1 /*- 2 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 3 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org> 4 * Copyright (c) 2000, BSDi 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bus.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/limits.h> 39 #include <sys/linker.h> 40 #include <sys/fcntl.h> 41 #include <sys/conf.h> 42 #include <sys/kernel.h> 43 #include <sys/queue.h> 44 #include <sys/sysctl.h> 45 #include <sys/endian.h> 46 47 #include <vm/vm.h> 48 #include <vm/pmap.h> 49 #include <vm/vm_extern.h> 50 51 #include <sys/bus.h> 52 #include <machine/bus.h> 53 #include <sys/rman.h> 54 #include <machine/resource.h> 55 #include <machine/stdarg.h> 56 57 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 58 #include <machine/intr_machdep.h> 59 #endif 60 61 #include <sys/pciio.h> 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 #include <dev/pci/pci_private.h> 65 66 #ifdef PCI_IOV 67 #include <sys/nv.h> 68 #include <dev/pci/pci_iov_private.h> 69 #endif 70 71 #include <dev/usb/controller/xhcireg.h> 72 #include <dev/usb/controller/ehcireg.h> 73 #include <dev/usb/controller/ohcireg.h> 74 #include <dev/usb/controller/uhcireg.h> 75 76 #include "pcib_if.h" 77 #include "pci_if.h" 78 79 #define PCIR_IS_BIOS(cfg, reg) \ 80 (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \ 81 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1)) 82 83 static int pci_has_quirk(uint32_t devid, int quirk); 84 static pci_addr_t pci_mapbase(uint64_t mapreg); 85 static const char *pci_maptype(uint64_t mapreg); 86 static int pci_maprange(uint64_t mapreg); 87 static pci_addr_t pci_rombase(uint64_t mapreg); 88 static int pci_romsize(uint64_t testval); 89 static void pci_fixancient(pcicfgregs *cfg); 90 static int pci_printf(pcicfgregs *cfg, const char *fmt, ...); 91 92 static int pci_porten(device_t dev); 93 static int pci_memen(device_t dev); 94 static void pci_assign_interrupt(device_t bus, device_t dev, 95 int force_route); 96 static int pci_add_map(device_t bus, device_t dev, int reg, 97 struct resource_list *rl, int force, int prefetch); 98 static int pci_probe(device_t dev); 99 static int pci_attach(device_t dev); 100 static int pci_detach(device_t dev); 101 static void pci_load_vendor_data(void); 102 static int pci_describe_parse_line(char **ptr, int *vendor, 103 int *device, char **desc); 104 static char *pci_describe_device(device_t dev); 105 static int pci_modevent(module_t mod, int what, void *arg); 106 static void pci_hdrtypedata(device_t pcib, int b, int s, int f, 107 pcicfgregs *cfg); 108 static void pci_read_cap(device_t pcib, pcicfgregs *cfg); 109 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, 110 int reg, uint32_t *data); 111 #if 0 112 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, 113 int reg, uint32_t data); 114 #endif 115 static void pci_read_vpd(device_t pcib, pcicfgregs *cfg); 116 static void pci_mask_msix(device_t dev, u_int index); 117 static void pci_unmask_msix(device_t dev, u_int index); 118 static int pci_msi_blacklisted(void); 119 static int pci_msix_blacklisted(void); 120 static void pci_resume_msi(device_t dev); 121 static void pci_resume_msix(device_t dev); 122 static int pci_remap_intr_method(device_t bus, device_t dev, 123 u_int irq); 124 125 static int pci_get_id_method(device_t dev, device_t child, 126 enum pci_id_type type, uintptr_t *rid); 127 128 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d, 129 int b, int s, int f, uint16_t vid, uint16_t did); 130 131 static device_method_t pci_methods[] = { 132 /* Device interface */ 133 DEVMETHOD(device_probe, pci_probe), 134 DEVMETHOD(device_attach, pci_attach), 135 DEVMETHOD(device_detach, pci_detach), 136 DEVMETHOD(device_shutdown, bus_generic_shutdown), 137 DEVMETHOD(device_suspend, bus_generic_suspend), 138 DEVMETHOD(device_resume, pci_resume), 139 140 /* Bus interface */ 141 DEVMETHOD(bus_print_child, pci_print_child), 142 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch), 143 DEVMETHOD(bus_read_ivar, pci_read_ivar), 144 DEVMETHOD(bus_write_ivar, pci_write_ivar), 145 DEVMETHOD(bus_driver_added, pci_driver_added), 146 DEVMETHOD(bus_setup_intr, pci_setup_intr), 147 DEVMETHOD(bus_teardown_intr, pci_teardown_intr), 148 149 DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag), 150 DEVMETHOD(bus_get_resource_list,pci_get_resource_list), 151 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 152 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 153 DEVMETHOD(bus_delete_resource, pci_delete_resource), 154 DEVMETHOD(bus_alloc_resource, pci_alloc_resource), 155 DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), 156 DEVMETHOD(bus_release_resource, pci_release_resource), 157 DEVMETHOD(bus_activate_resource, pci_activate_resource), 158 DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), 159 DEVMETHOD(bus_child_deleted, pci_child_deleted), 160 DEVMETHOD(bus_child_detached, pci_child_detached), 161 DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method), 162 DEVMETHOD(bus_child_location_str, pci_child_location_str_method), 163 DEVMETHOD(bus_remap_intr, pci_remap_intr_method), 164 DEVMETHOD(bus_suspend_child, pci_suspend_child), 165 DEVMETHOD(bus_resume_child, pci_resume_child), 166 DEVMETHOD(bus_rescan, pci_rescan_method), 167 168 /* PCI interface */ 169 DEVMETHOD(pci_read_config, pci_read_config_method), 170 DEVMETHOD(pci_write_config, pci_write_config_method), 171 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method), 172 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method), 173 DEVMETHOD(pci_enable_io, pci_enable_io_method), 174 DEVMETHOD(pci_disable_io, pci_disable_io_method), 175 DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method), 176 DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method), 177 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method), 178 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method), 179 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method), 180 DEVMETHOD(pci_find_cap, pci_find_cap_method), 181 DEVMETHOD(pci_find_extcap, pci_find_extcap_method), 182 DEVMETHOD(pci_find_htcap, pci_find_htcap_method), 183 DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method), 184 DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method), 185 DEVMETHOD(pci_enable_msi, pci_enable_msi_method), 186 DEVMETHOD(pci_enable_msix, pci_enable_msix_method), 187 DEVMETHOD(pci_disable_msi, pci_disable_msi_method), 188 DEVMETHOD(pci_remap_msix, pci_remap_msix_method), 189 DEVMETHOD(pci_release_msi, pci_release_msi_method), 190 DEVMETHOD(pci_msi_count, pci_msi_count_method), 191 DEVMETHOD(pci_msix_count, pci_msix_count_method), 192 DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method), 193 DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method), 194 DEVMETHOD(pci_get_id, pci_get_id_method), 195 DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method), 196 DEVMETHOD(pci_child_added, pci_child_added_method), 197 #ifdef PCI_IOV 198 DEVMETHOD(pci_iov_attach, pci_iov_attach_method), 199 DEVMETHOD(pci_iov_detach, pci_iov_detach_method), 200 DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method), 201 #endif 202 203 DEVMETHOD_END 204 }; 205 206 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc)); 207 208 static devclass_t pci_devclass; 209 DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL); 210 MODULE_VERSION(pci, 1); 211 212 static char *pci_vendordata; 213 static size_t pci_vendordata_size; 214 215 struct pci_quirk { 216 uint32_t devid; /* Vendor/device of the card */ 217 int type; 218 #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */ 219 #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */ 220 #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */ 221 #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */ 222 #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */ 223 #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */ 224 int arg1; 225 int arg2; 226 }; 227 228 static const struct pci_quirk pci_quirks[] = { 229 /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */ 230 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 231 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 232 /* As does the Serverworks OSB4 (the SMBus mapping register) */ 233 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 }, 234 235 /* 236 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge 237 * or the CMIC-SL (AKA ServerWorks GC_LE). 238 */ 239 { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 240 { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 241 242 /* 243 * MSI doesn't work on earlier Intel chipsets including 244 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855. 245 */ 246 { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 247 { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 248 { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 249 { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 250 { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 251 { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 252 { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 253 254 /* 255 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX 256 * bridge. 257 */ 258 { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 259 260 /* 261 * MSI-X allocation doesn't work properly for devices passed through 262 * by VMware up to at least ESXi 5.1. 263 */ 264 { 0x079015ad, PCI_QUIRK_DISABLE_MSIX, 0, 0 }, /* PCI/PCI-X */ 265 { 0x07a015ad, PCI_QUIRK_DISABLE_MSIX, 0, 0 }, /* PCIe */ 266 267 /* 268 * Some virtualization environments emulate an older chipset 269 * but support MSI just fine. QEMU uses the Intel 82440. 270 */ 271 { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 }, 272 273 /* 274 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus 275 * controller depending on SoftPciRst register (PM_IO 0x55 [7]). 276 * It prevents us from attaching hpet(4) when the bit is unset. 277 * Note this quirk only affects SB600 revision A13 and earlier. 278 * For SB600 A21 and later, firmware must set the bit to hide it. 279 * For SB700 and later, it is unused and hardcoded to zero. 280 */ 281 { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 }, 282 283 /* 284 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have 285 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit 286 * of the command register is set. 287 */ 288 { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 289 { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 290 { 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 291 { 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 292 { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 293 294 /* 295 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't 296 * issue MSI interrupts with PCIM_CMD_INTxDIS set either. 297 */ 298 { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */ 299 { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */ 300 { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */ 301 { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */ 302 { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */ 303 { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */ 304 305 { 0 } 306 }; 307 308 /* map register information */ 309 #define PCI_MAPMEM 0x01 /* memory map */ 310 #define PCI_MAPMEMP 0x02 /* prefetchable memory map */ 311 #define PCI_MAPPORT 0x04 /* port map */ 312 313 struct devlist pci_devq; 314 uint32_t pci_generation; 315 uint32_t pci_numdevs = 0; 316 static int pcie_chipset, pcix_chipset; 317 318 /* sysctl vars */ 319 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters"); 320 321 static int pci_enable_io_modes = 1; 322 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN, 323 &pci_enable_io_modes, 1, 324 "Enable I/O and memory bits in the config register. Some BIOSes do not" 325 " enable these bits correctly. We'd like to do this all the time, but" 326 " there are some peripherals that this causes problems with."); 327 328 static int pci_do_realloc_bars = 0; 329 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN, 330 &pci_do_realloc_bars, 0, 331 "Attempt to allocate a new range for any BARs whose original " 332 "firmware-assigned ranges fail to allocate during the initial device scan."); 333 334 static int pci_do_power_nodriver = 0; 335 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN, 336 &pci_do_power_nodriver, 0, 337 "Place a function into D3 state when no driver attaches to it. 0 means" 338 " disable. 1 means conservatively place devices into D3 state. 2 means" 339 " aggressively place devices into D3 state. 3 means put absolutely" 340 " everything in D3 state."); 341 342 int pci_do_power_resume = 1; 343 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN, 344 &pci_do_power_resume, 1, 345 "Transition from D3 -> D0 on resume."); 346 347 int pci_do_power_suspend = 1; 348 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN, 349 &pci_do_power_suspend, 1, 350 "Transition from D0 -> D3 on suspend."); 351 352 static int pci_do_msi = 1; 353 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1, 354 "Enable support for MSI interrupts"); 355 356 static int pci_do_msix = 1; 357 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1, 358 "Enable support for MSI-X interrupts"); 359 360 static int pci_msix_rewrite_table = 0; 361 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN, 362 &pci_msix_rewrite_table, 0, 363 "Rewrite entire MSI-X table when updating MSI-X entries"); 364 365 static int pci_honor_msi_blacklist = 1; 366 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN, 367 &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X"); 368 369 #if defined(__i386__) || defined(__amd64__) 370 static int pci_usb_takeover = 1; 371 #else 372 static int pci_usb_takeover = 0; 373 #endif 374 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN, 375 &pci_usb_takeover, 1, 376 "Enable early takeover of USB controllers. Disable this if you depend on" 377 " BIOS emulation of USB devices, that is you use USB devices (like" 378 " keyboard or mouse) but do not load USB drivers"); 379 380 static int pci_clear_bars; 381 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0, 382 "Ignore firmware-assigned resources for BARs."); 383 384 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 385 static int pci_clear_buses; 386 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0, 387 "Ignore firmware-assigned bus numbers."); 388 #endif 389 390 static int pci_enable_ari = 1; 391 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari, 392 0, "Enable support for PCIe Alternative RID Interpretation"); 393 394 static int 395 pci_has_quirk(uint32_t devid, int quirk) 396 { 397 const struct pci_quirk *q; 398 399 for (q = &pci_quirks[0]; q->devid; q++) { 400 if (q->devid == devid && q->type == quirk) 401 return (1); 402 } 403 return (0); 404 } 405 406 /* Find a device_t by bus/slot/function in domain 0 */ 407 408 device_t 409 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func) 410 { 411 412 return (pci_find_dbsf(0, bus, slot, func)); 413 } 414 415 /* Find a device_t by domain/bus/slot/function */ 416 417 device_t 418 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func) 419 { 420 struct pci_devinfo *dinfo; 421 422 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 423 if ((dinfo->cfg.domain == domain) && 424 (dinfo->cfg.bus == bus) && 425 (dinfo->cfg.slot == slot) && 426 (dinfo->cfg.func == func)) { 427 return (dinfo->cfg.dev); 428 } 429 } 430 431 return (NULL); 432 } 433 434 /* Find a device_t by vendor/device ID */ 435 436 device_t 437 pci_find_device(uint16_t vendor, uint16_t device) 438 { 439 struct pci_devinfo *dinfo; 440 441 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 442 if ((dinfo->cfg.vendor == vendor) && 443 (dinfo->cfg.device == device)) { 444 return (dinfo->cfg.dev); 445 } 446 } 447 448 return (NULL); 449 } 450 451 device_t 452 pci_find_class(uint8_t class, uint8_t subclass) 453 { 454 struct pci_devinfo *dinfo; 455 456 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 457 if (dinfo->cfg.baseclass == class && 458 dinfo->cfg.subclass == subclass) { 459 return (dinfo->cfg.dev); 460 } 461 } 462 463 return (NULL); 464 } 465 466 static int 467 pci_printf(pcicfgregs *cfg, const char *fmt, ...) 468 { 469 va_list ap; 470 int retval; 471 472 retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot, 473 cfg->func); 474 va_start(ap, fmt); 475 retval += vprintf(fmt, ap); 476 va_end(ap); 477 return (retval); 478 } 479 480 /* return base address of memory or port map */ 481 482 static pci_addr_t 483 pci_mapbase(uint64_t mapreg) 484 { 485 486 if (PCI_BAR_MEM(mapreg)) 487 return (mapreg & PCIM_BAR_MEM_BASE); 488 else 489 return (mapreg & PCIM_BAR_IO_BASE); 490 } 491 492 /* return map type of memory or port map */ 493 494 static const char * 495 pci_maptype(uint64_t mapreg) 496 { 497 498 if (PCI_BAR_IO(mapreg)) 499 return ("I/O Port"); 500 if (mapreg & PCIM_BAR_MEM_PREFETCH) 501 return ("Prefetchable Memory"); 502 return ("Memory"); 503 } 504 505 /* return log2 of map size decoded for memory or port map */ 506 507 int 508 pci_mapsize(uint64_t testval) 509 { 510 int ln2size; 511 512 testval = pci_mapbase(testval); 513 ln2size = 0; 514 if (testval != 0) { 515 while ((testval & 1) == 0) 516 { 517 ln2size++; 518 testval >>= 1; 519 } 520 } 521 return (ln2size); 522 } 523 524 /* return base address of device ROM */ 525 526 static pci_addr_t 527 pci_rombase(uint64_t mapreg) 528 { 529 530 return (mapreg & PCIM_BIOS_ADDR_MASK); 531 } 532 533 /* return log2 of map size decided for device ROM */ 534 535 static int 536 pci_romsize(uint64_t testval) 537 { 538 int ln2size; 539 540 testval = pci_rombase(testval); 541 ln2size = 0; 542 if (testval != 0) { 543 while ((testval & 1) == 0) 544 { 545 ln2size++; 546 testval >>= 1; 547 } 548 } 549 return (ln2size); 550 } 551 552 /* return log2 of address range supported by map register */ 553 554 static int 555 pci_maprange(uint64_t mapreg) 556 { 557 int ln2range = 0; 558 559 if (PCI_BAR_IO(mapreg)) 560 ln2range = 32; 561 else 562 switch (mapreg & PCIM_BAR_MEM_TYPE) { 563 case PCIM_BAR_MEM_32: 564 ln2range = 32; 565 break; 566 case PCIM_BAR_MEM_1MB: 567 ln2range = 20; 568 break; 569 case PCIM_BAR_MEM_64: 570 ln2range = 64; 571 break; 572 } 573 return (ln2range); 574 } 575 576 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */ 577 578 static void 579 pci_fixancient(pcicfgregs *cfg) 580 { 581 if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) 582 return; 583 584 /* PCI to PCI bridges use header type 1 */ 585 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI) 586 cfg->hdrtype = PCIM_HDRTYPE_BRIDGE; 587 } 588 589 /* extract header type specific config data */ 590 591 static void 592 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg) 593 { 594 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 595 switch (cfg->hdrtype & PCIM_HDRTYPE) { 596 case PCIM_HDRTYPE_NORMAL: 597 cfg->subvendor = REG(PCIR_SUBVEND_0, 2); 598 cfg->subdevice = REG(PCIR_SUBDEV_0, 2); 599 cfg->mingnt = REG(PCIR_MINGNT, 1); 600 cfg->maxlat = REG(PCIR_MAXLAT, 1); 601 cfg->nummaps = PCI_MAXMAPS_0; 602 break; 603 case PCIM_HDRTYPE_BRIDGE: 604 cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1); 605 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1); 606 cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1); 607 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1); 608 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2); 609 cfg->nummaps = PCI_MAXMAPS_1; 610 break; 611 case PCIM_HDRTYPE_CARDBUS: 612 cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1); 613 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1); 614 cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1); 615 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1); 616 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2); 617 cfg->subvendor = REG(PCIR_SUBVEND_2, 2); 618 cfg->subdevice = REG(PCIR_SUBDEV_2, 2); 619 cfg->nummaps = PCI_MAXMAPS_2; 620 break; 621 } 622 #undef REG 623 } 624 625 /* read configuration header into pcicfgregs structure */ 626 struct pci_devinfo * 627 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f) 628 { 629 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 630 uint16_t vid, did; 631 632 vid = REG(PCIR_VENDOR, 2); 633 did = REG(PCIR_DEVICE, 2); 634 if (vid != 0xffff) 635 return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did)); 636 637 return (NULL); 638 } 639 640 struct pci_devinfo * 641 pci_alloc_devinfo_method(device_t dev) 642 { 643 644 return (malloc(sizeof(struct pci_devinfo), M_DEVBUF, 645 M_WAITOK | M_ZERO)); 646 } 647 648 static struct pci_devinfo * 649 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f, 650 uint16_t vid, uint16_t did) 651 { 652 struct pci_devinfo *devlist_entry; 653 pcicfgregs *cfg; 654 655 devlist_entry = PCI_ALLOC_DEVINFO(bus); 656 657 cfg = &devlist_entry->cfg; 658 659 cfg->domain = d; 660 cfg->bus = b; 661 cfg->slot = s; 662 cfg->func = f; 663 cfg->vendor = vid; 664 cfg->device = did; 665 cfg->cmdreg = REG(PCIR_COMMAND, 2); 666 cfg->statreg = REG(PCIR_STATUS, 2); 667 cfg->baseclass = REG(PCIR_CLASS, 1); 668 cfg->subclass = REG(PCIR_SUBCLASS, 1); 669 cfg->progif = REG(PCIR_PROGIF, 1); 670 cfg->revid = REG(PCIR_REVID, 1); 671 cfg->hdrtype = REG(PCIR_HDRTYPE, 1); 672 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1); 673 cfg->lattimer = REG(PCIR_LATTIMER, 1); 674 cfg->intpin = REG(PCIR_INTPIN, 1); 675 cfg->intline = REG(PCIR_INTLINE, 1); 676 677 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0; 678 cfg->hdrtype &= ~PCIM_MFDEV; 679 STAILQ_INIT(&cfg->maps); 680 681 cfg->iov = NULL; 682 683 pci_fixancient(cfg); 684 pci_hdrtypedata(pcib, b, s, f, cfg); 685 686 if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) 687 pci_read_cap(pcib, cfg); 688 689 STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links); 690 691 devlist_entry->conf.pc_sel.pc_domain = cfg->domain; 692 devlist_entry->conf.pc_sel.pc_bus = cfg->bus; 693 devlist_entry->conf.pc_sel.pc_dev = cfg->slot; 694 devlist_entry->conf.pc_sel.pc_func = cfg->func; 695 devlist_entry->conf.pc_hdr = cfg->hdrtype; 696 697 devlist_entry->conf.pc_subvendor = cfg->subvendor; 698 devlist_entry->conf.pc_subdevice = cfg->subdevice; 699 devlist_entry->conf.pc_vendor = cfg->vendor; 700 devlist_entry->conf.pc_device = cfg->device; 701 702 devlist_entry->conf.pc_class = cfg->baseclass; 703 devlist_entry->conf.pc_subclass = cfg->subclass; 704 devlist_entry->conf.pc_progif = cfg->progif; 705 devlist_entry->conf.pc_revid = cfg->revid; 706 707 pci_numdevs++; 708 pci_generation++; 709 710 return (devlist_entry); 711 } 712 #undef REG 713 714 static void 715 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg) 716 { 717 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \ 718 cfg->ea.ea_location + (n), w) 719 int num_ent; 720 int ptr; 721 int a, b; 722 uint32_t val; 723 int ent_size; 724 uint32_t dw[4]; 725 uint64_t base, max_offset; 726 struct pci_ea_entry *eae; 727 728 if (cfg->ea.ea_location == 0) 729 return; 730 731 STAILQ_INIT(&cfg->ea.ea_entries); 732 733 /* Determine the number of entries */ 734 num_ent = REG(PCIR_EA_NUM_ENT, 2); 735 num_ent &= PCIM_EA_NUM_ENT_MASK; 736 737 /* Find the first entry to care of */ 738 ptr = PCIR_EA_FIRST_ENT; 739 740 /* Skip DWORD 2 for type 1 functions */ 741 if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) 742 ptr += 4; 743 744 for (a = 0; a < num_ent; a++) { 745 746 eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO); 747 eae->eae_cfg_offset = cfg->ea.ea_location + ptr; 748 749 /* Read a number of dwords in the entry */ 750 val = REG(ptr, 4); 751 ptr += 4; 752 ent_size = (val & PCIM_EA_ES); 753 754 for (b = 0; b < ent_size; b++) { 755 dw[b] = REG(ptr, 4); 756 ptr += 4; 757 } 758 759 eae->eae_flags = val; 760 eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET; 761 762 base = dw[0] & PCIM_EA_FIELD_MASK; 763 max_offset = dw[1] | ~PCIM_EA_FIELD_MASK; 764 b = 2; 765 if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { 766 base |= (uint64_t)dw[b] << 32UL; 767 b++; 768 } 769 if (((dw[1] & PCIM_EA_IS_64) != 0) 770 && (b < ent_size)) { 771 max_offset |= (uint64_t)dw[b] << 32UL; 772 b++; 773 } 774 775 eae->eae_base = base; 776 eae->eae_max_offset = max_offset; 777 778 STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link); 779 780 if (bootverbose) { 781 printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n", 782 cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags, 783 (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset); 784 } 785 } 786 } 787 #undef REG 788 789 static void 790 pci_read_cap(device_t pcib, pcicfgregs *cfg) 791 { 792 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w) 793 #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w) 794 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 795 uint64_t addr; 796 #endif 797 uint32_t val; 798 int ptr, nextptr, ptrptr; 799 800 switch (cfg->hdrtype & PCIM_HDRTYPE) { 801 case PCIM_HDRTYPE_NORMAL: 802 case PCIM_HDRTYPE_BRIDGE: 803 ptrptr = PCIR_CAP_PTR; 804 break; 805 case PCIM_HDRTYPE_CARDBUS: 806 ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */ 807 break; 808 default: 809 return; /* no extended capabilities support */ 810 } 811 nextptr = REG(ptrptr, 1); /* sanity check? */ 812 813 /* 814 * Read capability entries. 