xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_cxt.c (revision 99429157e8615dc3b7f11afbe3ed92de7476a5db)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_cxt.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "bcm_osal.h"
35 #include "reg_addr.h"
36 #include "common_hsi.h"
37 #include "ecore_hsi_common.h"
38 #include "ecore_hsi_eth.h"
39 #include "tcp_common.h"
40 #include "ecore_hsi_iscsi.h"
41 #include "ecore_hsi_fcoe.h"
42 #include "ecore_hsi_roce.h"
43 #include "ecore_hsi_iwarp.h"
44 #include "ecore_rt_defs.h"
45 #include "ecore_status.h"
46 #include "ecore.h"
47 #include "ecore_init_ops.h"
48 #include "ecore_init_fw_funcs.h"
49 #include "ecore_cxt.h"
50 #include "ecore_hw.h"
51 #include "ecore_dev_api.h"
52 #include "ecore_sriov.h"
53 #include "ecore_roce.h"
54 #include "ecore_mcp.h"
55 
56 /* Max number of connection types in HW (DQ/CDU etc.) */
57 #define MAX_CONN_TYPES		PROTOCOLID_COMMON
58 #define NUM_TASK_TYPES		2
59 #define NUM_TASK_PF_SEGMENTS	4
60 #define NUM_TASK_VF_SEGMENTS	1
61 
62 /* Doorbell-Queue constants */
63 #define DQ_RANGE_SHIFT	4
64 #define DQ_RANGE_ALIGN	(1 << DQ_RANGE_SHIFT)
65 
66 /* Searcher constants */
67 #define SRC_MIN_NUM_ELEMS 256
68 
69 /* Timers constants */
70 #define TM_SHIFT	7
71 #define TM_ALIGN	(1 << TM_SHIFT)
72 #define TM_ELEM_SIZE	4
73 
74 /* ILT constants */
75 /* If for some reason, HW P size is modified to be less than 32K,
76  * special handling needs to be made for CDU initialization
77  */
78 #ifdef CONFIG_ECORE_ROCE
79 /* For RoCE we configure to 64K to cover for RoCE max tasks 256K purpose. Can be
80  * optimized with resource management scheme
81  */
82 #define ILT_DEFAULT_HW_P_SIZE	4
83 #else
84 #define ILT_DEFAULT_HW_P_SIZE	3
85 #endif
86 
87 #define ILT_PAGE_IN_BYTES(hw_p_size)	(1U << ((hw_p_size) + 12))
88 #define ILT_CFG_REG(cli, reg)		PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
89 
90 /* ILT entry structure */
91 #define ILT_ENTRY_PHY_ADDR_MASK		0x000FFFFFFFFFFFULL
92 #define ILT_ENTRY_PHY_ADDR_SHIFT	0
93 #define ILT_ENTRY_VALID_MASK		0x1ULL
94 #define ILT_ENTRY_VALID_SHIFT		52
95 #define ILT_ENTRY_IN_REGS		2
96 #define ILT_REG_SIZE_IN_BYTES		4
97 
98 /* connection context union */
99 union conn_context {
100 	struct core_conn_context  core_ctx;
101 	struct eth_conn_context	  eth_ctx;
102 	struct iscsi_conn_context iscsi_ctx;
103 	struct fcoe_conn_context  fcoe_ctx;
104 	struct roce_conn_context  roce_ctx;
105 };
106 
107 /* TYPE-0 task context - iSCSI, FCOE */
108 union type0_task_context {
109 	struct iscsi_task_context iscsi_ctx;
110 	struct fcoe_task_context  fcoe_ctx;
111 };
112 
113 /* TYPE-1 task context - ROCE */
114 union type1_task_context {
115 	struct rdma_task_context roce_ctx;
116 };
117 
118 struct src_ent {
119 	u8  opaque[56];
120 	u64 next;
121 };
122 
123 #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */
124 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
125 
126 #define CONN_CXT_SIZE(p_hwfn) \
127 	ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
128 
129 #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
130 
131 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
132 	ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
133 
134 /* Alignment is inherent to the type1_task_context structure */
135 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
136 
137 /* PF per protocl configuration object */
138 #define TASK_SEGMENTS   (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
139 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
140 
141 struct ecore_tid_seg {
142 	u32	count;
143 	u8	type;
144 	bool	has_fl_mem;
145 };
146 
147 struct ecore_conn_type_cfg {
148 	u32			cid_count;
149 	u32			cids_per_vf;
150 	struct ecore_tid_seg	tid_seg[TASK_SEGMENTS];
151 };
152 
153 /* ILT Client configuration,
154  * Per connection type (protocol) resources (cids, tis, vf cids etc.)
155  * 1 - for connection context (CDUC) and for each task context we need two
156  * values, for regular task context and for force load memory
157  */
158 #define ILT_CLI_PF_BLOCKS	(1 + NUM_TASK_PF_SEGMENTS * 2)
159 #define ILT_CLI_VF_BLOCKS	(1 + NUM_TASK_VF_SEGMENTS * 2)
160 #define CDUC_BLK		(0)
161 #define SRQ_BLK			(0)
162 #define CDUT_SEG_BLK(n)		(1 + (u8)(n))
163 #define CDUT_FL_SEG_BLK(n, X)	(1 + (n) + NUM_TASK_##X##_SEGMENTS)
164 
165 enum ilt_clients {
166 	ILT_CLI_CDUC,
167 	ILT_CLI_CDUT,
168 	ILT_CLI_QM,
169 	ILT_CLI_TM,
170 	ILT_CLI_SRC,
171 	ILT_CLI_TSDM,
172 	ILT_CLI_MAX
173 };
174 
175 struct ilt_cfg_pair {
176 	u32 reg;
177 	u32 val;
178 };
179 
180 struct ecore_ilt_cli_blk {
181 	u32 total_size; /* 0 means not active */
182 	u32 real_size_in_page;
183 	u32 start_line;
184 	u32 dynamic_line_cnt;
185 };
186 
187 struct ecore_ilt_client_cfg {
188 	bool				active;
189 
190 	/* ILT boundaries */
191 	struct ilt_cfg_pair		first;
192 	struct ilt_cfg_pair		last;
193 	struct ilt_cfg_pair		p_size;
194 
195 	/* ILT client blocks for PF */
196 	struct ecore_ilt_cli_blk	pf_blks[ILT_CLI_PF_BLOCKS];
197 	u32				pf_total_lines;
198 
199 	/* ILT client blocks for VFs */
200 	struct ecore_ilt_cli_blk	vf_blks[ILT_CLI_VF_BLOCKS];
201 	u32				vf_total_lines;
202 };
203 
204 /* Per Path -
205  *      ILT shadow table
206  *      Protocol acquired CID lists
207  *      PF start line in ILT
208  */
209 struct ecore_dma_mem {
210 	dma_addr_t	p_phys;
211 	void		*p_virt;
212 	osal_size_t	size;
213 };
214 
215 #define MAP_WORD_SIZE		sizeof(unsigned long)
216 #define BITS_PER_MAP_WORD	(MAP_WORD_SIZE * 8)
217 
218 struct ecore_cid_acquired_map {
219 	u32		start_cid;
220 	u32		max_count;
221 	unsigned long	*cid_map;
222 };
223 
224 struct ecore_cxt_mngr {
225 	/* Per protocl configuration */
226 	struct ecore_conn_type_cfg	conn_cfg[MAX_CONN_TYPES];
227 
228 	/* computed ILT structure */
229 	struct ecore_ilt_client_cfg	clients[ILT_CLI_MAX];
230 
231 	/* Task type sizes */
232 	u32				task_type_size[NUM_TASK_TYPES];
233 
234 	/* total number of VFs for this hwfn -
235 	 * ALL VFs are symmetric in terms of HW resources
236 	 */
237 	u32				vf_count;
238 
239 	/* Acquired CIDs */
240 	struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
241 	/* TBD - do we want this allocated to reserve space? */
242 	struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
243 
244 	/* ILT shadow table */
245 	struct ecore_dma_mem		*ilt_shadow;
246 	u32				pf_start_line;
247 
248 	/* Mutex for a dynamic ILT allocation */
249 	osal_mutex_t			mutex;
250 
251 	/* SRC T2 */
252 	struct ecore_dma_mem		*t2;
253 	u32				t2_num_pages;
254 	u64				first_free;
255 	u64				last_free;
256 
257 	/* The infrastructure originally was very generic and context/task
258 	 * oriented - per connection-type we would set how many of those
259 	 * are needed, and later when determining how much memory we're
260 	 * needing for a given block we'd iterate over all the relevant
261 	 * connection-types.
262 	 * But since then we've had some additional resources, some of which
263 	 * require memory which is indepent of the general context/task
264 	 * scheme. We add those here explicitly per-feature.
265 	 */
266 
267 	/* total number of SRQ's for this hwfn */
268 	u32				srq_count;
269 
270 	/* Maximal number of L2 steering filters */
271 	u32				arfs_count;
272 
273 	/* TODO - VF arfs filters ? */
274 };
275 
276 /* check if resources/configuration is required according to protocol type */
277 static bool src_proto(struct ecore_hwfn *p_hwfn,
278 		      enum protocol_type type)
279 {
280 	return	type == PROTOCOLID_ISCSI	||
281 		type == PROTOCOLID_FCOE		||
282 		type == PROTOCOLID_TOE		||
283 		type == PROTOCOLID_IWARP;
284 }
285 
286 static bool tm_cid_proto(enum protocol_type type)
287 {
288 	return type == PROTOCOLID_ISCSI ||
289 	       type == PROTOCOLID_FCOE  ||
290 	       type == PROTOCOLID_ROCE  ||
291 	       type == PROTOCOLID_IWARP;
292 }
293 
294 static bool tm_tid_proto(enum protocol_type type)
295 {
296 	return type == PROTOCOLID_FCOE;
297 }
298 
299 /* counts the iids for the CDU/CDUC ILT client configuration */
300 struct ecore_cdu_iids {
301 	u32 pf_cids;
302 	u32 per_vf_cids;
303 };
304 
305 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr   *p_mngr,
306 			       struct ecore_cdu_iids	*iids)
307 {
308 	u32 type;
309 
310 	for (type = 0; type < MAX_CONN_TYPES; type++) {
311 		iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
312 		iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
313 	}
314 }
315 
316 /* counts the iids for the Searcher block configuration */
317 struct ecore_src_iids {
318 	u32			pf_cids;
319 	u32			per_vf_cids;
320 };
321 
322 static void ecore_cxt_src_iids(struct ecore_hwfn *p_hwfn,
323 			       struct ecore_cxt_mngr *p_mngr,
324 			       struct ecore_src_iids *iids)
325 {
326 	u32 i;
327 
328 	for (i = 0; i < MAX_CONN_TYPES; i++) {
329 		if (!src_proto(p_hwfn, i))
330 			continue;
331 
332 		iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
333 		iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
334 	}
335 
336 	/* Add L2 filtering filters in addition */
337 	iids->pf_cids += p_mngr->arfs_count;
338 }
339 
340 /* counts the iids for the Timers block configuration */
341 struct ecore_tm_iids {
342 	u32 pf_cids;
343 	u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */
344 	u32 pf_tids_total;
345 	u32 per_vf_cids;
346 	u32 per_vf_tids;
347 };
348 
349 static void ecore_cxt_tm_iids(struct ecore_hwfn *p_hwfn,
350 			      struct ecore_cxt_mngr *p_mngr,
351 			      struct ecore_tm_iids *iids)
352 {
353 	bool tm_vf_required = false;
354 	bool tm_required = false;
355 	int i, j;
356 
357 	/* Timers is a special case -> we don't count how many cids require
358 	 * timers but what's the max cid that will be used by the timer block.
