1 /* 2 * Copyright (c) 2017-2018 Cavium, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 * POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 /* 29 * File : ecore_cxt.c 30 */ 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "bcm_osal.h" 35 #include "reg_addr.h" 36 #include "common_hsi.h" 37 #include "ecore_hsi_common.h" 38 #include "ecore_hsi_eth.h" 39 #include "tcp_common.h" 40 #include "ecore_hsi_iscsi.h" 41 #include "ecore_hsi_fcoe.h" 42 #include "ecore_hsi_roce.h" 43 #include "ecore_hsi_iwarp.h" 44 #include "ecore_rt_defs.h" 45 #include "ecore_status.h" 46 #include "ecore.h" 47 #include "ecore_init_ops.h" 48 #include "ecore_init_fw_funcs.h" 49 #include "ecore_cxt.h" 50 #include "ecore_hw.h" 51 #include "ecore_dev_api.h" 52 #include "ecore_sriov.h" 53 #include "ecore_roce.h" 54 #include "ecore_mcp.h" 55 56 /* Max number of connection types in HW (DQ/CDU etc.) */ 57 #define MAX_CONN_TYPES PROTOCOLID_COMMON 58 #define NUM_TASK_TYPES 2 59 #define NUM_TASK_PF_SEGMENTS 4 60 #define NUM_TASK_VF_SEGMENTS 1 61 62 /* Doorbell-Queue constants */ 63 #define DQ_RANGE_SHIFT 4 64 #define DQ_RANGE_ALIGN (1 << DQ_RANGE_SHIFT) 65 66 /* Searcher constants */ 67 #define SRC_MIN_NUM_ELEMS 256 68 69 /* Timers constants */ 70 #define TM_SHIFT 7 71 #define TM_ALIGN (1 << TM_SHIFT) 72 #define TM_ELEM_SIZE 4 73 74 /* ILT constants */ 75 /* If for some reason, HW P size is modified to be less than 32K, 76 * special handling needs to be made for CDU initialization 77 */ 78 #ifdef CONFIG_ECORE_ROCE 79 /* For RoCE we configure to 64K to cover for RoCE max tasks 256K purpose. Can be 80 * optimized with resource management scheme 81 */ 82 #define ILT_DEFAULT_HW_P_SIZE 4 83 #else 84 #define ILT_DEFAULT_HW_P_SIZE 3 85 #endif 86 87 #define ILT_PAGE_IN_BYTES(hw_p_size) (1U << ((hw_p_size) + 12)) 88 #define ILT_CFG_REG(cli, reg) PSWRQ2_REG_##cli##_##reg##_RT_OFFSET 89 90 /* ILT entry structure */ 91 #define ILT_ENTRY_PHY_ADDR_MASK 0x000FFFFFFFFFFFULL 92 #define ILT_ENTRY_PHY_ADDR_SHIFT 0 93 #define ILT_ENTRY_VALID_MASK 0x1ULL 94 #define ILT_ENTRY_VALID_SHIFT 52 95 #define ILT_ENTRY_IN_REGS 2 96 #define ILT_REG_SIZE_IN_BYTES 4 97 98 /* connection context union */ 99 union conn_context { 100 struct core_conn_context core_ctx; 101 struct eth_conn_context eth_ctx; 102 struct iscsi_conn_context iscsi_ctx; 103 struct fcoe_conn_context fcoe_ctx; 104 struct roce_conn_context roce_ctx; 105 }; 106 107 /* TYPE-0 task context - iSCSI, FCOE */ 108 union type0_task_context { 109 struct iscsi_task_context iscsi_ctx; 110 struct fcoe_task_context fcoe_ctx; 111 }; 112 113 /* TYPE-1 task context - ROCE */ 114 union type1_task_context { 115 struct rdma_task_context roce_ctx; 116 }; 117 118 struct src_ent { 119 u8 opaque[56]; 120 u64 next; 121 }; 122 123 #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */ 124 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12)) 125 126 #define CONN_CXT_SIZE(p_hwfn) \ 127 ALIGNED_TYPE_SIZE(union conn_context, p_hwfn) 128 129 #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context)) 130 131 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \ 132 ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn) 133 134 /* Alignment is inherent to the type1_task_context structure */ 135 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context) 136 137 /* PF per protocl configuration object */ 138 #define TASK_SEGMENTS (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS) 139 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS) 140 141 struct ecore_tid_seg { 142 u32 count; 143 u8 type; 144 bool has_fl_mem; 145 }; 146 147 struct ecore_conn_type_cfg { 148 u32 cid_count; 149 u32 cids_per_vf; 150 struct ecore_tid_seg tid_seg[TASK_SEGMENTS]; 151 }; 152 153 /* ILT Client configuration, 154 * Per connection type (protocol) resources (cids, tis, vf cids etc.) 155 * 1 - for connection context (CDUC) and for each task context we need two 156 * values, for regular task context and for force load memory 157 */ 158 #define ILT_CLI_PF_BLOCKS (1 + NUM_TASK_PF_SEGMENTS * 2) 159 #define ILT_CLI_VF_BLOCKS (1 + NUM_TASK_VF_SEGMENTS * 2) 160 #define CDUC_BLK (0) 161 #define SRQ_BLK (0) 162 #define CDUT_SEG_BLK(n) (1 + (u8)(n)) 163 #define CDUT_FL_SEG_BLK(n, X) (1 + (n) + NUM_TASK_##X##_SEGMENTS) 164 165 enum ilt_clients { 166 ILT_CLI_CDUC, 167 ILT_CLI_CDUT, 168 ILT_CLI_QM, 169 ILT_CLI_TM, 170 ILT_CLI_SRC, 171 ILT_CLI_TSDM, 172 ILT_CLI_MAX 173 }; 174 175 struct ilt_cfg_pair { 176 u32 reg; 177 u32 val; 178 }; 179 180 struct ecore_ilt_cli_blk { 181 u32 total_size; /* 0 means not active */ 182 u32 real_size_in_page; 183 u32 start_line; 184 u32 dynamic_line_cnt; 185 }; 186 187 struct ecore_ilt_client_cfg { 188 bool active; 189 190 /* ILT boundaries */ 191 struct ilt_cfg_pair first; 192 struct ilt_cfg_pair last; 193 struct ilt_cfg_pair p_size; 194 195 /* ILT client blocks for PF */ 196 struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS]; 197 u32 pf_total_lines; 198 199 /* ILT client blocks for VFs */ 200 struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS]; 201 u32 vf_total_lines; 202 }; 203 204 /* Per Path - 205 * ILT shadow table 206 * Protocol acquired CID lists 207 * PF start line in ILT 208 */ 209 struct ecore_dma_mem { 210 dma_addr_t p_phys; 211 void *p_virt; 212 osal_size_t size; 213 }; 214 215 #define MAP_WORD_SIZE sizeof(unsigned long) 216 #define BITS_PER_MAP_WORD (MAP_WORD_SIZE * 8) 217 218 struct ecore_cid_acquired_map { 219 u32 start_cid; 220 u32 max_count; 221 unsigned long *cid_map; 222 }; 223 224 struct ecore_cxt_mngr { 225 /* Per protocl configuration */ 226 struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES]; 227 228 /* computed ILT structure */ 229 struct ecore_ilt_client_cfg clients[ILT_CLI_MAX]; 230 231 /* Task type sizes */ 232 u32 task_type_size[NUM_TASK_TYPES]; 233 234 /* total number of VFs for this hwfn - 235 * ALL VFs are symmetric in terms of HW resources 236 */ 237 u32 vf_count; 238 239 /* Acquired CIDs */ 240 struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES]; 241 /* TBD - do we want this allocated to reserve space? */ 242 struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS]; 243 244 /* ILT shadow table */ 245 struct ecore_dma_mem *ilt_shadow; 246 u32 pf_start_line; 247 248 /* Mutex for a dynamic ILT allocation */ 249 osal_mutex_t mutex; 250 251 /* SRC T2 */ 252 struct ecore_dma_mem *t2; 253 u32 t2_num_pages; 254 u64 first_free; 255 u64 last_free; 256 257 /* The infrastructure originally was very generic and context/task 258 * oriented - per connection-type we would set how many of those 259 * are needed, and later when determining how much memory we're 260 * needing for a given block we'd iterate over all the relevant 261 * connection-types. 262 * But since then we've had some additional resources, some of which 263 * require memory which is indepent of the general context/task 264 * scheme. We add those here explicitly per-feature. 265 */ 266 267 /* total number of SRQ's for this hwfn */ 268 u32 srq_count; 269 270 /* Maximal number of L2 steering filters */ 271 u32 arfs_count; 272 273 /* TODO - VF arfs filters ? */ 274 }; 275 276 /* check if resources/configuration is required according to protocol type */ 277 static bool src_proto(struct ecore_hwfn *p_hwfn, 278 enum protocol_type type) 279 { 280 return type == PROTOCOLID_ISCSI || 281 type == PROTOCOLID_FCOE || 282 type == PROTOCOLID_TOE || 283 type == PROTOCOLID_IWARP; 284 } 285 286 static bool tm_cid_proto(enum protocol_type type) 287 { 288 return type == PROTOCOLID_ISCSI || 289 type == PROTOCOLID_FCOE || 290 type == PROTOCOLID_ROCE || 291 type == PROTOCOLID_IWARP; 292 } 293 294 static bool tm_tid_proto(enum protocol_type type) 295 { 296 return type == PROTOCOLID_FCOE; 297 } 298 299 /* counts the iids for the CDU/CDUC ILT client configuration */ 300 struct ecore_cdu_iids { 301 u32 pf_cids; 302 u32 per_vf_cids; 303 }; 304 305 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr, 306 struct ecore_cdu_iids *iids) 307 { 308 u32 type; 309 310 for (type = 0; type < MAX_CONN_TYPES; type++) { 311 iids->pf_cids += p_mngr->conn_cfg[type].cid_count; 312 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf; 313 } 314 } 315 316 /* counts the iids for the Searcher block configuration */ 317 struct ecore_src_iids { 318 u32 pf_cids; 319 u32 per_vf_cids; 320 }; 321 322 static void ecore_cxt_src_iids(struct ecore_hwfn *p_hwfn, 323 struct ecore_cxt_mngr *p_mngr, 324 struct ecore_src_iids *iids) 325 { 326 u32 i; 327 328 for (i = 0; i < MAX_CONN_TYPES; i++) { 329 if (!src_proto(p_hwfn, i)) 330 continue; 331 332 iids->pf_cids += p_mngr->conn_cfg[i].cid_count; 333 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf; 334 } 335 336 /* Add L2 filtering filters in addition */ 337 iids->pf_cids += p_mngr->arfs_count; 338 } 339 340 /* counts the iids for the Timers block configuration */ 341 struct ecore_tm_iids { 342 u32 pf_cids; 343 u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */ 344 u32 pf_tids_total; 345 u32 per_vf_cids; 346 u32 per_vf_tids; 347 }; 348 349 static void ecore_cxt_tm_iids(struct ecore_hwfn *p_hwfn, 350 struct ecore_cxt_mngr *p_mngr, 351 struct ecore_tm_iids *iids) 352 { 353 bool tm_vf_required = false; 354 bool tm_required = false; 355 int i, j; 356 357 /* Timers is a special case -> we don't count how many cids require 358 * timers but what's the max cid that will be used by the timer block. 359 * therefore we traverse in reverse order, and once we hit a protocol 360 * that requires the timers memory, we'll sum all the protocols up 361 * to that one. 362 */ 363 for (i = MAX_CONN_TYPES - 1; i >= 0; i--) { 364 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i]; 365 366 if (tm_cid_proto(i) || tm_required) { 367 if (p_cfg->cid_count) 368 tm_required = true; 369 370 iids->pf_cids += p_cfg->cid_count; 371 } 372 373 if (tm_cid_proto(i) || tm_vf_required) { 374 if (p_cfg->cids_per_vf) 375 tm_vf_required = true; 376 377 iids->per_vf_cids += p_cfg->cids_per_vf; 378 } 379 380 if (tm_tid_proto(i)) { 381 struct ecore_tid_seg *segs = p_cfg->tid_seg; 382 383 /* for each segment there is at most one 384 * protocol for which count is not 0. 385 */ 386 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++) 387 iids->pf_tids[j] += segs[j].count; 388 389 /* The last array elelment is for the VFs. As for PF 390 * segments there can be only one protocol for 391 * which this value is not 0. 