1 /* 2 * Copyright (c) 2017-2018 Cavium, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 * POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 /* 29 * File : ecore_cxt.c 30 */ 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "bcm_osal.h" 35 #include "reg_addr.h" 36 #include "common_hsi.h" 37 #include "ecore_hsi_common.h" 38 #include "ecore_hsi_eth.h" 39 #include "tcp_common.h" 40 #include "ecore_hsi_iscsi.h" 41 #include "ecore_hsi_fcoe.h" 42 #include "ecore_hsi_roce.h" 43 #include "ecore_hsi_iwarp.h" 44 #include "ecore_rt_defs.h" 45 #include "ecore_status.h" 46 #include "ecore.h" 47 #include "ecore_init_ops.h" 48 #include "ecore_init_fw_funcs.h" 49 #include "ecore_cxt.h" 50 #include "ecore_hw.h" 51 #include "ecore_dev_api.h" 52 #include "ecore_sriov.h" 53 #include "ecore_roce.h" 54 #include "ecore_mcp.h" 55 56 /* Max number of connection types in HW (DQ/CDU etc.) */ 57 #define MAX_CONN_TYPES PROTOCOLID_COMMON 58 #define NUM_TASK_TYPES 2 59 #define NUM_TASK_PF_SEGMENTS 4 60 #define NUM_TASK_VF_SEGMENTS 1 61 62 /* Doorbell-Queue constants */ 63 #define DQ_RANGE_SHIFT 4 64 #define DQ_RANGE_ALIGN (1 << DQ_RANGE_SHIFT) 65 66 /* Searcher constants */ 67 #define SRC_MIN_NUM_ELEMS 256 68 69 /* Timers constants */ 70 #define TM_SHIFT 7 71 #define TM_ALIGN (1 << TM_SHIFT) 72 #define TM_ELEM_SIZE 4 73 74 /* ILT constants */ 75 #define ILT_DEFAULT_HW_P_SIZE 4 76 77 #define ILT_PAGE_IN_BYTES(hw_p_size) (1U << ((hw_p_size) + 12)) 78 #define ILT_CFG_REG(cli, reg) PSWRQ2_REG_##cli##_##reg##_RT_OFFSET 79 80 /* ILT entry structure */ 81 #define ILT_ENTRY_PHY_ADDR_MASK 0x000FFFFFFFFFFFULL 82 #define ILT_ENTRY_PHY_ADDR_SHIFT 0 83 #define ILT_ENTRY_VALID_MASK 0x1ULL 84 #define ILT_ENTRY_VALID_SHIFT 52 85 #define ILT_ENTRY_IN_REGS 2 86 #define ILT_REG_SIZE_IN_BYTES 4 87 88 /* connection context union */ 89 union conn_context { 90 struct e4_core_conn_context core_ctx; 91 struct e4_eth_conn_context eth_ctx; 92 struct e4_iscsi_conn_context iscsi_ctx; 93 struct e4_fcoe_conn_context fcoe_ctx; 94 struct e4_roce_conn_context roce_ctx; 95 }; 96 97 /* TYPE-0 task context - iSCSI, FCOE */ 98 union type0_task_context { 99 struct e4_iscsi_task_context iscsi_ctx; 100 struct e4_fcoe_task_context fcoe_ctx; 101 }; 102 103 /* TYPE-1 task context - ROCE */ 104 union type1_task_context { 105 struct e4_rdma_task_context roce_ctx; 106 }; 107 108 struct src_ent { 109 u8 opaque[56]; 110 u64 next; 111 }; 112 113 #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */ 114 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12)) 115 116 #define CONN_CXT_SIZE(p_hwfn) \ 117 ALIGNED_TYPE_SIZE(union conn_context, p_hwfn) 118 119 #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context)) 120 121 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \ 122 ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn) 123 124 /* Alignment is inherent to the type1_task_context structure */ 125 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context) 126 127 /* PF per protocl configuration object */ 128 #define TASK_SEGMENTS (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS) 129 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS) 130 131 struct ecore_tid_seg { 132 u32 count; 133 u8 type; 134 bool has_fl_mem; 135 }; 136 137 struct ecore_conn_type_cfg { 138 u32 cid_count; 139 u32 cids_per_vf; 140 struct ecore_tid_seg tid_seg[TASK_SEGMENTS]; 141 }; 142 143 /* ILT Client configuration, 144 * Per connection type (protocol) resources (cids, tis, vf cids etc.) 145 * 1 - for connection context (CDUC) and for each task context we need two 146 * values, for regular task context and for force load memory 147 */ 148 #define ILT_CLI_PF_BLOCKS (1 + NUM_TASK_PF_SEGMENTS * 2) 149 #define ILT_CLI_VF_BLOCKS (1 + NUM_TASK_VF_SEGMENTS * 2) 150 #define CDUC_BLK (0) 151 #define SRQ_BLK (0) 152 #define CDUT_SEG_BLK(n) (1 + (u8)(n)) 153 #define CDUT_FL_SEG_BLK(n, X) (1 + (n) + NUM_TASK_##X##_SEGMENTS) 154 155 enum ilt_clients { 156 ILT_CLI_CDUC, 157 ILT_CLI_CDUT, 158 ILT_CLI_QM, 159 ILT_CLI_TM, 160 ILT_CLI_SRC, 161 ILT_CLI_TSDM, 162 ILT_CLI_MAX 163 }; 164 165 struct ilt_cfg_pair { 166 u32 reg; 167 u32 val; 168 }; 169 170 struct ecore_ilt_cli_blk { 171 u32 total_size; /* 0 means not active */ 172 u32 real_size_in_page; 173 u32 start_line; 174 u32 dynamic_line_cnt; 175 }; 176 177 struct ecore_ilt_client_cfg { 178 bool active; 179 180 /* ILT boundaries */ 181 struct ilt_cfg_pair first; 182 struct ilt_cfg_pair last; 183 struct ilt_cfg_pair p_size; 184 185 /* ILT client blocks for PF */ 186 struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS]; 187 u32 pf_total_lines; 188 189 /* ILT client blocks for VFs */ 190 struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS]; 191 u32 vf_total_lines; 192 }; 193 194 /* Per Path - 195 * ILT shadow table 196 * Protocol acquired CID lists 197 * PF start line in ILT 198 */ 199 struct ecore_dma_mem { 200 dma_addr_t p_phys; 201 void *p_virt; 202 osal_size_t size; 203 }; 204 205 #define MAP_WORD_SIZE sizeof(unsigned long) 206 #define BITS_PER_MAP_WORD (MAP_WORD_SIZE * 8) 207 208 struct ecore_cid_acquired_map { 209 u32 start_cid; 210 u32 max_count; 211 unsigned long *cid_map; 212 }; 213 214 struct ecore_cxt_mngr { 215 /* Per protocl configuration */ 216 struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES]; 217 218 /* computed ILT structure */ 219 struct ecore_ilt_client_cfg clients[ILT_CLI_MAX]; 220 221 /* Task type sizes */ 222 u32 task_type_size[NUM_TASK_TYPES]; 223 224 /* total number of VFs for this hwfn - 225 * ALL VFs are symmetric in terms of HW resources 226 */ 227 u32 vf_count; 228 229 /* Acquired CIDs */ 230 struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES]; 231 /* TBD - do we want this allocated to reserve space? */ 232 struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS]; 233 234 /* ILT shadow table */ 235 struct ecore_dma_mem *ilt_shadow; 236 u32 pf_start_line; 237 238 /* Mutex for a dynamic ILT allocation */ 239 osal_mutex_t mutex; 240 241 /* SRC T2 */ 242 struct ecore_dma_mem *t2; 243 u32 t2_num_pages; 244 u64 first_free; 245 u64 last_free; 246 247 /* The infrastructure originally was very generic and context/task 248 * oriented - per connection-type we would set how many of those 249 * are needed, and later when determining how much memory we're 250 * needing for a given block we'd iterate over all the relevant 251 * connection-types. 252 * But since then we've had some additional resources, some of which 253 * require memory which is indepent of the general context/task 254 * scheme. We add those here explicitly per-feature. 255 */ 256 257 /* total number of SRQ's for this hwfn */ 258 u32 srq_count; 259 260 /* Maximal number of L2 steering filters */ 261 u32 arfs_count; 262 263 /* TODO - VF arfs filters ? */ 264 }; 265 266 /* check if resources/configuration is required according to protocol type */ 267 static bool src_proto(enum protocol_type type) 268 { 269 return type == PROTOCOLID_ISCSI || 270 type == PROTOCOLID_FCOE || 271 type == PROTOCOLID_IWARP; 272 } 273 274 static bool tm_cid_proto(enum protocol_type type) 275 { 276 return type == PROTOCOLID_ISCSI || 277 type == PROTOCOLID_FCOE || 278 type == PROTOCOLID_ROCE || 279 type == PROTOCOLID_IWARP; 280 } 281 282 static bool tm_tid_proto(enum protocol_type type) 283 { 284 return type == PROTOCOLID_FCOE; 285 } 286 287 /* counts the iids for the CDU/CDUC ILT client configuration */ 288 struct ecore_cdu_iids { 289 u32 pf_cids; 290 u32 per_vf_cids; 291 }; 292 293 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr, 294 struct ecore_cdu_iids *iids) 295 { 296 u32 type; 297 298 for (type = 0; type < MAX_CONN_TYPES; type++) { 299 iids->pf_cids += p_mngr->conn_cfg[type].cid_count; 300 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf; 301 } 302 } 303 304 /* counts the iids for the Searcher block configuration */ 305 struct ecore_src_iids { 306 u32 pf_cids; 307 u32 per_vf_cids; 308 }; 309 310 static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr, 311 struct ecore_src_iids *iids) 312 { 313 u32 i; 314 315 for (i = 0; i < MAX_CONN_TYPES; i++) { 316 if (!src_proto(i)) 317 continue; 318 319 iids->pf_cids += p_mngr->conn_cfg[i].cid_count; 320 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf; 321 } 322 323 /* Add L2 filtering filters in addition */ 324 iids->pf_cids += p_mngr->arfs_count; 325 } 326 327 /* counts the iids for the Timers block configuration */ 328 struct ecore_tm_iids { 329 u32 pf_cids; 330 u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */ 331 u32 pf_tids_total; 332 u32 per_vf_cids; 333 u32 per_vf_tids; 334 }; 335 336 static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr, 337 struct ecore_tm_iids *iids) 338 { 339 bool tm_vf_required = false; 340 bool tm_required = false; 341 int i, j; 342 343 /* Timers is a special case -> we don't count how many cids require 344 * timers but what's the max cid that will be used by the timer block. 345 * therefore we traverse in reverse order, and once we hit a protocol 346 * that requires the timers memory, we'll sum all the protocols up 347 * to that one. 348 */ 349 for (i = MAX_CONN_TYPES - 1; i >= 0; i--) { 350 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i]; 351 352 if (tm_cid_proto(i) || tm_required) { 353 if (p_cfg->cid_count) 354 tm_required = true; 355 356 iids->pf_cids += p_cfg->cid_count; 357 } 358 359 if (tm_cid_proto(i) || tm_vf_required) { 360 if (p_cfg->cids_per_vf) 361 tm_vf_required = true; 362 363 iids->per_vf_cids += p_cfg->cids_per_vf; 364 } 365 366 if (tm_tid_proto(i)) { 367 struct ecore_tid_seg *segs = p_cfg->tid_seg; 368 369 /* for each segment there is at most one 370 * protocol for which count is not 0. 371 */ 372 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++) 373 iids->pf_tids[j] += segs[j].count; 374 375 /* The last array elelment is for the VFs. As for PF 376 * segments there can be only one protocol for 377 * which this value is not 0. 378 */ 379 iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count; 380 } 381 } 382 383 iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN); 384 iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN); 385 iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN); 386 387 for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) { 388 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN); 389 iids->pf_tids_total += iids->pf_tids[j]; 390 } 391 } 392 393 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn, 394 struct ecore_qm_iids *iids) 395 { 396 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 397 struct ecore_tid_seg *segs; 398 u32 vf_cids = 0, type, j; 399 u32 vf_tids = 0; 400 401 for (type = 0; type < MAX_CONN_TYPES; type++) { 402 iids->cids += p_mngr->conn_cfg[type].cid_count; 403 vf_cids += p_mngr->conn_cfg[type].cids_per_vf; 404 405 segs = p_mngr->conn_cfg[type].tid_seg; 406 /* for each segment there is at most one 407 * protocol for which count is not 0. 