359 	 * therefore we traverse in reverse order, and once we hit a protocol
360 	 * that requires the timers memory, we'll sum all the protocols up
361 	 * to that one.
362 	 */
363 	for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
364 		struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
365 
366 		if (tm_cid_proto(i) || tm_required) {
367 			if (p_cfg->cid_count)
368 				tm_required = true;
369 
370 			iids->pf_cids += p_cfg->cid_count;
371 		}
372 
373 		if (tm_cid_proto(i) || tm_vf_required) {
374 			if (p_cfg->cids_per_vf)
375 				tm_vf_required = true;
376 
377 			iids->per_vf_cids += p_cfg->cids_per_vf;
378 		}
379 
380 		if (tm_tid_proto(i)) {
381 			struct ecore_tid_seg *segs = p_cfg->tid_seg;
382 
383 			/* for each segment there is at most one
384 			 * protocol for which count is not 0.
385 			 */
386 			for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
387 				iids->pf_tids[j] += segs[j].count;
388 
389 			/* The last array elelment is for the VFs. As for PF
390 			 * segments there can be only one protocol for
391 			 * which this value is not 0.
392 			 */
393 			iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
394 		}
395 	}
396 
397 	iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
398 	iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
399 	iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
400 
401 	for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
402 		iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
403 		iids->pf_tids_total += iids->pf_tids[j];
404 	}
405 }
406 
407 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
408 			      struct ecore_qm_iids *iids)
409 {
410 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
411 	struct ecore_tid_seg *segs;
412 	u32 vf_cids = 0, type, j;
413 	u32 vf_tids = 0;
414 
415 	for (type = 0; type < MAX_CONN_TYPES; type++) {
416 		iids->cids += p_mngr->conn_cfg[type].cid_count;
417 		vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
418 
419 		segs = p_mngr->conn_cfg[type].tid_seg;
420 		/* for each segment there is at most one
421 		 * protocol for which count is not 0.
422 		 */
423 		for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
424 			iids->tids += segs[j].count;
425 
426 		/* The last array elelment is for the VFs. As for PF
427 		 * segments there can be only one protocol for
428 		 * which this value is not 0.
429 		 */
430 		vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
431 	}
432 
433 	iids->vf_cids += vf_cids * p_mngr->vf_count;
434 	iids->tids += vf_tids * p_mngr->vf_count;
435 
436 	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
437 		   "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
438 		   iids->cids, iids->vf_cids, iids->tids, vf_tids);
439 }
440 
441 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn   *p_hwfn,
442 						    u32			seg)
443 {
444 	struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
445 	u32 i;
446 
447 	/* Find the protocol with tid count > 0 for this segment.
448 	   Note: there can only be one and this is already validated.
449 	 */
450 	for (i = 0; i < MAX_CONN_TYPES; i++) {
451 		if (p_cfg->conn_cfg[i].tid_seg[seg].count)
452 			return &p_cfg->conn_cfg[i].tid_seg[seg];
453 	}
454 	return OSAL_NULL;
455 }
456 
457 /* set the iids (cid/tid) count per protocol */
458 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
459 					  enum protocol_type type,
460 					  u32 cid_count, u32 vf_cid_cnt)
461 {
462 	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
463 	struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
464 
465 	p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
466 	p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
467 
468 	if (type == PROTOCOLID_ROCE) {
469 		u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
470 		u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
471 		u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
472 		u32 align = elems_per_page * DQ_RANGE_ALIGN;
473 
474 		p_conn->cid_count = ROUNDUP(p_conn->cid_count, align);
475 	}
476 }
477 
478 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn	*p_hwfn,
479 				  enum protocol_type	type,
480 				  u32			*vf_cid)
481 {
482 	if (vf_cid)
483 		*vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
484 
485 	return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
486 }
487 
488 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn	*p_hwfn,
489 				  enum protocol_type	type)
490 {
491 	return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
492 }
493 
494 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
495 				  enum protocol_type type)
496 {
497 	u32 cnt = 0;
498 	int i;
499 
500 	for (i = 0; i < TASK_SEGMENTS; i++)
501 		cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
502 
503 	return cnt;
504 }
505 
506 static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
507 					  enum protocol_type proto,
508 					  u8 seg,
509 					  u8 seg_type,
510 					  u32 count,
511 					  bool has_fl)
512 {
513 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
514 	struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
515 
516 	p_seg->count = count;
517 	p_seg->has_fl_mem = has_fl;
518 	p_seg->type = seg_type;
519 }
520 
521 /* the *p_line parameter must be either 0 for the first invocation or the
522    value returned in the previous invocation.
523  */
524 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg	*p_cli,
525 				   struct ecore_ilt_cli_blk	*p_blk,
526 				   u32				start_line,
527 				   u32				total_size,
528 				   u32				elem_size)
529 {
530 	u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
531 
532 	/* verify that it's called once for each block */
533 	if (p_blk->total_size)
534 		return;
535 
536 	p_blk->total_size = total_size;
537 	p_blk->real_size_in_page = 0;
538 	if (elem_size)
539 		p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
540 	p_blk->start_line = start_line;
541 }
542 
543 static void ecore_ilt_cli_adv_line(struct ecore_hwfn		*p_hwfn,
544 				    struct ecore_ilt_client_cfg	*p_cli,
545 				    struct ecore_ilt_cli_blk	*p_blk,
546 				    u32				*p_line,
547 				    enum ilt_clients		client_id)
548 {
549 	if (!p_blk->total_size)
550 		return;
551 
552 	if (!p_cli->active)
553 		p_cli->first.val = *p_line;
554 
555 	p_cli->active = true;
556 	*p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
557 	p_cli->last.val = *p_line-1;
558 
559 	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
560 		   "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
561 		   client_id, p_cli->first.val, p_cli->last.val,
562 		   p_blk->total_size, p_blk->real_size_in_page,
563 		   p_blk->start_line);
564 }
565 
566 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
567 					  enum ilt_clients ilt_client)
568 {
569 	u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
570 	struct ecore_ilt_client_cfg *p_cli;
571 	u32 lines_to_skip = 0;
572 	u32 cxts_per_p;
573 
574 	/* TBD MK: ILT code should be simplified once PROTO enum is changed */
575 
576 	if (ilt_client == ILT_CLI_CDUC) {
577 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
578 
579 		cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
580 			     (u32)CONN_CXT_SIZE(p_hwfn);
581 
582 		lines_to_skip = cid_count / cxts_per_p;
583 	}
584 
585 	return lines_to_skip;
586 }
587 
588 static struct ecore_ilt_client_cfg *
589 ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli)
590 {
591 	p_cli->active = false;
592 	p_cli->first.val = 0;
593 	p_cli->last.val = 0;
594 	return p_cli;
595 }
596 
597 static struct ecore_ilt_cli_blk *
598 ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk)
599 {
600 	p_blk->total_size = 0;
601 	return p_blk;
602 }
603 
604 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn,
605 					       u32 *line_count)
606 {
607 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
608 	u32 curr_line, total, i, task_size, line;
609 	struct ecore_ilt_client_cfg *p_cli;
610 	struct ecore_ilt_cli_blk *p_blk;
611 	struct ecore_cdu_iids cdu_iids;
612 	struct ecore_src_iids src_iids;
613 	struct ecore_qm_iids qm_iids;
614 	struct ecore_tm_iids tm_iids;
615 	struct ecore_tid_seg *p_seg;
616 
617 	OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
618 	OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
619 	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
620 	OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
621 
622 	p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
623 
624 	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
625 		   "hwfn [%d] - Set context manager starting line to be 0x%08x\n",
626 		   p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
627 
628 	/* CDUC */
629 	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
630 
631 	curr_line = p_mngr->pf_start_line;
632 
633 	/* CDUC PF */
634 	p_cli->pf_total_lines = 0;
635 
636 	/* get the counters for the CDUC,CDUC and QM clients  */
637 	ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
638 
639 	p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
640 
641 	total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
642 
643 	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
644 			       total, CONN_CXT_SIZE(p_hwfn));
645 
646 	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
647 	p_cli->pf_total_lines = curr_line - p_blk->start_line;
648 
649 	p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
650 								 ILT_CLI_CDUC);
651 
652 	/* CDUC VF */
653 	p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
654 	total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
655 
656 	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
657 			       total, CONN_CXT_SIZE(p_hwfn));
658 
659 	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
660 	p_cli->vf_total_lines = curr_line - p_blk->start_line;
661 
662 	for (i = 1; i < p_mngr->vf_count; i++)
663 		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
664 				       ILT_CLI_CDUC);
665 
666 	/* CDUT PF */
667 	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
668 	p_cli->first.val = curr_line;
669 
670 	/* first the 'working' task memory */
671 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
672 		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
673 		if (!p_seg || p_seg->count == 0)
674 			continue;
675 
676 		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
677 		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
678 		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
679 				       p_mngr->task_type_size[p_seg->type]);
680 
681 		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
682 				       ILT_CLI_CDUT);
683 	}
684 
685 	/* next the 'init' task memory (forced load memory) */
686 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
687 		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
688 		if (!p_seg || p_seg->count == 0)
689 			continue;
690 
691 		p_blk = ecore_cxt_set_blk(
692 				&p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
693 
694 		if (!p_seg->has_fl_mem) {
695 			/* The segment is active (total size pf 'working'
696 			 * memory is > 0) but has no FL (forced-load, Init)
697 			 * memory. Thus:
698 			 *
699 			 * 1.   The total-size in the corrsponding FL block of
700 			 *      the ILT client is set to 0 - No ILT line are
701 			 *      provisioned and no ILT memory allocated.
