xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_chain.h (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  *
29  */
30 
31 #ifndef __ECORE_CHAIN_H__
32 #define __ECORE_CHAIN_H__
33 
34 #include "common_hsi.h"
35 #include "ecore_utils.h"
36 
37 enum ecore_chain_mode
38 {
39 	/* Each Page contains a next pointer at its end */
40 	ECORE_CHAIN_MODE_NEXT_PTR,
41 
42 	/* Chain is a single page (next ptr) is unrequired */
43 	ECORE_CHAIN_MODE_SINGLE,
44 
45 	/* Page pointers are located in a side list */
46 	ECORE_CHAIN_MODE_PBL,
47 };
48 
49 enum ecore_chain_use_mode
50 {
51 	ECORE_CHAIN_USE_TO_PRODUCE,		/* Chain starts empty */
52 	ECORE_CHAIN_USE_TO_CONSUME,		/* Chain starts full */
53 	ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,	/* Chain starts empty */
54 };
55 
56 enum ecore_chain_cnt_type {
57 	/* The chain's size/prod/cons are kept in 16-bit variables */
58 	ECORE_CHAIN_CNT_TYPE_U16,
59 
60 	/* The chain's size/prod/cons are kept in 32-bit variables  */
61 	ECORE_CHAIN_CNT_TYPE_U32,
62 };
63 
64 struct ecore_chain_next
65 {
66 	struct regpair	next_phys;
67 	void		*next_virt;
68 };
69 
70 struct ecore_chain_pbl_u16 {
71 	u16	prod_page_idx;
72 	u16	cons_page_idx;
73 };
74 
75 struct ecore_chain_pbl_u32 {
76 	u32	prod_page_idx;
77 	u32	cons_page_idx;
78 };
79 
80 struct ecore_chain_ext_pbl
81 {
82 	dma_addr_t	p_pbl_phys;
83 	void		*p_pbl_virt;
84 };
85 
86 struct ecore_chain_u16 {
87 	/* Cyclic index of next element to produce/consme */
88 	u16	prod_idx;
89 	u16	cons_idx;
90 };
91 
92 struct ecore_chain_u32 {
93 	/* Cyclic index of next element to produce/consme */
94 	u32	prod_idx;
95 	u32	cons_idx;
96 };
97 
98 struct ecore_chain
99 {
100 	/* fastpath portion of the chain - required for commands such
101 	 * as produce / consume.
102 	 */
103 	/* Point to next element to produce/consume */
104 	void				*p_prod_elem;
105 	void				*p_cons_elem;
106 
107 	/* Fastpath portions of the PBL [if exists] */
108 
109 	struct {
110 		/* Table for keeping the virtual addresses of the chain pages,
111 		 * respectively to the physical addresses in the pbl table.
112 		 */
113 		void		**pp_virt_addr_tbl;
114 
115 		union {
116 			struct ecore_chain_pbl_u16	pbl_u16;
117 			struct ecore_chain_pbl_u32	pbl_u32;
118 		} c;
119 	} pbl;
120 
121 	union {
122 		struct ecore_chain_u16	chain16;
123 		struct ecore_chain_u32	chain32;
124 	} u;
125 
126 	/* Capacity counts only usable elements */
127 	u32				capacity;
128 	u32				page_cnt;
129 
130 	/* A u8 would suffice for mode, but it would save as a lot of headaches
131 	 * on castings & defaults.
132 	 */
133 	enum ecore_chain_mode		mode;
134 
135 	/* Elements information for fast calculations */
136 	u16				elem_per_page;
137 	u16				elem_per_page_mask;
138 	u16				elem_size;
139 	u16				next_page_mask;
140 	u16				usable_per_page;
141 	u8				elem_unusable;
142 
143 	u8				cnt_type;
144 
145 	/* Slowpath of the chain - required for initialization and destruction,
146 	 * but isn't involved in regular functionality.
