1121 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
1122 	ecore_qm_info_free(p_hwfn);
1123 	return ECORE_NOMEM;
1124 }
1125 /******************** End QM initialization ***************/
1126 
1127 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
1128 {
1129 	u32 rdma_tasks, excess_tasks;
1130 	u32 line_count;
1131 	enum _ecore_status_t rc = ECORE_SUCCESS;
1132 	int i;
1133 
1134 	if (IS_VF(p_dev)) {
1135 		for_each_hwfn(p_dev, i) {
1136 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
1137 			if (rc != ECORE_SUCCESS)
1138 				return rc;
1139 		}
1140 		return rc;
1141 	}
1142 
1143 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
1144 				     sizeof(*p_dev->fw_data));
1145 	if (!p_dev->fw_data)
1146 		return ECORE_NOMEM;
1147 
1148 	for_each_hwfn(p_dev, i) {
1149 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1150 		u32 n_eqes, num_cons;
1151 
1152 		/* First allocate the context manager structure */
1153 		rc = ecore_cxt_mngr_alloc(p_hwfn);
1154 		if (rc)
1155 			goto alloc_err;
1156 
1157 		/* Set the HW cid/tid numbers (in the contest manager)
1158 		 * Must be done prior to any further computations.
1159 		 */
1160 		rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
1161 		if (rc)
1162 			goto alloc_err;
1163 
1164 		rc = ecore_alloc_qm_data(p_hwfn);
1165 		if (rc)
1166 			goto alloc_err;
1167 
1168 		/* init qm info */
1169 		ecore_init_qm_info(p_hwfn);
1170 
1171 		/* Compute the ILT client partition */
1172 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
1173 		if (rc) {
1174 			DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
1175 			/* In case there are not enough ILT lines we reduce the
1176 			 * number of RDMA tasks and re-compute.
1177 			 */
1178 			excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
1179 					p_hwfn, line_count);
1180 			if (!excess_tasks)
1181 				goto alloc_err;
1182 
1183 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
1184 			rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
1185 			if (rc)
1186 				goto alloc_err;
1187 
1188 			rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
1189 			if (rc) {
1190 				DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
1191 				       line_count);
1192 
1193 				goto alloc_err;
1194 			}
1195 		}
1196 
1197 		/* CID map / ILT shadow table / T2
1198 		 * The talbes sizes are determined by the computations above
1199 		 */
1200 		rc = ecore_cxt_tables_alloc(p_hwfn);
1201 		if (rc)
1202 			goto alloc_err;
1203 
1204 		/* SPQ, must follow ILT because initializes SPQ context */
1205 		rc = ecore_spq_alloc(p_hwfn);
1206 		if (rc)
1207 			goto alloc_err;
1208 
1209 		/* SP status block allocation */
1210 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
1211 							   RESERVED_PTT_DPC);
1212 
1213 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
1214 		if (rc)
1215 			goto alloc_err;
1216 
1217 		rc = ecore_iov_alloc(p_hwfn);
1218 		if (rc)
1219 			goto alloc_err;
1220 
1221 		/* EQ */
1222 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
1223 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
1224 			/* Calculate the EQ size
1225 			 * ---------------------
1226 			 * Each ICID may generate up to one event at a time i.e.
1227 			 * the event must be handled/cleared before a new one
1228 			 * can be generated. We calculate the sum of events per
1229 			 * protocol and create an EQ deep enough to handle the
1230 			 * worst case:
1231 			 * - Core - according to SPQ.
1232 			 * - RoCE - per QP there are a couple of ICIDs, one
1233 			 *	  responder and one requester, each can
1234 			 *	  generate an EQE => n_eqes_qp = 2 * n_qp.
1235 			 *	  Each CQ can generate an EQE. There are 2 CQs
1236 			 *	  per QP => n_eqes_cq = 2 * n_qp.
1237 			 *	  Hence the RoCE total is 4 * n_qp or
1238 			 *	  2 * num_cons.
1239 			 * - ENet - There can be up to two events per VF. One
1240 			 *	  for VF-PF channel and another for VF FLR
1241 			 *	  initial cleanup. The number of VFs is
1242 			 *	  bounded by MAX_NUM_VFS_BB, and is much
1243 			 *	  smaller than RoCE's so we avoid exact
1244 			 *	  calculation.
1245 			 */
1246 			if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
1247 				num_cons = ecore_cxt_get_proto_cid_count(
1248 					p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
1249 				num_cons *= 2;
1250 			} else {
1251 				num_cons = ecore_cxt_get_proto_cid_count(
1252 						p_hwfn, PROTOCOLID_IWARP,
1253 						OSAL_NULL);
1254 			}
1255 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
1256 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1257 			num_cons = ecore_cxt_get_proto_cid_count(
1258 					p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
1259 			n_eqes += 2 * num_cons;
1260 		}
1261 
1262 		if (n_eqes > 0xFFFF) {
1263 			DP_ERR(p_hwfn,
1264 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
1265 			       n_eqes, 0xFFFF);
1266 			goto alloc_no_mem;
1267 		}
1268 
1269 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
1270 		if (rc)
1271 			goto alloc_err;
1272 
1273 		rc = ecore_consq_alloc(p_hwfn);
1274 		if (rc)
1275 			goto alloc_err;
1276 
1277 		rc = ecore_l2_alloc(p_hwfn);
1278 		if (rc != ECORE_SUCCESS)
1279 			goto alloc_err;
1280 
1281 #ifdef CONFIG_ECORE_LL2
1282 		if (p_hwfn->using_ll2) {
1283 			rc = ecore_ll2_alloc(p_hwfn);
1284 			if (rc)
1285 				goto alloc_err;
1286 		}
1287 #endif
1288 #ifdef CONFIG_ECORE_FCOE
1289 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1290 			rc = ecore_fcoe_alloc(p_hwfn);
1291 			if (rc)
1292 				goto alloc_err;
1293 		}
1294 #endif
1295 #ifdef CONFIG_ECORE_ISCSI
1296 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1297 			rc = ecore_iscsi_alloc(p_hwfn);
1298 			if (rc)
1299 				goto alloc_err;
1300 			rc = ecore_ooo_alloc(p_hwfn);
1301 			if (rc)
1302 				goto alloc_err;
1303 		}
1304 #endif
1305 
1306 		/* DMA info initialization */
1307 		rc = ecore_dmae_info_alloc(p_hwfn);
1308 		if (rc) {
1309 			DP_NOTICE(p_hwfn, true,
1310 				  "Failed to allocate memory for dmae_info structure\n");
1311 			goto alloc_err;
1312 		}
1313 
1314 		/* DCBX initialization */
1315 		rc = ecore_dcbx_info_alloc(p_hwfn);
1316 		if (rc) {
1317 			DP_NOTICE(p_hwfn, true,
1318 				  "Failed to allocate memory for dcbx structure\n");
1319 			goto alloc_err;
1320 		}
1321 
1322 		/* initialize the doorbell recovery mechanism */
1323 		ecore_db_recovery_setup(p_hwfn);
1324 	}
1325 
1326 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
1327 					 sizeof(*p_dev->reset_stats));
1328 	if (!p_dev->reset_stats) {
1329 		DP_NOTICE(p_dev, true,
1330 			  "Failed to allocate reset statistics\n");
1331 		goto alloc_no_mem;
1332 	}
1333 
1334 	return ECORE_SUCCESS;
1335 
1336 alloc_no_mem:
1337 	rc = ECORE_NOMEM;
1338 alloc_err:
1339 	ecore_resc_free(p_dev);
1340 	return rc;
1341 }
1342 
1343 void ecore_resc_setup(struct ecore_dev *p_dev)
1344 {
1345 	int i;
1346 
1347 	if (IS_VF(p_dev)) {
1348 		for_each_hwfn(p_dev, i)
1349 			ecore_l2_setup(&p_dev->hwfns[i]);
1350 		return;
1351 	}
1352 
1353 	for_each_hwfn(p_dev, i) {
1354 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1355 
1356 		ecore_cxt_mngr_setup(p_hwfn);
1357 		ecore_spq_setup(p_hwfn);
1358 		ecore_eq_setup(p_hwfn);
1359 		ecore_consq_setup(p_hwfn);
1360 
1361 		/* Read shadow of current MFW mailbox */
1362 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1363 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1364 			    p_hwfn->mcp_info->mfw_mb_cur,
1365 			    p_hwfn->mcp_info->mfw_mb_length);
1366 
1367 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1368 
1369 		ecore_l2_setup(p_hwfn);
1370 		ecore_iov_setup(p_hwfn);
1371 #ifdef CONFIG_ECORE_LL2
1372 		if (p_hwfn->using_ll2)
1373 			ecore_ll2_setup(p_hwfn);
1374 #endif
1375 #ifdef CONFIG_ECORE_FCOE
1376 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1377 			ecore_fcoe_setup(p_hwfn);
1378 #endif
1379 #ifdef CONFIG_ECORE_ISCSI
1380 		if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1381 			ecore_iscsi_setup(p_hwfn);
1382 			ecore_ooo_setup(p_hwfn);
1383 		}
1384 #endif
1385 	}
1386 }
1387 
1388 #define FINAL_CLEANUP_POLL_CNT	(100)
1389 #define FINAL_CLEANUP_POLL_TIME	(10)
1390 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
1391 					 struct ecore_ptt *p_ptt,
1392 					 u16 id, bool is_vf)
1393 {
1394 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1395 	enum _ecore_status_t rc = ECORE_TIMEOUT;
1396 
1397 #ifndef ASIC_ONLY
1398 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
1399 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1400 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
1401 		return ECORE_SUCCESS;
1402 	}
1403 #endif
1404 
1405 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
1406 	       USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1407 
1408 	if (is_vf)
1409 		id += 0x10;
1410 
1411 	command |= X_FINAL_CLEANUP_AGG_INT <<
1412 		   SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1413 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1414 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1415 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1416 
1417 	/* Make sure notification is not set before initiating final cleanup */
1418 	if (REG_RD(p_hwfn, addr)) {
1419 		DP_NOTICE(p_hwfn, false,
1420 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
1421 		REG_WR(p_hwfn, addr, 0);
1422 	}
1423 
1424 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
1425 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
1426 		   id, command);
1427 
1428 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1429 
1430 	/* Poll until completion */
1431 	while (!REG_RD(p_hwfn, addr) && count--)
1432 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
1433 
1434 	if (REG_RD(p_hwfn, addr))
1435 		rc = ECORE_SUCCESS;
1436 	else
1437 		DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
1438 
1439 	/* Cleanup afterwards */
1440 	REG_WR(p_hwfn, addr, 0);
1441 
1442 	return rc;
1443 }
1444 
1445 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
1446 {
1447 	int hw_mode = 0;
1448 
1449 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
1450 		hw_mode |= 1 << MODE_BB;
1451 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
1452 		hw_mode |= 1 << MODE_K2;
1453 	} else if (ECORE_IS_E5(p_hwfn->p_dev)) {
1454 		hw_mode |= 1 << MODE_E5;
1455 	} else {
1456 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
1457 			  p_hwfn->p_dev->type);
1458 		return ECORE_INVAL;
1459 	}
1460 
1461 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
1462 	switch (p_hwfn->p_dev->num_ports_in_engine) {
1463 	case 1:
1464 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1465 		break;
1466 	case 2:
1467 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1468 		break;
1469 	case 4:
1470 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1471 		break;
1472 	default:
1473 		DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
1474 			  p_hwfn->p_dev->num_ports_in_engine);
1475 		return ECORE_INVAL;
1476 	}
1477 
1478 	switch (p_hwfn->p_dev->mf_mode) {
1479 	case ECORE_MF_DEFAULT:
1480 	case ECORE_MF_NPAR:
1481 		hw_mode |= 1 << MODE_MF_SI;
1482 		break;
1483 	case ECORE_MF_OVLAN:
1484 		hw_mode |= 1 << MODE_MF_SD;
1485 		break;
1486 	default:
1487 		DP_NOTICE(p_hwfn, true, "Unsupported MF mode, init as DEFAULT\n");
1488 		hw_mode |= 1 << MODE_MF_SI;
1489 	}
1490 
1491 #ifndef ASIC_ONLY
1492 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1493 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1494 			hw_mode |= 1 << MODE_FPGA;
1495 		} else {
1496 			if (p_hwfn->p_dev->b_is_emul_full)
1497 				hw_mode |= 1 << MODE_EMUL_FULL;
1498 			else
1499 				hw_mode |= 1 << MODE_EMUL_REDUCED;
1500 		}
1501 	} else
1502 #endif
1503 	hw_mode |= 1 << MODE_ASIC;
1504 
1505 	if (p_hwfn->p_dev->num_hwfns > 1)
1506 		hw_mode |= 1 << MODE_100G;
1507 
1508 	p_hwfn->hw_info.hw_mode = hw_mode;
1509 
1510 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
1511 		   "Configuring function for hw_mode: 0x%08x\n",
1512 		   p_hwfn->hw_info.hw_mode);
1513 
1514 	return ECORE_SUCCESS;
1515 }
1516 
1517 #ifndef ASIC_ONLY
1518 /* MFW-replacement initializations for non-ASIC */
1519 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
1520 					       struct ecore_ptt *p_ptt)
1521 {
1522 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1523 	u32 pl_hv = 1;
1524 	int i;
1525 
1526 	if (CHIP_REV_IS_EMUL(p_dev)) {
1527 		if (ECORE_IS_AH(p_dev))
1528 			pl_hv |= 0x600;
1529 		else if (ECORE_IS_E5(p_dev))
1530 			ECORE_E5_MISSING_CODE;
1531 	}
1532 
1533 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
1534 
1535 	if (CHIP_REV_IS_EMUL(p_dev) &&
1536 	    (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
1537 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
1538 			 0x3ffffff);
1539 
1540 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
1541 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
1542 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
1543 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
1544 
1545 	if (CHIP_REV_IS_EMUL(p_dev)) {
1546 		if (ECORE_IS_AH(p_dev)) {
1547 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
1548 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
1549 				 (p_dev->num_ports_in_engine >> 1));
1550 
1551 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
1552 				 p_dev->num_ports_in_engine == 4 ? 0 : 3);
1553 		} else if (ECORE_IS_E5(p_dev)) {
1554 			ECORE_E5_MISSING_CODE;
1555 		}
1556 
1557 		/* Poll on RBC */
1558 		ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
1559 		for (i = 0; i < 100; i++) {
1560 			OSAL_UDELAY(50);
1561 			if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
1562 				break;
1563 		}
1564 		if (i == 100)
1565 			DP_NOTICE(p_hwfn, true,
1566 				  "RBC done failed to complete in PSWRQ2\n");
1567 	}
1568 
1569 	return ECORE_SUCCESS;
1570 }
1571 #endif
1572 
1573 /* Init run time data for all PFs and their VFs on an engine.
1574  * TBD - for VFs - Once we have parent PF info for each VF in
1575  * shmem available as CAU requires knowledge of parent PF for each VF.
1576  */
1577 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
1578 {
1579 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1580 	int i, igu_sb_id;
1581 
1582 	for_each_hwfn(p_dev, i) {
1583 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1584 		struct ecore_igu_info *p_igu_info;
1585 		struct ecore_igu_block *p_block;
1586 		struct cau_sb_entry sb_entry;
1587 
1588 		p_igu_info = p_hwfn->hw_info.p_igu_info;
1589 
1590 		for (igu_sb_id = 0;
1591 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
1592 		     igu_sb_id++) {
1593 			p_block = &p_igu_info->entry[igu_sb_id];
1594 
1595 			if (!p_block->is_pf)
1596 				continue;
1597 
1598 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
1599 						p_block->function_id,
1600 						0, 0);
1601 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
1602 					 sb_entry);
1603 		}
1604 	}
1605 }
1606 
1607 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
1608 				       struct ecore_ptt *p_ptt)
1609 {
1610 	u32 val, wr_mbs, cache_line_size;
1611 
1612 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
1613 	switch (val) {
1614 	case 0:
1615 		wr_mbs = 128;
1616 		break;
1617 	case 1:
1618 		wr_mbs = 256;
1619 		break;
1620 	case 2:
1621 		wr_mbs = 512;
1622 		break;
1623 	default:
1624 		DP_INFO(p_hwfn,
1625 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1626 			val);
1627 		return;
1628 	}
1629 
1630 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
1631 	switch (cache_line_size) {
1632 	case 32:
1633 		val = 0;
1634 		break;
1635 	case 64:
1636 		val = 1;
1637 		break;
1638 	case 128:
1639 		val = 2;
1640 		break;
1641 	case 256:
1642 		val = 3;
1643 		break;
1644 	default:
1645 		DP_INFO(p_hwfn,
1646 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1647 			cache_line_size);
1648 	}
1649 
1650 	if (OSAL_CACHE_LINE_SIZE > wr_mbs)
1651 		DP_INFO(p_hwfn,
1652 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
1653 			OSAL_CACHE_LINE_SIZE, wr_mbs);
1654 
1655 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
1656 	if (val > 0) {
1657 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
1658 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
1659 	}
1660 }
1661 
1662 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
1663 						 struct ecore_ptt *p_ptt,
1664 						 int hw_mode)
1665 {
1666 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1667 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1668 	u8 vf_id, max_num_vfs;
1669 	u16 num_pfs, pf_id;
1670 	u32 concrete_fid;
1671 	enum _ecore_status_t rc	= ECORE_SUCCESS;
1672 
1673 	ecore_init_cau_rt_data(p_dev);
1674 
1675 	/* Program GTT windows */
1676 	ecore_gtt_init(p_hwfn, p_ptt);
1677 
1678 #ifndef ASIC_ONLY
1679 	if (CHIP_REV_IS_EMUL(p_dev)) {
1680 		rc = ecore_hw_init_chip(p_hwfn, p_ptt);
1681 		if (rc != ECORE_SUCCESS)
1682 			return rc;
1683 	}
1684 #endif
1685 
1686 	if (p_hwfn->mcp_info) {
1687 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
1688 			qm_info->pf_rl_en = 1;
1689 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1690 			qm_info->pf_wfq_en = 1;
1691 	}
1692 
1693 	ecore_qm_common_rt_init(p_hwfn,
1694 				p_dev->num_ports_in_engine,
1695 				qm_info->max_phys_tcs_per_port,
1696 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
1697 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
1698 				qm_info->qm_port_params);
1699 
1700 	ecore_cxt_hw_init_common(p_hwfn);
1701 
1702 	ecore_init_cache_line_size(p_hwfn, p_ptt);
1703 
1704 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1705 	if (rc != ECORE_SUCCESS)
1706 		return rc;
1707 
1708 	/* @@@TBD mask DORQ afull as it is now benign. Init tool should do this */
1709 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_MASK,
1710 		 DORQ_REG_INT_STS_DORQ_FIFO_AFULL);
1711 
1712 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1713 	 * need to decide with which value, maybe runtime
1714 	 */
1715 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1716 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1717 
1718 	if (ECORE_IS_BB(p_dev)) {
1719 		/* Workaround clears ROCE search for all functions to prevent
1720 		 * involving non intialized function in processing ROCE packet.