392 */ 393 iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count; 394 } 395 } 396 397 iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN); 398 iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN); 399 iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN); 400 401 for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) { 402 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN); 403 iids->pf_tids_total += iids->pf_tids[j]; 404 } 405 } 406 407 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn, 408 struct ecore_qm_iids *iids) 409 { 410 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 411 struct ecore_tid_seg *segs; 412 u32 vf_cids = 0, type, j; 413 u32 vf_tids = 0; 414 415 for (type = 0; type < MAX_CONN_TYPES; type++) { 416 iids->cids += p_mngr->conn_cfg[type].cid_count; 417 vf_cids += p_mngr->conn_cfg[type].cids_per_vf; 418 419 segs = p_mngr->conn_cfg[type].tid_seg; 420 /* for each segment there is at most one 421 * protocol for which count is not 0. 422 */ 423 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++) 424 iids->tids += segs[j].count; 425 426 /* The last array elelment is for the VFs. As for PF 427 * segments there can be only one protocol for 428 * which this value is not 0. 429 */ 430 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count; 431 } 432 433 iids->vf_cids += vf_cids * p_mngr->vf_count; 434 iids->tids += vf_tids * p_mngr->vf_count; 435 436 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 437 "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n", 438 iids->cids, iids->vf_cids, iids->tids, vf_tids); 439 } 440 441 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn, 442 u32 seg) 443 { 444 struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr; 445 u32 i; 446 447 /* Find the protocol with tid count > 0 for this segment. 448 Note: there can only be one and this is already validated. 449 */ 450 for (i = 0; i < MAX_CONN_TYPES; i++) { 451 if (p_cfg->conn_cfg[i].tid_seg[seg].count) 452 return &p_cfg->conn_cfg[i].tid_seg[seg]; 453 } 454 return OSAL_NULL; 455 } 456 457 /* set the iids (cid/tid) count per protocol */ 458 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn, 459 enum protocol_type type, 460 u32 cid_count, u32 vf_cid_cnt) 461 { 462 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; 463 struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type]; 464 465 p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN); 466 p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN); 467 468 if (type == PROTOCOLID_ROCE) { 469 u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val; 470 u32 cxt_size = CONN_CXT_SIZE(p_hwfn); 471 u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; 472 u32 align = elems_per_page * DQ_RANGE_ALIGN; 473 474 p_conn->cid_count = ROUNDUP(p_conn->cid_count, align); 475 } 476 } 477 478 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn, 479 enum protocol_type type, 480 u32 *vf_cid) 481 { 482 if (vf_cid) 483 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf; 484 485 return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count; 486 } 487 488 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn, 489 enum protocol_type type) 490 { 491 return p_hwfn->p_cxt_mngr->acquired[type].start_cid; 492 } 493 494 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn, 495 enum protocol_type type) 496 { 497 u32 cnt = 0; 498 int i; 499 500 for (i = 0; i < TASK_SEGMENTS; i++) 501 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count; 502 503 return cnt; 504 } 505 506 static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn, 507 enum protocol_type proto, 508 u8 seg, 509 u8 seg_type, 510 u32 count, 511 bool has_fl) 512 { 513 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 514 struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg]; 515 516 p_seg->count = count; 517 p_seg->has_fl_mem = has_fl; 518 p_seg->type = seg_type; 519 } 520 521 /* the *p_line parameter must be either 0 for the first invocation or the 522 value returned in the previous invocation. 523 */ 524 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli, 525 struct ecore_ilt_cli_blk *p_blk, 526 u32 start_line, 527 u32 total_size, 528 u32 elem_size) 529 { 530 u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val); 531 532 /* verify that it's called once for each block */ 533 if (p_blk->total_size) 534 return; 535 536 p_blk->total_size = total_size; 537 p_blk->real_size_in_page = 0; 538 if (elem_size) 539 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size; 540 p_blk->start_line = start_line; 541 } 542 543 static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn, 544 struct ecore_ilt_client_cfg *p_cli, 545 struct ecore_ilt_cli_blk *p_blk, 546 u32 *p_line, 547 enum ilt_clients client_id) 548 { 549 if (!p_blk->total_size) 550 return; 551 552 if (!p_cli->active) 553 p_cli->first.val = *p_line; 554 555 p_cli->active = true; 556 *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page); 557 p_cli->last.val = *p_line-1; 558 559 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 560 "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n", 561 client_id, p_cli->first.val, p_cli->last.val, 562 p_blk->total_size, p_blk->real_size_in_page, 563 p_blk->start_line); 564 } 565 566 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn, 567 enum ilt_clients ilt_client) 568 { 569 u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count; 570 struct ecore_ilt_client_cfg *p_cli; 571 u32 lines_to_skip = 0; 572 u32 cxts_per_p; 573 574 /* TBD MK: ILT code should be simplified once PROTO enum is changed */ 575 576 if (ilt_client == ILT_CLI_CDUC) { 577 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; 578 579 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) / 580 (u32)CONN_CXT_SIZE(p_hwfn); 581 582 lines_to_skip = cid_count / cxts_per_p; 583 } 584 585 return lines_to_skip; 586 } 587 588 static struct ecore_ilt_client_cfg * 589 ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli) 590 { 591 p_cli->active = false; 592 p_cli->first.val = 0; 593 p_cli->last.val = 0; 594 return p_cli; 595 } 596 597 static struct ecore_ilt_cli_blk * 598 ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk) 599 { 600 p_blk->total_size = 0; 601 return p_blk; 602 } 603 604 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn, 605 u32 *line_count) 606 { 607 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 608 u32 curr_line, total, i, task_size, line; 609 struct ecore_ilt_client_cfg *p_cli; 610 struct ecore_ilt_cli_blk *p_blk; 611 struct ecore_cdu_iids cdu_iids; 612 struct ecore_src_iids src_iids; 613 struct ecore_qm_iids qm_iids; 614 struct ecore_tm_iids tm_iids; 615 struct ecore_tid_seg *p_seg; 616 617 OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids)); 618 OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids)); 619 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); 620 OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids)); 621 622 p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT); 623 624 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 625 "hwfn [%d] - Set context manager starting line to be 0x%08x\n", 626 p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line); 627 628 /* CDUC */ 629 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]); 630 631 curr_line = p_mngr->pf_start_line; 632 633 /* CDUC PF */ 634 p_cli->pf_total_lines = 0; 635 636 /* get the counters for the CDUC,CDUC and QM clients */ 637 ecore_cxt_cdu_iids(p_mngr, &cdu_iids); 638 639 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]); 640 641 total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn); 642 643 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 644 total, CONN_CXT_SIZE(p_hwfn)); 645 646 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); 647 p_cli->pf_total_lines = curr_line - p_blk->start_line; 648 649 p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn, 650 ILT_CLI_CDUC); 651 652 /* CDUC VF */ 653 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]); 654 total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn); 655 656 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 657 total, CONN_CXT_SIZE(p_hwfn)); 658 659 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); 660 p_cli->vf_total_lines = curr_line - p_blk->start_line; 661 662 for (i = 1; i < p_mngr->vf_count; i++) 663 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 664 ILT_CLI_CDUC); 665 666 /* CDUT PF */ 667 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]); 668 p_cli->first.val = curr_line; 669 670 /* first the 'working' task memory */ 671 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 672 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); 673 if (!p_seg || p_seg->count == 0) 674 continue; 675 676 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]); 677 total = p_seg->count * p_mngr->task_type_size[p_seg->type]; 678 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, 679 p_mngr->task_type_size[p_seg->type]); 680 681 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 682 ILT_CLI_CDUT); 683 } 684 685 /* next the 'init' task memory (forced load memory) */ 686 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 687 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); 688 if (!p_seg || p_seg->count == 0) 689 continue; 690 691 p_blk = ecore_cxt_set_blk( 692 &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]); 693 694 if (!p_seg->has_fl_mem) { 695 /* The segment is active (total size pf 'working' 696 * memory is > 0) but has no FL (forced-load, Init) 697 * memory. Thus: 698 * 699 * 1. The total-size in the corrsponding FL block of 700 * the ILT client is set to 0 - No ILT line are 701 * provisioned and no ILT memory allocated. 702 * 703 * 2. The start-line of said block is set to the 704 * start line of the matching working memory 705 * block in the ILT client. This is later used to 706 * configure the CDU segment offset registers and 707 * results in an FL command for TIDs of this 708 * segement behaves as regular load commands 709 * (loading TIDs from the working memory). 