147 	 */
148 
149 	/* Base address of a pre-allocated buffer for pbl */
150 	struct {
151 		dma_addr_t		p_phys_table;
152 		void			*p_virt_table;
153 	} pbl_sp;
154 
155 	/* Address of first page of the chain  - the address is required
156 	 * for fastpath operation [consume/produce] but only for the the SINGLE
157 	 * flavour which isn't considered fastpath [== SPQ].
158 	 */
159 	void				*p_virt_addr;
160 	dma_addr_t			p_phys_addr;
161 
162 	/* Total number of elements [for entire chain] */
163 	u32				size;
164 
165 	u8				intended_use;
166 
167 	/* TBD - do we really need this? Couldn't find usage for it */
168 	bool				b_external_pbl;
169 
170 	void				*dp_ctx;
171 };
172 
173 #define ECORE_CHAIN_PBL_ENTRY_SIZE	(8)
174 #define ECORE_CHAIN_PAGE_SIZE		(0x1000)
175 #define ELEMS_PER_PAGE(elem_size)	(ECORE_CHAIN_PAGE_SIZE/(elem_size))
176 
177 #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)		\
178 	  ((mode == ECORE_CHAIN_MODE_NEXT_PTR) ? 		\
179 	   (u8)(1 + ((sizeof(struct ecore_chain_next)-1) /	\
180 		     (elem_size))) : 0)
181 
182 #define USABLE_ELEMS_PER_PAGE(elem_size, mode)			\
183 	  ((u32) (ELEMS_PER_PAGE(elem_size) - 			\
184 	  	  UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
185 
186 #define ECORE_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode)		\
187 	DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
188 
189 #define is_chain_u16(p)	((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U16)
190 #define is_chain_u32(p)	((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U32)
191 
192 /* Accessors */
193 static OSAL_INLINE u16 ecore_chain_get_prod_idx(struct ecore_chain *p_chain)
194 {
195 	OSAL_ASSERT(is_chain_u16(p_chain));
196 	return p_chain->u.chain16.prod_idx;
197 }
198 
199 #ifndef LINUX_REMOVE
200 static OSAL_INLINE u32 ecore_chain_get_prod_idx_u32(struct ecore_chain *p_chain)
201 {
202 	OSAL_ASSERT(is_chain_u32(p_chain));
203 	return p_chain->u.chain32.prod_idx;
204 }
205 #endif
206 
207 static OSAL_INLINE u16 ecore_chain_get_cons_idx(struct ecore_chain *p_chain)
208 {
209 	OSAL_ASSERT(is_chain_u16(p_chain));
210 	return p_chain->u.chain16.cons_idx;
211 }
212 
213 static OSAL_INLINE u32 ecore_chain_get_cons_idx_u32(struct ecore_chain *p_chain)
214 {
215 	OSAL_ASSERT(is_chain_u32(p_chain));
216 	return p_chain->u.chain32.cons_idx;
217 }
218 
219 /* FIXME:
220  * Should create OSALs for the below definitions.
221  * For Linux, replace them with the existing U16_MAX and U32_MAX, and handle
222  * kernel versions that lack them.