702 			 *
703 			 * 2.   The start-line of said block is set to the
704 			 *      start line of the matching working memory
705 			 *      block in the ILT client. This is later used to
706 			 *      configure the CDU segment offset registers and
707 			 *      results in an FL command for TIDs of this
708 			 *      segement behaves as regular load commands
709 			 *      (loading TIDs from the working memory).
710 			 */
711 			line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
712 
713 			ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
714 			continue;
715 		}
716 		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
717 
718 		ecore_ilt_cli_blk_fill(p_cli, p_blk,
719 				       curr_line, total,
720 				       p_mngr->task_type_size[p_seg->type]);
721 
722 		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
723 				       ILT_CLI_CDUT);
724 	}
725 	p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
726 
727 	/* CDUT VF */
728 	p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
729 	if (p_seg && p_seg->count) {
730 		/* Stricly speaking we need to iterate over all VF
731 		 * task segment types, but a VF has only 1 segment
732 		 */
733 
734 		/* 'working' memory */
735 		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
736 
737 		p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
738 		ecore_ilt_cli_blk_fill(p_cli, p_blk,
739 				       curr_line, total,
740 				       p_mngr->task_type_size[p_seg->type]);
741 
742 		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
743 				       ILT_CLI_CDUT);
744 
745 		/* 'init' memory */
746 		p_blk = ecore_cxt_set_blk(
747 				&p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
748 		if (!p_seg->has_fl_mem) {
749 			/* see comment above */
750 			line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
751 			ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
752 		} else {
753 			task_size = p_mngr->task_type_size[p_seg->type];
754 			ecore_ilt_cli_blk_fill(p_cli, p_blk,
755 					       curr_line, total,
756 					       task_size);
757 			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
758 					       ILT_CLI_CDUT);
759 		}
760 		p_cli->vf_total_lines = curr_line -
761 					p_cli->vf_blks[0].start_line;
762 
763 		/* Now for the rest of the VFs */
764 		for (i = 1; i < p_mngr->vf_count; i++) {
765 			/* don't set p_blk i.e. don't clear total_size */
766 			p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
767 			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
768 					       ILT_CLI_CDUT);
769 
770 			/* don't set p_blk i.e. don't clear total_size */
771 			p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
772 			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
773 					       ILT_CLI_CDUT);
774 		}
775 	}
776 
777 	/* QM */
778 	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
779 	p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
780 
781 	ecore_cxt_qm_iids(p_hwfn, &qm_iids);
782 	total = ecore_qm_pf_mem_size(p_hwfn->rel_pf_id, qm_iids.cids,
783 				     qm_iids.vf_cids, qm_iids.tids,
784 				     p_hwfn->qm_info.num_pqs,
785 				     p_hwfn->qm_info.num_vf_pqs);
786 
787 	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
788 		   "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
789 		   qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
790 		   p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
791 
792 	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
793 			       QM_PQ_ELEMENT_SIZE);
794 
795 	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
796 	p_cli->pf_total_lines = curr_line - p_blk->start_line;
797 
798 	/* SRC */
799 	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
800 	ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids);
801 
802 	/* Both the PF and VFs searcher connections are stored in the per PF
803 	 * database. Thus sum the PF searcher cids and all the VFs searcher
804 	 * cids.
805 	 */
806 	total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
807 	if (total) {
808 		u32 local_max = OSAL_MAX_T(u32, total,
809 					   SRC_MIN_NUM_ELEMS);
810 
811 		total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
812 
813 		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
814 		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
815 				       total * sizeof(struct src_ent),
816 				       sizeof(struct src_ent));
817 
818 		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
819 				       ILT_CLI_SRC);
820 		p_cli->pf_total_lines = curr_line - p_blk->start_line;
821 	}
822 
823 	/* TM PF */
824 	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
825 	ecore_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids);
826 	total = tm_iids.pf_cids + tm_iids.pf_tids_total;
827 	if (total) {
828 		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
829 		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
830 				       total * TM_ELEM_SIZE,
831 				       TM_ELEM_SIZE);
832 
833 		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
834 				       ILT_CLI_TM);
835 		p_cli->pf_total_lines = curr_line - p_blk->start_line;
836 	}
837 
838 	/* TM VF */
839 	total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
840 	if (total) {
841 		p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]);
842 		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
843 				       total * TM_ELEM_SIZE,
844 				       TM_ELEM_SIZE);
845 
846 		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
847 				       ILT_CLI_TM);
848 
849 		p_cli->vf_total_lines = curr_line - p_blk->start_line;
850 		for (i = 1; i < p_mngr->vf_count; i++) {
851 			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
852 					       ILT_CLI_TM);
853 		}
854 	}
855 
856 	/* TSDM (SRQ CONTEXT) */
857 	total = ecore_cxt_get_srq_count(p_hwfn);
858 
859 	if (total) {
860 		p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
861 		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
862 		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
863 				       total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
864 
865 		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
866 				       ILT_CLI_TSDM);
867 		p_cli->pf_total_lines = curr_line - p_blk->start_line;
868 	}
869 
870 	*line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
871 
872 	if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
873 	    RESC_NUM(p_hwfn, ECORE_ILT)) {
874 		return ECORE_INVAL;
875 	}
876 
877 	return ECORE_SUCCESS;
878 }
879 
880 u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines)
881 {
882 	struct ecore_ilt_client_cfg *p_cli;
883 	u32 excess_lines, available_lines;
884 	struct ecore_cxt_mngr *p_mngr;
885 	u32 ilt_page_size, elem_size;
886 	struct ecore_tid_seg *p_seg;
887 	int i;
888 
889 	available_lines = RESC_NUM(p_hwfn, ECORE_ILT);
890 	excess_lines = used_lines - available_lines;
891 
892 	if (!excess_lines)
893 		return 0;
894 
895 	if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn))
896 		return 0;
897 
898 	p_mngr = p_hwfn->p_cxt_mngr;
899 	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
900 	ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
901 
902 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
903 		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
904 		if (!p_seg || p_seg->count == 0)
905 			continue;
906 
907 		elem_size = p_mngr->task_type_size[p_seg->type];
908 		if (!elem_size)
909 			continue;
910 
911 		return (ilt_page_size / elem_size) * excess_lines;
912 	}
913 
914 	DP_ERR(p_hwfn, "failed computing excess ILT lines\n");
915 	return 0;
916 }
917 
918 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
919 {
920 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
921 	u32 i;
922 
923 	if (!p_mngr->t2)
924 		return;
925 
926 	for (i = 0; i < p_mngr->t2_num_pages; i++)
927 		if (p_mngr->t2[i].p_virt)
928 			OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
929 					       p_mngr->t2[i].p_virt,
930 					       p_mngr->t2[i].p_phys,
931 					       p_mngr->t2[i].size);
932 
933 	OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
934 	p_mngr->t2 = OSAL_NULL;
935 }
936 
937 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
938 {
939 	struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
940 	u32 conn_num, total_size, ent_per_page, psz, i;
941 	struct ecore_ilt_client_cfg *p_src;
942 	struct ecore_src_iids src_iids;
943 	struct ecore_dma_mem *p_t2;
944 	enum _ecore_status_t rc;
945 
946 	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
947 
948 	/* if the SRC ILT client is inactive - there are no connection
949 	 * requiring the searcer, leave.
