1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 5 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org> 6 * Copyright (c) 2000, BSDi 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 #include "opt_acpi.h" 33 #include "opt_iommu.h" 34 #include "opt_bus.h" 35 36 #include <sys/param.h> 37 #include <sys/conf.h> 38 #include <sys/endian.h> 39 #include <sys/eventhandler.h> 40 #include <sys/fcntl.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/linker.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/queue.h> 47 #include <sys/sbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/systm.h> 50 #include <sys/taskqueue.h> 51 #include <sys/tree.h> 52 53 #include <vm/vm.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_extern.h> 56 57 #include <sys/bus.h> 58 #include <machine/bus.h> 59 #include <sys/rman.h> 60 #include <machine/resource.h> 61 #include <machine/stdarg.h> 62 63 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 64 #include <machine/intr_machdep.h> 65 #endif 66 67 #include <sys/pciio.h> 68 #include <dev/pci/pcireg.h> 69 #include <dev/pci/pcivar.h> 70 #include <dev/pci/pci_private.h> 71 72 #ifdef PCI_IOV 73 #include <sys/nv.h> 74 #include <dev/pci/pci_iov_private.h> 75 #endif 76 77 #include <dev/usb/controller/xhcireg.h> 78 #include <dev/usb/controller/ehcireg.h> 79 #include <dev/usb/controller/ohcireg.h> 80 #include <dev/usb/controller/uhcireg.h> 81 82 #include <dev/iommu/iommu.h> 83 84 #include "pcib_if.h" 85 #include "pci_if.h" 86 87 #define PCIR_IS_BIOS(cfg, reg) \ 88 (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \ 89 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1)) 90 91 static device_probe_t pci_probe; 92 93 static bus_reset_post_t pci_reset_post; 94 static bus_reset_prepare_t pci_reset_prepare; 95 static bus_reset_child_t pci_reset_child; 96 static bus_hint_device_unit_t pci_hint_device_unit; 97 static bus_remap_intr_t pci_remap_intr_method; 98 99 static pci_get_id_t pci_get_id_method; 100 101 static int pci_has_quirk(uint32_t devid, int quirk); 102 static pci_addr_t pci_mapbase(uint64_t mapreg); 103 static const char *pci_maptype(uint64_t mapreg); 104 static int pci_maprange(uint64_t mapreg); 105 static pci_addr_t pci_rombase(uint64_t mapreg); 106 static int pci_romsize(uint64_t testval); 107 static void pci_fixancient(pcicfgregs *cfg); 108 static int pci_printf(pcicfgregs *cfg, const char *fmt, ...); 109 110 static int pci_porten(device_t dev); 111 static int pci_memen(device_t dev); 112 static void pci_assign_interrupt(device_t bus, device_t dev, 113 int force_route); 114 static int pci_add_map(device_t bus, device_t dev, int reg, 115 struct resource_list *rl, int force, int prefetch); 116 static void pci_load_vendor_data(void); 117 static int pci_describe_parse_line(char **ptr, int *vendor, 118 int *device, char **desc); 119 static char *pci_describe_device(device_t dev); 120 static int pci_modevent(module_t mod, int what, void *arg); 121 static void pci_hdrtypedata(device_t pcib, int b, int s, int f, 122 pcicfgregs *cfg); 123 static void pci_read_cap(device_t pcib, pcicfgregs *cfg); 124 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, 125 int reg, uint32_t *data); 126 #if 0 127 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, 128 int reg, uint32_t data); 129 #endif 130 static void pci_read_vpd(device_t pcib, pcicfgregs *cfg); 131 static void pci_mask_msix(device_t dev, u_int index); 132 static void pci_unmask_msix(device_t dev, u_int index); 133 static int pci_msi_blacklisted(void); 134 static int pci_msix_blacklisted(void); 135 static void pci_resume_msi(device_t dev); 136 static void pci_resume_msix(device_t dev); 137 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d, 138 int b, int s, int f, uint16_t vid, uint16_t did); 139 140 static device_method_t pci_methods[] = { 141 /* Device interface */ 142 DEVMETHOD(device_probe, pci_probe), 143 DEVMETHOD(device_attach, pci_attach), 144 DEVMETHOD(device_detach, pci_detach), 145 DEVMETHOD(device_shutdown, bus_generic_shutdown), 146 DEVMETHOD(device_suspend, bus_generic_suspend), 147 DEVMETHOD(device_resume, pci_resume), 148 149 /* Bus interface */ 150 DEVMETHOD(bus_print_child, pci_print_child), 151 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch), 152 DEVMETHOD(bus_read_ivar, pci_read_ivar), 153 DEVMETHOD(bus_write_ivar, pci_write_ivar), 154 DEVMETHOD(bus_driver_added, pci_driver_added), 155 DEVMETHOD(bus_setup_intr, pci_setup_intr), 156 DEVMETHOD(bus_teardown_intr, pci_teardown_intr), 157 DEVMETHOD(bus_reset_prepare, pci_reset_prepare), 158 DEVMETHOD(bus_reset_post, pci_reset_post), 159 DEVMETHOD(bus_reset_child, pci_reset_child), 160 161 DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag), 162 DEVMETHOD(bus_get_resource_list,pci_get_resource_list), 163 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 164 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 165 DEVMETHOD(bus_delete_resource, pci_delete_resource), 166 DEVMETHOD(bus_alloc_resource, pci_alloc_resource), 167 #ifdef PCI_IOV 168 DEVMETHOD(bus_adjust_resource, pci_adjust_resource), 169 #else 170 DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), 171 #endif 172 DEVMETHOD(bus_release_resource, pci_release_resource), 173 DEVMETHOD(bus_activate_resource, pci_activate_resource), 174 DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), 175 #ifdef PCI_IOV 176 DEVMETHOD(bus_map_resource, pci_map_resource), 177 DEVMETHOD(bus_unmap_resource, pci_unmap_resource), 178 #endif 179 DEVMETHOD(bus_child_deleted, pci_child_deleted), 180 DEVMETHOD(bus_child_detached, pci_child_detached), 181 DEVMETHOD(bus_child_pnpinfo, pci_child_pnpinfo_method), 182 DEVMETHOD(bus_child_location, pci_child_location_method), 183 DEVMETHOD(bus_get_device_path, pci_get_device_path_method), 184 DEVMETHOD(bus_hint_device_unit, pci_hint_device_unit), 185 DEVMETHOD(bus_remap_intr, pci_remap_intr_method), 186 DEVMETHOD(bus_suspend_child, pci_suspend_child), 187 DEVMETHOD(bus_resume_child, pci_resume_child), 188 DEVMETHOD(bus_rescan, pci_rescan_method), 189 190 /* PCI interface */ 191 DEVMETHOD(pci_read_config, pci_read_config_method), 192 DEVMETHOD(pci_write_config, pci_write_config_method), 193 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method), 194 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method), 195 DEVMETHOD(pci_enable_io, pci_enable_io_method), 196 DEVMETHOD(pci_disable_io, pci_disable_io_method), 197 DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method), 198 DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method), 199 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method), 200 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method), 201 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method), 202 DEVMETHOD(pci_find_cap, pci_find_cap_method), 203 DEVMETHOD(pci_find_next_cap, pci_find_next_cap_method), 204 DEVMETHOD(pci_find_extcap, pci_find_extcap_method), 205 DEVMETHOD(pci_find_next_extcap, pci_find_next_extcap_method), 206 DEVMETHOD(pci_find_htcap, pci_find_htcap_method), 207 DEVMETHOD(pci_find_next_htcap, pci_find_next_htcap_method), 208 DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method), 209 DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method), 210 DEVMETHOD(pci_enable_msi, pci_enable_msi_method), 211 DEVMETHOD(pci_enable_msix, pci_enable_msix_method), 212 DEVMETHOD(pci_disable_msi, pci_disable_msi_method), 213 DEVMETHOD(pci_remap_msix, pci_remap_msix_method), 214 DEVMETHOD(pci_release_msi, pci_release_msi_method), 215 DEVMETHOD(pci_msi_count, pci_msi_count_method), 216 DEVMETHOD(pci_msix_count, pci_msix_count_method), 217 DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method), 218 DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method), 219 DEVMETHOD(pci_get_id, pci_get_id_method), 220 DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method), 221 DEVMETHOD(pci_child_added, pci_child_added_method), 222 #ifdef PCI_IOV 223 DEVMETHOD(pci_iov_attach, pci_iov_attach_method), 224 DEVMETHOD(pci_iov_detach, pci_iov_detach_method), 225 DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method), 226 #endif 227 228 DEVMETHOD_END 229 }; 230 231 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc)); 232 233 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS); 234 MODULE_VERSION(pci, 1); 235 236 static char *pci_vendordata; 237 static size_t pci_vendordata_size; 238 239 struct pci_quirk { 240 uint32_t devid; /* Vendor/device of the card */ 241 int type; 242 #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */ 243 #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */ 244 #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */ 245 #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */ 246 #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */ 247 #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */ 248 #define PCI_QUIRK_REALLOC_BAR 7 /* Can't allocate memory at the default address */ 249 int arg1; 250 int arg2; 251 }; 252 253 static const struct pci_quirk pci_quirks[] = { 254 /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */ 255 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 256 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 257 /* As does the Serverworks OSB4 (the SMBus mapping register) */ 258 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 }, 259 260 /* 261 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge 262 * or the CMIC-SL (AKA ServerWorks GC_LE). 263 */ 264 { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 265 { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 266 267 /* 268 * MSI doesn't work on earlier Intel chipsets including 269 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855. 270 */ 271 { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 272 { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 273 { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 274 { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 275 { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 276 { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 277 { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 278 279 /* 280 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX 281 * bridge. 282 */ 283 { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 284 285 /* 286 * Some virtualization environments emulate an older chipset 287 * but support MSI just fine. QEMU uses the Intel 82440. 288 */ 289 { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 }, 290 291 /* 292 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus 293 * controller depending on SoftPciRst register (PM_IO 0x55 [7]). 294 * It prevents us from attaching hpet(4) when the bit is unset. 