223  */
224 #define ECORE_U16_MAX	((u16)~0U)
225 #define ECORE_U32_MAX	((u32)~0U)
226 
227 static OSAL_INLINE u16 ecore_chain_get_elem_left(struct ecore_chain *p_chain)
228 {
229 	u16 used;
230 
231 	OSAL_ASSERT(is_chain_u16(p_chain));
232 
233 	used = (u16)(((u32)ECORE_U16_MAX + 1 +
234 		      (u32)(p_chain->u.chain16.prod_idx)) -
235 		     (u32)p_chain->u.chain16.cons_idx);
236 	if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR)
237 		used -= (((u32)ECORE_U16_MAX + 1) / p_chain->elem_per_page +
238 			 p_chain->u.chain16.prod_idx / p_chain->elem_per_page -
239 			 p_chain->u.chain16.cons_idx / p_chain->elem_per_page) %
240 			p_chain->page_cnt;
241 
242 	return (u16)(p_chain->capacity - used);
243 }
244 
245 static OSAL_INLINE u32
246 ecore_chain_get_elem_left_u32(struct ecore_chain *p_chain)
247 {
248 	u32 used;
249 
250 	OSAL_ASSERT(is_chain_u32(p_chain));
251 
252 	used = (u32)(((u64)ECORE_U32_MAX + 1 +
253 		      (u64)(p_chain->u.chain32.prod_idx)) -
254 		     (u64)p_chain->u.chain32.cons_idx);
255 	if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR)
256 		used -= (((u64)ECORE_U32_MAX + 1) / p_chain->elem_per_page +
257 			 p_chain->u.chain32.prod_idx / p_chain->elem_per_page -
258 			 p_chain->u.chain32.cons_idx / p_chain->elem_per_page) %
259 			p_chain->page_cnt;
260 
261 	return p_chain->capacity - used;
262 }
263 
264 #ifndef LINUX_REMOVE
265 static OSAL_INLINE u8 ecore_chain_is_full(struct ecore_chain *p_chain)
266 {
267 	if (is_chain_u16(p_chain))
268 		return (ecore_chain_get_elem_left(p_chain) ==
269 			p_chain->capacity);
270 	else
271 		return (ecore_chain_get_elem_left_u32(p_chain) ==
272 			p_chain->capacity);
273 }
274 
275 static OSAL_INLINE u8 ecore_chain_is_empty(struct ecore_chain *p_chain)
276 {
277 	if (is_chain_u16(p_chain))
278 		return (ecore_chain_get_elem_left(p_chain) == 0);
279 	else
280 		return (ecore_chain_get_elem_left_u32(p_chain) == 0);
281 }
282 
283 static OSAL_INLINE
284 u16 ecore_chain_get_elem_per_page(struct ecore_chain *p_chain)
285 {
286 	return p_chain->elem_per_page;
287 }
288 #endif
289 
290 static OSAL_INLINE
291 u16 ecore_chain_get_usable_per_page(struct ecore_chain *p_chain)
292 {
293 	return p_chain->usable_per_page;
294 }
295 
296 static OSAL_INLINE
297 u8 ecore_chain_get_unusable_per_page(struct ecore_chain *p_chain)
298 {
299 	return p_chain->elem_unusable;
300 }
301 
302 #ifndef LINUX_REMOVE
303 static OSAL_INLINE u32 ecore_chain_get_size(struct ecore_chain *p_chain)
304 {
305 	return p_chain->size;
306 }
307 #endif
308 
309 static OSAL_INLINE u32 ecore_chain_get_page_cnt(struct ecore_chain *p_chain)
310 {
311 	return p_chain->page_cnt;
312 }
313 
314 static OSAL_INLINE
315 dma_addr_t ecore_chain_get_pbl_phys(struct ecore_chain *p_chain)
316 {
317 	return p_chain->pbl_sp.p_phys_table;
318 }
319 
320 /**
321  * @brief ecore_chain_advance_page -
322  *
323  * Advance the next element accros pages for a linked chain
324  *
325  * @param p_chain
326  * @param p_next_elem
327  * @param idx_to_inc
328  * @param page_to_inc
329  */
330 static OSAL_INLINE void
331 ecore_chain_advance_page(struct ecore_chain *p_chain, void **p_next_elem,