710 */ 711 line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line; 712 713 ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0); 714 continue; 715 } 716 total = p_seg->count * p_mngr->task_type_size[p_seg->type]; 717 718 ecore_ilt_cli_blk_fill(p_cli, p_blk, 719 curr_line, total, 720 p_mngr->task_type_size[p_seg->type]); 721 722 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 723 ILT_CLI_CDUT); 724 } 725 p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line; 726 727 /* CDUT VF */ 728 p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF); 729 if (p_seg && p_seg->count) { 730 /* Stricly speaking we need to iterate over all VF 731 * task segment types, but a VF has only 1 segment 732 */ 733 734 /* 'working' memory */ 735 total = p_seg->count * p_mngr->task_type_size[p_seg->type]; 736 737 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]); 738 ecore_ilt_cli_blk_fill(p_cli, p_blk, 739 curr_line, total, 740 p_mngr->task_type_size[p_seg->type]); 741 742 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 743 ILT_CLI_CDUT); 744 745 /* 'init' memory */ 746 p_blk = ecore_cxt_set_blk( 747 &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]); 748 if (!p_seg->has_fl_mem) { 749 /* see comment above */ 750 line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line; 751 ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0); 752 } else { 753 task_size = p_mngr->task_type_size[p_seg->type]; 754 ecore_ilt_cli_blk_fill(p_cli, p_blk, 755 curr_line, total, 756 task_size); 757 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 758 ILT_CLI_CDUT); 759 } 760 p_cli->vf_total_lines = curr_line - 761 p_cli->vf_blks[0].start_line; 762 763 /* Now for the rest of the VFs */ 764 for (i = 1; i < p_mngr->vf_count; i++) { 765 /* don't set p_blk i.e. don't clear total_size */ 766 p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)]; 767 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 768 ILT_CLI_CDUT); 769 770 /* don't set p_blk i.e. don't clear total_size */ 771 p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]; 772 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 773 ILT_CLI_CDUT); 774 } 775 } 776 777 /* QM */ 778 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]); 779 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); 780 781 ecore_cxt_qm_iids(p_hwfn, &qm_iids); 782 total = ecore_qm_pf_mem_size(p_hwfn->rel_pf_id, qm_iids.cids, 783 qm_iids.vf_cids, qm_iids.tids, 784 p_hwfn->qm_info.num_pqs, 785 p_hwfn->qm_info.num_vf_pqs); 786 787 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 788 "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n", 789 qm_iids.cids, qm_iids.vf_cids, qm_iids.tids, 790 p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total); 791 792 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000, 793 QM_PQ_ELEMENT_SIZE); 794 795 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM); 796 p_cli->pf_total_lines = curr_line - p_blk->start_line; 797 798 /* SRC */ 799 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]); 800 ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids); 801 802 /* Both the PF and VFs searcher connections are stored in the per PF 803 * database. Thus sum the PF searcher cids and all the VFs searcher 804 * cids. 805 */ 806 total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; 807 if (total) { 808 u32 local_max = OSAL_MAX_T(u32, total, 809 SRC_MIN_NUM_ELEMS); 810 811 total = OSAL_ROUNDUP_POW_OF_TWO(local_max); 812 813 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); 814 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 815 total * sizeof(struct src_ent), 816 sizeof(struct src_ent)); 817 818 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 819 ILT_CLI_SRC); 820 p_cli->pf_total_lines = curr_line - p_blk->start_line; 821 } 822 823 /* TM PF */ 824 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]); 825 ecore_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids); 826 total = tm_iids.pf_cids + tm_iids.pf_tids_total; 827 if (total) { 828 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); 829 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 830 total * TM_ELEM_SIZE, 831 TM_ELEM_SIZE); 832 833 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 834 ILT_CLI_TM); 835 p_cli->pf_total_lines = curr_line - p_blk->start_line; 836 } 837 838 /* TM VF */ 839 total = tm_iids.per_vf_cids + tm_iids.per_vf_tids; 840 if (total) { 841 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]); 842 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 843 total * TM_ELEM_SIZE, 844 TM_ELEM_SIZE); 845 846 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 847 ILT_CLI_TM); 848 849 p_cli->vf_total_lines = curr_line - p_blk->start_line; 850 for (i = 1; i < p_mngr->vf_count; i++) { 851 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 852 ILT_CLI_TM); 853 } 854 } 855 856 /* TSDM (SRQ CONTEXT) */ 857 total = ecore_cxt_get_srq_count(p_hwfn); 858 859 if (total) { 860 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]); 861 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]); 862 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 863 total * SRQ_CXT_SIZE, SRQ_CXT_SIZE); 864 865 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 866 ILT_CLI_TSDM); 867 p_cli->pf_total_lines = curr_line - p_blk->start_line; 868 } 869 870 *line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line; 871 872 if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line > 873 RESC_NUM(p_hwfn, ECORE_ILT)) { 874 return ECORE_INVAL; 875 } 876 877 return ECORE_SUCCESS; 878 } 879 880 u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines) 881 { 882 struct ecore_ilt_client_cfg *p_cli; 883 u32 excess_lines, available_lines; 884 struct ecore_cxt_mngr *p_mngr; 885 u32 ilt_page_size, elem_size; 886 struct ecore_tid_seg *p_seg; 887 int i; 888 889 available_lines = RESC_NUM(p_hwfn, ECORE_ILT); 890 excess_lines = used_lines - available_lines; 891 892 if (!excess_lines) 893 return 0; 894 895 if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn)) 896 return 0; 897 898 p_mngr = p_hwfn->p_cxt_mngr; 899 p_cli = &p_mngr->clients[ILT_CLI_CDUT]; 900 ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val); 901 902 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 903 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); 904 if (!p_seg || p_seg->count == 0) 905 continue; 906 907 elem_size = p_mngr->task_type_size[p_seg->type]; 908 if (!elem_size) 909 continue; 910 911 return (ilt_page_size / elem_size) * excess_lines; 912 } 913 914 DP_ERR(p_hwfn, "failed computing excess ILT lines\n"); 915 return 0; 916 } 917 918 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn) 919 { 920 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 921 u32 i; 922 923 if (!p_mngr->t2) 924 return; 925 926 for (i = 0; i < p_mngr->t2_num_pages; i++) 927 if (p_mngr->t2[i].p_virt) 928 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 929 p_mngr->t2[i].p_virt, 930 p_mngr->t2[i].p_phys, 931 p_mngr->t2[i].size); 932 933 OSAL_FREE(p_hwfn->p_dev, p_mngr->t2); 934 p_mngr->t2 = OSAL_NULL; 935 } 936 937 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn) 938 { 939 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 940 u32 conn_num, total_size, ent_per_page, psz, i; 941 struct ecore_ilt_client_cfg *p_src; 942 struct ecore_src_iids src_iids; 943 struct ecore_dma_mem *p_t2; 944 enum _ecore_status_t rc; 945 946 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); 947 948 /* if the SRC ILT client is inactive - there are no connection 949 * requiring the searcer, leave. 950 */ 951 p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC]; 952 if (!p_src->active) 953 return ECORE_SUCCESS; 954 955 ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids); 956 conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; 957 total_size = conn_num * sizeof(struct src_ent); 958 959 /* use the same page size as the SRC ILT client */ 960 psz = ILT_PAGE_IN_BYTES(p_src->p_size.val); 961 p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz); 962 963 /* allocate t2 */ 964 p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 965 p_mngr->t2_num_pages * 966 sizeof(struct ecore_dma_mem)); 967 if (!p_mngr->t2) { 968 DP_NOTICE(p_hwfn, true, "Failed to allocate t2 table\n"); 969 rc = ECORE_NOMEM; 970 goto t2_fail; 971 } 972 973 /* allocate t2 pages */ 974 for (i = 0; i < p_mngr->t2_num_pages; i++) { 975 u32 size = OSAL_MIN_T(u32, total_size, psz); 976 void **p_virt = &p_mngr->t2[i].p_virt; 977 978 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 979 &p_mngr->t2[i].p_phys, 980 size); 981 if (!p_mngr->t2[i].p_virt) { 982 rc = ECORE_NOMEM; 983 goto t2_fail; 984 } 985 OSAL_MEM_ZERO(*p_virt, size); 986 p_mngr->t2[i].size = size; 987 total_size -= size; 988 } 989 990 /* Set the t2 pointers */ 991 992 /* entries per page - must be a power of two */ 993 ent_per_page = psz / sizeof(struct src_ent); 994 995 p_mngr->first_free = (u64)p_mngr->t2[0].p_phys; 996 997 p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page]; 998 p_mngr->last_free = (u64)p_t2->p_phys + 999 ((conn_num - 1) & (ent_per_page - 1)) * 1000 sizeof(struct src_ent); 1001 1002 for (i = 0; i < p_mngr->t2_num_pages; i++) { 1003 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num); 1004 struct src_ent *entries = p_mngr->t2[i].p_virt; 1005 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val; 1006 u32 j; 1007 1008 for (j = 0; j < ent_num - 1; j++) { 1009 val = p_ent_phys + 1010 (j + 1) * sizeof(struct src_ent); 1011 entries[j].next = OSAL_CPU_TO_BE64(val); 1012 } 1013 1014 if (i < p_mngr->t2_num_pages - 1) 1015 val = (u64)p_mngr->t2[i + 1].p_phys; 1016 else 1017 val = 0; 1018 entries[j].next = OSAL_CPU_TO_BE64(val); 1019 1020 conn_num -= ent_num; 1021 } 1022 1023 return ECORE_SUCCESS; 1024 1025 t2_fail: 1026 ecore_cxt_src_t2_free(p_hwfn); 1027 return rc; 1028 } 1029 1030 #define for_each_ilt_valid_client(pos, clients) \ 1031 for (pos = 0; pos < ILT_CLI_MAX; pos++) \ 1032 if (!clients[pos].active) { \ 1033 continue; \ 1034 } else \ 1035 1036 1037 /* Total number of ILT lines used by this PF */ 1038 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients) 1039 { 1040 u32 size = 0; 1041 u32 i; 1042 1043 for_each_ilt_valid_client(i, ilt_clients) 1044 size += (ilt_clients[i].last.val - 1045 ilt_clients[i].first.val + 1); 1046 1047 return size; 1048 } 1049 1050 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn) 1051 { 1052 struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients; 1053 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1054 u32 ilt_size, i; 1055 1056 ilt_size = ecore_cxt_ilt_shadow_size(p_cli); 1057 1058 for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) { 1059 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i]; 1060 1061 if (p_dma->p_virt) 1062 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 1063 p_dma->p_virt, 1064 p_dma->p_phys, 1065 p_dma->size); 1066 p_dma->p_virt = OSAL_NULL; 1067 } 1068 OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow); 1069 } 1070 1071 static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn, 1072 struct ecore_ilt_cli_blk *p_blk, 1073 enum ilt_clients ilt_client, 1074 u32 start_line_offset) 1075 { 1076 struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow; 1077 u32 lines, line, sz_left, lines_to_skip = 0; 1078 1079 /* Special handling for RoCE that supports dynamic allocation */ 1080 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) && 1081 ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM)) 1082 return ECORE_SUCCESS; 1083 1084 lines_to_skip = p_blk->dynamic_line_cnt; 1085 1086 if (!p_blk->total_size) 1087 return ECORE_SUCCESS; 1088 1089 sz_left = p_blk->total_size; 1090 lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) - 1091 lines_to_skip; 1092 line = p_blk->start_line + start_line_offset - 1093 p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip; 1094 1095 for (; lines; lines--) { 1096 dma_addr_t p_phys; 1097 void *p_virt; 1098 u32 size; 1099 1100 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page); 1101 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 1102 &p_phys, size); 1103 if (!p_virt) 1104 return ECORE_NOMEM; 1105 OSAL_MEM_ZERO(p_virt, size); 1106 1107 ilt_shadow[line].p_phys = p_phys; 1108 ilt_shadow[line].p_virt = p_virt; 1109 ilt_shadow[line].size = size; 1110 1111 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 1112 "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n", 1113 line, (unsigned long long)p_phys, p_virt, size); 1114 1115 sz_left -= size; 1116 line++; 1117 } 1118 1119 return ECORE_SUCCESS; 1120 } 1121 1122 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn) 1123 { 1124 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1125 struct ecore_ilt_client_cfg *clients = p_mngr->clients; 1126 struct ecore_ilt_cli_blk *p_blk; 1127 u32 size, i, j, k; 1128 enum _ecore_status_t rc; 1129 1130 size = ecore_cxt_ilt_shadow_size(clients); 1131 p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 1132 size * sizeof(struct ecore_dma_mem)); 1133 1134 if (!p_mngr->ilt_shadow) { 1135 DP_NOTICE(p_hwfn, true, "Failed to allocate ilt shadow table\n"); 1136 rc = ECORE_NOMEM; 1137 goto ilt_shadow_fail; 1138 } 1139 1140 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 1141 "Allocated 0x%x bytes for ilt shadow\n", 1142 (u32)(size * sizeof(struct ecore_dma_mem))); 1143 1144 for_each_ilt_valid_client(i, clients) { 1145 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) { 1146 p_blk = &clients[i].pf_blks[j]; 1147 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0); 1148 if (rc != ECORE_SUCCESS) 1149 goto ilt_shadow_fail; 1150 } 1151 for (k = 0; k < p_mngr->vf_count; k++) { 1152 for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) { 1153 u32 lines = clients[i].vf_total_lines * k; 1154 1155 p_blk = &clients[i].vf_blks[j]; 1156 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, 1157 i, lines); 1158 if (rc != ECORE_SUCCESS) 1159 goto ilt_shadow_fail; 1160 } 1161 } 1162 } 1163 1164 return ECORE_SUCCESS; 1165 1166 ilt_shadow_fail: 1167 ecore_ilt_shadow_free(p_hwfn); 1168 return rc; 1169 } 1170 1171 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn) 1172 { 1173 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1174 u32 type, vf; 1175 1176 for (type = 0; type < MAX_CONN_TYPES; type++) { 1177 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map); 1178 p_mngr->acquired[type].max_count = 0; 1179 p_mngr->acquired[type].start_cid = 0; 1180 1181 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { 1182 OSAL_FREE(p_hwfn->p_dev, 1183 p_mngr->acquired_vf[type][vf].cid_map); 1184 p_mngr->acquired_vf[type][vf].max_count = 0; 1185 p_mngr->acquired_vf[type][vf].start_cid = 0; 1186 } 1187 } 1188 } 1189 1190 static enum _ecore_status_t 1191 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type, 1192 u32 cid_start, u32 cid_count, 1193 struct ecore_cid_acquired_map *p_map) 1194 { 1195 u32 size; 1196 1197 if (!cid_count) 1198 return ECORE_SUCCESS; 1199 1200 size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD); 1201 p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size); 1202 if (p_map->cid_map == OSAL_NULL) 1203 return ECORE_NOMEM; 1204 1205 p_map->max_count = cid_count; 1206 p_map->start_cid = cid_start; 1207 1208 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, 1209 "Type %08x start: %08x count %08x\n", 1210 type, p_map->start_cid, p_map->max_count); 1211 1212 return ECORE_SUCCESS; 1213 } 1214 1215 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn) 1216 { 1217 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1218 u32 start_cid = 0, vf_start_cid = 0; 1219 u32 type, vf; 1220 1221 for (type = 0; type < MAX_CONN_TYPES; type++) { 1222 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type]; 1223 struct ecore_cid_acquired_map *p_map; 1224 1225 /* Handle PF maps */ 1226 p_map = &p_mngr->acquired[type]; 1227 if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid, 1228 p_cfg->cid_count, p_map)) 1229 goto cid_map_fail; 1230 1231 /* Handle VF maps */ 1232 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { 1233 p_map = &p_mngr->acquired_vf[type][vf]; 1234 if (ecore_cid_map_alloc_single(p_hwfn, type, 1235 vf_start_cid, 1236 p_cfg->cids_per_vf, 1237 p_map)) 1238 goto cid_map_fail; 1239 } 1240 1241 start_cid += p_cfg->cid_count; 1242 vf_start_cid += p_cfg->cids_per_vf; 1243 } 1244 1245 return ECORE_SUCCESS; 1246 1247 cid_map_fail: 1248 ecore_cid_map_free(p_hwfn); 1249 return ECORE_NOMEM; 1250 } 1251 1252 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn) 1253 { 1254 struct ecore_ilt_client_cfg *clients; 1255 struct ecore_cxt_mngr *p_mngr; 1256 u32 i; 1257 1258 p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr)); 1259 if (!p_mngr) { 1260 DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_cxt_mngr'\n"); 1261 return ECORE_NOMEM; 1262 } 1263 1264 /* Initialize ILT client registers */ 1265 clients = p_mngr->clients; 1266 clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT); 1267 clients[ILT_CLI_CDUC].last.reg = ILT_CFG_REG(CDUC, LAST_ILT); 1268 clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE); 1269 1270 clients[ILT_CLI_QM].first.reg = ILT_CFG_REG(QM, FIRST_ILT); 1271 clients[ILT_CLI_QM].last.reg = ILT_CFG_REG(QM, LAST_ILT); 1272 clients[ILT_CLI_QM].p_size.reg = ILT_CFG_REG(QM, P_SIZE); 1273 1274 clients[ILT_CLI_TM].first.reg = ILT_CFG_REG(TM, FIRST_ILT); 1275 clients[ILT_CLI_TM].last.reg = ILT_CFG_REG(TM, LAST_ILT); 1276 clients[ILT_CLI_TM].p_size.reg = ILT_CFG_REG(TM, P_SIZE); 1277 1278 clients[ILT_CLI_SRC].first.reg = ILT_CFG_REG(SRC, FIRST_ILT); 1279 clients[ILT_CLI_SRC].last.reg = ILT_CFG_REG(SRC, LAST_ILT); 1280 clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE); 1281 1282 clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT); 1283 clients[ILT_CLI_CDUT].last.reg = ILT_CFG_REG(CDUT, LAST_ILT); 1284 clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE); 1285 1286 clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT); 1287 clients[ILT_CLI_TSDM].last.reg = ILT_CFG_REG(TSDM, LAST_ILT); 1288 clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE); 1289 1290 /* default ILT page size for all clients is 32K */ 1291 for (i = 0; i < ILT_CLI_MAX; i++) 1292 p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE; 1293 1294 /* Initialize task sizes */ 1295 p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn); 1296 p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn); 1297 1298 if (p_hwfn->p_dev->p_iov_info) 1299 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs; 1300 1301 /* Initialize the dynamic ILT allocation mutex */ 1302 OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex); 1303 OSAL_MUTEX_INIT(&p_mngr->mutex); 1304 1305 /* Set the cxt mangr pointer priori to further allocations */ 1306 p_hwfn->p_cxt_mngr = p_mngr; 1307 1308 return ECORE_SUCCESS; 1309 } 1310 1311 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn) 1312 { 1313 enum _ecore_status_t rc; 1314 1315 /* Allocate the ILT shadow table */ 1316 rc = ecore_ilt_shadow_alloc(p_hwfn); 1317 if (rc) { 1318 DP_NOTICE(p_hwfn, true, "Failed to allocate ilt memory\n"); 1319 goto tables_alloc_fail; 1320 } 1321 1322 /* Allocate the T2 table */ 1323 rc = ecore_cxt_src_t2_alloc(p_hwfn); 1324 if (rc) { 1325 DP_NOTICE(p_hwfn, true, "Failed to allocate T2 memory\n"); 1326 goto tables_alloc_fail; 1327 } 1328 1329 /* Allocate and initialize the acquired cids bitmaps */ 1330 rc = ecore_cid_map_alloc(p_hwfn); 1331 if (rc) { 1332 DP_NOTICE(p_hwfn, true, "Failed to allocate cid maps\n"); 1333 goto tables_alloc_fail; 1334 } 1335 1336 return ECORE_SUCCESS; 1337 1338 tables_alloc_fail: 1339 ecore_cxt_mngr_free(p_hwfn); 1340 return rc; 1341 } 1342 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn) 1343 { 1344 if (!p_hwfn->p_cxt_mngr) 1345 return; 1346 1347 ecore_cid_map_free(p_hwfn); 1348 ecore_cxt_src_t2_free(p_hwfn); 1349 ecore_ilt_shadow_free(p_hwfn); 1350 OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex); 1351 OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr); 1352 1353 p_hwfn->p_cxt_mngr = OSAL_NULL; 1354 } 1355 1356 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn) 1357 { 1358 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1359 struct ecore_cid_acquired_map *p_map; 1360 struct ecore_conn_type_cfg *p_cfg; 1361 int type; 1362 u32 len; 1363 1364 /* Reset acquired cids */ 1365 for (type = 0; type < MAX_CONN_TYPES; type++) { 1366 u32 vf; 1367 1368 p_cfg = &p_mngr->conn_cfg[type]; 1369 if (p_cfg->cid_count) { 1370 p_map = &p_mngr->acquired[type]; 1371 len = DIV_ROUND_UP(p_map->max_count, 1372 BITS_PER_MAP_WORD) * 1373 MAP_WORD_SIZE; 1374 OSAL_MEM_ZERO(p_map->cid_map, len); 1375 } 1376 1377 if (!p_cfg->cids_per_vf) 1378 continue; 1379 1380 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { 1381 p_map = &p_mngr->acquired_vf[type][vf]; 1382 len = DIV_ROUND_UP(p_map->max_count, 1383 BITS_PER_MAP_WORD) * 1384 MAP_WORD_SIZE; 1385 OSAL_MEM_ZERO(p_map->cid_map, len); 1386 } 1387 } 1388 } 1389 1390 /* HW initialization helper (per Block, per phase) */ 1391 1392 /* CDU Common */ 1393 #define CDUC_CXT_SIZE_SHIFT \ 1394 CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT 1395 1396 #define CDUC_CXT_SIZE_MASK \ 1397 (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT) 1398 1399 #define CDUC_BLOCK_WASTE_SHIFT \ 1400 CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT 1401 1402 #define CDUC_BLOCK_WASTE_MASK \ 1403 (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT) 1404 1405 #define CDUC_NCIB_SHIFT \ 1406 CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT 1407 1408 #define CDUC_NCIB_MASK \ 1409 (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT) 1410 1411 #define CDUT_TYPE0_CXT_SIZE_SHIFT \ 1412 CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT 1413 1414 #define CDUT_TYPE0_CXT_SIZE_MASK \ 1415 (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >> \ 1416 CDUT_TYPE0_CXT_SIZE_SHIFT) 1417 1418 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT \ 1419 CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT 1420 1421 #define CDUT_TYPE0_BLOCK_WASTE_MASK \ 1422 (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >> \ 1423 CDUT_TYPE0_BLOCK_WASTE_SHIFT) 1424 1425 #define CDUT_TYPE0_NCIB_SHIFT \ 1426 CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT 1427 1428 #define CDUT_TYPE0_NCIB_MASK \ 1429 (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >> \ 1430 CDUT_TYPE0_NCIB_SHIFT) 1431 1432 #define CDUT_TYPE1_CXT_SIZE_SHIFT \ 1433 CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT 1434 1435 #define CDUT_TYPE1_CXT_SIZE_MASK \ 1436 (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >> \ 1437 CDUT_TYPE1_CXT_SIZE_SHIFT) 1438 1439 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT \ 1440 CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT 1441 1442 #define CDUT_TYPE1_BLOCK_WASTE_MASK \ 1443 (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >> \ 1444 CDUT_TYPE1_BLOCK_WASTE_SHIFT) 1445 1446 #define CDUT_TYPE1_NCIB_SHIFT \ 1447 CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT 1448 1449 #define CDUT_TYPE1_NCIB_MASK \ 1450 (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >> \ 1451 CDUT_TYPE1_NCIB_SHIFT) 1452 1453 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn) 1454 { 1455 u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0; 1456 1457 /* CDUC - connection configuration */ 1458 page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val; 1459 cxt_size = CONN_CXT_SIZE(p_hwfn); 1460 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; 1461 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; 1462 1463 SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size); 1464 SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste); 1465 SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page); 1466 STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params); 1467 1468 /* CDUT - type-0 tasks configuration */ 1469 page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val; 1470 cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0]; 1471 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; 1472 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; 1473 1474 /* cxt size and block-waste are multipes of 8 */ 1475 cdu_params = 0; 1476 SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3)); 1477 SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3)); 1478 SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page); 1479 STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params); 1480 1481 /* CDUT - type-1 tasks configuration */ 1482 cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1]; 1483 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; 1484 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; 1485 1486 /* cxt size and block-waste are multipes of 8 */ 1487 cdu_params = 0; 1488 SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3)); 1489 SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3)); 1490 SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page); 1491 STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params); 1492 } 1493 1494 /* CDU PF */ 1495 #define CDU_SEG_REG_TYPE_SHIFT CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT 1496 #define CDU_SEG_REG_TYPE_MASK 0x1 1497 #define CDU_SEG_REG_OFFSET_SHIFT 0 1498 #define CDU_SEG_REG_OFFSET_MASK CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK 1499 1500 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn) 1501 { 1502 struct ecore_ilt_client_cfg *p_cli; 1503 struct ecore_tid_seg *p_seg; 1504 u32 cdu_seg_params, offset; 1505 int i; 1506 1507 static const u32 rt_type_offset_arr[] = { 1508 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET, 1509 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET, 1510 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET, 1511 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET 1512 }; 1513 1514 static const u32 rt_type_offset_fl_arr[] = { 1515 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET, 1516 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET, 1517 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET, 1518 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET 1519 }; 1520 1521 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; 1522 1523 /* There are initializations only for CDUT during pf Phase */ 1524 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 1525 /* Segment 0*/ 1526 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); 1527 if (!p_seg) 1528 continue; 1529 1530 /* Note: start_line is already adjusted for the CDU 1531 * segment register granularity, so we just need to 1532 * divide. Adjustment is implicit as we assume ILT 1533 * Page size is larger than 32K! 1534 */ 1535 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) * 1536 (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line - 1537 p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES; 1538 1539 cdu_seg_params = 0; 1540 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type); 1541 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset); 1542 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i], 1543 cdu_seg_params); 1544 1545 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) * 1546 (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line - 1547 p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES; 1548 1549 cdu_seg_params = 0; 1550 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type); 1551 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset); 1552 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i], 1553 cdu_seg_params); 1554 1555 } 1556 } 1557 1558 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn) 1559 { 1560 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1561 struct ecore_qm_iids iids; 1562 1563 OSAL_MEM_ZERO(&iids, sizeof(iids)); 1564 ecore_cxt_qm_iids(p_hwfn, &iids); 1565 1566 ecore_qm_pf_rt_init(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->port_id, 1567 p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port, 1568 p_hwfn->first_on_engine, 1569 iids.cids, iids.vf_cids, iids.tids, 1570 qm_info->start_pq, 1571 qm_info->num_pqs - qm_info->num_vf_pqs, 1572 qm_info->num_vf_pqs, 1573 qm_info->start_vport, 1574 qm_info->num_vports, qm_info->pf_wfq, qm_info->pf_rl, 1575 p_hwfn->qm_info.qm_pq_params, 1576 p_hwfn->qm_info.qm_vport_params); 1577 } 1578 1579 /* CM PF */ 1580 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn) 1581 { 1582 STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB)); 1583 } 1584 1585 /* DQ PF */ 1586 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn) 1587 { 1588 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1589 u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0; 1590 1591 dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT); 1592 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid); 1593 1594 dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT); 1595 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid); 1596 1597 dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT); 1598 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid); 1599 1600 dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT); 1601 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid); 1602 1603 dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT); 1604 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid); 1605 1606 dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT); 1607 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid); 1608 1609 dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT); 1610 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid); 1611 1612 dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT); 1613 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid); 1614 1615 dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT); 1616 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid); 1617 1618 dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT); 1619 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid); 1620 1621 dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT); 1622 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid); 1623 1624 dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT); 1625 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid); 1626 1627 /* Connection types 6 & 7 are not in use, yet they must be configured 1628 * as the highest possible connection. Not configuring them means the 1629 * defaults will be used, and with a large number of cids a bug may 1630 * occur, if the defaults will be smaller than dq_pf_max_cid / 1631 * dq_vf_max_cid. 1632 */ 1633 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid); 1634 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid); 1635 1636 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid); 1637 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid); 1638 } 1639 1640 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn) 1641 { 1642 struct ecore_ilt_client_cfg *ilt_clients; 1643 int i; 1644 1645 ilt_clients = p_hwfn->p_cxt_mngr->clients; 1646 for_each_ilt_valid_client(i, ilt_clients) { 1647 STORE_RT_REG(p_hwfn, 1648 ilt_clients[i].first.reg, 1649 ilt_clients[i].first.val); 1650 STORE_RT_REG(p_hwfn, 1651 ilt_clients[i].last.reg, 1652 ilt_clients[i].last.val); 1653 STORE_RT_REG(p_hwfn, 1654 ilt_clients[i].p_size.reg, 1655 ilt_clients[i].p_size.val); 1656 } 1657 } 1658 1659 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn) 1660 { 1661 struct ecore_ilt_client_cfg *p_cli; 1662 u32 blk_factor; 1663 1664 /* For simplicty we set the 'block' to be an ILT page */ 1665 if (p_hwfn->p_dev->p_iov_info) { 1666 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info; 1667 1668 STORE_RT_REG(p_hwfn, 1669 PSWRQ2_REG_VF_BASE_RT_OFFSET, 1670 p_iov->first_vf_in_pf); 1671 STORE_RT_REG(p_hwfn, 1672 PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET, 1673 