xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_chain.h (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 #ifndef __ECORE_CHAIN_H__
30 #define __ECORE_CHAIN_H__
31 
32 #include "common_hsi.h"
33 #include "ecore_utils.h"
34 
35 enum ecore_chain_mode
36 {
37 	/* Each Page contains a next pointer at its end */
38 	ECORE_CHAIN_MODE_NEXT_PTR,
39 
40 	/* Chain is a single page (next ptr) is unrequired */
41 	ECORE_CHAIN_MODE_SINGLE,
42 
43 	/* Page pointers are located in a side list */
44 	ECORE_CHAIN_MODE_PBL,
45 };
46 
47 enum ecore_chain_use_mode
48 {
49 	ECORE_CHAIN_USE_TO_PRODUCE,		/* Chain starts empty */
50 	ECORE_CHAIN_USE_TO_CONSUME,		/* Chain starts full */
51 	ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,	/* Chain starts empty */
52 };
53 
54 enum ecore_chain_cnt_type {
55 	/* The chain's size/prod/cons are kept in 16-bit variables */
56 	ECORE_CHAIN_CNT_TYPE_U16,
57 
58 	/* The chain's size/prod/cons are kept in 32-bit variables  */
59 	ECORE_CHAIN_CNT_TYPE_U32,
60 };
61 
62 struct ecore_chain_next
63 {
64 	struct regpair	next_phys;
65 	void		*next_virt;
66 };
67 
68 struct ecore_chain_pbl_u16 {
69 	u16	prod_page_idx;
70 	u16	cons_page_idx;
71 };
72 
73 struct ecore_chain_pbl_u32 {
74 	u32	prod_page_idx;
75 	u32	cons_page_idx;
76 };
77 
78 struct ecore_chain_ext_pbl
79 {
80 	dma_addr_t	p_pbl_phys;
81 	void		*p_pbl_virt;
82 };
83 
84 struct ecore_chain_u16 {
85 	/* Cyclic index of next element to produce/consme */
86 	u16	prod_idx;
87 	u16	cons_idx;
88 };
89 
90 struct ecore_chain_u32 {
91 	/* Cyclic index of next element to produce/consme */
92 	u32	prod_idx;
93 	u32	cons_idx;
94 };
95 
96 struct ecore_chain
97 {
98 	/* fastpath portion of the chain - required for commands such
99 	 * as produce / consume.
100 	 */
101 	/* Point to next element to produce/consume */
102 	void				*p_prod_elem;
103 	void				*p_cons_elem;
104 
105 	/* Fastpath portions of the PBL [if exists] */
106 
107 	struct {
108 		/* Table for keeping the virtual addresses of the chain pages,
109 		 * respectively to the physical addresses in the pbl table.
110 		 */
111 		void		**pp_virt_addr_tbl;
112 
113 		union {
114 			struct ecore_chain_pbl_u16	pbl_u16;
115 			struct ecore_chain_pbl_u32	pbl_u32;
116 		} c;
117 	} pbl;
118 
119 	union {
120 		struct ecore_chain_u16	chain16;
121 		struct ecore_chain_u32	chain32;
122 	} u;
123 
124 	/* Capacity counts only usable elements */
125 	u32				capacity;
126 	u32				page_cnt;
127 
128 	/* A u8 would suffice for mode, but it would save as a lot of headaches
129 	 * on castings & defaults.
130 	 */
131 	enum ecore_chain_mode		mode;
132 
133 	/* Elements information for fast calculations */
134 	u16				elem_per_page;
135 	u16				elem_per_page_mask;
136 	u16				elem_size;
137 	u16				next_page_mask;
138 	u16				usable_per_page;
139 	u8				elem_unusable;
140 
141 	u8				cnt_type;
142 
143 	/* Slowpath of the chain - required for initialization and destruction,
144 	 * but isn't involved in regular functionality.