332 			 void *idx_to_inc, void *page_to_inc)
333 {
334 	struct ecore_chain_next *p_next = OSAL_NULL;
335 	u32 page_index = 0;
336 
337 	switch(p_chain->mode) {
338 	case ECORE_CHAIN_MODE_NEXT_PTR:
339 		p_next = (struct ecore_chain_next *)(*p_next_elem);
340 		*p_next_elem = p_next->next_virt;
341 		if (is_chain_u16(p_chain))
342 			*(u16 *)idx_to_inc += (u16)p_chain->elem_unusable;
343 		else
344 			*(u32 *)idx_to_inc += (u16)p_chain->elem_unusable;
345 		break;
346 	case ECORE_CHAIN_MODE_SINGLE:
347 		*p_next_elem = p_chain->p_virt_addr;
348 		break;
349 	case ECORE_CHAIN_MODE_PBL:
350 		if (is_chain_u16(p_chain)) {
351 			if (++(*(u16 *)page_to_inc) == p_chain->page_cnt)
352 				*(u16 *)page_to_inc = 0;
353 			page_index = *(u16 *)page_to_inc;
354 		} else {
355 			if (++(*(u32 *)page_to_inc) == p_chain->page_cnt)
356 				*(u32 *)page_to_inc = 0;
357 			page_index = *(u32 *)page_to_inc;
358 		}
359 		*p_next_elem = p_chain->pbl.pp_virt_addr_tbl[page_index];
360 	}
361 }
362 
363 #define is_unusable_idx(p, idx)			\
364 	(((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
365 
366 #define is_unusable_idx_u32(p, idx)		\
367 	(((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
368 
369 #define is_unusable_next_idx(p, idx)		\
370 	((((p)->u.chain16.idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
371 
372 #define is_unusable_next_idx_u32(p, idx)	\
373 	((((p)->u.chain32.idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
374 
375 #define test_and_skip(p, idx)							\
376 	do {									\
377 		if (is_chain_u16(p)) {						\
378 			if (is_unusable_idx(p, idx))				\
379 				(p)->u.chain16.idx += (p)->elem_unusable;	\
380 		} else {							\
381 			if (is_unusable_idx_u32(p, idx))			\
382 				(p)->u.chain32.idx += (p)->elem_unusable;	\
383 		}								\
384 	} while (0)
385 
386 #ifndef LINUX_REMOVE
387 /**
388  * @brief ecore_chain_return_multi_produced -
389  *
390  * A chain in which the driver "Produces" elements should use this API
391  * to indicate previous produced elements are now consumed.
392  *
393  * @param p_chain
394  * @param num
395  */
396 static OSAL_INLINE
397 void ecore_chain_return_multi_produced(struct ecore_chain *p_chain, u32 num)
398 {
399 	if (is_chain_u16(p_chain))
400 		p_chain->u.chain16.cons_idx += (u16)num;
401 	else
402 		p_chain->u.chain32.cons_idx += num;
403 	test_and_skip(p_chain, cons_idx);
404 }
405 #endif
406 
407 /**
408  * @brief ecore_chain_return_produced -
409  *
410  * A chain in which the driver "Produces" elements should use this API
411  * to indicate previous produced elements are now consumed.
412  *
413  * @param p_chain
414  */
415 static OSAL_INLINE void ecore_chain_return_produced(struct ecore_chain *p_chain)
416 {
417 	if (is_chain_u16(p_chain))
418 		p_chain->u.chain16.cons_idx++;
419 	else
420 		p_chain->u.chain32.cons_idx++;
421 	test_and_skip(p_chain, cons_idx);
422 }
423 
424 /**
425  * @brief ecore_chain_produce -
426  *
427  * A chain in which the driver "Produces" elements should use this to get
428  * a pointer to the next element which can be "Produced". It's driver
429  * responsibility to validate that the chain has room for new element.