295 * Note this quirk only affects SB600 revision A13 and earlier. 296 * For SB600 A21 and later, firmware must set the bit to hide it. 297 * For SB700 and later, it is unused and hardcoded to zero. 298 */ 299 { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 }, 300 301 /* 302 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have 303 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit 304 * of the command register is set. 305 */ 306 { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 307 { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 308 { 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 309 { 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 310 { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 311 312 /* 313 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't 314 * issue MSI interrupts with PCIM_CMD_INTxDIS set either. 315 */ 316 { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */ 317 { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */ 318 { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */ 319 { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */ 320 { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */ 321 { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */ 322 323 /* 324 * HPE Gen 10 VGA has a memory range that can't be allocated in the 325 * expected place. 326 */ 327 { 0x98741002, PCI_QUIRK_REALLOC_BAR, 0, 0 }, 328 { 0 } 329 }; 330 331 /* map register information */ 332 #define PCI_MAPMEM 0x01 /* memory map */ 333 #define PCI_MAPMEMP 0x02 /* prefetchable memory map */ 334 #define PCI_MAPPORT 0x04 /* port map */ 335 336 struct devlist pci_devq; 337 uint32_t pci_generation; 338 uint32_t pci_numdevs = 0; 339 static int pcie_chipset, pcix_chipset; 340 341 /* sysctl vars */ 342 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 343 "PCI bus tuning parameters"); 344 345 static int pci_enable_io_modes = 1; 346 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN, 347 &pci_enable_io_modes, 1, 348 "Enable I/O and memory bits in the config register. Some BIOSes do not" 349 " enable these bits correctly. We'd like to do this all the time, but" 350 " there are some peripherals that this causes problems with."); 351 352 static int pci_do_realloc_bars = 1; 353 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN, 354 &pci_do_realloc_bars, 0, 355 "Attempt to allocate a new range for any BARs whose original " 356 "firmware-assigned ranges fail to allocate during the initial device scan."); 357 358 static int pci_do_power_nodriver = 0; 359 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN, 360 &pci_do_power_nodriver, 0, 361 "Place a function into D3 state when no driver attaches to it. 0 means" 362 " disable. 1 means conservatively place devices into D3 state. 2 means" 363 " aggressively place devices into D3 state. 3 means put absolutely" 364 " everything in D3 state."); 365 366 int pci_do_power_resume = 1; 367 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN, 368 &pci_do_power_resume, 1, 369 "Transition from D3 -> D0 on resume."); 370 371 int pci_do_power_suspend = 1; 372 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN, 373 &pci_do_power_suspend, 1, 374 "Transition from D0 -> D3 on suspend."); 375 376 static int pci_do_msi = 1; 377 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1, 378 "Enable support for MSI interrupts"); 379 380 static int pci_do_msix = 1; 381 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1, 382 "Enable support for MSI-X interrupts"); 383 384 static int pci_msix_rewrite_table = 0; 385 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN, 386 &pci_msix_rewrite_table, 0, 387 "Rewrite entire MSI-X table when updating MSI-X entries"); 388 389 static int pci_honor_msi_blacklist = 1; 390 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN, 391 &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X"); 392 393 #if defined(__i386__) || defined(__amd64__) 394 static int pci_usb_takeover = 1; 395 #else 396 static int pci_usb_takeover = 0; 397 #endif 398 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN, 399 &pci_usb_takeover, 1, 400 "Enable early takeover of USB controllers. Disable this if you depend on" 401 " BIOS emulation of USB devices, that is you use USB devices (like" 402 " keyboard or mouse) but do not load USB drivers"); 403 404 static int pci_clear_bars; 405 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0, 406 "Ignore firmware-assigned resources for BARs."); 407 408 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 409 static int pci_clear_buses; 410 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0, 411 "Ignore firmware-assigned bus numbers."); 412 #endif 413 414 static int pci_enable_ari = 1; 415 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari, 416 0, "Enable support for PCIe Alternative RID Interpretation"); 417 418 int pci_enable_aspm = 1; 419 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm, 420 0, "Enable support for PCIe Active State Power Management"); 421 422 static int pci_clear_aer_on_attach = 0; 423 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN, 424 &pci_clear_aer_on_attach, 0, 425 "Clear port and device AER state on driver attach"); 426 427 static bool pci_enable_mps_tune = true; 428 SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN, 429 &pci_enable_mps_tune, 1, 430 "Enable tuning of MPS(maximum payload size)." ); 431 432 static int 433 pci_has_quirk(uint32_t devid, int quirk) 434 { 435 const struct pci_quirk *q; 436 437 for (q = &pci_quirks[0]; q->devid; q++) { 438 if (q->devid == devid && q->type == quirk) 439 return (1); 440 } 441 return (0); 442 } 443 444 /* Find a device_t by bus/slot/function in domain 0 */ 445 446 device_t 447 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func) 448 { 449 450 return (pci_find_dbsf(0, bus, slot, func)); 451 } 452 453 /* Find a device_t by domain/bus/slot/function */ 454 455 device_t 456 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func) 457 { 458 struct pci_devinfo *dinfo = NULL; 459 460 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 461 if ((dinfo->cfg.domain == domain) && 462 (dinfo->cfg.bus == bus) && 463 (dinfo->cfg.slot == slot) && 464 (dinfo->cfg.func == func)) { 465 break; 466 } 467 } 468 469 return (dinfo != NULL ? dinfo->cfg.dev : NULL); 470 } 471 472 /* Find a device_t by vendor/device ID */ 473 474 device_t 475 pci_find_device(uint16_t vendor, uint16_t device) 476 { 477 struct pci_devinfo *dinfo; 478 479 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 480 if ((dinfo->cfg.vendor == vendor) && 481 (dinfo->cfg.device == device)) { 482 return (dinfo->cfg.dev); 483 } 484 } 485 486 return (NULL); 487 } 488 489 device_t 490 pci_find_class(uint8_t class, uint8_t subclass) 491 { 492 struct pci_devinfo *dinfo; 493 494 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 495 if (dinfo->cfg.baseclass == class && 496 dinfo->cfg.subclass == subclass) { 497 return (dinfo->cfg.dev); 498 } 499 } 500 501 return (NULL); 502 } 503 504 device_t 505 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from) 506 { 507 struct pci_devinfo *dinfo; 508 bool found = false; 509 510 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 511 if (from != NULL && found == false) { 512 if (from != dinfo->cfg.dev) 513 continue; 514 found = true; 515 continue; 516 } 517 if (dinfo->cfg.baseclass == class && 518 dinfo->cfg.subclass == subclass) { 519 return (dinfo->cfg.dev); 520 } 521 } 522 523 return (NULL); 524 } 525 526 static int 527 pci_printf(pcicfgregs *cfg, const char *fmt, ...) 528 { 529 va_list ap; 530 int retval; 531 532 retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot, 533 cfg->func); 534 va_start(ap, fmt); 535 retval += vprintf(fmt, ap); 536 va_end(ap); 537 return (retval); 538 } 539 540 /* return base address of memory or port map */ 541 542 static pci_addr_t 543 pci_mapbase(uint64_t mapreg) 544 { 545 546 if (PCI_BAR_MEM(mapreg)) 547 return (mapreg & PCIM_BAR_MEM_BASE); 548 else 549 return (mapreg & PCIM_BAR_IO_BASE); 550 } 551 552 /* return map type of memory or port map */ 553 554 static const char * 555 pci_maptype(uint64_t mapreg) 556 { 557 558 if (PCI_BAR_IO(mapreg)) 559 return ("I/O Port"); 560 if (mapreg & PCIM_BAR_MEM_PREFETCH) 561 return ("Prefetchable Memory"); 562 return ("Memory"); 563 } 564 565 /* return log2 of map size decoded for memory or port map */ 566 567 int 568 pci_mapsize(uint64_t testval) 569 { 570 int ln2size; 571 572 testval = pci_mapbase(testval); 573 ln2size = 0; 574 if (testval != 0) { 575 while ((testval & 1) == 0) 576 { 577 ln2size++; 578 testval >>= 1; 579 } 580 } 581 return (ln2size); 582 } 583 584 /* return base address of device ROM */ 585 586 static pci_addr_t 587 pci_rombase(uint64_t mapreg) 588 { 589 590 return (mapreg & PCIM_BIOS_ADDR_MASK); 591 } 592 593 /* return log2 of map size decided for device ROM */ 594 595 static int 596 pci_romsize(uint64_t testval) 597 { 598 int ln2size; 599 600 testval = pci_rombase(testval); 601 ln2size = 0; 602 if (testval != 0) { 603 while ((testval & 1) == 0) 604 { 605 ln2size++; 606 testval >>= 1; 607 } 608 } 609 return (ln2size); 610 } 611 612 /* return log2 of address range supported by map register */ 613 614 static int 615 pci_maprange(uint64_t mapreg) 616 { 617 int ln2range = 0; 618 619 if (PCI_BAR_IO(mapreg)) 620 ln2range = 32; 621 else 622 switch (mapreg & PCIM_BAR_MEM_TYPE) { 623 case PCIM_BAR_MEM_32: 624 ln2range = 32; 625 break; 626 case PCIM_BAR_MEM_1MB: 627 ln2range = 20; 628 break; 629 case PCIM_BAR_MEM_64: 630 ln2range = 64; 631 break; 632 } 633 return (ln2range); 634 } 635 636 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */ 637 638 static void 639 pci_fixancient(pcicfgregs *cfg) 640 { 641 if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) 642 return; 643 644 /* PCI to PCI bridges use header type 1 */ 645 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI) 646 cfg->hdrtype = PCIM_HDRTYPE_BRIDGE; 647 } 648 649 /* extract header type specific config data */ 650 651 static void 652 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg) 653 { 654 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 655 switch (cfg->hdrtype & PCIM_HDRTYPE) { 656 case PCIM_HDRTYPE_NORMAL: 657 cfg->subvendor = REG(PCIR_SUBVEND_0, 2); 658 cfg->subdevice = REG(PCIR_SUBDEV_0, 2); 659 cfg->mingnt = REG(PCIR_MINGNT, 1); 660 cfg->maxlat = REG(PCIR_MAXLAT, 1); 661 cfg->nummaps = PCI_MAXMAPS_0; 662 break; 663 case PCIM_HDRTYPE_BRIDGE: 664 cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1); 665 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1); 666 cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1); 667 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1); 668 