950 	 */
951 	p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
952 	if (!p_src->active)
953 		return ECORE_SUCCESS;
954 
955 	ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids);
956 	conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
957 	total_size = conn_num * sizeof(struct src_ent);
958 
959 	/* use the same page size as the SRC ILT client */
960 	psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
961 	p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
962 
963 	/* allocate t2 */
964 	p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
965 				 p_mngr->t2_num_pages *
966 				 sizeof(struct ecore_dma_mem));
967 	if (!p_mngr->t2) {
968 		DP_NOTICE(p_hwfn, true, "Failed to allocate t2 table\n");
969 		rc = ECORE_NOMEM;
970 		goto t2_fail;
971 	}
972 
973 	/* allocate t2 pages */
974 	for (i = 0; i < p_mngr->t2_num_pages; i++) {
975 		u32 size = OSAL_MIN_T(u32, total_size, psz);
976 		void **p_virt = &p_mngr->t2[i].p_virt;
977 
978 		*p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
979 						  &p_mngr->t2[i].p_phys,
980 						  size);
981 		if (!p_mngr->t2[i].p_virt) {
982 			rc = ECORE_NOMEM;
983 			goto t2_fail;
984 		}
985 		OSAL_MEM_ZERO(*p_virt, size);
986 		p_mngr->t2[i].size = size;
987 		total_size -= size;
988 	}
989 
990 	/* Set the t2 pointers */
991 
992 	/* entries per page - must be a power of two */
993 	ent_per_page = psz / sizeof(struct src_ent);
994 
995 	p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
996 
997 	p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
998 	p_mngr->last_free = (u64)p_t2->p_phys +
999 				 ((conn_num - 1) & (ent_per_page - 1)) *
1000 				 sizeof(struct src_ent);
1001 
1002 	for (i = 0; i < p_mngr->t2_num_pages; i++) {
1003 		u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
1004 		struct src_ent *entries = p_mngr->t2[i].p_virt;
1005 		u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
1006 		u32 j;
1007 
1008 		for (j = 0; j < ent_num - 1; j++) {
1009 			val = p_ent_phys +
1010 			      (j + 1) * sizeof(struct src_ent);
1011 			entries[j].next = OSAL_CPU_TO_BE64(val);
1012 		}
1013 
1014 		if (i < p_mngr->t2_num_pages - 1)
1015 			val = (u64)p_mngr->t2[i + 1].p_phys;
1016 		else
1017 			val = 0;
1018 		entries[j].next = OSAL_CPU_TO_BE64(val);
1019 
1020 		conn_num -= ent_num;
1021 	}
1022 
1023 	return ECORE_SUCCESS;
1024 
1025 t2_fail:
1026 	ecore_cxt_src_t2_free(p_hwfn);
1027 	return rc;
1028 }
1029 
1030 #define for_each_ilt_valid_client(pos, clients)	\
1031 	for (pos = 0; pos < ILT_CLI_MAX; pos++)	\
1032 		if (!clients[pos].active) {	\
1033 			continue;		\
1034 		} else				\
1035 
1036 
1037 /* Total number of ILT lines used by this PF */
1038 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
1039 {
1040 	u32 size = 0;
1041 	u32 i;
1042 
1043 	for_each_ilt_valid_client(i, ilt_clients)
1044 		size += (ilt_clients[i].last.val -
1045 			 ilt_clients[i].first.val + 1);
1046 
1047 	return size;
1048 }
1049 
1050 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
1051 {
1052 	struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
1053 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1054 	u32 ilt_size, i;
1055 
1056 	ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
1057 
1058 	for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
1059 		struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
1060 
1061 		if (p_dma->p_virt)
1062 			OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1063 					       p_dma->p_virt,
1064 					       p_dma->p_phys,
1065 					       p_dma->size);
1066 		p_dma->p_virt = OSAL_NULL;
1067 	}
1068 	OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
1069 }
1070 
1071 static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
1072 						struct ecore_ilt_cli_blk *p_blk,
1073 						enum ilt_clients ilt_client,
1074 						u32 start_line_offset)
1075 {
1076 	struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
1077 	u32 lines, line, sz_left, lines_to_skip = 0;
1078 
1079 	/* Special handling for RoCE that supports dynamic allocation */
1080 	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) &&
1081 	    ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
1082 		return ECORE_SUCCESS;
1083 
1084 	lines_to_skip = p_blk->dynamic_line_cnt;
1085 
1086 	if (!p_blk->total_size)
1087 		return ECORE_SUCCESS;
1088 
1089 	sz_left = p_blk->total_size;
1090 	lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) -
1091 		lines_to_skip;
1092 	line = p_blk->start_line + start_line_offset -
1093 	       p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
1094 
1095 	for (; lines; lines--) {
1096 		dma_addr_t p_phys;
1097 		void *p_virt;
1098 		u32 size;
1099 
1100 		size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
1101 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1102 						 &p_phys, size);
1103 		if (!p_virt)
1104 			return ECORE_NOMEM;
1105 		OSAL_MEM_ZERO(p_virt, size);
1106 
1107 		ilt_shadow[line].p_phys = p_phys;
1108 		ilt_shadow[line].p_virt = p_virt;
1109 		ilt_shadow[line].size = size;
1110 
1111 		DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1112 			   "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
1113 			   line, (unsigned long long)p_phys, p_virt, size);
1114 
1115 		sz_left -= size;
1116 		line++;
1117 	}
1118 
1119 	return ECORE_SUCCESS;
1120 }
1121 
1122 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
1123 {
1124 	struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
1125 	struct ecore_ilt_client_cfg *clients = p_mngr->clients;
1126 	struct ecore_ilt_cli_blk *p_blk;
1127 	u32 size, i, j, k;
1128 	enum _ecore_status_t rc;
1129 
1130 	size = ecore_cxt_ilt_shadow_size(clients);
1131 	p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1132 					 size * sizeof(struct ecore_dma_mem));
1133 
1134 	if (!p_mngr->ilt_shadow) {
1135 		DP_NOTICE(p_hwfn, true, "Failed to allocate ilt shadow table\n");
1136 		rc = ECORE_NOMEM;
1137 		goto ilt_shadow_fail;
1138 	}
1139 
1140 	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1141 		   "Allocated 0x%x bytes for ilt shadow\n",
1142 		   (u32)(size * sizeof(struct ecore_dma_mem)));
1143 
1144 	for_each_ilt_valid_client(i, clients) {
1145 		for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
1146 			p_blk = &clients[i].pf_blks[j];
1147 			rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
1148 			if (rc != ECORE_SUCCESS)
1149 				goto ilt_shadow_fail;
1150 		}
1151 		for (k = 0; k < p_mngr->vf_count; k++) {
1152 			for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1153 				u32 lines = clients[i].vf_total_lines * k;
1154 
1155 				p_blk = &clients[i].vf_blks[j];
1156 				rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
1157 							 i, lines);
1158 				if (rc != ECORE_SUCCESS)
1159 					goto ilt_shadow_fail;
1160 			}
1161 		}
1162 	}
1163 
1164 	return ECORE_SUCCESS;
1165 
1166 ilt_shadow_fail:
1167 	ecore_ilt_shadow_free(p_hwfn);
1168 	return rc;
1169 }
1170 
1171 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1172 {
1173 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1174 	u32 type, vf;
1175 
1176 	for (type = 0; type < MAX_CONN_TYPES; type++) {
1177 		OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1178 		p_mngr->acquired[type].max_count = 0;
1179 		p_mngr->acquired[type].start_cid = 0;
1180 
1181 		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1182 			OSAL_FREE(p_hwfn->p_dev,
1183 				  p_mngr->acquired_vf[type][vf].cid_map);
1184 			p_mngr->acquired_vf[type][vf].max_count = 0;
1185 			p_mngr->acquired_vf[type][vf].start_cid = 0;
1186 		}
1187 	}
1188 }
1189 
1190 static enum _ecore_status_t
1191 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
1192 			   u32 cid_start, u32 cid_count,
1193 			   struct ecore_cid_acquired_map *p_map)
1194 {
1195 	u32 size;
1196 
1197 	if (!cid_count)
1198 		return ECORE_SUCCESS;
1199 
1200 	size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
1201 	p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
1202 	if (p_map->cid_map == OSAL_NULL)
1203 		return ECORE_NOMEM;
1204 
1205 	p_map->max_count = cid_count;
1206 	p_map->start_cid = cid_start;
1207 
1208 	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1209 		   "Type %08x start: %08x count %08x\n",
1210 		   type, p_map->start_cid, p_map->max_count);
1211 
1212 	return ECORE_SUCCESS;
1213 }
1214 
1215 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1216 {
1217 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1218 	u32 start_cid = 0, vf_start_cid = 0;
1219 	u32 type, vf;
1220 
1221 	for (type = 0; type < MAX_CONN_TYPES; type++) {
1222 		struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1223 		struct ecore_cid_acquired_map *p_map;
1224 
1225 		/* Handle PF maps */
1226 		p_map = &p_mngr->acquired[type];
1227 		if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
1228 					       p_cfg->cid_count, p_map))
1229 			goto cid_map_fail;
1230 
1231 		/* Handle VF maps */
1232 		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1233 			p_map = &p_mngr->acquired_vf[type][vf];
1234 			if (ecore_cid_map_alloc_single(p_hwfn, type,
1235 						       vf_start_cid,
1236 						       p_cfg->cids_per_vf,
1237 						       p_map))
1238 				goto cid_map_fail;
1239 		}
1240 
1241 		start_cid += p_cfg->cid_count;
1242 		vf_start_cid += p_cfg->cids_per_vf;
1243 	}
1244 
1245 	return ECORE_SUCCESS;
1246 
1247 cid_map_fail:
1248 	ecore_cid_map_free(p_hwfn);
1249 	return ECORE_NOMEM;
1250 }
1251 
1252 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1253 {
1254 	struct ecore_ilt_client_cfg *clients;
1255 	struct ecore_cxt_mngr *p_mngr;
1256 	u32 i;
1257 
1258 	p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1259 	if (!p_mngr) {
1260 		DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_cxt_mngr'\n");
1261 		return ECORE_NOMEM;
1262 	}
1263 
1264 	/* Initialize ILT client registers */
1265 	clients = p_mngr->clients;
1266 	clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1267 	clients[ILT_CLI_CDUC].last.reg  = ILT_CFG_REG(CDUC, LAST_ILT);
1268 	clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1269 
1270 	clients[ILT_CLI_QM].first.reg   = ILT_CFG_REG(QM, FIRST_ILT);
1271 	clients[ILT_CLI_QM].last.reg    = ILT_CFG_REG(QM, LAST_ILT);
1272 	clients[ILT_CLI_QM].p_size.reg  = ILT_CFG_REG(QM, P_SIZE);
1273 
1274 	clients[ILT_CLI_TM].first.reg   = ILT_CFG_REG(TM, FIRST_ILT);
1275 	clients[ILT_CLI_TM].last.reg    = ILT_CFG_REG(TM, LAST_ILT);
1276 	clients[ILT_CLI_TM].p_size.reg  = ILT_CFG_REG(TM, P_SIZE);
1277 
1278 	clients[ILT_CLI_SRC].first.reg  = ILT_CFG_REG(SRC, FIRST_ILT);
1279 	clients[ILT_CLI_SRC].last.reg   = ILT_CFG_REG(SRC, LAST_ILT);
1280 	clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1281 
1282 	clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1283 	clients[ILT_CLI_CDUT].last.reg  = ILT_CFG_REG(CDUT, LAST_ILT);
1284 	clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1285 
1286 	clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1287 	clients[ILT_CLI_TSDM].last.reg  = ILT_CFG_REG(TSDM, LAST_ILT);
1288 	clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1289 
1290 	/* default ILT page size for all clients is 32K */
1291 	for (i = 0; i < ILT_CLI_MAX; i++)
1292 		p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE;
1293 
1294 	/* Initialize task sizes */
1295 	p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
1296 	p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
1297 
1298 	if (p_hwfn->p_dev->p_iov_info)
1299 		p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1300 
1301 	/* Initialize the dynamic ILT allocation mutex */
1302 	OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
1303 	OSAL_MUTEX_INIT(&p_mngr->mutex);
1304 
1305 	/* Set the cxt mangr pointer priori to further allocations */
1306 	p_hwfn->p_cxt_mngr = p_mngr;
1307 
1308 	return ECORE_SUCCESS;
1309 }
1310 
1311 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1312 {