815 */ 816 while (nextptr != 0) { 817 /* Sanity check */ 818 if (nextptr > 255) { 819 printf("illegal PCI extended capability offset %d\n", 820 nextptr); 821 return; 822 } 823 /* Find the next entry */ 824 ptr = nextptr; 825 nextptr = REG(ptr + PCICAP_NEXTPTR, 1); 826 827 /* Process this entry */ 828 switch (REG(ptr + PCICAP_ID, 1)) { 829 case PCIY_PMG: /* PCI power management */ 830 if (cfg->pp.pp_cap == 0) { 831 cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2); 832 cfg->pp.pp_status = ptr + PCIR_POWER_STATUS; 833 cfg->pp.pp_bse = ptr + PCIR_POWER_BSE; 834 if ((nextptr - ptr) > PCIR_POWER_DATA) 835 cfg->pp.pp_data = ptr + PCIR_POWER_DATA; 836 } 837 break; 838 case PCIY_HT: /* HyperTransport */ 839 /* Determine HT-specific capability type. */ 840 val = REG(ptr + PCIR_HT_COMMAND, 2); 841 842 if ((val & 0xe000) == PCIM_HTCAP_SLAVE) 843 cfg->ht.ht_slave = ptr; 844 845 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 846 switch (val & PCIM_HTCMD_CAP_MASK) { 847 case PCIM_HTCAP_MSI_MAPPING: 848 if (!(val & PCIM_HTCMD_MSI_FIXED)) { 849 /* Sanity check the mapping window. */ 850 addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 851 4); 852 addr <<= 32; 853 addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 854 4); 855 if (addr != MSI_INTEL_ADDR_BASE) 856 device_printf(pcib, 857 "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n", 858 cfg->domain, cfg->bus, 859 cfg->slot, cfg->func, 860 (long long)addr); 861 } else 862 addr = MSI_INTEL_ADDR_BASE; 863 864 cfg->ht.ht_msimap = ptr; 865 cfg->ht.ht_msictrl = val; 866 cfg->ht.ht_msiaddr = addr; 867 break; 868 } 869 #endif 870 break; 871 case PCIY_MSI: /* PCI MSI */ 872 cfg->msi.msi_location = ptr; 873 cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2); 874 cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl & 875 PCIM_MSICTRL_MMC_MASK)>>1); 876 break; 877 case PCIY_MSIX: /* PCI MSI-X */ 878 cfg->msix.msix_location = ptr; 879 cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2); 880 cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl & 881 PCIM_MSIXCTRL_TABLE_SIZE) + 1; 882 val = REG(ptr + PCIR_MSIX_TABLE, 4); 883 cfg->msix.msix_table_bar = PCIR_BAR(val & 884 PCIM_MSIX_BIR_MASK); 885 cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK; 886 val = REG(ptr + PCIR_MSIX_PBA, 4); 887 cfg->msix.msix_pba_bar = PCIR_BAR(val & 888 PCIM_MSIX_BIR_MASK); 889 cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK; 890 break; 891 case PCIY_VPD: /* PCI Vital Product Data */ 892 cfg->vpd.vpd_reg = ptr; 893 break; 894 case PCIY_SUBVENDOR: 895 /* Should always be true. */ 896 if ((cfg->hdrtype & PCIM_HDRTYPE) == 897 PCIM_HDRTYPE_BRIDGE) { 898 val = REG(ptr + PCIR_SUBVENDCAP_ID, 4); 899 cfg->subvendor = val & 0xffff; 900 cfg->subdevice = val >> 16; 901 } 902 break; 903 case PCIY_PCIX: /* PCI-X */ 904 /* 905 * Assume we have a PCI-X chipset if we have 906 * at least one PCI-PCI bridge with a PCI-X 907 * capability. Note that some systems with 908 * PCI-express or HT chipsets might match on 909 * this check as well. 910 */ 911 if ((cfg->hdrtype & PCIM_HDRTYPE) == 912 PCIM_HDRTYPE_BRIDGE) 913 pcix_chipset = 1; 914 cfg->pcix.pcix_location = ptr; 915 break; 916 case PCIY_EXPRESS: /* PCI-express */ 917 /* 918 * Assume we have a PCI-express chipset if we have 919 * at least one PCI-express device. 920 */ 921 pcie_chipset = 1; 922 cfg->pcie.pcie_location = ptr; 923 val = REG(ptr + PCIER_FLAGS, 2); 924 cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE; 925 break; 926 case PCIY_EA: /* Enhanced Allocation */ 927 cfg->ea.ea_location = ptr; 928 pci_ea_fill_info(pcib, cfg); 929 break; 930 default: 931 break; 932 } 933 } 934 935 #if defined(__powerpc__) 936 /* 937 * Enable the MSI mapping window for all HyperTransport 938 * slaves. PCI-PCI bridges have their windows enabled via 939 * PCIB_MAP_MSI(). 940 */ 941 if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 && 942 !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) { 943 device_printf(pcib, 944 "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n", 945 cfg->domain, cfg->bus, cfg->slot, cfg->func); 946 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 947 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl, 948 2); 949 } 950 #endif 951 /* REG and WREG use carry through to next functions */ 952 } 953 954 /* 955 * PCI Vital Product Data 956 */ 957 958 #define PCI_VPD_TIMEOUT 1000000 959 960 static int 961 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data) 962 { 963 int count = PCI_VPD_TIMEOUT; 964 965 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 966 967 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2); 968 969 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) { 970 if (--count < 0) 971 return (ENXIO); 972 DELAY(1); /* limit looping */ 973 } 974 *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4)); 975 976 return (0); 977 } 978 979 #if 0 980 static int 981 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data) 982 { 983 int count = PCI_VPD_TIMEOUT; 984 985 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 986 987 WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4); 988 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2); 989 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) { 990 if (--count < 0) 991 return (ENXIO); 992 DELAY(1); /* limit looping */ 993 } 994 995 return (0); 996 } 997 #endif 998 999 #undef PCI_VPD_TIMEOUT 1000 1001 struct vpd_readstate { 1002 device_t pcib; 1003 pcicfgregs *cfg; 1004 uint32_t val; 1005 int bytesinval; 1006 int off; 1007 uint8_t cksum; 1008 }; 1009 1010 static int 1011 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data) 1012 { 1013 uint32_t reg; 1014 uint8_t byte; 1015 1016 if (vrs->bytesinval == 0) { 1017 if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®)) 1018 return (ENXIO); 1019 vrs->val = le32toh(reg); 1020 vrs->off += 4; 1021 byte = vrs->val & 0xff; 1022 vrs->bytesinval = 3; 1023 } else { 1024 vrs->val = vrs->val >> 8; 1025 byte = vrs->val & 0xff; 1026 vrs->bytesinval--; 1027 } 1028 1029 vrs->cksum += byte; 1030 *data = byte; 1031 return (0); 1032 } 1033 1034 static void 1035 pci_read_vpd(device_t pcib, pcicfgregs *cfg) 1036 { 1037 struct vpd_readstate vrs; 1038 int state; 1039 int name; 1040 int remain; 1041 int i; 1042 int alloc, off; /* alloc/off for RO/W arrays */ 1043 int cksumvalid; 1044 int dflen; 1045 uint8_t byte; 1046 uint8_t byte2; 1047 1048 /* init vpd reader */ 1049 vrs.bytesinval = 0; 1050 vrs.off = 0; 1051 vrs.pcib = pcib; 1052 vrs.cfg = cfg; 1053 vrs.cksum = 0; 1054 1055 state = 0; 1056 name = remain = i = 0; /* shut up stupid gcc */ 1057 alloc = off = 0; /* shut up stupid gcc */ 1058 dflen = 0; /* shut up stupid gcc */ 1059 cksumvalid = -1; 1060 while (state >= 0) { 1061 if (vpd_nextbyte(&vrs, &byte)) { 1062 state = -2; 1063 break; 1064 } 1065 #if 0 1066 printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \ 1067 "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val, 1068 vrs.off, vrs.bytesinval, byte, state, remain, name, i); 1069 #endif 1070 switch (state) { 1071 case 0: /* item name */ 1072 if (byte & 0x80) { 1073 if (vpd_nextbyte(&vrs, &byte2)) { 1074 state = -2; 1075 break; 1076 } 1077 remain = byte2; 1078 if (vpd_nextbyte(&vrs, &byte2)) { 1079 state = -2; 1080 break; 1081 } 1082 remain |= byte2 << 8; 1083 if (remain > (0x7f*4 - vrs.off)) { 1084 state = -1; 1085 pci_printf(cfg, 1086 "invalid VPD data, remain %#x\n", 1087 remain); 1088 } 1089 name = byte & 0x7f; 1090 } else { 1091 remain = byte & 0x7; 1092 name = (byte >> 3) & 0xf; 1093 } 1094 switch (name) { 1095 case 0x2: /* String */ 1096 cfg->vpd.vpd_ident = malloc(remain + 1, 1097 M_DEVBUF, M_WAITOK); 1098 i = 0; 1099 state = 1; 1100 break; 1101 case 0xf: /* End */ 1102 state = -1; 1103 break; 1104 case 0x10: /* VPD-R */ 1105 alloc = 8; 1106 off = 0; 1107 cfg->vpd.vpd_ros = malloc(alloc * 1108 sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, 1109 M_WAITOK | M_ZERO); 1110 state = 2; 1111 break; 1112 case 0x11: /* VPD-W */ 1113 alloc = 8; 1114 off = 0; 1115 cfg->vpd.vpd_w = malloc(alloc * 1116 sizeof(*cfg->vpd.vpd_w), M_DEVBUF, 1117 M_WAITOK | M_ZERO); 1118 state = 5; 1119 break; 1120 default: /* Invalid data, abort */ 1121 state = -1; 1122 break; 1123 } 1124 break; 1125 1126 case 1: /* Identifier String */ 1127 cfg->vpd.vpd_ident[i++] = byte; 1128 remain--; 1129 if (remain == 0) { 1130 cfg->vpd.vpd_ident[i] = '\0'; 1131 state = 0; 1132 } 1133 break; 1134 1135 case 2: /* VPD-R Keyword Header */ 1136 if (off == alloc) { 1137 cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, 1138 (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros), 1139 M_DEVBUF, M_WAITOK | M_ZERO); 1140 } 1141 cfg->vpd.vpd_ros[off].keyword[0] = byte; 1142 if (vpd_nextbyte(&vrs, &byte2)) { 1143 state = -2; 1144 break; 1145 } 1146 cfg->vpd.vpd_ros[off].keyword[1] = byte2; 1147 if (vpd_nextbyte(&vrs, &byte2)) { 1148 state = -2; 1149 break; 1150 } 1151 cfg->vpd.vpd_ros[off].len = dflen = byte2; 1152 if (dflen == 0 && 1153 strncmp(cfg->vpd.vpd_ros[off].keyword, "RV", 1154 2) == 0) { 1155 /* 1156 * if this happens, we can't trust the rest 1157 * of the VPD. 1158 */ 1159 pci_printf(cfg, "bad keyword length: %d\n", 1160 dflen); 1161 cksumvalid = 0; 1162 state = -1; 1163 break; 1164 } else if (dflen == 0) { 1165 cfg->vpd.vpd_ros[off].value = malloc(1 * 1166 sizeof(*cfg->vpd.vpd_ros[off].value), 1167 M_DEVBUF, M_WAITOK); 1168 cfg->vpd.vpd_ros[off].value[0] = '\x00'; 1169 } else 1170 cfg->vpd.vpd_ros[off].value = malloc( 1171 (dflen + 1) * 1172 sizeof(*cfg->vpd.vpd_ros[off].value), 1173 M_DEVBUF, M_WAITOK); 1174 remain -= 3; 1175 i = 0; 1176 /* keep in sync w/ state 3's transistions */ 1177 if (dflen == 0 && remain == 0) 1178 state = 0; 1179 else if (dflen == 0) 1180 state = 2; 1181 else 1182 state = 3; 1183 break; 1184 1185 case 3: /* VPD-R Keyword Value */ 1186 cfg->vpd.vpd_ros[off].value[i++] = byte; 1187 if (strncmp(cfg->vpd.vpd_ros[off].keyword, 1188 "RV", 2) == 0 && cksumvalid == -1) { 1189 if (vrs.cksum == 0) 1190 cksumvalid = 1; 1191 else { 1192 if (bootverbose) 1193 pci_printf(cfg, 1194 "bad VPD cksum, remain %hhu\n", 1195 vrs.cksum); 1196 cksumvalid = 0; 1197 state = -1; 1198 break; 1199 } 1200 } 1201 dflen--; 1202 remain--; 1203 /* keep in sync w/ state 2's transistions */ 1204 if (dflen == 0) 1205 cfg->vpd.vpd_ros[off++].value[i++] = '\0'; 1206 if (dflen == 0 && remain == 0) { 1207 cfg->vpd.vpd_rocnt = off; 1208 cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, 1209 off * sizeof(*cfg->vpd.vpd_ros), 1210 M_DEVBUF, M_WAITOK | M_ZERO); 1211 state = 0; 1212 } else if (dflen == 0) 1213 state = 2; 1214 break; 1215 1216 case 4: 1217 remain--; 1218 if (remain == 0) 1219 state = 0; 1220 break; 1221 1222 case 5: /* VPD-W Keyword Header */ 1223 if (off == alloc) { 1224 cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, 1225 (alloc *= 2) * sizeof(*cfg->vpd.vpd_w), 1226 M_DEVBUF, M_WAITOK | M_ZERO); 1227 } 1228 cfg->vpd.vpd_w[off].keyword[0] = byte; 1229 if (vpd_nextbyte(&vrs, &byte2)) { 1230 state = -2; 1231 break; 1232 } 1233 cfg->vpd.vpd_w[off].keyword[1] = byte2; 1234 if (vpd_nextbyte(&vrs, &byte2)) { 1235 state = -2; 1236 break; 1237 } 1238 cfg->vpd.vpd_w[off].len = dflen = byte2; 1239 cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval; 1240 cfg->vpd.vpd_w[off].value = malloc((dflen + 1) * 1241 sizeof(*cfg->vpd.vpd_w[off].value), 1242 M_DEVBUF, M_WAITOK); 1243 remain -= 3; 1244 i = 0; 1245 /* keep in sync w/ state 6's transistions */ 1246 if (dflen == 0 && remain == 0) 1247 state = 0; 1248 else if (dflen == 0) 1249 state = 5; 1250 else 1251 state = 6; 1252 break; 1253 1254 case 6: /* VPD-W Keyword Value */ 1255 cfg->vpd.vpd_w[off].value[i++] = byte; 1256 dflen--; 1257 remain--; 1258 /* keep in sync w/ state 5's transistions */ 1259 if (dflen == 0) 1260 cfg->vpd.vpd_w[off++].value[i++] = '\0'; 1261 if (dflen == 0 && remain == 0) { 1262 cfg->vpd.vpd_wcnt = off; 1263 cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, 1264 off * sizeof(*cfg->vpd.vpd_w), 1265 M_DEVBUF, M_WAITOK | M_ZERO); 1266 state = 0; 1267 } else if (dflen == 0) 1268 state = 5; 1269 break; 1270 1271 default: 1272 pci_printf(cfg, "invalid state: %d\n", state); 1273 state = -1; 1274 break; 1275 } 1276 } 1277 1278 if (cksumvalid == 0 || state < -1) { 1279 /* read-only data bad, clean up */ 1280 if (cfg->vpd.vpd_ros != NULL) { 1281 for (off = 0; cfg->vpd.vpd_ros[off].value; off++) 1282 free(cfg->vpd.vpd_ros[off].value, M_DEVBUF); 1283 free(cfg->vpd.vpd_ros, M_DEVBUF); 1284 cfg->vpd.vpd_ros = NULL; 1285 } 1286 } 1287 if (state < -1) { 1288 /* I/O error, clean up */ 1289 pci_printf(cfg, "failed to read VPD data.\n"); 1290 if (cfg->vpd.vpd_ident != NULL) { 1291 free(cfg->vpd.vpd_ident, M_DEVBUF); 1292 cfg->vpd.vpd_ident = NULL; 1293 } 1294 if (cfg->vpd.vpd_w != NULL) { 1295 for (off = 0; cfg->vpd.vpd_w[off].value; off++) 1296 free(cfg->vpd.vpd_w[off].value, M_DEVBUF); 1297 free(cfg->vpd.vpd_w, M_DEVBUF); 1298 cfg->vpd.vpd_w = NULL; 1299 } 1300 } 1301 cfg->vpd.vpd_cached = 1; 1302 #undef REG 1303 #undef WREG 1304 } 1305 1306 int 1307 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr) 1308 { 1309 struct pci_devinfo *dinfo = device_get_ivars(child); 1310 pcicfgregs *cfg = &dinfo->cfg; 1311 1312 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1313 pci_read_vpd(device_get_parent(dev), cfg); 1314 1315 *identptr = cfg->vpd.vpd_ident; 1316 1317 if (*identptr == NULL) 1318 return (ENXIO); 1319 1320 return (0); 1321 } 1322 1323 int 1324 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw, 1325 const char **vptr) 1326 { 1327 struct pci_devinfo *dinfo = device_get_ivars(child); 1328 pcicfgregs *cfg = &dinfo->cfg; 1329 int i; 1330 1331 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1332 pci_read_vpd(device_get_parent(dev), cfg); 1333 1334 for (i = 0; i < cfg->vpd.vpd_rocnt; i++) 1335 if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword, 1336 sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) { 1337 *vptr = cfg->vpd.vpd_ros[i].value; 1338 return (0); 1339 } 1340 1341 *vptr = NULL; 1342 return (ENXIO); 1343 } 1344 1345 struct pcicfg_vpd * 1346 pci_fetch_vpd_list(device_t dev) 1347 { 1348 struct pci_devinfo *dinfo = device_get_ivars(dev); 1349 pcicfgregs *cfg = &dinfo->cfg; 1350 1351 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1352 pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg); 1353 return (&cfg->vpd); 1354 } 1355 1356 /* 1357 * Find the requested HyperTransport capability and return the offset 1358 * in configuration space via the pointer provided. The function 1359 * returns 0 on success and an error code otherwise. 1360 */ 1361 int 1362 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg) 1363 { 1364 int ptr, error; 1365 uint16_t val; 1366 1367 error = pci_find_cap(child, PCIY_HT, &ptr); 1368 if (error) 1369 return (error); 1370 1371 /* 1372 * Traverse the capabilities list checking each HT capability 1373 * to see if it matches the requested HT capability. 1374 */ 1375 while (ptr != 0) { 1376 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1377 if (capability == PCIM_HTCAP_SLAVE || 1378 capability == PCIM_HTCAP_HOST) 1379 val &= 0xe000; 1380 else 1381 val &= PCIM_HTCMD_CAP_MASK; 1382 if (val == capability) { 1383 if (capreg != NULL) 1384 *capreg = ptr; 1385 return (0); 1386 } 1387 1388 /* Skip to the next HT capability. */ 1389 while (ptr != 0) { 1390 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1391 if (pci_read_config(child, ptr + PCICAP_ID, 1) == 1392 PCIY_HT) 1393 break; 1394 } 1395 } 1396 return (ENOENT); 1397 } 1398 1399 /* 1400 * Find the requested capability and return the offset in 1401 * configuration space via the pointer provided. The function returns 1402 * 0 on success and an error code otherwise. 1403 */ 1404 int 1405 pci_find_cap_method(device_t dev, device_t child, int capability, 1406 int *capreg) 1407 { 1408 struct pci_devinfo *dinfo = device_get_ivars(child); 1409 pcicfgregs *cfg = &dinfo->cfg; 1410 u_int32_t status; 1411 u_int8_t ptr; 1412 1413 /* 1414 * Check the CAP_LIST bit of the PCI status register first. 1415 */ 1416 status = pci_read_config(child, PCIR_STATUS, 2); 1417 if (!(status & PCIM_STATUS_CAPPRESENT)) 1418 return (ENXIO); 1419 1420 /* 1421 * Determine the start pointer of the capabilities list. 1422 */ 1423 switch (cfg->hdrtype & PCIM_HDRTYPE) { 1424 case PCIM_HDRTYPE_NORMAL: 1425 case PCIM_HDRTYPE_BRIDGE: 1426 ptr = PCIR_CAP_PTR; 1427 break; 1428 case PCIM_HDRTYPE_CARDBUS: 1429 ptr = PCIR_CAP_PTR_2; 1430 break; 1431 default: 1432 /* XXX: panic? */ 1433 return (ENXIO); /* no extended capabilities support */ 1434 } 1435 ptr = pci_read_config(child, ptr, 1); 1436 1437 /* 1438 * Traverse the capabilities list. 1439 */ 1440 while (ptr != 0) { 1441 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1442 if (capreg != NULL) 1443 *capreg = ptr; 1444 return (0); 1445 } 1446 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1447 } 1448 1449 return (ENOENT); 1450 } 1451 1452 /* 1453 * Find the requested extended capability and return the offset in 1454 * configuration space via the pointer provided. The function returns 1455 * 0 on success and an error code otherwise. 1456 */ 1457 int 1458 pci_find_extcap_method(device_t dev, device_t child, int capability, 1459 int *capreg) 1460 { 1461 struct pci_devinfo *dinfo = device_get_ivars(child); 1462 pcicfgregs *cfg = &dinfo->cfg; 1463 uint32_t ecap; 1464 uint16_t ptr; 1465 1466 /* Only supported for PCI-express devices. */ 1467 if (cfg->pcie.pcie_location == 0) 1468 return (ENXIO); 1469 1470 ptr = PCIR_EXTCAP; 1471 ecap = pci_read_config(child, ptr, 4); 1472 if (ecap == 0xffffffff || ecap == 0) 1473 return (ENOENT); 1474 for (;;) { 1475 if (PCI_EXTCAP_ID(ecap) == capability) { 1476 if (capreg != NULL) 1477 *capreg = ptr; 1478 return (0); 1479 } 1480 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1481 if (ptr == 0) 1482 break; 1483 ecap = pci_read_config(child, ptr, 4); 1484 } 1485 1486 return (ENOENT); 1487 } 1488 1489 /* 1490 * Support for MSI-X message interrupts. 1491 */ 1492 static void 1493 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data) 1494 { 1495 struct pci_devinfo *dinfo = device_get_ivars(dev); 1496 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1497 uint32_t offset; 1498 1499 KASSERT(msix->msix_table_len > index, ("bogus index")); 1500 offset = msix->msix_table_offset + index * 16; 1501 bus_write_4(msix->msix_table_res, offset, address & 0xffffffff); 1502 bus_write_4(msix->msix_table_res, offset + 4, address >> 32); 1503 bus_write_4(msix->msix_table_res, offset + 8, data); 1504 } 1505 1506 void 1507 pci_enable_msix_method(device_t dev, device_t child, u_int index, 1508 uint64_t address, uint32_t data) 1509 { 1510 1511 if (pci_msix_rewrite_table) { 1512 struct pci_devinfo *dinfo = device_get_ivars(child); 1513 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1514 1515 /* 1516 * Some VM hosts require MSIX to be disabled in the 1517 * control register before updating the MSIX table 1518 * entries are allowed. It is not enough to only 1519 * disable MSIX while updating a single entry. MSIX 1520 * must be disabled while updating all entries in the 1521 * table. 1522 */ 1523 pci_write_config(child, 1524 msix->msix_location + PCIR_MSIX_CTRL, 1525 msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2); 1526 pci_resume_msix(child); 1527 } else 1528 pci_write_msix_entry(child, index, address, data); 1529 1530 /* Enable MSI -> HT mapping. */ 1531 pci_ht_map_msi(child, address); 1532 } 1533 1534 void 1535 pci_mask_msix(device_t dev, u_int index) 1536 { 1537 struct pci_devinfo *dinfo = device_get_ivars(dev); 1538 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1539 uint32_t offset, val; 1540 1541 KASSERT(msix->msix_msgnum > index, ("bogus index")); 1542 offset = msix->msix_table_offset + index * 16 + 12; 1543 val = bus_read_4(msix->msix_table_res, offset); 1544 if (!(val & PCIM_MSIX_VCTRL_MASK)) { 1545 val |= PCIM_MSIX_VCTRL_MASK; 1546 bus_write_4(msix->msix_table_res, offset, val); 1547 } 1548 } 1549 1550 void 1551 pci_unmask_msix(device_t dev, u_int index) 1552 { 1553 struct pci_devinfo *dinfo = device_get_ivars(dev); 1554 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1555 uint32_t offset, val; 1556 1557 KASSERT(msix->msix_table_len > index, ("bogus index")); 1558 offset = msix->msix_table_offset + index * 16 + 12; 1559 val = bus_read_4(msix->msix_table_res, offset); 1560 if (val & PCIM_MSIX_VCTRL_MASK) { 1561 val &= ~PCIM_MSIX_VCTRL_MASK; 1562 bus_write_4(msix->msix_table_res, offset, val); 1563 } 1564 } 1565 1566 int 1567 pci_pending_msix(device_t dev, u_int index) 1568 { 1569 struct pci_devinfo *dinfo = device_get_ivars(dev); 1570 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1571 uint32_t offset, bit; 1572 1573 KASSERT(msix->msix_table_len > index, ("bogus index")); 1574 offset = msix->msix_pba_offset + (index / 32) * 4; 1575 bit = 1 << index % 32; 1576 return (bus_read_4(msix->msix_pba_res, offset) & bit); 1577 } 1578 1579 /* 1580 * Restore MSI-X registers and table during resume. If MSI-X is 1581 * enabled then walk the virtual table to restore the actual MSI-X 1582 * table. 