145 	 */
146 
147 	/* Base address of a pre-allocated buffer for pbl */
148 	struct {
149 		dma_addr_t		p_phys_table;
150 		void			*p_virt_table;
151 	} pbl_sp;
152 
153 	/* Address of first page of the chain  - the address is required
154 	 * for fastpath operation [consume/produce] but only for the the SINGLE
155 	 * flavour which isn't considered fastpath [== SPQ].
156 	 */
157 	void				*p_virt_addr;
158 	dma_addr_t			p_phys_addr;
159 
160 	/* Total number of elements [for entire chain] */
161 	u32				size;
162 
163 	u8				intended_use;
164 
165 	/* TBD - do we really need this? Couldn't find usage for it */
166 	bool				b_external_pbl;
167 
168 	void				*dp_ctx;
169 };
170 
171 #define ECORE_CHAIN_PBL_ENTRY_SIZE	(8)
172 #define ECORE_CHAIN_PAGE_SIZE		(0x1000)
173 #define ELEMS_PER_PAGE(elem_size)	(ECORE_CHAIN_PAGE_SIZE/(elem_size))
174 
175 #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)		\
176 	  ((mode == ECORE_CHAIN_MODE_NEXT_PTR) ? 		\
177 	   (u8)(1 + ((sizeof(struct ecore_chain_next)-1) /	\
178 		     (elem_size))) : 0)
179 
180 #define USABLE_ELEMS_PER_PAGE(elem_size, mode)			\
181 	  ((u32) (ELEMS_PER_PAGE(elem_size) - 			\
182 	  	  UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
183 
184 #define ECORE_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode)		\
185 	DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
186 
187 #define is_chain_u16(p)	((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U16)
188 #define is_chain_u32(p)	((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U32)
189 
190 /* Accessors */
191 static OSAL_INLINE u16 ecore_chain_get_prod_idx(struct ecore_chain *p_chain)
192 {
193 	OSAL_ASSERT(is_chain_u16(p_chain));
194 	return p_chain->u.chain16.prod_idx;
195 }
196 
197 #ifndef LINUX_REMOVE
198 static OSAL_INLINE u32 ecore_chain_get_prod_idx_u32(struct ecore_chain *p_chain)
199 {
200 	OSAL_ASSERT(is_chain_u32(p_chain));
201 	return p_chain->u.chain32.prod_idx;
202 }
203 #endif
204 
205 static OSAL_INLINE u16 ecore_chain_get_cons_idx(struct ecore_chain *p_chain)
206 {
207 	OSAL_ASSERT(is_chain_u16(p_chain));
208 	return p_chain->u.chain16.cons_idx;
209 }
210 
211 static OSAL_INLINE u32 ecore_chain_get_cons_idx_u32(struct ecore_chain *p_chain)
212 {
213 	OSAL_ASSERT(is_chain_u32(p_chain));
214 	return p_chain->u.chain32.cons_idx;
215 }
216 
217 /* FIXME:
218  * Should create OSALs for the below definitions.
219  * For Linux, replace them with the existing U16_MAX and U32_MAX, and handle
220  * kernel versions that lack them.