p_iov->first_vf_in_pf + p_iov->total_vfs); 1674 } 1675 1676 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; 1677 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); 1678 if (p_cli->active) { 1679 STORE_RT_REG(p_hwfn, 1680 PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET, 1681 blk_factor); 1682 STORE_RT_REG(p_hwfn, 1683 PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET, 1684 p_cli->pf_total_lines); 1685 STORE_RT_REG(p_hwfn, 1686 PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET, 1687 p_cli->vf_total_lines); 1688 } 1689 1690 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; 1691 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); 1692 if (p_cli->active) { 1693 STORE_RT_REG(p_hwfn, 1694 PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET, 1695 blk_factor); 1696 STORE_RT_REG(p_hwfn, 1697 PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET, 1698 p_cli->pf_total_lines); 1699 STORE_RT_REG(p_hwfn, 1700 PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET, 1701 p_cli->vf_total_lines); 1702 } 1703 1704 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM]; 1705 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); 1706 if (p_cli->active) { 1707 STORE_RT_REG(p_hwfn, 1708 PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET, 1709 blk_factor); 1710 STORE_RT_REG(p_hwfn, 1711 PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET, 1712 p_cli->pf_total_lines); 1713 STORE_RT_REG(p_hwfn, 1714 PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET, 1715 p_cli->vf_total_lines); 1716 } 1717 } 1718 1719 /* ILT (PSWRQ2) PF */ 1720 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn) 1721 { 1722 struct ecore_ilt_client_cfg *clients; 1723 struct ecore_cxt_mngr *p_mngr; 1724 struct ecore_dma_mem *p_shdw; 1725 u32 line, rt_offst, i; 1726 1727 ecore_ilt_bounds_init(p_hwfn); 1728 ecore_ilt_vf_bounds_init(p_hwfn); 1729 1730 p_mngr = p_hwfn->p_cxt_mngr; 1731 p_shdw = p_mngr->ilt_shadow; 1732 clients = p_hwfn->p_cxt_mngr->clients; 1733 1734 for_each_ilt_valid_client(i, clients) { 1735 /* Client's 1st val and RT array are absolute, ILT shadows' 1736 * lines are relative. 1737 */ 1738 line = clients[i].first.val - p_mngr->pf_start_line; 1739 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET + 1740 clients[i].first.val * ILT_ENTRY_IN_REGS; 1741 1742 for (; line <= clients[i].last.val - p_mngr->pf_start_line; 1743 line++, rt_offst += ILT_ENTRY_IN_REGS) { 1744 u64 ilt_hw_entry = 0; 1745 1746 /** p_virt could be OSAL_NULL incase of dynamic 1747 * allocation 1748 */ 1749 if (p_shdw[line].p_virt != OSAL_NULL) { 1750 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL); 1751 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR, 1752 (p_shdw[line].p_phys >> 12)); 1753 1754 DP_VERBOSE( 1755 p_hwfn, ECORE_MSG_ILT, 1756 "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n", 1757 rt_offst, line, i, 1758 (unsigned long long)(p_shdw[line].p_phys >> 12)); 1759 } 1760 1761 STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry); 1762 } 1763 } 1764 } 1765 1766 /* SRC (Searcher) PF */ 1767 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn) 1768 { 1769 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1770 u32 rounded_conn_num, conn_num, conn_max; 1771 struct ecore_src_iids src_iids; 1772 1773 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); 1774 ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids); 1775 conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; 1776 if (!conn_num) 1777 return; 1778 1779 conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS); 1780 rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max); 1781 1782 STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num); 1783 STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET, 1784 OSAL_LOG2(rounded_conn_num)); 1785 1786 STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET, 1787 p_hwfn->p_cxt_mngr->first_free); 1788 STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET, 1789 p_hwfn->p_cxt_mngr->last_free); 1790 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 1791 "Configured SEARCHER for 0x%08x connections\n", 1792 conn_num); 1793 } 1794 1795 /* Timers PF */ 1796 #define TM_CFG_NUM_IDS_SHIFT 0 1797 #define TM_CFG_NUM_IDS_MASK 0xFFFFULL 1798 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT 16 1799 #define TM_CFG_PRE_SCAN_OFFSET_MASK 0x1FFULL 1800 #define TM_CFG_PARENT_PF_SHIFT 25 1801 #define TM_CFG_PARENT_PF_MASK 0x7ULL 1802 1803 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT 30 1804 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK 0x1FFULL 1805 1806 #define TM_CFG_TID_OFFSET_SHIFT 30 1807 #define TM_CFG_TID_OFFSET_MASK 0x7FFFFULL 1808 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT 49 1809 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK 0x1FFULL 1810 1811 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn) 1812 { 1813 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1814 u32 active_seg_mask = 0, tm_offset, rt_reg; 1815 struct ecore_tm_iids tm_iids; 1816 u64 cfg_word; 1817 u8 i; 1818 1819 OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids)); 1820 ecore_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids); 1821 1822 /* @@@TBD No pre-scan for now */ 1823 1824 /* Note: We assume consecutive VFs for a PF */ 1825 for (i = 0; i < p_mngr->vf_count; i++) { 1826 cfg_word = 0; 1827 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids); 1828 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); 1829 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id); 1830 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */ 1831 1832 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET + 1833 (sizeof(cfg_word) / sizeof(u32)) * 1834 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i); 1835 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); 1836 } 1837 1838 cfg_word = 0; 1839 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids); 1840 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); 1841 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); /* n/a for PF */ 1842 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */ 1843 1844 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET + 1845 (sizeof(cfg_word) / sizeof(u32)) * 1846 (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id); 1847 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); 1848 1849 /* enale scan */ 1850 STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET, 1851 tm_iids.pf_cids ? 0x1 : 0x0); 1852 1853 /* @@@TBD how to enable the scan for the VFs */ 1854 1855 tm_offset = tm_iids.per_vf_cids; 1856 1857 /* Note: We assume consecutive VFs for a PF */ 1858 for (i = 0; i < p_mngr->vf_count; i++) { 1859 cfg_word = 0; 1860 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids); 1861 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); 1862 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id); 1863 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset); 1864 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0); 1865 1866 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET + 1867 (sizeof(cfg_word) / sizeof(u32)) * 1868 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i); 1869 1870 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); 1871 } 1872 1873 tm_offset = tm_iids.pf_cids; 1874 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 1875 cfg_word = 0; 1876 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]); 1877 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); 1878 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); 1879 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset); 1880 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0); 1881 1882 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET + 1883 (sizeof(cfg_word) / sizeof(u32)) * 1884 (NUM_OF_VFS(p_hwfn->p_dev) + 1885 p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i); 1886 1887 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); 1888 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0); 1889 1890 tm_offset += tm_iids.pf_tids[i]; 1891 } 1892 1893 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) 1894 active_seg_mask = 0; 1895 1896 STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask); 1897 1898 /* @@@TBD how to enable the scan for the VFs */ 1899 } 1900 1901 static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn) 1902 { 1903 if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) && 1904 p_hwfn->pf_params.fcoe_pf_params.is_target) 1905 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0); 1906 } 1907 1908 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn) 1909 { 1910 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1911 struct ecore_conn_type_cfg *p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE]; 1912 struct ecore_tid_seg *p_tid; 1913 1914 /* If FCoE is active set the MAX OX_ID (tid) in the Parser */ 1915 if (!p_fcoe->cid_count) 1916 return; 1917 1918 p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG]; 1919 if (p_hwfn->pf_params.fcoe_pf_params.is_target) { 1920 STORE_RT_REG_AGG(p_hwfn, 1921 PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET, 1922 p_tid->count); 1923 } else { 1924 STORE_RT_REG_AGG(p_hwfn, 1925 PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET, 1926 p_tid->count); 1927 } 1928 } 1929 1930 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn) 1931 { 1932 /* CDU configuration */ 1933 ecore_cdu_init_common(p_hwfn); 1934 ecore_prs_init_common(p_hwfn); 1935 } 1936 1937 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn) 1938 { 1939 ecore_qm_init_pf(p_hwfn); 1940 ecore_cm_init_pf(p_hwfn); 1941 ecore_dq_init_pf(p_hwfn); 1942 ecore_cdu_init_pf(p_hwfn); 1943 ecore_ilt_init_pf(p_hwfn); 1944 ecore_src_init_pf(p_hwfn); 1945 ecore_tm_init_pf(p_hwfn); 1946 ecore_prs_init_pf(p_hwfn); 1947 } 1948 1949 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn, 1950 enum protocol_type type, 1951 u32 *p_cid, u8 vfid) 1952 { 1953 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1954 struct ecore_cid_acquired_map *p_map; 1955 u32 rel_cid; 1956 1957 if (type >= MAX_CONN_TYPES) { 1958 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type); 1959 return ECORE_INVAL; 1960 } 1961 1962 if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) { 1963 DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid); 1964 return ECORE_INVAL; 1965 } 1966 1967 /* Determine the right map to take this CID from */ 1968 if (vfid == ECORE_CXT_PF_CID) 1969 p_map = &p_mngr->acquired[type]; 1970 else 1971 p_map = &p_mngr->acquired_vf[type][vfid]; 1972 1973 if (p_map->cid_map == OSAL_NULL) { 1974 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type); 1975 return ECORE_INVAL; 1976 } 1977 1978 rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map, 1979 p_map->max_count); 1980 1981 if (rel_cid >= p_map->max_count) { 1982 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n", 1983 type); 1984 return ECORE_NORESOURCES; 1985 } 1986 1987 OSAL_SET_BIT(rel_cid, p_map->cid_map); 1988 1989 *p_cid = rel_cid + p_map->start_cid; 1990 1991 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, 1992 "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n", 1993 *p_cid, rel_cid, vfid, type); 1994 1995 return ECORE_SUCCESS; 1996 } 1997 1998 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn, 1999 enum protocol_type type, 2000 u32 *p_cid) 2001 { 2002 return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID); 2003 } 2004 2005 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn, 2006 u32 cid, u8 vfid, 2007 enum protocol_type *p_type, 2008 struct ecore_cid_acquired_map **pp_map) 2009 { 2010 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 2011 u32 rel_cid; 2012 2013 /* Iterate over protocols and find matching cid range */ 2014 for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) { 2015 if (vfid == ECORE_CXT_PF_CID) 2016 *pp_map = &p_mngr->acquired[*p_type]; 2017 else 2018 *pp_map = &p_mngr->acquired_vf[*p_type][vfid]; 2019 2020 if (!