408 */ 409 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++) 410 iids->tids += segs[j].count; 411 412 /* The last array elelment is for the VFs. As for PF 413 * segments there can be only one protocol for 414 * which this value is not 0. 415 */ 416 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count; 417 } 418 419 iids->vf_cids += vf_cids * p_mngr->vf_count; 420 iids->tids += vf_tids * p_mngr->vf_count; 421 422 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 423 "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n", 424 iids->cids, iids->vf_cids, iids->tids, vf_tids); 425 } 426 427 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn, 428 u32 seg) 429 { 430 struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr; 431 u32 i; 432 433 /* Find the protocol with tid count > 0 for this segment. 434 Note: there can only be one and this is already validated. 435 */ 436 for (i = 0; i < MAX_CONN_TYPES; i++) { 437 if (p_cfg->conn_cfg[i].tid_seg[seg].count) 438 return &p_cfg->conn_cfg[i].tid_seg[seg]; 439 } 440 return OSAL_NULL; 441 } 442 443 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs) 444 { 445 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; 446 447 p_mgr->srq_count = num_srqs; 448 } 449 450 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn) 451 { 452 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; 453 454 return p_mgr->srq_count; 455 } 456 457 /* set the iids (cid/tid) count per protocol */ 458 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn, 459 enum protocol_type type, 460 u32 cid_count, u32 vf_cid_cnt) 461 { 462 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; 463 struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type]; 464 465 p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN); 466 p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN); 467 468 if (type == PROTOCOLID_ROCE) { 469 u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val; 470 u32 cxt_size = CONN_CXT_SIZE(p_hwfn); 471 u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; 472 u32 align = elems_per_page * DQ_RANGE_ALIGN; 473 474 p_conn->cid_count = ROUNDUP(p_conn->cid_count, align); 475 } 476 } 477 478 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn, 479 enum protocol_type type, 480 u32 *vf_cid) 481 { 482 if (vf_cid) 483 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf; 484 485 return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count; 486 } 487 488 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn, 489 enum protocol_type type) 490 { 491 return p_hwfn->p_cxt_mngr->acquired[type].start_cid; 492 } 493 494 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn, 495 enum protocol_type type) 496 { 497 u32 cnt = 0; 498 int i; 499 500 for (i = 0; i < TASK_SEGMENTS; i++) 501 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count; 502 503 return cnt; 504 } 505 506 static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn, 507 enum protocol_type proto, 508 u8 seg, 509 u8 seg_type, 510 u32 count, 511 bool has_fl) 512 { 513 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 514 struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg]; 515 516 p_seg->count = count; 517 p_seg->has_fl_mem = has_fl; 518 p_seg->type = seg_type; 519 } 520 521 /* the *p_line parameter must be either 0 for the first invocation or the 522 value returned in the previous invocation. 523 */ 524 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli, 525 struct ecore_ilt_cli_blk *p_blk, 526 u32 start_line, 527 u32 total_size, 528 u32 elem_size) 529 { 530 u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val); 531 532 /* verify that it's called once for each block */ 533 if (p_blk->total_size) 534 return; 535 536 p_blk->total_size = total_size; 537 p_blk->real_size_in_page = 0; 538 if (elem_size) 539 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size; 540 p_blk->start_line = start_line; 541 } 542 543 static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn, 544 struct ecore_ilt_client_cfg *p_cli, 545 struct ecore_ilt_cli_blk *p_blk, 546 u32 *p_line, 547 enum ilt_clients client_id) 548 { 549 if (!p_blk->total_size) 550 return; 551 552 if (!p_cli->active) 553 p_cli->first.val = *p_line; 554 555 p_cli->active = true; 556 *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page); 557 p_cli->last.val = *p_line-1; 558 559 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 560 "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n", 561 client_id, p_cli->first.val, p_cli->last.val, 562 p_blk->total_size, p_blk->real_size_in_page, 563 p_blk->start_line); 564 } 565 566 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn, 567 enum ilt_clients ilt_client) 568 { 569 u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count; 570 struct ecore_ilt_client_cfg *p_cli; 571 u32 lines_to_skip = 0; 572 u32 cxts_per_p; 573 574 /* TBD MK: ILT code should be simplified once PROTO enum is changed */ 575 576 if (ilt_client == ILT_CLI_CDUC) { 577 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; 578 579 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) / 580 (u32)CONN_CXT_SIZE(p_hwfn); 581 582 lines_to_skip = cid_count / cxts_per_p; 583 } 584 585 return lines_to_skip; 586 } 587 588 static struct ecore_ilt_client_cfg * 589 ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli) 590 { 591 p_cli->active = false; 592 p_cli->first.val = 0; 593 p_cli->last.val = 0; 594 return p_cli; 595 } 596 597 static struct ecore_ilt_cli_blk * 598 ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk) 599 { 600 p_blk->total_size = 0; 601 return p_blk; 602 } 603 604 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn, 605 u32 *line_count) 606 { 607 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 608 u32 curr_line, total, i, task_size, line; 609 struct ecore_ilt_client_cfg *p_cli; 610 struct ecore_ilt_cli_blk *p_blk; 611 struct ecore_cdu_iids cdu_iids; 612 struct ecore_src_iids src_iids; 613 struct ecore_qm_iids qm_iids; 614 struct ecore_tm_iids tm_iids; 615 struct ecore_tid_seg *p_seg; 616 617 OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids)); 618 OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids)); 619 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); 620 OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids)); 621 622 p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT); 623 624 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 625 "hwfn [%d] - Set context manager starting line to be 0x%08x\n", 626 p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line); 627 628 /* CDUC */ 629 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]); 630 631 curr_line = p_mngr->pf_start_line; 632 633 /* CDUC PF */ 634 p_cli->pf_total_lines = 0; 635 636 /* get the counters for the CDUC,CDUC and QM clients */ 637 ecore_cxt_cdu_iids(p_mngr, &cdu_iids); 638 639 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]); 640 641 total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn); 642 643 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 644 total, CONN_CXT_SIZE(p_hwfn)); 645 646 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); 647 p_cli->pf_total_lines = curr_line - p_blk->start_line; 648 649 p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn, 650 ILT_CLI_CDUC); 651 652 /* CDUC VF */ 653 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]); 654 total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn); 655 656 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 657 total, CONN_CXT_SIZE(p_hwfn)); 658 659 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); 660 p_cli->vf_total_lines = curr_line - p_blk->start_line; 661 662 for (i = 1; i < p_mngr->vf_count; i++) 663 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 664 ILT_CLI_CDUC); 665 666 /* CDUT PF */ 667 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]); 668 p_cli->first.val = curr_line; 669 670 /* first the 'working' task memory */ 671 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 672 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); 673 if (!p_seg || p_seg->count == 0) 674 continue; 675 676 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]); 677 total = p_seg->count * p_mngr->task_type_size[p_seg->type]; 678 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, 679 p_mngr->task_type_size[p_seg->type]); 680 681 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 682 ILT_CLI_CDUT); 683 } 684 685 /* next the 'init' task memory (forced load memory) */ 686 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 687 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); 688 if (!p_seg || p_seg->count == 0) 689 continue; 690 691 p_blk = ecore_cxt_set_blk( 692 &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]); 693 694 if (!p_seg->has_fl_mem) { 695 /* The segment is active (total size pf 'working' 696 * memory is > 0) but has no FL (forced-load, Init) 697 * memory. Thus: 698 * 699 * 1. The total-size in the corrsponding FL block of 700 * the ILT client is set to 0 - No ILT line are 701 * provisioned and no ILT memory allocated. 702 * 703 * 2. The start-line of said block is set to the 704 * start line of the matching working memory 705 * block in the ILT client. This is later used to 706 * configure the CDU segment offset registers and 707 * results in an FL command for TIDs of this 708 * segement behaves as regular load commands 709 * (loading TIDs from the working memory). 