221  */
222 #define ECORE_U16_MAX	((u16)~0U)
223 #define ECORE_U32_MAX	((u32)~0U)
224 
225 static OSAL_INLINE u16 ecore_chain_get_elem_left(struct ecore_chain *p_chain)
226 {
227 	u16 used;
228 
229 	OSAL_ASSERT(is_chain_u16(p_chain));
230 
231 	used = (u16)(((u32)ECORE_U16_MAX + 1 +
232 		      (u32)(p_chain->u.chain16.prod_idx)) -
233 		     (u32)p_chain->u.chain16.cons_idx);
234 	if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR)
235 		used -= (((u32)ECORE_U16_MAX + 1) / p_chain->elem_per_page +
236 			 p_chain->u.chain16.prod_idx / p_chain->elem_per_page -
237 			 p_chain->u.chain16.cons_idx / p_chain->elem_per_page) %
238 			p_chain->page_cnt;
239 
240 	return (u16)(p_chain->capacity - used);
241 }
242 
243 static OSAL_INLINE u32
244 ecore_chain_get_elem_left_u32(struct ecore_chain *p_chain)
245 {
246 	u32 used;
247 
248 	OSAL_ASSERT(is_chain_u32(p_chain));
249 
250 	used = (u32)(((u64)ECORE_U32_MAX + 1 +
251 		      (u64)(p_chain->u.chain32.prod_idx)) -
252 		     (u64)p_chain->u.chain32.cons_idx);
253 	if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR)
254 		used -= (((u64)ECORE_U32_MAX + 1) / p_chain->elem_per_page +
255 			 p_chain->u.chain32.prod_idx / p_chain->elem_per_page -
256 			 p_chain->u.chain32.cons_idx / p_chain->elem_per_page) %
257 			p_chain->page_cnt;
258 
259 	return p_chain->capacity - used;
260 }
261 
262 #ifndef LINUX_REMOVE
263 static OSAL_INLINE u8 ecore_chain_is_full(struct ecore_chain *p_chain)
264 {
265 	if (is_chain_u16(p_chain))
266 		return (ecore_chain_get_elem_left(p_chain) ==
267 			p_chain->capacity);
268 	else
269 		return (ecore_chain_get_elem_left_u32(p_chain) ==
270 			p_chain->capacity);
271 }
272 
273 static OSAL_INLINE u8 ecore_chain_is_empty(struct ecore_chain *p_chain)
274 {
275 	if (is_chain_u16(p_chain))
276 		return (ecore_chain_get_elem_left(p_chain) == 0);
277 	else
278 		return (ecore_chain_get_elem_left_u32(p_chain) == 0);
279 }
280 
281 static OSAL_INLINE
282 u16 ecore_chain_get_elem_per_page(struct ecore_chain *p_chain)
283 {
284 	return p_chain->elem_per_page;
285 }
286 #endif
287 
288 static OSAL_INLINE
289 u16 ecore_chain_get_usable_per_page(struct ecore_chain *p_chain)
290 {
291 	return p_chain->usable_per_page;
292 }
293 
294 static OSAL_INLINE
295 u8 ecore_chain_get_unusable_per_page(struct ecore_chain *p_chain)
296 {
297 	return p_chain->elem_unusable;
298 }
299 
300 #ifndef LINUX_REMOVE
301 static OSAL_INLINE u32 ecore_chain_get_size(struct ecore_chain *p_chain)
302 {
303 	return p_chain->size;
304 }
305 #endif
306 
307 static OSAL_INLINE u32 ecore_chain_get_page_cnt(struct ecore_chain *p_chain)
308 {
309 	return p_chain->page_cnt;
310 }
311 
312 static OSAL_INLINE
313 dma_addr_t ecore_chain_get_pbl_phys(struct ecore_chain *p_chain)
314 {
315 	return p_chain->pbl_sp.p_phys_table;
316 }
317 
318 /**
319  * @brief ecore_chain_advance_page -
320  *
321  * Advance the next element accros pages for a linked chain
322  *
323  * @param p_chain
324  * @param p_next_elem
325  * @param idx_to_inc
326  * @param page_to_inc
327  */
328 static OSAL_INLINE void
329 ecore_chain_advance_page(struct ecore_chain *p_chain, void **p_next_elem,