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2); 669 cfg->nummaps = PCI_MAXMAPS_1; 670 break; 671 case PCIM_HDRTYPE_CARDBUS: 672 cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1); 673 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1); 674 cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1); 675 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1); 676 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2); 677 cfg->subvendor = REG(PCIR_SUBVEND_2, 2); 678 cfg->subdevice = REG(PCIR_SUBDEV_2, 2); 679 cfg->nummaps = PCI_MAXMAPS_2; 680 break; 681 } 682 #undef REG 683 } 684 685 /* read configuration header into pcicfgregs structure */ 686 struct pci_devinfo * 687 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f) 688 { 689 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 690 uint16_t vid, did; 691 692 vid = REG(PCIR_VENDOR, 2); 693 if (vid == PCIV_INVALID) 694 return (NULL); 695 696 did = REG(PCIR_DEVICE, 2); 697 698 return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did)); 699 } 700 701 struct pci_devinfo * 702 pci_alloc_devinfo_method(device_t dev) 703 { 704 705 return (malloc(sizeof(struct pci_devinfo), M_DEVBUF, 706 M_WAITOK | M_ZERO)); 707 } 708 709 static struct pci_devinfo * 710 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f, 711 uint16_t vid, uint16_t did) 712 { 713 struct pci_devinfo *devlist_entry; 714 pcicfgregs *cfg; 715 716 devlist_entry = PCI_ALLOC_DEVINFO(bus); 717 718 cfg = &devlist_entry->cfg; 719 720 cfg->domain = d; 721 cfg->bus = b; 722 cfg->slot = s; 723 cfg->func = f; 724 cfg->vendor = vid; 725 cfg->device = did; 726 cfg->cmdreg = REG(PCIR_COMMAND, 2); 727 cfg->statreg = REG(PCIR_STATUS, 2); 728 cfg->baseclass = REG(PCIR_CLASS, 1); 729 cfg->subclass = REG(PCIR_SUBCLASS, 1); 730 cfg->progif = REG(PCIR_PROGIF, 1); 731 cfg->revid = REG(PCIR_REVID, 1); 732 cfg->hdrtype = REG(PCIR_HDRTYPE, 1); 733 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1); 734 cfg->lattimer = REG(PCIR_LATTIMER, 1); 735 cfg->intpin = REG(PCIR_INTPIN, 1); 736 cfg->intline = REG(PCIR_INTLINE, 1); 737 738 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0; 739 cfg->hdrtype &= ~PCIM_MFDEV; 740 STAILQ_INIT(&cfg->maps); 741 742 cfg->iov = NULL; 743 744 pci_fixancient(cfg); 745 pci_hdrtypedata(pcib, b, s, f, cfg); 746 747 if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) 748 pci_read_cap(pcib, cfg); 749 750 STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links); 751 752 devlist_entry->conf.pc_sel.pc_domain = cfg->domain; 753 devlist_entry->conf.pc_sel.pc_bus = cfg->bus; 754 devlist_entry->conf.pc_sel.pc_dev = cfg->slot; 755 devlist_entry->conf.pc_sel.pc_func = cfg->func; 756 devlist_entry->conf.pc_hdr = cfg->hdrtype; 757 758 devlist_entry->conf.pc_subvendor = cfg->subvendor; 759 devlist_entry->conf.pc_subdevice = cfg->subdevice; 760 devlist_entry->conf.pc_vendor = cfg->vendor; 761 devlist_entry->conf.pc_device = cfg->device; 762 763 devlist_entry->conf.pc_class = cfg->baseclass; 764 devlist_entry->conf.pc_subclass = cfg->subclass; 765 devlist_entry->conf.pc_progif = cfg->progif; 766 devlist_entry->conf.pc_revid = cfg->revid; 767 768 pci_numdevs++; 769 pci_generation++; 770 771 return (devlist_entry); 772 } 773 #undef REG 774 775 static void 776 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg) 777 { 778 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \ 779 cfg->ea.ea_location + (n), w) 780 int num_ent; 781 int ptr; 782 int a, b; 783 uint32_t val; 784 int ent_size; 785 uint32_t dw[4]; 786 uint64_t base, max_offset; 787 struct pci_ea_entry *eae; 788 789 if (cfg->ea.ea_location == 0) 790 return; 791 792 STAILQ_INIT(&cfg->ea.ea_entries); 793 794 /* Determine the number of entries */ 795 num_ent = REG(PCIR_EA_NUM_ENT, 2); 796 num_ent &= PCIM_EA_NUM_ENT_MASK; 797 798 /* Find the first entry to care of */ 799 ptr = PCIR_EA_FIRST_ENT; 800 801 /* Skip DWORD 2 for type 1 functions */ 802 if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) 803 ptr += 4; 804 805 for (a = 0; a < num_ent; a++) { 806 eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO); 807 eae->eae_cfg_offset = cfg->ea.ea_location + ptr; 808 809 /* Read a number of dwords in the entry */ 810 val = REG(ptr, 4); 811 ptr += 4; 812 ent_size = (val & PCIM_EA_ES); 813 814 for (b = 0; b < ent_size; b++) { 815 dw[b] = REG(ptr, 4); 816 ptr += 4; 817 } 818 819 eae->eae_flags = val; 820 eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET; 821 822 base = dw[0] & PCIM_EA_FIELD_MASK; 823 max_offset = dw[1] | ~PCIM_EA_FIELD_MASK; 824 b = 2; 825 if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { 826 base |= (uint64_t)dw[b] << 32UL; 827 b++; 828 } 829 if (((dw[1] & PCIM_EA_IS_64) != 0) 830 && (b < ent_size)) { 831 max_offset |= (uint64_t)dw[b] << 32UL; 832 b++; 833 } 834 835 eae->eae_base = base; 836 eae->eae_max_offset = max_offset; 837 838 STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link); 839 840 if (bootverbose) { 841 printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n", 842 cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags, 843 (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset); 844 } 845 } 846 } 847 #undef REG 848 849 static void 850 pci_read_cap(device_t pcib, pcicfgregs *cfg) 851 { 852 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w) 853 #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w) 854 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 855 uint64_t addr; 856 #endif 857 uint32_t val; 858 int ptr, nextptr, ptrptr; 859 860 switch (cfg->hdrtype & PCIM_HDRTYPE) { 861 case PCIM_HDRTYPE_NORMAL: 862 case PCIM_HDRTYPE_BRIDGE: 863 ptrptr = PCIR_CAP_PTR; 864 break; 865 case PCIM_HDRTYPE_CARDBUS: 866 ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */ 867 break; 868 default: 869 return; /* no extended capabilities support */ 870 } 871 nextptr = REG(ptrptr, 1); /* sanity check? */ 872 873 /* 874 * Read capability entries. 875 */ 876 while (nextptr != 0) { 877 /* Sanity check */ 878 if (nextptr > 255) { 879 printf("illegal PCI extended capability offset %d\n", 880 nextptr); 881 return; 882 } 883 /* Find the next entry */ 884 ptr = nextptr; 885 nextptr = REG(ptr + PCICAP_NEXTPTR, 1); 886 887 /* Process this entry */ 888 switch (REG(ptr + PCICAP_ID, 1)) { 889 case PCIY_PMG: /* PCI power management */ 890 if (cfg->pp.pp_cap == 0) { 891 cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2); 892 cfg->pp.pp_status = ptr + PCIR_POWER_STATUS; 893 cfg->pp.pp_bse = ptr + PCIR_POWER_BSE; 894 if ((nextptr - ptr) > PCIR_POWER_DATA) 895 cfg->pp.pp_data = ptr + PCIR_POWER_DATA; 896 } 897 break; 898 case PCIY_HT: /* HyperTransport */ 899 /* Determine HT-specific capability type. */ 900 val = REG(ptr + PCIR_HT_COMMAND, 2); 901 902 if ((val & 0xe000) == PCIM_HTCAP_SLAVE) 903 cfg->ht.ht_slave = ptr; 904 905 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 906 switch (val & PCIM_HTCMD_CAP_MASK) { 907 case PCIM_HTCAP_MSI_MAPPING: 908 if (!(val & PCIM_HTCMD_MSI_FIXED)) { 909 /* Sanity check the mapping window. */ 910 addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 911 4); 912 addr <<= 32; 913 addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 914 4); 915 if (addr != MSI_INTEL_ADDR_BASE) 916 device_printf(pcib, 917 "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n", 918 cfg->domain, cfg->bus, 919 cfg->slot, cfg->func, 920 (long long)addr); 921 } else 922 addr = MSI_INTEL_ADDR_BASE; 923 924 cfg->ht.ht_msimap = ptr; 925 cfg->ht.ht_msictrl = val; 926 cfg->ht.ht_msiaddr = addr; 927 break; 928 } 929 #endif 930 break; 931 case PCIY_MSI: /* PCI MSI */ 932 cfg->msi.msi_location = ptr; 933 cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2); 934 cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl & 935 PCIM_MSICTRL_MMC_MASK)>>1); 936 break; 937 case PCIY_MSIX: /* PCI MSI-X */ 938 cfg->msix.msix_location = ptr; 939 cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2); 940 cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl & 941 PCIM_MSIXCTRL_TABLE_SIZE) + 1; 942 val = REG(ptr + PCIR_MSIX_TABLE, 4); 943 cfg->msix.msix_table_bar = PCIR_BAR(val & 944 PCIM_MSIX_BIR_MASK); 945 cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK; 946 val = REG(ptr + PCIR_MSIX_PBA, 4); 947 cfg->msix.msix_pba_bar = PCIR_BAR(val & 948 PCIM_MSIX_BIR_MASK); 949 cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK; 950 break; 951 case PCIY_VPD: /* PCI Vital Product Data */ 952 cfg->vpd.vpd_reg = ptr; 953 break; 954 case PCIY_SUBVENDOR: 955 /* Should always be true. */ 956 if ((cfg->hdrtype & PCIM_HDRTYPE) == 957 PCIM_HDRTYPE_BRIDGE) { 958 val = REG(ptr + PCIR_SUBVENDCAP_ID, 4); 959 cfg->subvendor = val & 0xffff; 960 cfg->subdevice = val >> 16; 961 } 962 break; 963 case PCIY_PCIX: /* PCI-X */ 964 /* 965 * Assume we have a PCI-X chipset if we have 966 * at least one PCI-PCI bridge with a PCI-X 967 * capability. Note that some systems with 968 * PCI-express or HT chipsets might match on 969 * this check as well. 970 */ 971 if ((cfg->hdrtype & PCIM_HDRTYPE) == 972 PCIM_HDRTYPE_BRIDGE) 973 pcix_chipset = 1; 974 cfg->pcix.pcix_location = ptr; 975 break; 976 case PCIY_EXPRESS: /* PCI-express */ 977 /* 978 * Assume we have a PCI-express chipset if we have 979 * at least one PCI-express device. 980 */ 981 pcie_chipset = 1; 982 cfg->pcie.pcie_location = ptr; 983 val = REG(ptr + PCIER_FLAGS, 2); 984 cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE; 985 break; 986 case PCIY_EA: /* Enhanced Allocation */ 987 cfg->ea.ea_location = ptr; 988 pci_ea_fill_info(pcib, cfg); 989 break; 990 default: 991 break; 992 } 993 } 994 995 #if defined(__powerpc__) 996 /* 997 * Enable the MSI mapping window for all HyperTransport 998 * slaves. PCI-PCI bridges have their windows enabled via 999 * PCIB_MAP_MSI(). 1000 */ 1001 if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 && 1002 !