710 */ 711 line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line; 712 713 ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0); 714 continue; 715 } 716 total = p_seg->count * p_mngr->task_type_size[p_seg->type]; 717 718 ecore_ilt_cli_blk_fill(p_cli, p_blk, 719 curr_line, total, 720 p_mngr->task_type_size[p_seg->type]); 721 722 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 723 ILT_CLI_CDUT); 724 } 725 p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line; 726 727 /* CDUT VF */ 728 p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF); 729 if (p_seg && p_seg->count) { 730 /* Stricly speaking we need to iterate over all VF 731 * task segment types, but a VF has only 1 segment 732 */ 733 734 /* 'working' memory */ 735 total = p_seg->count * p_mngr->task_type_size[p_seg->type]; 736 737 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]); 738 ecore_ilt_cli_blk_fill(p_cli, p_blk, 739 curr_line, total, 740 p_mngr->task_type_size[p_seg->type]); 741 742 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 743 ILT_CLI_CDUT); 744 745 /* 'init' memory */ 746 p_blk = ecore_cxt_set_blk( 747 &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]); 748 if (!p_seg->has_fl_mem) { 749 /* see comment above */ 750 line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line; 751 ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0); 752 } else { 753 task_size = p_mngr->task_type_size[p_seg->type]; 754 ecore_ilt_cli_blk_fill(p_cli, p_blk, 755 curr_line, total, 756 task_size); 757 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 758 ILT_CLI_CDUT); 759 } 760 p_cli->vf_total_lines = curr_line - 761 p_cli->vf_blks[0].start_line; 762 763 /* Now for the rest of the VFs */ 764 for (i = 1; i < p_mngr->vf_count; i++) { 765 /* don't set p_blk i.e. don't clear total_size */ 766 p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)]; 767 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 768 ILT_CLI_CDUT); 769 770 /* don't set p_blk i.e. don't clear total_size */ 771 p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]; 772 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 773 ILT_CLI_CDUT); 774 } 775 } 776 777 /* QM */ 778 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]); 779 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); 780 781 ecore_cxt_qm_iids(p_hwfn, &qm_iids); 782 total = ecore_qm_pf_mem_size(qm_iids.cids, 783 qm_iids.vf_cids, qm_iids.tids, 784 p_hwfn->qm_info.num_pqs, 785 p_hwfn->qm_info.num_vf_pqs); 786 787 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 788 "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n", 789 qm_iids.cids, qm_iids.vf_cids, qm_iids.tids, 790 p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total); 791 792 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000, 793 QM_PQ_ELEMENT_SIZE); 794 795 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM); 796 p_cli->pf_total_lines = curr_line - p_blk->start_line; 797 798 /* SRC */ 799 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]); 800 ecore_cxt_src_iids(p_mngr, &src_iids); 801 802 /* Both the PF and VFs searcher connections are stored in the per PF 803 * database. Thus sum the PF searcher cids and all the VFs searcher 804 * cids. 805 */ 806 total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; 807 if (total) { 808 u32 local_max = OSAL_MAX_T(u32, total, 809 SRC_MIN_NUM_ELEMS); 810 811 total = OSAL_ROUNDUP_POW_OF_TWO(local_max); 812 813 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); 814 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 815 total * sizeof(struct src_ent), 816 sizeof(struct src_ent)); 817 818 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 819 ILT_CLI_SRC); 820 p_cli->pf_total_lines = curr_line - p_blk->start_line; 821 } 822 823 /* TM PF */ 824 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]); 825 ecore_cxt_tm_iids(p_mngr, &tm_iids); 826 total = tm_iids.pf_cids + tm_iids.pf_tids_total; 827 if (total) { 828 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); 829 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 830 total * TM_ELEM_SIZE, 831 TM_ELEM_SIZE); 832 833 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 834 ILT_CLI_TM); 835 p_cli->pf_total_lines = curr_line - p_blk->start_line; 836 } 837 838 /* TM VF */ 839 total = tm_iids.per_vf_cids + tm_iids.per_vf_tids; 840 if (total) { 841 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]); 842 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 843 total * TM_ELEM_SIZE, 844 TM_ELEM_SIZE); 845 846 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 847 ILT_CLI_TM); 848 849 p_cli->vf_total_lines = curr_line - p_blk->start_line; 850 for (i = 1; i < p_mngr->vf_count; i++) { 851 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 852 ILT_CLI_TM); 853 } 854 } 855 856 /* TSDM (SRQ CONTEXT) */ 857 total = ecore_cxt_get_srq_count(p_hwfn); 858 859 if (total) { 860 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]); 861 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]); 862 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, 863 total * SRQ_CXT_SIZE, SRQ_CXT_SIZE); 864 865 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, 866 ILT_CLI_TSDM); 867 p_cli->pf_total_lines = curr_line - p_blk->start_line; 868 } 869 870 *line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line; 871 872 if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line > 873 RESC_NUM(p_hwfn, ECORE_ILT)) { 874 return ECORE_INVAL; 875 } 876 877 return ECORE_SUCCESS; 878 } 879 880 u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines) 881 { 882 struct ecore_ilt_client_cfg *p_cli; 883 u32 excess_lines, available_lines; 884 struct ecore_cxt_mngr *p_mngr; 885 u32 ilt_page_size, elem_size; 886 struct ecore_tid_seg *p_seg; 887 int i; 888 889 available_lines = RESC_NUM(p_hwfn, ECORE_ILT); 890 excess_lines = used_lines - available_lines; 891 892 if (!excess_lines) 893 return 0; 894 895 if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn)) 896 return 0; 897 898 p_mngr = p_hwfn->p_cxt_mngr; 899 p_cli = &p_mngr->clients[ILT_CLI_CDUT]; 900 ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val); 901 902 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 903 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); 904 if (!p_seg || p_seg->count == 0) 905 continue; 906 907 elem_size = p_mngr->task_type_size[p_seg->type]; 908 if (!elem_size) 909 continue; 910 911 return (ilt_page_size / elem_size) * excess_lines; 912 } 913 914 DP_ERR(p_hwfn, "failed computing excess ILT lines\n"); 915 return 0; 916 } 917 918 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn) 919 { 920 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 921 u32 i; 922 923 if (!p_mngr->t2) 924 return; 925 926 for (i = 0; i < p_mngr->t2_num_pages; i++) 927 if (p_mngr->t2[i].p_virt) 928 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 929 p_mngr->t2[i].p_virt, 930 p_mngr->t2[i].p_phys, 931 p_mngr->t2[i].size); 932 933 OSAL_FREE(p_hwfn->p_dev, p_mngr->t2); 934 p_mngr->t2 = OSAL_NULL; 935 } 936 937 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn) 938 { 939 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 940 u32 conn_num, total_size, ent_per_page, psz, i; 941 struct ecore_ilt_client_cfg *p_src; 942 struct ecore_src_iids src_iids; 943 struct ecore_dma_mem *p_t2; 944 enum _ecore_status_t rc; 945 946 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); 947 948 /* if the SRC ILT client is inactive - there are no connection 949 * requiring the searcer, leave. 950 */ 951 p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC]; 952 if (!p_src->active) 953 return ECORE_SUCCESS; 954 955 ecore_cxt_src_iids(p_mngr, &src_iids); 956 conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; 957 total_size = conn_num * sizeof(struct src_ent); 958 959 /* use the same page size as the SRC ILT client */ 960 psz = ILT_PAGE_IN_BYTES(p_src->p_size.val); 961 p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz); 962 963 /* allocate t2 */ 964 p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 965 p_mngr->t2_num_pages * 966 sizeof(struct ecore_dma_mem)); 967 if (!p_mngr->t2) { 968 DP_NOTICE(p_hwfn, true, "Failed to allocate t2 table\n"); 969 rc = ECORE_NOMEM; 970 goto t2_fail; 971 } 972 973 /* allocate t2 pages */ 974 for (i = 0; i < p_mngr->t2_num_pages; i++) { 975 u32 size = OSAL_MIN_T(u32, total_size, psz); 976 void **p_virt = &p_mngr->t2[i].p_virt; 977 978 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 979 &p_mngr->t2[i].p_phys, 980 size); 981 if (!p_mngr->t2[i].p_virt) { 982 rc = ECORE_NOMEM; 983 goto t2_fail; 984 } 985 OSAL_MEM_ZERO(*p_virt, size); 986 p_mngr->t2[i].size = size; 987 total_size -= size; 988 } 989 990 /* Set the t2 pointers */ 991 992 /* entries per page - must be a power of two */ 993 ent_per_page = psz / sizeof(struct src_ent); 994 995 p_mngr->first_free = (u64)p_mngr->t2[0].p_phys; 996 997 p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page]; 998 p_mngr->last_free = (u64)p_t2->p_phys + 999 ((conn_num - 1) & (ent_per_page - 1)) * 1000 sizeof(struct src_ent); 1001 1002 for (i = 0; i < p_mngr->t2_num_pages; i++) { 1003 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num); 1004 struct src_ent *entries = p_mngr->t2[i].p_virt; 1005 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val; 1006 u32 j; 1007 1008 for (j = 0; j < ent_num - 1; j++) { 1009 val = p_ent_phys + 1010 (j + 1) * sizeof(struct src_ent); 1011 entries[j].next = OSAL_CPU_TO_BE64(val); 1012 } 1013 1014 if (i < p_mngr->t2_num_pages - 1) 1015 val = (u64)p_mngr->t2[i + 1].p_phys; 1016 else 1017 val = 0; 1018 entries[j].next = OSAL_CPU_TO_BE64(val); 1019 1020 conn_num -= ent_num; 1021 } 1022 1023 return ECORE_SUCCESS; 1024 1025 t2_fail: 1026 ecore_cxt_src_t2_free(p_hwfn); 1027 return rc; 1028 } 1029 1030 #define for_each_ilt_valid_client(pos, clients) \ 1031 for (pos = 0; pos < ILT_CLI_MAX; pos++) \ 1032 if (!clients[pos].active) { \ 1033 continue; \ 1034 } else \ 1035 1036 1037 /* Total number of ILT lines used by this PF */ 1038 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients) 1039 { 1040 u32 size = 0; 1041 u32 i; 1042 1043 for_each_ilt_valid_client(i, ilt_clients) 1044 size += (ilt_clients[i].last.val - 1045 ilt_clients[i].first.val + 1); 1046 1047 return size; 1048 } 1049 1050 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn) 1051 { 1052 struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients; 1053 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1054 u32 ilt_size, i; 1055 1056 ilt_size = ecore_cxt_ilt_shadow_size(p_cli); 1057 1058 for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) { 1059 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i]; 1060 1061 if (p_dma->p_virt) 1062 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 1063 p_dma->p_virt, 1064 p_dma->p_phys, 1065 p_dma->size); 1066 p_dma->p_virt = OSAL_NULL; 1067 } 1068 OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow); 1069 } 1070 1071 