1721 		 */
1722 		num_pfs = NUM_OF_ENG_PFS(p_dev);
1723 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1724 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1725 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1726 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1727 		}
1728 		/* pretend to original PF */
1729 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1730 	}
1731 
1732 	/* Workaround for avoiding CCFC execution error when getting packets
1733 	 * with CRC errors, and allowing instead the invoking of the FW error
1734 	 * handler.
1735 	 * This is not done inside the init tool since it currently can't
1736 	 * perform a pretending to VFs.
1737 	 */
1738 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1739 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1740 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1741 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1742 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1743 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1744 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1745 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1746 	}
1747 	/* pretend to original PF */
1748 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1749 
1750 	return rc;
1751 }
1752 
1753 #ifndef ASIC_ONLY
1754 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
1755 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
1756 
1757 #define PMEG_IF_BYTE_COUNT	8
1758 
1759 static void ecore_wr_nw_port(struct ecore_hwfn	*p_hwfn,
1760 			     struct ecore_ptt	*p_ptt,
1761 			     u32		addr,
1762 			     u64		data,
1763 			     u8			reg_type,
1764 			     u8			port)
1765 {
1766 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1767 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1768 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
1769 		   (8 << PMEG_IF_BYTE_COUNT),
1770 		   (reg_type << 25) | (addr << 8) | port,
1771 		   (u32)((data >> 32) & 0xffffffff),
1772 		   (u32)(data & 0xffffffff));
1773 
1774 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
1775 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
1776 		  0xffff00fe) |
1777 		 (8 << PMEG_IF_BYTE_COUNT));
1778 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
1779 		 (reg_type << 25) | (addr << 8) | port);
1780 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
1781 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
1782 		 (data >> 32) & 0xffffffff);
1783 }
1784 
1785 #define XLPORT_MODE_REG	(0x20a)
1786 #define XLPORT_MAC_CONTROL (0x210)
1787 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1788 #define XLPORT_ENABLE_REG (0x20b)
1789 
1790 #define XLMAC_CTRL (0x600)
1791 #define XLMAC_MODE (0x601)
1792 #define XLMAC_RX_MAX_SIZE (0x608)
1793 #define XLMAC_TX_CTRL (0x604)
1794 #define XLMAC_PAUSE_CTRL (0x60d)
1795 #define XLMAC_PFC_CTRL (0x60e)
1796 
1797 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
1798 				    struct ecore_ptt *p_ptt)
1799 {
1800 	u8 loopback = 0, port = p_hwfn->port_id * 2;
1801 
1802 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1803 
1804 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
1805 			 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
1806 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1807 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1808 			 0x40, 0, port); /*XLMAC: SOFT RESET */
1809 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
1810 			 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
1811 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
1812 			 0x3fff, 0, port); /* XLMAC: Max Size */
1813 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1814 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1815 			 0, port);
1816 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
1817 			 0x7c000, 0, port);
1818 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1819 			 0x30ffffc000ULL, 0, port);
1820 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
1821 			 0, port); /* XLMAC: TX_EN, RX_EN */
1822 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
1823 			 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1824 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
1825 			 1, 0, port); /* Enabled Parallel PFC interface */
1826 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
1827 			 0xf, 1, port); /* XLPORT port enable */
1828 }
1829 
1830 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
1831 				       struct ecore_ptt *p_ptt)
1832 {
1833 	u8 port = p_hwfn->port_id;
1834 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
1835 
1836 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1837 
1838 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
1839 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
1840 		 (port <<
1841 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
1842 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
1843 
1844 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
1845 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
1846 
1847 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
1848 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
1849 
1850 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
1851 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
1852 
1853 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
1854 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
1855 
1856 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
1857 		 (0xA <<
1858 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
1859 		 (8 <<
1860 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
1861 
1862 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
1863 		 0xa853);
1864 }
1865 
1866 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1867 				 struct ecore_ptt *p_ptt)
1868 {
1869 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
1870 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
1871 	else /* BB */
1872 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
1873 
1874 	return;
1875 }
1876 
1877 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
1878 			       struct ecore_ptt *p_ptt,  u8 port)
1879 {
1880 	int port_offset = port ? 0x800 : 0;
1881 	u32 xmac_rxctrl	= 0;
1882 
1883 	/* Reset of XMAC */
1884 	/* FIXME: move to common start */
1885 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
1886 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
1887 	OSAL_MSLEEP(1);
1888 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1889 		 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
1890 
1891 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
1892 
1893 	/* Set the number of ports on the Warp Core to 10G */
1894 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
1895 
1896 	/* Soft reset of XMAC */
1897 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1898 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1899 	OSAL_MSLEEP(1);
1900 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1901 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1902 
1903 	/* FIXME: move to common end */
1904 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1905 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
1906 
1907 	/* Set Max packet size: initialize XMAC block register for port 0 */
1908 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
1909 
1910 	/* CRC append for Tx packets: init XMAC block register for port 1 */
1911 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
1912 
1913 	/* Enable TX and RX: initialize XMAC block register for port 1 */
1914 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
1915 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
1916 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
1917 			       XMAC_REG_RX_CTRL_BB + port_offset);
1918 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
1919 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
1920 }
1921 #endif
1922 
1923 static enum _ecore_status_t
1924 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1925 		       struct ecore_ptt *p_ptt,
1926 		       u32 pwm_region_size,
1927 		       u32 n_cpus)
1928 {
1929 	u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1930 	u32 dpi_bit_shift, dpi_count;
1931 	u32 min_dpis;
1932 
1933 	/* Calculate DPI size
1934 	 * ------------------
1935 	 * The PWM region contains Doorbell Pages. The first is reserverd for
1936 	 * the kernel for, e.g, L2. The others are free to be used by non-
1937 	 * trusted applications, typically from user space. Each page, called a
1938 	 * doorbell page is sectioned into windows that allow doorbells to be
1939 	 * issued in parallel by the kernel/application. The size of such a
1940 	 * window (a.k.a. WID) is 1kB.
1941 	 * Summary:
1942 	 *    1kB WID x N WIDS = DPI page size
1943 	 *    DPI page size x N DPIs = PWM region size
1944 	 * Notes:
1945 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1946 	 * in order to ensure that two applications won't share the same page.
1947 	 * It also must contain at least one WID per CPU to allow parallelism.
1948 	 * It also must be a power of 2, since it is stored as a bit shift.
1949 	 *
1950 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1951 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1952 	 * containing 4 WIDs.
1953 	 */
1954 	dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1955 	dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1956 	dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1957 	dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & ~(OSAL_PAGE_SIZE - 1);
1958 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1959 
1960 	dpi_count = pwm_region_size / dpi_page_size;
1961 
1962 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1963 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1964 
1965 	/* Update hwfn */
1966 	p_hwfn->dpi_size = dpi_page_size;
1967 	p_hwfn->dpi_count = dpi_count;
1968 
1969 	/* Update registers */
1970 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1971 
1972 	if (dpi_count < min_dpis)
1973 		return ECORE_NORESOURCES;
1974 
1975 	return ECORE_SUCCESS;
1976 }
1977 
1978 enum ECORE_ROCE_EDPM_MODE {
1979 	ECORE_ROCE_EDPM_MODE_ENABLE	= 0,
1980 	ECORE_ROCE_EDPM_MODE_FORCE_ON	= 1,
1981 	ECORE_ROCE_EDPM_MODE_DISABLE	= 2,
1982 };
1983 
1984 static enum _ecore_status_t
1985 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1986 			      struct ecore_ptt *p_ptt)
1987 {
1988 	u32 pwm_regsize, norm_regsize;
1989 	u32 non_pwm_conn, min_addr_reg1;
1990 	u32 db_bar_size, n_cpus = 1;
1991 	u32 roce_edpm_mode;
1992 	u32 pf_dems_shift;
1993 	enum _ecore_status_t rc = ECORE_SUCCESS;
1994 	u8 cond;
1995 
1996 	db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
1997 	if (p_hwfn->p_dev->num_hwfns > 1)
1998 		db_bar_size /= 2;
1999 
2000 	/* Calculate doorbell regions
2001 	 * -----------------------------------
2002 	 * The doorbell BAR is made of two regions. The first is called normal
2003 	 * region and the second is called PWM region. In the normal region
2004 	 * each ICID has its own set of addresses so that writing to that
2005 	 * specific address identifies the ICID. In the Process Window Mode
2006 	 * region the ICID is given in the data written to the doorbell. The
2007 	 * above per PF register denotes the offset in the doorbell BAR in which
2008 	 * the PWM region begins.
2009 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
2010 	 * non-PWM connection. The calculation below computes the total non-PWM
2011 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
2012 	 * in units of 4,096 bytes.
2013 	 */
2014 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
2015 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
2016 						     OSAL_NULL) +
2017 		       ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2018 						     OSAL_NULL);
2019 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, OSAL_PAGE_SIZE);
2020 	min_addr_reg1 = norm_regsize / 4096;
2021 	pwm_regsize = db_bar_size - norm_regsize;
2022 
2023 	/* Check that the normal and PWM sizes are valid */
2024 	if (db_bar_size < norm_regsize) {
2025 		DP_ERR(p_hwfn->p_dev, "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", db_bar_size, norm_regsize);
2026 		return ECORE_NORESOURCES;
2027 	}
2028 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
2029 		DP_ERR(p_hwfn->p_dev, "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size, norm_regsize);
2030 		return ECORE_NORESOURCES;
2031 	}
2032 
2033 	/* Calculate number of DPIs */
2034 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
2035 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
2036 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
2037 		/* Either EDPM is mandatory, or we are attempting to allocate a
2038 		 * WID per CPU.
2039 		 */
2040 		n_cpus = OSAL_NUM_CPUS();
2041 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2042 	}
2043 
2044 	cond = ((rc != ECORE_SUCCESS) &&
2045 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
2046 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
2047 	if (cond || p_hwfn->dcbx_no_edpm) {
2048 		/* Either EDPM is disabled from user configuration, or it is
2049 		 * disabled via DCBx, or it is not mandatory and we failed to
2050 		 * allocated a WID per CPU.
2051 		 */
2052 		n_cpus = 1;
2053 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2054 
2055 #ifdef CONFIG_ECORE_ROCE
2056 		/* If we entered this flow due to DCBX then the DPM register is
2057 		 * already configured.
2058 		 */
2059 		if (cond)
2060 			ecore_rdma_dpm_bar(p_hwfn, p_ptt);
2061 #endif
2062 	}
2063 
2064 	p_hwfn->wid_count = (u16)n_cpus;
2065 
2066 	DP_INFO(p_hwfn, "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
2067 		norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
2068 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
2069 		"disabled" : "enabled");
2070 
2071 	/* Check return codes from above calls */
2072 	if (rc != ECORE_SUCCESS) {
2073 #ifndef LINUX_REMOVE
2074 		DP_ERR(p_hwfn,
2075 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d. You can try reducing this down to %d via user configuration n_dpi or by disabling EDPM via user configuration roce_edpm\n",
2076 		       p_hwfn->dpi_count,
2077 		       p_hwfn->pf_params.rdma_pf_params.min_dpis,
2078 		       ECORE_MIN_DPIS);
2079 #else
2080 		DP_ERR(p_hwfn,
2081 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d. You can try reducing this down to %d via the module parameter min_roce_dpis or by disabling EDPM via the module parameter roce_edpm\n",
2082 		       p_hwfn->dpi_count,
2083 		       p_hwfn->pf_params.rdma_pf_params.min_dpis,
2084 		       ECORE_MIN_DPIS);
2085 #endif
2086 		return ECORE_NORESOURCES;
2087 	}
2088 
2089 	/* Update hwfn */
2090 	p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
2091 						      * calculate the doorbell
2092 						      * address
2093 						      */
2094 
2095 	/* Update registers */
2096 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
2097 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
2098 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
2099 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
2100 
2101 	return ECORE_SUCCESS;
2102 }
2103 
2104 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
2105 					       struct ecore_ptt *p_ptt,
2106 					       int hw_mode)
2107 {
2108 	enum _ecore_status_t rc	= ECORE_SUCCESS;
2109 
2110 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
2111 			    hw_mode);
2112 	if (rc != ECORE_SUCCESS)
2113 		return rc;
2114 
2115 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
2116 
2117 #if 0
2118 	/* FW 8.10.5.0 requires us to configure PF_VECTOR and DUALMODE in LLH.
2119 	 * This would hopefully be moved to MFW.
2120 	 */
2121 	if (IS_MF_DEFAULT(p_hwfn) || IS_MF_SI(p_hwfn)) {
2122 		u8 pf_id = 0;
2123 
2124 		if (ecore_hw_init_first_eth(p_hwfn, p_ptt, &pf_id) ==
2125 		    ECORE_SUCCESS) {
2126 			DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP,
2127 				   "PF[%08x] is first eth on engine\n",
2128 				   pf_id);
2129 
2130 			/* We should have configured BIT for ppfid, i.e., the
2131 			 * relative function number in the port. But there's a
2132 			 * bug in LLH in BB where the ppfid is actually engine
2133 			 * based, so we need to take this into account.
2134 			 */
2135 			if (!ECORE_IS_BB(p_hwfn->p_dev))
2136 				pf_id /= p_hwfn->p_dev->num_ports_in_engine;
2137 
2138 			ecore_wr(p_hwfn, p_ptt,
2139 				 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id);
2140 		}
2141 
2142 		/* Take the protocol-based hit vector if there is a hit,
2143 		 * otherwise take the other vector.
2144 		 */
2145 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_CLS_TYPE_DUALMODE, 0x2);
2146 	}
2147 #endif
2148 #ifndef ASIC_ONLY
2149 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
2150 		return ECORE_SUCCESS;
2151 
2152 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2153 		if (ECORE_IS_AH(p_hwfn->p_dev))
2154 			return ECORE_SUCCESS;
2155 		else if (ECORE_IS_BB(p_hwfn->p_dev))
2156 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
2157 		else /* E5 */
2158 			ECORE_E5_MISSING_CODE;
2159 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
2160 		if (p_hwfn->p_dev->num_hwfns > 1) {
2161 			/* Activate OPTE in CMT */
2162 			u32 val;
2163 
2164 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
2165 			val |= 0x10;
2166 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
2167 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
2168 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
2169 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
2170 			ecore_wr(p_hwfn, p_ptt,
2171 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
2172 			ecore_wr(p_hwfn, p_ptt,
2173 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
2174 			ecore_wr(p_hwfn, p_ptt,
2175 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
2176 				 0x55555555);
2177 		}
2178 
2179 		ecore_emul_link_init(p_hwfn, p_ptt);
2180 	} else {
2181 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
2182 	}
2183 #endif
2184 
2185 	return rc;
2186 }
2187 
2188 static enum _ecore_status_t ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
2189 					     struct ecore_ptt *p_ptt,
2190 					      struct ecore_tunnel_info *p_tunn,
2191 					      int hw_mode,
2192 					      bool b_hw_start,
2193 					      enum ecore_int_mode int_mode,
2194 					      bool allow_npar_tx_switch)
2195 {
2196 	u8 rel_pf_id = p_hwfn->rel_pf_id;
2197 	u32 prs_reg;
2198 	enum _ecore_status_t rc	= ECORE_SUCCESS;
2199 	u16 ctrl;
2200 	int pos;
2201 
2202 	if (p_hwfn->mcp_info) {
2203 		struct ecore_mcp_function_info *p_info;
2204 
2205 		p_info = &p_hwfn->mcp_info->func_info;
2206 		if (p_info->bandwidth_min)
2207 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
2208 
2209 		/* Update rate limit once we'll actually have a link */
2210 		p_hwfn->qm_info.pf_rl = 100000;
2211 	}
2212 	ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
2213 
2214 	ecore_int_igu_init_rt(p_hwfn);
2215 
2216 	/* Set VLAN in NIG if needed */
2217 	if (hw_mode & (1 << MODE_MF_SD)) {
2218 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
2219 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
2220 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
2221 			     p_hwfn->hw_info.ovlan);
2222 	}
2223 
2224 	/* Enable classification by MAC if needed */
2225 	if (hw_mode & (1 << MODE_MF_SI)) {
2226 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
2227 		STORE_RT_REG(p_hwfn,
2228 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
2229 	}
2230 
2231 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise?*/
2232 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
2233 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
2234 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
2235 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
2236 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
2237 
2238 	/* perform debug configuration when chip is out of reset */
2239 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
2240 
2241 	/* Cleanup chip from previous driver if such remains exist */
2242 	rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
2243 	if (rc != ECORE_SUCCESS) {
2244 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
2245 		return rc;
2246 	}
2247 
2248 	/* PF Init sequence */
2249 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
2250 	if (rc)
2251 		return rc;
2252 
2253 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
2254 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
2255 	if (rc)
2256 		return rc;
2257 
2258 	/* Pure runtime initializations - directly to the HW  */
2259 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
2260 
2261 	/* PCI relaxed ordering causes a decrease in the performance on some
2262 	 * systems. Till a root cause is found, disable this attribute in the
2263 	 * PCI config space.
2264 	 */
2265 	pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
2266 	if (!pos) {
2267 		DP_NOTICE(p_hwfn, true,
2268 			  "Failed to find the PCI Express Capability structure in the PCI config space\n");
2269 		return ECORE_IO;
2270 	}
2271 	OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
2272 	ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
2273 	OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
2274 
2275 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
2276 	if (rc)
2277 		return rc;
2278 #if 0
2279 	/* FW 8.10.5.0 requires us to configure MSG_INFO in PRS.
2280 	 * This would hopefully be moved to MFW.
2281 	 */
2282 	if (IS_MF_SI(p_hwfn)) {
2283 		u8 pf_id = 0;
2284 		u32 val;
2285 
2286 		if (ecore_hw_init_first_eth(p_hwfn, p_ptt, &pf_id) ==
2287 		    ECORE_SUCCESS) {
2288 			if (p_hwfn->rel_pf_id == pf_id) {
2289 				DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP,
2290 					   "PF[%d] is first ETH on engine\n",
2291 					   pf_id);
2292 				val = 1;
2293 			}
2294 			ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, val);
2295 		}
2296 	}
2297 #endif
2298 	/* No default PF is configured in 100G NPAR mode, so need add an LLH
2299 	 * filter with the primary MAC address.