430  *
431  * @param p_chain
432  *
433  * @return void*, a pointer to next element
434  */
435 static OSAL_INLINE void *ecore_chain_produce(struct ecore_chain *p_chain)
436 {
437 	void *p_ret = OSAL_NULL, *p_prod_idx, *p_prod_page_idx;
438 
439 	if (is_chain_u16(p_chain)) {
440 		if ((p_chain->u.chain16.prod_idx &
441 		     p_chain->elem_per_page_mask) ==
442 		    p_chain->next_page_mask) {
443 			p_prod_idx = &p_chain->u.chain16.prod_idx;
444 			p_prod_page_idx = &p_chain->pbl.c.pbl_u16.prod_page_idx;
445 			ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem,
446 						 p_prod_idx, p_prod_page_idx);
447 		}
448 		p_chain->u.chain16.prod_idx++;
449 	} else {
450 		if ((p_chain->u.chain32.prod_idx &
451 		     p_chain->elem_per_page_mask) ==
452 		    p_chain->next_page_mask) {
453 			p_prod_idx = &p_chain->u.chain32.prod_idx;
454 			p_prod_page_idx = &p_chain->pbl.c.pbl_u32.prod_page_idx;
455 			ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem,
456 						 p_prod_idx, p_prod_page_idx);
457 		}
458 		p_chain->u.chain32.prod_idx++;
459 	}
460 
461 	p_ret = p_chain->p_prod_elem;
462 	p_chain->p_prod_elem = (void*)(((u8*)p_chain->p_prod_elem) +
463 				       p_chain->elem_size);
464 
465 	return p_ret;
466 }
467 
468 /**
469  * @brief ecore_chain_get_capacity -
470  *
471  * Get the maximum number of BDs in chain
472  *
473  * @param p_chain
474  * @param num
475  *
476  * @return number of unusable BDs
477  */
478 static OSAL_INLINE u32 ecore_chain_get_capacity(struct ecore_chain *p_chain)
479 {
480 	return p_chain->capacity;
481 }
482 
483 /**
484  * @brief ecore_chain_recycle_consumed -
485  *
486  * Returns an element which was previously consumed;
487  * Increments producers so they could be written to FW.
488  *
489  * @param p_chain
490  */
491 static OSAL_INLINE
492 void ecore_chain_recycle_consumed(struct ecore_chain *p_chain)
493 {
494 	test_and_skip(p_chain, prod_idx);
495 	if (is_chain_u16(p_chain))
496 		p_chain->u.chain16.prod_idx++;
497 	else
498 		p_chain->u.chain32.prod_idx++;
499 }
500 
501 /**
502  * @brief ecore_chain_consume -
503  *
504  * A Chain in which the driver utilizes data written by a different source
505  * (i.e., FW) should use this to access passed buffers.
506  *
507  * @param p_chain
508  *
509  * @return void*, a pointer to the next buffer written
510  */
511 static OSAL_INLINE void *ecore_chain_consume(struct ecore_chain *p_chain)
512 {
513 	void *p_ret = OSAL_NULL, *p_cons_idx, *p_cons_page_idx;
514 
515 	if (is_chain_u16(p_chain)) {
516 		if ((p_chain->u.chain16.cons_idx &
517 		     p_chain->elem_per_page_mask) ==
518 		    p_chain->next_page_mask) {
519 			p_cons_idx = &p_chain->u.chain16.cons_idx;
520 			p_cons_page_idx = &p_chain->pbl.c.pbl_u16.cons_page_idx;
521 			ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem,
522 						 p_cons_idx, p_cons_page_idx);
523 		}
524 		p_chain->u.chain16.cons_idx++;
525 	} else {
526 		if ((p_chain->u.chain32.cons_idx &
527 		     p_chain->elem_per_page_mask) ==
528 		    p_chain->next_page_mask) {
529 			p_cons_idx = &p_chain->u.chain32.cons_idx;
530 			p_cons_page_idx = &p_chain->pbl.c.pbl_u32.cons_page_idx;
531 			ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem,
532 						 p_cons_idx, p_cons_page_idx);
533 		}
534 		p_chain->u.chain32.cons_idx++;
535 	}
536 
537 	p_ret = p_chain->p_cons_elem;
538 	p_chain->p_cons_elem = (void*)(((u8*)p_chain->p_cons_elem) +
539 				       p_chain->elem_size);
540 
541 	return p_ret;
542 }
543 
544 /**
545  * @brief ecore_chain_reset -
546  *
547  * Resets the chain to its start state
548  *
549  * @param p_chain pointer to a previously allocted chain
550  */
551 static OSAL_INLINE void ecore_chain_reset(struct ecore_chain *p_chain)
552 {
553 	u32 i;
554 
555 	if (is_chain_u16(p_chain)) {
556 		p_chain->u.chain16.prod_idx = 0;
557 		p_chain->u.chain16.cons_idx = 0;
558 	} else {
559 		p_chain->u.chain32.prod_idx = 0;
560 		p_chain->u.chain32.cons_idx = 0;
561 	}
562 	p_chain->p_cons_elem = p_chain->p_virt_addr;
563 	p_chain->p_prod_elem = p_chain->p_virt_addr;
564 
565 	if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
566 		/* Use "page_cnt-1" as a reset value for the prod/cons page's
567 		 * indices, to avoid unnecessary page advancing on the first
568 		 * call to ecore_chain_produce/consume. Instead, the indices
569 		 * will be advanced to page_cnt and then will be wrapped to 0.