1583 */ 1584 static void 1585 pci_resume_msix(device_t dev) 1586 { 1587 struct pci_devinfo *dinfo = device_get_ivars(dev); 1588 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1589 struct msix_table_entry *mte; 1590 struct msix_vector *mv; 1591 int i; 1592 1593 if (msix->msix_alloc > 0) { 1594 /* First, mask all vectors. */ 1595 for (i = 0; i < msix->msix_msgnum; i++) 1596 pci_mask_msix(dev, i); 1597 1598 /* Second, program any messages with at least one handler. */ 1599 for (i = 0; i < msix->msix_table_len; i++) { 1600 mte = &msix->msix_table[i]; 1601 if (mte->mte_vector == 0 || mte->mte_handlers == 0) 1602 continue; 1603 mv = &msix->msix_vectors[mte->mte_vector - 1]; 1604 pci_write_msix_entry(dev, i, mv->mv_address, 1605 mv->mv_data); 1606 pci_unmask_msix(dev, i); 1607 } 1608 } 1609 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL, 1610 msix->msix_ctrl, 2); 1611 } 1612 1613 /* 1614 * Attempt to allocate *count MSI-X messages. The actual number allocated is 1615 * returned in *count. After this function returns, each message will be 1616 * available to the driver as SYS_RES_IRQ resources starting at rid 1. 1617 */ 1618 int 1619 pci_alloc_msix_method(device_t dev, device_t child, int *count) 1620 { 1621 struct pci_devinfo *dinfo = device_get_ivars(child); 1622 pcicfgregs *cfg = &dinfo->cfg; 1623 struct resource_list_entry *rle; 1624 int actual, error, i, irq, max; 1625 1626 /* Don't let count == 0 get us into trouble. */ 1627 if (*count == 0) 1628 return (EINVAL); 1629 1630 /* If rid 0 is allocated, then fail. */ 1631 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 1632 if (rle != NULL && rle->res != NULL) 1633 return (ENXIO); 1634 1635 /* Already have allocated messages? */ 1636 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 1637 return (ENXIO); 1638 1639 /* If MSI-X is blacklisted for this system, fail. */ 1640 if (pci_msix_blacklisted()) 1641 return (ENXIO); 1642 1643 /* MSI-X capability present? */ 1644 if (cfg->msix.msix_location == 0 || !pci_do_msix) 1645 return (ENODEV); 1646 1647 /* Make sure the appropriate BARs are mapped. */ 1648 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1649 cfg->msix.msix_table_bar); 1650 if (rle == NULL || rle->res == NULL || 1651 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1652 return (ENXIO); 1653 cfg->msix.msix_table_res = rle->res; 1654 if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) { 1655 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1656 cfg->msix.msix_pba_bar); 1657 if (rle == NULL || rle->res == NULL || 1658 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1659 return (ENXIO); 1660 } 1661 cfg->msix.msix_pba_res = rle->res; 1662 1663 if (bootverbose) 1664 device_printf(child, 1665 "attempting to allocate %d MSI-X vectors (%d supported)\n", 1666 *count, cfg->msix.msix_msgnum); 1667 max = min(*count, cfg->msix.msix_msgnum); 1668 for (i = 0; i < max; i++) { 1669 /* Allocate a message. */ 1670 error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq); 1671 if (error) { 1672 if (i == 0) 1673 return (error); 1674 break; 1675 } 1676 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 1677 irq, 1); 1678 } 1679 actual = i; 1680 1681 if (bootverbose) { 1682 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1); 1683 if (actual == 1) 1684 device_printf(child, "using IRQ %ju for MSI-X\n", 1685 rle->start); 1686 else { 1687 int run; 1688 1689 /* 1690 * Be fancy and try to print contiguous runs of 1691 * IRQ values as ranges. 'irq' is the previous IRQ. 1692 * 'run' is true if we are in a range. 1693 */ 1694 device_printf(child, "using IRQs %ju", rle->start); 1695 irq = rle->start; 1696 run = 0; 1697 for (i = 1; i < actual; i++) { 1698 rle = resource_list_find(&dinfo->resources, 1699 SYS_RES_IRQ, i + 1); 1700 1701 /* Still in a run? */ 1702 if (rle->start == irq + 1) { 1703 run = 1; 1704 irq++; 1705 continue; 1706 } 1707 1708 /* Finish previous range. */ 1709 if (run) { 1710 printf("-%d", irq); 1711 run = 0; 1712 } 1713 1714 /* Start new range. */ 1715 printf(",%ju", rle->start); 1716 irq = rle->start; 1717 } 1718 1719 /* Unfinished range? */ 1720 if (run) 1721 printf("-%d", irq); 1722 printf(" for MSI-X\n"); 1723 } 1724 } 1725 1726 /* Mask all vectors. */ 1727 for (i = 0; i < cfg->msix.msix_msgnum; i++) 1728 pci_mask_msix(child, i); 1729 1730 /* Allocate and initialize vector data and virtual table. */ 1731 cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual, 1732 M_DEVBUF, M_WAITOK | M_ZERO); 1733 cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual, 1734 M_DEVBUF, M_WAITOK | M_ZERO); 1735 for (i = 0; i < actual; i++) { 1736 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1737 cfg->msix.msix_vectors[i].mv_irq = rle->start; 1738 cfg->msix.msix_table[i].mte_vector = i + 1; 1739 } 1740 1741 /* Update control register to enable MSI-X. */ 1742 cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE; 1743 pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL, 1744 cfg->msix.msix_ctrl, 2); 1745 1746 /* Update counts of alloc'd messages. */ 1747 cfg->msix.msix_alloc = actual; 1748 cfg->msix.msix_table_len = actual; 1749 *count = actual; 1750 return (0); 1751 } 1752 1753 /* 1754 * By default, pci_alloc_msix() will assign the allocated IRQ 1755 * resources consecutively to the first N messages in the MSI-X table. 1756 * However, device drivers may want to use different layouts if they 1757 * either receive fewer messages than they asked for, or they wish to 1758 * populate the MSI-X table sparsely. This method allows the driver 1759 * to specify what layout it wants. It must be called after a 1760 * successful pci_alloc_msix() but before any of the associated 1761 * SYS_RES_IRQ resources are allocated via bus_alloc_resource(). 1762 * 1763 * The 'vectors' array contains 'count' message vectors. The array 1764 * maps directly to the MSI-X table in that index 0 in the array 1765 * specifies the vector for the first message in the MSI-X table, etc. 1766 * The vector value in each array index can either be 0 to indicate 1767 * that no vector should be assigned to a message slot, or it can be a 1768 * number from 1 to N (where N is the count returned from a 1769 * succcessful call to pci_alloc_msix()) to indicate which message 1770 * vector (IRQ) to be used for the corresponding message. 1771 * 1772 * On successful return, each message with a non-zero vector will have 1773 * an associated SYS_RES_IRQ whose rid is equal to the array index + 1774 * 1. Additionally, if any of the IRQs allocated via the previous 1775 * call to pci_alloc_msix() are not used in the mapping, those IRQs 1776 * will be freed back to the system automatically. 1777 * 1778 * For example, suppose a driver has a MSI-X table with 6 messages and 1779 * asks for 6 messages, but pci_alloc_msix() only returns a count of 1780 * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and 1781 * C. After the call to pci_alloc_msix(), the device will be setup to 1782 * have an MSI-X table of ABC--- (where - means no vector assigned). 1783 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 }, 1784 * then the MSI-X table will look like A-AB-B, and the 'C' vector will 1785 * be freed back to the system. This device will also have valid 1786 * SYS_RES_IRQ rids of 1, 3, 4, and 6. 1787 * 1788 * In any case, the SYS_RES_IRQ rid X will always map to the message 1789 * at MSI-X table index X - 1 and will only be valid if a vector is 1790 * assigned to that table entry. 1791 */ 1792 int 1793 pci_remap_msix_method(device_t dev, device_t child, int count, 1794 const u_int *vectors) 1795 { 1796 struct pci_devinfo *dinfo = device_get_ivars(child); 1797 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1798 struct resource_list_entry *rle; 1799 int i, irq, j, *used; 1800 1801 /* 1802 * Have to have at least one message in the table but the 1803 * table can't be bigger than the actual MSI-X table in the 1804 * device. 1805 */ 1806 if (count == 0 || count > msix->msix_msgnum) 1807 return (EINVAL); 1808 1809 /* Sanity check the vectors. */ 1810 for (i = 0; i < count; i++) 1811 if (vectors[i] > msix->msix_alloc) 1812 return (EINVAL); 1813 1814 /* 1815 * Make sure there aren't any holes in the vectors to be used. 1816 * It's a big pain to support it, and it doesn't really make 1817 * sense anyway. Also, at least one vector must be used. 1818 */ 1819 used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK | 1820 M_ZERO); 1821 for (i = 0; i < count; i++) 1822 if (vectors[i] != 0) 1823 used[vectors[i] - 1] = 1; 1824 for (i = 0; i < msix->msix_alloc - 1; i++) 1825 if (used[i] == 0 && used[i + 1] == 1) { 1826 free(used, M_DEVBUF); 1827 return (EINVAL); 1828 } 1829 if (used[0] != 1) { 1830 free(used, M_DEVBUF); 1831 return (EINVAL); 1832 } 1833 1834 /* Make sure none of the resources are allocated. */ 1835 for (i = 0; i < msix->msix_table_len; i++) { 1836 if (msix->msix_table[i].mte_vector == 0) 1837 continue; 1838 if (msix->msix_table[i].mte_handlers > 0) { 1839 free(used, M_DEVBUF); 1840 return (EBUSY); 1841 } 1842 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1843 KASSERT(rle != NULL, ("missing resource")); 1844 if (rle->res != NULL) { 1845 free(used, M_DEVBUF); 1846 return (EBUSY); 1847 } 1848 } 1849 1850 /* Free the existing resource list entries. */ 1851 for (i = 0; i < msix->msix_table_len; i++) { 1852 if (msix->msix_table[i].mte_vector == 0) 1853 continue; 1854 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 1855 } 1856 1857 /* 1858 * Build the new virtual table keeping track of which vectors are 1859 * used. 1860 */ 1861 free(msix->msix_table, M_DEVBUF); 1862 msix->msix_table = malloc(sizeof(struct msix_table_entry) * count, 1863 M_DEVBUF, M_WAITOK | M_ZERO); 1864 for (i = 0; i < count; i++) 1865 msix->msix_table[i].mte_vector = vectors[i]; 1866 msix->msix_table_len = count; 1867 1868 /* Free any unused IRQs and resize the vectors array if necessary. */ 1869 j = msix->msix_alloc - 1; 1870 if (used[j] == 0) { 1871 struct msix_vector *vec; 1872 1873 while (used[j] == 0) { 1874 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 1875 msix->msix_vectors[j].mv_irq); 1876 j--; 1877 } 1878 vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF, 1879 M_WAITOK); 1880 bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) * 1881 (j + 1)); 1882 free(msix->msix_vectors, M_DEVBUF); 1883 msix->msix_vectors = vec; 1884 msix->msix_alloc = j + 1; 1885 } 1886 free(used, M_DEVBUF); 1887 1888 /* Map the IRQs onto the rids. */ 1889 for (i = 0; i < count; i++) { 1890 if (vectors[i] == 0) 1891 continue; 1892 irq = msix->msix_vectors[vectors[i] - 1].mv_irq; 1893 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 1894 irq, 1); 1895 } 1896 1897 if (bootverbose) { 1898 device_printf(child, "Remapped MSI-X IRQs as: "); 1899 for (i = 0; i < count; i++) { 1900 if (i != 0) 1901 printf(", "); 1902 if (vectors[i] == 0) 1903 printf("---"); 1904 else 1905 printf("%d", 1906 msix->msix_vectors[vectors[i] - 1].mv_irq); 1907 } 1908 printf("\n"); 1909 } 1910 1911 return (0); 1912 } 1913 1914 static int 1915 pci_release_msix(device_t dev, device_t child) 1916 { 1917 struct pci_devinfo *dinfo = device_get_ivars(child); 1918 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1919 struct resource_list_entry *rle; 1920 int i; 1921 1922 /* Do we have any messages to release? */ 1923 if (msix->msix_alloc == 0) 1924 return (ENODEV); 1925 1926 /* Make sure none of the resources are allocated. */ 1927 for (i = 0; i < msix->msix_table_len; i++) { 1928 if (msix->msix_table[i].mte_vector == 0) 1929 continue; 1930 if (msix->msix_table[i].mte_handlers > 0) 1931 return (EBUSY); 1932 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1933 KASSERT(rle != NULL, ("missing resource")); 1934 if (rle->res != NULL) 1935 return (EBUSY); 1936 } 1937 1938 /* Update control register to disable MSI-X. */ 1939 msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE; 1940 pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, 1941 msix->msix_ctrl, 2); 1942 1943 /* Free the resource list entries. */ 1944 for (i = 0; i < msix->msix_table_len; i++) { 1945 if (msix->msix_table[i].mte_vector == 0) 1946 continue; 1947 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 1948 } 1949 free(msix->msix_table, M_DEVBUF); 1950 msix->msix_table_len = 0; 1951 1952 /* Release the IRQs. */ 1953 for (i = 0; i < msix->msix_alloc; i++) 1954 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 1955 msix->msix_vectors[i].mv_irq); 1956 free(msix->msix_vectors, M_DEVBUF); 1957 msix->msix_alloc = 0; 1958 return (0); 1959 } 1960 1961 /* 1962 * Return the max supported MSI-X messages this device supports. 1963 * Basically, assuming the MD code can alloc messages, this function 1964 * should return the maximum value that pci_alloc_msix() can return. 1965 * Thus, it is subject to the tunables, etc. 1966 */ 1967 int 1968 pci_msix_count_method(device_t dev, device_t child) 1969 { 1970 struct pci_devinfo *dinfo = device_get_ivars(child); 1971 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1972 1973 if (pci_do_msix && msix->msix_location != 0) 1974 return (msix->msix_msgnum); 1975 return (0); 1976 } 1977 1978 int 1979 pci_msix_pba_bar_method(device_t dev, device_t child) 1980 { 1981 struct pci_devinfo *dinfo = device_get_ivars(child); 1982 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1983 1984 if (pci_do_msix && msix->msix_location != 0) 1985 return (msix->msix_pba_bar); 1986 return (-1); 1987 } 1988 1989 int 1990 pci_msix_table_bar_method(device_t dev, device_t child) 1991 { 1992 struct pci_devinfo *dinfo = device_get_ivars(child); 1993 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1994 1995 if (pci_do_msix && msix->msix_location != 0) 1996 return (msix->msix_table_bar); 1997 return (-1); 1998 } 1999 2000 /* 2001 * HyperTransport MSI mapping control 2002 */ 2003 void 2004 pci_ht_map_msi(device_t dev, uint64_t addr) 2005 { 2006 struct pci_devinfo *dinfo = device_get_ivars(dev); 2007 struct pcicfg_ht *ht = &dinfo->cfg.ht; 2008 2009 if (!ht->ht_msimap) 2010 return; 2011 2012 if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) && 2013 ht->ht_msiaddr >> 20 == addr >> 20) { 2014 /* Enable MSI -> HT mapping. */ 2015 ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 2016 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2017 ht->ht_msictrl, 2); 2018 } 2019 2020 if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) { 2021 /* Disable MSI -> HT mapping. */ 2022 ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE; 2023 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2024 ht->ht_msictrl, 2); 2025 } 2026 } 2027 2028 int 2029 pci_get_max_payload(device_t dev) 2030 { 2031 struct pci_devinfo *dinfo = device_get_ivars(dev); 2032 int cap; 2033 uint16_t val; 2034 2035 cap = dinfo->cfg.pcie.pcie_location; 2036 if (cap == 0) 2037 return (0); 2038 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2039 val &= PCIEM_CTL_MAX_PAYLOAD; 2040 val >>= 5; 2041 return (1 << (val + 7)); 2042 } 2043 2044 int 2045 pci_get_max_read_req(device_t dev) 2046 { 2047 struct pci_devinfo *dinfo = device_get_ivars(dev); 2048 int cap; 2049 uint16_t val; 2050 2051 cap = dinfo->cfg.pcie.pcie_location; 2052 if (cap == 0) 2053 return (0); 2054 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2055 val &= PCIEM_CTL_MAX_READ_REQUEST; 2056 val >>= 12; 2057 return (1 << (val + 7)); 2058 } 2059 2060 int 2061 pci_set_max_read_req(device_t dev, int size) 2062 { 2063 struct pci_devinfo *dinfo = device_get_ivars(dev); 2064 int cap; 2065 uint16_t val; 2066 2067 cap = dinfo->cfg.pcie.pcie_location; 2068 if (cap == 0) 2069 return (0); 2070 if (size < 128) 2071 size = 128; 2072 if (size > 4096) 2073 size = 4096; 2074 size = (1 << (fls(size) - 1)); 2075 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2076 val &= ~PCIEM_CTL_MAX_READ_REQUEST; 2077 val |= (fls(size) - 8) << 12; 2078 pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2); 2079 return (size); 2080 } 2081 2082 uint32_t 2083 pcie_read_config(device_t dev, int reg, int width) 2084 { 2085 struct pci_devinfo *dinfo = device_get_ivars(dev); 2086 int cap; 2087 2088 cap = dinfo->cfg.pcie.pcie_location; 2089 if (cap == 0) { 2090 if (width == 2) 2091 return (0xffff); 2092 return (0xffffffff); 2093 } 2094 2095 return (pci_read_config(dev, cap + reg, width)); 2096 } 2097 2098 void 2099 pcie_write_config(device_t dev, int reg, uint32_t value, int width) 2100 { 2101 struct pci_devinfo *dinfo = device_get_ivars(dev); 2102 int cap; 2103 2104 cap = dinfo->cfg.pcie.pcie_location; 2105 if (cap == 0) 2106 return; 2107 pci_write_config(dev, cap + reg, value, width); 2108 } 2109 2110 /* 2111 * Adjusts a PCI-e capability register by clearing the bits in mask 2112 * and setting the bits in (value & mask). Bits not set in mask are 2113 * not adjusted. 2114 * 2115 * Returns the old value on success or all ones on failure. 2116 */ 2117 uint32_t 2118 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value, 2119 int width) 2120 { 2121 struct pci_devinfo *dinfo = device_get_ivars(dev); 2122 uint32_t old, new; 2123 int cap; 2124 2125 cap = dinfo->cfg.pcie.pcie_location; 2126 if (cap == 0) { 2127 if (width == 2) 2128 return (0xffff); 2129 return (0xffffffff); 2130 } 2131 2132 old = pci_read_config(dev, cap + reg, width); 2133 new = old & ~mask; 2134 new |= (value & mask); 2135 pci_write_config(dev, cap + reg, new, width); 2136 return (old); 2137 } 2138 2139 /* 2140 * Support for MSI message signalled interrupts. 2141 */ 2142 void 2143 pci_enable_msi_method(device_t dev, device_t child, uint64_t address, 2144 uint16_t data) 2145 { 2146 struct pci_devinfo *dinfo = device_get_ivars(child); 2147 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2148 2149 /* Write data and address values. */ 2150 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR, 2151 address & 0xffffffff, 4); 2152 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2153 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH, 2154 address >> 32, 4); 2155 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT, 2156 data, 2); 2157 } else 2158 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data, 2159 2); 2160 2161 /* Enable MSI in the control register. */ 2162 msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE; 2163 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2164 msi->msi_ctrl, 2); 2165 2166 /* Enable MSI -> HT mapping. */ 2167 pci_ht_map_msi(child, address); 2168 } 2169 2170 void 2171 pci_disable_msi_method(device_t dev, device_t child) 2172 { 2173 struct pci_devinfo *dinfo = device_get_ivars(child); 2174 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2175 2176 /* Disable MSI -> HT mapping. */ 2177 pci_ht_map_msi(child, 0); 2178 2179 /* Disable MSI in the control register. */ 2180 msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE; 2181 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2182 msi->msi_ctrl, 2); 2183 } 2184 2185 /* 2186 * Restore MSI registers during resume. If MSI is enabled then 2187 * restore the data and address registers in addition to the control 2188 * register. 2189 */ 2190 static void 2191 pci_resume_msi(device_t dev) 2192 { 2193 struct pci_devinfo *dinfo = device_get_ivars(dev); 2194 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2195 uint64_t address; 2196 uint16_t data; 2197 2198 if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) { 2199 address = msi->msi_addr; 2200 data = msi->msi_data; 2201 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR, 2202 address & 0xffffffff, 4); 2203 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2204 pci_write_config(dev, msi->msi_location + 2205 PCIR_MSI_ADDR_HIGH, address >> 32, 4); 2206 pci_write_config(dev, msi->msi_location + 2207 PCIR_MSI_DATA_64BIT, data, 2); 2208 } else 2209 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, 2210 data, 2); 2211 } 2212 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2213 2); 2214 } 2215 2216 static int 2217 pci_remap_intr_method(device_t bus, device_t dev, u_int irq) 2218 { 2219 struct pci_devinfo *dinfo = device_get_ivars(dev); 2220 pcicfgregs *cfg = &dinfo->cfg; 2221 struct resource_list_entry *rle; 2222 struct msix_table_entry *mte; 2223 struct msix_vector *mv; 2224 uint64_t addr; 2225 uint32_t data; 2226 int error, i, j; 2227 2228 /* 2229 * Handle MSI first. We try to find this IRQ among our list 2230 * of MSI IRQs. If we find it, we request updated address and 2231 * data registers and apply the results. 2232 */ 2233 if (cfg->msi.msi_alloc > 0) { 2234 2235 /* If we don't have any active handlers, nothing to do. */ 2236 if (cfg->msi.msi_handlers == 0) 2237 return (0); 2238 for (i = 0; i < cfg->msi.msi_alloc; i++) { 2239 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 2240 i + 1); 2241 if (rle->start == irq) { 2242 error = PCIB_MAP_MSI(device_get_parent(bus), 2243 dev, irq, &addr, &data); 2244 if (error) 2245 return (error); 2246 pci_disable_msi(dev); 2247 dinfo->cfg.msi.msi_addr = addr; 2248 dinfo->cfg.msi.msi_data = data; 2249 pci_enable_msi(dev, addr, data); 2250 return (0); 2251 } 2252 } 2253 return (ENOENT); 2254 } 2255 2256 /* 2257 * For MSI-X, we check to see if we have this IRQ. If we do, 2258 * we request the updated mapping info. If that works, we go 2259 * through all the slots that use this IRQ and update them. 2260 */ 2261 if (cfg->msix.msix_alloc > 0) { 2262 for (i = 0; i < cfg->msix.msix_alloc; i++) { 2263 mv = &cfg->msix.msix_vectors[i]; 2264 if (mv->mv_irq == irq) { 2265 error = PCIB_MAP_MSI(device_get_parent(bus), 2266 dev, irq, &addr, &data); 2267 if (error) 2268 return (error); 2269 mv->mv_address = addr; 2270 mv->mv_data = data; 2271 for (j = 0; j < cfg->msix.msix_table_len; j++) { 2272 mte = &cfg->msix.msix_table[j]; 2273 if (mte->mte_vector != i + 1) 2274 continue; 2275 if (mte->mte_handlers == 0) 2276 continue; 2277 pci_mask_msix(dev, j); 2278 pci_enable_msix(dev, j, addr, data); 2279 pci_unmask_msix(dev, j); 2280 } 2281 } 2282 } 2283 return (ENOENT); 2284 } 2285 2286 return (ENOENT); 2287 } 2288 2289 /* 2290 * Returns true if the specified device is blacklisted because MSI 2291 * doesn't work. 2292 */ 2293 int 2294 pci_msi_device_blacklisted(device_t dev) 2295 { 2296 2297 if (!pci_honor_msi_blacklist) 2298 return (0); 2299 2300 return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI)); 2301 } 2302 2303 /* 2304 * Determine if MSI is blacklisted globally on this system. Currently, 2305 * we just check for blacklisted chipsets as represented by the 2306 * host-PCI bridge at device 0:0:0. In the future, it may become 2307 * necessary to check other system attributes, such as the kenv values 2308 * that give the motherboard manufacturer and model number. 2309 */ 2310 static int 2311 pci_msi_blacklisted(void) 2312 { 2313 device_t dev; 2314 2315 if (!pci_honor_msi_blacklist) 2316 return (0); 2317 2318 /* Blacklist all non-PCI-express and non-PCI-X chipsets. */ 2319 if (!