2300 	 */
2301 	if (p_hwfn->p_dev->num_hwfns > 1 && IS_LEAD_HWFN(p_hwfn)) {
2302 		rc = ecore_llh_add_mac_filter(p_hwfn, p_ptt,
2303 					      p_hwfn->hw_info.hw_mac_addr);
2304 		if (rc != ECORE_SUCCESS)
2305 			DP_NOTICE(p_hwfn, false,
2306 				  "Failed to add an LLH filter with the primary MAC in 100 NPAR mode\n");
2307 	}
2308 
2309 	if (b_hw_start) {
2310 		/* enable interrupts */
2311 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
2312 		if (rc != ECORE_SUCCESS)
2313 			return rc;
2314 
2315 		/* send function start command */
2316 		rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_tunn,
2317 				       p_hwfn->p_dev->mf_mode,
2318 				       allow_npar_tx_switch);
2319 		if (rc) {
2320 			DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
2321 		} else {
2322 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
2323 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2324 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
2325 
2326 			if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2327 			{
2328 				ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
2329 					 (1 << 2));
2330 				ecore_wr(p_hwfn, p_ptt,
2331 					 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
2332 					 0x100);
2333 			}
2334 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2335 				   "PRS_REG_SEARCH registers after start PFn\n");
2336 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
2337 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2338 				   "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
2339 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
2340 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2341 				   "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
2342 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
2343 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2344 				   "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
2345 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
2346 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2347 				   "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
2348 			prs_reg = ecore_rd(p_hwfn, p_ptt,
2349 					   PRS_REG_SEARCH_TCP_FIRST_FRAG);
2350 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2351 				   "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
2352 				   prs_reg);
2353 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
2354 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2355 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
2356 		}
2357 	}
2358 	return rc;
2359 }
2360 
2361 enum _ecore_status_t ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
2362 					   struct ecore_ptt *p_ptt,
2363 					   u8 enable)
2364 {
2365 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
2366 
2367 	/* Change PF in PXP */
2368 	ecore_wr(p_hwfn, p_ptt,
2369 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
2370 
2371 	/* wait until value is set - try for 1 second every 50us */
2372 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
2373 		val = ecore_rd(p_hwfn, p_ptt,
2374 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
2375 		if (val == set_val)
2376 			break;
2377 
2378 		OSAL_UDELAY(50);
2379 	}
2380 
2381 	if (val != set_val) {
2382 		DP_NOTICE(p_hwfn, true,
2383 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
2384 		return ECORE_UNKNOWN_ERROR;
2385 	}
2386 
2387 	return ECORE_SUCCESS;
2388 }
2389 
2390 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
2391 			struct ecore_ptt *p_main_ptt)
2392 {
2393 	/* Read shadow of current MFW mailbox */
2394 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
2395 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2396 		    p_hwfn->mcp_info->mfw_mb_cur,
2397 		    p_hwfn->mcp_info->mfw_mb_length);
2398 }
2399 
2400 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
2401 				    struct ecore_hw_init_params *p_params)
2402 {
2403 	if (p_params->p_tunn) {
2404 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
2405 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
2406 	}
2407 
2408 	p_hwfn->b_int_enabled = 1;
2409 
2410 	return ECORE_SUCCESS;
2411 }
2412 
2413 static void
2414 ecore_fill_load_req_params(struct ecore_load_req_params *p_load_req,
2415 			   struct ecore_drv_load_params *p_drv_load)
2416 {
2417 	/* Make sure that if ecore-client didn't provide inputs, all the
2418 	 * expected defaults are indeed zero.
2419 	 */
2420 	OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
2421 	OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
2422 	OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
2423 
2424 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
2425 
2426 	if (p_drv_load != OSAL_NULL) {
2427 		p_load_req->drv_role = p_drv_load->is_crash_kernel ?
2428 				       ECORE_DRV_ROLE_KDUMP :
2429 				       ECORE_DRV_ROLE_OS;
2430 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
2431 		p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
2432 		p_load_req->override_force_load =
2433 			p_drv_load->override_force_load;
2434 	}
2435 }
2436 
2437 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
2438 				   struct ecore_hw_init_params *p_params)
2439 {
2440 	struct ecore_load_req_params load_req_params;
2441 	u32 load_code, param, drv_mb_param;
2442 	bool b_default_mtu = true;
2443 	struct ecore_hwfn *p_hwfn;
2444 	enum _ecore_status_t rc = ECORE_SUCCESS, mfw_rc;
2445 	int i;
2446 
2447 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && (p_dev->num_hwfns > 1)) {
2448 		DP_NOTICE(p_dev, false,
2449 			  "MSI mode is not supported for CMT devices\n");
2450 		return ECORE_INVAL;
2451 	}
2452 
2453 	if (IS_PF(p_dev)) {
2454 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
2455 		if (rc != ECORE_SUCCESS)
2456 			return rc;
2457 	}
2458 
2459 	for_each_hwfn(p_dev, i) {
2460 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2461 
2462 		/* If management didn't provide a default, set one of our own */
2463 		if (!p_hwfn->hw_info.mtu) {
2464 			p_hwfn->hw_info.mtu = 1500;
2465 			b_default_mtu = false;
2466 		}
2467 
2468 		if (IS_VF(p_dev)) {
2469 			ecore_vf_start(p_hwfn, p_params);
2470 			continue;
2471 		}
2472 
2473 		/* Enable DMAE in PXP */
2474 		rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
2475 		if (rc != ECORE_SUCCESS)
2476 			return rc;
2477 
2478 		rc = ecore_calc_hw_mode(p_hwfn);
2479 		if (rc != ECORE_SUCCESS)
2480 			return rc;
2481 
2482 		ecore_fill_load_req_params(&load_req_params,
2483 					   p_params->p_drv_load_params);
2484 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
2485 					&load_req_params);
2486 		if (rc != ECORE_SUCCESS) {
2487 			DP_NOTICE(p_hwfn, true,
2488 				  "Failed sending a LOAD_REQ command\n");
2489 			return rc;
2490 		}
2491 
2492 		load_code = load_req_params.load_code;
2493 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
2494 			   "Load request was sent. Load code: 0x%x\n",
2495 			   load_code);
2496 
2497 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
2498 
2499 		/* CQ75580:
2500 		 * When comming back from hiberbate state, the registers from
2501 		 * which shadow is read initially are not initialized. It turns
2502 		 * out that these registers get initialized during the call to
2503 		 * ecore_mcp_load_req request. So we need to reread them here
2504 		 * to get the proper shadow register value.
2505 		 * Note: This is a workaround for the missing MFW
2506 		 * initialization. It may be removed once the implementation
2507 		 * is done.
2508 		 */
2509 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
2510 
2511 		/* Only relevant for recovery:
2512 		 * Clear the indication after the LOAD_REQ command is responded
2513 		 * by the MFW.
2514 		 */
2515 		p_dev->recov_in_prog = false;
2516 
2517 		p_hwfn->first_on_engine = (load_code ==
2518 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
2519 
2520 		if (!qm_lock_init) {
2521 			OSAL_SPIN_LOCK_INIT(&qm_lock);
2522 			qm_lock_init = true;
2523 		}
2524 
2525 		switch (load_code) {
2526 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
2527 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
2528 					     p_hwfn->hw_info.hw_mode);
2529 			if (rc != ECORE_SUCCESS)
2530 				break;
2531 			/* Fall into */
2532 		case FW_MSG_CODE_DRV_LOAD_PORT:
2533 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
2534 						p_hwfn->hw_info.hw_mode);
2535 			if (rc != ECORE_SUCCESS)
2536 				break;
2537 			/* Fall into */
2538 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
2539 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
2540 					      p_params->p_tunn,
2541 					      p_hwfn->hw_info.hw_mode,
2542 					      p_params->b_hw_start,
2543 					      p_params->int_mode,
2544 					      p_params->allow_npar_tx_switch);
2545 			break;
2546 		default:
2547 			DP_NOTICE(p_hwfn, false,
2548 				  "Unexpected load code [0x%08x]", load_code);
2549 			rc = ECORE_NOTIMPL;
2550 			break;
2551 		}
2552 
2553 		if (rc != ECORE_SUCCESS)
2554 			DP_NOTICE(p_hwfn, true,
2555 				  "init phase failed for loadcode 0x%x (rc %d)\n",
2556 				  load_code, rc);
2557 
2558 		/* ACK mfw regardless of success or failure of initialization */
2559 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2560 				       DRV_MSG_CODE_LOAD_DONE,
2561 				       0, &load_code, &param);
2562 
2563 		/* Check the return value of the ecore_hw_init_*() function */
2564 		if (rc != ECORE_SUCCESS)
2565 			return rc;
2566 
2567 		/* Check the return value of the LOAD_DONE command */
2568 		if (mfw_rc != ECORE_SUCCESS) {
2569 			DP_NOTICE(p_hwfn, true,
2570 				  "Failed sending a LOAD_DONE command\n");
2571 			return mfw_rc;
2572 		}
2573 
2574 		/* Check if there is a DID mismatch between nvm-cfg/efuse */
2575 		if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR)
2576 			DP_NOTICE(p_hwfn, false,
2577 				  "warning: device configuration is not supported on this board type. The device may not function as expected.\n");
2578 
2579 		/* send DCBX attention request command */
2580 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
2581 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
2582 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2583 				       DRV_MSG_CODE_SET_DCBX,
2584 				       1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET,
2585 				       &load_code, &param);
2586 		if (mfw_rc != ECORE_SUCCESS) {
2587 			DP_NOTICE(p_hwfn, true,
2588 				  "Failed to send DCBX attention request\n");
2589 			return mfw_rc;
2590 		}
2591 
2592 		p_hwfn->hw_init_done = true;
2593 	}
2594 
2595 	if (IS_PF(p_dev)) {
2596 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2597 		drv_mb_param = STORM_FW_VERSION;
2598 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2599 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
2600 				   drv_mb_param, &load_code, &param);
2601 		if (rc != ECORE_SUCCESS)
2602 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
2603 
2604 		if (!b_default_mtu) {
2605 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
2606 						      p_hwfn->hw_info.mtu);
2607 			if (rc != ECORE_SUCCESS)
2608 				DP_INFO(p_hwfn, "Failed to update default mtu\n");
2609 		}
2610 
2611 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
2612 						      p_hwfn->p_main_ptt,
2613 						      ECORE_OV_DRIVER_STATE_DISABLED);
2614 		if (rc != ECORE_SUCCESS)
2615 			DP_INFO(p_hwfn, "Failed to update driver state\n");
2616 
2617 		rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
2618 						 ECORE_OV_ESWITCH_VEB);
2619 		if (rc != ECORE_SUCCESS)
2620 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
2621 	}
2622 
2623 	return rc;
2624 }
2625 
2626 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
2627 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
2628 				 struct ecore_hwfn *p_hwfn,
2629 				 struct ecore_ptt *p_ptt)
2630 {
2631 	int i;
2632 
2633 	/* close timers */
2634 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
2635 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
2636 	for (i = 0;
2637 	     i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
2638 	     i++) {
2639 		if ((!ecore_rd(p_hwfn, p_ptt,
2640 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
2641 		    (!ecore_rd(p_hwfn, p_ptt,
2642 			       TM_REG_PF_SCAN_ACTIVE_TASK)))
2643 			break;
2644 
2645 		/* Dependent on number of connection/tasks, possibly
2646 		 * 1ms sleep is required between polls
2647 		 */
2648 		OSAL_MSLEEP(1);
2649 	}
2650 
2651 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
2652 		return;
2653 
2654 	DP_NOTICE(p_hwfn, true,
2655 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
2656 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
2657 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
2658 }
2659 
2660 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
2661 {
2662 	int j;
2663 
2664 	for_each_hwfn(p_dev, j) {
2665 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2666 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2667 
2668 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2669 	}
2670 }
2671 
2672 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
2673 						 struct ecore_ptt *p_ptt,
2674 						 u32 addr, u32 expected_val)
2675 {
2676 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
2677 
2678 	if (val != expected_val) {
2679 		DP_NOTICE(p_hwfn, true,
2680 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
2681 			  addr, val, expected_val);
2682 		return ECORE_UNKNOWN_ERROR;
2683 	}
2684 
2685 	return ECORE_SUCCESS;
2686 }
2687 
2688 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
2689 {
2690 	struct ecore_hwfn *p_hwfn;
2691 	struct ecore_ptt *p_ptt;
2692 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
2693 	int j;
2694 
2695 	for_each_hwfn(p_dev, j) {
2696 		p_hwfn = &p_dev->hwfns[j];
2697 		p_ptt = p_hwfn->p_main_ptt;
2698 
2699 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
2700 
2701 		if (IS_VF(p_dev)) {
2702 			ecore_vf_pf_int_cleanup(p_hwfn);
2703 			rc = ecore_vf_pf_reset(p_hwfn);
2704 			if (rc != ECORE_SUCCESS) {
2705 				DP_NOTICE(p_hwfn, true,
2706 					  "ecore_vf_pf_reset failed. rc = %d.\n",
2707 					  rc);
2708 				rc2 = ECORE_UNKNOWN_ERROR;
2709 			}
2710 			continue;
2711 		}
2712 
2713 		/* mark the hw as uninitialized... */
2714 		p_hwfn->hw_init_done = false;
2715 
2716 		/* Send unload command to MCP */
2717 		if (!p_dev->recov_in_prog) {
2718 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
2719 			if (rc != ECORE_SUCCESS) {
2720 				DP_NOTICE(p_hwfn, true,
2721 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
2722 					  rc);
2723 				rc2 = ECORE_UNKNOWN_ERROR;
2724 			}
2725 		}
2726 
2727 		OSAL_DPC_SYNC(p_hwfn);
2728 
2729 		/* After this point no MFW attentions are expected, e.g. prevent
2730 		 * race between pf stop and dcbx pf update.
2731 		 */
2732 
2733 		rc = ecore_sp_pf_stop(p_hwfn);
2734 		if (rc != ECORE_SUCCESS) {
2735 			DP_NOTICE(p_hwfn, true,
2736 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
2737 				  rc);
2738 			rc2 = ECORE_UNKNOWN_ERROR;
2739 		}
2740 
2741 		/* perform debug action after PF stop was sent */
2742 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
2743 
2744 		/* close NIG to BRB gate */
2745 		ecore_wr(p_hwfn, p_ptt,
2746 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2747 
2748 		/* close parser */
2749 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2750 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2751 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2752 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2753 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2754 
2755 		/* @@@TBD - clean transmission queues (5.b) */
2756 		/* @@@TBD - clean BTB (5.c) */
2757 
2758 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2759 
2760 		/* @@@TBD - verify DMAE requests are done (8) */
2761 
2762 		/* Disable Attention Generation */
2763 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
2764 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2765 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2766 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
2767 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
2768 		if (rc != ECORE_SUCCESS) {
2769 			DP_NOTICE(p_hwfn, true,
2770 				  "Failed to return IGU CAM to default\n");
2771 			rc2 = ECORE_UNKNOWN_ERROR;
2772 		}
2773 
2774 		/* Need to wait 1ms to guarantee SBs are cleared */
2775 		OSAL_MSLEEP(1);
2776 
2777 		if (!p_dev->recov_in_prog) {
2778 			ecore_verify_reg_val(p_hwfn, p_ptt,
2779 					     QM_REG_USG_CNT_PF_TX, 0);
2780 			ecore_verify_reg_val(p_hwfn, p_ptt,
2781 					     QM_REG_USG_CNT_PF_OTHER, 0);
2782 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
2783 		}
2784 
2785 		/* Disable PF in HW blocks */
2786 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
2787 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
2788 
2789 		if (!p_dev->recov_in_prog) {
2790 			ecore_mcp_unload_done(p_hwfn, p_ptt);
2791 			if (rc != ECORE_SUCCESS) {
2792 				DP_NOTICE(p_hwfn, true,
2793 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
2794 					  rc);
2795 				rc2 = ECORE_UNKNOWN_ERROR;
2796 			}
2797 		}
2798 
2799 		/* 100g NPAR mode - remove the LLH filter with the primary MAC
2800 		 * address.
2801 		 */
2802 		if (p_hwfn->p_dev->num_hwfns > 1 && IS_LEAD_HWFN(p_hwfn))
2803 			ecore_llh_remove_mac_filter(p_hwfn, p_ptt,
2804 						    p_hwfn->hw_info.hw_mac_addr);
2805 	} /* hwfn loop */
2806 
2807 	if (IS_PF(p_dev)) {
2808 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2809 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
2810 
2811 		/* Disable DMAE in PXP - in CMT, this should only be done for
2812 		 * first hw-function, and only after all transactions have
2813 		 * stopped for all active hw-functions.
2814 		 */
2815 		rc = ecore_change_pci_hwfn(p_hwfn, p_ptt, false);
2816 		if (rc != ECORE_SUCCESS) {
2817 			DP_NOTICE(p_hwfn, true,
2818 				  "ecore_change_pci_hwfn failed. rc = %d.\n",
2819 				  rc);
2820 			rc2 = ECORE_UNKNOWN_ERROR;
2821 		}
2822 	}
2823 
2824 	return rc2;
2825 }
2826 
2827 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
2828 {
2829 	int j;
2830 
2831 	for_each_hwfn(p_dev, j) {
2832 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2833 		struct ecore_ptt *p_ptt;
2834 
2835 		if (IS_VF(p_dev)) {
2836 			ecore_vf_pf_int_cleanup(p_hwfn);
2837 			continue;
2838 		}
2839 		p_ptt = ecore_ptt_acquire(p_hwfn);
2840 		if (!p_ptt)
2841 			return ECORE_AGAIN;
2842 
2843 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
2844 
2845 		ecore_wr(p_hwfn, p_ptt,
2846 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2847 
2848 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2849 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2850 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2851 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2852 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2853 
2854 		/* @@@TBD - clean transmission queues (5.b) */
2855 		/* @@@TBD - clean BTB (5.c) */
2856 
2857 		/* @@@TBD - verify DMAE requests are done (8) */
2858 
2859 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
2860 		/* Need to wait 1ms to guarantee SBs are cleared */
2861 		OSAL_MSLEEP(1);
2862 		ecore_ptt_release(p_hwfn, p_ptt);
2863 	}
2864 
2865 	return ECORE_SUCCESS;
2866 }
2867 
2868 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
2869 {
2870 	struct ecore_ptt *p_ptt;
2871 
2872 	if (IS_VF(p_hwfn->p_dev))
2873 		return ECORE_SUCCESS;
2874 
2875 	p_ptt = ecore_ptt_acquire(p_hwfn);
2876 	if (!p_ptt)
2877 		return ECORE_AGAIN;
2878 
2879 	/* If roce info is allocated it means roce is initialized and should
2880 	 * be enabled in searcher.