static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn, 1072 struct ecore_ilt_cli_blk *p_blk, 1073 enum ilt_clients ilt_client, 1074 u32 start_line_offset) 1075 { 1076 struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow; 1077 u32 lines, line, sz_left, lines_to_skip = 0; 1078 1079 /* Special handling for RoCE that supports dynamic allocation */ 1080 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) && 1081 ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM)) 1082 return ECORE_SUCCESS; 1083 1084 lines_to_skip = p_blk->dynamic_line_cnt; 1085 1086 if (!p_blk->total_size) 1087 return ECORE_SUCCESS; 1088 1089 sz_left = p_blk->total_size; 1090 lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) - 1091 lines_to_skip; 1092 line = p_blk->start_line + start_line_offset - 1093 p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip; 1094 1095 for (; lines; lines--) { 1096 dma_addr_t p_phys; 1097 void *p_virt; 1098 u32 size; 1099 1100 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page); 1101 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 1102 &p_phys, size); 1103 if (!p_virt) 1104 return ECORE_NOMEM; 1105 OSAL_MEM_ZERO(p_virt, size); 1106 1107 ilt_shadow[line].p_phys = p_phys; 1108 ilt_shadow[line].p_virt = p_virt; 1109 ilt_shadow[line].size = size; 1110 1111 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 1112 "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n", 1113 line, (unsigned long long)p_phys, p_virt, size); 1114 1115 sz_left -= size; 1116 line++; 1117 } 1118 1119 return ECORE_SUCCESS; 1120 } 1121 1122 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn) 1123 { 1124 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1125 struct ecore_ilt_client_cfg *clients = p_mngr->clients; 1126 struct ecore_ilt_cli_blk *p_blk; 1127 u32 size, i, j, k; 1128 enum _ecore_status_t rc; 1129 1130 size = ecore_cxt_ilt_shadow_size(clients); 1131 p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 1132 size * sizeof(struct ecore_dma_mem)); 1133 1134 if (!p_mngr->ilt_shadow) { 1135 DP_NOTICE(p_hwfn, true, "Failed to allocate ilt shadow table\n"); 1136 rc = ECORE_NOMEM; 1137 goto ilt_shadow_fail; 1138 } 1139 1140 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 1141 "Allocated 0x%x bytes for ilt shadow\n", 1142 (u32)(size * sizeof(struct ecore_dma_mem))); 1143 1144 for_each_ilt_valid_client(i, clients) { 1145 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) { 1146 p_blk = &clients[i].pf_blks[j]; 1147 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0); 1148 if (rc != ECORE_SUCCESS) 1149 goto ilt_shadow_fail; 1150 } 1151 for (k = 0; k < p_mngr->vf_count; k++) { 1152 for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) { 1153 u32 lines = clients[i].vf_total_lines * k; 1154 1155 p_blk = &clients[i].vf_blks[j]; 1156 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, 1157 i, lines); 1158 if (rc != ECORE_SUCCESS) 1159 goto ilt_shadow_fail; 1160 } 1161 } 1162 } 1163 1164 return ECORE_SUCCESS; 1165 1166 ilt_shadow_fail: 1167 ecore_ilt_shadow_free(p_hwfn); 1168 return rc; 1169 } 1170 1171 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn) 1172 { 1173 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1174 u32 type, vf; 1175 1176 for (type = 0; type < MAX_CONN_TYPES; type++) { 1177 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map); 1178 p_mngr->acquired[type].max_count = 0; 1179 p_mngr->acquired[type].start_cid = 0; 1180 1181 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { 1182 OSAL_FREE(p_hwfn->p_dev, 1183 p_mngr->acquired_vf[type][vf].cid_map); 1184 p_mngr->acquired_vf[type][vf].max_count = 0; 1185 p_mngr->acquired_vf[type][vf].start_cid = 0; 1186 } 1187 } 1188 } 1189 1190 static enum _ecore_status_t 1191 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type, 1192 u32 cid_start, u32 cid_count, 1193 struct ecore_cid_acquired_map *p_map) 1194 { 1195 u32 size; 1196 1197 if (!cid_count) 1198 return ECORE_SUCCESS; 1199 1200 size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD); 1201 p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size); 1202 if (p_map->cid_map == OSAL_NULL) 1203 return ECORE_NOMEM; 1204 1205 p_map->max_count = cid_count; 1206 p_map->start_cid = cid_start; 1207 1208 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, 1209 "Type %08x start: %08x count %08x\n", 1210 type, p_map->start_cid, p_map->max_count); 1211 1212 return ECORE_SUCCESS; 1213 } 1214 1215 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn) 1216 { 1217 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1218 u32 start_cid = 0, vf_start_cid = 0; 1219 u32 type, vf; 1220 1221 for (type = 0; type < MAX_CONN_TYPES; type++) { 1222 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type]; 1223 struct ecore_cid_acquired_map *p_map; 1224 1225 /* Handle PF maps */ 1226 p_map = &p_mngr->acquired[type]; 1227 if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid, 1228 p_cfg->cid_count, p_map)) 1229 goto cid_map_fail; 1230 1231 /* Handle VF maps */ 1232 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { 1233 p_map = &p_mngr->acquired_vf[type][vf]; 1234 if (ecore_cid_map_alloc_single(p_hwfn, type, 1235 vf_start_cid, 1236 p_cfg->cids_per_vf, 1237 p_map)) 1238 goto cid_map_fail; 1239 } 1240 1241 start_cid += p_cfg->cid_count; 1242 vf_start_cid += p_cfg->cids_per_vf; 1243 } 1244 1245 return ECORE_SUCCESS; 1246 1247 cid_map_fail: 1248 ecore_cid_map_free(p_hwfn); 1249 return ECORE_NOMEM; 1250 } 1251 1252 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn) 1253 { 1254 struct ecore_ilt_client_cfg *clients; 1255 struct ecore_cxt_mngr *p_mngr; 1256 u32 i; 1257 1258 p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr)); 1259 if (!p_mngr) { 1260 DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_cxt_mngr'\n"); 1261 return ECORE_NOMEM; 1262 } 1263 1264 /* Initialize ILT client registers */ 1265 clients = p_mngr->clients; 1266 clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT); 1267 clients[ILT_CLI_CDUC].last.reg = ILT_CFG_REG(CDUC, LAST_ILT); 1268 clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE); 1269 1270 clients[ILT_CLI_QM].first.reg = ILT_CFG_REG(QM, FIRST_ILT); 1271 clients[ILT_CLI_QM].last.reg = ILT_CFG_REG(QM, LAST_ILT); 1272 clients[ILT_CLI_QM].p_size.reg = ILT_CFG_REG(QM, P_SIZE); 1273 1274 clients[ILT_CLI_TM].first.reg = ILT_CFG_REG(TM, FIRST_ILT); 1275 clients[ILT_CLI_TM].last.reg = ILT_CFG_REG(TM, LAST_ILT); 1276 clients[ILT_CLI_TM].p_size.reg = ILT_CFG_REG(TM, P_SIZE); 1277 1278 clients[ILT_CLI_SRC].first.reg = ILT_CFG_REG(SRC, FIRST_ILT); 1279 clients[ILT_CLI_SRC].last.reg = ILT_CFG_REG(SRC, LAST_ILT); 1280 clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE); 1281 1282 clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT); 1283 clients[ILT_CLI_CDUT].last.reg = ILT_CFG_REG(CDUT, LAST_ILT); 1284 clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE); 1285 1286 clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT); 1287 clients[ILT_CLI_TSDM].last.reg = ILT_CFG_REG(TSDM, LAST_ILT); 1288 clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE); 1289 1290 /* default ILT page size for all clients is 64K */ 1291 for (i = 0; i < ILT_CLI_MAX; i++) 1292 p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE; 1293 1294 /* Initialize task sizes */ 1295 p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn); 1296 p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn); 1297 1298 if (p_hwfn->p_dev->p_iov_info) 1299 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs; 1300 1301 /* Initialize the dynamic ILT allocation mutex */ 1302 #ifdef CONFIG_ECORE_LOCK_ALLOC 1303 OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex); 1304 #endif 1305 OSAL_MUTEX_INIT(&p_mngr->mutex); 1306 1307 /* Set the cxt mangr pointer priori to further allocations */ 1308 p_hwfn->p_cxt_mngr = p_mngr; 1309 1310 return ECORE_SUCCESS; 1311 } 1312 1313 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn) 1314 { 1315 enum _ecore_status_t rc; 1316 1317 /* Allocate the ILT shadow table */ 1318 rc = ecore_ilt_shadow_alloc(p_hwfn); 1319 if (rc) { 1320 DP_NOTICE(p_hwfn, true, "Failed to allocate ilt memory\n"); 1321 goto tables_alloc_fail; 1322 } 1323 1324 /* Allocate the T2 table */ 1325 rc = ecore_cxt_src_t2_alloc(p_hwfn); 1326 if (rc) { 1327 DP_NOTICE(p_hwfn, true, "Failed to allocate T2 memory\n"); 1328 goto tables_alloc_fail; 1329 } 1330 1331 /* Allocate and initialize the acquired cids bitmaps */ 1332 rc = ecore_cid_map_alloc(p_hwfn); 1333 if (rc) { 1334 DP_NOTICE(p_hwfn, true, "Failed to allocate cid maps\n"); 1335 goto tables_alloc_fail; 1336 } 1337 1338 return ECORE_SUCCESS; 1339 1340 tables_alloc_fail: 1341 ecore_cxt_mngr_free(p_hwfn); 1342 return rc; 1343 } 1344 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn) 1345 { 1346 if (!p_hwfn->p_cxt_mngr) 1347 return; 1348 1349 ecore_cid_map_free(p_hwfn); 1350 ecore_cxt_src_t2_free(p_hwfn); 1351 ecore_ilt_shadow_free(p_hwfn); 1352 #ifdef CONFIG_ECORE_LOCK_ALLOC 1353 OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex); 1354 #endif 1355 OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr); 1356 1357 p_hwfn->p_cxt_mngr = OSAL_NULL; 1358 } 1359 1360 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn) 1361 { 1362 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1363 struct ecore_cid_acquired_map *p_map; 1364 struct ecore_conn_type_cfg *p_cfg; 1365 int type; 1366 u32 len; 1367 1368 /* Reset acquired cids */ 1369 for (type = 0; type < MAX_CONN_TYPES; type++) { 1370 u32 vf; 1371 1372 p_cfg = &p_mngr->conn_cfg[type]; 1373 if (p_cfg->cid_count) { 1374 p_map = &p_mngr->acquired[type]; 1375 len = DIV_ROUND_UP(p_map->max_count, 1376 BITS_PER_MAP_WORD) * 1377 MAP_WORD_SIZE; 1378 OSAL_MEM_ZERO(p_map->cid_map, len); 1379 } 1380 1381 if (!p_cfg->cids_per_vf) 1382 continue; 1383 1384 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { 1385 p_map = &p_mngr->acquired_vf[type][vf]; 1386 len = DIV_ROUND_UP(p_map->max_count, 1387 BITS_PER_MAP_WORD) * 1388 MAP_WORD_SIZE; 1389 OSAL_MEM_ZERO(p_map->cid_map, len); 1390 } 1391 } 1392 } 1393 1394 /* HW initialization helper (per Block, per phase) */ 1395 1396 /* CDU Common */ 1397 #define CDUC_CXT_SIZE_SHIFT \ 1398 CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT 1399 1400 #define CDUC_CXT_SIZE_MASK \ 1401 (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT) 1402 1403 #define CDUC_BLOCK_WASTE_SHIFT \ 1404 CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT 1405 1406 #define CDUC_BLOCK_WASTE_MASK \ 1407 (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT) 1408 1409 #define CDUC_NCIB_SHIFT \ 1410 CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT 1411 1412 #define CDUC_NCIB_MASK \ 1413 (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT) 1414 1415 #define CDUT_TYPE0_CXT_SIZE_SHIFT \ 1416 CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT 1417 1418 #define CDUT_TYPE0_CXT_SIZE_MASK \ 1419 (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >> \ 1420 CDUT_TYPE0_CXT_SIZE_SHIFT) 1421 1422 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT \ 1423 CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT 1424 1425 #define CDUT_TYPE0_BLOCK_WASTE_MASK \ 1426 (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >> \ 1427 CDUT_TYPE0_BLOCK_WASTE_SHIFT) 1428 1429 #define CDUT_TYPE0_NCIB_SHIFT \ 1430 CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT 1431 1432 #define CDUT_TYPE0_NCIB_MASK \ 1433 (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >> \ 1434 CDUT_TYPE0_NCIB_SHIFT) 1435 1436 #define CDUT_TYPE1_CXT_SIZE_SHIFT \ 1437 CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT 1438 1439 #define CDUT_TYPE1_CXT_SIZE_MASK \ 1440 (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >> \ 1441 CDUT_TYPE1_CXT_SIZE_SHIFT) 1442 1443 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT \ 1444 CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT 1445 1446 #define CDUT_TYPE1_BLOCK_WASTE_MASK \ 1447 (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >> \ 1448 CDUT_TYPE1_BLOCK_WASTE_SHIFT) 1449 1450 #define CDUT_TYPE1_NCIB_SHIFT \ 1451 CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT 1452 1453 #define CDUT_TYPE1_NCIB_MASK \ 1454 (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >> \ 1455 CDUT_TYPE1_NCIB_SHIFT) 1456 1457 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn) 1458 { 1459 u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0; 1460 1461 /* CDUC - connection configuration */ 1462 page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val; 1463 cxt_size = CONN_CXT_SIZE(p_hwfn); 1464 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; 1465 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; 1466 1467 SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size); 1468 SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste); 1469 SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page); 1470 STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params); 1471 1472 /* CDUT - type-0 tasks configuration */ 1473 page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val; 1474 cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0]; 1475 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; 1476 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; 1477 1478 /* cxt size and block-waste are multipes of 8 */ 1479 cdu_params = 0; 1480 SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3)); 1481 SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3)); 1482 SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page); 1483 STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params); 1484 1485 /* CDUT - type-1 tasks configuration */ 1486 cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1]; 1487 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; 1488 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; 1489 1490 /* cxt size and block-waste are multipes of 8 */ 1491 cdu_params = 0; 1492 SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3)); 1493 SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3)); 1494 SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page); 1495 STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params); 1496 } 1497 1498 /* CDU PF */ 1499 #define CDU_SEG_REG_TYPE_SHIFT CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT 1500 #define CDU_SEG_REG_TYPE_MASK 0x1 1501 #define CDU_SEG_REG_OFFSET_SHIFT 0 1502 #define CDU_SEG_REG_OFFSET_MASK CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK 1503 1504 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn) 1505 { 1506 struct ecore_ilt_client_cfg *p_cli; 1507 struct ecore_tid_seg *p_seg; 1508 u32 cdu_seg_params, offset; 1509 int i; 1510 1511 static const u32 rt_type_offset_arr[] = { 1512 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET, 1513 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET, 1514 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET, 1515 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET 1516 }; 1517 1518 static const u32 rt_type_offset_fl_arr[] = { 1519 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET, 1520 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET, 1521 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET, 1522 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET 1523 }; 1524 1525 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; 1526 1527 /* There are initializations only for CDUT during pf Phase */ 1528 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 1529 /* Segment 0*/ 1530 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); 1531 if (!p_seg) 1532 continue; 1533 1534 /* Note: start_line is already adjusted for the CDU 1535 * segment register granularity, so we just need to 1536 * divide. Adjustment is implicit as we assume ILT 1537 * Page size is larger than 32K! 1538 */ 1539 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) * 1540 (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line - 1541 p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES; 1542 1543 cdu_seg_params = 0; 1544 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type); 1545 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset); 1546 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i], 1547 cdu_seg_params); 1548 1549 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) * 1550 (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line - 1551 p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES; 1552 1553 cdu_seg_params = 0; 1554 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type); 1555 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset); 1556 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i], 1557 cdu_seg_params); 1558 1559 } 1560 } 1561 1562 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt) 1563 { 1564 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1565 struct ecore_qm_iids iids; 1566 1567 OSAL_MEM_ZERO(&iids, sizeof(iids)); 1568 ecore_cxt_qm_iids(p_hwfn, &iids); 1569 1570 ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->port_id, 1571 p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port, 1572 iids.cids, iids.vf_cids, iids.tids, 1573 qm_info->start_pq, 1574 qm_info->num_pqs - qm_info->num_vf_pqs, 1575 qm_info->num_vf_pqs, 1576 qm_info->start_vport, 1577 qm_info->num_vports, qm_info->pf_wfq, qm_info->pf_rl, 1578 p_hwfn->qm_info.qm_pq_params, 1579 p_hwfn->qm_info.qm_vport_params); 1580 } 1581 1582 /* CM PF */ 1583 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn) 1584 { 1585 STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB)); 1586 } 1587 1588 /* DQ PF */ 1589 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn) 1590 { 1591 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1592 u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0; 1593 1594 dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT); 1595 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid); 1596 1597 dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT); 1598 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid); 1599 1600 dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT); 1601 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid); 1602 1603 dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT); 1604 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid); 1605 1606 dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT); 1607 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid); 1608 1609 dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT); 1610 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid); 1611 1612 dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT); 1613 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid); 1614 1615 dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT); 1616 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid); 1617 1618 dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT); 1619 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid); 1620 1621 dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT); 1622 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid); 1623 1624 dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT); 1625 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid); 1626 1627 dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT); 1628 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid); 1629 1630 /* Connection types 6 & 7 are not in use, yet they must be configured 1631 * as the highest possible connection. Not configuring them means the 1632 * defaults will be used, and with a large number of cids a bug may 1633 * occur, if the defaults will be smaller than dq_pf_max_cid / 1634 * dq_vf_max_cid. 1635 */ 1636 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid); 1637 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid); 1638 1639 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid); 1640 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid); 1641 } 1642 1643 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn) 1644 { 1645 struct ecore_ilt_client_cfg *ilt_clients; 1646 int i; 1647 1648 ilt_clients = p_hwfn->p_cxt_mngr->clients; 1649 for_each_ilt_valid_client(i, ilt_clients) { 1650 STORE_RT_REG(p_hwfn, 1651 ilt_clients[i].first.reg, 1652 ilt_clients[i].first.val); 1653 STORE_RT_REG(p_hwfn, 1654 ilt_clients[i].last.reg, 1655 ilt_clients[i].last.val); 1656 STORE_RT_REG(p_hwfn, 1657 ilt_clients[i].p_size.reg, 1658 ilt_clients[i].p_size.val); 1659 } 1660 } 1661 1662 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn) 1663 { 1664 struct ecore_ilt_client_cfg *p_cli; 1665 u32 blk_factor; 1666 1667 /* For simplicty we set the 'block' to be an ILT page */ 1668 if (p_hwfn->p_dev->p_iov_info) { 1669 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info; 1670 1671 STORE_RT_REG(p_hwfn, 1672 PSWRQ2_REG_VF_BASE_RT_OFFSET, 1673 p_iov->first_vf_in_pf); 1674 STORE_RT_REG(p_hwfn, 1675 PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET, 