570 		 */
571 		u32 reset_val = p_chain->page_cnt - 1;
572 
573 		if (is_chain_u16(p_chain)) {
574 			p_chain->pbl.c.pbl_u16.prod_page_idx = (u16)reset_val;
575 			p_chain->pbl.c.pbl_u16.cons_page_idx = (u16)reset_val;
576 		} else {
577 			p_chain->pbl.c.pbl_u32.prod_page_idx = reset_val;
578 			p_chain->pbl.c.pbl_u32.cons_page_idx = reset_val;
579 		}
580 	}
581 
582 	switch (p_chain->intended_use) {
583 	case ECORE_CHAIN_USE_TO_CONSUME:
584 		/* produce empty elements */
585 		for (i = 0; i < p_chain->capacity; i++)
586 			ecore_chain_recycle_consumed(p_chain);
587 		break;
588 
589 	case ECORE_CHAIN_USE_TO_CONSUME_PRODUCE:
590 	case ECORE_CHAIN_USE_TO_PRODUCE:
591 	default:
592 		/* Do nothing */
593 		break;
594 	}
595 }
596 
597 /**
598  * @brief ecore_chain_init_params -
599  *
600  * Initalizes a basic chain struct
601  *
602  * @param p_chain
603  * @param page_cnt	number of pages in the allocated buffer
604  * @param elem_size	size of each element in the chain
605  * @param intended_use
606  * @param mode
607  * @param cnt_type
608  * @param dp_ctx
609  */
610 static OSAL_INLINE void
611 ecore_chain_init_params(struct ecore_chain *p_chain, u32 page_cnt, u8 elem_size,
612 			enum ecore_chain_use_mode intended_use,
613 			enum ecore_chain_mode mode,
614 			enum ecore_chain_cnt_type cnt_type, void *dp_ctx)
615 {
616 	/* chain fixed parameters */
617 	p_chain->p_virt_addr = OSAL_NULL;
618 	p_chain->p_phys_addr = 0;
619 	p_chain->elem_size = elem_size;
620 	p_chain->intended_use = (u8)intended_use;
621 	p_chain->mode = mode;
622 	p_chain->cnt_type = (u8)cnt_type;
623 
624 	p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
625 	p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode);
626 	p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
627 	p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
628 	p_chain->next_page_mask = (p_chain->usable_per_page &
629 				   p_chain->elem_per_page_mask);
630 
631 	p_chain->page_cnt = page_cnt;
632 	p_chain->capacity = p_chain->usable_per_page * page_cnt;
633 	p_chain->size = p_chain->elem_per_page * page_cnt;
634 	p_chain->b_external_pbl = false;
635 	p_chain->pbl_sp.p_phys_table = 0;
636 	p_chain->pbl_sp.p_virt_table = OSAL_NULL;
637 	p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
638 
639 	p_chain->dp_ctx = dp_ctx;
640 }
641 
642 /**
643  * @brief ecore_chain_init_mem -
644  *
645  * Initalizes a basic chain struct with its chain buffers
646  *
647  * @param p_chain
648  * @param p_virt_addr	virtual address of allocated buffer's beginning
649  * @param p_phys_addr	physical address of allocated buffer's beginning
650  *
651  */
652 static OSAL_INLINE void ecore_chain_init_mem(struct ecore_chain *p_chain,
653 					     void *p_virt_addr,
654 					     dma_addr_t p_phys_addr)
655 {
656 	p_chain->p_virt_addr = p_virt_addr;
657 	p_chain->p_phys_addr = p_phys_addr;
658 }
659 
660 /**
661  * @brief ecore_chain_init_pbl_mem -
662  *
663  * Initalizes a basic chain struct with its pbl buffers
664  *
665  * @param p_chain
666  * @param p_virt_pbl	pointer to a pre allocated side table which will hold
667  *                      virtual page addresses.