2881 	 */
2882 	if (p_hwfn->p_rdma_info) {
2883 		if (p_hwfn->b_rdma_enabled_in_prs)
2884 			ecore_wr(p_hwfn, p_ptt,
2885 				 p_hwfn->rdma_prs_search_reg, 0x1);
2886 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
2887 	}
2888 
2889 	/* Re-open incoming traffic */
2890 	ecore_wr(p_hwfn, p_ptt,
2891 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
2892 	ecore_ptt_release(p_hwfn, p_ptt);
2893 
2894 	return ECORE_SUCCESS;
2895 }
2896 /* TEMP macro to be removed when wol code revisted */
2897 #define ECORE_WOL_WR(_p_hwfn, _p_ptt, _offset, _val) ECORE_IS_BB(_p_hwfn->p_dev) ? \
2898 	ecore_wr(_p_hwfn, _p_ptt, _offset, _val) : \
2899 	ecore_mcp_wol_wr(_p_hwfn, _p_ptt, _offset, _val);
2900 
2901 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev, u32 reg_idx,
2902 					u32 pattern_size, u32 crc)
2903 {
2904 	struct ecore_hwfn *hwfn = &p_dev->hwfns[0];
2905 	enum _ecore_status_t rc  = ECORE_SUCCESS;
2906 	struct ecore_ptt *p_ptt;
2907 	u32 reg_len = 0;
2908 	u32 reg_crc = 0;
2909 
2910 	p_ptt = ecore_ptt_acquire(hwfn);
2911 	if (!p_ptt)
2912 		return ECORE_AGAIN;
2913 
2914 	/* Get length and CRC register offsets */
2915 	switch (reg_idx)
2916 	{
2917 	case 0:
2918 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
2919 				WOL_REG_ACPI_PAT_0_LEN_K2_E5;
2920 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
2921 				WOL_REG_ACPI_PAT_0_CRC_K2_E5;
2922 		break;
2923 	case 1:
2924 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
2925 				WOL_REG_ACPI_PAT_1_LEN_K2_E5;
2926 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
2927 				WOL_REG_ACPI_PAT_1_CRC_K2_E5;
2928 		break;
2929 	case 2:
2930 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
2931 				WOL_REG_ACPI_PAT_2_LEN_K2_E5;
2932 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
2933 				WOL_REG_ACPI_PAT_2_CRC_K2_E5;
2934 		break;
2935 	case 3:
2936 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
2937 				WOL_REG_ACPI_PAT_3_LEN_K2_E5;
2938 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
2939 				WOL_REG_ACPI_PAT_3_CRC_K2_E5;
2940 		break;
2941 	case 4:
2942 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
2943 				WOL_REG_ACPI_PAT_4_LEN_K2_E5;
2944 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
2945 				WOL_REG_ACPI_PAT_4_CRC_K2_E5;
2946 		break;
2947 	case 5:
2948 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
2949 				WOL_REG_ACPI_PAT_5_LEN_K2_E5;
2950 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
2951 				WOL_REG_ACPI_PAT_5_CRC_K2_E5;
2952 		break;
2953 	case 6:
2954 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
2955 				WOL_REG_ACPI_PAT_6_LEN_K2_E5;
2956 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
2957 				WOL_REG_ACPI_PAT_6_CRC_K2_E5;
2958 		break;
2959 	case 7:
2960 		reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
2961 				WOL_REG_ACPI_PAT_7_LEN_K2_E5;
2962 		reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
2963 				WOL_REG_ACPI_PAT_7_CRC_K2_E5;
2964 		break;
2965 	default:
2966 		rc = ECORE_UNKNOWN_ERROR;
2967 		goto out;
2968 	}
2969 
2970 	/* Allign pattern size to 4 */
2971 	while (pattern_size % 4)
2972 	{
2973 		pattern_size++;
2974 	}
2975 	/* write pattern length */
2976 	ECORE_WOL_WR(hwfn, p_ptt, reg_len, pattern_size);
2977 
2978 	/* write crc value*/
2979 	ECORE_WOL_WR(hwfn, p_ptt, reg_crc, crc);
2980 
2981 	DP_INFO(p_dev,
2982 		"ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
2983 		"reg_len[0x%x=0x%x]\n",
2984 		reg_idx, reg_crc, crc, reg_len, pattern_size);
2985 out:
2986 	 ecore_ptt_release(hwfn, p_ptt);
2987 
2988 	return rc;
2989 }
2990 
2991 void ecore_wol_buffer_clear(struct ecore_hwfn *p_hwfn,
2992 			    struct ecore_ptt *p_ptt)
2993 {
2994 	const u32 wake_buffer_clear_offset =
2995 		ECORE_IS_BB(p_hwfn->p_dev) ?
2996 		NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
2997 
2998 	DP_INFO(p_hwfn->p_dev,
2999 		"ecore_wol_buffer_clear: reset "
3000 		"REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
3001 		wake_buffer_clear_offset);
3002 
3003 	ECORE_WOL_WR(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
3004 	ECORE_WOL_WR(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
3005 }
3006 
3007 enum _ecore_status_t ecore_get_wake_info(struct ecore_hwfn *p_hwfn,
3008 					 struct ecore_ptt *p_ptt,
3009 					 struct ecore_wake_info *wake_info)
3010 {
3011 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3012 	u32 *buf = OSAL_NULL;
3013 	u32 i    = 0;
3014 	const u32 reg_wake_buffer_offest =
3015 		ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
3016 			WOL_REG_WAKE_BUFFER_K2_E5;
3017 
3018 	wake_info->wk_info    = ecore_rd(p_hwfn, p_ptt,
3019 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
3020 				WOL_REG_WAKE_INFO_K2_E5);
3021 	wake_info->wk_details = ecore_rd(p_hwfn, p_ptt,
3022 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
3023 				WOL_REG_WAKE_DETAILS_K2_E5);
3024 	wake_info->wk_pkt_len = ecore_rd(p_hwfn, p_ptt,
3025 				ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
3026 				WOL_REG_WAKE_PKT_LEN_K2_E5);
3027 
3028 	DP_INFO(p_dev,
3029 		"ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
3030 		"REG_WAKE_DETAILS=0x%08x "
3031 		"REG_WAKE_PKT_LEN=0x%08x\n",
3032 		wake_info->wk_info,
3033 		wake_info->wk_details,
3034 		wake_info->wk_pkt_len);
3035 
3036 	buf = (u32 *)wake_info->wk_buffer;
3037 
3038 	for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
3039 	{
3040 		if ((i*sizeof(u32)) >=  sizeof(wake_info->wk_buffer))
3041 		{
3042 			DP_INFO(p_dev,
3043 				"ecore_get_wake_info: i index to 0 high=%d\n",
3044 				 i);
3045 			break;
3046 		}
3047 		buf[i] = ecore_rd(p_hwfn, p_ptt,
3048 				  reg_wake_buffer_offest + (i * sizeof(u32)));
3049 		DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
3050 			i, buf[i]);
3051 	}
3052 
3053 	ecore_wol_buffer_clear(p_hwfn, p_ptt);
3054 
3055 	return ECORE_SUCCESS;
3056 }
3057 
3058 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
3059 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
3060 {
3061 	ecore_ptt_pool_free(p_hwfn);
3062 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
3063 	p_hwfn->hw_info.p_igu_info = OSAL_NULL;
3064 }
3065 
3066 /* Setup bar access */
3067 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
3068 {
3069 	/* clear indirect access */
3070 	if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
3071 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3072 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
3073 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3074 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
3075 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3076 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
3077 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3078 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
3079 	} else {
3080 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3081 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
3082 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3083 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
3084 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3085 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
3086 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3087 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
3088 	}
3089 
3090 	/* Clean Previous errors if such exist */
3091 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3092 		 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3093 		 1 << p_hwfn->abs_pf_id);
3094 
3095 	/* enable internal target-read */
3096 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3097 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
3098 }
3099 
3100 static void get_function_id(struct ecore_hwfn *p_hwfn)
3101 {
3102 	/* ME Register */
3103 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
3104 						  PXP_PF_ME_OPAQUE_ADDR);
3105 
3106 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
3107 
3108 	/* Bits 16-19 from the ME registers are the pf_num */
3109 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
3110 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
3111 				      PXP_CONCRETE_FID_PFID);
3112 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
3113 				    PXP_CONCRETE_FID_PORT);
3114 
3115 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3116 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
3117 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
3118 }
3119 
3120 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
3121 {
3122 	u32 *feat_num = p_hwfn->hw_info.feat_num;
3123 	struct ecore_sb_cnt_info sb_cnt;
3124 	u32 non_l2_sbs = 0;
3125 
3126 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
3127 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
3128 
3129 #ifdef CONFIG_ECORE_ROCE
3130 	/* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
3131 	 * status blocks equally between L2 / RoCE but with consideration as
3132 	 * to how many l2 queues / cnqs we have
3133 	 */
3134 	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
3135 		u32 max_cnqs;
3136 
3137 		feat_num[ECORE_RDMA_CNQ] =
3138 			OSAL_MIN_T(u32,
3139 				   sb_cnt.cnt / 2,
3140 				   RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
3141 
3142 		/* Upper layer might require less */
3143 		max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
3144 		if (max_cnqs) {
3145 			if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
3146 				max_cnqs = 0;
3147 			feat_num[ECORE_RDMA_CNQ] =
3148 				OSAL_MIN_T(u32,
3149 					   feat_num[ECORE_RDMA_CNQ],
3150 					   max_cnqs);
3151 		}
3152 
3153 		non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
3154 	}
3155 #endif
3156 
3157 	/* L2 Queues require each: 1 status block. 1 L2 queue */
3158 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
3159 		/* Start by allocating VF queues, then PF's */
3160 		feat_num[ECORE_VF_L2_QUE] =
3161 			OSAL_MIN_T(u32,
3162 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
3163 				   sb_cnt.iov_cnt);
3164 		feat_num[ECORE_PF_L2_QUE] =
3165 			OSAL_MIN_T(u32,
3166 				   sb_cnt.cnt - non_l2_sbs,
3167 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
3168 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
3169 	}
3170 
3171 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
3172 		feat_num[ECORE_FCOE_CQ] =
3173 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
3174 							     ECORE_CMDQS_CQS));
3175 
3176 	if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
3177 		feat_num[ECORE_ISCSI_CQ] =
3178 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
3179 							     ECORE_CMDQS_CQS));
3180 
3181 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3182 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
3183 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
3184 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
3185 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
3186 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
3187 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
3188 		   (int)sb_cnt.cnt);
3189 }
3190 
3191 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
3192 {
3193 	switch (res_id) {
3194 	case ECORE_L2_QUEUE:
3195 		return "L2_QUEUE";
3196 	case ECORE_VPORT:
3197 		return "VPORT";
3198 	case ECORE_RSS_ENG:
3199 		return "RSS_ENG";
3200 	case ECORE_PQ:
3201 		return "PQ";
3202 	case ECORE_RL:
3203 		return "RL";
3204 	case ECORE_MAC:
3205 		return "MAC";
3206 	case ECORE_VLAN:
3207 		return "VLAN";
3208 	case ECORE_RDMA_CNQ_RAM:
3209 		return "RDMA_CNQ_RAM";
3210 	case ECORE_ILT:
3211 		return "ILT";
3212 	case ECORE_LL2_QUEUE:
3213 		return "LL2_QUEUE";
3214 	case ECORE_CMDQS_CQS:
3215 		return "CMDQS_CQS";
3216 	case ECORE_RDMA_STATS_QUEUE:
3217 		return "RDMA_STATS_QUEUE";
3218 	case ECORE_BDQ:
3219 		return "BDQ";
3220 	case ECORE_SB:
3221 		return "SB";
3222 	default:
3223 		return "UNKNOWN_RESOURCE";
3224 	}
3225 }
3226 
3227 static enum _ecore_status_t
3228 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
3229 			      struct ecore_ptt *p_ptt,
3230 			      enum ecore_resources res_id,
3231 			      u32 resc_max_val,
3232 			      u32 *p_mcp_resp)
3233 {
3234 	enum _ecore_status_t rc;
3235 
3236 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
3237 					resc_max_val, p_mcp_resp);
3238 	if (rc != ECORE_SUCCESS) {
3239 		DP_NOTICE(p_hwfn, true,
3240 			  "MFW response failure for a max value setting of resource %d [%s]\n",
3241 			  res_id, ecore_hw_get_resc_name(res_id));
3242 		return rc;
3243 	}
3244 
3245 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
3246 		DP_INFO(p_hwfn,
3247 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
3248 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
3249 
3250 	return ECORE_SUCCESS;
3251 }
3252 
3253 static enum _ecore_status_t
3254 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
3255 			    struct ecore_ptt *p_ptt)
3256 {
3257 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
3258 	u32 resc_max_val, mcp_resp;
3259 	u8 res_id;
3260 	enum _ecore_status_t rc;
3261 
3262 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
3263 		switch (res_id) {
3264 		case ECORE_LL2_QUEUE:
3265 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
3266 			break;
3267 		case ECORE_RDMA_CNQ_RAM:
3268 			/* No need for a case for ECORE_CMDQS_CQS since
3269 			 * CNQ/CMDQS are the same resource.
3270 			 */
3271 			resc_max_val = NUM_OF_CMDQS_CQS;
3272 			break;
3273 		case ECORE_RDMA_STATS_QUEUE:
3274 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
3275 					    : RDMA_NUM_STATISTIC_COUNTERS_BB;
3276 			break;
3277 		case ECORE_BDQ:
3278 			resc_max_val = BDQ_NUM_RESOURCES;
3279 			break;
3280 		default:
3281 			continue;
3282 		}
3283 
3284 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
3285 						   resc_max_val, &mcp_resp);
3286 		if (rc != ECORE_SUCCESS)
3287 			return rc;
3288 
3289 		/* There's no point to continue to the next resource if the
3290 		 * command is not supported by the MFW.
3291 		 * We do continue if the command is supported but the resource
3292 		 * is unknown to the MFW. Such a resource will be later
3293 		 * configured with the default allocation values.
3294 		 */
3295 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
3296 			return ECORE_NOTIMPL;
3297 	}
3298 
3299 	return ECORE_SUCCESS;
3300 }
3301 
3302 static
3303 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
3304 					    enum ecore_resources res_id,
3305 					    u32 *p_resc_num, u32 *p_resc_start)
3306 {
3307 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
3308 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
3309 
3310 	switch (res_id) {
3311 	case ECORE_L2_QUEUE:
3312 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
3313 				      MAX_NUM_L2_QUEUES_BB) / num_funcs;
3314 		break;
3315 	case ECORE_VPORT:
3316 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
3317 				      MAX_NUM_VPORTS_BB) / num_funcs;
3318 		break;
3319 	case ECORE_RSS_ENG:
3320 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
3321 				      ETH_RSS_ENGINE_NUM_BB) / num_funcs;
3322 		break;
3323 	case ECORE_PQ:
3324 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
3325 				      MAX_QM_TX_QUEUES_BB) / num_funcs;
3326 		*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
3327 		break;
3328 	case ECORE_RL:
3329 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
3330 		break;
3331 	case ECORE_MAC:
3332 	case ECORE_VLAN:
3333 		/* Each VFC resource can accommodate both a MAC and a VLAN */
3334 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
3335 		break;
3336 	case ECORE_ILT:
3337 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
3338 				      PXP_NUM_ILT_RECORDS_BB) / num_funcs;
3339 		break;
3340 	case ECORE_LL2_QUEUE:
3341 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
3342 		break;
3343 	case ECORE_RDMA_CNQ_RAM:
3344 	case ECORE_CMDQS_CQS:
3345 		/* CNQ/CMDQS are the same resource */
3346 		*p_resc_num = NUM_OF_CMDQS_CQS / num_funcs;
3347 		break;
3348 	case ECORE_RDMA_STATS_QUEUE:
3349 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
3350 				      RDMA_NUM_STATISTIC_COUNTERS_BB) /
3351 			      num_funcs;
3352 		break;
3353 	case ECORE_BDQ:
3354 		if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
3355 		    p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
3356 			*p_resc_num = 0;
3357 		else
3358 			*p_resc_num = 1;
3359 		break;
3360 	case ECORE_SB:
3361 		/* Since we want its value to reflect whether MFW supports
3362 		 * the new scheme, have a default of 0.
3363 		 */
3364 		*p_resc_num = 0;
3365 		break;
3366 	default:
3367 		return ECORE_INVAL;
3368 	}
3369 
3370 	switch (res_id) {
3371 	case ECORE_BDQ:
3372 		if (!*p_resc_num)
3373 			*p_resc_start = 0;
3374 		else if (p_hwfn->p_dev->num_ports_in_engine == 4)
3375 			*p_resc_start = p_hwfn->port_id;
3376 		else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
3377 			*p_resc_start = p_hwfn->port_id;
3378 		else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3379 			*p_resc_start = p_hwfn->port_id + 2;
3380 		break;
3381 	default:
3382 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
3383 		break;
3384 	}
3385 
3386 	return ECORE_SUCCESS;
3387 }
3388 
3389 static enum _ecore_status_t
3390 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
3391 			 bool drv_resc_alloc)
3392 {
3393 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
3394 	u32 mcp_resp, *p_resc_num, *p_resc_start;
3395 	enum _ecore_status_t rc;
3396 
3397 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
3398 	p_resc_start = &RESC_START(p_hwfn, res_id);
3399 
3400 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
3401 				    &dflt_resc_start);
3402 	if (rc != ECORE_SUCCESS) {
3403 		DP_ERR(p_hwfn,
3404 		       "Failed to get default amount for resource %d [%s]\n",
3405 			res_id, ecore_hw_get_resc_name(res_id));
3406 		return rc;
3407 	}
3408 
3409 #ifndef ASIC_ONLY
3410 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
3411 		*p_resc_num = dflt_resc_num;
3412 		*p_resc_start = dflt_resc_start;
3413 		goto out;
3414 	}
3415 #endif
3416 
3417 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
3418 				     &mcp_resp, p_resc_num, p_resc_start);
3419 	if (rc != ECORE_SUCCESS) {
3420 		DP_NOTICE(p_hwfn, true,
3421 			  "MFW response failure for an allocation request for resource %d [%s]\n",
3422 			  res_id, ecore_hw_get_resc_name(res_id));
3423 		return rc;
3424 	}
3425 
3426 	/* Default driver values are applied in the following cases:
3427 	 * - The resource allocation MB command is not supported by the MFW
3428 	 * - There is an internal error in the MFW while processing the request
3429 	 * - The resource ID is unknown to the MFW
3430 	 */
3431 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3432 		DP_INFO(p_hwfn,
3433 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
3434 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
3435 			dflt_resc_num, dflt_resc_start);
3436 		*p_resc_num = dflt_resc_num;
3437 		*p_resc_start = dflt_resc_start;
3438 		goto out;
3439 	}
3440 
3441 	if ((*p_resc_num != dflt_resc_num ||
3442 	     *p_resc_start != dflt_resc_start) &&
3443 	    res_id != ECORE_SB) {
3444 		DP_INFO(p_hwfn,
3445 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
3446 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
3447 			*p_resc_start, dflt_resc_num, dflt_resc_start,
3448 			drv_resc_alloc ? " - Applying default values" : "");
3449 		if (drv_resc_alloc) {
3450 			*p_resc_num = dflt_resc_num;
3451 			*p_resc_start = dflt_resc_start;
3452 		}
3453 	}
3454 out:
3455 	/* PQs have to divide by 8 [that's the HW granularity].
3456 	 * Reduce number so it would fit.