1676 p_iov->first_vf_in_pf + p_iov->total_vfs); 1677 } 1678 1679 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; 1680 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); 1681 if (p_cli->active) { 1682 STORE_RT_REG(p_hwfn, 1683 PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET, 1684 blk_factor); 1685 STORE_RT_REG(p_hwfn, 1686 PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET, 1687 p_cli->pf_total_lines); 1688 STORE_RT_REG(p_hwfn, 1689 PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET, 1690 p_cli->vf_total_lines); 1691 } 1692 1693 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; 1694 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); 1695 if (p_cli->active) { 1696 STORE_RT_REG(p_hwfn, 1697 PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET, 1698 blk_factor); 1699 STORE_RT_REG(p_hwfn, 1700 PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET, 1701 p_cli->pf_total_lines); 1702 STORE_RT_REG(p_hwfn, 1703 PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET, 1704 p_cli->vf_total_lines); 1705 } 1706 1707 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM]; 1708 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); 1709 if (p_cli->active) { 1710 STORE_RT_REG(p_hwfn, 1711 PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET, 1712 blk_factor); 1713 STORE_RT_REG(p_hwfn, 1714 PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET, 1715 p_cli->pf_total_lines); 1716 STORE_RT_REG(p_hwfn, 1717 PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET, 1718 p_cli->vf_total_lines); 1719 } 1720 } 1721 1722 /* ILT (PSWRQ2) PF */ 1723 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn) 1724 { 1725 struct ecore_ilt_client_cfg *clients; 1726 struct ecore_cxt_mngr *p_mngr; 1727 struct ecore_dma_mem *p_shdw; 1728 u32 line, rt_offst, i; 1729 1730 ecore_ilt_bounds_init(p_hwfn); 1731 ecore_ilt_vf_bounds_init(p_hwfn); 1732 1733 p_mngr = p_hwfn->p_cxt_mngr; 1734 p_shdw = p_mngr->ilt_shadow; 1735 clients = p_hwfn->p_cxt_mngr->clients; 1736 1737 for_each_ilt_valid_client(i, clients) { 1738 /* Client's 1st val and RT array are absolute, ILT shadows' 1739 * lines are relative. 1740 */ 1741 line = clients[i].first.val - p_mngr->pf_start_line; 1742 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET + 1743 clients[i].first.val * ILT_ENTRY_IN_REGS; 1744 1745 for (; line <= clients[i].last.val - p_mngr->pf_start_line; 1746 line++, rt_offst += ILT_ENTRY_IN_REGS) { 1747 u64 ilt_hw_entry = 0; 1748 1749 /** p_virt could be OSAL_NULL incase of dynamic 1750 * allocation 1751 */ 1752 if (p_shdw[line].p_virt != OSAL_NULL) { 1753 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL); 1754 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR, 1755 (unsigned long long)(p_shdw[line].p_phys >> 12)); 1756 1757 DP_VERBOSE( 1758 p_hwfn, ECORE_MSG_ILT, 1759 "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n", 1760 rt_offst, line, i, 1761 (unsigned long long)(p_shdw[line].p_phys >> 12)); 1762 } 1763 1764 STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry); 1765 } 1766 } 1767 } 1768 1769 /* SRC (Searcher) PF */ 1770 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn) 1771 { 1772 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1773 u32 rounded_conn_num, conn_num, conn_max; 1774 struct ecore_src_iids src_iids; 1775 1776 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); 1777 ecore_cxt_src_iids(p_mngr, &src_iids); 1778 conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; 1779 if (!conn_num) 1780 return; 1781 1782 conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS); 1783 rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max); 1784 1785 STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num); 1786 STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET, 1787 OSAL_LOG2(rounded_conn_num)); 1788 1789 STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET, 1790 p_hwfn->p_cxt_mngr->first_free); 1791 STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET, 1792 p_hwfn->p_cxt_mngr->last_free); 1793 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, 1794 "Configured SEARCHER for 0x%08x connections\n", 1795 conn_num); 1796 } 1797 1798 /* Timers PF */ 1799 #define TM_CFG_NUM_IDS_SHIFT 0 1800 #define TM_CFG_NUM_IDS_MASK 0xFFFFULL 1801 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT 16 1802 #define TM_CFG_PRE_SCAN_OFFSET_MASK 0x1FFULL 1803 #define TM_CFG_PARENT_PF_SHIFT 25 1804 #define TM_CFG_PARENT_PF_MASK 0x7ULL 1805 1806 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT 30 1807 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK 0x1FFULL 1808 1809 #define TM_CFG_TID_OFFSET_SHIFT 30 1810 #define TM_CFG_TID_OFFSET_MASK 0x7FFFFULL 1811 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT 49 1812 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK 0x1FFULL 1813 1814 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn) 1815 { 1816 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1817 u32 active_seg_mask = 0, tm_offset, rt_reg; 1818 struct ecore_tm_iids tm_iids; 1819 u64 cfg_word; 1820 u8 i; 1821 1822 OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids)); 1823 ecore_cxt_tm_iids(p_mngr, &tm_iids); 1824 1825 /* @@@TBD No pre-scan for now */ 1826 1827 /* Note: We assume consecutive VFs for a PF */ 1828 for (i = 0; i < p_mngr->vf_count; i++) { 1829 cfg_word = 0; 1830 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids); 1831 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); 1832 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id); 1833 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */ 1834 1835 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET + 1836 (sizeof(cfg_word) / sizeof(u32)) * 1837 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i); 1838 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); 1839 } 1840 1841 cfg_word = 0; 1842 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids); 1843 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); 1844 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); /* n/a for PF */ 1845 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */ 1846 1847 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET + 1848 (sizeof(cfg_word) / sizeof(u32)) * 1849 (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id); 1850 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); 1851 1852 /* enale scan */ 1853 STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET, 1854 tm_iids.pf_cids ? 0x1 : 0x0); 1855 1856 /* @@@TBD how to enable the scan for the VFs */ 1857 1858 tm_offset = tm_iids.per_vf_cids; 1859 1860 /* Note: We assume consecutive VFs for a PF */ 1861 for (i = 0; i < p_mngr->vf_count; i++) { 1862 cfg_word = 0; 1863 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids); 1864 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); 1865 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id); 1866 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset); 1867 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0); 1868 1869 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET + 1870 (sizeof(cfg_word) / sizeof(u32)) * 1871 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i); 1872 1873 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); 1874 } 1875 1876 tm_offset = tm_iids.pf_cids; 1877 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { 1878 cfg_word = 0; 1879 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]); 1880 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); 1881 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); 1882 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset); 1883 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0); 1884 1885 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET + 1886 (sizeof(cfg_word) / sizeof(u32)) * 1887 (NUM_OF_VFS(p_hwfn->p_dev) + 1888 p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i); 1889 1890 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); 1891 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0); 1892 1893 tm_offset += tm_iids.pf_tids[i]; 1894 } 1895 1896 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) 1897 active_seg_mask = 0; 1898 1899 STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask); 1900 1901 /* @@@TBD how to enable the scan for the VFs */ 1902 } 1903 1904 static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn) 1905 { 1906 if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) && 1907 p_hwfn->pf_params.fcoe_pf_params.is_target) 1908 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0); 1909 } 1910 1911 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn) 1912 { 1913 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1914 struct ecore_conn_type_cfg *p_fcoe; 1915 struct ecore_tid_seg *p_tid; 1916 1917 p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE]; 1918 1919 /* If FCoE is active set the MAX OX_ID (tid) in the Parser */ 1920 if (!p_fcoe->cid_count) 1921 return; 1922 1923 p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG]; 1924 if (p_hwfn->pf_params.fcoe_pf_params.is_target) { 1925 STORE_RT_REG_AGG(p_hwfn, 1926 PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET, 1927 p_tid->count); 1928 } else { 1929 STORE_RT_REG_AGG(p_hwfn, 1930 PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET, 1931 p_tid->count); 1932 } 1933 } 1934 1935 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn) 1936 { 1937 /* CDU configuration */ 1938 ecore_cdu_init_common(p_hwfn); 1939 ecore_prs_init_common(p_hwfn); 1940 } 1941 1942 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt) 1943 { 1944 ecore_qm_init_pf(p_hwfn, p_ptt); 1945 ecore_cm_init_pf(p_hwfn); 1946 ecore_dq_init_pf(p_hwfn); 1947 ecore_cdu_init_pf(p_hwfn); 1948 ecore_ilt_init_pf(p_hwfn); 1949 ecore_src_init_pf(p_hwfn); 1950 ecore_tm_init_pf(p_hwfn); 1951 ecore_prs_init_pf(p_hwfn); 1952 } 1953 1954 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn, 1955 enum protocol_type type, 1956 u32 *p_cid, u8 vfid) 1957 { 1958 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 1959 struct ecore_cid_acquired_map *p_map; 1960 u32 rel_cid; 1961 1962 if (type >= MAX_CONN_TYPES) { 1963 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type); 1964 return ECORE_INVAL; 1965 } 1966 1967 if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) { 1968 DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid); 1969 return ECORE_INVAL; 1970 } 1971 1972 /* Determine