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) { 1003 device_printf(pcib, 1004 "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n", 1005 cfg->domain, cfg->bus, cfg->slot, cfg->func); 1006 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 1007 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl, 1008 2); 1009 } 1010 #endif 1011 /* REG and WREG use carry through to next functions */ 1012 } 1013 1014 /* 1015 * PCI Vital Product Data 1016 */ 1017 1018 #define PCI_VPD_TIMEOUT 1000000 1019 1020 static int 1021 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data) 1022 { 1023 int count = PCI_VPD_TIMEOUT; 1024 1025 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1026 1027 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2); 1028 1029 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) { 1030 if (--count < 0) 1031 return (ENXIO); 1032 DELAY(1); /* limit looping */ 1033 } 1034 *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4)); 1035 1036 return (0); 1037 } 1038 1039 #if 0 1040 static int 1041 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data) 1042 { 1043 int count = PCI_VPD_TIMEOUT; 1044 1045 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1046 1047 WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4); 1048 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2); 1049 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) { 1050 if (--count < 0) 1051 return (ENXIO); 1052 DELAY(1); /* limit looping */ 1053 } 1054 1055 return (0); 1056 } 1057 #endif 1058 1059 #undef PCI_VPD_TIMEOUT 1060 1061 struct vpd_readstate { 1062 device_t pcib; 1063 pcicfgregs *cfg; 1064 uint32_t val; 1065 int bytesinval; 1066 int off; 1067 uint8_t cksum; 1068 }; 1069 1070 /* return 0 and one byte in *data if no read error, -1 else */ 1071 static int 1072 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data) 1073 { 1074 uint32_t reg; 1075 uint8_t byte; 1076 1077 if (vrs->bytesinval == 0) { 1078 if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®)) 1079 return (-1); 1080 vrs->val = le32toh(reg); 1081 vrs->off += 4; 1082 byte = vrs->val & 0xff; 1083 vrs->bytesinval = 3; 1084 } else { 1085 vrs->val = vrs->val >> 8; 1086 byte = vrs->val & 0xff; 1087 vrs->bytesinval--; 1088 } 1089 1090 vrs->cksum += byte; 1091 *data = byte; 1092 return (0); 1093 } 1094 1095 /* return 0 on match, -1 and "unget" byte on no match */ 1096 static int 1097 vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected) 1098 { 1099 uint8_t data; 1100 1101 if (vpd_nextbyte(vrs, &data) != 0) 1102 return (-1); 1103 1104 if (data == expected) 1105 return (0); 1106 1107 vrs->cksum -= data; 1108 vrs->val = (vrs->val << 8) + data; 1109 vrs->bytesinval++; 1110 return (-1); 1111 } 1112 1113 /* return size if tag matches, -1 on no match, -2 on read error */ 1114 static int 1115 vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag) 1116 { 1117 uint8_t byte1, byte2; 1118 1119 if (vpd_expectbyte(vrs, vpd_tag) != 0) 1120 return (-1); 1121 1122 if ((vpd_tag & 0x80) == 0) 1123 return (vpd_tag & 0x07); 1124 1125 if (vpd_nextbyte(vrs, &byte1) != 0) 1126 return (-2); 1127 if (vpd_nextbyte(vrs, &byte2) != 0) 1128 return (-2); 1129 1130 return ((byte2 << 8) + byte1); 1131 } 1132 1133 /* (re)allocate buffer in multiples of 8 elements */ 1134 static void* 1135 alloc_buffer(void* buffer, size_t element_size, int needed) 1136 { 1137 int alloc, new_alloc; 1138 1139 alloc = roundup2(needed, 8); 1140 new_alloc = roundup2(needed + 1, 8); 1141 if (alloc != new_alloc) { 1142 buffer = reallocf(buffer, 1143 new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO); 1144 } 1145 1146 return (buffer); 1147 } 1148 1149 /* read VPD keyword and return element size, return -1 on read error */ 1150 static int 1151 vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2]) 1152 { 1153 uint8_t data; 1154 1155 if (vpd_nextbyte(vrs, &keyword[0]) != 0) 1156 return (-1); 1157 if (vpd_nextbyte(vrs, &keyword[1]) != 0) 1158 return (-1); 1159 if (vpd_nextbyte(vrs, &data) != 0) 1160 return (-1); 1161 1162 return (data); 1163 } 1164 1165 /* read VPD data element of given size into allocated buffer */ 1166 static char * 1167 vpd_read_value(struct vpd_readstate *vrs, int size) 1168 { 1169 int i; 1170 char char1; 1171 char *value; 1172 1173 value = malloc(size + 1, M_DEVBUF, M_WAITOK); 1174 for (i = 0; i < size; i++) { 1175 if (vpd_nextbyte(vrs, &char1) != 0) { 1176 free(value, M_DEVBUF); 1177 return (NULL); 1178 } 1179 value[i] = char1; 1180 } 1181 value[size] = '\0'; 1182 1183 return (value); 1184 } 1185 1186 /* read VPD into *keyword and *value, return length of data element */ 1187 static int 1188 vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen) 1189 { 1190 int len; 1191 1192 len = vpd_read_elem_head(vrs, keyword); 1193 if (len > maxlen) 1194 return (-1); 1195 *value = vpd_read_value(vrs, len); 1196 1197 return (len); 1198 } 1199 1200 /* subtract all data following first byte from checksum of RV element */ 1201 static void 1202 vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len) 1203 { 1204 int i; 1205 uint8_t fixup; 1206 1207 fixup = 0; 1208 for (i = 1; i < len; i++) 1209 fixup += rvstring[i]; 1210 vrs->cksum -= fixup; 1211 } 1212 1213 /* fetch one read-only element and return size of heading + data */ 1214 static size_t 1215 next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize) 1216 { 1217 struct pcicfg_vpd *vpd; 1218 pcicfgregs *cfg; 1219 struct vpd_readonly *vpd_ros; 1220 int len; 1221 1222 cfg = vrs->cfg; 1223 vpd = &cfg->vpd; 1224 1225 if (maxsize < 3) 1226 return (-1); 1227 vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt); 1228 vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt]; 1229 maxsize -= 3; 1230 len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize); 1231 if (vpd_ros->value == NULL) 1232 return (-1); 1233 vpd_ros->len = len; 1234 if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') { 1235 vpd_fixup_cksum(vrs, vpd_ros->value, len); 1236 if (vrs->cksum != 0) { 1237 pci_printf(cfg, 1238 "invalid VPD checksum %#hhx\n", vrs->cksum); 1239 return (-1); 1240 } 1241 } 1242 vpd->vpd_rocnt++; 1243 1244 return (len + 3); 1245 } 1246 1247 /* fetch one writable element and return size of heading + data */ 1248 static size_t 1249 next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize) 1250 { 1251 struct pcicfg_vpd *vpd; 1252 pcicfgregs *cfg; 1253 struct vpd_write *vpd_w; 1254 int len; 1255 1256 cfg = vrs->cfg; 1257 vpd = &cfg->vpd; 1258 1259 if (maxsize < 3) 1260 return (-1); 1261 vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt); 1262 if (vpd->vpd_w == NULL) { 1263 pci_printf(cfg, "out of memory"); 1264 return (-1); 1265 } 1266 vpd_w = &vpd->vpd_w[vpd->vpd_wcnt]; 1267 maxsize -= 3; 1268 vpd_w->start = vrs->off + 3 - vrs->bytesinval; 1269 len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize); 1270 if (vpd_w->value == NULL) 1271 return (-1); 1272 vpd_w->len = len; 1273 vpd->vpd_wcnt++; 1274 1275 return (len + 3); 1276 } 1277 1278 /* free all memory allocated for VPD data */ 1279 static void 1280 vpd_free(struct pcicfg_vpd *vpd) 1281 { 1282 int i; 1283 1284 free(vpd->vpd_ident, M_DEVBUF); 1285 for (i = 0; i < vpd->vpd_rocnt; i++) 1286 free(vpd->vpd_ros[i].value, M_DEVBUF); 1287 free(vpd->vpd_ros, M_DEVBUF); 1288 vpd->vpd_rocnt = 0; 1289 for (i = 0; i < vpd->vpd_wcnt; i++) 1290 free(vpd->vpd_w[i].value, M_DEVBUF); 1291 free(vpd->vpd_w, M_DEVBUF); 1292 vpd->vpd_wcnt = 0; 1293 } 1294 1295 #define VPD_TAG_END ((0x0f << 3) | 0) /* small tag, len == 0 */ 1296 #define VPD_TAG_IDENT (0x02 | 0x80) /* large tag */ 1297 #define VPD_TAG_RO (0x10 | 0x80) /* large tag */ 1298 #define VPD_TAG_RW (0x11 | 0x80) /* large tag */ 1299 1300 static int 1301 pci_parse_vpd(device_t pcib, pcicfgregs *cfg) 1302 { 1303 struct vpd_readstate vrs; 1304 int cksumvalid; 1305 int size, elem_size; 1306 1307 /* init vpd reader */ 1308 vrs.bytesinval = 0; 1309 vrs.off = 0; 1310 vrs.pcib = pcib; 1311 vrs.cfg = cfg; 1312 vrs.cksum = 0; 1313 1314 /* read VPD ident element - mandatory */ 1315 size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT); 1316 if (size <= 0) { 1317 pci_printf(cfg, "no VPD ident found\n"); 1318 return (0); 1319 } 1320 cfg->vpd.vpd_ident = vpd_read_value(&vrs, size); 1321 if (cfg->vpd.vpd_ident == NULL) { 1322 pci_printf(cfg, "error accessing VPD ident data\n"); 1323 return (0); 1324 } 1325 1326 /* read VPD RO elements - mandatory */ 1327 size = vpd_read_tag_size(&vrs, VPD_TAG_RO); 1328 if (size <= 0) { 1329 pci_printf(cfg, "no read-only VPD data found\n"); 1330 return (0); 1331 } 1332 while (size > 0) { 1333 elem_size = next_vpd_ro_elem(&vrs, size); 1334 if (elem_size < 0) { 1335 pci_printf(cfg, "error accessing read-only VPD data\n"); 1336 return (-1); 1337 } 1338 size -= elem_size; 1339 } 1340 cksumvalid = (vrs.cksum == 0); 1341 if (!cksumvalid) 1342 return (-1); 1343 1344 /* read VPD RW elements - optional */ 1345 size = vpd_read_tag_size(&vrs, VPD_TAG_RW); 1346 if (size == -2) 1347 return (-1); 1348 while (size > 0) { 1349 elem_size = next_vpd_rw_elem(&vrs, size); 1350 if (elem_size < 0) { 1351 pci_printf(cfg, "error accessing writeable VPD data\n"); 1352 return (-1); 1353 } 1354 size -= elem_size; 1355 } 1356 1357 /* read empty END tag - mandatory */ 1358 size = vpd_read_tag_size(&vrs, VPD_TAG_END); 1359 if (size != 0) { 1360 pci_printf(cfg, "No valid VPD end tag found\n"); 1361 } 1362 return (0); 1363 } 1364 1365 static void 1366 pci_read_vpd(device_t pcib, pcicfgregs *cfg) 1367 { 1368 int status; 1369 1370 status = pci_parse_vpd(pcib, cfg); 1371 if (status < 0) 1372 vpd_free(&cfg->vpd); 1373 cfg->vpd.vpd_cached = 1; 1374 #undef REG 1375 #undef WREG 1376 } 1377 1378 int 1379 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr) 1380 { 1381 struct pci_devinfo *dinfo = device_get_ivars(child); 1382 pcicfgregs *cfg = &dinfo->cfg; 1383 1384 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1385 pci_read_vpd(device_get_parent(dev), cfg); 1386 1387 *identptr = cfg->vpd.vpd_ident; 1388 1389 if (*identptr == NULL) 1390 return (ENXIO); 1391 1392 return (0); 1393 } 1394 1395 int 1396 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw, 1397 const char **vptr) 1398 { 1399 struct pci_devinfo *dinfo = device_get_ivars(child); 1400 pcicfgregs *cfg = &dinfo->cfg; 1401 int i; 1402 1403 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1404 pci_read_vpd(device_get_parent(dev), cfg); 1405 1406 for (i = 0; i < cfg->vpd.vpd_rocnt; i++) 1407 if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword, 1408 sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) { 1409 *vptr = cfg->vpd.vpd_ros[i].value; 1410 return (0); 1411 } 1412 1413 *vptr = NULL; 1414 return (ENXIO); 1415 } 1416 1417 struct pcicfg_vpd * 1418 pci_fetch_vpd_list(device_t dev) 1419 { 1420 struct pci_devinfo *dinfo = device_get_ivars(dev); 1421 pcicfgregs *cfg = &dinfo->cfg; 1422 1423 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1424 pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg); 1425 return (&cfg->vpd); 1426 } 1427 1428 /* 1429 * Find the requested HyperTransport capability and return the offset 1430 * in configuration space via the pointer provided. The function 1431 * returns 0 on success and an error code otherwise. 1432 */ 1433 int 1434 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg) 1435 { 1436 int ptr, error; 1437 uint16_t val; 1438 1439 error = pci_find_cap(child, PCIY_HT, &ptr); 1440 if (error) 1441 return (error); 1442 1443 /* 1444 * Traverse the capabilities list checking each HT capability 1445 * to see if it matches the requested HT capability. 