3457 	 */
3458 	if ((res_id == ECORE_PQ) &&
3459 	    ((*p_resc_num % 8) || (*p_resc_start % 8))) {
3460 		DP_INFO(p_hwfn,
3461 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
3462 			*p_resc_num, (*p_resc_num) & ~0x7,
3463 			*p_resc_start, (*p_resc_start) & ~0x7);
3464 		*p_resc_num &= ~0x7;
3465 		*p_resc_start &= ~0x7;
3466 	}
3467 
3468 	return ECORE_SUCCESS;
3469 }
3470 
3471 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
3472 						   bool drv_resc_alloc)
3473 {
3474 	enum _ecore_status_t rc;
3475 	u8 res_id;
3476 
3477 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
3478 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
3479 		if (rc != ECORE_SUCCESS)
3480 			return rc;
3481 	}
3482 
3483 	return ECORE_SUCCESS;
3484 }
3485 
3486 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
3487 					      struct ecore_ptt *p_ptt,
3488 					      bool drv_resc_alloc)
3489 {
3490 	struct ecore_resc_unlock_params resc_unlock_params;
3491 	struct ecore_resc_lock_params resc_lock_params;
3492 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
3493 	u8 res_id;
3494 	enum _ecore_status_t rc;
3495 #ifndef ASIC_ONLY
3496 	u32 *resc_start = p_hwfn->hw_info.resc_start;
3497 	u32 *resc_num = p_hwfn->hw_info.resc_num;
3498 	/* For AH, an equal share of the ILT lines between the maximal number of
3499 	 * PFs is not enough for RoCE. This would be solved by the future
3500 	 * resource allocation scheme, but isn't currently present for
3501 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
3502 	 * to work - the BB number of ILT lines divided by its max PFs number.
3503 	 */
3504 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
3505 #endif
3506 
3507 	/* Setting the max values of the soft resources and the following
3508 	 * resources allocation queries should be atomic. Since several PFs can
3509 	 * run in parallel - a resource lock is needed.
3510 	 * If either the resource lock or resource set value commands are not
3511 	 * supported - skip the the max values setting, release the lock if
3512 	 * needed, and proceed to the queries. Other failures, including a
3513 	 * failure to acquire the lock, will cause this function to fail.
3514 	 * Old drivers that don't acquire the lock can run in parallel, and
3515 	 * their allocation values won't be affected by the updated max values.
3516 	 */
3517 	ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
3518 					 ECORE_RESC_LOCK_RESC_ALLOC, false);
3519 
3520 	rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
3521 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
3522 		return rc;
3523 	} else if (rc == ECORE_NOTIMPL) {
3524 		DP_INFO(p_hwfn,
3525 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
3526 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
3527 		DP_NOTICE(p_hwfn, false,
3528 			  "Failed to acquire the resource lock for the resource allocation commands\n");
3529 		return ECORE_BUSY;
3530 	} else {
3531 		rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
3532 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
3533 			DP_NOTICE(p_hwfn, false,
3534 				  "Failed to set the max values of the soft resources\n");
3535 			goto unlock_and_exit;
3536 		} else if (rc == ECORE_NOTIMPL) {
3537 			DP_INFO(p_hwfn,
3538 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
3539 			rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
3540 						   &resc_unlock_params);
3541 			if (rc != ECORE_SUCCESS)
3542 				DP_INFO(p_hwfn,
3543 					"Failed to release the resource lock for the resource allocation commands\n");
3544 		}
3545 	}
3546 
3547 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
3548 	if (rc != ECORE_SUCCESS)
3549 		goto unlock_and_exit;
3550 
3551 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
3552 		rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
3553 					   &resc_unlock_params);
3554 		if (rc != ECORE_SUCCESS)
3555 			DP_INFO(p_hwfn,
3556 				"Failed to release the resource lock for the resource allocation commands\n");
3557 	}
3558 
3559 #ifndef ASIC_ONLY
3560 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
3561 		/* Reduced build contains less PQs */
3562 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
3563 			resc_num[ECORE_PQ] = 32;
3564 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
3565 					       p_hwfn->enabled_func_idx;
3566 		}
3567 
3568 		/* For AH emulation, since we have a possible maximal number of
3569 		 * 16 enabled PFs, in case there are not enough ILT lines -
3570 		 * allocate only first PF as RoCE and have all the other ETH
3571 		 * only with less ILT lines.
3572 		 */
3573 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
3574 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
3575 							 resc_num[ECORE_ILT],
3576 							 roce_min_ilt_lines);
3577 	}
3578 
3579 	/* Correct the common ILT calculation if PF0 has more */
3580 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
3581 	    p_hwfn->p_dev->b_is_emul_full &&
3582 	    p_hwfn->rel_pf_id &&
3583 	    resc_num[ECORE_ILT] < roce_min_ilt_lines)
3584 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
3585 					 resc_num[ECORE_ILT];
3586 #endif
3587 
3588 	/* Sanity for ILT */
3589 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
3590 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
3591 		DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
3592 			  RESC_START(p_hwfn, ECORE_ILT),
3593 			  RESC_END(p_hwfn, ECORE_ILT) - 1);
3594 		return ECORE_INVAL;
3595 	}
3596 
3597 	/* This will also learn the number of SBs from MFW */
3598 	if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
3599 		return ECORE_INVAL;
3600 
3601 	ecore_hw_set_feat(p_hwfn);
3602 
3603 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3604 		   "The numbers for each resource are:\n");
3605 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
3606 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
3607 			   ecore_hw_get_resc_name(res_id),
3608 			   RESC_NUM(p_hwfn, res_id),
3609 			   RESC_START(p_hwfn, res_id));
3610 
3611 	return ECORE_SUCCESS;
3612 
3613 unlock_and_exit:
3614 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
3615 		ecore_mcp_resc_unlock(p_hwfn, p_ptt,
3616 				      &resc_unlock_params);
3617 	return rc;
3618 }
3619 
3620 static enum _ecore_status_t
3621 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
3622 		      struct ecore_ptt *p_ptt,
3623 		      struct ecore_hw_prepare_params *p_params)
3624 {
3625 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
3626 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
3627 	struct ecore_mcp_link_capabilities *p_caps;
3628 	struct ecore_mcp_link_params *link;
3629 	enum _ecore_status_t rc;
3630 
3631 	/* Read global nvm_cfg address */
3632 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
3633 
3634 	/* Verify MCP has initialized it */
3635 	if (!nvm_cfg_addr) {
3636 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
3637 		if (p_params->b_relaxed_probe)
3638 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
3639 		return ECORE_INVAL;
3640 	}
3641 
3642 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
3643 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
3644 
3645 	addr = MCP_REG_SCRATCH  + nvm_cfg1_offset +
3646 		   OFFSETOF(struct nvm_cfg1, glob) +
3647 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
3648 
3649 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
3650 
3651 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
3652 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
3653 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
3654 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
3655 		break;
3656 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
3657 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
3658 		break;
3659 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
3660 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
3661 		break;
3662 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
3663 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
3664 		break;
3665 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
3666 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
3667 		break;
3668 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
3669 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
3670 		break;
3671 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
3672 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
3673 		break;
3674 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
3675 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
3676 		break;
3677 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
3678 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
3679 		break;
3680 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
3681 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
3682 		break;
3683 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
3684 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
3685 		break;
3686 	default:
3687 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
3688 			  core_cfg);
3689 		break;
3690 	}
3691 
3692 	/* Read DCBX configuration */
3693 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3694 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3695 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
3696 			     port_cfg_addr +
3697 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
3698 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
3699 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
3700 	switch (dcbx_mode) {
3701 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
3702 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
3703 		break;
3704 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
3705 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
3706 		break;
3707 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
3708 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
3709 		break;
3710 	default:
3711 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
3712 	}
3713 
3714 	/* Read default link configuration */
3715 	link = &p_hwfn->mcp_info->link_input;
3716 	p_caps = &p_hwfn->mcp_info->link_capabilities;
3717 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3718 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3719 	link_temp = ecore_rd(p_hwfn, p_ptt,
3720 			     port_cfg_addr +
3721 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
3722 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
3723 	link->speed.advertised_speeds = link_temp;
3724 	p_caps->speed_capabilities = link->speed.advertised_speeds;
3725 
3726 	link_temp = ecore_rd(p_hwfn, p_ptt,
3727 				 port_cfg_addr +
3728 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
3729 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
3730 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
3731 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
3732 		link->speed.autoneg = true;
3733 		break;
3734 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
3735 		link->speed.forced_speed = 1000;
3736 		break;
3737 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
3738 		link->speed.forced_speed = 10000;
3739 		break;
3740 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
3741 		link->speed.forced_speed = 25000;
3742 		break;
3743 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
3744 		link->speed.forced_speed = 40000;
3745 		break;
3746 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
3747 		link->speed.forced_speed = 50000;
3748 		break;
3749 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
3750 		link->speed.forced_speed = 100000;
3751 		break;
3752 	default:
3753 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
3754 			  link_temp);
3755 	}
3756 
3757 	p_caps->default_speed = link->speed.forced_speed;
3758 	p_caps->default_speed_autoneg = link->speed.autoneg;
3759 
3760 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
3761 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
3762 	link->pause.autoneg = !!(link_temp &
3763 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
3764 	link->pause.forced_rx = !!(link_temp &
3765 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
3766 	link->pause.forced_tx = !!(link_temp &
3767 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
3768 	link->loopback_mode = 0;
3769 
3770 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
3771 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
3772 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
3773 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
3774 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
3775 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
3776 		link->eee.enable = true;
3777 		switch (link_temp) {
3778 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
3779 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
3780 			link->eee.enable = false;
3781 			break;
3782 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
3783 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
3784 			break;
3785 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
3786 			p_caps->eee_lpi_timer =
3787 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
3788 			break;
3789 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
3790 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
3791 			break;
3792 		}
3793 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
3794 		link->eee.tx_lpi_enable = link->eee.enable;
3795 		if (link->eee.enable)
3796 			link->eee.adv_caps = ECORE_EEE_1G_ADV |
3797 						ECORE_EEE_10G_ADV;
3798 	} else {
3799 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
3800 	}
3801 
3802 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3803 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
3804 		   link->speed.forced_speed, link->speed.advertised_speeds,
3805 		   link->speed.autoneg, link->pause.autoneg,
3806 		   p_caps->default_eee, p_caps->eee_lpi_timer);
3807 
3808 	/* Read Multi-function information from shmem */
3809 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3810 		   OFFSETOF(struct nvm_cfg1, glob) +
3811 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
3812 
3813 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
3814 
3815 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
3816 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
3817 
3818 	switch (mf_mode) {
3819 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
3820 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
3821 		break;
3822 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
3823 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
3824 		break;
3825 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
3826 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
3827 		break;
3828 	}
3829 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
3830 		p_hwfn->p_dev->mf_mode);
3831 
3832 	/* Read Multi-function information from shmem */
3833 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3834 		   OFFSETOF(struct nvm_cfg1, glob) +
3835 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
3836 
3837 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
3838 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
3839 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
3840 				 &p_hwfn->hw_info.device_capabilities);
3841 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
3842 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
3843 				 &p_hwfn->hw_info.device_capabilities);
3844 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
3845 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
3846 				 &p_hwfn->hw_info.device_capabilities);
3847 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
3848 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
3849 				 &p_hwfn->hw_info.device_capabilities);
3850 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
3851 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
3852 				 &p_hwfn->hw_info.device_capabilities);
3853 
3854 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
3855 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3856 		rc = ECORE_SUCCESS;
3857 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3858 	}
3859 
3860 	return rc;
3861 }
3862 
3863 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
3864 				struct ecore_ptt *p_ptt)
3865 {
3866 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
3867 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
3868 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3869 
3870 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
3871 
3872 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
3873 	 * in the other bits are selected.
3874 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
3875 	 * '0' only for enabled functions (function 0 always exists and
3876 	 * enabled).
3877 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
3878 	 * the number of functions for both hwfns is learnt from the same bits.
3879 	 */
3880 	if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
3881 		reg_function_hide = ecore_rd(p_hwfn, p_ptt,
3882 					     MISCS_REG_FUNCTION_HIDE_BB_K2);
3883 	} else { /* E5 */
3884 		reg_function_hide = 0;
3885 		ECORE_E5_MISSING_CODE;
3886 	}
3887 
3888 	if (reg_function_hide & 0x1) {
3889 		if (ECORE_IS_BB(p_dev)) {
3890 			if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
3891 				num_funcs = 0;
3892 				eng_mask = 0xaaaa;
3893 			} else {
3894 				num_funcs = 1;
3895 				eng_mask = 0x5554;
3896 			}
3897 		} else {
3898 			num_funcs = 1;
3899 			eng_mask = 0xfffe;
3900 		}
3901 
3902 		/* Get the number of the enabled functions on the engine */
3903 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
3904 		while (tmp) {
3905 			if (tmp & 0x1)
3906 				num_funcs++;
3907 			tmp >>= 0x1;
3908 		}
3909 
3910 		/* Get the PF index within the enabled functions */
3911 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
3912 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
3913 		while (tmp) {
3914 			if (tmp & 0x1)
3915 				enabled_func_idx--;
3916 			tmp >>= 0x1;
3917 		}
3918 	}
3919 
3920 	p_hwfn->num_funcs_on_engine = num_funcs;
3921 	p_hwfn->enabled_func_idx = enabled_func_idx;
3922 
3923 #ifndef ASIC_ONLY
3924 	if (CHIP_REV_IS_FPGA(p_dev)) {
3925 		DP_NOTICE(p_hwfn, false,
3926 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
3927 		p_hwfn->num_funcs_on_engine = 4;
3928 	}
3929 #endif
3930 
3931 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3932 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
3933 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
3934 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
3935 }
3936 
3937 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
3938 				      struct ecore_ptt *p_ptt)
3939 {
3940 	u32 port_mode;
3941 
3942 #ifndef ASIC_ONLY
3943 	/* Read the port mode */
3944 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3945 		port_mode = 4;
3946 	else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
3947 		 (p_hwfn->p_dev->num_hwfns > 1))
3948 		/* In CMT on emulation, assume 1 port */
3949 		port_mode = 1;
3950 	else
3951 #endif
3952 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
3953 
3954 	if (port_mode < 3) {
3955 		p_hwfn->p_dev->num_ports_in_engine = 1;
3956 	} else if (port_mode <= 5) {
3957 		p_hwfn->p_dev->num_ports_in_engine = 2;
3958 	} else {
3959 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
3960 			  p_hwfn->p_dev->num_ports_in_engine);
3961 
3962 		/* Default num_ports_in_engine to something */
3963 		p_hwfn->p_dev->num_ports_in_engine = 1;
3964 	}
3965 }
3966 
3967 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
3968 					 struct ecore_ptt *p_ptt)
3969 {
3970 	u32 port;
3971 	int i;
3972 
3973 	p_hwfn->p_dev->num_ports_in_engine = 0;
3974 
3975 #ifndef ASIC_ONLY
3976 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3977 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
3978 		switch ((port & 0xf000) >> 12) {
3979 		case 1:
3980 			p_hwfn->p_dev->num_ports_in_engine = 1;
3981 			break;
3982 		case 3:
3983 			p_hwfn->p_dev->num_ports_in_engine = 2;
3984 			break;
3985 		case 0xf:
3986 			p_hwfn->p_dev->num_ports_in_engine = 4;
3987 			break;
3988 		default:
3989 			DP_NOTICE(p_hwfn, false,
3990 				  "Unknown port mode in ECO_RESERVED %08x\n",
3991 				  port);
3992 		}
3993 	} else
3994 #endif
3995 	for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
3996 		port = ecore_rd(p_hwfn, p_ptt,
3997 				CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
3998 		if (port & 1)
3999 			p_hwfn->p_dev->num_ports_in_engine++;
4000 	}
4001 
4002 	if (!p_hwfn->p_dev->num_ports_in_engine) {
4003 		DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
4004 
4005 		/* Default num_ports_in_engine to something */
4006 		p_hwfn->p_dev->num_ports_in_engine = 1;
4007 	}
4008 }
4009 
4010 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
4011 				   struct ecore_ptt *p_ptt)
4012 {
4013 	if (ECORE_IS_BB(p_hwfn->p_dev))
4014 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
4015 	else
4016 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
4017 }
4018 
4019 static enum _ecore_status_t
4020 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
4021 		  enum ecore_pci_personality personality,
4022 		  struct ecore_hw_prepare_params *p_params)
4023 {
4024 	bool drv_resc_alloc = p_params->drv_resc_alloc;
4025 	enum _ecore_status_t rc;
4026 
4027 	/* Since all information is common, only first hwfns should do this */
4028 	if (IS_LEAD_HWFN(p_hwfn)) {
4029 		rc = ecore_iov_hw_info(p_hwfn);
4030 		if (rc != ECORE_SUCCESS) {
4031 			if (p_params->b_relaxed_probe)
4032 				p_params->p_relaxed_res =
4033 						ECORE_HW_PREPARE_BAD_IOV;
4034 			else
4035 				return rc;
4036 		}
4037 	}
4038 
4039 	/* TODO In get_hw_info, amoungst others:
4040 	 * Get MCP FW revision and determine according to it the supported
4041 	 * featrues (e.g. DCB)
4042 	 * Get boot mode
4043 	 * ecore_get_pcie_width_speed, WOL capability.
4044 	 * Number of global CQ-s (for storage
4045 	 */
4046 	ecore_hw_info_port_num(p_hwfn, p_ptt);
4047 
4048 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
4049 
4050 #ifndef ASIC_ONLY
4051 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
4052 #endif
4053 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
4054 	if (rc != ECORE_SUCCESS)
4055 		return rc;
4056 #ifndef ASIC_ONLY
4057 	}
4058 #endif
4059 
4060 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
4061 	if (rc != ECORE_SUCCESS) {
4062 		if (p_params->b_relaxed_probe)
4063 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
4064 		else
4065 			return rc;
4066 	}
4067 
4068 #ifndef ASIC_ONLY
4069 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
4070 #endif
4071 	OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
4072 		    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
4073 #ifndef ASIC_ONLY
4074 	} else {
4075 		static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
4076 
4077 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
4078 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
4079 	}
4080 #endif
4081 
4082 	if (ecore_mcp_is_init(p_hwfn)) {
4083 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
4084 			p_hwfn->hw_info.ovlan =
4085 				p_hwfn->mcp_info->func_info.ovlan;
4086 
4087 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
4088 	}
4089 
4090 	if (personality != ECORE_PCI_DEFAULT) {
4091 		p_hwfn->hw_info.personality = personality;
4092 	} else if (ecore_mcp_is_init(p_hwfn)) {
4093 		enum ecore_pci_personality protocol;
4094 
4095 		protocol = p_hwfn->mcp_info->func_info.protocol;
4096 		p_hwfn->hw_info.personality = protocol;
4097 	}
4098 
4099 #ifndef ASIC_ONLY
4100 	/* To overcome ILT lack for emulation, until at least until we'll have
4101 	 * a definite answer from system about it, allow only PF0 to be RoCE.