the right map to take this CID from */ 1973 if (vfid == ECORE_CXT_PF_CID) 1974 p_map = &p_mngr->acquired[type]; 1975 else 1976 p_map = &p_mngr->acquired_vf[type][vfid]; 1977 1978 if (p_map->cid_map == OSAL_NULL) { 1979 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type); 1980 return ECORE_INVAL; 1981 } 1982 1983 rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map, 1984 p_map->max_count); 1985 1986 if (rel_cid >= p_map->max_count) { 1987 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n", 1988 type); 1989 return ECORE_NORESOURCES; 1990 } 1991 1992 OSAL_SET_BIT(rel_cid, p_map->cid_map); 1993 1994 *p_cid = rel_cid + p_map->start_cid; 1995 1996 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, 1997 "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n", 1998 *p_cid, rel_cid, vfid, type); 1999 2000 return ECORE_SUCCESS; 2001 } 2002 2003 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn, 2004 enum protocol_type type, 2005 u32 *p_cid) 2006 { 2007 return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID); 2008 } 2009 2010 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn, 2011 u32 cid, u8 vfid, 2012 enum protocol_type *p_type, 2013 struct ecore_cid_acquired_map **pp_map) 2014 { 2015 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 2016 u32 rel_cid; 2017 2018 /* Iterate over protocols and find matching cid range */ 2019 for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) { 2020 if (vfid == ECORE_CXT_PF_CID) 2021 *pp_map = &p_mngr->acquired[*p_type]; 2022 else 2023 *pp_map = &p_mngr->acquired_vf[*p_type][vfid]; 2024 2025 if (!((*pp_map)->cid_map)) 2026 continue; 2027 if (cid >= (*pp_map)->start_cid && 2028 cid < (*pp_map)->start_cid + (*pp_map)->max_count) { 2029 break; 2030 } 2031 } 2032 2033 if (*p_type == MAX_CONN_TYPES) { 2034 DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid); 2035 goto fail; 2036 } 2037 2038 rel_cid = cid - (*pp_map)->start_cid; 2039 if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) { 2040 DP_NOTICE(p_hwfn, true, 2041 "CID %d [vifd %02x] not acquired", cid, vfid); 2042 goto fail; 2043 } 2044 2045 return true; 2046 fail: 2047 *p_type = MAX_CONN_TYPES; 2048 *pp_map = OSAL_NULL; 2049 return false; 2050 } 2051 2052 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid) 2053 { 2054 struct ecore_cid_acquired_map *p_map = OSAL_NULL; 2055 enum protocol_type type; 2056 bool b_acquired; 2057 u32 rel_cid; 2058 2059 if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) { 2060 DP_NOTICE(p_hwfn, true, 2061 "Trying to return incorrect CID belonging to VF %02x\n", 2062 vfid); 2063 return; 2064 } 2065 2066 /* Test acquired and find matching per-protocol map */ 2067 b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid, 2068 &type, &p_map); 2069 2070 if (!b_acquired) 2071 return; 2072 2073 rel_cid = cid - p_map->start_cid; 2074 OSAL_CLEAR_BIT(rel_cid, p_map->cid_map); 2075 2076 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, 2077 "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n", 2078 cid, rel_cid, vfid, type); 2079 } 2080 2081 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid) 2082 { 2083 _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID); 2084 } 2085 2086 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn, 2087 struct ecore_cxt_info *p_info) 2088 { 2089 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 2090 struct ecore_cid_acquired_map *p_map = OSAL_NULL; 2091 u32 conn_cxt_size, hw_p_size, cxts_per_p, line; 2092 enum protocol_type type; 2093 bool b_acquired; 2094 2095 /* Test acquired and find matching per-protocol map */ 2096 b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid, 2097 ECORE_CXT_PF_CID, 2098 &type, &p_map); 2099 2100 if (!b_acquired) 2101 return ECORE_INVAL; 2102 2103 /* set the protocl type */ 2104 p_info->type = type; 2105 2106 /* compute context virtual pointer */ 2107 hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val; 2108 2109 conn_cxt_size = CONN_CXT_SIZE(p_hwfn); 2110 cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size; 2111 line = p_info->iid / cxts_per_p; 2112 2113 /* Make sure context is allocated (dynamic allocation) */ 2114 if (!p_mngr->ilt_shadow[line].p_virt) 2115 return ECORE_INVAL; 2116 2117 p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt + 2118 p_info->iid % cxts_per_p * conn_cxt_size; 2119 2120 DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT), 2121 "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n", 2122 (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid); 2123 2124 return ECORE_SUCCESS; 2125 } 2126 2127 static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn, 2128 struct ecore_rdma_pf_params *p_params, 2129 u32 num_tasks) 2130 { 2131 u32 num_cons, num_qps, num_srqs; 2132 enum protocol_type proto; 2133 2134 /* Override personality with rdma flavor */ 2135 num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS, p_params->num_srqs); 2136 2137 /* The only case RDMA personality can be overriden is if NVRAM is 2138 * configured with ETH_RDMA or if no rdma protocol was requested 2139 */ 2140 switch (p_params->rdma_protocol) { 2141 case ECORE_RDMA_PROTOCOL_DEFAULT: 2142 if (p_hwfn->mcp_info->func_info.protocol == 2143 ECORE_PCI_ETH_RDMA) { 2144 DP_NOTICE(p_hwfn, false, 2145 "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n"); 2146 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE; 2147 } 2148 break; 2149 case ECORE_RDMA_PROTOCOL_NONE: 2150 p_hwfn->hw_info.personality = ECORE_PCI_ETH; 2151 return; /* intentional... nothing left to do... */ 2152 case ECORE_RDMA_PROTOCOL_ROCE: 2153 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA) 2154 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE; 2155 break; 2156 case ECORE_RDMA_PROTOCOL_IWARP: 2157 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA) 2158 p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP; 2159 break; 2160 } 2161 2162 switch (p_hwfn->hw_info.personality) { 2163 case ECORE_PCI_ETH_IWARP: 2164 /* Each QP requires one connection */ 2165 num_cons = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps); 2166 #ifdef CONFIG_ECORE_IWARP /* required for the define */ 2167 /* additional connections required for passive tcp handling */ 2168 num_cons += ECORE_IWARP_PREALLOC_CNT; 2169 #endif 2170 proto = PROTOCOLID_IWARP; 2171 p_params->roce_edpm_mode = false; 2172 break; 2173 case ECORE_PCI_ETH_ROCE: 2174 num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps); 2175 num_cons = num_qps * 2; /* each QP requires two connections */ 2176 proto = PROTOCOLID_ROCE; 2177 break; 2178 default: 2179 return; 2180 } 2181 2182 if (num_cons && num_tasks) { 2183 ecore_cxt_set_proto_cid_count(p_hwfn, proto, 2184 num_cons, 0); 2185 2186 /* Deliberatly passing ROCE for tasks id. This is because 2187 * iWARP / RoCE share the task id. 2188 */ 2189 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE, 2190 ECORE_CXT_ROCE_TID_SEG, 2191 1, /* RoCE segment type */ 2192 num_tasks, 2193 false); /* !force load */ 2194 ecore_cxt_set_srq_count(p_hwfn, num_srqs); 2195 2196 } else { 2197 DP_INFO(p_hwfn->p_dev, 2198 "RDMA personality used without setting params!\n"); 2199 } 2200 } 2201 2202 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn, 2203 u32 rdma_tasks) 2204 { 2205 /* Set the number of required CORE connections */ 2206 u32 core_cids = 1; /* SPQ */ 2207 2208 if (p_hwfn->using_ll2) 2209 core_cids += 4; /* @@@TBD Use the proper #define */ 2210 2211 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0); 2212 2213 switch (p_hwfn->hw_info.personality) { 2214 case ECORE_PCI_ETH_RDMA: 2215 case ECORE_PCI_ETH_IWARP: 2216 case ECORE_PCI_ETH_ROCE: 2217 { 2218 ecore_rdma_set_pf_params(p_hwfn, 2219 &p_hwfn->pf_params.rdma_pf_params, 2220 rdma_tasks); 2221 2222 /* no need for break since RoCE coexist with Ethernet */ 2223 } 2224 case ECORE_PCI_ETH: 2225 { 2226 struct ecore_eth_pf_params *p_params = 2227 &p_hwfn->pf_params.eth_pf_params; 2228 2229 if (!p_params->num_vf_cons) 2230 p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT; 2231 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH, 2232 p_params->num_cons, 2233 p_params->num_vf_cons); 2234 p_hwfn->p_cxt_mngr->arfs_count = p_params->num_arfs_filters; 2235 2236 break; 2237 } 2238 case ECORE_PCI_FCOE: 2239 { 2240 struct ecore_fcoe_pf_params *p_params; 2241 2242 p_params = &p_hwfn->pf_params.fcoe_pf_params; 2243 2244 if (p_params->num_cons && p_params->num_tasks) { 2245 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE, 2246 p_params->num_cons, 0); 2247 2248 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE, 2249 ECORE_CXT_FCOE_TID_SEG, 2250 0, /* segment type */ 2251 p_params->num_tasks, 2252 true); 2253 } else { 2254 DP_INFO(p_hwfn->p_dev, 2255 "Fcoe personality used without setting params!\n"); 2256 } 2257 break; 2258 } 2259 case ECORE_PCI_ISCSI: 2260 { 2261 struct ecore_iscsi_pf_params *p_params; 2262 2263 p_params = &p_hwfn->pf_params.iscsi_pf_params; 2264 2265 if (p_params->num_cons && p_params->num_tasks) { 2266 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI, 2267 p_params->num_cons, 0); 2268 2269 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI, 2270 ECORE_CXT_ISCSI_TID_SEG, 2271 0, /* segment type */ 2272 p_params->num_tasks, 2273 true); 2274 } else { 2275 DP_INFO(p_hwfn->p_dev, 2276 "Iscsi personality used without setting params!