668  * @param p_phys_pbl	pointer to a pre-allocated side table which will hold
669  *                      physical page addresses.
670  * @param pp_virt_addr_tbl
671  *                      pointer to a pre-allocated side table which will hold
672  *                      the virtual addresses of the chain pages.
673  *
674  */
675 static OSAL_INLINE void ecore_chain_init_pbl_mem(struct ecore_chain *p_chain,
676 						 void *p_virt_pbl,
677 						 dma_addr_t p_phys_pbl,
678 						 void **pp_virt_addr_tbl)
679 {
680 	p_chain->pbl_sp.p_phys_table = p_phys_pbl;
681 	p_chain->pbl_sp.p_virt_table = p_virt_pbl;
682 	p_chain->pbl.pp_virt_addr_tbl = pp_virt_addr_tbl;
683 }
684 
685 /**
686  * @brief ecore_chain_init_next_ptr_elem -
687  *
688  * Initalizes a next pointer element
689  *
690  * @param p_chain
691  * @param p_virt_curr	virtual address of a chain page of which the next
692  *                      pointer element is initialized
693  * @param p_virt_next	virtual address of the next chain page
694  * @param p_phys_next	physical address of the next chain page
695  *
696  */
697 static OSAL_INLINE void
698 ecore_chain_init_next_ptr_elem(struct ecore_chain *p_chain, void *p_virt_curr,
699 			       void *p_virt_next, dma_addr_t p_phys_next)
700 {
701 	struct ecore_chain_next *p_next;
702 	u32 size;
703 
704 	size = p_chain->elem_size * p_chain->usable_per_page;
705 	p_next = (struct ecore_chain_next *)((u8 *)p_virt_curr + size);
706 
707 	DMA_REGPAIR_LE(p_next->next_phys, p_phys_next);
708 
709 	p_next->next_virt = p_virt_next;
710 }
711 
712 /**
713  * @brief ecore_chain_get_last_elem -
714  *
715  * Returns a pointer to the last element of the chain
716  *
717  * @param p_chain
718  *
719  * @return void*
720  */
721 static OSAL_INLINE void *ecore_chain_get_last_elem(struct ecore_chain *p_chain)
722 {
723 	struct ecore_chain_next *p_next = OSAL_NULL;
724 	void *p_virt_addr = OSAL_NULL;
725 	u32 size, last_page_idx;
726 
727 	if (!p_chain->p_virt_addr)
728 		goto out;
729 
730 	switch (p_chain->mode) {
731 	case ECORE_CHAIN_MODE_NEXT_PTR:
732 		size = p_chain->elem_size * p_chain->usable_per_page;
733 		p_virt_addr = p_chain->p_virt_addr;
734 		p_next = (struct ecore_chain_next *)((u8 *)p_virt_addr + size);
735 		while (p_next->next_virt != p_chain->p_virt_addr) {
736 			p_virt_addr = p_next->next_virt;
737 			p_next = (struct ecore_chain_next *)((u8 *)p_virt_addr +
738 							     size);
739 		}
740 		break;
741 	case ECORE_CHAIN_MODE_SINGLE:
742 		p_virt_addr = p_chain->p_virt_addr;
743 		break;
744 	case ECORE_CHAIN_MODE_PBL:
745 		last_page_idx = p_chain->page_cnt - 1;
746 		p_virt_addr = p_chain->pbl.pp_virt_addr_tbl[last_page_idx];
747 		break;
748 	}
749 	/* p_virt_addr points at this stage to the last page of the chain */
750 	size = p_chain->elem_size * (p_chain->usable_per_page - 1);
751 	p_virt_addr = (u8 *)p_virt_addr + size;
752 out:
753 	return p_virt_addr;
754 }
755 
756 /**
757  * @brief ecore_chain_set_prod - sets the prod to the given value
758  *
759  * @param prod_idx
760  * @param p_prod_elem
761  */
762 static OSAL_INLINE void ecore_chain_set_prod(struct ecore_chain *p_chain,
763 					     u32 prod_idx, void *p_prod_elem)
764 {
765 	if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
766 		/* Use "prod_idx-1" since ecore_chain_produce() advances the
767 		 * page index before the producer index when getting to
768 		 * "next_page_mask".