4102 	 */
4103 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
4104 		if (!p_hwfn->rel_pf_id)
4105 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
4106 		else
4107 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
4108 	}
4109 #endif
4110 
4111 	/* although in BB some constellations may support more than 4 tcs,
4112 	 * that can result in performance penalty in some cases. 4
4113 	 * represents a good tradeoff between performance and flexibility.
4114 	 */
4115 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
4116 
4117 	/* start out with a single active tc. This can be increased either
4118 	 * by dcbx negotiation or by upper layer driver
4119 	 */
4120 	p_hwfn->hw_info.num_active_tc = 1;
4121 
4122 	ecore_get_num_funcs(p_hwfn, p_ptt);
4123 
4124 	if (ecore_mcp_is_init(p_hwfn))
4125 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
4126 
4127 	/* In case of forcing the driver's default resource allocation, calling
4128 	 * ecore_hw_get_resc() should come after initializing the personality
4129 	 * and after getting the number of functions, since the calculation of
4130 	 * the resources/features depends on them.
4131 	 * This order is not harmful if not forcing.
4132 	 */
4133 	rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
4134 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
4135 		rc = ECORE_SUCCESS;
4136 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
4137 	}
4138 
4139 	return rc;
4140 }
4141 
4142 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
4143 					       struct ecore_ptt *p_ptt)
4144 {
4145 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4146 	u16 device_id_mask;
4147 	u32 tmp;
4148 
4149 	/* Read Vendor Id / Device Id */
4150 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
4151 				  &p_dev->vendor_id);
4152 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
4153 				  &p_dev->device_id);
4154 
4155 	/* Determine type */
4156 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
4157 	switch (device_id_mask) {
4158 	case ECORE_DEV_ID_MASK_BB:
4159 		p_dev->type = ECORE_DEV_TYPE_BB;
4160 		break;
4161 	case ECORE_DEV_ID_MASK_AH:
4162 		p_dev->type = ECORE_DEV_TYPE_AH;
4163 		break;
4164 	case ECORE_DEV_ID_MASK_E5:
4165 		p_dev->type = ECORE_DEV_TYPE_E5;
4166 		break;
4167 	default:
4168 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
4169 			  p_dev->device_id);
4170 		return ECORE_ABORTED;
4171 	}
4172 
4173 	p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_ptt,
4174 						MISCS_REG_CHIP_NUM);
4175 	p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_ptt,
4176 						MISCS_REG_CHIP_REV);
4177 
4178 	MASK_FIELD(CHIP_REV, p_dev->chip_rev);
4179 
4180 	/* Learn number of HW-functions */
4181 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
4182 
4183 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
4184 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
4185 		p_dev->num_hwfns = 2;
4186 	} else {
4187 		p_dev->num_hwfns = 1;
4188 	}
4189 
4190 #ifndef ASIC_ONLY
4191 	if (CHIP_REV_IS_EMUL(p_dev)) {
4192 		/* For some reason we have problems with this register
4193 		 * in B0 emulation; Simply assume no CMT
4194 		 */
4195 		DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
4196 		p_dev->num_hwfns = 1;
4197 	}
4198 #endif
4199 
4200 	p_dev->chip_bond_id = ecore_rd(p_hwfn, p_ptt,
4201 				       MISCS_REG_CHIP_TEST_REG) >> 4;
4202 	MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
4203 	p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_ptt,
4204 					  MISCS_REG_CHIP_METAL);
4205 	MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
4206 	DP_INFO(p_dev->hwfns,
4207 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
4208 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
4209 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
4210 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
4211 		p_dev->chip_metal);
4212 
4213 	if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
4214 		DP_NOTICE(p_dev->hwfns, false,
4215 			  "The chip type/rev (BB A0) is not supported!\n");
4216 		return ECORE_ABORTED;
4217 	}
4218 
4219 #ifndef ASIC_ONLY
4220 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
4221 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
4222 
4223 	if (CHIP_REV_IS_EMUL(p_dev)) {
4224 		tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
4225 		if (tmp & (1 << 29)) {
4226 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
4227 			p_dev->b_is_emul_full = true;
4228 		} else {
4229 			DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
4230 		}
4231 	}
4232 #endif
4233 
4234 	return ECORE_SUCCESS;
4235 }
4236 
4237 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
4238 {
4239 	int j;
4240 
4241 	if (IS_VF(p_dev))
4242 		return;
4243 
4244 	for_each_hwfn(p_dev, j) {
4245 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4246 
4247 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
4248 
4249 		p_hwfn->hw_init_done = false;
4250 		p_hwfn->first_on_engine = false;
4251 
4252 		ecore_ptt_invalidate(p_hwfn);
4253 	}
4254 }
4255 
4256 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
4257 {
4258 	int j = 0;
4259 
4260 	if (IS_VF(p_dev))
4261 		return;
4262 
4263 	for_each_hwfn(p_dev, j) {
4264 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4265 		struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
4266 
4267 		ecore_hw_hwfn_prepare(p_hwfn);
4268 
4269 		if (!p_ptt)
4270 			DP_NOTICE(p_hwfn, true, "ptt acquire failed\n");
4271 		else {
4272 			ecore_load_mcp_offsets(p_hwfn, p_ptt);
4273 			ecore_ptt_release(p_hwfn, p_ptt);
4274 		}
4275 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
4276 	}
4277 }
4278 
4279 static enum _ecore_status_t ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
4280 						    void OSAL_IOMEM *p_regview,
4281 						    void OSAL_IOMEM *p_doorbells,
4282 						    struct ecore_hw_prepare_params *p_params)
4283 {
4284 	struct ecore_mdump_retain_data mdump_retain;
4285 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4286 	struct ecore_mdump_info mdump_info;
4287 	enum _ecore_status_t rc = ECORE_SUCCESS;
4288 
4289 	/* Split PCI bars evenly between hwfns */
4290 	p_hwfn->regview = p_regview;
4291 	p_hwfn->doorbells = p_doorbells;
4292 
4293 	if (IS_VF(p_dev))
4294 		return ecore_vf_hw_prepare(p_hwfn);
4295 
4296 	/* Validate that chip access is feasible */
4297 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
4298 		DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
4299 		if (p_params->b_relaxed_probe)
4300 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
4301 		return ECORE_INVAL;
4302 	}
4303 
4304 	get_function_id(p_hwfn);
4305 
4306 	/* Allocate PTT pool */
4307 	rc = ecore_ptt_pool_alloc(p_hwfn);
4308 	if (rc) {
4309 		DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
4310 		if (p_params->b_relaxed_probe)
4311 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
4312 		goto err0;
4313 	}
4314 
4315 	/* Allocate the main PTT */
4316 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
4317 
4318 	/* First hwfn learns basic information, e.g., number of hwfns */
4319 	if (!p_hwfn->my_id) {
4320 		rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
4321 		if (rc != ECORE_SUCCESS) {
4322 			if (p_params->b_relaxed_probe)
4323 				p_params->p_relaxed_res =
4324 					ECORE_HW_PREPARE_FAILED_DEV;
4325 			goto err1;
4326 		}
4327 	}
4328 
4329 	ecore_hw_hwfn_prepare(p_hwfn);
4330 
4331 	/* Initialize MCP structure */
4332 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
4333 	if (rc) {
4334 		DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
4335 		if (p_params->b_relaxed_probe)
4336 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
4337 		goto err1;
4338 	}
4339 
4340 	/* Read the device configuration information from the HW and SHMEM */
4341 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
4342 			       p_params->personality, p_params);
4343 	if (rc) {
4344 		DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
4345 		goto err2;
4346 	}
4347 
4348 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
4349 	 * called, since among others it sets the ports number in an engine.
4350 	 */
4351 	if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
4352 	    !p_dev->recov_in_prog) {
4353 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
4354 		if (rc != ECORE_SUCCESS)
4355 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
4356 	}
4357 
4358 	/* Check if mdump logs/data are present and update the epoch value */
4359 	if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
4360 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
4361 					      &mdump_info);
4362 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
4363 			DP_NOTICE(p_hwfn, false,
4364 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
4365 
4366 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
4367 						&mdump_retain);
4368 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
4369 			DP_NOTICE(p_hwfn, false,
4370 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
4371 				  mdump_retain.epoch, mdump_retain.pf,
4372 				  mdump_retain.status);
4373 
4374 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
4375 					   p_params->epoch);
4376 	}
4377 
4378 	/* Allocate the init RT array and initialize the init-ops engine */
4379 	rc = ecore_init_alloc(p_hwfn);
4380 	if (rc) {
4381 		DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
4382 		if (p_params->b_relaxed_probe)
4383 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
4384 		goto err2;
4385 	}
4386 
4387 #ifndef ASIC_ONLY
4388 	if (CHIP_REV_IS_FPGA(p_dev)) {
4389 		DP_NOTICE(p_hwfn, false,
4390 			  "FPGA: workaround; Prevent DMAE parities\n");
4391 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
4392 			 7);
4393 
4394 		DP_NOTICE(p_hwfn, false,
4395 			  "FPGA: workaround: Set VF bar0 size\n");
4396 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4397 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
4398 	}
4399 #endif
4400 
4401 	return rc;
4402 err2:
4403 	if (IS_LEAD_HWFN(p_hwfn))
4404 		ecore_iov_free_hw_info(p_dev);
4405 	ecore_mcp_free(p_hwfn);
4406 err1:
4407 	ecore_hw_hwfn_free(p_hwfn);
4408 err0:
4409 	return rc;
4410 }
4411 
4412 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
4413 				      struct ecore_hw_prepare_params *p_params)
4414 {
4415 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4416 	enum _ecore_status_t rc;
4417 
4418 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
4419 	p_dev->allow_mdump = p_params->allow_mdump;
4420 
4421 	if (p_params->b_relaxed_probe)
4422 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
4423 
4424 	/* Store the precompiled init data ptrs */
4425 	if (IS_PF(p_dev))
4426 		ecore_init_iro_array(p_dev);
4427 
4428 	/* Initialize the first hwfn - will learn number of hwfns */
4429 	rc = ecore_hw_prepare_single(p_hwfn,
4430 				     p_dev->regview,
4431 				     p_dev->doorbells, p_params);
4432 	if (rc != ECORE_SUCCESS)
4433 		return rc;
4434 
4435 	p_params->personality = p_hwfn->hw_info.personality;
4436 
4437 	/* initilalize 2nd hwfn if necessary */
4438 	if (p_dev->num_hwfns > 1) {
4439 		void OSAL_IOMEM *p_regview, *p_doorbell;
4440 		u8 OSAL_IOMEM *addr;
4441 
4442 		/* adjust bar offset for second engine */
4443 		addr = (u8 OSAL_IOMEM *)p_dev->regview +
4444 					ecore_hw_bar_size(p_hwfn,
4445 							  p_hwfn->p_main_ptt,
4446 							  BAR_ID_0) / 2;
4447 		p_regview = (void OSAL_IOMEM *)addr;
4448 
4449 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
4450 					ecore_hw_bar_size(p_hwfn,
4451 							  p_hwfn->p_main_ptt,
4452 							  BAR_ID_1) / 2;
4453 		p_doorbell = (void OSAL_IOMEM *)addr;
4454 
4455 		/* prepare second hw function */
4456 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
4457 					     p_doorbell, p_params);
4458 
4459 		/* in case of error, need to free the previously
4460 		 * initiliazed hwfn 0.
4461 		 */
4462 		if (rc != ECORE_SUCCESS) {
4463 			if (p_params->b_relaxed_probe)
4464 				p_params->p_relaxed_res =
4465 						ECORE_HW_PREPARE_FAILED_ENG2;
4466 
4467 			if (IS_PF(p_dev)) {
4468 				ecore_init_free(p_hwfn);
4469 				ecore_mcp_free(p_hwfn);
4470 				ecore_hw_hwfn_free(p_hwfn);
4471 			} else {
4472 				DP_NOTICE(p_dev, true, "What do we need to free when VF hwfn1 init fails\n");
4473 			}
4474 			return rc;
4475 		}
4476 	}
4477 
4478 	return rc;
4479 }
4480 
4481 void ecore_hw_remove(struct ecore_dev *p_dev)
4482 {
4483 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4484 	int i;
4485 
4486 	if (IS_PF(p_dev))
4487 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
4488 						 ECORE_OV_DRIVER_STATE_NOT_LOADED);
4489 
4490 	for_each_hwfn(p_dev, i) {
4491 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4492 
4493 		if (IS_VF(p_dev)) {
4494 			ecore_vf_pf_release(p_hwfn);
4495 			continue;
4496 		}
4497 
4498 		ecore_init_free(p_hwfn);
4499 		ecore_hw_hwfn_free(p_hwfn);
4500 		ecore_mcp_free(p_hwfn);
4501 
4502 #ifdef CONFIG_ECORE_LOCK_ALLOC
4503 		OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
4504 #endif
4505 	}
4506 
4507 	ecore_iov_free_hw_info(p_dev);
4508 }
4509 
4510 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
4511 				      struct ecore_chain *p_chain)
4512 {
4513 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
4514 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
4515 	struct ecore_chain_next *p_next;
4516 	u32 size, i;
4517 
4518 	if (!p_virt)
4519 		return;
4520 
4521 	size = p_chain->elem_size * p_chain->usable_per_page;
4522 
4523 	for (i = 0; i < p_chain->page_cnt; i++) {
4524 		if (!p_virt)
4525 			break;
4526 
4527 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
4528 		p_virt_next = p_next->next_virt;
4529 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
4530 
4531 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
4532 				       ECORE_CHAIN_PAGE_SIZE);
4533 
4534 		p_virt = p_virt_next;
4535 		p_phys = p_phys_next;
4536 	}
4537 }
4538 
4539 static void ecore_chain_free_single(struct ecore_dev *p_dev,
4540 				    struct ecore_chain *p_chain)
4541 {
4542 	if (!p_chain->p_virt_addr)
4543 		return;
4544 
4545 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
4546 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
4547 }
4548 
4549 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
4550 				 struct ecore_chain *p_chain)
4551 {
4552 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
4553 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
4554 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
4555 
4556 	if (!pp_virt_addr_tbl)
4557 		return;
4558 
4559 	if (!p_pbl_virt)
4560 		goto out;
4561 
4562 	for (i = 0; i < page_cnt; i++) {
4563 		if (!pp_virt_addr_tbl[i])
4564 			break;
4565 
4566 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
4567 				       *(dma_addr_t *)p_pbl_virt,
4568 				       ECORE_CHAIN_PAGE_SIZE);
4569 
4570 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
4571 	}
4572 
4573 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
4574 
4575 	if (!p_chain->b_external_pbl) {
4576 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
4577 				       p_chain->pbl_sp.p_phys_table, pbl_size);
4578 	}
4579 out:
4580 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
4581 	p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
4582 }
4583 
4584 void ecore_chain_free(struct ecore_dev *p_dev,
4585 		      struct ecore_chain *p_chain)
4586 {
4587 	switch (p_chain->mode) {
4588 	case ECORE_CHAIN_MODE_NEXT_PTR:
4589 		ecore_chain_free_next_ptr(p_dev, p_chain);
4590 		break;
4591 	case ECORE_CHAIN_MODE_SINGLE:
4592 		ecore_chain_free_single(p_dev, p_chain);
4593 		break;
4594 	case ECORE_CHAIN_MODE_PBL:
4595 		ecore_chain_free_pbl(p_dev, p_chain);
4596 		break;
4597 	}
4598 }
4599 
4600 static enum _ecore_status_t
4601 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
4602 			       enum ecore_chain_cnt_type cnt_type,
4603 			       osal_size_t elem_size, u32 page_cnt)
4604 {
4605 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
4606 
4607 	/* The actual chain size can be larger than the maximal possible value
4608 	 * after rounding up the requested elements number to pages, and after
4609 	 * taking into acount the unusuable elements (next-ptr elements).
4610 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
4611 	 * size/capacity fields are of a u32 type.
4612 	 */
4613 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
4614 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
4615 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
4616 	     chain_size > ECORE_U32_MAX)) {
4617 		DP_NOTICE(p_dev, true,
4618 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
4619 			  (unsigned long long)chain_size);
4620 		return ECORE_INVAL;
4621 	}
4622 
4623 	return ECORE_SUCCESS;
4624 }
4625 
4626 static enum _ecore_status_t
4627 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4628 {
4629 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
4630 	dma_addr_t p_phys = 0;
4631 	u32 i;
4632 
4633 	for (i = 0; i < p_chain->page_cnt; i++) {
4634 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
4635 						 ECORE_CHAIN_PAGE_SIZE);
4636 		if (!p_virt) {
4637 			DP_NOTICE(p_dev, true,
4638 				  "Failed to allocate chain memory\n");
4639 			return ECORE_NOMEM;
4640 		}
4641 
4642 		if (i == 0) {
4643 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
4644 			ecore_chain_reset(p_chain);
4645 		} else {
4646 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4647 						       p_virt, p_phys);
4648 		}
4649 
4650 		p_virt_prev = p_virt;
4651 	}
4652 	/* Last page's next element should point to the beginning of the
4653 	 * chain.
4654 	 */
4655 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4656 				       p_chain->p_virt_addr,
4657 				       p_chain->p_phys_addr);
4658 
4659 	return ECORE_SUCCESS;
4660 }
4661 
4662 static enum _ecore_status_t
4663 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4664 {
4665 	dma_addr_t p_phys = 0;
4666 	void *p_virt = OSAL_NULL;
4667 
4668 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
4669 	if (!p_virt) {
4670 		DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
4671 		return ECORE_NOMEM;
4672 	}
4673 
4674 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
4675 	ecore_chain_reset(p_chain);
4676 
4677 	return ECORE_SUCCESS;
4678 }
4679 
4680 static enum _ecore_status_t
4681 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
4682 		      struct ecore_chain *p_chain,
4683 		      struct ecore_chain_ext_pbl *ext_pbl)
4684 {
4685 	u32 page_cnt = p_chain->page_cnt, size, i;
4686 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
4687 	void **pp_virt_addr_tbl = OSAL_NULL;
4688 	u8 *p_pbl_virt = OSAL_NULL;
4689 	void *p_virt = OSAL_NULL;
4690 
4691 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
4692 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
4693 	if (!pp_virt_addr_tbl) {
4694 		DP_NOTICE(p_dev, true,
4695 			  "Failed to allocate memory for the chain virtual addresses table\n");
4696 		return ECORE_NOMEM;
4697 	}
4698 
4699 	/* The allocation of the PBL table is done with its full size, since it
4700 	 * is expected to be successive.
4701 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
4702 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
4703 	 * should be saved to allow its freeing during the error flow.