(pcie_chipset || pcix_chipset)) { 2320 if (vm_guest != VM_GUEST_NO) { 2321 /* 2322 * Whitelist older chipsets in virtual 2323 * machines known to support MSI. 2324 */ 2325 dev = pci_find_bsf(0, 0, 0); 2326 if (dev != NULL) 2327 return (!pci_has_quirk(pci_get_devid(dev), 2328 PCI_QUIRK_ENABLE_MSI_VM)); 2329 } 2330 return (1); 2331 } 2332 2333 dev = pci_find_bsf(0, 0, 0); 2334 if (dev != NULL) 2335 return (pci_msi_device_blacklisted(dev)); 2336 return (0); 2337 } 2338 2339 /* 2340 * Returns true if the specified device is blacklisted because MSI-X 2341 * doesn't work. Note that this assumes that if MSI doesn't work, 2342 * MSI-X doesn't either. 2343 */ 2344 int 2345 pci_msix_device_blacklisted(device_t dev) 2346 { 2347 2348 if (!pci_honor_msi_blacklist) 2349 return (0); 2350 2351 if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) 2352 return (1); 2353 2354 return (pci_msi_device_blacklisted(dev)); 2355 } 2356 2357 /* 2358 * Determine if MSI-X is blacklisted globally on this system. If MSI 2359 * is blacklisted, assume that MSI-X is as well. Check for additional 2360 * chipsets where MSI works but MSI-X does not. 2361 */ 2362 static int 2363 pci_msix_blacklisted(void) 2364 { 2365 device_t dev; 2366 2367 if (!pci_honor_msi_blacklist) 2368 return (0); 2369 2370 dev = pci_find_bsf(0, 0, 0); 2371 if (dev != NULL && pci_has_quirk(pci_get_devid(dev), 2372 PCI_QUIRK_DISABLE_MSIX)) 2373 return (1); 2374 2375 return (pci_msi_blacklisted()); 2376 } 2377 2378 /* 2379 * Attempt to allocate *count MSI messages. The actual number allocated is 2380 * returned in *count. After this function returns, each message will be 2381 * available to the driver as SYS_RES_IRQ resources starting at a rid 1. 2382 */ 2383 int 2384 pci_alloc_msi_method(device_t dev, device_t child, int *count) 2385 { 2386 struct pci_devinfo *dinfo = device_get_ivars(child); 2387 pcicfgregs *cfg = &dinfo->cfg; 2388 struct resource_list_entry *rle; 2389 int actual, error, i, irqs[32]; 2390 uint16_t ctrl; 2391 2392 /* Don't let count == 0 get us into trouble. */ 2393 if (*count == 0) 2394 return (EINVAL); 2395 2396 /* If rid 0 is allocated, then fail. */ 2397 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 2398 if (rle != NULL && rle->res != NULL) 2399 return (ENXIO); 2400 2401 /* Already have allocated messages? */ 2402 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 2403 return (ENXIO); 2404 2405 /* If MSI is blacklisted for this system, fail. */ 2406 if (pci_msi_blacklisted()) 2407 return (ENXIO); 2408 2409 /* MSI capability present? */ 2410 if (cfg->msi.msi_location == 0 || !pci_do_msi) 2411 return (ENODEV); 2412 2413 if (bootverbose) 2414 device_printf(child, 2415 "attempting to allocate %d MSI vectors (%d supported)\n", 2416 *count, cfg->msi.msi_msgnum); 2417 2418 /* Don't ask for more than the device supports. */ 2419 actual = min(*count, cfg->msi.msi_msgnum); 2420 2421 /* Don't ask for more than 32 messages. */ 2422 actual = min(actual, 32); 2423 2424 /* MSI requires power of 2 number of messages. */ 2425 if (!powerof2(actual)) 2426 return (EINVAL); 2427 2428 for (;;) { 2429 /* Try to allocate N messages. */ 2430 error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual, 2431 actual, irqs); 2432 if (error == 0) 2433 break; 2434 if (actual == 1) 2435 return (error); 2436 2437 /* Try N / 2. */ 2438 actual >>= 1; 2439 } 2440 2441 /* 2442 * We now have N actual messages mapped onto SYS_RES_IRQ 2443 * resources in the irqs[] array, so add new resources 2444 * starting at rid 1. 2445 */ 2446 for (i = 0; i < actual; i++) 2447 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, 2448 irqs[i], irqs[i], 1); 2449 2450 if (bootverbose) { 2451 if (actual == 1) 2452 device_printf(child, "using IRQ %d for MSI\n", irqs[0]); 2453 else { 2454 int run; 2455 2456 /* 2457 * Be fancy and try to print contiguous runs 2458 * of IRQ values as ranges. 'run' is true if 2459 * we are in a range. 2460 */ 2461 device_printf(child, "using IRQs %d", irqs[0]); 2462 run = 0; 2463 for (i = 1; i < actual; i++) { 2464 2465 /* Still in a run? */ 2466 if (irqs[i] == irqs[i - 1] + 1) { 2467 run = 1; 2468 continue; 2469 } 2470 2471 /* Finish previous range. */ 2472 if (run) { 2473 printf("-%d", irqs[i - 1]); 2474 run = 0; 2475 } 2476 2477 /* Start new range. */ 2478 printf(",%d", irqs[i]); 2479 } 2480 2481 /* Unfinished range? */ 2482 if (run) 2483 printf("-%d", irqs[actual - 1]); 2484 printf(" for MSI\n"); 2485 } 2486 } 2487 2488 /* Update control register with actual count. */ 2489 ctrl = cfg->msi.msi_ctrl; 2490 ctrl &= ~PCIM_MSICTRL_MME_MASK; 2491 ctrl |= (ffs(actual) - 1) << 4; 2492 cfg->msi.msi_ctrl = ctrl; 2493 pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2); 2494 2495 /* Update counts of alloc'd messages. */ 2496 cfg->msi.msi_alloc = actual; 2497 cfg->msi.msi_handlers = 0; 2498 *count = actual; 2499 return (0); 2500 } 2501 2502 /* Release the MSI messages associated with this device. */ 2503 int 2504 pci_release_msi_method(device_t dev, device_t child) 2505 { 2506 struct pci_devinfo *dinfo = device_get_ivars(child); 2507 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2508 struct resource_list_entry *rle; 2509 int error, i, irqs[32]; 2510 2511 /* Try MSI-X first. */ 2512 error = pci_release_msix(dev, child); 2513 if (error != ENODEV) 2514 return (error); 2515 2516 /* Do we have any messages to release? */ 2517 if (msi->msi_alloc == 0) 2518 return (ENODEV); 2519 KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages")); 2520 2521 /* Make sure none of the resources are allocated. */ 2522 if (msi->msi_handlers > 0) 2523 return (EBUSY); 2524 for (i = 0; i < msi->msi_alloc; i++) { 2525 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2526 KASSERT(rle != NULL, ("missing MSI resource")); 2527 if (rle->res != NULL) 2528 return (EBUSY); 2529 irqs[i] = rle->start; 2530 } 2531 2532 /* Update control register with 0 count. */ 2533 KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE), 2534 ("%s: MSI still enabled", __func__)); 2535 msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK; 2536 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2537 msi->msi_ctrl, 2); 2538 2539 /* Release the messages. */ 2540 PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs); 2541 for (i = 0; i < msi->msi_alloc; i++) 2542 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2543 2544 /* Update alloc count. */ 2545 msi->msi_alloc = 0; 2546 msi->msi_addr = 0; 2547 msi->msi_data = 0; 2548 return (0); 2549 } 2550 2551 /* 2552 * Return the max supported MSI messages this device supports. 2553 * Basically, assuming the MD code can alloc messages, this function 2554 * should return the maximum value that pci_alloc_msi() can return. 2555 * Thus, it is subject to the tunables, etc. 2556 */ 2557 int 2558 pci_msi_count_method(device_t dev, device_t child) 2559 { 2560 struct pci_devinfo *dinfo = device_get_ivars(child); 2561 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2562 2563 if (pci_do_msi && msi->msi_location != 0) 2564 return (msi->msi_msgnum); 2565 return (0); 2566 } 2567 2568 /* free pcicfgregs structure and all depending data structures */ 2569 2570 int 2571 pci_freecfg(struct pci_devinfo *dinfo) 2572 { 2573 struct devlist *devlist_head; 2574 struct pci_map *pm, *next; 2575 int i; 2576 2577 devlist_head = &pci_devq; 2578 2579 if (dinfo->cfg.vpd.vpd_reg) { 2580 free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF); 2581 for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++) 2582 free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF); 2583 free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF); 2584 for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++) 2585 free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF); 2586 free(dinfo->cfg.vpd.vpd_w, M_DEVBUF); 2587 } 2588 STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) { 2589 free(pm, M_DEVBUF); 2590 } 2591 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links); 2592 free(dinfo, M_DEVBUF); 2593 2594 /* increment the generation count */ 2595 pci_generation++; 2596 2597 /* we're losing one device */ 2598 pci_numdevs--; 2599 return (0); 2600 } 2601 2602 /* 2603 * PCI power manangement 2604 */ 2605 int 2606 pci_set_powerstate_method(device_t dev, device_t child, int state) 2607 { 2608 struct pci_devinfo *dinfo = device_get_ivars(child); 2609 pcicfgregs *cfg = &dinfo->cfg; 2610 uint16_t status; 2611 int oldstate, highest, delay; 2612 2613 if (cfg->pp.pp_cap == 0) 2614 return (EOPNOTSUPP); 2615 2616 /* 2617 * Optimize a no state change request away. While it would be OK to 2618 * write to the hardware in theory, some devices have shown odd 2619 * behavior when going from D3 -> D3. 2620 */ 2621 oldstate = pci_get_powerstate(child); 2622 if (oldstate == state) 2623 return (0); 2624 2625 /* 2626 * The PCI power management specification states that after a state 2627 * transition between PCI power states, system software must 2628 * guarantee a minimal delay before the function accesses the device. 2629 * Compute the worst case delay that we need to guarantee before we 2630 * access the device. Many devices will be responsive much more 2631 * quickly than this delay, but there are some that don't respond 2632 * instantly to state changes. Transitions to/from D3 state require 2633 * 10ms, while D2 requires 200us, and D0/1 require none. The delay 2634 * is done below with DELAY rather than a sleeper function because 2635 * this function can be called from contexts where we cannot sleep. 2636 */ 2637 highest = (oldstate > state) ? oldstate : state; 2638 if (highest == PCI_POWERSTATE_D3) 2639 delay = 10000; 2640 else if (highest == PCI_POWERSTATE_D2) 2641 delay = 200; 2642 else 2643 delay = 0; 2644 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2) 2645 & ~PCIM_PSTAT_DMASK; 2646 switch (state) { 2647 case PCI_POWERSTATE_D0: 2648 status |= PCIM_PSTAT_D0; 2649 break; 2650 case PCI_POWERSTATE_D1: 2651 if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0) 2652 return (EOPNOTSUPP); 2653 status |= PCIM_PSTAT_D1; 2654 break; 2655 case PCI_POWERSTATE_D2: 2656 if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0) 2657 return (EOPNOTSUPP); 2658 status |= PCIM_PSTAT_D2; 2659 break; 2660 case PCI_POWERSTATE_D3: 2661 status |= PCIM_PSTAT_D3; 2662 break; 2663 default: 2664 return (EINVAL); 2665 } 2666 2667 if (bootverbose) 2668 pci_printf(cfg, "Transition from D%d to D%d\n", oldstate, 2669 state); 2670 2671 PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2); 2672 if (delay) 2673 DELAY(delay); 2674 return (0); 2675 } 2676 2677 int 2678 pci_get_powerstate_method(device_t dev, device_t child) 2679 { 2680 struct pci_devinfo *dinfo = device_get_ivars(child); 2681 pcicfgregs *cfg = &dinfo->cfg; 2682 uint16_t status; 2683 int result; 2684 2685 if (cfg->pp.pp_cap != 0) { 2686 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2); 2687 switch (status & PCIM_PSTAT_DMASK) { 2688 case PCIM_PSTAT_D0: 2689 result = PCI_POWERSTATE_D0; 2690 break; 2691 case PCIM_PSTAT_D1: 2692 result = PCI_POWERSTATE_D1; 2693 break; 2694 case PCIM_PSTAT_D2: 2695 result = PCI_POWERSTATE_D2; 2696 break; 2697 case PCIM_PSTAT_D3: 2698 result = PCI_POWERSTATE_D3; 2699 break; 2700 default: 2701 result = PCI_POWERSTATE_UNKNOWN; 2702 break; 2703 } 2704 } else { 2705 /* No support, device is always at D0 */ 2706 result = PCI_POWERSTATE_D0; 2707 } 2708 return (result); 2709 } 2710 2711 /* 2712 * Some convenience functions for PCI device drivers. 2713 */ 2714 2715 static __inline void 2716 pci_set_command_bit(device_t dev, device_t child, uint16_t bit) 2717 { 2718 uint16_t command; 2719 2720 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2721 command |= bit; 2722 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2723 } 2724 2725 static __inline void 2726 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit) 2727 { 2728 uint16_t command; 2729 2730 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2731 command &= ~bit; 2732 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2733 } 2734 2735 int 2736 pci_enable_busmaster_method(device_t dev, device_t child) 2737 { 2738 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2739 return (0); 2740 } 2741 2742 int 2743 pci_disable_busmaster_method(device_t dev, device_t child) 2744 { 2745 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2746 return (0); 2747 } 2748 2749 int 2750 pci_enable_io_method(device_t dev, device_t child, int space) 2751 { 2752 uint16_t bit; 2753 2754 switch(space) { 2755 case SYS_RES_IOPORT: 2756 bit = PCIM_CMD_PORTEN; 2757 break; 2758 case SYS_RES_MEMORY: 2759 bit = PCIM_CMD_MEMEN; 2760 break; 2761 default: 2762 return (EINVAL); 2763 } 2764 pci_set_command_bit(dev, child, bit); 2765 return (0); 2766 } 2767 2768 int 2769 pci_disable_io_method(device_t dev, device_t child, int space) 2770 { 2771 uint16_t bit; 2772 2773 switch(space) { 2774 case SYS_RES_IOPORT: 2775 bit = PCIM_CMD_PORTEN; 2776 break; 2777 case SYS_RES_MEMORY: 2778 bit = PCIM_CMD_MEMEN; 2779 break; 2780 default: 2781 return (EINVAL); 2782 } 2783 pci_clear_command_bit(dev, child, bit); 2784 return (0); 2785 } 2786 2787 /* 2788 * New style pci driver. Parent device is either a pci-host-bridge or a 2789 * pci-pci-bridge. Both kinds are represented by instances of pcib. 2790 */ 2791 2792 void 2793 pci_print_verbose(struct pci_devinfo *dinfo) 2794 { 2795 2796 if (bootverbose) { 2797 pcicfgregs *cfg = &dinfo->cfg; 2798 2799 printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n", 2800 cfg->vendor, cfg->device, cfg->revid); 2801 printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n", 2802 cfg->domain, cfg->bus, cfg->slot, cfg->func); 2803 printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n", 2804 cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype, 2805 cfg->mfdev); 2806 printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n", 2807 cfg->cmdreg, cfg->statreg, cfg->cachelnsz); 2808 printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n", 2809 cfg->lattimer, cfg->lattimer * 30, cfg->mingnt, 2810 cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250); 2811 if (cfg->intpin > 0) 2812 printf("\tintpin=%c, irq=%d\n", 2813 cfg->intpin +'a' -1, cfg->intline); 2814 if (cfg->pp.pp_cap) { 2815 uint16_t status; 2816 2817 status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2); 2818 printf("\tpowerspec %d supports D0%s%s D3 current D%d\n", 2819 cfg->pp.pp_cap & PCIM_PCAP_SPEC, 2820 cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "", 2821 cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "", 2822 status & PCIM_PSTAT_DMASK); 2823 } 2824 if (cfg->msi.msi_location) { 2825 int ctrl; 2826 2827 ctrl = cfg->msi.msi_ctrl; 2828 printf("\tMSI supports %d message%s%s%s\n", 2829 cfg->msi.msi_msgnum, 2830 (cfg->msi.msi_msgnum == 1) ? "" : "s", 2831 (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", 2832 (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":""); 2833 } 2834 if (cfg->msix.msix_location) { 2835 printf("\tMSI-X supports %d message%s ", 2836 cfg->msix.msix_msgnum, 2837 (cfg->msix.msix_msgnum == 1) ? "" : "s"); 2838 if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar) 2839 printf("in map 0x%x\n", 2840 cfg->msix.msix_table_bar); 2841 else 2842 printf("in maps 0x%x and 0x%x\n", 2843 cfg->msix.msix_table_bar, 2844 cfg->msix.msix_pba_bar); 2845 } 2846 } 2847 } 2848 2849 static int 2850 pci_porten(device_t dev) 2851 { 2852 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0; 2853 } 2854 2855 static int 2856 pci_memen(device_t dev) 2857 { 2858 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0; 2859 } 2860 2861 void 2862 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp, 2863 int *bar64) 2864 { 2865 struct pci_devinfo *dinfo; 2866 pci_addr_t map, testval; 2867 int ln2range; 2868 uint16_t cmd; 2869 2870 /* 2871 * The device ROM BAR is special. It is always a 32-bit 2872 * memory BAR. Bit 0 is special and should not be set when 2873 * sizing the BAR. 2874 */ 2875 dinfo = device_get_ivars(dev); 2876 if (PCIR_IS_BIOS(&dinfo->cfg, reg)) { 2877 map = pci_read_config(dev, reg, 4); 2878 pci_write_config(dev, reg, 0xfffffffe, 4); 2879 testval = pci_read_config(dev, reg, 4); 2880 pci_write_config(dev, reg, map, 4); 2881 *mapp = map; 2882 *testvalp = testval; 2883 if (bar64 != NULL) 2884 *bar64 = 0; 2885 return; 2886 } 2887 2888 map = pci_read_config(dev, reg, 4); 2889 ln2range = pci_maprange(map); 2890 if (ln2range == 64) 2891 map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 2892 2893 /* 2894 * Disable decoding via the command register before 2895 * determining the BAR's length since we will be placing it in 2896 * a weird state. 2897 */ 2898 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 2899 pci_write_config(dev, PCIR_COMMAND, 2900 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 2901 2902 /* 2903 * Determine the BAR's length by writing all 1's. The bottom 2904 * log_2(size) bits of the BAR will stick as 0 when we read 2905 * the value back. 2906 * 2907 * NB: according to the PCI Local Bus Specification, rev. 3.0: 2908 * "Software writes 0FFFFFFFFh to both registers, reads them back, 2909 * and combines the result into a 64-bit value." (section 6.2.5.1) 2910 * 2911 * Writes to both registers must be performed before attempting to 2912 * read back the size value. 2913 */ 2914 testval = 0; 2915 pci_write_config(dev, reg, 0xffffffff, 4); 2916 if (ln2range == 64) { 2917 pci_write_config(dev, reg + 4, 0xffffffff, 4); 2918 testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 2919 } 2920 testval |= pci_read_config(dev, reg, 4); 2921 2922 /* 2923 * Restore the original value of the BAR. We may have reprogrammed 2924 * the BAR of the low-level console device and when booting verbose, 2925 * we need the console device addressable. 2926 */ 2927 pci_write_config(dev, reg, map, 4); 2928 if (ln2range == 64) 2929 pci_write_config(dev, reg + 4, map >> 32, 4); 2930 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 2931 2932 *mapp = map; 2933 *testvalp = testval; 2934 if (bar64 != NULL) 2935 *bar64 = (ln2range == 64); 2936 } 2937 2938 static void 2939 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base) 2940 { 2941 struct pci_devinfo *dinfo; 2942 int ln2range; 2943 2944 /* The device ROM BAR is always a 32-bit memory BAR. */ 2945 dinfo = device_get_ivars(dev); 2946 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 2947 ln2range = 32; 2948 else 2949 ln2range = pci_maprange(pm->pm_value); 2950 pci_write_config(dev, pm->pm_reg, base, 4); 2951 if (ln2range == 64) 2952 pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4); 2953 pm->pm_value = pci_read_config(dev, pm->pm_reg, 4); 2954 if (ln2range == 64) 2955 pm->pm_value |= (pci_addr_t)pci_read_config(dev, 2956 pm->pm_reg + 4, 4) << 32; 2957 } 2958 2959 struct pci_map * 2960 pci_find_bar(device_t dev, int reg) 2961 { 2962 struct pci_devinfo *dinfo; 2963 struct pci_map *pm; 2964 2965 dinfo = device_get_ivars(dev); 2966 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 2967 if (pm->pm_reg == reg) 2968 return (pm); 2969 } 2970 return (NULL); 2971 } 2972 2973 int 2974 pci_bar_enabled(device_t dev, struct pci_map *pm) 2975 { 2976 struct pci_devinfo *dinfo; 2977 uint16_t cmd; 2978 2979 dinfo = device_get_ivars(dev); 2980 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) && 2981 !(pm->pm_value & PCIM_BIOS_ENABLE)) 2982 return (0); 2983 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 2984 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value)) 2985 return ((cmd & PCIM_CMD_MEMEN) != 0); 2986 else 2987 return ((cmd & PCIM_CMD_PORTEN) != 0); 2988 } 2989 2990 struct pci_map * 2991 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size) 2992 { 2993 struct pci_devinfo *dinfo; 2994 struct pci_map *pm, *prev; 2995 2996 dinfo = device_get_ivars(dev); 2997 pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO); 2998 pm->pm_reg = reg; 2999 pm->pm_value = value; 3000 pm->pm_size = size; 3001 STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) { 3002 KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x", 3003 reg)); 3004 if (STAILQ_NEXT(prev, pm_link) == NULL || 3005 STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg) 3006 break; 3007 } 3008 if (prev != NULL) 3009 STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link); 3010 else 3011 STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link); 3012 return (pm); 3013 } 3014 3015 static void 3016 pci_restore_bars(device_t dev) 3017 { 3018 struct pci_devinfo *dinfo; 3019 struct pci_map *pm; 3020 int ln2range; 3021 3022 dinfo = device_get_ivars(dev); 3023 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3024 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3025 ln2range = 32; 3026 else 3027 ln2range = pci_maprange(pm->pm_value); 3028 pci_write_config(dev, pm->pm_reg, pm->pm_value, 4); 3029 if (ln2range == 64) 3030 pci_write_config(dev, pm->pm_reg + 4, 3031 pm->pm_value >> 32, 4); 3032 } 3033 } 3034 3035 /* 3036 * Add a resource based on a pci map register. Return 1 if the map 3037 * register is a 32bit map register or 2 if it is a 64bit register. 3038 */ 3039 static int 3040 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, 3041 int force, int prefetch) 3042 { 3043 struct pci_map *pm; 3044 pci_addr_t base, map, testval; 3045 pci_addr_t start, end, count; 3046 int barlen, basezero, flags, maprange, mapsize, type; 3047 uint16_t cmd; 3048 struct resource *res; 3049 3050 /* 3051 * The BAR may already exist if the device is a CardBus card 3052 * whose CIS is stored in this BAR. 3053 */ 3054 pm = pci_find_bar(dev, reg); 3055 if (pm != NULL) { 3056 maprange = pci_maprange(pm->pm_value); 3057 barlen = maprange == 64 ? 2 : 1; 3058 return (barlen); 3059 } 3060 3061 pci_read_bar(dev, reg, &map, &testval, NULL); 3062 if (PCI_BAR_MEM(map)) { 3063 type = SYS_RES_MEMORY; 3064 if (map & PCIM_BAR_MEM_PREFETCH) 3065 prefetch = 1; 3066 } else 3067 type = SYS_RES_IOPORT; 3068 mapsize = pci_mapsize(testval); 3069 base = pci_mapbase(map); 3070 #ifdef __PCI_BAR_ZERO_VALID 3071 basezero = 0; 3072 #else 3073 basezero = base == 0; 3074 #endif 3075 maprange = pci_maprange(map); 3076 barlen = maprange == 64 ? 2 : 1; 3077 3078 /* 3079 * For I/O registers, if bottom bit is set, and the next bit up 3080 * isn't clear, we know we have a BAR that doesn't conform to the 3081 * spec, so ignore it. Also, sanity check the size of the data 3082 * areas to the type of memory involved. Memory must be at least 3083 * 16 bytes in size, while I/O ranges must be at least 4. 3084 */ 3085 if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0) 3086 return (barlen); 3087 if ((type == SYS_RES_MEMORY && mapsize < 4) || 3088 (type == SYS_RES_IOPORT && mapsize < 2)) 3089 return (barlen); 3090 3091 /* Save a record of this BAR. */ 3092 pm = pci_add_bar(dev, reg, map, mapsize); 3093 if (bootverbose) { 3094 printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d", 3095 reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize); 3096 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3097 printf(", port disabled\n"); 3098 else if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3099 printf(", memory disabled\n"); 3100 else 3101 printf(", enabled\n"); 3102 } 3103 3104 /* 3105 * If base is 0, then we have problems if this architecture does 3106 * not allow that. It is best to ignore such entries for the 3107 * moment. These will be allocated later if the driver specifically 3108 * requests them. However, some removable buses look better when 3109 * all resources are allocated, so allow '0' to be overriden. 