((*pp_map)->cid_map)) 2021 continue; 2022 if (cid >= (*pp_map)->start_cid && 2023 cid < (*pp_map)->start_cid + (*pp_map)->max_count) { 2024 break; 2025 } 2026 } 2027 2028 if (*p_type == MAX_CONN_TYPES) { 2029 DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid); 2030 goto fail; 2031 } 2032 2033 rel_cid = cid - (*pp_map)->start_cid; 2034 if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) { 2035 DP_NOTICE(p_hwfn, true, 2036 "CID %d [vifd %02x] not acquired", cid, vfid); 2037 goto fail; 2038 } 2039 2040 return true; 2041 fail: 2042 *p_type = MAX_CONN_TYPES; 2043 *pp_map = OSAL_NULL; 2044 return false; 2045 } 2046 2047 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid) 2048 { 2049 struct ecore_cid_acquired_map *p_map = OSAL_NULL; 2050 enum protocol_type type; 2051 bool b_acquired; 2052 u32 rel_cid; 2053 2054 if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) { 2055 DP_NOTICE(p_hwfn, true, 2056 "Trying to return incorrect CID belonging to VF %02x\n", 2057 vfid); 2058 return; 2059 } 2060 2061 /* Test acquired and find matching per-protocol map */ 2062 b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid, 2063 &type, &p_map); 2064 2065 if (!b_acquired) 2066 return; 2067 2068 rel_cid = cid - p_map->start_cid; 2069 OSAL_CLEAR_BIT(rel_cid, p_map->cid_map); 2070 2071 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, 2072 "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n", 2073 cid, rel_cid, vfid, type); 2074 } 2075 2076 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid) 2077 { 2078 _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID); 2079 } 2080 2081 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn, 2082 struct ecore_cxt_info *p_info) 2083 { 2084 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 2085 struct ecore_cid_acquired_map *p_map = OSAL_NULL; 2086 u32 conn_cxt_size, hw_p_size, cxts_per_p, line; 2087 enum protocol_type type; 2088 bool b_acquired; 2089 2090 /* Test acquired and find matching per-protocol map */ 2091 b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid, 2092 ECORE_CXT_PF_CID, 2093 &type, &p_map); 2094 2095 if (!b_acquired) 2096 return ECORE_INVAL; 2097 2098 /* set the protocl type */ 2099 p_info->type = type; 2100 2101 /* compute context virtual pointer */ 2102 hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val; 2103 2104 conn_cxt_size = CONN_CXT_SIZE(p_hwfn); 2105 cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size; 2106 line = p_info->iid / cxts_per_p; 2107 2108 /* Make sure context is allocated (dynamic allocation) */ 2109 if (!p_mngr->ilt_shadow[line].p_virt) 2110 return ECORE_INVAL; 2111 2112 p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt + 2113 p_info->iid % cxts_per_p * conn_cxt_size; 2114 2115 DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT), 2116 "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n", 2117 (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid); 2118 2119 return ECORE_SUCCESS; 2120 } 2121 2122 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs) 2123 { 2124 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; 2125 2126 p_mgr->srq_count = num_srqs; 2127 } 2128 2129 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn) 2130 { 2131 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; 2132 2133 return p_mgr->srq_count; 2134 } 2135 2136 static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn, 2137 struct ecore_rdma_pf_params *p_params, 2138 u32 num_tasks) 2139 { 2140 u32 num_cons, num_qps, num_srqs; 2141 enum protocol_type proto; 2142 2143 /* Override personality with rdma flavor */ 2144 num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS, p_params->num_srqs); 2145 2146 /* The only case RDMA personality can be overridden is if NVRAM is 2147 * configured with ETH_RDMA or if no rdma protocol was requested 2148 */ 2149 switch (p_params->rdma_protocol) { 2150 case ECORE_RDMA_PROTOCOL_DEFAULT: 2151 if (p_hwfn->mcp_info->func_info.protocol == 2152 ECORE_PCI_ETH_RDMA) { 2153 DP_NOTICE(p_hwfn, false, 2154 "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n"); 2155 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE; 2156 } 2157 break; 2158 case ECORE_RDMA_PROTOCOL_NONE: 2159 p_hwfn->hw_info.personality = ECORE_PCI_ETH; 2160 return; /* intentional... nothing left to do... */ 2161 case ECORE_RDMA_PROTOCOL_ROCE: 2162 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA) 2163 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE; 2164 break; 2165 case ECORE_RDMA_PROTOCOL_IWARP: 2166 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA) 2167 p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP; 2168 break; 2169 } 2170 2171 switch (p_hwfn->hw_info.personality) { 2172 case ECORE_PCI_ETH_IWARP: 2173 num_qps = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps); 2174 num_cons = num_qps; 2175 proto = PROTOCOLID_IWARP; 2176 p_params->roce_edpm_mode = false; 2177 break; 2178 case ECORE_PCI_ETH_ROCE: 2179 num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps); 2180 num_cons = num_qps * 2; /* each QP requires two connections */ 2181 proto = PROTOCOLID_ROCE; 2182 break; 2183 default: 2184 return; 2185 } 2186 2187 if (num_cons && num_tasks) { 2188 ecore_cxt_set_proto_cid_count(p_hwfn, proto, 2189 num_cons, 0); 2190 2191 /* Deliberatly passing ROCE for tasks id. This is because 2192 * iWARP / RoCE share the task id. 2193 */ 2194 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE, 2195 ECORE_CXT_ROCE_TID_SEG, 2196 1, /* RoCE segment type */ 2197 num_tasks, 2198 false); /* !force load */ 2199 ecore_cxt_set_srq_count(p_hwfn, num_srqs); 2200 2201 } else { 2202 DP_INFO(p_hwfn->p_dev, 2203 "RDMA personality used without setting params!\n"); 2204 } 2205 } 2206 2207 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn, 2208 u32 rdma_tasks) 2209 { 2210 /* Set the number of required CORE connections */ 2211 u32 core_cids = 1; /* SPQ */ 2212 2213 if (p_hwfn->using_ll2) 2214 core_cids += 4; /* @@@TBD Use the proper #define */ 2215 2216 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0); 2217 2218 switch (p_hwfn->hw_info.personality) { 2219 case ECORE_PCI_ETH_RDMA: 2220 case ECORE_PCI_ETH_IWARP: 2221 case ECORE_PCI_ETH_ROCE: 2222 { 2223 ecore_rdma_set_pf_params(p_hwfn, 2224 &p_hwfn->pf_params.rdma_pf_params, 2225 rdma_tasks); 2226 2227 /* no need for break since RoCE coexist with Ethernet */ 2228 } 2229 case ECORE_PCI_ETH: 2230 { 2231 struct ecore_eth_pf_params *p_params = 2232 &p_hwfn->pf_params.eth_pf_params; 2233 2234 if (!p_params->num_vf_cons) 2235 p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT; 2236 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH, 2237 p_params->num_cons, 2238 p_params->num_vf_cons); 2239 p_hwfn->p_cxt_mngr->arfs_count = p_params->num_arfs_filters; 2240 2241 break; 2242 } 2243 case ECORE_PCI_FCOE: 2244 { 2245 struct ecore_fcoe_pf_params *p_params; 2246 2247 p_params = &p_hwfn->pf_params.fcoe_pf_params; 2248 2249 if (p_params->num_cons && p_params->num_tasks) { 2250 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE, 2251 p_params->num_cons, 0); 2252 2253 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE, 2254 ECORE_CXT_FCOE_TID_SEG, 2255 0, /* segment type */ 2256 p_params->num_tasks, 2257 true); 2258 } else { 2259 DP_INFO(p_hwfn->p_dev, 2260 "Fcoe personality used without setting params!\n"); 2261 } 2262 break; 2263 } 2264 case ECORE_PCI_ISCSI: 2265 { 2266 struct ecore_iscsi_pf_params *p_params; 2267 2268 p_params = &p_hwfn->pf_params.iscsi_pf_params; 2269 2270 if (p_params->num_cons && p_params->num_tasks) { 2271 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI, 2272 p_params->num_cons, 0); 2273 2274 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI, 2275 ECORE_CXT_ISCSI_TID_SEG, 2276 0, /* segment type */ 2277 p_params->num_tasks, 2278 true); 2279 } else { 2280 DP_INFO(p_hwfn->p_dev, 2281 "Iscsi personality used without setting params!