\n"); 2277 } 2278 break; 2279 } 2280 default: 2281 return ECORE_INVAL; 2282 } 2283 2284 return ECORE_SUCCESS; 2285 } 2286 2287 enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn, 2288 struct ecore_tid_mem *p_info) 2289 { 2290 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 2291 u32 proto, seg, total_lines, i, shadow_line; 2292 struct ecore_ilt_client_cfg *p_cli; 2293 struct ecore_ilt_cli_blk *p_fl_seg; 2294 struct ecore_tid_seg *p_seg_info; 2295 2296 /* Verify the personality */ 2297 switch (p_hwfn->hw_info.personality) { 2298 case ECORE_PCI_FCOE: 2299 proto = PROTOCOLID_FCOE; 2300 seg = ECORE_CXT_FCOE_TID_SEG; 2301 break; 2302 case ECORE_PCI_ISCSI: 2303 proto = PROTOCOLID_ISCSI; 2304 seg = ECORE_CXT_ISCSI_TID_SEG; 2305 break; 2306 default: 2307 return ECORE_INVAL; 2308 } 2309 2310 p_cli = &p_mngr->clients[ILT_CLI_CDUT]; 2311 if (!p_cli->active) { 2312 return ECORE_INVAL; 2313 } 2314 2315 p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg]; 2316 if (!p_seg_info->has_fl_mem) 2317 return ECORE_INVAL; 2318 2319 p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)]; 2320 total_lines = DIV_ROUND_UP(p_fl_seg->total_size, 2321 p_fl_seg->real_size_in_page); 2322 2323 for (i = 0; i < total_lines; i++) { 2324 shadow_line = i + p_fl_seg->start_line - 2325 p_hwfn->p_cxt_mngr->pf_start_line; 2326 p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt; 2327 } 2328 p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) - 2329 p_fl_seg->real_size_in_page; 2330 p_info->tid_size = p_mngr->task_type_size[p_seg_info->type]; 2331 p_info->num_tids_per_block = p_fl_seg->real_size_in_page / 2332 p_info->tid_size; 2333 2334 return ECORE_SUCCESS; 2335 } 2336 2337 /* This function is very RoCE oriented, if another protocol in the future 2338 * will want this feature we'll need to modify the function to be more generic 2339 */ 2340 enum _ecore_status_t 2341 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn, 2342 enum ecore_cxt_elem_type elem_type, 2343 u32 iid) 2344 { 2345 u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line; 2346 struct ecore_ilt_client_cfg *p_cli; 2347 struct ecore_ilt_cli_blk *p_blk; 2348 struct ecore_ptt *p_ptt; 2349 dma_addr_t p_phys; 2350 u64 ilt_hw_entry; 2351 void *p_virt; 2352 enum _ecore_status_t rc = ECORE_SUCCESS; 2353 2354 switch (elem_type) { 2355 case ECORE_ELEM_CXT: 2356 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; 2357 elem_size = CONN_CXT_SIZE(p_hwfn); 2358 p_blk = &p_cli->pf_blks[CDUC_BLK]; 2359 break; 2360 case ECORE_ELEM_SRQ: 2361 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM]; 2362 elem_size = SRQ_CXT_SIZE; 2363 p_blk = &p_cli->pf_blks[SRQ_BLK]; 2364 break; 2365 case ECORE_ELEM_TASK: 2366 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; 2367 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn); 2368 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)]; 2369 break; 2370 default: 2371 DP_NOTICE(p_hwfn, false, 2372 "ECORE_INVALID elem type = %d", elem_type); 2373 return ECORE_INVAL; 2374 } 2375 2376 /* Calculate line in ilt */ 2377 hw_p_size = p_cli->p_size.val; 2378 elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size; 2379 line = p_blk->start_line + (iid / elems_per_p); 2380 shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line; 2381 2382 /* If line is already allocated, do nothing, otherwise allocate it and 2383 * write it to the PSWRQ2 registers. 2384 * This section can be run in parallel from different contexts and thus 2385 * a mutex protection is needed. 2386 */ 2387 2388 OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex); 2389 2390 if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt) 2391 goto out0; 2392 2393 p_ptt = ecore_ptt_acquire(p_hwfn); 2394 if (!p_ptt) { 2395 DP_NOTICE(p_hwfn, false, 2396 "ECORE_TIME_OUT on ptt acquire - dynamic allocation"); 2397 rc = ECORE_TIMEOUT; 2398 goto out0; 2399 } 2400 2401 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, 2402 &p_phys, 2403 p_blk->real_size_in_page); 2404 if (!p_virt) { 2405 rc = ECORE_NOMEM; 2406 goto out1; 2407 } 2408 OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page); 2409 2410 /* configuration of refTagMask to 0xF is required for RoCE DIF MR only, 2411 * to compensate for a HW bug, but it is configured even if DIF is not 2412 * enabled. This is harmless and allows us to avoid a dedicated API. We 2413 * configure the field for all of the contexts on the newly allocated 2414 * page. 2415 */ 2416 if (elem_type == ECORE_ELEM_TASK) { 2417 u32 elem_i; 2418 u8 *elem_start = (u8 *)p_virt; 2419 union type1_task_context *elem; 2420 2421 for (elem_i = 0; elem_i < elems_per_p; elem_i++) { 2422 elem = (union type1_task_context *)elem_start; 2423 SET_FIELD(elem->roce_ctx.tdif_context.flags1, 2424 TDIF_TASK_CONTEXT_REFTAGMASK , 0xf); 2425 elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn); 2426 } 2427 } 2428 2429 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt; 2430 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys; 2431 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size = 2432 p_blk->real_size_in_page; 2433 2434 /* compute absolute offset */ 2435 reg_offset = PSWRQ2_REG_ILT_MEMORY + 2436 (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS); 2437 2438 ilt_hw_entry = 0; 2439 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL); 2440 SET_FIELD(ilt_hw_entry, 2441 ILT_ENTRY_PHY_ADDR, 2442 (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12)); 2443 2444 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */ 2445 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry, 2446 reg_offset, sizeof(ilt_hw_entry) / sizeof(u32), 2447 0 /* no flags */); 2448 2449 if (elem_type == ECORE_ELEM_CXT) { 2450 u32 last_cid_allocated = (1 + (iid / elems_per_p)) * 2451 elems_per_p; 2452 2453 /* Update the relevant register in the parser */ 2454 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF, 2455 last_cid_allocated - 1); 2456 2457 /* RoCE w/a -> we don't write to the prs search reg until first 2458 * cid is allocated. This is because the prs checks 2459 * last_cid-1 >=0 making 0 a valid value... this will cause 2460 * the a context load to occur on a RoCE packet received with 2461 * cid=0 even before context was initialized, can happen with a 2462 * stray packet from switch or a packet with crc-error 2463 */ 2464 2465 if (!p_hwfn->b_rdma_enabled_in_prs) { 2466 /* Enable Rdma search */ 2467 ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1); 2468 p_hwfn->b_rdma_enabled_in_prs = true; 2469 } 2470 } 2471 2472 out1: 2473 ecore_ptt_release(p_hwfn, p_ptt); 2474 out0: 2475 OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex); 2476 2477 return rc; 2478 } 2479 2480 /* This function is very RoCE oriented, if another protocol in the future 2481 * will want this feature we'll need to modify the function to be more generic 2482 */ 2483 enum _ecore_status_t 2484 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn, 2485 enum ecore_cxt_elem_type elem_type, 2486 u32 start_iid, u32 count) 2487 { 2488 u32 start_line, end_line, shadow_start_line, shadow_end_line; 2489 u32 reg_offset, elem_size, hw_p_size, elems_per_p; 2490 struct ecore_ilt_client_cfg *p_cli; 2491 struct ecore_ilt_cli_blk *p_blk; 2492 u32 end_iid = start_iid + count; 2493 struct ecore_ptt *p_ptt; 2494 u64 ilt_hw_entry = 0; 2495 u32 i; 2496 2497 switch (elem_type) { 2498 case ECORE_ELEM_CXT: 2499 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; 2500 elem_size = CONN_CXT_SIZE(p_hwfn); 2501 p_blk = &p_cli->pf_blks[CDUC_BLK]; 2502 break; 2503 case ECORE_ELEM_SRQ: 2504 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM]; 2505 elem_size = SRQ_CXT_SIZE; 2506 p_blk = &p_cli->pf_blks[SRQ_BLK]; 2507 break; 2508 case ECORE_ELEM_TASK: 2509 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; 2510 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn); 2511 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)]; 2512 break; 2513 default: 2514 DP_NOTICE(p_hwfn, false, 2515 "ECORE_INVALID elem type = %d", elem_type); 2516 return ECORE_INVAL; 2517 } 2518 2519 /* Calculate line in ilt */ 2520 hw_p_size = p_cli->p_size.val; 2521 elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size; 2522 start_line = p_blk->start_line + (start_iid / elems_per_p); 2523 end_line = p_blk->start_line + (end_iid / elems_per_p); 2524 if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p)) 2525 end_line--; 2526 2527 shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line; 2528 shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line; 2529 2530 p_ptt = ecore_ptt_acquire(p_hwfn); 2531 if (!p_ptt) { 2532 DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation"); 2533 return ECORE_TIMEOUT; 2534 } 2535 2536 for (i = shadow_start_line; i < shadow_end_line; i++) { 2537 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt) 2538 continue; 2539 2540 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, 2541 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt, 2542 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys, 2543 p_hwfn->p_cxt_mngr->ilt_shadow[i].size); 2544 2545 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL; 2546 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0; 2547 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0; 2548 2549 /* compute absolute offset */ 2550 reg_offset = PSWRQ2_REG_ILT_MEMORY + 2551 ((start_line++) * ILT_REG_SIZE_IN_BYTES * 2552 ILT_ENTRY_IN_REGS); 2553 2554 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a 2555 * wide-bus. 2556 */ 2557 ecore_dmae_host2grc(p_hwfn, p_ptt, 2558 (u64)(osal_uintptr_t)&ilt_hw_entry, 2559 reg_offset, 2560 sizeof(ilt_hw_entry) / sizeof(u32), 2561 0 /* no flags */); 2562 } 2563 2564 ecore_ptt_release(p_hwfn, p_ptt); 2565 2566 return ECORE_SUCCESS; 2567 } 2568 2569 enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn, 2570 u32 tid, 2571 u8 ctx_type, 2572 void **pp_task_ctx) 2573 { 2574 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; 2575 struct ecore_ilt_client_cfg *p_cli; 2576 struct ecore_tid_seg *p_seg_info; 2577 struct ecore_ilt_cli_blk *p_seg; 2578 u32 num_tids_per_block; 2579 u32 tid_size, ilt_idx; 2580 u32 total_lines; 2581 u32 proto, seg; 2582 2583 /* Verify the personality */ 2584 switch (p_hwfn->hw_info.personality) { 2585 case ECORE_PCI_FCOE: 2586 proto = PROTOCOLID_FCOE; 2587 seg = ECORE_CXT_FCOE_TID_SEG; 2588 break; 2589 case ECORE_PCI_ISCSI: 2590 proto = PROTOCOLID_ISCSI; 2591 seg = ECORE_CXT_ISCSI_TID_SEG; 2592 break; 2593 default: 2594 return ECORE_INVAL; 2595 } 2596 2597 p_cli = &p_mngr->clients[ILT_CLI_CDUT]; 2598 if (!p_cli->active) { 2599 return ECORE_INVAL; 2600 } 2601 2602 p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg]; 2603 2604 if (ctx_type == ECORE_CTX_WORKING_MEM) { 2605 p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)]; 2606 } else if (ctx_type == ECORE_CTX_FL_MEM) { 2607 if (!p_seg_info->has_fl_mem) { 2608 return ECORE_INVAL; 2609 } 2610 p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)]; 2611 } else { 2612 return ECORE_INVAL; 2613 } 2614 total_lines = DIV_ROUND_UP(p_seg->total_size, 2615 p_seg->real_size_in_page); 2616 tid_size = p_mngr->task_type_size[p_seg_info->type]; 2617 num_tids_per_block = p_seg->real_size_in_page / tid_size; 2618 2619 if (total_lines < tid/num_tids_per_block) 2620 return ECORE_INVAL; 2621 2622 ilt_idx = tid / num_tids_per_block + p_seg->start_line - 2623 p_mngr->pf_start_line; 2624 *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt + 2625 (tid % num_tids_per_block) * tid_size; 2626 2627 return ECORE_SUCCESS; 2628 } 2629