3110 * 3111 * Similarly treat maps whose values is the same as the test value 3112 * read back. These maps have had all f's written to them by the 3113 * BIOS in an attempt to disable the resources. 3114 */ 3115 if (!force && (basezero || map == testval)) 3116 return (barlen); 3117 if ((u_long)base != base) { 3118 device_printf(bus, 3119 "pci%d:%d:%d:%d bar %#x too many address bits", 3120 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), 3121 pci_get_function(dev), reg); 3122 return (barlen); 3123 } 3124 3125 /* 3126 * This code theoretically does the right thing, but has 3127 * undesirable side effects in some cases where peripherals 3128 * respond oddly to having these bits enabled. Let the user 3129 * be able to turn them off (since pci_enable_io_modes is 1 by 3130 * default). 3131 */ 3132 if (pci_enable_io_modes) { 3133 /* Turn on resources that have been left off by a lazy BIOS */ 3134 if (type == SYS_RES_IOPORT && !pci_porten(dev)) { 3135 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3136 cmd |= PCIM_CMD_PORTEN; 3137 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3138 } 3139 if (type == SYS_RES_MEMORY && !pci_memen(dev)) { 3140 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3141 cmd |= PCIM_CMD_MEMEN; 3142 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3143 } 3144 } else { 3145 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3146 return (barlen); 3147 if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3148 return (barlen); 3149 } 3150 3151 count = (pci_addr_t)1 << mapsize; 3152 flags = RF_ALIGNMENT_LOG2(mapsize); 3153 if (prefetch) 3154 flags |= RF_PREFETCHABLE; 3155 if (basezero || base == pci_mapbase(testval) || pci_clear_bars) { 3156 start = 0; /* Let the parent decide. */ 3157 end = ~0; 3158 } else { 3159 start = base; 3160 end = base + count - 1; 3161 } 3162 resource_list_add(rl, type, reg, start, end, count); 3163 3164 /* 3165 * Try to allocate the resource for this BAR from our parent 3166 * so that this resource range is already reserved. The 3167 * driver for this device will later inherit this resource in 3168 * pci_alloc_resource(). 3169 */ 3170 res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count, 3171 flags); 3172 if (pci_do_realloc_bars && res == NULL && (start != 0 || end != ~0)) { 3173 /* 3174 * If the allocation fails, try to allocate a resource for 3175 * this BAR using any available range. The firmware felt 3176 * it was important enough to assign a resource, so don't 3177 * disable decoding if we can help it. 3178 */ 3179 resource_list_delete(rl, type, reg); 3180 resource_list_add(rl, type, reg, 0, ~0, count); 3181 res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0, 3182 count, flags); 3183 } 3184 if (res == NULL) { 3185 /* 3186 * If the allocation fails, delete the resource list entry 3187 * and disable decoding for this device. 3188 * 3189 * If the driver requests this resource in the future, 3190 * pci_reserve_map() will try to allocate a fresh 3191 * resource range. 3192 */ 3193 resource_list_delete(rl, type, reg); 3194 pci_disable_io(dev, type); 3195 if (bootverbose) 3196 device_printf(bus, 3197 "pci%d:%d:%d:%d bar %#x failed to allocate\n", 3198 pci_get_domain(dev), pci_get_bus(dev), 3199 pci_get_slot(dev), pci_get_function(dev), reg); 3200 } else { 3201 start = rman_get_start(res); 3202 pci_write_bar(dev, pm, start); 3203 } 3204 return (barlen); 3205 } 3206 3207 /* 3208 * For ATA devices we need to decide early what addressing mode to use. 3209 * Legacy demands that the primary and secondary ATA ports sits on the 3210 * same addresses that old ISA hardware did. This dictates that we use 3211 * those addresses and ignore the BAR's if we cannot set PCI native 3212 * addressing mode. 3213 */ 3214 static void 3215 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force, 3216 uint32_t prefetchmask) 3217 { 3218 int rid, type, progif; 3219 #if 0 3220 /* if this device supports PCI native addressing use it */ 3221 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3222 if ((progif & 0x8a) == 0x8a) { 3223 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) && 3224 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) { 3225 printf("Trying ATA native PCI addressing mode\n"); 3226 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1); 3227 } 3228 } 3229 #endif 3230 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3231 type = SYS_RES_IOPORT; 3232 if (progif & PCIP_STORAGE_IDE_MODEPRIM) { 3233 pci_add_map(bus, dev, PCIR_BAR(0), rl, force, 3234 prefetchmask & (1 << 0)); 3235 pci_add_map(bus, dev, PCIR_BAR(1), rl, force, 3236 prefetchmask & (1 << 1)); 3237 } else { 3238 rid = PCIR_BAR(0); 3239 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8); 3240 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0, 3241 0x1f7, 8, 0); 3242 rid = PCIR_BAR(1); 3243 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1); 3244 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6, 3245 0x3f6, 1, 0); 3246 } 3247 if (progif & PCIP_STORAGE_IDE_MODESEC) { 3248 pci_add_map(bus, dev, PCIR_BAR(2), rl, force, 3249 prefetchmask & (1 << 2)); 3250 pci_add_map(bus, dev, PCIR_BAR(3), rl, force, 3251 prefetchmask & (1 << 3)); 3252 } else { 3253 rid = PCIR_BAR(2); 3254 resource_list_add(rl, type, rid, 0x170, 0x177, 8); 3255 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170, 3256 0x177, 8, 0); 3257 rid = PCIR_BAR(3); 3258 resource_list_add(rl, type, rid, 0x376, 0x376, 1); 3259 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376, 3260 0x376, 1, 0); 3261 } 3262 pci_add_map(bus, dev, PCIR_BAR(4), rl, force, 3263 prefetchmask & (1 << 4)); 3264 pci_add_map(bus, dev, PCIR_BAR(5), rl, force, 3265 prefetchmask & (1 << 5)); 3266 } 3267 3268 static void 3269 pci_assign_interrupt(device_t bus, device_t dev, int force_route) 3270 { 3271 struct pci_devinfo *dinfo = device_get_ivars(dev); 3272 pcicfgregs *cfg = &dinfo->cfg; 3273 char tunable_name[64]; 3274 int irq; 3275 3276 /* Has to have an intpin to have an interrupt. */ 3277 if (cfg->intpin == 0) 3278 return; 3279 3280 /* Let the user override the IRQ with a tunable. */ 3281 irq = PCI_INVALID_IRQ; 3282 snprintf(tunable_name, sizeof(tunable_name), 3283 "hw.pci%d.%d.%d.INT%c.irq", 3284 cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1); 3285 if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0)) 3286 irq = PCI_INVALID_IRQ; 3287 3288 /* 3289 * If we didn't get an IRQ via the tunable, then we either use the 3290 * IRQ value in the intline register or we ask the bus to route an 3291 * interrupt for us. If force_route is true, then we only use the 3292 * value in the intline register if the bus was unable to assign an 3293 * IRQ. 3294 */ 3295 if (!PCI_INTERRUPT_VALID(irq)) { 3296 if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route) 3297 irq = PCI_ASSIGN_INTERRUPT(bus, dev); 3298 if (!PCI_INTERRUPT_VALID(irq)) 3299 irq = cfg->intline; 3300 } 3301 3302 /* If after all that we don't have an IRQ, just bail. */ 3303 if (!PCI_INTERRUPT_VALID(irq)) 3304 return; 3305 3306 /* Update the config register if it changed. */ 3307 if (irq != cfg->intline) { 3308 cfg->intline = irq; 3309 pci_write_config(dev, PCIR_INTLINE, irq, 1); 3310 } 3311 3312 /* Add this IRQ as rid 0 interrupt resource. */ 3313 resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1); 3314 } 3315 3316 /* Perform early OHCI takeover from SMM. */ 3317 static void 3318 ohci_early_takeover(device_t self) 3319 { 3320 struct resource *res; 3321 uint32_t ctl; 3322 int rid; 3323 int i; 3324 3325 rid = PCIR_BAR(0); 3326 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3327 if (res == NULL) 3328 return; 3329 3330 ctl = bus_read_4(res, OHCI_CONTROL); 3331 if (ctl & OHCI_IR) { 3332 if (bootverbose) 3333 printf("ohci early: " 3334 "SMM active, request owner change\n"); 3335 bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR); 3336 for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) { 3337 DELAY(1000); 3338 ctl = bus_read_4(res, OHCI_CONTROL); 3339 } 3340 if (ctl & OHCI_IR) { 3341 if (bootverbose) 3342 printf("ohci early: " 3343 "SMM does not respond, resetting\n"); 3344 bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET); 3345 } 3346 /* Disable interrupts */ 3347 bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); 3348 } 3349 3350 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3351 } 3352 3353 /* Perform early UHCI takeover from SMM. */ 3354 static void 3355 uhci_early_takeover(device_t self) 3356 { 3357 struct resource *res; 3358 int rid; 3359 3360 /* 3361 * Set the PIRQD enable bit and switch off all the others. We don't 3362 * want legacy support to interfere with us XXX Does this also mean 3363 * that the BIOS won't touch the keyboard anymore if it is connected 3364 * to the ports of the root hub? 3365 */ 3366 pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2); 3367 3368 /* Disable interrupts */ 3369 rid = PCI_UHCI_BASE_REG; 3370 res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE); 3371 if (res != NULL) { 3372 bus_write_2(res, UHCI_INTR, 0); 3373 bus_release_resource(self, SYS_RES_IOPORT, rid, res); 3374 } 3375 } 3376 3377 /* Perform early EHCI takeover from SMM. */ 3378 static void 3379 ehci_early_takeover(device_t self) 3380 { 3381 struct resource *res; 3382 uint32_t cparams; 3383 uint32_t eec; 3384 uint8_t eecp; 3385 uint8_t bios_sem; 3386 uint8_t offs; 3387 int rid; 3388 int i; 3389 3390 rid = PCIR_BAR(0); 3391 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3392 if (res == NULL) 3393 return; 3394 3395 cparams = bus_read_4(res, EHCI_HCCPARAMS); 3396 3397 /* Synchronise with the BIOS if it owns the controller. */ 3398 for (eecp = EHCI_HCC_EECP(cparams); eecp != 0; 3399 eecp = EHCI_EECP_NEXT(eec)) { 3400 eec = pci_read_config(self, eecp, 4); 3401 if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) { 3402 continue; 3403 } 3404 bios_sem = pci_read_config(self, eecp + 3405 EHCI_LEGSUP_BIOS_SEM, 1); 3406 if (bios_sem == 0) { 3407 continue; 3408 } 3409 if (bootverbose) 3410 printf("ehci early: " 3411 "SMM active, request owner change\n"); 3412 3413 pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1); 3414 3415 for (i = 0; (i < 100) && (bios_sem != 0); i++) { 3416 DELAY(1000); 3417 bios_sem = pci_read_config(self, eecp + 3418 EHCI_LEGSUP_BIOS_SEM, 1); 3419 } 3420 3421 if (bios_sem != 0) { 3422 if (bootverbose) 3423 printf("ehci early: " 3424 "SMM does not respond\n"); 3425 } 3426 /* Disable interrupts */ 3427 offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION)); 3428 bus_write_4(res, offs + EHCI_USBINTR, 0); 3429 } 3430 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3431 } 3432 3433 /* Perform early XHCI takeover from SMM. */ 3434 static void 3435 xhci_early_takeover(device_t self) 3436 { 3437 struct resource *res; 3438 uint32_t cparams; 3439 uint32_t eec; 3440 uint8_t eecp; 3441 uint8_t bios_sem; 3442 uint8_t offs; 3443 int rid; 3444 int i; 3445 3446 rid = PCIR_BAR(0); 3447 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3448 if (res == NULL) 3449 return; 3450 3451 cparams = bus_read_4(res, XHCI_HCSPARAMS0); 3452 3453 eec = -1; 3454 3455 /* Synchronise with the BIOS if it owns the controller. */ 3456 for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec); 3457 eecp += XHCI_XECP_NEXT(eec) << 2) { 3458 eec = bus_read_4(res, eecp); 3459 3460 if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY) 3461 continue; 3462 3463 bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); 3464 if (bios_sem == 0) 3465 continue; 3466 3467 if (bootverbose) 3468 printf("xhci early: " 3469 "SMM active, request owner change\n"); 3470 3471 bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1); 3472 3473 /* wait a maximum of 5 second */ 3474 3475 for (i = 0; (i < 5000) && (bios_sem != 0); i++) { 3476 DELAY(1000); 3477 bios_sem = bus_read_1(res, eecp + 3478 XHCI_XECP_BIOS_SEM); 3479 } 3480 3481 if (bios_sem != 0) { 3482 if (bootverbose) 3483 printf("xhci early: " 3484 "SMM does not respond\n"); 3485 } 3486 3487 /* Disable interrupts */ 3488 offs = bus_read_1(res, XHCI_CAPLENGTH); 3489 bus_write_4(res, offs + XHCI_USBCMD, 0); 3490 bus_read_4(res, offs + XHCI_USBSTS); 3491 } 3492 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3493 } 3494 3495 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 3496 static void 3497 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg, 3498 struct resource_list *rl) 3499 { 3500 struct resource *res; 3501 char *cp; 3502 rman_res_t start, end, count; 3503 int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus; 3504 3505 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3506 case PCIM_HDRTYPE_BRIDGE: 3507 sec_reg = PCIR_SECBUS_1; 3508 sub_reg = PCIR_SUBBUS_1; 3509 break; 3510 case PCIM_HDRTYPE_CARDBUS: 3511 sec_reg = PCIR_SECBUS_2; 3512 sub_reg = PCIR_SUBBUS_2; 3513 break; 3514 default: 3515 return; 3516 } 3517 3518 /* 3519 * If the existing bus range is valid, attempt to reserve it 3520 * from our parent. If this fails for any reason, clear the 3521 * secbus and subbus registers. 3522 * 3523 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus? 3524 * This would at least preserve the existing sec_bus if it is 3525 * valid. 3526 */ 3527 sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1); 3528 sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1); 3529 3530 /* Quirk handling. */ 3531 switch (pci_get_devid(dev)) { 3532 case 0x12258086: /* Intel 82454KX/GX (Orion) */ 3533 sup_bus = pci_read_config(dev, 0x41, 1); 3534 if (sup_bus != 0xff) { 3535 sec_bus = sup_bus + 1; 3536 sub_bus = sup_bus + 1; 3537 PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1); 3538 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3539 } 3540 break; 3541 3542 case 0x00dd10de: 3543 /* Compaq R3000 BIOS sets wrong subordinate bus number. */ 3544 if ((cp = kern_getenv("smbios.planar.maker")) == NULL) 3545 break; 3546 if (strncmp(cp, "Compal", 6) != 0) { 3547 freeenv(cp); 3548 break; 3549 } 3550 freeenv(cp); 3551 if ((cp = kern_getenv("smbios.planar.product")) == NULL) 3552 break; 3553 if (strncmp(cp, "08A0", 4) != 0) { 3554 freeenv(cp); 3555 break; 3556 } 3557 freeenv(cp); 3558 if (sub_bus < 0xa) { 3559 sub_bus = 0xa; 3560 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3561 } 3562 break; 3563 } 3564 3565 if (bootverbose) 3566 printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus); 3567 if (sec_bus > 0 && sub_bus >= sec_bus) { 3568 start = sec_bus; 3569 end = sub_bus; 3570 count = end - start + 1; 3571 3572 resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count); 3573 3574 /* 3575 * If requested, clear secondary bus registers in 3576 * bridge devices to force a complete renumbering 3577 * rather than reserving the existing range. However, 3578 * preserve the existing size. 3579 */ 3580 if (pci_clear_buses) 3581 goto clear; 3582 3583 rid = 0; 3584 res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid, 3585 start, end, count, 0); 3586 if (res != NULL) 3587 return; 3588 3589 if (bootverbose) 3590 device_printf(bus, 3591 "pci%d:%d:%d:%d secbus failed to allocate\n", 3592 pci_get_domain(dev), pci_get_bus(dev), 3593 pci_get_slot(dev), pci_get_function(dev)); 3594 } 3595 3596 clear: 3597 PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1); 3598 PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1); 3599 } 3600 3601 static struct resource * 3602 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start, 3603 rman_res_t end, rman_res_t count, u_int flags) 3604 { 3605 struct pci_devinfo *dinfo; 3606 pcicfgregs *cfg; 3607 struct resource_list *rl; 3608 struct resource *res; 3609 int sec_reg, sub_reg; 3610 3611 dinfo = device_get_ivars(child); 3612 cfg = &dinfo->cfg; 3613 rl = &dinfo->resources; 3614 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3615 case PCIM_HDRTYPE_BRIDGE: 3616 sec_reg = PCIR_SECBUS_1; 3617 sub_reg = PCIR_SUBBUS_1; 3618 break; 3619 case PCIM_HDRTYPE_CARDBUS: 3620 sec_reg = PCIR_SECBUS_2; 3621 sub_reg = PCIR_SUBBUS_2; 3622 break; 3623 default: 3624 return (NULL); 3625 } 3626 3627 if (*rid != 0) 3628 return (NULL); 3629 3630 if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL) 3631 resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count); 3632 if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) { 3633 res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid, 3634 start, end, count, flags & ~RF_ACTIVE); 3635 if (res == NULL) { 3636 resource_list_delete(rl, PCI_RES_BUS, *rid); 3637 device_printf(child, "allocating %ju bus%s failed\n", 3638 count, count == 1 ? "" : "es"); 3639 return (NULL); 3640 } 3641 if (bootverbose) 3642 device_printf(child, 3643 "Lazy allocation of %ju bus%s at %ju\n", count, 3644 count == 1 ? "" : "es", rman_get_start(res)); 3645 PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1); 3646 PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1); 3647 } 3648 return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start, 3649 end, count, flags)); 3650 } 3651 #endif 3652 3653 static int 3654 pci_ea_bei_to_rid(device_t dev, int bei) 3655 { 3656 #ifdef PCI_IOV 3657 struct pci_devinfo *dinfo; 3658 int iov_pos; 3659 struct pcicfg_iov *iov; 3660 3661 dinfo = device_get_ivars(dev); 3662 iov = dinfo->cfg.iov; 3663 if (iov != NULL) 3664 iov_pos = iov->iov_pos; 3665 else 3666 iov_pos = 0; 3667 #endif 3668 3669 /* Check if matches BAR */ 3670 if ((bei >= PCIM_EA_BEI_BAR_0) && 3671 (bei <= PCIM_EA_BEI_BAR_5)) 3672 return (PCIR_BAR(bei)); 3673 3674 /* Check ROM */ 3675 if (bei == PCIM_EA_BEI_ROM) 3676 return (PCIR_BIOS); 3677 3678 #ifdef PCI_IOV 3679 /* Check if matches VF_BAR */ 3680 if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) && 3681 (bei <= PCIM_EA_BEI_VF_BAR_5)) 3682 return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) + 3683 iov_pos); 3684 #endif 3685 3686 return (-1); 3687 } 3688 3689 int 3690 pci_ea_is_enabled(device_t dev, int rid) 3691 { 3692 struct pci_ea_entry *ea; 3693 struct pci_devinfo *dinfo; 3694 3695 dinfo = device_get_ivars(dev); 3696 3697 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3698 if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid) 3699 return ((ea->eae_flags & PCIM_EA_ENABLE) > 0); 3700 } 3701 3702 return (0); 3703 } 3704 3705 void 3706 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov) 3707 { 3708 struct pci_ea_entry *ea; 3709 struct pci_devinfo *dinfo; 3710 pci_addr_t start, end, count; 3711 struct resource_list *rl; 3712 int type, flags, rid; 3713 struct resource *res; 3714 uint32_t tmp; 3715 #ifdef PCI_IOV 3716 struct pcicfg_iov *iov; 3717 #endif 3718 3719 dinfo = device_get_ivars(dev); 3720 rl = &dinfo->resources; 3721 flags = 0; 3722 3723 #ifdef PCI_IOV 3724 iov = dinfo->cfg.iov; 3725 #endif 3726 3727 if (dinfo->cfg.ea.ea_location == 0) 3728 return; 3729 3730 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3731 3732 /* 3733 * TODO: Ignore EA-BAR if is not enabled. 3734 * Currently the EA implementation supports 3735 * only situation, where EA structure contains 3736 * predefined entries. In case they are not enabled 3737 * leave them unallocated and proceed with 3738 * a legacy-BAR mechanism. 3739 */ 3740 if ((ea->eae_flags & PCIM_EA_ENABLE) == 0) 3741 continue; 3742 3743 switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) { 3744 case PCIM_EA_P_MEM_PREFETCH: 3745 case PCIM_EA_P_VF_MEM_PREFETCH: 3746 flags = RF_PREFETCHABLE; 3747 /* FALLTHROUGH */ 3748 case PCIM_EA_P_VF_MEM: 3749 case PCIM_EA_P_MEM: 3750 type = SYS_RES_MEMORY; 3751 break; 3752 case PCIM_EA_P_IO: 3753 type = SYS_RES_IOPORT; 3754 break; 3755 default: 3756 continue; 3757 } 3758 3759 if (alloc_iov != 0) { 3760 #ifdef PCI_IOV 3761 /* Allocating IOV, confirm BEI matches */ 3762 if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) || 3763 (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5)) 3764 continue; 3765 #else 3766 continue; 3767 #endif 3768 } else { 3769 /* Allocating BAR, confirm BEI matches */ 3770 if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) || 3771 (ea->eae_bei > PCIM_EA_BEI_BAR_5)) && 3772 (ea->eae_bei != PCIM_EA_BEI_ROM)) 3773 continue; 3774 } 3775 3776 rid = pci_ea_bei_to_rid(dev, ea->eae_bei); 3777 if (rid < 0) 3778 continue; 3779 3780 /* Skip resources already allocated by EA */ 3781 if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) || 3782 (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL)) 3783 continue; 3784 3785 start = ea->eae_base; 3786 count = ea->eae_max_offset + 1; 3787 #ifdef PCI_IOV 3788 if (iov != NULL) 3789 count = count * iov->iov_num_vfs; 3790 #endif 3791 end = start + count - 1; 3792 if (count == 0) 3793 continue; 3794 3795 resource_list_add(rl, type, rid, start, end, count); 3796 res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count, 3797 flags); 3798 if (res == NULL) { 3799 resource_list_delete(rl, type, rid); 3800 3801 /* 3802 * Failed to allocate using EA, disable entry. 3803 * Another attempt to allocation will be performed 3804 * further, but this time using legacy BAR registers 3805 */ 3806 tmp = pci_read_config(dev, ea->eae_cfg_offset, 4); 3807 tmp &= ~PCIM_EA_ENABLE; 3808 pci_write_config(dev, ea->eae_cfg_offset, tmp, 4); 3809 3810 /* 3811 * Disabling entry might fail in case it is hardwired. 3812 * Read flags again to match current status. 3813 */ 3814 ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4); 3815 3816 continue; 3817 } 3818 3819 /* As per specification, fill BAR with zeros */ 3820 pci_write_config(dev, rid, 0, 4); 3821 } 3822 } 3823 3824 void 3825 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask) 3826 { 3827 struct pci_devinfo *dinfo; 3828 pcicfgregs *cfg; 3829 struct resource_list *rl; 3830 const struct pci_quirk *q; 3831 uint32_t devid; 3832 int i; 3833 3834 dinfo = device_get_ivars(dev); 3835 cfg = &dinfo->cfg; 3836 rl = &dinfo->resources; 3837 devid = (cfg->device << 16) | cfg->vendor; 3838 3839 /* Allocate resources using Enhanced Allocation */ 3840 pci_add_resources_ea(bus, dev, 0); 3841 3842 /* ATA devices needs special map treatment */ 3843 if ((pci_get_class(dev) == PCIC_STORAGE) && 3844 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) && 3845 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) || 3846 (!pci_read_config(dev, PCIR_BAR(0), 4) && 3847 !pci_read_config(dev, PCIR_BAR(2), 4))) ) 3848 pci_ata_maps(bus, dev, rl, force, prefetchmask); 3849 else 3850 for (i = 0; i < cfg->nummaps;) { 3851 /* Skip resources already managed by EA */ 3852 if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) || 3853 (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) || 3854 pci_ea_is_enabled(dev, PCIR_BAR(i))) { 3855 i++; 3856 continue; 3857 } 3858 3859 /* 3860 * Skip quirked resources. 