4704 	 */
4705 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
4706 
4707 	if (ext_pbl == OSAL_NULL) {
4708 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
4709 	} else {
4710 		p_pbl_virt = ext_pbl->p_pbl_virt;
4711 		p_pbl_phys = ext_pbl->p_pbl_phys;
4712 		p_chain->b_external_pbl = true;
4713 	}
4714 
4715 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
4716 				 pp_virt_addr_tbl);
4717 	if (!p_pbl_virt) {
4718 		DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
4719 		return ECORE_NOMEM;
4720 	}
4721 
4722 	for (i = 0; i < page_cnt; i++) {
4723 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
4724 						 ECORE_CHAIN_PAGE_SIZE);
4725 		if (!p_virt) {
4726 			DP_NOTICE(p_dev, true,
4727 				  "Failed to allocate chain memory\n");
4728 			return ECORE_NOMEM;
4729 		}
4730 
4731 		if (i == 0) {
4732 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
4733 			ecore_chain_reset(p_chain);
4734 		}
4735 
4736 		/* Fill the PBL table with the physical address of the page */
4737 		*(dma_addr_t *)p_pbl_virt = p_phys;
4738 		/* Keep the virtual address of the page */
4739 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
4740 
4741 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
4742 	}
4743 
4744 	return ECORE_SUCCESS;
4745 }
4746 
4747 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
4748 				       enum ecore_chain_use_mode intended_use,
4749 				       enum ecore_chain_mode mode,
4750 				       enum ecore_chain_cnt_type cnt_type,
4751 				       u32 num_elems, osal_size_t elem_size,
4752 				       struct ecore_chain *p_chain,
4753 				       struct ecore_chain_ext_pbl *ext_pbl)
4754 {
4755 	u32 page_cnt;
4756 	enum _ecore_status_t rc = ECORE_SUCCESS;
4757 
4758 	if (mode == ECORE_CHAIN_MODE_SINGLE)
4759 		page_cnt = 1;
4760 	else
4761 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
4762 
4763 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
4764 					    page_cnt);
4765 	if (rc) {
4766 		DP_NOTICE(p_dev, true,
4767 			  "Cannot allocate a chain with the given arguments:\n"
4768 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
4769 			  intended_use, mode, cnt_type, num_elems, elem_size);
4770 		return rc;
4771 	}
4772 
4773 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
4774 				mode, cnt_type, p_dev->dp_ctx);
4775 
4776 	switch (mode) {
4777 	case ECORE_CHAIN_MODE_NEXT_PTR:
4778 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
4779 		break;
4780 	case ECORE_CHAIN_MODE_SINGLE:
4781 		rc = ecore_chain_alloc_single(p_dev, p_chain);
4782 		break;
4783 	case ECORE_CHAIN_MODE_PBL:
4784 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
4785 		break;
4786 	}
4787 	if (rc)
4788 		goto nomem;
4789 
4790 	return ECORE_SUCCESS;
4791 
4792 nomem:
4793 	ecore_chain_free(p_dev, p_chain);
4794 	return rc;
4795 }
4796 
4797 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
4798 				       u16 src_id, u16 *dst_id)
4799 {
4800 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
4801 		u16 min, max;
4802 
4803 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
4804 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
4805 		DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
4806 			  src_id, min, max);
4807 
4808 		return ECORE_INVAL;
4809 	}
4810 
4811 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
4812 
4813 	return ECORE_SUCCESS;
4814 }
4815 
4816 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
4817 				    u8 src_id, u8 *dst_id)
4818 {
4819 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
4820 		u8 min, max;
4821 
4822 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
4823 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
4824 		DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
4825 			  src_id, min, max);
4826 
4827 		return ECORE_INVAL;
4828 	}
4829 
4830 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
4831 
4832 	return ECORE_SUCCESS;
4833 }
4834 
4835 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
4836 				      u8 src_id, u8 *dst_id)
4837 {
4838 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
4839 		u8 min, max;
4840 
4841 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
4842 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
4843 		DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
4844 			  src_id, min, max);
4845 
4846 		return ECORE_INVAL;
4847 	}
4848 
4849 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
4850 
4851 	return ECORE_SUCCESS;
4852 }
4853 
4854 static enum _ecore_status_t
4855 ecore_llh_add_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4856 			       struct ecore_ptt *p_ptt, u32 high, u32 low,
4857 			       u32 *p_entry_num)
4858 {
4859 	u32 en;
4860 	int i;
4861 
4862 	/* Find a free entry and utilize it */
4863 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4864 		en = ecore_rd(p_hwfn, p_ptt,
4865 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4866 			      i * sizeof(u32));
4867 		if (en)
4868 			continue;
4869 		ecore_wr(p_hwfn, p_ptt,
4870 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4871 			 2 * i * sizeof(u32), low);
4872 		ecore_wr(p_hwfn, p_ptt,
4873 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4874 			 (2 * i + 1) * sizeof(u32), high);
4875 		ecore_wr(p_hwfn, p_ptt,
4876 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4877 			 i * sizeof(u32), 0);
4878 		ecore_wr(p_hwfn, p_ptt,
4879 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4880 			 i * sizeof(u32), 0);
4881 		ecore_wr(p_hwfn, p_ptt,
4882 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4883 			 i * sizeof(u32), 1);
4884 		break;
4885 	}
4886 
4887 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4888 		return ECORE_NORESOURCES;
4889 
4890 	*p_entry_num = i;
4891 
4892 	return ECORE_SUCCESS;
4893 }
4894 
4895 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
4896  * Should be removed when the function is implemented.
4897  */
4898 static enum _ecore_status_t
4899 ecore_llh_add_mac_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
4900 			    struct ecore_ptt OSAL_UNUSED *p_ptt,
4901 			    u32 OSAL_UNUSED high, u32 OSAL_UNUSED low,
4902 			    u32 OSAL_UNUSED *p_entry_num)
4903 {
4904 	ECORE_E5_MISSING_CODE;
4905 
4906 	return ECORE_NOTIMPL;
4907 }
4908 
4909 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
4910 					  struct ecore_ptt *p_ptt, u8 *p_filter)
4911 {
4912 	u32 high, low, entry_num;
4913 	enum _ecore_status_t rc;
4914 
4915 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4916 		return ECORE_SUCCESS;
4917 
4918 	high = p_filter[1] | (p_filter[0] << 8);
4919 	low = p_filter[5] | (p_filter[4] << 8) |
4920 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4921 
4922 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4923 		rc = ecore_llh_add_mac_filter_bb_ah(p_hwfn, p_ptt, high, low,
4924 						    &entry_num);
4925 	else /* E5 */
4926 		rc = ecore_llh_add_mac_filter_e5(p_hwfn, p_ptt, high, low,
4927 						 &entry_num);
4928 	if (rc != ECORE_SUCCESS) {
4929 		DP_NOTICE(p_hwfn, false,
4930 			  "Failed to find an empty LLH filter to utilize\n");
4931 		return rc;
4932 	}
4933 
4934 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4935 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx is added at LLH entry %d\n",
4936 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4937 		   p_filter[4], p_filter[5], entry_num);
4938 
4939 	return ECORE_SUCCESS;
4940 }
4941 
4942 static enum _ecore_status_t
4943 ecore_llh_remove_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4944 				  struct ecore_ptt *p_ptt, u32 high, u32 low,
4945 				  u32 *p_entry_num)
4946 {
4947 	int i;
4948 
4949 	/* Find the entry and clean it */
4950 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4951 		if (ecore_rd(p_hwfn, p_ptt,
4952 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4953 			     2 * i * sizeof(u32)) != low)
4954 			continue;
4955 		if (ecore_rd(p_hwfn, p_ptt,
4956 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4957 			     (2 * i + 1) * sizeof(u32)) != high)
4958 			continue;
4959 
4960 		ecore_wr(p_hwfn, p_ptt,
4961 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4962 		ecore_wr(p_hwfn, p_ptt,
4963 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4964 			 2 * i * sizeof(u32), 0);
4965 		ecore_wr(p_hwfn, p_ptt,
4966 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4967 			 (2 * i + 1) * sizeof(u32), 0);
4968 		break;
4969 	}
4970 
4971 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4972 		return ECORE_INVAL;
4973 
4974 	*p_entry_num = i;
4975 
4976 	return ECORE_SUCCESS;
4977 }
4978 
4979 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
4980  * Should be removed when the function is implemented.
4981  */
4982 static enum _ecore_status_t
4983 ecore_llh_remove_mac_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
4984 			       struct ecore_ptt OSAL_UNUSED *p_ptt,
4985 			       u32 OSAL_UNUSED high, u32 OSAL_UNUSED low,
4986 			       u32 OSAL_UNUSED *p_entry_num)
4987 {
4988 	ECORE_E5_MISSING_CODE;
4989 
4990 	return ECORE_NOTIMPL;
4991 }
4992 
4993 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
4994 			     struct ecore_ptt *p_ptt, u8 *p_filter)
4995 {
4996 	u32 high, low, entry_num;
4997 	enum _ecore_status_t rc;
4998 
4999 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
5000 		return;
5001 
5002 	high = p_filter[1] | (p_filter[0] << 8);
5003 	low = p_filter[5] | (p_filter[4] << 8) |
5004 	      (p_filter[3] << 16) | (p_filter[2] << 24);
5005 
5006 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
5007 		rc = ecore_llh_remove_mac_filter_bb_ah(p_hwfn, p_ptt, high,
5008 						       low, &entry_num);
5009 	else /* E5 */
5010 		rc = ecore_llh_remove_mac_filter_e5(p_hwfn, p_ptt, high, low,
5011 						    &entry_num);
5012 	if (rc != ECORE_SUCCESS) {
5013 		DP_NOTICE(p_hwfn, false,
5014 			  "Tried to remove a non-configured filter [MAC %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx]\n",
5015 			  p_filter[0], p_filter[1], p_filter[2], p_filter[3],
5016 			  p_filter[4], p_filter[5]);
5017 		return;
5018 	}
5019 
5020 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5021 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx was removed from LLH entry %d\n",
5022 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
5023 		   p_filter[4], p_filter[5], entry_num);
5024 }
5025 
5026 static enum _ecore_status_t
5027 ecore_llh_add_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
5028 				    struct ecore_ptt *p_ptt,
5029 				    enum ecore_llh_port_filter_type_t type,
5030 				    u32 high, u32 low, u32 *p_entry_num)
5031 {
5032 	u32 en;
5033 	int i;
5034 
5035 	/* Find a free entry and utilize it */
5036 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
5037 		en = ecore_rd(p_hwfn, p_ptt,
5038 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
5039 			      i * sizeof(u32));
5040 		if (en)
5041 			continue;
5042 		ecore_wr(p_hwfn, p_ptt,
5043 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
5044 			 2 * i * sizeof(u32), low);
5045 		ecore_wr(p_hwfn, p_ptt,
5046 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
5047 			 (2 * i + 1) * sizeof(u32), high);
5048 		ecore_wr(p_hwfn, p_ptt,
5049 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
5050 			 i * sizeof(u32), 1);
5051 		ecore_wr(p_hwfn, p_ptt,
5052 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
5053 			 i * sizeof(u32), 1 << type);
5054 		ecore_wr(p_hwfn, p_ptt,
5055 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 1);
5056 		break;
5057 	}
5058 
5059 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
5060 		return ECORE_NORESOURCES;
5061 
5062 	*p_entry_num = i;
5063 
5064 	return ECORE_SUCCESS;
5065 }
5066 
5067 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
5068  * Should be removed when the function is implemented.
5069  */
5070 static enum _ecore_status_t
5071 ecore_llh_add_protocol_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
5072 				 struct ecore_ptt OSAL_UNUSED *p_ptt,
5073 				 enum ecore_llh_port_filter_type_t OSAL_UNUSED type,
5074 				 u32 OSAL_UNUSED high, u32 OSAL_UNUSED low,
5075 				 u32 OSAL_UNUSED *p_entry_num)
5076 {
5077 	ECORE_E5_MISSING_CODE;
5078 
5079 	return ECORE_NOTIMPL;
5080 }
5081 
5082 enum _ecore_status_t
5083 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
5084 			      struct ecore_ptt *p_ptt,
5085 			      u16 source_port_or_eth_type,
5086 			      u16 dest_port,
5087 			      enum ecore_llh_port_filter_type_t type)
5088 {
5089 	u32 high, low, entry_num;
5090 	enum _ecore_status_t rc;
5091 
5092 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
5093 		return ECORE_SUCCESS;
5094 
5095 	high = 0;
5096 	low = 0;
5097 	switch (type) {
5098 	case ECORE_LLH_FILTER_ETHERTYPE:
5099 		high = source_port_or_eth_type;
5100 		break;
5101 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
5102 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
5103 		low = source_port_or_eth_type << 16;
5104 		break;
5105 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
5106 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
5107 		low = dest_port;
5108 		break;
5109 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
5110 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
5111 		low = (source_port_or_eth_type << 16) | dest_port;
5112 		break;
5113 	default:
5114 		DP_NOTICE(p_hwfn, true,
5115 			  "Non valid LLH protocol filter type %d\n", type);
5116 		return ECORE_INVAL;
5117 	}
5118 
5119 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
5120 		rc = ecore_llh_add_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
5121 							 high, low, &entry_num);
5122 	else /* E5 */
5123 		rc = ecore_llh_add_protocol_filter_e5(p_hwfn, p_ptt, type, high,
5124 						      low, &entry_num);
5125 	if (rc != ECORE_SUCCESS) {
5126 		DP_NOTICE(p_hwfn, false,
5127 			  "Failed to find an empty LLH filter to utilize\n");
5128 		return rc;
5129 	}
5130 
5131 	switch (type) {
5132 	case ECORE_LLH_FILTER_ETHERTYPE:
5133 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5134 			   "ETH type %x is added at LLH entry %d\n",
5135 			   source_port_or_eth_type, entry_num);
5136 		break;
5137 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
5138 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5139 			   "TCP src port %x is added at LLH entry %d\n",
5140 			   source_port_or_eth_type, entry_num);
5141 		break;
5142 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
5143 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5144 			   "UDP src port %x is added at LLH entry %d\n",
5145 			   source_port_or_eth_type, entry_num);
5146 		break;
5147 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
5148 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5149 			   "TCP dst port %x is added at LLH entry %d\n",
5150 			   dest_port, entry_num);
5151 		break;
5152 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
5153 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5154 			   "UDP dst port %x is added at LLH entry %d\n",
5155 			   dest_port, entry_num);
5156 		break;
5157 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
5158 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5159 			   "TCP src/dst ports %x/%x are added at LLH entry %d\n",
5160 			   source_port_or_eth_type, dest_port, entry_num);
5161 		break;
5162 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
5163 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5164 			   "UDP src/dst ports %x/%x are added at LLH entry %d\n",
5165 			   source_port_or_eth_type, dest_port, entry_num);
5166 			break;
5167 	}
5168 
5169 	return ECORE_SUCCESS;
5170 }
5171 
5172 static enum _ecore_status_t
5173 ecore_llh_remove_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
5174 				       struct ecore_ptt *p_ptt,
5175 				       enum ecore_llh_port_filter_type_t type,
5176 				       u32 high, u32 low, u32 *p_entry_num)
5177 {
5178 	int i;
5179 
5180 	/* Find the entry and clean it */
5181 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
5182 		if (!ecore_rd(p_hwfn, p_ptt,
5183 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
5184 			      i * sizeof(u32)))
5185 			continue;
5186 		if (!ecore_rd(p_hwfn, p_ptt,
5187 			      NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
5188 			      i * sizeof(u32)))
5189 			continue;
5190 		if (!(ecore_rd(p_hwfn, p_ptt,
5191 			       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
5192 			       i * sizeof(u32)) & (1 << type)))
5193 			continue;
5194 		if (ecore_rd(p_hwfn, p_ptt,
5195 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
5196 			     2 * i * sizeof(u32)) != low)
5197 			continue;
5198 		if (ecore_rd(p_hwfn, p_ptt,
5199 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
5200 			     (2 * i + 1) * sizeof(u32)) != high)
5201 			continue;
5202 
5203 		ecore_wr(p_hwfn, p_ptt,
5204 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
5205 		ecore_wr(p_hwfn, p_ptt,
5206 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
5207 			 i * sizeof(u32), 0);
5208 		ecore_wr(p_hwfn, p_ptt,
5209 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
5210 			 i * sizeof(u32), 0);
5211 		ecore_wr(p_hwfn, p_ptt,
5212 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
5213 			 2 * i * sizeof(u32), 0);
5214 		ecore_wr(p_hwfn, p_ptt,
5215 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
5216 			 (2 * i + 1) * sizeof(u32), 0);
5217 		break;
5218 	}
5219 
5220 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
5221 		return ECORE_INVAL;
5222 
5223 	*p_entry_num = i;
5224 
5225 	return ECORE_SUCCESS;
5226 }
5227 
5228 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
5229  * Should be removed when the function is implemented.
5230  */
5231 static enum _ecore_status_t
5232 ecore_llh_remove_protocol_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
5233 				    struct ecore_ptt OSAL_UNUSED *p_ptt,
5234 				    enum ecore_llh_port_filter_type_t OSAL_UNUSED type,
5235 				    u32 OSAL_UNUSED high, u32 OSAL_UNUSED low,
5236 				    u32 OSAL_UNUSED *p_entry_num)
5237 {
5238 	ECORE_E5_MISSING_CODE;
5239 
5240 	return ECORE_NOTIMPL;
5241 }
5242 
5243 void
5244 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
5245 				 struct ecore_ptt *p_ptt,
5246 				 u16 source_port_or_eth_type,
5247 				 u16 dest_port,
5248 				 enum ecore_llh_port_filter_type_t type)
5249 {
5250 	u32 high, low, entry_num;
5251 	enum _ecore_status_t rc;
5252 
5253 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
5254 		return;
5255 
5256 	high = 0;
5257 	low = 0;
5258 	switch (type) {
5259 	case ECORE_LLH_FILTER_ETHERTYPE:
5260 		high = source_port_or_eth_type;
5261 		break;
5262 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
5263 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
5264 		low = source_port_or_eth_type << 16;
5265 		break;
5266 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
5267 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
5268 		low = dest_port;
5269 		break;
5270 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
5271 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
5272 		low = (source_port_or_eth_type << 16) | dest_port;
5273 		break;
5274 	default:
5275 		DP_NOTICE(p_hwfn, true,
5276 			  "Non valid LLH protocol filter type %d\n", type);
5277 		return;
5278 	}
5279 
5280 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
5281 		rc = ecore_llh_remove_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
5282 							    high, low,
5283 							    &entry_num);
5284 	else /* E5 */
5285 		rc = ecore_llh_remove_protocol_filter_e5(p_hwfn, p_ptt, type,
5286 							 high, low, &entry_num);
5287 	if (rc != ECORE_SUCCESS) {
5288 		DP_NOTICE(p_hwfn, false,
5289 			  "Tried to remove a non-configured filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x]\n",
5290 			  type, source_port_or_eth_type, dest_port);
5291 		return;
5292 	}
5293 
5294 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
5295 		   "Protocol filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x] was removed from LLH entry %d\n",
5296 		   type, source_port_or_eth_type, dest_port, entry_num);
5297 }
5298 
5299 static void ecore_llh_clear_all_filters_bb_ah(struct ecore_hwfn *p_hwfn,
5300 					      struct ecore_ptt *p_ptt)
5301 {
5302 	int i;
5303 
5304 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
5305 		ecore_wr(p_hwfn, p_ptt,
5306 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2  +
5307 			 i * sizeof(u32), 0);
5308 		ecore_wr(p_hwfn, p_ptt,
5309 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
5310 			 2 * i * sizeof(u32), 0);
5311 		ecore_wr(p_hwfn, p_ptt,
5312 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
5313 			 (2 * i + 1) * sizeof(u32), 0);
5314 	}
5315 }
5316 
5317 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
5318  * Should be removed when the function is implemented.