330 			 void *idx_to_inc, void *page_to_inc)
331 {
332 	struct ecore_chain_next *p_next = OSAL_NULL;
333 	u32 page_index = 0;
334 
335 	switch(p_chain->mode) {
336 	case ECORE_CHAIN_MODE_NEXT_PTR:
337 		p_next = (struct ecore_chain_next *)(*p_next_elem);
338 		*p_next_elem = p_next->next_virt;
339 		if (is_chain_u16(p_chain))
340 			*(u16 *)idx_to_inc += (u16)p_chain->elem_unusable;
341 		else
342 			*(u32 *)idx_to_inc += (u16)p_chain->elem_unusable;
343 		break;
344 	case ECORE_CHAIN_MODE_SINGLE:
345 		*p_next_elem = p_chain->p_virt_addr;
346 		break;
347 	case ECORE_CHAIN_MODE_PBL:
348 		if (is_chain_u16(p_chain)) {
349 			if (++(*(u16 *)page_to_inc) == p_chain->page_cnt)
350 				*(u16 *)page_to_inc = 0;
351 			page_index = *(u16 *)page_to_inc;
352 		} else {
353 			if (++(*(u32 *)page_to_inc) == p_chain->page_cnt)
354 				*(u32 *)page_to_inc = 0;
355 			page_index = *(u32 *)page_to_inc;
356 		}
357 		*p_next_elem = p_chain->pbl.pp_virt_addr_tbl[page_index];
358 	}
359 }
360 
361 #define is_unusable_idx(p, idx)			\
362 	(((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
363 
364 #define is_unusable_idx_u32(p, idx)		\
365 	(((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
366 
367 #define is_unusable_next_idx(p, idx)		\
368 	((((p)->u.chain16.idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
369 
370 #define is_unusable_next_idx_u32(p, idx)	\
371 	((((p)->u.chain32.idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
372 
373 #define test_and_skip(p, idx)							\
374 	do {									\
375 		if (is_chain_u16(p)) {						\
376 			if (is_unusable_idx(p, idx))				\
377 				(p)->u.chain16.idx += (p)->elem_unusable;	\
378 		} else {							\
379 			if (is_unusable_idx_u32(p, idx))			\
380 				(p)->u.chain32.idx += (p)->elem_unusable;	\
381 		}								\
382 	} while (0)
383 
384 #ifndef LINUX_REMOVE
385 /**
386  * @brief ecore_chain_return_multi_produced -
387  *
388  * A chain in which the driver "Produces" elements should use this API
389  * to indicate previous produced elements are now consumed.
390  *
391  * @param p_chain
392  * @param num
393  */
394 static OSAL_INLINE
395 void ecore_chain_return_multi_produced(struct ecore_chain *p_chain, u32 num)
396 {
397 	if (is_chain_u16(p_chain))
398 		p_chain->u.chain16.cons_idx += (u16)num;
399 	else
400 		p_chain->u.chain32.cons_idx += num;
401 	test_and_skip(p_chain, cons_idx);
402 }
403 #endif
404 
405 /**
406  * @brief ecore_chain_return_produced -
407  *
408  * A chain in which the driver "Produces" elements should use this API
409  * to indicate previous produced elements are now consumed.
410  *
411  * @param p_chain
412  */
413 static OSAL_INLINE void ecore_chain_return_produced(struct ecore_chain *p_chain)
414 {
415 	if (is_chain_u16(p_chain))
416 		p_chain->u.chain16.cons_idx++;
417 	else
418 		p_chain->u.chain32.cons_idx++;
419 	test_and_skip(p_chain, cons_idx);
420 }
421 
422 /**
423  * @brief ecore_chain_produce -
424  *
425  * A chain in which the driver "Produces" elements should use this to get
426  * a pointer to the next element which can be "Produced". It's driver
427  * responsibility to validate that the chain has room for new element.