3861 */ 3862 for (q = &pci_quirks[0]; q->devid != 0; q++) 3863 if (q->devid == devid && 3864 q->type == PCI_QUIRK_UNMAP_REG && 3865 q->arg1 == PCIR_BAR(i)) 3866 break; 3867 if (q->devid != 0) { 3868 i++; 3869 continue; 3870 } 3871 i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force, 3872 prefetchmask & (1 << i)); 3873 } 3874 3875 /* 3876 * Add additional, quirked resources. 3877 */ 3878 for (q = &pci_quirks[0]; q->devid != 0; q++) 3879 if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG) 3880 pci_add_map(bus, dev, q->arg1, rl, force, 0); 3881 3882 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) { 3883 #ifdef __PCI_REROUTE_INTERRUPT 3884 /* 3885 * Try to re-route interrupts. Sometimes the BIOS or 3886 * firmware may leave bogus values in these registers. 3887 * If the re-route fails, then just stick with what we 3888 * have. 3889 */ 3890 pci_assign_interrupt(bus, dev, 1); 3891 #else 3892 pci_assign_interrupt(bus, dev, 0); 3893 #endif 3894 } 3895 3896 if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS && 3897 pci_get_subclass(dev) == PCIS_SERIALBUS_USB) { 3898 if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI) 3899 xhci_early_takeover(dev); 3900 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI) 3901 ehci_early_takeover(dev); 3902 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI) 3903 ohci_early_takeover(dev); 3904 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI) 3905 uhci_early_takeover(dev); 3906 } 3907 3908 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 3909 /* 3910 * Reserve resources for secondary bus ranges behind bridge 3911 * devices. 3912 */ 3913 pci_reserve_secbus(bus, dev, cfg, rl); 3914 #endif 3915 } 3916 3917 static struct pci_devinfo * 3918 pci_identify_function(device_t pcib, device_t dev, int domain, int busno, 3919 int slot, int func) 3920 { 3921 struct pci_devinfo *dinfo; 3922 3923 dinfo = pci_read_device(pcib, dev, domain, busno, slot, func); 3924 if (dinfo != NULL) 3925 pci_add_child(dev, dinfo); 3926 3927 return (dinfo); 3928 } 3929 3930 void 3931 pci_add_children(device_t dev, int domain, int busno) 3932 { 3933 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 3934 device_t pcib = device_get_parent(dev); 3935 struct pci_devinfo *dinfo; 3936 int maxslots; 3937 int s, f, pcifunchigh; 3938 uint8_t hdrtype; 3939 int first_func; 3940 3941 /* 3942 * Try to detect a device at slot 0, function 0. If it exists, try to 3943 * enable ARI. We must enable ARI before detecting the rest of the 3944 * functions on this bus as ARI changes the set of slots and functions 3945 * that are legal on this bus. 3946 */ 3947 dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0); 3948 if (dinfo != NULL && pci_enable_ari) 3949 PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev); 3950 3951 /* 3952 * Start looking for new devices on slot 0 at function 1 because we 3953 * just identified the device at slot 0, function 0. 3954 */ 3955 first_func = 1; 3956 3957 maxslots = PCIB_MAXSLOTS(pcib); 3958 for (s = 0; s <= maxslots; s++, first_func = 0) { 3959 pcifunchigh = 0; 3960 f = 0; 3961 DELAY(1); 3962 hdrtype = REG(PCIR_HDRTYPE, 1); 3963 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 3964 continue; 3965 if (hdrtype & PCIM_MFDEV) 3966 pcifunchigh = PCIB_MAXFUNCS(pcib); 3967 for (f = first_func; f <= pcifunchigh; f++) 3968 pci_identify_function(pcib, dev, domain, busno, s, f); 3969 } 3970 #undef REG 3971 } 3972 3973 int 3974 pci_rescan_method(device_t dev) 3975 { 3976 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 3977 device_t pcib = device_get_parent(dev); 3978 struct pci_softc *sc; 3979 device_t child, *devlist, *unchanged; 3980 int devcount, error, i, j, maxslots, oldcount; 3981 int busno, domain, s, f, pcifunchigh; 3982 uint8_t hdrtype; 3983 3984 /* No need to check for ARI on a rescan. */ 3985 error = device_get_children(dev, &devlist, &devcount); 3986 if (error) 3987 return (error); 3988 if (devcount != 0) { 3989 unchanged = malloc(devcount * sizeof(device_t), M_TEMP, 3990 M_NOWAIT | M_ZERO); 3991 if (unchanged == NULL) { 3992 free(devlist, M_TEMP); 3993 return (ENOMEM); 3994 } 3995 } else 3996 unchanged = NULL; 3997 3998 sc = device_get_softc(dev); 3999 domain = pcib_get_domain(dev); 4000 busno = pcib_get_bus(dev); 4001 maxslots = PCIB_MAXSLOTS(pcib); 4002 for (s = 0; s <= maxslots; s++) { 4003 /* If function 0 is not present, skip to the next slot. */ 4004 f = 0; 4005 if (REG(PCIR_VENDOR, 2) == 0xffff) 4006 continue; 4007 pcifunchigh = 0; 4008 hdrtype = REG(PCIR_HDRTYPE, 1); 4009 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4010 continue; 4011 if (hdrtype & PCIM_MFDEV) 4012 pcifunchigh = PCIB_MAXFUNCS(pcib); 4013 for (f = 0; f <= pcifunchigh; f++) { 4014 if (REG(PCIR_VENDOR, 2) == 0xffff) 4015 continue; 4016 4017 /* 4018 * Found a valid function. Check if a 4019 * device_t for this device already exists. 4020 */ 4021 for (i = 0; i < devcount; i++) { 4022 child = devlist[i]; 4023 if (child == NULL) 4024 continue; 4025 if (pci_get_slot(child) == s && 4026 pci_get_function(child) == f) { 4027 unchanged[i] = child; 4028 goto next_func; 4029 } 4030 } 4031 4032 pci_identify_function(pcib, dev, domain, busno, s, f); 4033 next_func:; 4034 } 4035 } 4036 4037 /* Remove devices that are no longer present. */ 4038 for (i = 0; i < devcount; i++) { 4039 if (unchanged[i] != NULL) 4040 continue; 4041 device_delete_child(dev, devlist[i]); 4042 } 4043 4044 free(devlist, M_TEMP); 4045 oldcount = devcount; 4046 4047 /* Try to attach the devices just added. */ 4048 error = device_get_children(dev, &devlist, &devcount); 4049 if (error) { 4050 free(unchanged, M_TEMP); 4051 return (error); 4052 } 4053 4054 for (i = 0; i < devcount; i++) { 4055 for (j = 0; j < oldcount; j++) { 4056 if (devlist[i] == unchanged[j]) 4057 goto next_device; 4058 } 4059 4060 device_probe_and_attach(devlist[i]); 4061 next_device:; 4062 } 4063 4064 free(unchanged, M_TEMP); 4065 free(devlist, M_TEMP); 4066 return (0); 4067 #undef REG 4068 } 4069 4070 #ifdef PCI_IOV 4071 device_t 4072 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid, 4073 uint16_t did) 4074 { 4075 struct pci_devinfo *pf_dinfo, *vf_dinfo; 4076 device_t pcib; 4077 int busno, slot, func; 4078 4079 pf_dinfo = device_get_ivars(pf); 4080 4081 pcib = device_get_parent(bus); 4082 4083 PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func); 4084 4085 vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno, 4086 slot, func, vid, did); 4087 4088 vf_dinfo->cfg.flags |= PCICFG_VF; 4089 pci_add_child(bus, vf_dinfo); 4090 4091 return (vf_dinfo->cfg.dev); 4092 } 4093 4094 device_t 4095 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid, 4096 uint16_t vid, uint16_t did) 4097 { 4098 4099 return (pci_add_iov_child(bus, pf, rid, vid, did)); 4100 } 4101 #endif 4102 4103 void 4104 pci_add_child(device_t bus, struct pci_devinfo *dinfo) 4105 { 4106 dinfo->cfg.dev = device_add_child(bus, NULL, -1); 4107 device_set_ivars(dinfo->cfg.dev, dinfo); 4108 resource_list_init(&dinfo->resources); 4109 pci_cfg_save(dinfo->cfg.dev, dinfo, 0); 4110 pci_cfg_restore(dinfo->cfg.dev, dinfo); 4111 pci_print_verbose(dinfo); 4112 pci_add_resources(bus, dinfo->cfg.dev, 0, 0); 4113 pci_child_added(dinfo->cfg.dev); 4114 EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev); 4115 } 4116 4117 void 4118 pci_child_added_method(device_t dev, device_t child) 4119 { 4120 4121 } 4122 4123 static int 4124 pci_probe(device_t dev) 4125 { 4126 4127 device_set_desc(dev, "PCI bus"); 4128 4129 /* Allow other subclasses to override this driver. */ 4130 return (BUS_PROBE_GENERIC); 4131 } 4132 4133 int 4134 pci_attach_common(device_t dev) 4135 { 4136 struct pci_softc *sc; 4137 int busno, domain; 4138 #ifdef PCI_DMA_BOUNDARY 4139 int error, tag_valid; 4140 #endif 4141 #ifdef PCI_RES_BUS 4142 int rid; 4143 #endif 4144 4145 sc = device_get_softc(dev); 4146 domain = pcib_get_domain(dev); 4147 busno = pcib_get_bus(dev); 4148 #ifdef PCI_RES_BUS 4149 rid = 0; 4150 sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno, 4151 1, 0); 4152 if (sc->sc_bus == NULL) { 4153 device_printf(dev, "failed to allocate bus number\n"); 4154 return (ENXIO); 4155 } 4156 #endif 4157 if (bootverbose) 4158 device_printf(dev, "domain=%d, physical bus=%d\n", 4159 domain, busno); 4160 #ifdef PCI_DMA_BOUNDARY 4161 tag_valid = 0; 4162 if (device_get_devclass(device_get_parent(device_get_parent(dev))) != 4163 devclass_find("pci")) { 4164 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 4165 PCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 4166 NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, 4167 BUS_SPACE_MAXSIZE, 0, NULL, NULL, &sc->sc_dma_tag); 4168 if (error) 4169 device_printf(dev, "Failed to create DMA tag: %d\n", 4170 error); 4171 else 4172 tag_valid = 1; 4173 } 4174 if (!tag_valid) 4175 #endif 4176 sc->sc_dma_tag = bus_get_dma_tag(dev); 4177 return (0); 4178 } 4179 4180 static int 4181 pci_attach(device_t dev) 4182 { 4183 int busno, domain, error; 4184 4185 error = pci_attach_common(dev); 4186 if (error) 4187 return (error); 4188 4189 /* 4190 * Since there can be multiple independently numbered PCI 4191 * buses on systems with multiple PCI domains, we can't use 4192 * the unit number to decide which bus we are probing. We ask 4193 * the parent pcib what our domain and bus numbers are. 4194 */ 4195 domain = pcib_get_domain(dev); 4196 busno = pcib_get_bus(dev); 4197 pci_add_children(dev, domain, busno); 4198 return (bus_generic_attach(dev)); 4199 } 4200 4201 static int 4202 pci_detach(device_t dev) 4203 { 4204 #ifdef PCI_RES_BUS 4205 struct pci_softc *sc; 4206 #endif 4207 int error; 4208 4209 error = bus_generic_detach(dev); 4210 if (error) 4211 return (error); 4212 #ifdef PCI_RES_BUS 4213 sc = device_get_softc(dev); 4214 error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus); 4215 if (error) 4216 return (error); 4217 #endif 4218 return (device_delete_children(dev)); 4219 } 4220 4221 static void 4222 pci_set_power_child(device_t dev, device_t child, int state) 4223 { 4224 device_t pcib; 4225 int dstate; 4226 4227 /* 4228 * Set the device to the given state. If the firmware suggests 4229 * a different power state, use it instead. If power management 4230 * is not present, the firmware is responsible for managing 4231 * device power. Skip children who aren't attached since they 4232 * are handled separately. 4233 */ 4234 pcib = device_get_parent(dev); 4235 dstate = state; 4236 if (device_is_attached(child) && 4237 PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0) 4238 pci_set_powerstate(child, dstate); 4239 } 4240 4241 int 4242 pci_suspend_child(device_t dev, device_t child) 4243 { 4244 struct pci_devinfo *dinfo; 4245 int error; 4246 4247 dinfo = device_get_ivars(child); 4248 4249 /* 4250 * Save the PCI configuration space for the child and set the 4251 * device in the appropriate power state for this sleep state. 4252 */ 4253 pci_cfg_save(child, dinfo, 0); 4254 4255 /* Suspend devices before potentially powering them down. */ 4256 error = bus_generic_suspend_child(dev, child); 4257 4258 if (error) 4259 return (error); 4260 4261 if (pci_do_power_suspend) 4262 pci_set_power_child(dev, child, PCI_POWERSTATE_D3); 4263 4264 return (0); 4265 } 4266 4267 int 4268 pci_resume_child(device_t dev, device_t child) 4269 { 4270 struct pci_devinfo *dinfo; 4271 4272 if (pci_do_power_resume) 4273 pci_set_power_child(dev, child, PCI_POWERSTATE_D0); 4274 4275 dinfo = device_get_ivars(child); 4276 pci_cfg_restore(child, dinfo); 4277 if (!device_is_attached(child)) 4278 pci_cfg_save(child, dinfo, 1); 4279 4280 bus_generic_resume_child(dev, child); 4281 4282 return (0); 4283 } 4284 4285 int 4286 pci_resume(device_t dev) 4287 { 4288 device_t child, *devlist; 4289 int error, i, numdevs; 4290 4291 if ((error = device_get_children(dev, &devlist, &numdevs)) != 0) 4292 return (error); 4293 4294 /* 4295 * Resume critical devices first, then everything else later. 4296 */ 4297 for (i = 0; i < numdevs; i++) { 4298 child = devlist[i]; 4299 switch (pci_get_class(child)) { 4300 case PCIC_DISPLAY: 4301 case PCIC_MEMORY: 4302 case PCIC_BRIDGE: 4303 case PCIC_BASEPERIPH: 4304 BUS_RESUME_CHILD(dev, child); 4305 break; 4306 } 4307 } 4308 for (i = 0; i < numdevs; i++) { 4309 child = devlist[i]; 4310 switch (pci_get_class(child)) { 4311 case PCIC_DISPLAY: 4312 case PCIC_MEMORY: 4313 case PCIC_BRIDGE: 4314 case PCIC_BASEPERIPH: 4315 break; 4316 default: 4317 BUS_RESUME_CHILD(dev, child); 4318 } 4319 } 4320 free(devlist, M_TEMP); 4321 return (0); 4322 } 4323 4324 static void 4325 pci_load_vendor_data(void) 4326 { 4327 caddr_t data; 4328 void *ptr; 4329 size_t sz; 4330 4331 data = preload_search_by_type("pci_vendor_data"); 4332 if (data != NULL) { 4333 ptr = preload_fetch_addr(data); 4334 sz = preload_fetch_size(data); 4335 if (ptr != NULL && sz != 0) { 4336 pci_vendordata = ptr; 4337 pci_vendordata_size = sz; 4338 /* terminate the database */ 4339 pci_vendordata[pci_vendordata_size] = '\n'; 4340 } 4341 } 4342 } 4343 4344 void 4345 pci_driver_added(device_t dev, driver_t *driver) 4346 { 4347 int numdevs; 4348 device_t *devlist; 4349 device_t child; 4350 struct pci_devinfo *dinfo; 4351 int i; 4352 4353 if (bootverbose) 4354 device_printf(dev, "driver added\n"); 4355 DEVICE_IDENTIFY(driver, dev); 4356 if (device_get_children(dev, &devlist, &numdevs) != 0) 4357 return; 4358 for (i = 0; i < numdevs; i++) { 4359 child = devlist[i]; 4360 if (device_get_state(child) != DS_NOTPRESENT) 4361 continue; 4362 dinfo = device_get_ivars(child); 4363 pci_print_verbose(dinfo); 4364 if (bootverbose) 4365 pci_printf(&dinfo->cfg, "reprobing on driver added\n"); 4366 pci_cfg_restore(child, dinfo); 4367 if (device_probe_and_attach(child) != 0) 4368 pci_child_detached(dev, child); 4369 } 4370 free(devlist, M_TEMP); 4371 } 4372 4373 int 4374 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4375 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4376 { 4377 struct pci_devinfo *dinfo; 4378 struct msix_table_entry *mte; 4379 struct msix_vector *mv; 4380 uint64_t addr; 4381 uint32_t data; 4382 void *cookie; 4383 int error, rid; 4384 4385 error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr, 4386 arg, &cookie); 4387 if (error) 4388 return (error); 4389 4390 /* If this is not a direct child, just bail out. */ 4391 if (device_get_parent(child) != dev) { 4392 *cookiep = cookie; 4393 return(0); 4394 } 4395 4396 rid = rman_get_rid(irq); 4397 if (rid == 0) { 4398 /* Make sure that INTx is enabled */ 4399 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4400 } else { 4401 /* 4402 * Check to see if the interrupt is MSI or MSI-X. 4403 * Ask our parent to map the MSI and give 4404 * us the address and data register values. 4405 * If we fail for some reason, teardown the 4406 * interrupt handler. 4407 */ 4408 dinfo = device_get_ivars(child); 4409 if (dinfo->cfg.msi.msi_alloc > 0) { 4410 if (dinfo->cfg.msi.msi_addr == 0) { 4411 KASSERT(dinfo->cfg.msi.msi_handlers == 0, 4412 ("MSI has handlers, but vectors not mapped")); 4413 error = PCIB_MAP_MSI(device_get_parent(dev), 4414 child, rman_get_start(irq), &addr, &data); 4415 if (error) 4416 goto bad; 4417 dinfo->cfg.msi.msi_addr = addr; 4418 dinfo->cfg.msi.msi_data = data; 4419 } 4420 if (dinfo->cfg.msi.msi_handlers == 0) 4421 pci_enable_msi(child, dinfo->cfg.msi.msi_addr, 4422 dinfo->cfg.msi.msi_data); 4423 dinfo->cfg.msi.msi_handlers++; 4424 } else { 4425 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4426 ("No MSI or MSI-X interrupts allocated")); 4427 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4428 ("MSI-X index too high")); 4429 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4430 KASSERT(mte->mte_vector != 0, ("no message vector")); 4431 mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1]; 4432 KASSERT(mv->mv_irq == rman_get_start(irq), 4433 ("IRQ mismatch")); 4434 if (mv->mv_address == 0) { 4435 KASSERT(mte->mte_handlers == 0, 4436 ("MSI-X table entry has handlers, but vector not mapped")); 4437 error = PCIB_MAP_MSI(device_get_parent(dev), 4438 child, rman_get_start(irq), &addr, &data); 4439 if (error) 4440 goto bad; 4441 mv->mv_address = addr; 4442 mv->mv_data = data; 4443 } 4444 4445 /* 4446 * The MSIX table entry must be made valid by 4447 * incrementing the mte_handlers before 4448 * calling pci_enable_msix() and 4449 * pci_resume_msix(). Else the MSIX rewrite 4450 * table quirk will not work as expected. 4451 */ 4452 mte->mte_handlers++; 4453 if (mte->mte_handlers == 1) { 4454 pci_enable_msix(child, rid - 1, mv->mv_address, 4455 mv->mv_data); 4456 pci_unmask_msix(child, rid - 1); 4457 } 4458 } 4459 4460 /* 4461 * Make sure that INTx is disabled if we are using MSI/MSI-X, 4462 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG, 4463 * in which case we "enable" INTx so MSI/MSI-X actually works. 4464 */ 4465 if (!pci_has_quirk(pci_get_devid(child), 4466 PCI_QUIRK_MSI_INTX_BUG)) 4467 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4468 else 4469 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4470 bad: 4471 if (error) { 4472 (void)bus_generic_teardown_intr(dev, child, irq, 4473 cookie); 4474 return (error); 4475 } 4476 } 4477 *cookiep = cookie; 4478 return (0); 4479 } 4480 4481 int 4482 pci_teardown_intr(device_t dev, device_t child, struct resource *irq, 4483 void *cookie) 4484 { 4485 struct msix_table_entry *mte; 4486 struct resource_list_entry *rle; 4487 struct pci_devinfo *dinfo; 4488 int error, rid; 4489 4490 if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE)) 4491 return (EINVAL); 4492 4493 /* If this isn't a direct child, just bail out */ 4494 if (device_get_parent(child) != dev) 4495 return(bus_generic_teardown_intr(dev, child, irq, cookie)); 4496 4497 rid = rman_get_rid(irq); 4498 if (rid == 0) { 4499 /* Mask INTx */ 4500 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4501 } else { 4502 /* 4503 * Check to see if the interrupt is MSI or MSI-X. If so, 4504 * decrement the appropriate handlers count and mask the 4505 * MSI-X message, or disable MSI messages if the count 4506 * drops to 0. 4507 */ 4508 dinfo = device_get_ivars(child); 4509 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid); 4510 if (rle->res != irq) 4511 return (EINVAL); 4512 if (dinfo->cfg.msi.msi_alloc > 0) { 4513 KASSERT(rid <= dinfo->cfg.msi.msi_alloc, 4514 ("MSI-X index too high")); 4515 if (dinfo->cfg.msi.msi_handlers == 0) 4516 return (EINVAL); 4517 dinfo->cfg.msi.msi_handlers--; 4518 if (dinfo->cfg.msi.msi_handlers == 0) 4519 pci_disable_msi(child); 4520 } else { 4521 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4522 ("No MSI or MSI-X interrupts allocated")); 4523 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4524 ("MSI-X index too high")); 4525 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4526 if (mte->mte_handlers == 0) 4527 return (EINVAL); 4528 mte->mte_handlers--; 4529 if (mte->mte_handlers == 0) 4530 pci_mask_msix(child, rid - 1); 4531 } 4532 } 4533 error = bus_generic_teardown_intr(dev, child, irq, cookie); 4534 if (rid > 0) 4535 KASSERT(error == 0, 4536 ("%s: generic teardown failed for MSI/MSI-X", __func__)); 4537 return (error); 4538 } 4539 4540 int 4541 pci_print_child(device_t dev, device_t child) 4542 { 4543 struct pci_devinfo *dinfo; 4544 struct resource_list *rl; 4545 int retval = 0; 4546 4547 dinfo = device_get_ivars(child); 4548 rl = &dinfo->resources; 4549 4550 retval += bus_print_child_header(dev, child); 4551 4552 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 4553 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); 4554 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 4555 if (device_get_flags(dev)) 4556 retval += printf(" flags %#x", device_get_flags(dev)); 4557 4558 retval += printf(" at device %d.%d", pci_get_slot(child), 4559 pci_get_function(child)); 4560 4561 retval += bus_print_child_domain(dev, child); 4562 retval += bus_print_child_footer(dev, child); 4563 4564 return (retval); 4565 } 4566 4567 static const struct 4568 { 4569 int class; 4570 int subclass; 4571 int report; /* 0 = bootverbose, 1 = always */ 4572 const char *desc; 4573 } pci_nomatch_tab[] = { 4574 {PCIC_OLD, -1, 1, "old"}, 4575 {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"}, 4576 {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"}, 4577 {PCIC_STORAGE, -1, 1, "mass storage"}, 4578 {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"}, 4579 {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"}, 4580 {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"}, 4581 {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"}, 4582 {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"}, 4583 {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"}, 4584 {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"}, 4585 {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"}, 4586 {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"}, 4587 {PCIC_NETWORK, -1, 1, "network"}, 4588 {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"}, 4589 {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"}, 4590 {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"}, 4591 {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"}, 4592 {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"}, 4593 {PCIC_DISPLAY, -1, 1, "display"}, 4594 {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"}, 4595 {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"}, 4596 {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"}, 4597 {PCIC_MULTIMEDIA, -1, 1, "multimedia"}, 4598 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"}, 4599 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"}, 4600 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"}, 4601 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"}, 4602 {PCIC_MEMORY, -1, 1, "memory"}, 4603 {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"}, 4604 {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"}, 4605 {PCIC_BRIDGE, -1, 1, "bridge"}, 4606 {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"}, 4607 {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"}, 4608 {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"}, 4609 {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"}, 4610 {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"}, 4611 {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"}, 4612 {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"}, 4613 {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"}, 4614 {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"}, 4615 {PCIC_SIMPLECOMM, -1, 1, "simple comms"}, 4616 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */ 4617 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"}, 4618 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"}, 4619 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"}, 4620 {PCIC_BASEPERIPH, -1, 0, "base peripheral"}, 4621 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"}, 4622 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"}, 4623 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"}, 4624 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"}, 4625 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"}, 4626 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"}, 4627 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"}, 4628 {PCIC_INPUTDEV, -1, 1, "input device"}, 4629 {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"}, 4630 {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"}, 4631 {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"}, 4632 {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"}, 4633 {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"}, 4634 {PCIC_DOCKING, -1, 1, "docking station"}, 4635 {PCIC_PROCESSOR, -1, 1, "processor"}, 4636 {PCIC_SERIALBUS, -1, 1, "serial bus"}, 4637 {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"}, 4638 {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"}, 4639 {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"}, 4640 {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"}, 4641 {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"}, 4642 {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"}, 4643 {PCIC_WIRELESS, -1, 1, "wireless controller"}, 4644 {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"}, 4645 {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"}, 4646 {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"}, 4647 {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"}, 4648 {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"}, 4649 {PCIC_SATCOM, -1, 1, "satellite communication"}, 4650 {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"}, 4651 {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"}, 4652 {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"}, 4653 {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"}, 4654 {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"}, 4655 {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"}, 4656 {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"}, 4657 {PCIC_DASP, -1, 0, "dasp"}, 4658 {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"}, 4659 {PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"}, 4660 {PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"}, 4661 {PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"}, 4662 {0, 0, 0, NULL} 4663 }; 4664 4665 void 4666 pci_probe_nomatch(device_t dev, device_t child) 4667 { 4668 int i, report; 4669 const char *cp, *scp; 4670 char *device; 4671 4672 /* 4673 * Look for a listing for this device in a loaded device database. 