1313 	enum _ecore_status_t    rc;
1314 
1315 	/* Allocate the ILT shadow table */
1316 	rc = ecore_ilt_shadow_alloc(p_hwfn);
1317 	if (rc) {
1318 		DP_NOTICE(p_hwfn, true, "Failed to allocate ilt memory\n");
1319 		goto tables_alloc_fail;
1320 	}
1321 
1322 	/* Allocate the T2  table */
1323 	rc = ecore_cxt_src_t2_alloc(p_hwfn);
1324 	if (rc) {
1325 		DP_NOTICE(p_hwfn, true, "Failed to allocate T2 memory\n");
1326 		goto tables_alloc_fail;
1327 	}
1328 
1329 	/* Allocate and initialize the acquired cids bitmaps */
1330 	rc = ecore_cid_map_alloc(p_hwfn);
1331 	if (rc) {
1332 		DP_NOTICE(p_hwfn, true, "Failed to allocate cid maps\n");
1333 		goto tables_alloc_fail;
1334 	}
1335 
1336 	return ECORE_SUCCESS;
1337 
1338 tables_alloc_fail:
1339 	ecore_cxt_mngr_free(p_hwfn);
1340 	return rc;
1341 }
1342 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1343 {
1344 	if (!p_hwfn->p_cxt_mngr)
1345 		return;
1346 
1347 	ecore_cid_map_free(p_hwfn);
1348 	ecore_cxt_src_t2_free(p_hwfn);
1349 	ecore_ilt_shadow_free(p_hwfn);
1350 	OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
1351 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1352 
1353 	p_hwfn->p_cxt_mngr = OSAL_NULL;
1354 }
1355 
1356 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1357 {
1358 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1359 	struct ecore_cid_acquired_map *p_map;
1360 	struct ecore_conn_type_cfg *p_cfg;
1361 	int type;
1362 	u32 len;
1363 
1364 	/* Reset acquired cids */
1365 	for (type = 0; type < MAX_CONN_TYPES; type++) {
1366 		u32 vf;
1367 
1368 		p_cfg = &p_mngr->conn_cfg[type];
1369 		if (p_cfg->cid_count) {
1370 			p_map = &p_mngr->acquired[type];
1371 			len = DIV_ROUND_UP(p_map->max_count,
1372 					   BITS_PER_MAP_WORD) *
1373 			      MAP_WORD_SIZE;
1374 			OSAL_MEM_ZERO(p_map->cid_map, len);
1375 		}
1376 
1377 		if (!p_cfg->cids_per_vf)
1378 			continue;
1379 
1380 		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1381 			p_map = &p_mngr->acquired_vf[type][vf];
1382 			len = DIV_ROUND_UP(p_map->max_count,
1383 					   BITS_PER_MAP_WORD) *
1384 			      MAP_WORD_SIZE;
1385 			OSAL_MEM_ZERO(p_map->cid_map, len);
1386 		}
1387 	}
1388 }
1389 
1390 /* HW initialization helper (per Block, per phase) */
1391 
1392 /* CDU Common */
1393 #define CDUC_CXT_SIZE_SHIFT						\
1394 	CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1395 
1396 #define CDUC_CXT_SIZE_MASK						\
1397 	(CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1398 
1399 #define CDUC_BLOCK_WASTE_SHIFT						\
1400 	CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1401 
1402 #define CDUC_BLOCK_WASTE_MASK						\
1403 	(CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1404 
1405 #define CDUC_NCIB_SHIFT							\
1406 	CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1407 
1408 #define CDUC_NCIB_MASK							\
1409 	(CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1410 
1411 #define CDUT_TYPE0_CXT_SIZE_SHIFT					\
1412 	CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1413 
1414 #define CDUT_TYPE0_CXT_SIZE_MASK					\
1415 	(CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>				\
1416 	CDUT_TYPE0_CXT_SIZE_SHIFT)
1417 
1418 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT					\
1419 	CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1420 
1421 #define CDUT_TYPE0_BLOCK_WASTE_MASK					\
1422 	(CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >>			\
1423 	CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1424 
1425 #define CDUT_TYPE0_NCIB_SHIFT						\
1426 	CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1427 
1428 #define CDUT_TYPE0_NCIB_MASK						\
1429 	(CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >>		\
1430 	CDUT_TYPE0_NCIB_SHIFT)
1431 
1432 #define CDUT_TYPE1_CXT_SIZE_SHIFT					\
1433 	CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1434 
1435 #define CDUT_TYPE1_CXT_SIZE_MASK					\
1436 	(CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>				\
1437 	CDUT_TYPE1_CXT_SIZE_SHIFT)
1438 
1439 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT					\
1440 	CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1441 
1442 #define CDUT_TYPE1_BLOCK_WASTE_MASK					\
1443 	(CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >>			\
1444 	CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1445 
1446 #define CDUT_TYPE1_NCIB_SHIFT						\
1447 	CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1448 
1449 #define CDUT_TYPE1_NCIB_MASK						\
1450 	(CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >>		\
1451 	CDUT_TYPE1_NCIB_SHIFT)
1452 
1453 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1454 {
1455 	u32 page_sz, elems_per_page, block_waste,  cxt_size, cdu_params = 0;
1456 
1457 	/* CDUC - connection configuration */
1458 	page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1459 	cxt_size = CONN_CXT_SIZE(p_hwfn);
1460 	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1461 	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1462 
1463 	SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1464 	SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1465 	SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page);
1466 	STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1467 
1468 	/* CDUT - type-0 tasks configuration */
1469 	page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1470 	cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1471 	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1472 	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1473 
1474 	/* cxt size and block-waste are multipes of 8 */
1475 	cdu_params = 0;
1476 	SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1477 	SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1478 	SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1479 	STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1480 
1481 	/* CDUT - type-1 tasks configuration */
1482 	cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1483 	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1484 	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1485 
1486 	/* cxt size and block-waste are multipes of 8 */
1487 	cdu_params = 0;
1488 	SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1489 	SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1490 	SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1491 	STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1492 }
1493 
1494 /* CDU PF */
1495 #define CDU_SEG_REG_TYPE_SHIFT		CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1496 #define CDU_SEG_REG_TYPE_MASK		0x1
1497 #define CDU_SEG_REG_OFFSET_SHIFT	0
1498 #define CDU_SEG_REG_OFFSET_MASK		CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1499 
1500 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1501 {
1502 	struct ecore_ilt_client_cfg *p_cli;
1503 	struct ecore_tid_seg *p_seg;
1504 	u32 cdu_seg_params, offset;
1505 	int i;
1506 
1507 	static const u32 rt_type_offset_arr[] = {
1508 		CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1509 		CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1510 		CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1511 		CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1512 	};
1513 
1514 	static const u32 rt_type_offset_fl_arr[] = {
1515 		CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1516 		CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1517 		CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1518 		CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1519 	};
1520 
1521 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1522 
1523 	/* There are initializations only for CDUT during pf Phase */
1524 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1525 		/* Segment 0*/
1526 		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1527 		if (!p_seg)
1528 			continue;
1529 
1530 		/* Note: start_line is already adjusted for the CDU
1531 		 * segment register granularity, so we just need to
1532 		 * divide. Adjustment is implicit as we assume ILT
1533 		 * Page size is larger than 32K!
1534 		 */
1535 		offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1536 			 (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1537 			  p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1538 
1539 		cdu_seg_params = 0;
1540 		SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1541 		SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1542 		STORE_RT_REG(p_hwfn, rt_type_offset_arr[i],
1543 			     cdu_seg_params);
1544 
1545 		offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1546 			 (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1547 			  p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1548 
1549 		cdu_seg_params = 0;
1550 		SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1551 		SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1552 		STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i],
1553 			     cdu_seg_params);
1554 
1555 	}
1556 }
1557 
1558 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn)
1559 {
1560 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1561 	struct ecore_qm_iids iids;
1562 
1563 	OSAL_MEM_ZERO(&iids, sizeof(iids));
1564 	ecore_cxt_qm_iids(p_hwfn, &iids);
1565 
1566 	ecore_qm_pf_rt_init(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->port_id,
1567 			    p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
1568 			    p_hwfn->first_on_engine,
1569 			    iids.cids, iids.vf_cids, iids.tids,
1570 			    qm_info->start_pq,
1571 			    qm_info->num_pqs - qm_info->num_vf_pqs,
1572 			    qm_info->num_vf_pqs,
1573 			    qm_info->start_vport,
1574 			    qm_info->num_vports, qm_info->pf_wfq, qm_info->pf_rl,
1575 			    p_hwfn->qm_info.qm_pq_params,
1576 			    p_hwfn->qm_info.qm_vport_params);
1577 }
1578 
1579 /* CM PF */
1580 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1581 {
1582 	STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1583 }
1584 
1585 /* DQ PF */
1586 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1587 {
1588 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1589 	u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1590 
1591 	dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1592 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1593 
1594 	dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1595 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1596 
1597 	dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1598 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1599 
1600 	dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1601 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1602 
1603 	dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1604 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1605 
1606 	dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1607 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1608 
1609 	dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1610 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1611 
1612 	dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1613 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1614 
1615 	dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1616 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1617 
1618 	dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1619 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1620 
1621 	dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1622 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1623 
1624 	dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1625 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1626 
1627 	/* Connection types 6 & 7 are not in use, yet they must be configured
1628 	 * as the highest possible connection. Not configuring them means the
1629 	 * defaults will be  used, and with a large number of cids a bug may
1630 	 * occur, if the defaults will be smaller than dq_pf_max_cid /
1631 	 * dq_vf_max_cid.