\n"); 2282 } 2283 break; 2284 } 2285 default: 2286 return ECORE_INVAL; 2287 } 2288 2289 return ECORE_SUCCESS; 2290 } 2291 2292 enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn, 2293 struct ecore_tid_mem *p_info) 2294 { 2295 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 2296 u32 proto, seg, total_lines, i, shadow_line; 2297 struct ecore_ilt_client_cfg *p_cli; 2298 struct ecore_ilt_cli_blk *p_fl_seg; 2299 struct ecore_tid_seg *p_seg_info; 2300 2301 /* Verify the personality */ 2302 switch (p_hwfn->hw_info.personality) { 2303 case ECORE_PCI_FCOE: 2304 proto = PROTOCOLID_FCOE; 2305 seg = ECORE_CXT_FCOE_TID_SEG; 2306 break; 2307 case ECORE_PCI_ISCSI: 2308 proto = PROTOCOLID_ISCSI; 2309 seg = ECORE_CXT_ISCSI_TID_SEG; 2310 break; 2311 default: 2312 return ECORE_INVAL; 2313 } 2314 2315 p_cli = &p_mngr->clients[ILT_CLI_CDUT]; 2316 if (!p_cli->active) { 2317 return ECORE_INVAL; 2318 } 2319 2320 p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg]; 2321 if (!p_seg_info->has_fl_mem) 2322 return ECORE_INVAL; 2323 2324 p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)]; 2325 total_lines = DIV_ROUND_UP(p_fl_seg->total_size, 2326 p_fl_seg->real_size_in_page); 2327 2328 for (i = 0; i < total_lines; i++) { 2329 shadow_line = i + p_fl_seg->start_line - 2330 p_hwfn->p_cxt_mngr->pf_start_line; 2331 p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt; 2332 } 2333 p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) - 2334 p_fl_seg->real_size_in_page; 2335 p_info->tid_size = p_mngr->task_type_size[p_seg_info->type]; 2336 p_info->num_tids_per_block = p_fl_seg->real_size_in_page / 2337 p_info->tid_size; 2338 2339 return ECORE_SUCCESS; 2340 } 2341 2342 /* This function is very RoCE oriented, if another protocol in the future 2343 * will want this feature we'll need to modify the function to be more generic 2344 */ 2345 enum _ecore_status_t 2346 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn, 2347 enum ecore_cxt_elem_type elem_type, 2348 u32 iid) 2349 { 2350 u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line; 2351 struct ecore_ilt_client_cfg *p_cli; 2352 struct ecore_ilt_cli_blk *p_blk; 2353 struct ecore_ptt *p_ptt; 2354 dma_addr_t p_phys; 2355 u64 ilt_hw_entry; 2356 void *p_virt; 2357 enum _ecore_status_t rc = ECORE_SUCCESS; 2358 2359 switch (elem_type) { 2360 case ECORE_ELEM_CXT: 2361 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; 2362 elem_size = CONN_CXT_SIZE(p_hwfn); 2363 p_blk = &p_cli->pf_blks[CDUC_BLK]; 2364 break; 2365 case ECORE_ELEM_SRQ: 2366 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM]; 2367 elem_size = SRQ_CXT_SIZE; 2368 p_blk = &p_cli->pf_blks[SRQ_BLK]; 2369 break; 2370 case ECORE_ELEM_TASK: 2371 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; 2372 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn); 2373 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)]; 2374 break; 2375 default: 2376 DP_NOTICE(p_hwfn, false, 2377 "ECORE_INVALID elem type = %d", elem_type); 2378 return ECORE_INVAL; 2379 } 2380 2381 /* Calculate line in ilt */ 2382 hw_p_size = p_cli->p_size.val; 2383 elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size; 2384 line = p_blk->start_line + (iid / elems_per_p); 2385 shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line; 2386 2387 /* If line is already allocated, do nothing, otherwise allocate it and 2388 * write it to the PSWRQ2 registers. 2389 * This section can be run in parallel from different contexts and thus 2390 * a mutex protection is needed. 2391 */ 2392 2393 OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex); 2394 2395 if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt) 2396 goto out0; 2397 2398 p_ptt = ecore_ptt_acquire(p_hwfn); 2399 if (!p_ptt) { 2400 DP_NOTICE(p_hwfn, false, 2401 "ECORE_TIME_OUT on ptt acquire - dynamic allocation"); 2402 rc = ECORE_TIMEOUT; 2403 goto out0; 2404 } 2405 2406 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 2407 &p_phys, 2408 p_blk->real_size_in_page); 2409 if (!p_virt) { 2410 rc = ECORE_NOMEM; 2411 goto out1; 2412 } 2413 OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page); 2414 2415 /* configuration of refTagMask to 0xF is required for RoCE DIF MR only, 2416 * to compensate for a HW bug, but it is configured even if DIF is not 2417 * enabled. This is harmless and allows us to avoid a dedicated API. We 2418 * configure the field for all of the contexts on the newly allocated 2419 * page. 2420 */ 2421 if (elem_type == ECORE_ELEM_TASK) { 2422 u32 elem_i; 2423 u8 *elem_start = (u8 *)p_virt; 2424 union type1_task_context *elem; 2425 2426 for (elem_i = 0; elem_i < elems_per_p; elem_i++) { 2427 elem = (union type1_task_context *)elem_start; 2428 SET_FIELD(elem->roce_ctx.tdif_context.flags1, 2429 TDIF_TASK_CONTEXT_REFTAGMASK , 0xf); 2430 elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn); 2431 } 2432 } 2433 2434 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt; 2435 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys; 2436 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size = 2437 p_blk->real_size_in_page; 2438 2439 /* compute absolute offset */ 2440 reg_offset = PSWRQ2_REG_ILT_MEMORY + 2441 (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS); 2442 2443 ilt_hw_entry = 0; 2444 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL); 2445 SET_FIELD(ilt_hw_entry, 2446 ILT_ENTRY_PHY_ADDR, 2447 (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12)); 2448 2449 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */ 2450 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry, 2451 reg_offset, sizeof(ilt_hw_entry) / sizeof(u32), 2452 0 /* no flags */); 2453 2454 if (elem_type == ECORE_ELEM_CXT) { 2455 u32 last_cid_allocated = (1 + (iid / elems_per_p)) * 2456 elems_per_p; 2457 2458 /* Update the relevant register in the parser */ 2459 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF, 2460 last_cid_allocated - 1); 2461 2462 /* RoCE w/a -> we don't write to the prs search reg until first 2463 * cid is allocated. This is because the prs checks 2464 * last_cid-1 >=0 making 0 a valid value... this will cause 2465 * the a context load to occur on a RoCE packet received with 2466 * cid=0 even before context was initialized, can happen with a 2467 * stray packet from switch or a packet with crc-error 2468 */ 2469 2470 if (!p_hwfn->b_rdma_enabled_in_prs) { 2471 /* Enable Rdma search */ 2472 ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1); 2473 p_hwfn->b_rdma_enabled_in_prs = true; 2474 } 2475 } 2476 2477 out1: 2478 ecore_ptt_release(p_hwfn, p_ptt); 2479 out0: 2480 OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex); 2481 2482 return rc; 2483 } 2484 2485 /* This function is very RoCE oriented, if another protocol in the future 2486 * will want this feature we'll need to modify the function to be more generic 2487 */ 2488 enum _ecore_status_t 2489 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn, 2490 enum ecore_cxt_elem_type elem_type, 2491 u32 start_iid, u32 count) 2492 { 2493 u32 start_line, end_line, shadow_start_line, shadow_end_line; 2494 u32 reg_offset, elem_size, hw_p_size, elems_per_p; 2495 struct ecore_ilt_client_cfg *p_cli; 2496 struct ecore_ilt_cli_blk *p_blk; 2497 u32 end_iid = start_iid + count; 2498 struct ecore_ptt *p_ptt; 2499 u64 ilt_hw_entry = 0; 2500 u32 i; 2501 2502 switch (elem_type) { 2503 case ECORE_ELEM_CXT: 2504 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; 2505 elem_size = CONN_CXT_SIZE(p_hwfn); 2506 p_blk = &p_cli->pf_blks[CDUC_BLK]; 2507 break; 2508 case ECORE_ELEM_SRQ: 2509 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM]; 2510 elem_size = SRQ_CXT_SIZE; 2511 p_blk = &p_cli->pf_blks[SRQ_BLK]; 2512 break; 2513 case ECORE_ELEM_TASK: 2514 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; 2515 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn); 2516 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)]; 2517 break; 2518 default: 2519 DP_NOTICE(p_hwfn, false, 2520 "ECORE_INVALID elem type = %d", elem_type); 2521 return ECORE_INVAL; 2522 } 2523 2524 /* Calculate line in ilt */ 2525 hw_p_size = p_cli->p_size.val; 2526 elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size; 2527 start_line = p_blk->start_line + (start_iid / elems_per_p); 2528 end_line = p_blk->start_line + (end_iid / elems_per_p); 2529 if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p)) 2530 end_line--; 2531 2532 shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line; 2533 shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line; 2534 2535 p_ptt = ecore_ptt_acquire(p_hwfn); 2536 if (!p_ptt) { 2537 DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation"); 2538 return ECORE_TIMEOUT; 2539 } 2540 2541 for (i = shadow_start_line; i < shadow_end_line; i++) { 2542 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt) 2543 continue; 2544 2545 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 2546 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt, 2547 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys, 2548 p_hwfn->p_cxt_mngr->ilt_shadow[i].size); 2549 2550 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL; 2551 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0; 2552 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0; 2553 2554 /* compute absolute offset */ 2555 reg_offset = PSWRQ2_REG_ILT_MEMORY + 2556 ((start_line++) * ILT_REG_SIZE_IN_BYTES * 2557 ILT_ENTRY_IN_REGS); 2558 2559 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a 2560 * wide-bus. 2561 */ 2562 ecore_dmae_host2grc(p_hwfn, p_ptt, 2563 (u64)(osal_uintptr_t)&ilt_hw_entry, 2564 reg_offset, 2565 sizeof(ilt_hw_entry) / sizeof(u32), 2566 0 /* no flags */); 2567 } 2568 2569 ecore_ptt_release(p_hwfn, p_ptt); 2570 2571 return ECORE_SUCCESS; 2572 } 2573 2574 enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn, 2575 u32 tid, 2576 u8 ctx_type, 2577 void **pp_task_ctx) 2578 { 2579 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 2580 struct ecore_ilt_client_cfg *p_cli; 2581 struct ecore_ilt_cli_blk *p_seg; 2582 struct ecore_tid_seg *p_seg_info; 2583 u32 proto, seg; 2584 u32 total_lines; 2585 u32 tid_size, ilt_idx; 2586 u32 num_tids_per_block; 2587 2588 /* Verify the personality */ 2589 switch (p_hwfn->hw_info.personality) { 2590 case ECORE_PCI_FCOE: 2591 proto = PROTOCOLID_FCOE; 2592 seg = ECORE_CXT_FCOE_TID_SEG; 2593 break; 2594 case ECORE_PCI_ISCSI: 2595 proto = PROTOCOLID_ISCSI; 2596 seg = ECORE_CXT_ISCSI_TID_SEG; 2597 break; 2598 default: 2599 return ECORE_INVAL; 2600 } 2601 2602 p_cli = &p_mngr->clients[ILT_CLI_CDUT]; 2603 if (!p_cli->active) { 2604 return ECORE_INVAL; 2605 } 2606 2607 p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg]; 2608 2609 if (ctx_type == ECORE_CTX_WORKING_MEM) { 2610 p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)]; 2611 } else if (ctx_type == ECORE_CTX_FL_MEM) { 2612 if (!p_seg_info->has_fl_mem) { 2613 return ECORE_INVAL; 2614 } 2615 p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)]; 2616 } else { 2617 return ECORE_INVAL; 2618 } 2619 total_lines = DIV_ROUND_UP(p_seg->total_size, 2620 p_seg->real_size_in_page); 2621 tid_size = p_mngr->task_type_size[p_seg_info->type]; 2622 num_tids_per_block = p_seg->real_size_in_page / tid_size; 2623 2624 if (total_lines < tid/num_tids_per_block) 2625 return ECORE_INVAL; 2626 2627 ilt_idx = tid / num_tids_per_block + p_seg->start_line - 2628 p_mngr->pf_start_line; 2629 *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt + 2630 (tid % num_tids_per_block) * tid_size; 2631 2632 return ECORE_SUCCESS; 2633 } 2634