5319  */
5320 static void ecore_llh_clear_all_filters_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
5321 					   struct ecore_ptt OSAL_UNUSED *p_ptt)
5322 {
5323 	ECORE_E5_MISSING_CODE;
5324 }
5325 
5326 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
5327 			     struct ecore_ptt *p_ptt)
5328 {
5329 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
5330 		return;
5331 
5332 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
5333 		ecore_llh_clear_all_filters_bb_ah(p_hwfn, p_ptt);
5334 	else /* E5 */
5335 		ecore_llh_clear_all_filters_e5(p_hwfn, p_ptt);
5336 }
5337 
5338 enum _ecore_status_t
5339 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
5340 				  struct ecore_ptt *p_ptt)
5341 {
5342 	if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
5343 		ecore_wr(p_hwfn, p_ptt,
5344 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
5345 			 1 << p_hwfn->abs_pf_id / 2);
5346 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
5347 		return ECORE_SUCCESS;
5348 	} else {
5349 		DP_NOTICE(p_hwfn, false,
5350 			  "This function can't be set as default\n");
5351 		return ECORE_INVAL;
5352 	}
5353 }
5354 
5355 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
5356 					       struct ecore_ptt *p_ptt,
5357 					       u32 hw_addr, void *p_eth_qzone,
5358 					       osal_size_t eth_qzone_size,
5359 					       u8 timeset)
5360 {
5361 	struct coalescing_timeset *p_coal_timeset;
5362 
5363 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
5364 		DP_NOTICE(p_hwfn, true,
5365 			  "Coalescing configuration not enabled\n");
5366 		return ECORE_INVAL;
5367 	}
5368 
5369 	p_coal_timeset = p_eth_qzone;
5370 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
5371 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
5372 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
5373 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
5374 
5375 	return ECORE_SUCCESS;
5376 }
5377 
5378 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
5379 					      u16 rx_coal, u16 tx_coal,
5380 					      void *p_handle)
5381 {
5382 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
5383 	enum _ecore_status_t rc = ECORE_SUCCESS;
5384 	struct ecore_ptt *p_ptt;
5385 
5386 	/* TODO - Configuring a single queue's coalescing but
5387 	 * claiming all queues are abiding same configuration
5388 	 * for PF and VF both.
5389 	 */
5390 
5391 #ifdef CONFIG_ECORE_SRIOV
5392 	if (IS_VF(p_hwfn->p_dev))
5393 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
5394 						tx_coal, p_cid);
5395 #endif /* #ifdef CONFIG_ECORE_SRIOV */
5396 
5397 	p_ptt = ecore_ptt_acquire(p_hwfn);
5398 	if (!p_ptt)
5399 		return ECORE_AGAIN;
5400 
5401 	if (rx_coal) {
5402 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
5403 		if (rc)
5404 			goto out;
5405 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
5406 	}
5407 
5408 	if (tx_coal) {
5409 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
5410 		if (rc)
5411 			goto out;
5412 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
5413 	}
5414 out:
5415 	ecore_ptt_release(p_hwfn, p_ptt);
5416 
5417 	return rc;
5418 }
5419 
5420 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
5421 					    struct ecore_ptt *p_ptt,
5422 					    u16 coalesce,
5423 					    struct ecore_queue_cid *p_cid)
5424 {
5425 	struct ustorm_eth_queue_zone eth_qzone;
5426 	u8 timeset, timer_res;
5427 	u32 address;
5428 	enum _ecore_status_t rc;
5429 
5430 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5431 	if (coalesce <= 0x7F)
5432 		timer_res = 0;
5433 	else if (coalesce <= 0xFF)
5434 		timer_res = 1;
5435 	else if (coalesce <= 0x1FF)
5436 		timer_res = 2;
5437 	else {
5438 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5439 		return ECORE_INVAL;
5440 	}
5441 	timeset = (u8)(coalesce >> timer_res);
5442 
5443 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5444 				     p_cid->sb_igu_id, false);
5445 	if (rc != ECORE_SUCCESS)
5446 		goto out;
5447 
5448 	address = BAR0_MAP_REG_USDM_RAM +
5449 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5450 
5451 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5452 				sizeof(struct ustorm_eth_queue_zone), timeset);
5453 	if (rc != ECORE_SUCCESS)
5454 		goto out;
5455 
5456 out:
5457 	return rc;
5458 }
5459 
5460 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
5461 					    struct ecore_ptt *p_ptt,
5462 					    u16 coalesce,
5463 					    struct ecore_queue_cid *p_cid)
5464 {
5465 	struct xstorm_eth_queue_zone eth_qzone;
5466 	u8 timeset, timer_res;
5467 	u32 address;
5468 	enum _ecore_status_t rc;
5469 
5470 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5471 	if (coalesce <= 0x7F)
5472 		timer_res = 0;
5473 	else if (coalesce <= 0xFF)
5474 		timer_res = 1;
5475 	else if (coalesce <= 0x1FF)
5476 		timer_res = 2;
5477 	else {
5478 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5479 		return ECORE_INVAL;
5480 	}
5481 	timeset = (u8)(coalesce >> timer_res);
5482 
5483 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5484 				     p_cid->sb_igu_id, true);
5485 	if (rc != ECORE_SUCCESS)
5486 		goto out;
5487 
5488 	address = BAR0_MAP_REG_XSDM_RAM +
5489 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5490 
5491 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5492 				sizeof(struct xstorm_eth_queue_zone), timeset);
5493 out:
5494 	return rc;
5495 }
5496 
5497 /* Calculate final WFQ values for all vports and configure it.
5498  * After this configuration each vport must have
5499  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
5500  */
5501 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
5502 					       struct ecore_ptt *p_ptt,
5503 					       u32 min_pf_rate)
5504 {
5505 	struct init_qm_vport_params *vport_params;
5506 	int i;
5507 
5508 	vport_params = p_hwfn->qm_info.qm_vport_params;
5509 
5510 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5511 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5512 
5513 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
5514 					    min_pf_rate;
5515 		ecore_init_vport_wfq(p_hwfn, p_ptt,
5516 				     vport_params[i].first_tx_pq_id,
5517 				     vport_params[i].vport_wfq);
5518 	}
5519 }
5520 
5521 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
5522 
5523 {
5524 	int i;
5525 
5526 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
5527 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
5528 }
5529 
5530 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
5531 					     struct ecore_ptt *p_ptt)
5532 {
5533 	struct init_qm_vport_params *vport_params;
5534 	int i;
5535 
5536 	vport_params = p_hwfn->qm_info.qm_vport_params;
5537 
5538 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5539 		ecore_init_wfq_default_param(p_hwfn);
5540 		ecore_init_vport_wfq(p_hwfn, p_ptt,
5541 				     vport_params[i].first_tx_pq_id,
5542 				     vport_params[i].vport_wfq);
5543 	}
5544 }
5545 
5546 /* This function performs several validations for WFQ
5547  * configuration and required min rate for a given vport
5548  * 1. req_rate must be greater than one percent of min_pf_rate.
5549  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
5550  *    rates to get less than one percent of min_pf_rate.
5551  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
5552  */
5553 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
5554 						 u16 vport_id, u32 req_rate,
5555 						 u32 min_pf_rate)
5556 {
5557 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
5558 	int non_requested_count = 0, req_count = 0, i, num_vports;
5559 
5560 	num_vports = p_hwfn->qm_info.num_vports;
5561 
5562 	/* Accounting for the vports which are configured for WFQ explicitly */
5563 	for (i = 0; i < num_vports; i++) {
5564 		u32 tmp_speed;
5565 
5566 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
5567 			req_count++;
5568 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5569 			total_req_min_rate += tmp_speed;
5570 		}
5571 	}
5572 
5573 	/* Include current vport data as well */
5574 	req_count++;
5575 	total_req_min_rate += req_rate;
5576 	non_requested_count = num_vports - req_count;
5577 
5578 	/* validate possible error cases */
5579 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
5580 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5581 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5582 			   vport_id, req_rate, min_pf_rate);
5583 		return ECORE_INVAL;
5584 	}
5585 
5586 	/* TBD - for number of vports greater than 100 */
5587 	if (num_vports > ECORE_WFQ_UNIT) {
5588 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5589 			   "Number of vports is greater than %d\n",
5590 			   ECORE_WFQ_UNIT);
5591 		return ECORE_INVAL;
5592 	}
5593 
5594 	if (total_req_min_rate > min_pf_rate) {
5595 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5596 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5597 			   total_req_min_rate, min_pf_rate);
5598 		return ECORE_INVAL;
5599 	}
5600 
5601 	/* Data left for non requested vports */
5602 	total_left_rate = min_pf_rate - total_req_min_rate;
5603 	left_rate_per_vp = total_left_rate / non_requested_count;
5604 
5605 	/* validate if non requested get < 1% of min bw */
5606 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
5607 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5608 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5609 			   left_rate_per_vp, min_pf_rate);
5610 		return ECORE_INVAL;
5611 	}
5612 
5613 	/* now req_rate for given vport passes all scenarios.
5614 	 * assign final wfq rates to all vports.
5615 	 */
5616 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
5617 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
5618 
5619 	for (i = 0; i < num_vports; i++) {
5620 		if (p_hwfn->qm_info.wfq_data[i].configured)
5621 			continue;
5622 
5623 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
5624 	}
5625 
5626 	return ECORE_SUCCESS;
5627 }
5628 
5629 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
5630 				       struct ecore_ptt *p_ptt,
5631 				       u16 vp_id, u32 rate)
5632 {
5633 	struct ecore_mcp_link_state *p_link;
5634 	int rc = ECORE_SUCCESS;
5635 
5636 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
5637 
5638 	if (!p_link->min_pf_rate) {
5639 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
5640 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
5641 		return rc;
5642 	}
5643 
5644 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
5645 
5646 	if (rc == ECORE_SUCCESS)
5647 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
5648 						   p_link->min_pf_rate);
5649 	else
5650 		DP_NOTICE(p_hwfn, false,
5651 			  "Validation failed while configuring min rate\n");
5652 
5653 	return rc;
5654 }
5655 
5656 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
5657 						   struct ecore_ptt *p_ptt,
5658 						   u32 min_pf_rate)
5659 {
5660 	bool use_wfq = false;
5661 	int rc = ECORE_SUCCESS;
5662 	u16 i;
5663 
5664 	/* Validate all pre configured vports for wfq */
5665 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5666 		u32 rate;
5667 
5668 		if (!p_hwfn->qm_info.wfq_data[i].configured)
5669 			continue;
5670 
5671 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
5672 		use_wfq = true;
5673 
5674 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
5675 		if (rc != ECORE_SUCCESS) {
5676 			DP_NOTICE(p_hwfn, false,
5677 				  "WFQ validation failed while configuring min rate\n");
5678 			break;
5679 		}
5680 	}
5681 
5682 	if (rc == ECORE_SUCCESS && use_wfq)
5683 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5684 	else
5685 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
5686 
5687 	return rc;
5688 }
5689 
5690 /* Main API for ecore clients to configure vport min rate.
5691  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
5692  * rate - Speed in Mbps needs to be assigned to a given vport.
5693  */
5694 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
5695 {
5696 	int i, rc = ECORE_INVAL;
5697 
5698 	/* TBD - for multiple hardware functions - that is 100 gig */
5699 	if (p_dev->num_hwfns > 1) {
5700 		DP_NOTICE(p_dev, false,
5701 			  "WFQ configuration is not supported for this device\n");
5702 		return rc;
5703 	}
5704 
5705 	for_each_hwfn(p_dev, i) {
5706 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5707 		struct ecore_ptt *p_ptt;
5708 
5709 		p_ptt = ecore_ptt_acquire(p_hwfn);
5710 		if (!p_ptt)
5711 			return ECORE_TIMEOUT;
5712 
5713 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
5714 
5715 		if (rc != ECORE_SUCCESS) {
5716 			ecore_ptt_release(p_hwfn, p_ptt);
5717 			return rc;
5718 		}
5719 
5720 		ecore_ptt_release(p_hwfn, p_ptt);
5721 	}
5722 
5723 	return rc;
5724 }
5725 
5726 /* API to configure WFQ from mcp link change */
5727 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
5728 					   struct ecore_ptt *p_ptt,
5729 					   u32 min_pf_rate)
5730 {
5731 	int i;
5732 
5733 	/* TBD - for multiple hardware functions - that is 100 gig */
5734 	if (p_dev->num_hwfns > 1) {
5735 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
5736 			   "WFQ configuration is not supported for this device\n");
5737 		return;
5738 	}
5739 
5740 	for_each_hwfn(p_dev, i) {
5741 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5742 
5743 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
5744 							min_pf_rate);
5745 	}
5746 }
5747 
5748 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
5749 				       struct ecore_ptt *p_ptt,
5750 				       struct ecore_mcp_link_state *p_link,
5751 				       u8 max_bw)
5752 {
5753 	int rc = ECORE_SUCCESS;
5754 
5755 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
5756 
5757 	if (!p_link->line_speed && (max_bw != 100))
5758 		return rc;
5759 
5760 	p_link->speed = (p_link->line_speed * max_bw) / 100;
5761 	p_hwfn->qm_info.pf_rl = p_link->speed;
5762 
5763 	/* Since the limiter also affects Tx-switched traffic, we don't want it
5764 	 * to limit such traffic in case there's no actual limit.
5765 	 * In that case, set limit to imaginary high boundary.
5766 	 */
5767 	if (max_bw == 100)
5768 		p_hwfn->qm_info.pf_rl = 100000;
5769 
5770 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
5771 			      p_hwfn->qm_info.pf_rl);
5772 
5773 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5774 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
5775 		   p_link->speed);
5776 
5777 	return rc;
5778 }
5779 
5780 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
5781 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
5782 {
5783 	int i, rc = ECORE_INVAL;
5784 
5785 	if (max_bw < 1 || max_bw > 100) {
5786 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
5787 		return rc;
5788 	}
5789 
5790 	for_each_hwfn(p_dev, i) {
5791 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5792 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
5793 		struct ecore_mcp_link_state *p_link;
5794 		struct ecore_ptt *p_ptt;
5795 
5796 		p_link = &p_lead->mcp_info->link_output;
5797 
5798 		p_ptt = ecore_ptt_acquire(p_hwfn);
5799 		if (!p_ptt)
5800 			return ECORE_TIMEOUT;
5801 
5802 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
5803 							p_link, max_bw);
5804 
5805 		ecore_ptt_release(p_hwfn, p_ptt);
5806 
5807 		if (rc != ECORE_SUCCESS)
5808 			break;
5809 	}
5810 
5811 	return rc;
5812 }
5813 
5814 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
5815 				       struct ecore_ptt *p_ptt,
5816 				       struct ecore_mcp_link_state *p_link,
5817 				       u8 min_bw)
5818 {
5819 	int rc = ECORE_SUCCESS;
5820 
5821 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
5822 	p_hwfn->qm_info.pf_wfq = min_bw;
5823 
5824 	if (!p_link->line_speed)
5825 		return rc;
5826 
5827 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
5828 
5829 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
5830 
5831 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5832 		   "Configured MIN bandwidth to be %d Mb/sec\n",
5833 		   p_link->min_pf_rate);
5834 
5835 	return rc;
5836 }
5837 
5838 /* Main API to configure PF min bandwidth where bw range is [1-100] */
5839 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
5840 {
5841 	int i, rc = ECORE_INVAL;
5842 
5843 	if (min_bw < 1 || min_bw > 100) {
5844 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
5845 		return rc;
5846 	}
5847 
5848 	for_each_hwfn(p_dev, i) {
5849 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5850 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
5851 		struct ecore_mcp_link_state *p_link;
5852 		struct ecore_ptt *p_ptt;
5853 
5854 		p_link = &p_lead->mcp_info->link_output;
5855 
5856 		p_ptt = ecore_ptt_acquire(p_hwfn);
5857 		if (!p_ptt)
5858 			return ECORE_TIMEOUT;
5859 
5860 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
5861 							p_link, min_bw);
5862 		if (rc != ECORE_SUCCESS) {
5863 			ecore_ptt_release(p_hwfn, p_ptt);
5864 			return rc;
5865 		}
5866 
5867 		if (p_link->min_pf_rate) {
5868 			u32 min_rate = p_link->min_pf_rate;
5869 
5870 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
5871 								     p_ptt,
5872 								     min_rate);
5873 		}
5874 
5875 		ecore_ptt_release(p_hwfn, p_ptt);
5876 	}
5877 
5878 	return rc;
5879 }
5880 
5881 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
5882 {
5883 	struct ecore_mcp_link_state *p_link;
5884 
5885 	p_link = &p_hwfn->mcp_info->link_output;
5886 
5887 	if (p_link->min_pf_rate)
5888 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
5889 
5890 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
5891 		    sizeof(*p_hwfn->qm_info.wfq_data) *
5892 				p_hwfn->qm_info.num_vports);
5893 }
5894 
5895 int ecore_device_num_engines(struct ecore_dev *p_dev)
5896 {
5897 	return ECORE_IS_BB(p_dev) ? 2 : 1;
5898 }
5899 
5900 int ecore_device_num_ports(struct ecore_dev *p_dev)
5901 {
5902 	/* in CMT always only one port */
5903 	if (p_dev->num_hwfns > 1)
5904 		return 1;
5905 
5906 	return p_dev->num_ports_in_engine * ecore_device_num_engines(p_dev);
5907 }
5908 
5909 int ecore_device_get_port_id(struct ecore_dev *p_dev)
5910 {
5911 	return (ECORE_LEADING_HWFN(p_dev)->abs_pf_id) %
5912 		ecore_device_num_ports(p_dev);
5913 }
5914 
5915 void ecore_set_fw_mac_addr(__le16 *fw_msb,
5916 			  __le16 *fw_mid,
5917 			  __le16 *fw_lsb,
5918 			  u8 *mac)
5919 {
5920 	((u8 *)fw_msb)[0] = mac[1];
5921 	((u8 *)fw_msb)[1] = mac[0];
5922 	((u8 *)fw_mid)[0] = mac[3];
5923 	((u8 *)fw_mid)[1] = mac[2];
5924 	((u8 *)fw_lsb)[0] = mac[5];
5925 	((u8 *)fw_lsb)[1] = mac[4];
5926 }
5927