1632 	 */
1633 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1634 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1635 
1636 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1637 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1638 }
1639 
1640 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1641 {
1642 	struct ecore_ilt_client_cfg *ilt_clients;
1643 	int i;
1644 
1645 	ilt_clients = p_hwfn->p_cxt_mngr->clients;
1646 	for_each_ilt_valid_client(i, ilt_clients) {
1647 		STORE_RT_REG(p_hwfn,
1648 			     ilt_clients[i].first.reg,
1649 			     ilt_clients[i].first.val);
1650 		STORE_RT_REG(p_hwfn,
1651 			     ilt_clients[i].last.reg,
1652 			     ilt_clients[i].last.val);
1653 		STORE_RT_REG(p_hwfn,
1654 			     ilt_clients[i].p_size.reg,
1655 			     ilt_clients[i].p_size.val);
1656 	}
1657 }
1658 
1659 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1660 {
1661 	struct ecore_ilt_client_cfg *p_cli;
1662 	u32 blk_factor;
1663 
1664 	/* For simplicty  we set the 'block' to be an ILT page */
1665 	if (p_hwfn->p_dev->p_iov_info) {
1666 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1667 
1668 		STORE_RT_REG(p_hwfn,
1669 			     PSWRQ2_REG_VF_BASE_RT_OFFSET,
1670 			     p_iov->first_vf_in_pf);
1671 		STORE_RT_REG(p_hwfn,
1672 			     PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1673 			     p_iov->first_vf_in_pf + p_iov->total_vfs);
1674 	}
1675 
1676 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1677 	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1678 	if (p_cli->active) {
1679 		STORE_RT_REG(p_hwfn,
1680 			     PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1681 			     blk_factor);
1682 		STORE_RT_REG(p_hwfn,
1683 			     PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1684 			     p_cli->pf_total_lines);
1685 		STORE_RT_REG(p_hwfn,
1686 			     PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1687 			     p_cli->vf_total_lines);
1688 	}
1689 
1690 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1691 	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1692 	if (p_cli->active) {
1693 		STORE_RT_REG(p_hwfn,
1694 			     PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1695 			     blk_factor);
1696 		STORE_RT_REG(p_hwfn,
1697 			     PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1698 			     p_cli->pf_total_lines);
1699 		STORE_RT_REG(p_hwfn,
1700 			     PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1701 			     p_cli->vf_total_lines);
1702 	}
1703 
1704 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1705 	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1706 	if (p_cli->active) {
1707 		STORE_RT_REG(p_hwfn,
1708 			     PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET,
1709 			     blk_factor);
1710 		STORE_RT_REG(p_hwfn,
1711 			     PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1712 			     p_cli->pf_total_lines);
1713 		STORE_RT_REG(p_hwfn,
1714 			     PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1715 			     p_cli->vf_total_lines);
1716 	}
1717 }
1718 
1719 /* ILT (PSWRQ2) PF */
1720 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1721 {
1722 	struct ecore_ilt_client_cfg *clients;
1723 	struct ecore_cxt_mngr *p_mngr;
1724 	struct ecore_dma_mem *p_shdw;
1725 	u32 line, rt_offst, i;
1726 
1727 	ecore_ilt_bounds_init(p_hwfn);
1728 	ecore_ilt_vf_bounds_init(p_hwfn);
1729 
1730 	p_mngr  = p_hwfn->p_cxt_mngr;
1731 	p_shdw  = p_mngr->ilt_shadow;
1732 	clients = p_hwfn->p_cxt_mngr->clients;
1733 
1734 	for_each_ilt_valid_client(i, clients) {
1735 		/* Client's 1st val and RT array are absolute, ILT shadows'
1736 		 * lines are relative.
1737 		 */
1738 		line = clients[i].first.val - p_mngr->pf_start_line;
1739 		rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1740 			   clients[i].first.val * ILT_ENTRY_IN_REGS;
1741 
1742 		for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1743 		     line++, rt_offst += ILT_ENTRY_IN_REGS) {
1744 			u64 ilt_hw_entry = 0;
1745 
1746 			/** p_virt could be OSAL_NULL incase of dynamic
1747 			 *  allocation
1748 			 */
1749 			if (p_shdw[line].p_virt != OSAL_NULL) {
1750 				SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1751 				SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1752 					  (p_shdw[line].p_phys >> 12));
1753 
1754 				DP_VERBOSE(
1755 					p_hwfn, ECORE_MSG_ILT,
1756 					"Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
1757 					rt_offst, line, i,
1758 					(unsigned long long)(p_shdw[line].p_phys >> 12));
1759 			}
1760 
1761 			STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1762 		}
1763 	}
1764 }
1765 
1766 /* SRC (Searcher) PF */
1767 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1768 {
1769 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1770 	u32 rounded_conn_num, conn_num, conn_max;
1771 	struct ecore_src_iids src_iids;
1772 
1773 	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1774 	ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids);
1775 	conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1776 	if (!conn_num)
1777 		return;
1778 
1779 	conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1780 	rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1781 
1782 	STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1783 	STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1784 		     OSAL_LOG2(rounded_conn_num));
1785 
1786 	STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1787 			 p_hwfn->p_cxt_mngr->first_free);
1788 	STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1789 			 p_hwfn->p_cxt_mngr->last_free);
1790 	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1791 		   "Configured SEARCHER for 0x%08x connections\n",
1792 		   conn_num);
1793 }
1794 
1795 /* Timers PF */
1796 #define TM_CFG_NUM_IDS_SHIFT		0
1797 #define TM_CFG_NUM_IDS_MASK		0xFFFFULL
1798 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT	16
1799 #define TM_CFG_PRE_SCAN_OFFSET_MASK	0x1FFULL
1800 #define TM_CFG_PARENT_PF_SHIFT		25
1801 #define TM_CFG_PARENT_PF_MASK		0x7ULL
1802 
1803 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT	30
1804 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK	0x1FFULL
1805 
1806 #define TM_CFG_TID_OFFSET_SHIFT		30
1807 #define TM_CFG_TID_OFFSET_MASK		0x7FFFFULL
1808 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT	49
1809 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK	0x1FFULL
1810 
1811 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1812 {
1813 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1814 	u32 active_seg_mask = 0, tm_offset, rt_reg;
1815 	struct ecore_tm_iids tm_iids;
1816 	u64 cfg_word;
1817 	u8 i;
1818 
1819 	OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1820 	ecore_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids);
1821 
1822 	/* @@@TBD No pre-scan for now */
1823 
1824 	/* Note: We assume consecutive VFs for a PF */
1825 	for (i = 0; i < p_mngr->vf_count; i++) {
1826 		cfg_word = 0;
1827 		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1828 		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1829 		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1830 		SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1831 
1832 		rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1833 			 (sizeof(cfg_word) / sizeof(u32)) *
1834 			 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1835 		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1836 	}
1837 
1838 	cfg_word = 0;
1839 	SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1840 	SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1841 	SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);	  /* n/a for PF */
1842 	SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all   */
1843 
1844 	rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1845 		 (sizeof(cfg_word) / sizeof(u32)) *
1846 		 (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1847 	STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1848 
1849 	/* enale scan */
1850 	STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1851 		     tm_iids.pf_cids  ? 0x1 : 0x0);
1852 
1853 	/* @@@TBD how to enable the scan for the VFs */
1854 
1855 	tm_offset = tm_iids.per_vf_cids;
1856 
1857 	/* Note: We assume consecutive VFs for a PF */
1858 	for (i = 0; i < p_mngr->vf_count; i++) {
1859 		cfg_word = 0;
1860 		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1861 		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1862 		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1863 		SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1864 		SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1865 
1866 		rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1867 			 (sizeof(cfg_word) / sizeof(u32)) *
1868 			 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1869 
1870 		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1871 	}
1872 
1873 	tm_offset = tm_iids.pf_cids;
1874 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1875 		cfg_word = 0;
1876 		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1877 		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1878 		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1879 		SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1880 		SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1881 
1882 		rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1883 			 (sizeof(cfg_word) / sizeof(u32)) *
1884 			 (NUM_OF_VFS(p_hwfn->p_dev) +
1885 			 p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1886 
1887 		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1888 		active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1889 
1890 		tm_offset += tm_iids.pf_tids[i];
1891 	}
1892 
1893 	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1894 		active_seg_mask = 0;
1895 
1896 	STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1897 
1898 	/* @@@TBD how to enable the scan for the VFs */
1899 }
1900 
1901 static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn)
1902 {
1903 	if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) &&
1904 	    p_hwfn->pf_params.fcoe_pf_params.is_target)
1905 		STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
1906 }
1907 
1908 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1909 {
1910 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1911 	struct ecore_conn_type_cfg *p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1912 	struct ecore_tid_seg *p_tid;
1913 
1914 	/* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1915 	if (!p_fcoe->cid_count)
1916 		return;
1917 
1918 	p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1919 	if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
1920 		STORE_RT_REG_AGG(p_hwfn,
1921 				 PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
1922 				 p_tid->count);
1923 	} else {
1924 		STORE_RT_REG_AGG(p_hwfn,
1925 				PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1926 				p_tid->count);
1927 	}
1928 }
1929 
1930 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1931 {
1932 	/* CDU configuration */
1933 	ecore_cdu_init_common(p_hwfn);
1934 	ecore_prs_init_common(p_hwfn);
1935 }
1936 
1937 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn)
1938 {
1939 	ecore_qm_init_pf(p_hwfn);
1940 	ecore_cm_init_pf(p_hwfn);
1941 	ecore_dq_init_pf(p_hwfn);
1942 	ecore_cdu_init_pf(p_hwfn);
1943 	ecore_ilt_init_pf(p_hwfn);
1944 	ecore_src_init_pf(p_hwfn);
1945 	ecore_tm_init_pf(p_hwfn);
1946 	ecore_prs_init_pf(p_hwfn);
1947 }
1948 
1949 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1950 					    enum protocol_type type,
1951 					    u32 *p_cid, u8 vfid)
1952 {
1953 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1954 	struct ecore_cid_acquired_map *p_map;
1955 	u32 rel_cid;
1956 
1957 	if (type >= MAX_CONN_TYPES) {
1958 		DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1959 		return ECORE_INVAL;
1960 	}
1961 
1962 	if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
1963 		DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
1964 		return ECORE_INVAL;
1965 	}
1966 
1967 	/* Determine the right map to take this CID from */
1968 	if (vfid == ECORE_CXT_PF_CID)
1969 		p_map = &p_mngr->acquired[type];
1970 	else
1971 		p_map = &p_mngr->acquired_vf[type][vfid];
1972 
1973 	if (p_map->cid_map == OSAL_NULL) {
1974 		DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1975 		return ECORE_INVAL;
1976 	}
1977 
1978 	rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
1979 					   p_map->max_count);
1980 
1981 	if (rel_cid >= p_map->max_count) {
1982 		DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
1983 			  type);
1984 		return ECORE_NORESOURCES;
1985 	}
1986 
1987 	OSAL_SET_BIT(rel_cid, p_map->cid_map);
1988 
1989 	*p_cid = rel_cid + p_map->start_cid;
1990 
1991 	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1992 		   "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