4674 */ 4675 report = 1; 4676 if ((device = pci_describe_device(child)) != NULL) { 4677 device_printf(dev, "<%s>", device); 4678 free(device, M_DEVBUF); 4679 } else { 4680 /* 4681 * Scan the class/subclass descriptions for a general 4682 * description. 4683 */ 4684 cp = "unknown"; 4685 scp = NULL; 4686 for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { 4687 if (pci_nomatch_tab[i].class == pci_get_class(child)) { 4688 if (pci_nomatch_tab[i].subclass == -1) { 4689 cp = pci_nomatch_tab[i].desc; 4690 report = pci_nomatch_tab[i].report; 4691 } else if (pci_nomatch_tab[i].subclass == 4692 pci_get_subclass(child)) { 4693 scp = pci_nomatch_tab[i].desc; 4694 report = pci_nomatch_tab[i].report; 4695 } 4696 } 4697 } 4698 if (report || bootverbose) { 4699 device_printf(dev, "<%s%s%s>", 4700 cp ? cp : "", 4701 ((cp != NULL) && (scp != NULL)) ? ", " : "", 4702 scp ? scp : ""); 4703 } 4704 } 4705 if (report || bootverbose) { 4706 printf(" at device %d.%d (no driver attached)\n", 4707 pci_get_slot(child), pci_get_function(child)); 4708 } 4709 pci_cfg_save(child, device_get_ivars(child), 1); 4710 } 4711 4712 void 4713 pci_child_detached(device_t dev, device_t child) 4714 { 4715 struct pci_devinfo *dinfo; 4716 struct resource_list *rl; 4717 4718 dinfo = device_get_ivars(child); 4719 rl = &dinfo->resources; 4720 4721 /* 4722 * Have to deallocate IRQs before releasing any MSI messages and 4723 * have to release MSI messages before deallocating any memory 4724 * BARs. 4725 */ 4726 if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0) 4727 pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n"); 4728 if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) { 4729 pci_printf(&dinfo->cfg, "Device leaked MSI vectors\n"); 4730 (void)pci_release_msi(child); 4731 } 4732 if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0) 4733 pci_printf(&dinfo->cfg, "Device leaked memory resources\n"); 4734 if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0) 4735 pci_printf(&dinfo->cfg, "Device leaked I/O resources\n"); 4736 #ifdef PCI_RES_BUS 4737 if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0) 4738 pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n"); 4739 #endif 4740 4741 pci_cfg_save(child, dinfo, 1); 4742 } 4743 4744 /* 4745 * Parse the PCI device database, if loaded, and return a pointer to a 4746 * description of the device. 4747 * 4748 * The database is flat text formatted as follows: 4749 * 4750 * Any line not in a valid format is ignored. 4751 * Lines are terminated with newline '\n' characters. 4752 * 4753 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then 4754 * the vendor name. 4755 * 4756 * A DEVICE line is entered immediately below the corresponding VENDOR ID. 4757 * - devices cannot be listed without a corresponding VENDOR line. 4758 * A DEVICE line consists of a TAB, the 4 digit (hex) device code, 4759 * another TAB, then the device name. 4760 */ 4761 4762 /* 4763 * Assuming (ptr) points to the beginning of a line in the database, 4764 * return the vendor or device and description of the next entry. 4765 * The value of (vendor) or (device) inappropriate for the entry type 4766 * is set to -1. Returns nonzero at the end of the database. 4767 * 4768 * Note that this is slightly unrobust in the face of corrupt data; 4769 * we attempt to safeguard against this by spamming the end of the 4770 * database with a newline when we initialise. 4771 */ 4772 static int 4773 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc) 4774 { 4775 char *cp = *ptr; 4776 int left; 4777 4778 *device = -1; 4779 *vendor = -1; 4780 **desc = '\0'; 4781 for (;;) { 4782 left = pci_vendordata_size - (cp - pci_vendordata); 4783 if (left <= 0) { 4784 *ptr = cp; 4785 return(1); 4786 } 4787 4788 /* vendor entry? */ 4789 if (*cp != '\t' && 4790 sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2) 4791 break; 4792 /* device entry? */ 4793 if (*cp == '\t' && 4794 sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2) 4795 break; 4796 4797 /* skip to next line */ 4798 while (*cp != '\n' && left > 0) { 4799 cp++; 4800 left--; 4801 } 4802 if (*cp == '\n') { 4803 cp++; 4804 left--; 4805 } 4806 } 4807 /* skip to next line */ 4808 while (*cp != '\n' && left > 0) { 4809 cp++; 4810 left--; 4811 } 4812 if (*cp == '\n' && left > 0) 4813 cp++; 4814 *ptr = cp; 4815 return(0); 4816 } 4817 4818 static char * 4819 pci_describe_device(device_t dev) 4820 { 4821 int vendor, device; 4822 char *desc, *vp, *dp, *line; 4823 4824 desc = vp = dp = NULL; 4825 4826 /* 4827 * If we have no vendor data, we can't do anything. 4828 */ 4829 if (pci_vendordata == NULL) 4830 goto out; 4831 4832 /* 4833 * Scan the vendor data looking for this device 4834 */ 4835 line = pci_vendordata; 4836 if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 4837 goto out; 4838 for (;;) { 4839 if (pci_describe_parse_line(&line, &vendor, &device, &vp)) 4840 goto out; 4841 if (vendor == pci_get_vendor(dev)) 4842 break; 4843 } 4844 if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 4845 goto out; 4846 for (;;) { 4847 if (pci_describe_parse_line(&line, &vendor, &device, &dp)) { 4848 *dp = 0; 4849 break; 4850 } 4851 if (vendor != -1) { 4852 *dp = 0; 4853 break; 4854 } 4855 if (device == pci_get_device(dev)) 4856 break; 4857 } 4858 if (dp[0] == '\0') 4859 snprintf(dp, 80, "0x%x", pci_get_device(dev)); 4860 if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) != 4861 NULL) 4862 sprintf(desc, "%s, %s", vp, dp); 4863 out: 4864 if (vp != NULL) 4865 free(vp, M_DEVBUF); 4866 if (dp != NULL) 4867 free(dp, M_DEVBUF); 4868 return(desc); 4869 } 4870 4871 int 4872 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 4873 { 4874 struct pci_devinfo *dinfo; 4875 pcicfgregs *cfg; 4876 4877 dinfo = device_get_ivars(child); 4878 cfg = &dinfo->cfg; 4879 4880 switch (which) { 4881 case PCI_IVAR_ETHADDR: 4882 /* 4883 * The generic accessor doesn't deal with failure, so 4884 * we set the return value, then return an error. 4885 */ 4886 *((uint8_t **) result) = NULL; 4887 return (EINVAL); 4888 case PCI_IVAR_SUBVENDOR: 4889 *result = cfg->subvendor; 4890 break; 4891 case PCI_IVAR_SUBDEVICE: 4892 *result = cfg->subdevice; 4893 break; 4894 case PCI_IVAR_VENDOR: 4895 *result = cfg->vendor; 4896 break; 4897 case PCI_IVAR_DEVICE: 4898 *result = cfg->device; 4899 break; 4900 case PCI_IVAR_DEVID: 4901 *result = (cfg->device << 16) | cfg->vendor; 4902 break; 4903 case PCI_IVAR_CLASS: 4904 *result = cfg->baseclass; 4905 break; 4906 case PCI_IVAR_SUBCLASS: 4907 *result = cfg->subclass; 4908 break; 4909 case PCI_IVAR_PROGIF: 4910 *result = cfg->progif; 4911 break; 4912 case PCI_IVAR_REVID: 4913 *result = cfg->revid; 4914 break; 4915 case PCI_IVAR_INTPIN: 4916 *result = cfg->intpin; 4917 break; 4918 case PCI_IVAR_IRQ: 4919 *result = cfg->intline; 4920 break; 4921 case PCI_IVAR_DOMAIN: 4922 *result = cfg->domain; 4923 break; 4924 case PCI_IVAR_BUS: 4925 *result = cfg->bus; 4926 break; 4927 case PCI_IVAR_SLOT: 4928 *result = cfg->slot; 4929 break; 4930 case PCI_IVAR_FUNCTION: 4931 *result = cfg->func; 4932 break; 4933 case PCI_IVAR_CMDREG: 4934 *result = cfg->cmdreg; 4935 break; 4936 case PCI_IVAR_CACHELNSZ: 4937 *result = cfg->cachelnsz; 4938 break; 4939 case PCI_IVAR_MINGNT: 4940 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 4941 *result = -1; 4942 return (EINVAL); 4943 } 4944 *result = cfg->mingnt; 4945 break; 4946 case PCI_IVAR_MAXLAT: 4947 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 4948 *result = -1; 4949 return (EINVAL); 4950 } 4951 *result = cfg->maxlat; 4952 break; 4953 case PCI_IVAR_LATTIMER: 4954 *result = cfg->lattimer; 4955 break; 4956 default: 4957 return (ENOENT); 4958 } 4959 return (0); 4960 } 4961 4962 int 4963 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 4964 { 4965 struct pci_devinfo *dinfo; 4966 4967 dinfo = device_get_ivars(child); 4968 4969 switch (which) { 4970 case PCI_IVAR_INTPIN: 4971 dinfo->cfg.intpin = value; 4972 return (0); 4973 case PCI_IVAR_ETHADDR: 4974 case PCI_IVAR_SUBVENDOR: 4975 case PCI_IVAR_SUBDEVICE: 4976 case PCI_IVAR_VENDOR: 4977 case PCI_IVAR_DEVICE: 4978 case PCI_IVAR_DEVID: 4979 case PCI_IVAR_CLASS: 4980 case PCI_IVAR_SUBCLASS: 4981 case PCI_IVAR_PROGIF: 4982 case PCI_IVAR_REVID: 4983 case PCI_IVAR_IRQ: 4984 case PCI_IVAR_DOMAIN: 4985 case PCI_IVAR_BUS: 4986 case PCI_IVAR_SLOT: 4987 case PCI_IVAR_FUNCTION: 4988 return (EINVAL); /* disallow for now */ 4989 4990 default: 4991 return (ENOENT); 4992 } 4993 } 4994 4995 #include "opt_ddb.h" 4996 #ifdef DDB 4997 #include <ddb/ddb.h> 4998 #include <sys/cons.h> 4999 5000 /* 5001 * List resources based on pci map registers, used for within ddb 5002 */ 5003 5004 DB_SHOW_COMMAND(pciregs, db_pci_dump) 5005 { 5006 struct pci_devinfo *dinfo; 5007 struct devlist *devlist_head; 5008 struct pci_conf *p; 5009 const char *name; 5010 int i, error, none_count; 5011 5012 none_count = 0; 5013 /* get the head of the device queue */ 5014 devlist_head = &pci_devq; 5015 5016 /* 5017 * Go through the list of devices and print out devices 5018 */ 5019 for (error = 0, i = 0, 5020 dinfo = STAILQ_FIRST(devlist_head); 5021 (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit; 5022 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) { 5023 5024 /* Populate pd_name and pd_unit */ 5025 name = NULL; 5026 if (dinfo->cfg.dev) 5027 name = device_get_name(dinfo->cfg.dev); 5028 5029 p = &dinfo->conf; 5030 db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x " 5031 "chip=0x%08x rev=0x%02x hdr=0x%02x\n", 5032 (name && *name) ? name : "none", 5033 (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) : 5034 none_count++, 5035 p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, 5036 p->pc_sel.pc_func, (p->pc_class << 16) | 5037 (p->pc_subclass << 8) | p->pc_progif, 5038 (p->pc_subdevice << 16) | p->pc_subvendor, 5039 (p->pc_device << 16) | p->pc_vendor, 5040 p->pc_revid, p->pc_hdr); 5041 } 5042 } 5043 #endif /* DDB */ 5044 5045 static struct resource * 5046 pci_reserve_map(device_t dev, device_t child, int type, int *rid, 5047 rman_res_t start, rman_res_t end, rman_res_t count, u_int num, 5048 u_int flags) 5049 { 5050 struct pci_devinfo *dinfo = device_get_ivars(child); 5051 struct resource_list *rl = &dinfo->resources; 5052 struct resource *res; 5053 struct pci_map *pm; 5054 uint16_t cmd; 5055 pci_addr_t map, testval; 5056 int mapsize; 5057 5058 res = NULL; 5059 5060 /* If rid is managed by EA, ignore it */ 5061 if (pci_ea_is_enabled(child, *rid)) 5062 goto out; 5063 5064 pm = pci_find_bar(child, *rid); 5065 if (pm != NULL) { 5066 /* This is a BAR that we failed to allocate earlier. */ 5067 mapsize = pm->pm_size; 5068 map = pm->pm_value; 5069 } else { 5070 /* 5071 * Weed out the bogons, and figure out how large the 5072 * BAR/map is. BARs that read back 0 here are bogus 5073 * and unimplemented. Note: atapci in legacy mode are 5074 * special and handled elsewhere in the code. If you 5075 * have a atapci device in legacy mode and it fails 5076 * here, that other code is broken. 5077 */ 5078 pci_read_bar(child, *rid, &map, &testval, NULL); 5079 5080 /* 5081 * Determine the size of the BAR and ignore BARs with a size 5082 * of 0. Device ROM BARs use a different mask value. 5083 */ 5084 if (PCIR_IS_BIOS(&dinfo->cfg, *rid)) 5085 mapsize = pci_romsize(testval); 5086 else 5087 mapsize = pci_mapsize(testval); 5088 if (mapsize == 0) 5089 goto out; 5090 pm = pci_add_bar(child, *rid, map, mapsize); 5091 } 5092 5093 if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) { 5094 if (type != SYS_RES_MEMORY) { 5095 if (bootverbose) 5096 device_printf(dev, 5097 "child %s requested type %d for rid %#x," 5098 " but the BAR says it is an memio\n", 5099 device_get_nameunit(child), type, *rid); 5100 goto out; 5101 } 5102 } else { 5103 if (type != SYS_RES_IOPORT) { 5104 if (bootverbose) 5105 device_printf(dev, 5106 "child %s requested type %d for rid %#x," 5107 " but the BAR says it is an ioport\n", 5108 device_get_nameunit(child), type, *rid); 5109 goto out; 5110 } 5111 } 5112 5113 /* 5114 * For real BARs, we need to override the size that 5115 * the driver requests, because that's what the BAR 5116 * actually uses and we would otherwise have a 5117 * situation where we might allocate the excess to 5118 * another driver, which won't work. 5119 */ 5120 count = ((pci_addr_t)1 << mapsize) * num; 5121 if (RF_ALIGNMENT(flags) < mapsize) 5122 flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize); 5123 if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH)) 5124 flags |= RF_PREFETCHABLE; 5125 5126 /* 5127 * Allocate enough resource, and then write back the 5128 * appropriate BAR for that resource. 5129 */ 5130 resource_list_add(rl, type, *rid, start, end, count); 5131 res = resource_list_reserve(rl, dev, child, type, rid, start, end, 5132 count, flags & ~RF_ACTIVE); 5133 if (res == NULL) { 5134 resource_list_delete(rl, type, *rid); 5135 device_printf(child, 5136 "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n", 5137 count, *rid, type, start, end); 5138 goto out; 5139 } 5140 if (bootverbose) 5141 device_printf(child, 5142 "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n", 5143 count, *rid, type, rman_get_start(res)); 5144 5145 /* Disable decoding via the CMD register before updating the BAR */ 5146 cmd = pci_read_config(child, PCIR_COMMAND, 2); 5147 pci_write_config(child, PCIR_COMMAND, 5148 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 5149 5150 map = rman_get_start(res); 5151 pci_write_bar(child, pm, map); 5152 5153 /* Restore the original value of the CMD register */ 5154 pci_write_config(child, PCIR_COMMAND, cmd, 2); 5155 out: 5156 return (res); 5157 } 5158 5159 struct resource * 5160 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid, 5161 rman_res_t start, rman_res_t end, rman_res_t count, u_long num, 5162 u_int flags) 5163 { 5164 struct pci_devinfo *dinfo; 5165 struct resource_list *rl; 5166 struct resource_list_entry *rle; 5167 struct resource *res; 5168 pcicfgregs *cfg; 5169 5170 /* 5171 * Perform lazy resource allocation 5172 */ 5173 dinfo = device_get_ivars(child); 5174 rl = &dinfo->resources; 5175 cfg = &dinfo->cfg; 5176 switch (type) { 5177 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 5178 case PCI_RES_BUS: 5179 return (pci_alloc_secbus(dev, child, rid, start, end, count, 5180 flags)); 5181 #endif 5182 case SYS_RES_IRQ: 5183 /* 5184 * Can't alloc legacy interrupt once MSI messages have 5185 * been allocated. 5186 */ 5187 if (*rid == 0 && (cfg->msi.msi_alloc > 0 || 5188 cfg->msix.msix_alloc > 0)) 5189 return (NULL); 5190 5191 /* 5192 * If the child device doesn't have an interrupt 5193 * routed and is deserving of an interrupt, try to 5194 * assign it one. 5195 */ 5196 if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) && 5197 (cfg->intpin != 0)) 5198 pci_assign_interrupt(dev, child, 0); 5199 break; 5200 case SYS_RES_IOPORT: 5201 case SYS_RES_MEMORY: 5202 #ifdef NEW_PCIB 5203 /* 5204 * PCI-PCI bridge I/O window resources are not BARs. 5205 * For those allocations just pass the request up the 5206 * tree. 5207 */ 5208 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) { 5209 switch (*rid) { 5210 case PCIR_IOBASEL_1: 5211 case PCIR_MEMBASE_1: 5212 case PCIR_PMBASEL_1: 5213 /* 5214 * XXX: Should we bother creating a resource 5215 * list entry? 5216 */ 5217 return (bus_generic_alloc_resource(dev, child, 5218 type, rid, start, end, count, flags)); 5219 } 5220 } 5221 #endif 5222 /* Reserve resources for this BAR if needed. */ 5223 rle = resource_list_find(rl, type, *rid); 5224 if (rle == NULL) { 5225 res = pci_reserve_map(dev, child, type, rid, start, end, 5226 count, num, flags); 5227 if (res == NULL) 5228 return (NULL); 5229 } 5230 } 5231 return (resource_list_alloc(rl, dev, child, type, rid, 5232 start, end, count, flags)); 5233 } 5234 5235 struct resource * 5236 pci_alloc_resource(device_t dev, device_t child, int type, int *rid, 5237 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 5238 { 5239 #ifdef PCI_IOV 5240 struct pci_devinfo *dinfo; 5241 #endif 5242 5243 if (device_get_parent(child) != dev) 5244 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 5245 type, rid, start, end, count, flags)); 5246 5247 #ifdef PCI_IOV 5248 dinfo = device_get_ivars(child); 5249 if (dinfo->cfg.flags & PCICFG_VF) { 5250 switch (type) { 5251 /* VFs can't have I/O BARs. */ 5252 case SYS_RES_IOPORT: 5253 return (NULL); 5254 case SYS_RES_MEMORY: 5255 return (pci_vf_alloc_mem_resource(dev, child, rid, 5256 start, end, count, flags)); 5257 } 5258 5259 /* Fall through for other types of resource allocations. */ 5260 } 5261 #endif 5262 5263 return (pci_alloc_multi_resource(dev, child, type, rid, start, end, 5264 count, 1, flags)); 5265 } 5266 5267 int 5268 pci_release_resource(device_t dev, device_t child, int type, int rid, 5269 struct resource *r) 5270 { 5271 struct pci_devinfo *dinfo; 5272 struct resource_list *rl; 5273 pcicfgregs *cfg; 5274 5275 if (device_get_parent(child) != dev) 5276 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 5277 type, rid, r)); 5278 5279 dinfo = device_get_ivars(child); 5280 cfg = &dinfo->cfg; 5281 5282 #ifdef PCI_IOV 5283 if (dinfo->cfg.flags & PCICFG_VF) { 5284 switch (type) { 5285 /* VFs can't have I/O BARs. */ 5286 case SYS_RES_IOPORT: 5287 return (EDOOFUS); 5288 case SYS_RES_MEMORY: 5289 return (pci_vf_release_mem_resource(dev, child, rid, 5290 r)); 5291 } 5292 5293 /* Fall through for other types of resource allocations. */ 5294 } 5295 #endif 5296 5297 #ifdef NEW_PCIB 5298 /* 5299 * PCI-PCI bridge I/O window resources are not BARs. For 5300 * those allocations just pass the request up the tree. 5301 */ 5302 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE && 5303 (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) { 5304 switch (rid) { 5305 case PCIR_IOBASEL_1: 5306 case PCIR_MEMBASE_1: 5307 case PCIR_PMBASEL_1: 5308 return (bus_generic_release_resource(dev, child, type, 5309 rid, r)); 5310 } 5311 } 5312 #endif 5313 5314 rl = &dinfo->resources; 5315 return (resource_list_release(rl, dev, child, type, rid, r)); 5316 } 5317 5318 int 5319 pci_activate_resource(device_t dev, device_t child, int type, int rid, 5320 struct resource *r) 5321 { 5322 struct pci_devinfo *dinfo; 5323 int error; 5324 5325 error = bus_generic_activate_resource(dev, child, type, rid, r); 5326 if (error) 5327 return (error); 5328 5329 /* Enable decoding in the command register when activating BARs. */ 5330 if (device_get_parent(child) == dev) { 5331 /* Device ROMs need their decoding explicitly enabled. */ 5332 dinfo = device_get_ivars(child); 5333 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5334 pci_write_bar(child, pci_find_bar(child, rid), 5335 rman_get_start(r) | PCIM_BIOS_ENABLE); 5336 switch (type) { 5337 case SYS_RES_IOPORT: 5338 case SYS_RES_MEMORY: 5339 error = PCI_ENABLE_IO(dev, child, type); 5340 break; 5341 } 5342 } 5343 return (error); 5344 } 5345 5346 int 5347 pci_deactivate_resource(device_t dev, device_t child, int type, 5348 int rid, struct resource *r) 5349 { 5350 struct pci_devinfo *dinfo; 5351 int error; 5352 5353 error = bus_generic_deactivate_resource(dev, child, type, rid, r); 5354 if (error) 5355 return (error); 5356 5357 /* Disable decoding for device ROMs. */ 5358 if (device_get_parent(child) == dev) { 5359 dinfo = device_get_ivars(child); 5360 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5361 pci_write_bar(child, pci_find_bar(child, rid), 5362 rman_get_start(r)); 5363 } 5364 return (0); 5365 } 5366 5367 void 5368 pci_child_deleted(device_t dev, device_t child) 5369 { 5370 struct resource_list_entry *rle; 5371 struct resource_list *rl; 5372 struct pci_devinfo *dinfo; 5373 5374 dinfo = device_get_ivars(child); 5375 rl = &dinfo->resources; 5376 5377 EVENTHANDLER_INVOKE(pci_delete_device, child); 5378 5379 /* Turn off access to resources we're about to free */ 5380 if (bus_child_present(child) != 0) { 5381 pci_write_config(child, PCIR_COMMAND, pci_read_config(child, 5382 PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2); 5383 5384 pci_disable_busmaster(child); 5385 } 5386 5387 /* Free all allocated resources */ 5388 STAILQ_FOREACH(rle, rl, link) { 5389 if (rle->res) { 5390 if (rman_get_flags(rle->res) & RF_ACTIVE || 5391 resource_list_busy(rl, rle->type, rle->rid)) { 5392 pci_printf(&dinfo->cfg, 5393 "Resource still owned, oops. " 5394 "(type=%d, rid=%d, addr=%lx)\n", 5395 rle->type, rle->rid, 5396 rman_get_start(rle->res)); 5397 bus_release_resource(child, rle->type, rle->rid, 5398 rle->res); 5399 } 5400 resource_list_unreserve(rl, dev, child, rle->type, 5401 rle->rid); 5402 } 5403 } 5404 resource_list_free(rl); 5405 5406 