1446 */ 1447 for (;;) { 1448 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1449 if (capability == PCIM_HTCAP_SLAVE || 1450 capability == PCIM_HTCAP_HOST) 1451 val &= 0xe000; 1452 else 1453 val &= PCIM_HTCMD_CAP_MASK; 1454 if (val == capability) { 1455 if (capreg != NULL) 1456 *capreg = ptr; 1457 return (0); 1458 } 1459 1460 /* Skip to the next HT capability. */ 1461 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1462 break; 1463 } 1464 1465 return (ENOENT); 1466 } 1467 1468 /* 1469 * Find the next requested HyperTransport capability after start and return 1470 * the offset in configuration space via the pointer provided. The function 1471 * returns 0 on success and an error code otherwise. 1472 */ 1473 int 1474 pci_find_next_htcap_method(device_t dev, device_t child, int capability, 1475 int start, int *capreg) 1476 { 1477 int ptr; 1478 uint16_t val; 1479 1480 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT, 1481 ("start capability is not HyperTransport capability")); 1482 ptr = start; 1483 1484 /* 1485 * Traverse the capabilities list checking each HT capability 1486 * to see if it matches the requested HT capability. 1487 */ 1488 for (;;) { 1489 /* Skip to the next HT capability. */ 1490 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1491 break; 1492 1493 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1494 if (capability == PCIM_HTCAP_SLAVE || 1495 capability == PCIM_HTCAP_HOST) 1496 val &= 0xe000; 1497 else 1498 val &= PCIM_HTCMD_CAP_MASK; 1499 if (val == capability) { 1500 if (capreg != NULL) 1501 *capreg = ptr; 1502 return (0); 1503 } 1504 } 1505 1506 return (ENOENT); 1507 } 1508 1509 /* 1510 * Find the requested capability and return the offset in 1511 * configuration space via the pointer provided. The function returns 1512 * 0 on success and an error code otherwise. 1513 */ 1514 int 1515 pci_find_cap_method(device_t dev, device_t child, int capability, 1516 int *capreg) 1517 { 1518 struct pci_devinfo *dinfo = device_get_ivars(child); 1519 pcicfgregs *cfg = &dinfo->cfg; 1520 uint32_t status; 1521 uint8_t ptr; 1522 1523 /* 1524 * Check the CAP_LIST bit of the PCI status register first. 1525 */ 1526 status = pci_read_config(child, PCIR_STATUS, 2); 1527 if (!(status & PCIM_STATUS_CAPPRESENT)) 1528 return (ENXIO); 1529 1530 /* 1531 * Determine the start pointer of the capabilities list. 1532 */ 1533 switch (cfg->hdrtype & PCIM_HDRTYPE) { 1534 case PCIM_HDRTYPE_NORMAL: 1535 case PCIM_HDRTYPE_BRIDGE: 1536 ptr = PCIR_CAP_PTR; 1537 break; 1538 case PCIM_HDRTYPE_CARDBUS: 1539 ptr = PCIR_CAP_PTR_2; 1540 break; 1541 default: 1542 /* XXX: panic? */ 1543 return (ENXIO); /* no extended capabilities support */ 1544 } 1545 ptr = pci_read_config(child, ptr, 1); 1546 1547 /* 1548 * Traverse the capabilities list. 1549 */ 1550 while (ptr != 0) { 1551 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1552 if (capreg != NULL) 1553 *capreg = ptr; 1554 return (0); 1555 } 1556 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1557 } 1558 1559 return (ENOENT); 1560 } 1561 1562 /* 1563 * Find the next requested capability after start and return the offset in 1564 * configuration space via the pointer provided. The function returns 1565 * 0 on success and an error code otherwise. 1566 */ 1567 int 1568 pci_find_next_cap_method(device_t dev, device_t child, int capability, 1569 int start, int *capreg) 1570 { 1571 uint8_t ptr; 1572 1573 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability, 1574 ("start capability is not expected capability")); 1575 1576 ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1); 1577 while (ptr != 0) { 1578 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1579 if (capreg != NULL) 1580 *capreg = ptr; 1581 return (0); 1582 } 1583 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1584 } 1585 1586 return (ENOENT); 1587 } 1588 1589 /* 1590 * Find the requested extended capability and return the offset in 1591 * configuration space via the pointer provided. The function returns 1592 * 0 on success and an error code otherwise. 1593 */ 1594 int 1595 pci_find_extcap_method(device_t dev, device_t child, int capability, 1596 int *capreg) 1597 { 1598 struct pci_devinfo *dinfo = device_get_ivars(child); 1599 pcicfgregs *cfg = &dinfo->cfg; 1600 uint32_t ecap; 1601 uint16_t ptr; 1602 1603 /* Only supported for PCI-express devices. */ 1604 if (cfg->pcie.pcie_location == 0) 1605 return (ENXIO); 1606 1607 ptr = PCIR_EXTCAP; 1608 ecap = pci_read_config(child, ptr, 4); 1609 if (ecap == 0xffffffff || ecap == 0) 1610 return (ENOENT); 1611 for (;;) { 1612 if (PCI_EXTCAP_ID(ecap) == capability) { 1613 if (capreg != NULL) 1614 *capreg = ptr; 1615 return (0); 1616 } 1617 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1618 if (ptr == 0) 1619 break; 1620 ecap = pci_read_config(child, ptr, 4); 1621 } 1622 1623 return (ENOENT); 1624 } 1625 1626 /* 1627 * Find the next requested extended capability after start and return the 1628 * offset in configuration space via the pointer provided. The function 1629 * returns 0 on success and an error code otherwise. 1630 */ 1631 int 1632 pci_find_next_extcap_method(device_t dev, device_t child, int capability, 1633 int start, int *capreg) 1634 { 1635 struct pci_devinfo *dinfo = device_get_ivars(child); 1636 pcicfgregs *cfg = &dinfo->cfg; 1637 uint32_t ecap; 1638 uint16_t ptr; 1639 1640 /* Only supported for PCI-express devices. */ 1641 if (cfg->pcie.pcie_location == 0) 1642 return (ENXIO); 1643 1644 ecap = pci_read_config(child, start, 4); 1645 KASSERT(PCI_EXTCAP_ID(ecap) == capability, 1646 ("start extended capability is not expected capability")); 1647 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1648 while (ptr != 0) { 1649 ecap = pci_read_config(child, ptr, 4); 1650 if (PCI_EXTCAP_ID(ecap) == capability) { 1651 if (capreg != NULL) 1652 *capreg = ptr; 1653 return (0); 1654 } 1655 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1656 } 1657 1658 return (ENOENT); 1659 } 1660 1661 /* 1662 * Support for MSI-X message interrupts. 1663 */ 1664 static void 1665 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data) 1666 { 1667 struct pci_devinfo *dinfo = device_get_ivars(dev); 1668 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1669 uint32_t offset; 1670 1671 KASSERT(msix->msix_table_len > index, ("bogus index")); 1672 offset = msix->msix_table_offset + index * 16; 1673 bus_write_4(msix->msix_table_res, offset, address & 0xffffffff); 1674 bus_write_4(msix->msix_table_res, offset + 4, address >> 32); 1675 bus_write_4(msix->msix_table_res, offset + 8, data); 1676 } 1677 1678 void 1679 pci_enable_msix_method(device_t dev, device_t child, u_int index, 1680 uint64_t address, uint32_t data) 1681 { 1682 1683 if (pci_msix_rewrite_table) { 1684 struct pci_devinfo *dinfo = device_get_ivars(child); 1685 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1686 1687 /* 1688 * Some VM hosts require MSIX to be disabled in the 1689 * control register before updating the MSIX table 1690 * entries are allowed. It is not enough to only 1691 * disable MSIX while updating a single entry. MSIX 1692 * must be disabled while updating all entries in the 1693 * table. 1694 */ 1695 pci_write_config(child, 1696 msix->msix_location + PCIR_MSIX_CTRL, 1697 msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2); 1698 pci_resume_msix(child); 1699 } else 1700 pci_write_msix_entry(child, index, address, data); 1701 1702 /* Enable MSI -> HT mapping. */ 1703 pci_ht_map_msi(child, address); 1704 } 1705 1706 void 1707 pci_mask_msix(device_t dev, u_int index) 1708 { 1709 struct pci_devinfo *dinfo = device_get_ivars(dev); 1710 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1711 uint32_t offset, val; 1712 1713 KASSERT(msix->msix_msgnum > index, ("bogus index")); 1714 offset = msix->msix_table_offset + index * 16 + 12; 1715 val = bus_read_4(msix->msix_table_res, offset); 1716 val |= PCIM_MSIX_VCTRL_MASK; 1717 1718 /* 1719 * Some devices (e.g. Samsung PM961) do not support reads of this 1720 * register, so always write the new value. 1721 */ 1722 bus_write_4(msix->msix_table_res, offset, val); 1723 } 1724 1725 void 1726 pci_unmask_msix(device_t dev, u_int index) 1727 { 1728 struct pci_devinfo *dinfo = device_get_ivars(dev); 1729 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1730 uint32_t offset, val; 1731 1732 KASSERT(msix->msix_table_len > index, ("bogus index")); 1733 offset = msix->msix_table_offset + index * 16 + 12; 1734 val = bus_read_4(msix->msix_table_res, offset); 1735 val &= ~PCIM_MSIX_VCTRL_MASK; 1736 1737 /* 1738 * Some devices (e.g. Samsung PM961) do not support reads of this 1739 * register, so always write the new value. 1740 */ 1741 bus_write_4(msix->msix_table_res, offset, val); 1742 } 1743 1744 int 1745 pci_pending_msix(device_t dev, u_int index) 1746 { 1747 struct pci_devinfo *dinfo = device_get_ivars(dev); 1748 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1749 uint32_t offset, bit; 1750 1751 KASSERT(msix->msix_table_len > index, ("bogus index")); 1752 offset = msix->msix_pba_offset + (index / 32) * 4; 1753 bit = 1 << index % 32; 1754 return (bus_read_4(msix->msix_pba_res, offset) & bit); 1755 } 1756 1757 /* 1758 * Restore MSI-X registers and table during resume. If MSI-X is 1759 * enabled then walk the virtual table to restore the actual MSI-X 1760 * table. 1761 */ 1762 static void 1763 pci_resume_msix(device_t dev) 1764 { 1765 struct pci_devinfo *dinfo = device_get_ivars(dev); 1766 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1767 struct msix_table_entry *mte; 1768 struct msix_vector *mv; 1769 int i; 1770 1771 if (msix->msix_alloc > 0) { 1772 /* First, mask all vectors. */ 1773 for (i = 0; i < msix->msix_msgnum; i++) 1774 pci_mask_msix(dev, i); 1775 1776 /* Second, program any messages with at least one handler. */ 1777 for (i = 0; i < msix->msix_table_len; i++) { 1778 mte = &msix->msix_table[i]; 1779 if (mte->mte_vector == 0 || mte->mte_handlers == 0) 1780 continue; 1781 mv = &msix->msix_vectors[mte->mte_vector - 1]; 1782 pci_write_msix_entry(dev, i, mv->mv_address, 1783 mv->mv_data); 1784 pci_unmask_msix(dev, i); 1785 } 1786 } 1787 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL, 1788 msix->msix_ctrl, 2); 1789 } 1790 1791 /* 1792 * Attempt to allocate *count MSI-X messages. The actual number allocated is 1793 * returned in *count. After this function returns, each message will be 1794 * available to the driver as SYS_RES_IRQ resources starting at rid 1. 