428  *
429  * @param p_chain
430  *
431  * @return void*, a pointer to next element
432  */
433 static OSAL_INLINE void *ecore_chain_produce(struct ecore_chain *p_chain)
434 {
435 	void *p_ret = OSAL_NULL, *p_prod_idx, *p_prod_page_idx;
436 
437 	if (is_chain_u16(p_chain)) {
438 		if ((p_chain->u.chain16.prod_idx &
439 		     p_chain->elem_per_page_mask) ==
440 		    p_chain->next_page_mask) {
441 			p_prod_idx = &p_chain->u.chain16.prod_idx;
442 			p_prod_page_idx = &p_chain->pbl.c.pbl_u16.prod_page_idx;
443 			ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem,
444 						 p_prod_idx, p_prod_page_idx);
445 		}
446 		p_chain->u.chain16.prod_idx++;
447 	} else {
448 		if ((p_chain->u.chain32.prod_idx &
449 		     p_chain->elem_per_page_mask) ==
450 		    p_chain->next_page_mask) {
451 			p_prod_idx = &p_chain->u.chain32.prod_idx;
452 			p_prod_page_idx = &p_chain->pbl.c.pbl_u32.prod_page_idx;
453 			ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem,
454 						 p_prod_idx, p_prod_page_idx);
455 		}
456 		p_chain->u.chain32.prod_idx++;
457 	}
458 
459 	p_ret = p_chain->p_prod_elem;
460 	p_chain->p_prod_elem = (void*)(((u8*)p_chain->p_prod_elem) +
461 				       p_chain->elem_size);
462 
463 	return p_ret;
464 }
465 
466 /**
467  * @brief ecore_chain_get_capacity -
468  *
469  * Get the maximum number of BDs in chain
470  *
471  * @param p_chain
472  * @param num
473  *
474  * @return number of unusable BDs
475  */
476 static OSAL_INLINE u32 ecore_chain_get_capacity(struct ecore_chain *p_chain)
477 {
478 	return p_chain->capacity;
479 }
480 
481 /**
482  * @brief ecore_chain_recycle_consumed -
483  *
484  * Returns an element which was previously consumed;
485  * Increments producers so they could be written to FW.
486  *
487  * @param p_chain
488  */
489 static OSAL_INLINE
490 void ecore_chain_recycle_consumed(struct ecore_chain *p_chain)
491 {
492 	test_and_skip(p_chain, prod_idx);
493 	if (is_chain_u16(p_chain))
494 		p_chain->u.chain16.prod_idx++;
495 	else
496 		p_chain->u.chain32.prod_idx++;
497 }
498 
499 /**
500  * @brief ecore_chain_consume -
501  *
502  * A Chain in which the driver utilizes data written by a different source
503  * (i.e., FW) should use this to access passed buffers.
504  *
505  * @param p_chain
506  *
507  * @return void*, a pointer to the next buffer written
508  */
509 static OSAL_INLINE void *ecore_chain_consume(struct ecore_chain *p_chain)
510 {
511 	void *p_ret = OSAL_NULL, *p_cons_idx, *p_cons_page_idx;
512 
513 	if (is_chain_u16(p_chain)) {
514 		if ((p_chain->u.chain16.cons_idx &
515 		     p_chain->elem_per_page_mask) ==
516 		    p_chain->next_page_mask) {
517 			p_cons_idx = &p_chain->u.chain16.cons_idx;
518 			p_cons_page_idx = &p_chain->pbl.c.pbl_u16.cons_page_idx;
519 			ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem,
520 						 p_cons_idx, p_cons_page_idx);
521 		}
522 		p_chain->u.chain16.cons_idx++;
523 	} else {
524 		if ((p_chain->u.chain32.cons_idx &
525 		     p_chain->elem_per_page_mask) ==
526 		    p_chain->next_page_mask) {
527 			p_cons_idx = &p_chain->u.chain32.cons_idx;
528 			p_cons_page_idx = &p_chain->pbl.c.pbl_u32.cons_page_idx;
529 			ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem,
530 						 p_cons_idx, p_cons_page_idx);
531 		}
532 		p_chain->u.chain32.cons_idx++;
533 	}
534 
535 	p_ret = p_chain->p_cons_elem;
536 	p_chain->p_cons_elem = (void*)(((u8*)p_chain->p_cons_elem) +
537 				       p_chain->elem_size);
538 
539 	return p_ret;
540 }
541 
542 /**
543  * @brief ecore_chain_reset -
544  *
545  * Resets the chain to its start state
546  *
547  * @param p_chain pointer to a previously allocted chain
548  */
549 static OSAL_INLINE void ecore_chain_reset(struct ecore_chain *p_chain)
550 {
551 	u32 i;
552 
553 	if (is_chain_u16(p_chain)) {
554 		p_chain->u.chain16.prod_idx = 0;
555 		p_chain->u.chain16.cons_idx = 0;
556 	} else {
557 		p_chain->u.chain32.prod_idx = 0;
558 		p_chain->u.chain32.cons_idx = 0;
559 	}
560 	p_chain->p_cons_elem = p_chain->p_virt_addr;
561 	p_chain->p_prod_elem = p_chain->p_virt_addr;
562 
563 	if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
564 		/* Use "page_cnt-1" as a reset value for the prod/cons page's
565 		 * indices, to avoid unnecessary page advancing on the first
566 		 * call to ecore_chain_produce/consume. Instead, the indices
567 		 * will be advanced to page_cnt and then will be wrapped to 0.