1993 		   *p_cid, rel_cid, vfid, type);
1994 
1995 	return ECORE_SUCCESS;
1996 }
1997 
1998 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1999 					   enum protocol_type type,
2000 					   u32 *p_cid)
2001 {
2002 	return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
2003 }
2004 
2005 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
2006 					u32 cid, u8 vfid,
2007 					enum protocol_type *p_type,
2008 					struct ecore_cid_acquired_map **pp_map)
2009 {
2010 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2011 	u32 rel_cid;
2012 
2013 	/* Iterate over protocols and find matching cid range */
2014 	for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
2015 		if (vfid == ECORE_CXT_PF_CID)
2016 			*pp_map = &p_mngr->acquired[*p_type];
2017 		else
2018 			*pp_map = &p_mngr->acquired_vf[*p_type][vfid];
2019 
2020 		if (!((*pp_map)->cid_map))
2021 			continue;
2022 		if (cid >= (*pp_map)->start_cid &&
2023 		    cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
2024 			break;
2025 		}
2026 	}
2027 
2028 	if (*p_type == MAX_CONN_TYPES) {
2029 		DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
2030 		goto fail;
2031 	}
2032 
2033 	rel_cid = cid - (*pp_map)->start_cid;
2034 	if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
2035 		DP_NOTICE(p_hwfn, true,
2036 			  "CID %d [vifd %02x] not acquired", cid, vfid);
2037 		goto fail;
2038 	}
2039 
2040 	return true;
2041 fail:
2042 	*p_type = MAX_CONN_TYPES;
2043 	*pp_map = OSAL_NULL;
2044 	return false;
2045 }
2046 
2047 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
2048 {
2049 	struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2050 	enum protocol_type type;
2051 	bool b_acquired;
2052 	u32 rel_cid;
2053 
2054 	if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
2055 		DP_NOTICE(p_hwfn, true,
2056 			  "Trying to return incorrect CID belonging to VF %02x\n",
2057 			  vfid);
2058 		return;
2059 	}
2060 
2061 	/* Test acquired and find matching per-protocol map */
2062 	b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
2063 						 &type, &p_map);
2064 
2065 	if (!b_acquired)
2066 		return;
2067 
2068 	rel_cid = cid - p_map->start_cid;
2069 	OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
2070 
2071 	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2072 		   "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
2073 		   cid, rel_cid, vfid, type);
2074 }
2075 
2076 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
2077 {
2078 	_ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
2079 }
2080 
2081 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
2082 					    struct ecore_cxt_info *p_info)
2083 {
2084 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2085 	struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2086 	u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
2087 	enum protocol_type type;
2088 	bool b_acquired;
2089 
2090 	/* Test acquired and find matching per-protocol map */
2091 	b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
2092 						 ECORE_CXT_PF_CID,
2093 						 &type, &p_map);
2094 
2095 	if (!b_acquired)
2096 		return ECORE_INVAL;
2097 
2098 	/* set the protocl type */
2099 	p_info->type = type;
2100 
2101 	/* compute context virtual pointer */
2102 	hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
2103 
2104 	conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
2105 	cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
2106 	line = p_info->iid / cxts_per_p;
2107 
2108 	/* Make sure context is allocated (dynamic allocation) */
2109 	if (!p_mngr->ilt_shadow[line].p_virt)
2110 		return ECORE_INVAL;
2111 
2112 	p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
2113 			      p_info->iid % cxts_per_p * conn_cxt_size;
2114 
2115 	DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
2116 		   "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
2117 		   (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
2118 
2119 	return ECORE_SUCCESS;
2120 }
2121 
2122 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs)
2123 {
2124 	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
2125 
2126 	p_mgr->srq_count = num_srqs;
2127 }
2128 
2129 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
2130 {
2131 	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
2132 
2133 	return p_mgr->srq_count;
2134 }
2135 
2136 static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn,
2137 				     struct ecore_rdma_pf_params *p_params,
2138 				     u32 num_tasks)
2139 {
2140 	u32 num_cons, num_qps, num_srqs;
2141 	enum protocol_type proto;
2142 
2143 	/* Override personality with rdma flavor */
2144 	num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS, p_params->num_srqs);
2145 
2146 	/* The only case RDMA personality can be overridden is if NVRAM is
2147 	 * configured with ETH_RDMA or if no rdma protocol was requested
2148 	 */
2149 	switch (p_params->rdma_protocol) {
2150 	case ECORE_RDMA_PROTOCOL_DEFAULT:
2151 		if (p_hwfn->mcp_info->func_info.protocol ==
2152 		    ECORE_PCI_ETH_RDMA) {
2153 			DP_NOTICE(p_hwfn, false,
2154 				  "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n");
2155 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2156 		}
2157 		break;
2158 	case ECORE_RDMA_PROTOCOL_NONE:
2159 		p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2160 		return; /* intentional... nothing left to do... */
2161 	case ECORE_RDMA_PROTOCOL_ROCE:
2162 		if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2163 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2164 		break;
2165 	case ECORE_RDMA_PROTOCOL_IWARP:
2166 		if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2167 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP;
2168 		break;
2169 	}
2170 
2171 	switch (p_hwfn->hw_info.personality) {
2172 	case ECORE_PCI_ETH_IWARP:
2173 		num_qps = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps);
2174 		num_cons = num_qps;
2175 		proto = PROTOCOLID_IWARP;
2176 		p_params->roce_edpm_mode = false;
2177 		break;
2178 	case ECORE_PCI_ETH_ROCE:
2179 		num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps);
2180 		num_cons = num_qps * 2; /* each QP requires two connections */
2181 		proto = PROTOCOLID_ROCE;
2182 		break;
2183 	default:
2184 		return;
2185 	}
2186 
2187 	if (num_cons && num_tasks) {
2188 		ecore_cxt_set_proto_cid_count(p_hwfn, proto,
2189 					      num_cons, 0);
2190 
2191 		/* Deliberatly passing ROCE for tasks id. This is because
2192 		 * iWARP / RoCE share the task id.
2193 		 */
2194 		ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
2195 					      ECORE_CXT_ROCE_TID_SEG,
2196 					      1, /* RoCE segment type */
2197 					      num_tasks,
2198 					      false); /* !force load */
2199 		ecore_cxt_set_srq_count(p_hwfn, num_srqs);
2200 
2201 	} else {
2202 		DP_INFO(p_hwfn->p_dev,
2203 			"RDMA personality used without setting params!\n");
2204 	}
2205 }
2206 
2207 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn,
2208 					     u32 rdma_tasks)
2209 {
2210 	/* Set the number of required CORE connections */
2211 	u32 core_cids = 1; /* SPQ */
2212 
2213 	if (p_hwfn->using_ll2)
2214 		core_cids += 4; /* @@@TBD Use the proper #define */
2215 
2216 	ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
2217 
2218 	switch (p_hwfn->hw_info.personality) {
2219 	case ECORE_PCI_ETH_RDMA:
2220 	case ECORE_PCI_ETH_IWARP:
2221 	case ECORE_PCI_ETH_ROCE:
2222 	{
2223 		ecore_rdma_set_pf_params(p_hwfn,
2224 					 &p_hwfn->pf_params.rdma_pf_params,
2225 					 rdma_tasks);
2226 
2227 		/* no need for break since RoCE coexist with Ethernet */
2228 	}
2229 	case ECORE_PCI_ETH:
2230 	{
2231 		struct ecore_eth_pf_params *p_params =
2232 					&p_hwfn->pf_params.eth_pf_params;
2233 
2234 		if (!p_params->num_vf_cons)
2235 			p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
2236 		ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2237 					      p_params->num_cons,
2238 					      p_params->num_vf_cons);
2239 		p_hwfn->p_cxt_mngr->arfs_count = p_params->num_arfs_filters;
2240 
2241 		break;
2242 	}
2243 	case ECORE_PCI_FCOE:
2244 	{
2245 		struct ecore_fcoe_pf_params *p_params;
2246 
2247 		p_params = &p_hwfn->pf_params.fcoe_pf_params;
2248 
2249 		if (p_params->num_cons && p_params->num_tasks) {
2250 			ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE,
2251 						      p_params->num_cons, 0);
2252 
2253 			ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
2254 						      ECORE_CXT_FCOE_TID_SEG,
2255 						      0, /* segment type */
2256 						      p_params->num_tasks,
2257 						      true);
2258 		} else {
2259 			DP_INFO(p_hwfn->p_dev,
2260 				"Fcoe personality used without setting params!\n");
2261 		}
2262 		break;
2263 	}
2264 	case ECORE_PCI_ISCSI:
2265 	{
2266 		struct ecore_iscsi_pf_params *p_params;
2267 
2268 		p_params = &p_hwfn->pf_params.iscsi_pf_params;
2269 
2270 		if (p_params->num_cons && p_params->num_tasks) {
2271 			ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI,
2272 						      p_params->num_cons, 0);
2273 
2274 			ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI,
2275 						      ECORE_CXT_ISCSI_TID_SEG,
2276 						      0, /* segment type */
2277 						      p_params->num_tasks,
2278 						      true);
2279 		} else {
2280 			DP_INFO(p_hwfn->p_dev,
2281 				"Iscsi personality used without setting params!\n");
2282 		}
2283 		break;
2284 	}
2285 	default:
2286 		return ECORE_INVAL;
2287 	}
2288 
2289 	return ECORE_SUCCESS;
2290 }
2291 
2292 enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
2293 						struct ecore_tid_mem *p_info)
2294 {
2295 	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2296 	u32 proto, seg, total_lines, i, shadow_line;
2297 	struct ecore_ilt_client_cfg *p_cli;
2298 	struct ecore_ilt_cli_blk *p_fl_seg;
2299 	struct ecore_tid_seg *p_seg_info;
2300 
2301 	/* Verify the personality */
2302 	switch (p_hwfn->hw_info.personality) {
2303 	case ECORE_PCI_FCOE:
2304 		proto = PROTOCOLID_FCOE;
2305 		seg = ECORE_CXT_FCOE_TID_SEG;
2306 		break;
2307 	case ECORE_PCI_ISCSI:
2308 		proto = PROTOCOLID_ISCSI;
2309 		seg = ECORE_CXT_ISCSI_TID_SEG;
2310 		break;
2311 	default:
2312 		return ECORE_INVAL;
2313 	}
2314 
2315 	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2316 	if (!p_cli->active) {
2317 		return ECORE_INVAL;
2318 	}
2319 
2320 	p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2321 	if (!p_seg_info->has_fl_mem)
2322 		return ECORE_INVAL;
2323 
2324 	p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2325 	total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
2326 				   p_fl_seg->real_size_in_page);
2327 
2328 	for (i = 0; i < total_lines; i++) {
2329 		shadow_line = i + p_fl_seg->start_line -
2330 			      p_hwfn->p_cxt_mngr->pf_start_line;
2331 		p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
2332 	}
2333 	p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
2334 			p_fl_seg->real_size_in_page;
2335 	p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
2336 	p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
2337 				     p_info->tid_size;
2338 
2339 	return ECORE_SUCCESS;
2340 }
2341 
2342 /* This function is very RoCE oriented, if another protocol in the future
2343  * will want this feature we'll need to modify the function to be more generic
2344  */
2345 enum _ecore_status_t
2346 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
2347 			    enum ecore_cxt_elem_type elem_type,
2348 			    u32 iid)
2349 {
2350 	u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2351 	struct ecore_ilt_client_cfg *p_cli;
2352 	struct ecore_ilt_cli_blk *p_blk;
2353 	struct ecore_ptt *p_ptt;
2354 	dma_addr_t p_phys;
2355 	u64 ilt_hw_entry;
2356 	void *p_virt;
2357 	enum _ecore_status_t rc = ECORE_SUCCESS;
2358 
2359 	switch (elem_type) {
2360 	case ECORE_ELEM_CXT:
2361 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2362 		elem_size = CONN_CXT_SIZE(p_hwfn);
2363 		p_blk = &p_cli->pf_blks[CDUC_BLK];
2364 		break;
2365 	case ECORE_ELEM_SRQ:
2366 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2367 		elem_size = SRQ_CXT_SIZE;
2368 		p_blk = &p_cli->pf_blks[SRQ_BLK];
2369 		break;
2370 	case ECORE_ELEM_TASK:
2371 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2372 		elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2373 		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2374 		break;
2375 	default:
2376 		DP_NOTICE(p_hwfn, false,
2377 			  "ECORE_INVALID elem type = %d", elem_type);
2378 		return ECORE_INVAL;
2379 	}
2380 
2381 	/* Calculate line in ilt */
2382 	hw_p_size = p_cli->p_size.val;
2383 	elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2384 	line = p_blk->start_line + (iid / elems_per_p);
2385 	shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2386 
2387 	/* If line is already allocated, do nothing, otherwise allocate it and
2388 	 * write it to the PSWRQ2 registers.