pci_freecfg(dinfo); 5407 } 5408 5409 void 5410 pci_delete_resource(device_t dev, device_t child, int type, int rid) 5411 { 5412 struct pci_devinfo *dinfo; 5413 struct resource_list *rl; 5414 struct resource_list_entry *rle; 5415 5416 if (device_get_parent(child) != dev) 5417 return; 5418 5419 dinfo = device_get_ivars(child); 5420 rl = &dinfo->resources; 5421 rle = resource_list_find(rl, type, rid); 5422 if (rle == NULL) 5423 return; 5424 5425 if (rle->res) { 5426 if (rman_get_flags(rle->res) & RF_ACTIVE || 5427 resource_list_busy(rl, type, rid)) { 5428 device_printf(dev, "delete_resource: " 5429 "Resource still owned by child, oops. " 5430 "(type=%d, rid=%d, addr=%jx)\n", 5431 type, rid, rman_get_start(rle->res)); 5432 return; 5433 } 5434 resource_list_unreserve(rl, dev, child, type, rid); 5435 } 5436 resource_list_delete(rl, type, rid); 5437 } 5438 5439 struct resource_list * 5440 pci_get_resource_list (device_t dev, device_t child) 5441 { 5442 struct pci_devinfo *dinfo = device_get_ivars(child); 5443 5444 return (&dinfo->resources); 5445 } 5446 5447 bus_dma_tag_t 5448 pci_get_dma_tag(device_t bus, device_t dev) 5449 { 5450 struct pci_softc *sc = device_get_softc(bus); 5451 5452 return (sc->sc_dma_tag); 5453 } 5454 5455 uint32_t 5456 pci_read_config_method(device_t dev, device_t child, int reg, int width) 5457 { 5458 struct pci_devinfo *dinfo = device_get_ivars(child); 5459 pcicfgregs *cfg = &dinfo->cfg; 5460 5461 #ifdef PCI_IOV 5462 /* 5463 * SR-IOV VFs don't implement the VID or DID registers, so we have to 5464 * emulate them here. 5465 */ 5466 if (cfg->flags & PCICFG_VF) { 5467 if (reg == PCIR_VENDOR) { 5468 switch (width) { 5469 case 4: 5470 return (cfg->device << 16 | cfg->vendor); 5471 case 2: 5472 return (cfg->vendor); 5473 case 1: 5474 return (cfg->vendor & 0xff); 5475 default: 5476 return (0xffffffff); 5477 } 5478 } else if (reg == PCIR_DEVICE) { 5479 switch (width) { 5480 /* Note that an unaligned 4-byte read is an error. */ 5481 case 2: 5482 return (cfg->device); 5483 case 1: 5484 return (cfg->device & 0xff); 5485 default: 5486 return (0xffffffff); 5487 } 5488 } 5489 } 5490 #endif 5491 5492 return (PCIB_READ_CONFIG(device_get_parent(dev), 5493 cfg->bus, cfg->slot, cfg->func, reg, width)); 5494 } 5495 5496 void 5497 pci_write_config_method(device_t dev, device_t child, int reg, 5498 uint32_t val, int width) 5499 { 5500 struct pci_devinfo *dinfo = device_get_ivars(child); 5501 pcicfgregs *cfg = &dinfo->cfg; 5502 5503 PCIB_WRITE_CONFIG(device_get_parent(dev), 5504 cfg->bus, cfg->slot, cfg->func, reg, val, width); 5505 } 5506 5507 int 5508 pci_child_location_str_method(device_t dev, device_t child, char *buf, 5509 size_t buflen) 5510 { 5511 5512 snprintf(buf, buflen, "slot=%d function=%d dbsf=pci%d:%d:%d:%d", 5513 pci_get_slot(child), pci_get_function(child), pci_get_domain(child), 5514 pci_get_bus(child), pci_get_slot(child), pci_get_function(child)); 5515 return (0); 5516 } 5517 5518 int 5519 pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf, 5520 size_t buflen) 5521 { 5522 struct pci_devinfo *dinfo; 5523 pcicfgregs *cfg; 5524 5525 dinfo = device_get_ivars(child); 5526 cfg = &dinfo->cfg; 5527 snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x " 5528 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device, 5529 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass, 5530 cfg->progif); 5531 return (0); 5532 } 5533 5534 int 5535 pci_assign_interrupt_method(device_t dev, device_t child) 5536 { 5537 struct pci_devinfo *dinfo = device_get_ivars(child); 5538 pcicfgregs *cfg = &dinfo->cfg; 5539 5540 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, 5541 cfg->intpin)); 5542 } 5543 5544 static void 5545 pci_lookup(void *arg, const char *name, device_t *dev) 5546 { 5547 long val; 5548 char *end; 5549 int domain, bus, slot, func; 5550 5551 if (*dev != NULL) 5552 return; 5553 5554 /* 5555 * Accept pciconf-style selectors of either pciD:B:S:F or 5556 * pciB:S:F. In the latter case, the domain is assumed to 5557 * be zero. 5558 */ 5559 if (strncmp(name, "pci", 3) != 0) 5560 return; 5561 val = strtol(name + 3, &end, 10); 5562 if (val < 0 || val > INT_MAX || *end != ':') 5563 return; 5564 domain = val; 5565 val = strtol(end + 1, &end, 10); 5566 if (val < 0 || val > INT_MAX || *end != ':') 5567 return; 5568 bus = val; 5569 val = strtol(end + 1, &end, 10); 5570 if (val < 0 || val > INT_MAX) 5571 return; 5572 slot = val; 5573 if (*end == ':') { 5574 val = strtol(end + 1, &end, 10); 5575 if (val < 0 || val > INT_MAX || *end != '\0') 5576 return; 5577 func = val; 5578 } else if (*end == '\0') { 5579 func = slot; 5580 slot = bus; 5581 bus = domain; 5582 domain = 0; 5583 } else 5584 return; 5585 5586 if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX || 5587 func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX)) 5588 return; 5589 5590 *dev = pci_find_dbsf(domain, bus, slot, func); 5591 } 5592 5593 static int 5594 pci_modevent(module_t mod, int what, void *arg) 5595 { 5596 static struct cdev *pci_cdev; 5597 static eventhandler_tag tag; 5598 5599 switch (what) { 5600 case MOD_LOAD: 5601 STAILQ_INIT(&pci_devq); 5602 pci_generation = 0; 5603 pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644, 5604 "pci"); 5605 pci_load_vendor_data(); 5606 tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL, 5607 1000); 5608 break; 5609 5610 case MOD_UNLOAD: 5611 if (tag != NULL) 5612 EVENTHANDLER_DEREGISTER(dev_lookup, tag); 5613 destroy_dev(pci_cdev); 5614 break; 5615 } 5616 5617 return (0); 5618 } 5619 5620 static void 5621 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo) 5622 { 5623 #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2) 5624 struct pcicfg_pcie *cfg; 5625 int version, pos; 5626 5627 cfg = &dinfo->cfg.pcie; 5628 pos = cfg->pcie_location; 5629 5630 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 5631 5632 WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl); 5633 5634 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5635 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 5636 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 5637 WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl); 5638 5639 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5640 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 5641 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 5642 WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl); 5643 5644 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5645 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 5646 WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl); 5647 5648 if (version > 1) { 5649 WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2); 5650 WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2); 5651 WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2); 5652 } 5653 #undef WREG 5654 } 5655 5656 static void 5657 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo) 5658 { 5659 pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 5660 dinfo->cfg.pcix.pcix_command, 2); 5661 } 5662 5663 void 5664 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo) 5665 { 5666 5667 /* 5668 * Restore the device to full power mode. We must do this 5669 * before we restore the registers because moving from D3 to 5670 * D0 will cause the chip's BARs and some other registers to 5671 * be reset to some unknown power on reset values. Cut down 5672 * the noise on boot by doing nothing if we are already in 5673 * state D0. 5674 */ 5675 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) 5676 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 5677 pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2); 5678 pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1); 5679 pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1); 5680 pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1); 5681 pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1); 5682 pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1); 5683 pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1); 5684 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 5685 case PCIM_HDRTYPE_NORMAL: 5686 pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); 5687 pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); 5688 break; 5689 case PCIM_HDRTYPE_BRIDGE: 5690 pci_write_config(dev, PCIR_SECLAT_1, 5691 dinfo->cfg.bridge.br_seclat, 1); 5692 pci_write_config(dev, PCIR_SUBBUS_1, 5693 dinfo->cfg.bridge.br_subbus, 1); 5694 pci_write_config(dev, PCIR_SECBUS_1, 5695 dinfo->cfg.bridge.br_secbus, 1); 5696 pci_write_config(dev, PCIR_PRIBUS_1, 5697 dinfo->cfg.bridge.br_pribus, 1); 5698 pci_write_config(dev, PCIR_BRIDGECTL_1, 5699 dinfo->cfg.bridge.br_control, 2); 5700 break; 5701 case PCIM_HDRTYPE_CARDBUS: 5702 pci_write_config(dev, PCIR_SECLAT_2, 5703 dinfo->cfg.bridge.br_seclat, 1); 5704 pci_write_config(dev, PCIR_SUBBUS_2, 5705 dinfo->cfg.bridge.br_subbus, 1); 5706 pci_write_config(dev, PCIR_SECBUS_2, 5707 dinfo->cfg.bridge.br_secbus, 1); 5708 pci_write_config(dev, PCIR_PRIBUS_2, 5709 dinfo->cfg.bridge.br_pribus, 1); 5710 pci_write_config(dev, PCIR_BRIDGECTL_2, 5711 dinfo->cfg.bridge.br_control, 2); 5712 break; 5713 } 5714 pci_restore_bars(dev); 5715 5716 /* 5717 * Restore extended capabilities for PCI-Express and PCI-X 5718 */ 5719 if (dinfo->cfg.pcie.pcie_location != 0) 5720 pci_cfg_restore_pcie(dev, dinfo); 5721 if (dinfo->cfg.pcix.pcix_location != 0) 5722 pci_cfg_restore_pcix(dev, dinfo); 5723 5724 /* Restore MSI and MSI-X configurations if they are present. */ 5725 if (dinfo->cfg.msi.msi_location != 0) 5726 pci_resume_msi(dev); 5727 if (dinfo->cfg.msix.msix_location != 0) 5728 pci_resume_msix(dev); 5729 5730 #ifdef PCI_IOV 5731 if (dinfo->cfg.iov != NULL) 5732 pci_iov_cfg_restore(dev, dinfo); 5733 #endif 5734 } 5735 5736 static void 5737 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo) 5738 { 5739 #define RREG(n) pci_read_config(dev, pos + (n), 2) 5740 struct pcicfg_pcie *cfg; 5741 int version, pos; 5742 5743 cfg = &dinfo->cfg.pcie; 5744 pos = cfg->pcie_location; 5745 5746 cfg->pcie_flags = RREG(PCIER_FLAGS); 5747 5748 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 5749 5750 cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL); 5751 5752 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5753 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 5754 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 5755 cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL); 5756 5757 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5758 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 5759 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 5760 cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL); 5761 5762 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5763 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 5764 cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL); 5765 5766 if (version > 1) { 5767 cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2); 5768 cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2); 5769 cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2); 5770 } 5771 #undef RREG 5772 } 5773 5774 static void 5775 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo) 5776 { 5777 dinfo->cfg.pcix.pcix_command = pci_read_config(dev, 5778 dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2); 5779 } 5780 5781 void 5782 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate) 5783 { 5784 uint32_t cls; 5785 int ps; 5786 5787 /* 5788 * Some drivers apparently write to these registers w/o updating our 5789 * cached copy. No harm happens if we update the copy, so do so here 5790 * so we can restore them. The COMMAND register is modified by the 5791 * bus w/o updating the cache. This should represent the normally 5792 * writable portion of the 'defined' part of type 0/1/2 headers. 5793 */ 5794 dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2); 5795 dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2); 5796 dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2); 5797 dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1); 5798 dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1); 5799 dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 5800 dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 5801 dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1); 5802 dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1); 5803 dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1); 5804 dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1); 5805 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 5806 case PCIM_HDRTYPE_NORMAL: 5807 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); 5808 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); 5809 dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); 5810 dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); 5811 break; 5812 case PCIM_HDRTYPE_BRIDGE: 5813 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 5814 PCIR_SECLAT_1, 1); 5815 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 5816 PCIR_SUBBUS_1, 1); 5817 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 5818 PCIR_SECBUS_1, 1); 5819 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 5820 PCIR_PRIBUS_1, 1); 5821 dinfo->cfg.bridge.br_control = pci_read_config(dev, 5822 PCIR_BRIDGECTL_1, 2); 5823 break; 5824 case PCIM_HDRTYPE_CARDBUS: 5825 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 5826 PCIR_SECLAT_2, 1); 5827 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 5828 PCIR_SUBBUS_2, 1); 5829 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 5830 PCIR_SECBUS_2, 1); 5831 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 5832 PCIR_PRIBUS_2, 1); 5833 dinfo->cfg.bridge.br_control = pci_read_config(dev, 5834 PCIR_BRIDGECTL_2, 2); 5835 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2); 5836 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2); 5837 break; 5838 } 5839 5840 if (dinfo->cfg.pcie.pcie_location != 0) 5841 pci_cfg_save_pcie(dev, dinfo); 5842 5843 if (dinfo->cfg.pcix.pcix_location != 0) 5844 pci_cfg_save_pcix(dev, dinfo); 5845 5846 #ifdef PCI_IOV 5847 if (dinfo->cfg.iov != NULL) 5848 pci_iov_cfg_save(dev, dinfo); 5849 #endif 5850 5851 /* 5852 * don't set the state for display devices, base peripherals and 5853 * memory devices since bad things happen when they are powered down. 5854 * We should (a) have drivers that can easily detach and (b) use 5855 * generic drivers for these devices so that some device actually 5856 * attaches. We need to make sure that when we implement (a) we don't 5857 * power the device down on a reattach. 5858 */ 5859 cls = pci_get_class(dev); 5860 if (!setstate) 5861 return; 5862 switch (pci_do_power_nodriver) 5863 { 5864 case 0: /* NO powerdown at all */ 5865 return; 5866 case 1: /* Conservative about what to power down */ 5867 if (cls == PCIC_STORAGE) 5868 return; 5869 /*FALLTHROUGH*/ 5870 case 2: /* Aggressive about what to power down */ 5871 if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY || 5872 cls == PCIC_BASEPERIPH) 5873 return; 5874 /*FALLTHROUGH*/ 5875 case 3: /* Power down everything */ 5876 break; 5877 } 5878 /* 5879 * PCI spec says we can only go into D3 state from D0 state. 5880 * Transition from D[12] into D0 before going to D3 state. 5881 */ 5882 ps = pci_get_powerstate(dev); 5883 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 5884 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 5885 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3) 5886 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 5887 } 5888 5889 /* Wrapper APIs suitable for device driver use. */ 5890 void 5891 pci_save_state(device_t dev) 5892 { 5893 struct pci_devinfo *dinfo; 5894 5895 dinfo = device_get_ivars(dev); 5896 pci_cfg_save(dev, dinfo, 0); 5897 } 5898 5899 void 5900 pci_restore_state(device_t dev) 5901 { 5902 struct pci_devinfo *dinfo; 5903 5904 dinfo = device_get_ivars(dev); 5905 pci_cfg_restore(dev, dinfo); 5906 } 5907 5908 static int 5909 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type, 5910 uintptr_t *id) 5911 { 5912 5913 return (PCIB_GET_ID(device_get_parent(dev), child, type, id)); 5914 } 5915 5916 /* Find the upstream port of a given PCI device in a root complex. */ 5917 device_t 5918 pci_find_pcie_root_port(device_t dev) 5919 { 5920 struct pci_devinfo *dinfo; 5921 devclass_t pci_class; 5922 device_t pcib, bus; 5923 5924 pci_class = devclass_find("pci"); 5925 KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class, 5926 ("%s: non-pci device %s", __func__, device_get_nameunit(dev))); 5927 5928 /* 5929 * Walk the bridge hierarchy until we find a PCI-e root 5930 * port or a non-PCI device. 5931 */ 5932 for (;;) { 5933 bus = device_get_parent(dev); 5934 KASSERT(bus != NULL, ("%s: null parent of %s", __func__, 5935 device_get_nameunit(dev))); 5936 5937 pcib = device_get_parent(bus); 5938 KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__, 5939 device_get_nameunit(bus))); 5940 5941 /* 5942 * pcib's parent must be a PCI bus for this to be a 5943 * PCI-PCI bridge. 5944 */ 5945 if (device_get_devclass(device_get_parent(pcib)) != pci_class) 5946 return (NULL); 5947 5948 dinfo = device_get_ivars(pcib); 5949 if (dinfo->cfg.pcie.pcie_location != 0 && 5950 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) 5951 return (pcib); 5952 5953 dev = pcib; 5954 } 5955 } 5956 5957 /* 5958 * Wait for pending transactions to complete on a PCI-express function. 5959 * 5960 * The maximum delay is specified in milliseconds in max_delay. Note 5961 * that this function may sleep. 5962 * 5963 * Returns true if the function is idle and false if the timeout is 5964 * exceeded. If dev is not a PCI-express function, this returns true. 5965 */ 5966 bool 5967 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay) 5968 { 5969 struct pci_devinfo *dinfo = device_get_ivars(dev); 5970 uint16_t sta; 5971 int cap; 5972 5973 cap = dinfo->cfg.pcie.pcie_location; 5974 if (cap == 0) 5975 return (true); 5976 5977 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 5978 while (sta & PCIEM_STA_TRANSACTION_PND) { 5979 if (max_delay == 0) 5980 return (false); 5981 5982 /* Poll once every 100 milliseconds up to the timeout. */ 5983 if (max_delay > 100) { 5984 pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK); 5985 max_delay -= 100; 5986 } else { 5987 pause_sbt("pcietp", max_delay * SBT_1MS, 0, 5988 C_HARDCLOCK); 5989 max_delay = 0; 5990 } 5991 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 5992 } 5993 5994 return (true); 5995 } 5996 5997 /* 5998 * Determine the maximum Completion Timeout in microseconds. 5999 * 6000 * For non-PCI-express functions this returns 0. 6001 */ 6002 int 6003 pcie_get_max_completion_timeout(device_t dev) 6004 { 6005 struct pci_devinfo *dinfo = device_get_ivars(dev); 6006 int cap; 6007 6008 cap = dinfo->cfg.pcie.pcie_location; 6009 if (cap == 0) 6010 return (0); 6011 6012 /* 6013 * Functions using the 1.x spec use the default timeout range of 6014 * 50 microseconds to 50 milliseconds. Functions that do not 6015 * support programmable timeouts also use this range. 6016 */ 6017 if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 || 6018 (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) & 6019 PCIEM_CAP2_COMP_TIMO_RANGES) == 0) 6020 return (50 * 1000); 6021 6022 switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) & 6023 PCIEM_CTL2_COMP_TIMO_VAL) { 6024 case PCIEM_CTL2_COMP_TIMO_100US: 6025 return (100); 6026 case PCIEM_CTL2_COMP_TIMO_10MS: 6027 return (10 * 1000); 6028 case PCIEM_CTL2_COMP_TIMO_55MS: 6029 return (55 * 1000); 6030 case PCIEM_CTL2_COMP_TIMO_210MS: 6031 return (210 * 1000); 6032 case PCIEM_CTL2_COMP_TIMO_900MS: 6033 return (900 * 1000); 6034 case PCIEM_CTL2_COMP_TIMO_3500MS: 6035 return (3500 * 1000); 6036 case PCIEM_CTL2_COMP_TIMO_13S: 6037 return (13 * 1000 * 1000); 6038 case PCIEM_CTL2_COMP_TIMO_64S: 6039 return (64 * 1000 * 1000); 6040 default: 6041 return (50 * 1000); 6042 } 6043 } 6044 6045 /* 6046 * Perform a Function Level Reset (FLR) on a device. 6047 * 6048 * This function first waits for any pending transactions to complete 6049 * within the timeout specified by max_delay. If transactions are 6050 * still pending, the function will return false without attempting a 6051 * reset. 6052 * 6053 * If dev is not a PCI-express function or does not support FLR, this 6054 * function returns false. 6055 * 6056 * Note that no registers are saved or restored. The caller is 6057 * responsible for saving and restoring any registers including 6058 * PCI-standard registers via pci_save_state() and 6059 * pci_restore_state(). 6060 */ 6061 bool 6062 pcie_flr(device_t dev, u_int max_delay, bool force) 6063 { 6064 struct pci_devinfo *dinfo = device_get_ivars(dev); 6065 uint16_t cmd, ctl; 6066 int compl_delay; 6067 int cap; 6068 6069 cap = dinfo->cfg.pcie.pcie_location; 6070 if (cap == 0) 6071 return (false); 6072 6073 if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR)) 6074 return (false); 6075 6076 /* 6077 * Disable busmastering to prevent generation of new 6078 * transactions while waiting for the device to go idle. If 6079 * the idle timeout fails, the command register is restored 6080 * which will re-enable busmastering. 6081 */ 6082 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 6083 pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2); 6084 if (!pcie_wait_for_pending_transactions(dev, max_delay)) { 6085 if (!force) { 6086 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 6087 return (false); 6088 } 6089 pci_printf(&dinfo->cfg, 6090 "Resetting with transactions pending after %d ms\n", 6091 max_delay); 6092 6093 /* 6094 * Extend the post-FLR delay to cover the maximum 6095 * Completion Timeout delay of anything in flight 6096 * during the FLR delay. Enforce a minimum delay of 6097 * at least 10ms. 6098 */ 6099 compl_delay = pcie_get_max_completion_timeout(dev) / 1000; 6100 if (compl_delay < 10) 6101 compl_delay = 10; 6102 } else 6103 compl_delay = 0; 6104 6105 /* Initiate the reset. */ 6106 ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 6107 pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl | 6108 PCIEM_CTL_INITIATE_FLR, 2); 6109 6110 /* Wait for 100ms. */ 6111 pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK); 6112 6113 if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) & 6114 PCIEM_STA_TRANSACTION_PND) 6115 pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n"); 6116 return (true); 6117 } 6118 6119 uint16_t 6120 pcie_link_status(device_t dev) 6121 { 6122 struct pci_devinfo *dinfo; 6123 struct pcicfg_pcie *cfg; 6124 int pos; 6125 6126 dinfo = device_get_ivars(dev); 6127 cfg = &dinfo->cfg.pcie; 6128 pos = cfg->pcie_location; 6129 6130 return pci_read_config(dev, pos + PCIER_LINK_STA, 2); 6131 } 6132 6133 uint16_t 6134 pcie_link_caps(device_t dev) 6135 { 6136 struct pci_devinfo *dinfo; 6137 struct pcicfg_pcie *cfg; 6138 int pos; 6139 6140 dinfo = device_get_ivars(dev); 6141 cfg = &dinfo->cfg.pcie; 6142 pos = cfg->pcie_location; 6143 6144 return pci_read_config(dev, pos + PCIER_LINK_CAP, 2); 6145 } 6146