568 		 */
569 		u32 reset_val = p_chain->page_cnt - 1;
570 
571 		if (is_chain_u16(p_chain)) {
572 			p_chain->pbl.c.pbl_u16.prod_page_idx = (u16)reset_val;
573 			p_chain->pbl.c.pbl_u16.cons_page_idx = (u16)reset_val;
574 		} else {
575 			p_chain->pbl.c.pbl_u32.prod_page_idx = reset_val;
576 			p_chain->pbl.c.pbl_u32.cons_page_idx = reset_val;
577 		}
578 	}
579 
580 	switch (p_chain->intended_use) {
581 	case ECORE_CHAIN_USE_TO_CONSUME:
582 		/* produce empty elements */
583 		for (i = 0; i < p_chain->capacity; i++)
584 			ecore_chain_recycle_consumed(p_chain);
585 		break;
586 
587 	case ECORE_CHAIN_USE_TO_CONSUME_PRODUCE:
588 	case ECORE_CHAIN_USE_TO_PRODUCE:
589 	default:
590 		/* Do nothing */
591 		break;
592 	}
593 }
594 
595 /**
596  * @brief ecore_chain_init_params -
597  *
598  * Initalizes a basic chain struct
599  *
600  * @param p_chain
601  * @param page_cnt	number of pages in the allocated buffer
602  * @param elem_size	size of each element in the chain
603  * @param intended_use
604  * @param mode
605  * @param cnt_type
606  * @param dp_ctx
607  */
608 static OSAL_INLINE void
609 ecore_chain_init_params(struct ecore_chain *p_chain, u32 page_cnt, u8 elem_size,
610 			enum ecore_chain_use_mode intended_use,
611 			enum ecore_chain_mode mode,
612 			enum ecore_chain_cnt_type cnt_type, void *dp_ctx)
613 {
614 	/* chain fixed parameters */
615 	p_chain->p_virt_addr = OSAL_NULL;
616 	p_chain->p_phys_addr = 0;
617 	p_chain->elem_size = elem_size;
618 	p_chain->intended_use = (u8)intended_use;
619 	p_chain->mode = mode;
620 	p_chain->cnt_type = (u8)cnt_type;
621 
622 	p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
623 	p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode);
624 	p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
625 	p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
626 	p_chain->next_page_mask = (p_chain->usable_per_page &
627 				   p_chain->elem_per_page_mask);
628 
629 	p_chain->page_cnt = page_cnt;
630 	p_chain->capacity = p_chain->usable_per_page * page_cnt;
631 	p_chain->size = p_chain->elem_per_page * page_cnt;
632 	p_chain->b_external_pbl = false;
633 	p_chain->pbl_sp.p_phys_table = 0;
634 	p_chain->pbl_sp.p_virt_table = OSAL_NULL;
635 	p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
636 
637 	p_chain->dp_ctx = dp_ctx;
638 }
639 
640 /**
641  * @brief ecore_chain_init_mem -
642  *
643  * Initalizes a basic chain struct with its chain buffers
644  *
645  * @param p_chain
646  * @param p_virt_addr	virtual address of allocated buffer's beginning
647  * @param p_phys_addr	physical address of allocated buffer's beginning
648  *
649  */
650 static OSAL_INLINE void ecore_chain_init_mem(struct ecore_chain *p_chain,
651 					     void *p_virt_addr,
652 					     dma_addr_t p_phys_addr)
653 {
654 	p_chain->p_virt_addr = p_virt_addr;
655 	p_chain->p_phys_addr = p_phys_addr;
656 }
657 
658 /**
659  * @brief ecore_chain_init_pbl_mem -
660  *
661  * Initalizes a basic chain struct with its pbl buffers
662  *
663  * @param p_chain
664  * @param p_virt_pbl	pointer to a pre allocated side table which will hold
665  *                      virtual page addresses.