769 		 */
770 		u32 elem_idx =
771 			(prod_idx - 1 + p_chain->capacity) % p_chain->capacity;
772 		u32 page_idx = elem_idx / p_chain->elem_per_page;
773 
774 		if (is_chain_u16(p_chain))
775 			p_chain->pbl.c.pbl_u16.prod_page_idx = (u16)page_idx;
776 		else
777 			p_chain->pbl.c.pbl_u32.prod_page_idx = page_idx;
778 	}
779 
780 	if (is_chain_u16(p_chain))
781 		p_chain->u.chain16.prod_idx = (u16)prod_idx;
782 	else
783 		p_chain->u.chain32.prod_idx = prod_idx;
784 	p_chain->p_prod_elem = p_prod_elem;
785 }
786 
787 /**
788  * @brief ecore_chain_set_cons - sets the cons to the given value
789  *
790  * @param cons_idx
791  * @param p_cons_elem
792  */
793 static OSAL_INLINE void ecore_chain_set_cons(struct ecore_chain *p_chain,
794 					     u32 cons_idx, void *p_cons_elem)
795 {
796 	if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
797 		/* Use "cons_idx-1" since ecore_chain_consume() advances the
798 		 * page index before the consumer index when getting to
799 		 * "next_page_mask".
800 		 */
801 		u32 elem_idx =
802 			(cons_idx - 1 + p_chain->capacity) % p_chain->capacity;
803 		u32 page_idx = elem_idx / p_chain->elem_per_page;
804 
805 		if (is_chain_u16(p_chain))
806 			p_chain->pbl.c.pbl_u16.cons_page_idx = (u16)page_idx;
807 		else
808 			p_chain->pbl.c.pbl_u32.cons_page_idx = page_idx;
809 	}
810 
811 	if (is_chain_u16(p_chain))
812 		p_chain->u.chain16.cons_idx = (u16)cons_idx;
813 	else
814 		p_chain->u.chain32.cons_idx = cons_idx;
815 
816 	p_chain->p_cons_elem = p_cons_elem;
817 }
818 
819 /**
820  * @brief ecore_chain_pbl_zero_mem - set chain memory to 0
821  *
822  * @param p_chain
823  */
824 static OSAL_INLINE void ecore_chain_pbl_zero_mem(struct ecore_chain *p_chain)
825 {
826 	u32 i, page_cnt;
827 
828 	if (p_chain->mode != ECORE_CHAIN_MODE_PBL)
829 		return;
830 
831 	page_cnt = ecore_chain_get_page_cnt(p_chain);
832 
833 	for (i = 0; i < page_cnt; i++)
834 		OSAL_MEM_ZERO(p_chain->pbl.pp_virt_addr_tbl[i],
835 			      ECORE_CHAIN_PAGE_SIZE);
836 }
837 
838 int ecore_chain_print(struct ecore_chain *p_chain, char *buffer,
839 		      u32 buffer_size, u32 *element_indx, u32 stop_indx,
840 		      bool print_metadata,
841 		      int (*func_ptr_print_element)(struct ecore_chain *p_chain,
842 						    void *p_element,
843 						    char *buffer),
844 		      int (*func_ptr_print_metadata)(struct ecore_chain *p_chain,
845 						     char *buffer));
846 
847 #endif /* __ECORE_CHAIN_H__ */
848