2389 	 * This section can be run in parallel from different contexts and thus
2390 	 * a mutex protection is needed.
2391 	 */
2392 
2393 	OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
2394 
2395 	if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
2396 		goto out0;
2397 
2398 	p_ptt = ecore_ptt_acquire(p_hwfn);
2399 	if (!p_ptt) {
2400 		DP_NOTICE(p_hwfn, false,
2401 			  "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2402 		rc = ECORE_TIMEOUT;
2403 		goto out0;
2404 	}
2405 
2406 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
2407 					 &p_phys,
2408 					 p_blk->real_size_in_page);
2409 	if (!p_virt) {
2410 		rc = ECORE_NOMEM;
2411 		goto out1;
2412 	}
2413 	OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
2414 
2415 	/* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
2416 	 * to compensate for a HW bug, but it is configured even if DIF is not
2417 	 * enabled. This is harmless and allows us to avoid a dedicated API. We
2418 	 * configure the field for all of the contexts on the newly allocated
2419 	 * page.
2420 	 */
2421 	if (elem_type == ECORE_ELEM_TASK) {
2422 		u32 elem_i;
2423 		u8 *elem_start = (u8 *)p_virt;
2424 		union type1_task_context *elem;
2425 
2426 		for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
2427 			elem = (union type1_task_context *)elem_start;
2428 			SET_FIELD(elem->roce_ctx.tdif_context.flags1,
2429 				  TDIF_TASK_CONTEXT_REFTAGMASK , 0xf);
2430 			elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
2431 		}
2432 	}
2433 
2434 	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
2435 	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
2436 	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2437 		p_blk->real_size_in_page;
2438 
2439 	/* compute absolute offset */
2440 	reg_offset = PSWRQ2_REG_ILT_MEMORY +
2441 		     (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2442 
2443 	ilt_hw_entry = 0;
2444 	SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2445 	SET_FIELD(ilt_hw_entry,
2446 		  ILT_ENTRY_PHY_ADDR,
2447 		  (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2448 
2449 	/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2450 	ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2451 			    reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2452 			    0 /* no flags */);
2453 
2454 	if (elem_type == ECORE_ELEM_CXT) {
2455 		u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2456 					 elems_per_p;
2457 
2458 		/* Update the relevant register in the parser */
2459 		ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2460 			 last_cid_allocated - 1);
2461 
2462 		/* RoCE w/a -> we don't write to the prs search reg until first
2463 		 * cid is allocated. This is because the prs checks
2464 		 * last_cid-1 >=0 making 0 a valid value... this will cause
2465 		 * the a context load to occur on a RoCE packet received with
2466 		 * cid=0 even before context was initialized, can happen with a
2467 		 * stray packet from switch or a packet with crc-error
2468 		 */
2469 
2470 		if (!p_hwfn->b_rdma_enabled_in_prs) {
2471 			/* Enable Rdma search */
2472 			ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2473 			p_hwfn->b_rdma_enabled_in_prs = true;
2474 		}
2475 	}
2476 
2477 out1:
2478 	ecore_ptt_release(p_hwfn, p_ptt);
2479 out0:
2480 	OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2481 
2482 	return rc;
2483 }
2484 
2485 /* This function is very RoCE oriented, if another protocol in the future
2486  * will want this feature we'll need to modify the function to be more generic
2487  */
2488 enum _ecore_status_t
2489 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2490 			 enum ecore_cxt_elem_type elem_type,
2491 			 u32 start_iid, u32 count)
2492 {
2493 	u32 start_line, end_line, shadow_start_line, shadow_end_line;
2494 	u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2495 	struct ecore_ilt_client_cfg *p_cli;
2496 	struct ecore_ilt_cli_blk *p_blk;
2497 	u32 end_iid = start_iid + count;
2498 	struct ecore_ptt *p_ptt;
2499 	u64 ilt_hw_entry = 0;
2500 	u32 i;
2501 
2502 	switch (elem_type) {
2503 	case ECORE_ELEM_CXT:
2504 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2505 		elem_size = CONN_CXT_SIZE(p_hwfn);
2506 		p_blk = &p_cli->pf_blks[CDUC_BLK];
2507 		break;
2508 	case ECORE_ELEM_SRQ:
2509 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2510 		elem_size = SRQ_CXT_SIZE;
2511 		p_blk = &p_cli->pf_blks[SRQ_BLK];
2512 		break;
2513 	case ECORE_ELEM_TASK:
2514 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2515 		elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2516 		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2517 		break;
2518 	default:
2519 		DP_NOTICE(p_hwfn, false,
2520 			  "ECORE_INVALID elem type = %d", elem_type);
2521 		return ECORE_INVAL;
2522 	}
2523 
2524 	/* Calculate line in ilt */
2525 	hw_p_size = p_cli->p_size.val;
2526 	elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2527 	start_line = p_blk->start_line + (start_iid / elems_per_p);
2528 	end_line = p_blk->start_line + (end_iid / elems_per_p);
2529 	if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2530 		end_line--;
2531 
2532 	shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2533 	shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2534 
2535 	p_ptt = ecore_ptt_acquire(p_hwfn);
2536 	if (!p_ptt) {
2537 		DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2538 		return ECORE_TIMEOUT;
2539 	}
2540 
2541 	for (i = shadow_start_line; i < shadow_end_line; i++) {
2542 		if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2543 			continue;
2544 
2545 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2546 				       p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2547 				       p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2548 				       p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2549 
2550 		p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2551 		p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2552 		p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2553 
2554 		/* compute absolute offset */
2555 		reg_offset = PSWRQ2_REG_ILT_MEMORY +
2556 			     ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2557 			      ILT_ENTRY_IN_REGS);
2558 
2559 		/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2560 		 * wide-bus.
2561 		 */
2562 		ecore_dmae_host2grc(p_hwfn, p_ptt,
2563 				    (u64)(osal_uintptr_t)&ilt_hw_entry,
2564 				    reg_offset,
2565 				    sizeof(ilt_hw_entry) / sizeof(u32),
2566 				    0 /* no flags */);
2567 	}
2568 
2569 	ecore_ptt_release(p_hwfn, p_ptt);
2570 
2571 	return ECORE_SUCCESS;
2572 }
2573 
2574 enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
2575 					    u32 tid,
2576 					    u8 ctx_type,
2577 					    void **pp_task_ctx)
2578 {
2579 	struct ecore_cxt_mngr		*p_mngr = p_hwfn->p_cxt_mngr;
2580 	struct ecore_ilt_client_cfg     *p_cli;
2581 	struct ecore_ilt_cli_blk	*p_seg;
2582 	struct ecore_tid_seg		*p_seg_info;
2583 	u32				proto, seg;
2584 	u32				total_lines;
2585 	u32				tid_size, ilt_idx;
2586 	u32				num_tids_per_block;
2587 
2588 	/* Verify the personality */
2589 	switch (p_hwfn->hw_info.personality) {
2590 	case ECORE_PCI_FCOE:
2591 		proto = PROTOCOLID_FCOE;
2592 		seg = ECORE_CXT_FCOE_TID_SEG;
2593 		break;
2594 	case ECORE_PCI_ISCSI:
2595 		proto = PROTOCOLID_ISCSI;
2596 		seg = ECORE_CXT_ISCSI_TID_SEG;
2597 		break;
2598 	default:
2599 		return ECORE_INVAL;
2600 	}
2601 
2602 	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2603 	if (!p_cli->active) {
2604 		return ECORE_INVAL;
2605 	}
2606 
2607 	p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2608 
2609 	if (ctx_type == ECORE_CTX_WORKING_MEM) {
2610 		p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
2611 	} else if (ctx_type == ECORE_CTX_FL_MEM) {
2612 		if (!p_seg_info->has_fl_mem) {
2613 			return ECORE_INVAL;
2614 		}
2615 		p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2616 	} else {
2617 		return ECORE_INVAL;
2618 	}
2619 	total_lines = DIV_ROUND_UP(p_seg->total_size,
2620 				   p_seg->real_size_in_page);
2621 	tid_size = p_mngr->task_type_size[p_seg_info->type];
2622 	num_tids_per_block = p_seg->real_size_in_page / tid_size;
2623 
2624 	if (total_lines < tid/num_tids_per_block)
2625 		return ECORE_INVAL;
2626 
2627 	ilt_idx = tid / num_tids_per_block + p_seg->start_line -
2628 		  p_mngr->pf_start_line;
2629 	*pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
2630 			     (tid % num_tids_per_block) * tid_size;
2631 
2632 	return ECORE_SUCCESS;
2633 }
2634