666  * @param p_phys_pbl	pointer to a pre-allocated side table which will hold
667  *                      physical page addresses.
668  * @param pp_virt_addr_tbl
669  *                      pointer to a pre-allocated side table which will hold
670  *                      the virtual addresses of the chain pages.
671  *
672  */
673 static OSAL_INLINE void ecore_chain_init_pbl_mem(struct ecore_chain *p_chain,
674 						 void *p_virt_pbl,
675 						 dma_addr_t p_phys_pbl,
676 						 void **pp_virt_addr_tbl)
677 {
678 	p_chain->pbl_sp.p_phys_table = p_phys_pbl;
679 	p_chain->pbl_sp.p_virt_table = p_virt_pbl;
680 	p_chain->pbl.pp_virt_addr_tbl = pp_virt_addr_tbl;
681 }
682 
683 /**
684  * @brief ecore_chain_init_next_ptr_elem -
685  *
686  * Initalizes a next pointer element
687  *
688  * @param p_chain
689  * @param p_virt_curr	virtual address of a chain page of which the next
690  *                      pointer element is initialized
691  * @param p_virt_next	virtual address of the next chain page
692  * @param p_phys_next	physical address of the next chain page
693  *
694  */
695 static OSAL_INLINE void
696 ecore_chain_init_next_ptr_elem(struct ecore_chain *p_chain, void *p_virt_curr,
697 			       void *p_virt_next, dma_addr_t p_phys_next)
698 {
699 	struct ecore_chain_next *p_next;
700 	u32 size;
701 
702 	size = p_chain->elem_size * p_chain->usable_per_page;
703 	p_next = (struct ecore_chain_next *)((u8 *)p_virt_curr + size);
704 
705 	DMA_REGPAIR_LE(p_next->next_phys, p_phys_next);
706 
707 	p_next->next_virt = p_virt_next;
708 }
709 
710 /**
711  * @brief ecore_chain_get_last_elem -
712  *
713  * Returns a pointer to the last element of the chain
714  *
715  * @param p_chain
716  *
717  * @return void*
718  */
719 static OSAL_INLINE void *ecore_chain_get_last_elem(struct ecore_chain *p_chain)
720 {
721 	struct ecore_chain_next *p_next = OSAL_NULL;
722 	void *p_virt_addr = OSAL_NULL;
723 	u32 size, last_page_idx;
724 
725 	if (!p_chain->p_virt_addr)
726 		goto out;
727 
728 	switch (p_chain->mode) {
729 	case ECORE_CHAIN_MODE_NEXT_PTR:
730 		size = p_chain->elem_size * p_chain->usable_per_page;
731 		p_virt_addr = p_chain->p_virt_addr;
732 		p_next = (struct ecore_chain_next *)((u8 *)p_virt_addr + size);
733 		while (p_next->next_virt != p_chain->p_virt_addr) {
734 			p_virt_addr = p_next->next_virt;
735 			p_next = (struct ecore_chain_next *)((u8 *)p_virt_addr +
736 							     size);
737 		}
738 		break;
739 	case ECORE_CHAIN_MODE_SINGLE:
740 		p_virt_addr = p_chain->p_virt_addr;
741 		break;
742 	case ECORE_CHAIN_MODE_PBL:
743 		last_page_idx = p_chain->page_cnt - 1;
744 		p_virt_addr = p_chain->pbl.pp_virt_addr_tbl[last_page_idx];
745 		break;
746 	}
747 	/* p_virt_addr points at this stage to the last page of the chain */
748 	size = p_chain->elem_size * (p_chain->usable_per_page - 1);
749 	p_virt_addr = (u8 *)p_virt_addr + size;
750 out:
751 	return p_virt_addr;
752 }
753 
754 /**
755  * @brief ecore_chain_set_prod - sets the prod to the given value
756  *
757  * @param prod_idx
758  * @param p_prod_elem
759  */
760 static OSAL_INLINE void ecore_chain_set_prod(struct ecore_chain *p_chain,
761 					     u32 prod_idx, void *p_prod_elem)
762 {
763 	if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
764 		/* Use "prod_idx-1" since ecore_chain_produce() advances the
765 		 * page index before the producer index when getting to
766 		 * "next_page_mask".