1795 */ 1796 int 1797 pci_alloc_msix_method(device_t dev, device_t child, int *count) 1798 { 1799 struct pci_devinfo *dinfo = device_get_ivars(child); 1800 pcicfgregs *cfg = &dinfo->cfg; 1801 struct resource_list_entry *rle; 1802 int actual, error, i, irq, max; 1803 1804 /* Don't let count == 0 get us into trouble. */ 1805 if (*count == 0) 1806 return (EINVAL); 1807 1808 /* If rid 0 is allocated, then fail. */ 1809 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 1810 if (rle != NULL && rle->res != NULL) 1811 return (ENXIO); 1812 1813 /* Already have allocated messages? */ 1814 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 1815 return (ENXIO); 1816 1817 /* If MSI-X is blacklisted for this system, fail. */ 1818 if (pci_msix_blacklisted()) 1819 return (ENXIO); 1820 1821 /* MSI-X capability present? */ 1822 if (cfg->msix.msix_location == 0 || !pci_do_msix) 1823 return (ENODEV); 1824 1825 /* Make sure the appropriate BARs are mapped. */ 1826 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1827 cfg->msix.msix_table_bar); 1828 if (rle == NULL || rle->res == NULL || 1829 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1830 return (ENXIO); 1831 cfg->msix.msix_table_res = rle->res; 1832 if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) { 1833 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1834 cfg->msix.msix_pba_bar); 1835 if (rle == NULL || rle->res == NULL || 1836 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1837 return (ENXIO); 1838 } 1839 cfg->msix.msix_pba_res = rle->res; 1840 1841 if (bootverbose) 1842 device_printf(child, 1843 "attempting to allocate %d MSI-X vectors (%d supported)\n", 1844 *count, cfg->msix.msix_msgnum); 1845 max = min(*count, cfg->msix.msix_msgnum); 1846 for (i = 0; i < max; i++) { 1847 /* Allocate a message. */ 1848 error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq); 1849 if (error) { 1850 if (i == 0) 1851 return (error); 1852 break; 1853 } 1854 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 1855 irq, 1); 1856 } 1857 actual = i; 1858 1859 if (bootverbose) { 1860 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1); 1861 if (actual == 1) 1862 device_printf(child, "using IRQ %ju for MSI-X\n", 1863 rle->start); 1864 else { 1865 int run; 1866 1867 /* 1868 * Be fancy and try to print contiguous runs of 1869 * IRQ values as ranges. 'irq' is the previous IRQ. 1870 * 'run' is true if we are in a range. 1871 */ 1872 device_printf(child, "using IRQs %ju", rle->start); 1873 irq = rle->start; 1874 run = 0; 1875 for (i = 1; i < actual; i++) { 1876 rle = resource_list_find(&dinfo->resources, 1877 SYS_RES_IRQ, i + 1); 1878 1879 /* Still in a run? */ 1880 if (rle->start == irq + 1) { 1881 run = 1; 1882 irq++; 1883 continue; 1884 } 1885 1886 /* Finish previous range. */ 1887 if (run) { 1888 printf("-%d", irq); 1889 run = 0; 1890 } 1891 1892 /* Start new range. */ 1893 printf(",%ju", rle->start); 1894 irq = rle->start; 1895 } 1896 1897 /* Unfinished range? */ 1898 if (run) 1899 printf("-%d", irq); 1900 printf(" for MSI-X\n"); 1901 } 1902 } 1903 1904 /* Mask all vectors. */ 1905 for (i = 0; i < cfg->msix.msix_msgnum; i++) 1906 pci_mask_msix(child, i); 1907 1908 /* Allocate and initialize vector data and virtual table. */ 1909 cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual, 1910 M_DEVBUF, M_WAITOK | M_ZERO); 1911 cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual, 1912 M_DEVBUF, M_WAITOK | M_ZERO); 1913 for (i = 0; i < actual; i++) { 1914 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1915 cfg->msix.msix_vectors[i].mv_irq = rle->start; 1916 cfg->msix.msix_table[i].mte_vector = i + 1; 1917 } 1918 1919 /* Update control register to enable MSI-X. */ 1920 cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE; 1921 pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL, 1922 cfg->msix.msix_ctrl, 2); 1923 1924 /* Update counts of alloc'd messages. */ 1925 cfg->msix.msix_alloc = actual; 1926 cfg->msix.msix_table_len = actual; 1927 *count = actual; 1928 return (0); 1929 } 1930 1931 /* 1932 * By default, pci_alloc_msix() will assign the allocated IRQ 1933 * resources consecutively to the first N messages in the MSI-X table. 1934 * However, device drivers may want to use different layouts if they 1935 * either receive fewer messages than they asked for, or they wish to 1936 * populate the MSI-X table sparsely. This method allows the driver 1937 * to specify what layout it wants. It must be called after a 1938 * successful pci_alloc_msix() but before any of the associated 1939 * SYS_RES_IRQ resources are allocated via bus_alloc_resource(). 1940 * 1941 * The 'vectors' array contains 'count' message vectors. The array 1942 * maps directly to the MSI-X table in that index 0 in the array 1943 * specifies the vector for the first message in the MSI-X table, etc. 1944 * The vector value in each array index can either be 0 to indicate 1945 * that no vector should be assigned to a message slot, or it can be a 1946 * number from 1 to N (where N is the count returned from a 1947 * succcessful call to pci_alloc_msix()) to indicate which message 1948 * vector (IRQ) to be used for the corresponding message. 1949 * 1950 * On successful return, each message with a non-zero vector will have 1951 * an associated SYS_RES_IRQ whose rid is equal to the array index + 1952 * 1. Additionally, if any of the IRQs allocated via the previous 1953 * call to pci_alloc_msix() are not used in the mapping, those IRQs 1954 * will be freed back to the system automatically. 1955 * 1956 * For example, suppose a driver has a MSI-X table with 6 messages and 1957 * asks for 6 messages, but pci_alloc_msix() only returns a count of 1958 * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and 1959 * C. After the call to pci_alloc_msix(), the device will be setup to 1960 * have an MSI-X table of ABC--- (where - means no vector assigned). 1961 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 }, 1962 * then the MSI-X table will look like A-AB-B, and the 'C' vector will 1963 * be freed back to the system. This device will also have valid 1964 * SYS_RES_IRQ rids of 1, 3, 4, and 6. 1965 * 1966 * In any case, the SYS_RES_IRQ rid X will always map to the message 1967 * at MSI-X table index X - 1 and will only be valid if a vector is 1968 * assigned to that table entry. 1969 */ 1970 int 1971 pci_remap_msix_method(device_t dev, device_t child, int count, 1972 const u_int *vectors) 1973 { 1974 struct pci_devinfo *dinfo = device_get_ivars(child); 1975 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1976 struct resource_list_entry *rle; 1977 int i, irq, j, *used; 1978 1979 /* 1980 * Have to have at least one message in the table but the 1981 * table can't be bigger than the actual MSI-X table in the 1982 * device. 1983 */ 1984 if (count == 0 || count > msix->msix_msgnum) 1985 return (EINVAL); 1986 1987 /* Sanity check the vectors. */ 1988 for (i = 0; i < count; i++) 1989 if (vectors[i] > msix->msix_alloc) 1990 return (EINVAL); 1991 1992 /* 1993 * Make sure there aren't any holes in the vectors to be used. 1994 * It's a big pain to support it, and it doesn't really make 1995 * sense anyway. Also, at least one vector must be used. 1996 */ 1997 used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK | 1998 M_ZERO); 1999 for (i = 0; i < count; i++) 2000 if (vectors[i] != 0) 2001 used[vectors[i] - 1] = 1; 2002 for (i = 0; i < msix->msix_alloc - 1; i++) 2003 if (used[i] == 0 && used[i + 1] == 1) { 2004 free(used, M_DEVBUF); 2005 return (EINVAL); 2006 } 2007 if (used[0] != 1) { 2008 free(used, M_DEVBUF); 2009 return (EINVAL); 2010 } 2011 2012 /* Make sure none of the resources are allocated. */ 2013 for (i = 0; i < msix->msix_table_len; i++) { 2014 if (msix->msix_table[i].mte_vector == 0) 2015 continue; 2016 if (msix->msix_table[i].mte_handlers > 0) { 2017 free(used, M_DEVBUF); 2018 return (EBUSY); 2019 } 2020 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2021 KASSERT(rle != NULL, ("missing resource")); 2022 if (rle->res != NULL) { 2023 free(used, M_DEVBUF); 2024 return (EBUSY); 2025 } 2026 } 2027 2028 /* Free the existing resource list entries. */ 2029 for (i = 0; i < msix->msix_table_len; i++) { 2030 if (msix->msix_table[i].mte_vector == 0) 2031 continue; 2032 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2033 } 2034 2035 /* 2036 * Build the new virtual table keeping track of which vectors are 2037 * used. 2038 */ 2039 free(msix->msix_table, M_DEVBUF); 2040 msix->msix_table = malloc(sizeof(struct msix_table_entry) * count, 2041 M_DEVBUF, M_WAITOK | M_ZERO); 2042 for (i = 0; i < count; i++) 2043 msix->msix_table[i].mte_vector = vectors[i]; 2044 msix->msix_table_len = count; 2045 2046 /* Free any unused IRQs and resize the vectors array if necessary. */ 2047 j = msix->msix_alloc - 1; 2048 if (used[j] == 0) { 2049 struct msix_vector *vec; 2050 2051 while (used[j] == 0) { 2052 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2053 msix->msix_vectors[j].mv_irq); 2054 j--; 2055 } 2056 vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF, 2057 M_WAITOK); 2058 bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) * 2059 (j + 1)); 2060 free(msix->msix_vectors, M_DEVBUF); 2061 msix->msix_vectors = vec; 2062 msix->msix_alloc = j + 1; 2063 } 2064 free(used, M_DEVBUF); 2065 2066 /* Map the IRQs onto the rids. */ 2067 for (i = 0; i < count; i++) { 2068 if (vectors[i] == 0) 2069 continue; 2070 irq = msix->msix_vectors[vectors[i] - 1].mv_irq; 2071 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 2072 irq, 1); 2073 } 2074 2075 if (bootverbose) { 2076 device_printf(child, "Remapped MSI-X IRQs as: "); 2077 for (i = 0; i < count; i++) { 2078 if (i != 0) 2079 printf(", "); 2080 if (vectors[i] == 0) 2081 printf("---"); 2082 else 2083 printf("%d", 2084 msix->msix_vectors[vectors[i] - 1].mv_irq); 2085 } 2086 printf("\n"); 2087 } 2088 2089 return (0); 2090 } 2091 2092 static int 2093 pci_release_msix(device_t dev, device_t child) 2094 { 2095 struct pci_devinfo *dinfo = device_get_ivars(child); 2096 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2097 struct resource_list_entry *rle; 2098 int i; 2099 2100 /* Do we have any messages to release? */ 2101 if (msix->msix_alloc == 0) 2102 return (ENODEV); 2103 2104 /* Make sure none of the resources are allocated. */ 2105 for (i = 0; i < msix->msix_table_len; i++) { 2106 if (msix->msix_table[i].mte_vector == 0) 2107 continue; 2108 if (msix->msix_table[i].mte_handlers > 0) 2109 return (EBUSY); 2110 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2111 KASSERT(rle != NULL, ("missing resource")); 2112 if (rle->res != NULL) 2113 return (EBUSY); 2114 } 2115 2116 /* Update control register to disable MSI-X. */ 2117 msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE; 2118 pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, 2119 msix->msix_ctrl, 2); 2120 2121 /* Free the resource list entries. */ 2122 for (i = 0; i < msix->msix_table_len; i++) { 2123 if (msix->msix_table[i].mte_vector == 0) 2124 continue; 2125 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2126 } 2127 free(msix->msix_table, M_DEVBUF); 2128 msix->msix_table_len = 0; 2129 2130 /* Release the IRQs. */ 2131 for (i = 0; i < msix->msix_alloc; i++) 2132 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2133 msix->msix_vectors[i].mv_irq); 2134 free(msix->msix_vectors, M_DEVBUF); 2135 msix->msix_alloc = 0; 2136 return (0); 2137 } 2138 2139 /* 2140 * Return the max supported MSI-X messages this device supports. 2141 * Basically, assuming the MD code can alloc messages, this function 2142 * should return the maximum value that pci_alloc_msix() can return. 2143 * Thus, it is subject to the tunables, etc. 2144 */ 2145 int 2146 pci_msix_count_method(device_t dev, device_t child) 2147 { 2148 struct pci_devinfo *dinfo = device_get_ivars(child); 2149 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2150 2151 if (pci_do_msix && msix->msix_location != 0) 2152 return (msix->msix_msgnum); 2153 return (0); 2154 } 2155 2156 int 2157 pci_msix_pba_bar_method(device_t dev, device_t child) 2158 { 2159 struct pci_devinfo *dinfo = device_get_ivars(child); 2160 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2161 2162 if (pci_do_msix && msix->msix_location != 0) 2163 return (msix->msix_pba_bar); 2164 return (-1); 2165 } 2166 2167 int 2168 pci_msix_table_bar_method(device_t dev, device_t child) 2169 { 2170 struct pci_devinfo *dinfo = device_get_ivars(child); 2171 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2172 2173 if (pci_do_msix && msix->msix_location != 0) 2174 return (msix->msix_table_bar); 2175 return (-1); 2176 } 2177 2178 /* 2179 * HyperTransport MSI mapping control 2180 */ 2181 void 2182 pci_ht_map_msi(device_t dev, uint64_t addr) 2183 { 2184 struct pci_devinfo *dinfo = device_get_ivars(dev); 2185 struct pcicfg_ht *ht = &dinfo->cfg.ht; 2186 2187 if (!ht->ht_msimap) 2188 return; 2189 2190 if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) && 2191 ht->ht_msiaddr >> 20 == addr >> 20) { 2192 /* Enable MSI -> HT mapping. */ 2193 ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 2194 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2195 ht->ht_msictrl, 2); 2196 } 2197 2198 if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) { 2199 /* Disable MSI -> HT mapping. */ 2200 ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE; 2201 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2202 ht->ht_msictrl, 2); 2203 } 2204 } 2205 2206 int 2207 pci_get_relaxed_ordering_enabled(device_t dev) 2208 { 2209 struct pci_devinfo *dinfo = device_get_ivars(dev); 2210 int cap; 2211 uint16_t val; 2212 2213 cap = dinfo->cfg.pcie.pcie_location; 2214 if (cap == 0) 2215 return (0); 2216 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2217 val &= PCIEM_CTL_RELAXED_ORD_ENABLE; 2218 return (val != 0); 2219 } 2220 2221 int 2222 pci_get_max_payload(device_t dev) 2223 { 2224 struct pci_devinfo *dinfo = device_get_ivars(dev); 2225 int cap; 2226 uint16_t val; 2227 2228 cap = dinfo->cfg.pcie.pcie_location; 2229 if (cap == 0) 2230 return (0); 2231 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2232 val &= PCIEM_CTL_MAX_PAYLOAD; 2233 val >>= 5; 2234 return (1 << (val + 7)); 2235 } 2236 2237 int 2238 pci_get_max_read_req(device_t dev) 2239 { 2240 struct pci_devinfo *dinfo = device_get_ivars(dev); 2241 int cap; 2242 uint16_t val; 2243 2244 cap = dinfo->cfg.pcie.pcie_location; 2245 if (cap == 0) 2246 return (0); 2247 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2248 val &= PCIEM_CTL_MAX_READ_REQUEST; 2249 val >>= 12; 2250 return (1 << (val + 7)); 2251 } 2252 2253 int 2254 pci_set_max_read_req(device_t dev, int size) 2255 { 2256 struct pci_devinfo *dinfo = device_get_ivars(dev); 2257 int cap; 2258 uint16_t val; 2259 2260 cap = dinfo->cfg.pcie.pcie_location; 2261 if (cap == 0) 2262 return (0); 2263 if (size < 128) 2264 size = 128; 2265 if (size > 4096) 2266 size = 4096; 2267 size = (1 << (fls(size) - 1)); 2268 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2269 val &= ~PCIEM_CTL_MAX_READ_REQUEST; 2270 val |= (fls(size) - 8) << 12; 2271 pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2); 2272 return (size); 2273 } 2274 2275 uint32_t 2276 pcie_read_config(device_t dev, int reg, int width) 2277 { 2278 struct pci_devinfo *dinfo = device_get_ivars(dev); 2279 int cap; 2280 2281 cap = dinfo->cfg.pcie.pcie_location; 2282 if (cap == 0) { 2283 if (width == 2) 2284 return (0xffff); 2285 return (0xffffffff); 2286 } 2287 2288 return (pci_read_config(dev, cap + reg, width)); 2289 } 2290 2291 void 2292 pcie_write_config(device_t dev, int reg, uint32_t value, int width) 2293 { 2294 struct pci_devinfo *dinfo = device_get_ivars(dev); 2295 int cap; 2296 2297 cap = dinfo->cfg.pcie.pcie_location; 2298 if (cap == 0) 2299 return; 2300 pci_write_config(dev, cap + reg, value, width); 2301 } 2302 2303 /* 2304 * Adjusts a PCI-e capability register by clearing the bits in mask 2305 * and setting the bits in (value & mask). Bits not set in mask are 2306 * not adjusted. 2307 * 2308 * Returns the old value on success or all ones on failure. 2309 */ 2310 uint32_t 2311 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value, 2312 int width) 2313 { 2314 struct pci_devinfo *dinfo = device_get_ivars(dev); 2315 uint32_t old, new; 2316 int cap; 2317 2318 cap = dinfo->cfg.pcie.pcie_location; 2319 if (cap == 0) { 2320 if (width == 2) 2321 return (0xffff); 2322 return (0xffffffff); 2323 } 2324 2325 old = pci_read_config(dev, cap + reg, width); 2326 new = old & ~mask; 2327 new |= (value & mask); 2328 pci_write_config(dev, cap + reg, new, width); 2329 return (old); 2330 } 2331 2332 /* 2333 * Support for MSI message signalled interrupts. 2334 */ 2335 void 2336 pci_enable_msi_method(device_t dev, device_t child, uint64_t address, 2337 uint16_t data) 2338 { 2339 struct pci_devinfo *dinfo = device_get_ivars(child); 2340 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2341 2342 /* Write data and address values. */ 2343 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR, 2344 address & 0xffffffff, 4); 2345 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2346 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH, 2347 address >> 32, 4); 2348 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT, 2349 data, 2); 2350 } else 2351 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data, 2352 2); 2353 2354 /* Enable MSI in the control register. */ 2355 msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE; 2356 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2357 msi->msi_ctrl, 2); 2358 2359 /* Enable MSI -> HT mapping. */ 2360 pci_ht_map_msi(child, address); 2361 } 2362 2363 void 2364 pci_disable_msi_method(device_t dev, device_t child) 2365 { 2366 struct pci_devinfo *dinfo = device_get_ivars(child); 2367 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2368 2369 /* Disable MSI -> HT mapping. */ 2370 pci_ht_map_msi(child, 0); 2371 2372 /* Disable MSI in the control register. */ 2373 msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE; 2374 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2375 msi->msi_ctrl, 2); 2376 } 2377 2378 /* 2379 * Restore MSI registers during resume. If MSI is enabled then 2380 * restore the data and address registers in addition to the control 2381 * register. 2382 */ 2383 static void 2384 pci_resume_msi(device_t dev) 2385 { 2386 struct pci_devinfo *dinfo = device_get_ivars(dev); 2387 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2388 uint64_t address; 2389 uint16_t data; 2390 2391 if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) { 2392 address = msi->msi_addr; 2393 data = msi->msi_data; 2394 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR, 2395 address & 0xffffffff, 4); 2396 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2397 pci_write_config(dev, msi->msi_location + 2398 PCIR_MSI_ADDR_HIGH, address >> 32, 4); 2399 pci_write_config(dev, msi->msi_location + 2400 PCIR_MSI_DATA_64BIT, data, 2); 2401 } else 2402 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, 2403 data, 2); 2404 } 2405 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2406 2); 2407 } 2408 2409 static int 2410 pci_remap_intr_method(device_t bus, device_t dev, u_int irq) 2411 { 2412 struct pci_devinfo *dinfo = device_get_ivars(dev); 2413 pcicfgregs *cfg = &dinfo->cfg; 2414 struct resource_list_entry *rle; 2415 struct msix_table_entry *mte; 2416 struct msix_vector *mv; 2417 uint64_t addr; 2418 uint32_t data; 2419 int error, i, j; 2420 2421 /* 2422 * Handle MSI first. We try to find this IRQ among our list 2423 * of MSI IRQs. If we find it, we request updated address and 2424 * data registers and apply the results. 2425 */ 2426 if (cfg->msi.msi_alloc > 0) { 2427 /* If we don't have any active handlers, nothing to do. */ 2428 if (cfg->msi.msi_handlers == 0) 2429 return (0); 2430 for (i = 0; i < cfg->msi.msi_alloc; i++) { 2431 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 2432 i + 1); 2433 if (rle->start == irq) { 2434 error = PCIB_MAP_MSI(device_get_parent(bus), 2435 dev, irq, &addr, &data); 2436 if (error) 2437 return (error); 2438 pci_disable_msi(dev); 2439 dinfo->cfg.msi.msi_addr = addr; 2440 dinfo->cfg.msi.msi_data = data; 2441 pci_enable_msi(dev, addr, data); 2442 return (0); 2443 } 2444 } 2445 return (ENOENT); 2446 } 2447 2448 /* 2449 * For MSI-X, we check to see if we have this IRQ. If we do, 2450 * we request the updated mapping info. If that works, we go 2451 * through all the slots that use this IRQ and update them. 2452 */ 2453 if (cfg->msix.msix_alloc > 0) { 2454 bool found = false; 2455 2456 for (i = 0; i < cfg->msix.msix_alloc; i++) { 2457 mv = &cfg->msix.msix_vectors[i]; 2458 if (mv->mv_irq == irq) { 2459 error = PCIB_MAP_MSI(device_get_parent(bus), 2460 dev, irq, &addr, &data); 2461 if (error) 2462 return (error); 2463 mv->mv_address = addr; 2464 mv->mv_data = data; 2465 for (j = 0; j < cfg->msix.msix_table_len; j++) { 2466 mte = &cfg->msix.msix_table[j]; 2467 if (mte->mte_vector != i + 1) 2468 continue; 2469 if (mte->mte_handlers == 0) 2470 continue; 2471 pci_mask_msix(dev, j); 2472 pci_enable_msix(dev, j, addr, data); 2473 pci_unmask_msix(dev, j); 2474 } 2475 found = true; 2476 } 2477 } 2478 return (found ? 0 : ENOENT); 2479 } 2480 2481 return (ENOENT); 2482 } 2483 2484 /* 2485 * Returns true if the specified device is blacklisted because MSI 2486 * doesn't work. 2487 */ 2488 int 2489 pci_msi_device_blacklisted(device_t dev) 2490 { 2491 2492 if (!pci_honor_msi_blacklist) 2493 return (0); 2494 2495 return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI)); 2496 } 2497 2498 /* 2499 * Determine if MSI is blacklisted globally on this system. Currently, 2500 * we just check for blacklisted chipsets as represented by the 2501 * host-PCI bridge at device 0:0:0. In the future, it may become 2502 * necessary to check other system attributes, such as the kenv values 2503 * that give the motherboard manufacturer and model number. 