767 		 */
768 		u32 elem_idx =
769 			(prod_idx - 1 + p_chain->capacity) % p_chain->capacity;
770 		u32 page_idx = elem_idx / p_chain->elem_per_page;
771 
772 		if (is_chain_u16(p_chain))
773 			p_chain->pbl.c.pbl_u16.prod_page_idx = (u16)page_idx;
774 		else
775 			p_chain->pbl.c.pbl_u32.prod_page_idx = page_idx;
776 	}
777 
778 	if (is_chain_u16(p_chain))
779 		p_chain->u.chain16.prod_idx = (u16)prod_idx;
780 	else
781 		p_chain->u.chain32.prod_idx = prod_idx;
782 	p_chain->p_prod_elem = p_prod_elem;
783 }
784 
785 /**
786  * @brief ecore_chain_set_cons - sets the cons to the given value
787  *
788  * @param cons_idx
789  * @param p_cons_elem
790  */
791 static OSAL_INLINE void ecore_chain_set_cons(struct ecore_chain *p_chain,
792 					     u32 cons_idx, void *p_cons_elem)
793 {
794 	if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
795 		/* Use "cons_idx-1" since ecore_chain_consume() advances the
796 		 * page index before the consumer index when getting to
797 		 * "next_page_mask".
798 		 */
799 		u32 elem_idx =
800 			(cons_idx - 1 + p_chain->capacity) % p_chain->capacity;
801 		u32 page_idx = elem_idx / p_chain->elem_per_page;
802 
803 		if (is_chain_u16(p_chain))
804 			p_chain->pbl.c.pbl_u16.cons_page_idx = (u16)page_idx;
805 		else
806 			p_chain->pbl.c.pbl_u32.cons_page_idx = page_idx;
807 	}
808 
809 	if (is_chain_u16(p_chain))
810 		p_chain->u.chain16.cons_idx = (u16)cons_idx;
811 	else
812 		p_chain->u.chain32.cons_idx = cons_idx;
813 
814 	p_chain->p_cons_elem = p_cons_elem;
815 }
816 
817 /**
818  * @brief ecore_chain_pbl_zero_mem - set chain memory to 0
819  *
820  * @param p_chain
821  */
822 static OSAL_INLINE void ecore_chain_pbl_zero_mem(struct ecore_chain *p_chain)
823 {
824 	u32 i, page_cnt;
825 
826 	if (p_chain->mode != ECORE_CHAIN_MODE_PBL)
827 		return;
828 
829 	page_cnt = ecore_chain_get_page_cnt(p_chain);
830 
831 	for (i = 0; i < page_cnt; i++)
832 		OSAL_MEM_ZERO(p_chain->pbl.pp_virt_addr_tbl[i],
833 			      ECORE_CHAIN_PAGE_SIZE);
834 }
835 
836 int ecore_chain_print(struct ecore_chain *p_chain, char *buffer,
837 		      u32 buffer_size, u32 *element_indx, u32 stop_indx,
838 		      bool print_metadata,
839 		      int (*func_ptr_print_element)(struct ecore_chain *p_chain,
840 						    void *p_element,
841 						    char *buffer),
842 		      int (*func_ptr_print_metadata)(struct ecore_chain *p_chain,
843 						     char *buffer));
844 
845 #endif /* __ECORE_CHAIN_H__ */
846