2504 */ 2505 static int 2506 pci_msi_blacklisted(void) 2507 { 2508 device_t dev; 2509 2510 if (!pci_honor_msi_blacklist) 2511 return (0); 2512 2513 /* Blacklist all non-PCI-express and non-PCI-X chipsets. */ 2514 if (!(pcie_chipset || pcix_chipset)) { 2515 if (vm_guest != VM_GUEST_NO) { 2516 /* 2517 * Whitelist older chipsets in virtual 2518 * machines known to support MSI. 2519 */ 2520 dev = pci_find_bsf(0, 0, 0); 2521 if (dev != NULL) 2522 return (!pci_has_quirk(pci_get_devid(dev), 2523 PCI_QUIRK_ENABLE_MSI_VM)); 2524 } 2525 return (1); 2526 } 2527 2528 dev = pci_find_bsf(0, 0, 0); 2529 if (dev != NULL) 2530 return (pci_msi_device_blacklisted(dev)); 2531 return (0); 2532 } 2533 2534 /* 2535 * Returns true if the specified device is blacklisted because MSI-X 2536 * doesn't work. Note that this assumes that if MSI doesn't work, 2537 * MSI-X doesn't either. 2538 */ 2539 int 2540 pci_msix_device_blacklisted(device_t dev) 2541 { 2542 2543 if (!pci_honor_msi_blacklist) 2544 return (0); 2545 2546 if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) 2547 return (1); 2548 2549 return (pci_msi_device_blacklisted(dev)); 2550 } 2551 2552 /* 2553 * Determine if MSI-X is blacklisted globally on this system. If MSI 2554 * is blacklisted, assume that MSI-X is as well. Check for additional 2555 * chipsets where MSI works but MSI-X does not. 2556 */ 2557 static int 2558 pci_msix_blacklisted(void) 2559 { 2560 device_t dev; 2561 2562 if (!pci_honor_msi_blacklist) 2563 return (0); 2564 2565 dev = pci_find_bsf(0, 0, 0); 2566 if (dev != NULL && pci_has_quirk(pci_get_devid(dev), 2567 PCI_QUIRK_DISABLE_MSIX)) 2568 return (1); 2569 2570 return (pci_msi_blacklisted()); 2571 } 2572 2573 /* 2574 * Attempt to allocate *count MSI messages. The actual number allocated is 2575 * returned in *count. After this function returns, each message will be 2576 * available to the driver as SYS_RES_IRQ resources starting at a rid 1. 2577 */ 2578 int 2579 pci_alloc_msi_method(device_t dev, device_t child, int *count) 2580 { 2581 struct pci_devinfo *dinfo = device_get_ivars(child); 2582 pcicfgregs *cfg = &dinfo->cfg; 2583 struct resource_list_entry *rle; 2584 int actual, error, i, irqs[32]; 2585 uint16_t ctrl; 2586 2587 /* Don't let count == 0 get us into trouble. */ 2588 if (*count == 0) 2589 return (EINVAL); 2590 2591 /* If rid 0 is allocated, then fail. */ 2592 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 2593 if (rle != NULL && rle->res != NULL) 2594 return (ENXIO); 2595 2596 /* Already have allocated messages? */ 2597 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 2598 return (ENXIO); 2599 2600 /* If MSI is blacklisted for this system, fail. */ 2601 if (pci_msi_blacklisted()) 2602 return (ENXIO); 2603 2604 /* MSI capability present? */ 2605 if (cfg->msi.msi_location == 0 || !pci_do_msi) 2606 return (ENODEV); 2607 2608 if (bootverbose) 2609 device_printf(child, 2610 "attempting to allocate %d MSI vectors (%d supported)\n", 2611 *count, cfg->msi.msi_msgnum); 2612 2613 /* Don't ask for more than the device supports. */ 2614 actual = min(*count, cfg->msi.msi_msgnum); 2615 2616 /* Don't ask for more than 32 messages. */ 2617 actual = min(actual, 32); 2618 2619 /* MSI requires power of 2 number of messages. */ 2620 if (!powerof2(actual)) 2621 return (EINVAL); 2622 2623 for (;;) { 2624 /* Try to allocate N messages. */ 2625 error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual, 2626 actual, irqs); 2627 if (error == 0) 2628 break; 2629 if (actual == 1) 2630 return (error); 2631 2632 /* Try N / 2. */ 2633 actual >>= 1; 2634 } 2635 2636 /* 2637 * We now have N actual messages mapped onto SYS_RES_IRQ 2638 * resources in the irqs[] array, so add new resources 2639 * starting at rid 1. 2640 */ 2641 for (i = 0; i < actual; i++) 2642 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, 2643 irqs[i], irqs[i], 1); 2644 2645 if (bootverbose) { 2646 if (actual == 1) 2647 device_printf(child, "using IRQ %d for MSI\n", irqs[0]); 2648 else { 2649 int run; 2650 2651 /* 2652 * Be fancy and try to print contiguous runs 2653 * of IRQ values as ranges. 'run' is true if 2654 * we are in a range. 2655 */ 2656 device_printf(child, "using IRQs %d", irqs[0]); 2657 run = 0; 2658 for (i = 1; i < actual; i++) { 2659 /* Still in a run? */ 2660 if (irqs[i] == irqs[i - 1] + 1) { 2661 run = 1; 2662 continue; 2663 } 2664 2665 /* Finish previous range. */ 2666 if (run) { 2667 printf("-%d", irqs[i - 1]); 2668 run = 0; 2669 } 2670 2671 /* Start new range. */ 2672 printf(",%d", irqs[i]); 2673 } 2674 2675 /* Unfinished range? */ 2676 if (run) 2677 printf("-%d", irqs[actual - 1]); 2678 printf(" for MSI\n"); 2679 } 2680 } 2681 2682 /* Update control register with actual count. */ 2683 ctrl = cfg->msi.msi_ctrl; 2684 ctrl &= ~PCIM_MSICTRL_MME_MASK; 2685 ctrl |= (ffs(actual) - 1) << 4; 2686 cfg->msi.msi_ctrl = ctrl; 2687 pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2); 2688 2689 /* Update counts of alloc'd messages. */ 2690 cfg->msi.msi_alloc = actual; 2691 cfg->msi.msi_handlers = 0; 2692 *count = actual; 2693 return (0); 2694 } 2695 2696 /* Release the MSI messages associated with this device. */ 2697 int 2698 pci_release_msi_method(device_t dev, device_t child) 2699 { 2700 struct pci_devinfo *dinfo = device_get_ivars(child); 2701 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2702 struct resource_list_entry *rle; 2703 int error, i, irqs[32]; 2704 2705 /* Try MSI-X first. */ 2706 error = pci_release_msix(dev, child); 2707 if (error != ENODEV) 2708 return (error); 2709 2710 /* Do we have any messages to release? */ 2711 if (msi->msi_alloc == 0) 2712 return (ENODEV); 2713 KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages")); 2714 2715 /* Make sure none of the resources are allocated. */ 2716 if (msi->msi_handlers > 0) 2717 return (EBUSY); 2718 for (i = 0; i < msi->msi_alloc; i++) { 2719 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2720 KASSERT(rle != NULL, ("missing MSI resource")); 2721 if (rle->res != NULL) 2722 return (EBUSY); 2723 irqs[i] = rle->start; 2724 } 2725 2726 /* Update control register with 0 count. */ 2727 KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE), 2728 ("%s: MSI still enabled", __func__)); 2729 msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK; 2730 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2731 msi->msi_ctrl, 2); 2732 2733 /* Release the messages. */ 2734 PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs); 2735 for (i = 0; i < msi->msi_alloc; i++) 2736 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2737 2738 /* Update alloc count. */ 2739 msi->msi_alloc = 0; 2740 msi->msi_addr = 0; 2741 msi->msi_data = 0; 2742 return (0); 2743 } 2744 2745 /* 2746 * Return the max supported MSI messages this device supports. 2747 * Basically, assuming the MD code can alloc messages, this function 2748 * should return the maximum value that pci_alloc_msi() can return. 2749 * Thus, it is subject to the tunables, etc. 2750 */ 2751 int 2752 pci_msi_count_method(device_t dev, device_t child) 2753 { 2754 struct pci_devinfo *dinfo = device_get_ivars(child); 2755 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2756 2757 if (pci_do_msi && msi->msi_location != 0) 2758 return (msi->msi_msgnum); 2759 return (0); 2760 } 2761 2762 /* free pcicfgregs structure and all depending data structures */ 2763 2764 int 2765 pci_freecfg(struct pci_devinfo *dinfo) 2766 { 2767 struct devlist *devlist_head; 2768 struct pci_map *pm, *next; 2769 2770 devlist_head = &pci_devq; 2771 2772 if (dinfo->cfg.vpd.vpd_reg) 2773 vpd_free(&dinfo->cfg.vpd); 2774 2775 STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) { 2776 free(pm, M_DEVBUF); 2777 } 2778 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links); 2779 free(dinfo, M_DEVBUF); 2780 2781 /* increment the generation count */ 2782 pci_generation++; 2783 2784 /* we're losing one device */ 2785 pci_numdevs--; 2786 return (0); 2787 } 2788 2789 /* 2790 * PCI power manangement 2791 */ 2792 int 2793 pci_set_powerstate_method(device_t dev, device_t child, int state) 2794 { 2795 struct pci_devinfo *dinfo = device_get_ivars(child); 2796 pcicfgregs *cfg = &dinfo->cfg; 2797 uint16_t status; 2798 int oldstate, highest, delay; 2799 2800 if (cfg->pp.pp_cap == 0) 2801 return (EOPNOTSUPP); 2802 2803 /* 2804 * Optimize a no state change request away. While it would be OK to 2805 * write to the hardware in theory, some devices have shown odd 2806 * behavior when going from D3 -> D3. 2807 */ 2808 oldstate = pci_get_powerstate(child); 2809 if (oldstate == state) 2810 return (0); 2811 2812 /* 2813 * The PCI power management specification states that after a state 2814 * transition between PCI power states, system software must 2815 * guarantee a minimal delay before the function accesses the device. 2816 * Compute the worst case delay that we need to guarantee before we 2817 * access the device. Many devices will be responsive much more 2818 * quickly than this delay, but there are some that don't respond 2819 * instantly to state changes. Transitions to/from D3 state require 2820 * 10ms, while D2 requires 200us, and D0/1 require none. The delay 2821 * is done below with DELAY rather than a sleeper function because 2822 * this function can be called from contexts where we cannot sleep. 2823 */ 2824 highest = (oldstate > state) ? oldstate : state; 2825 if (highest == PCI_POWERSTATE_D3) 2826 delay = 10000; 2827 else if (highest == PCI_POWERSTATE_D2) 2828 delay = 200; 2829 else 2830 delay = 0; 2831 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2) 2832 & ~PCIM_PSTAT_DMASK; 2833 switch (state) { 2834 case PCI_POWERSTATE_D0: 2835 status |= PCIM_PSTAT_D0; 2836 break; 2837 case PCI_POWERSTATE_D1: 2838 if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0) 2839 return (EOPNOTSUPP); 2840 status |= PCIM_PSTAT_D1; 2841 break; 2842 case PCI_POWERSTATE_D2: 2843 if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0) 2844 return (EOPNOTSUPP); 2845 status |= PCIM_PSTAT_D2; 2846 break; 2847 case PCI_POWERSTATE_D3: 2848 status |= PCIM_PSTAT_D3; 2849 break; 2850 default: 2851 return (EINVAL); 2852 } 2853 2854 if (bootverbose) 2855 pci_printf(cfg, "Transition from D%d to D%d\n", oldstate, 2856 state); 2857 2858 PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2); 2859 if (delay) 2860 DELAY(delay); 2861 return (0); 2862 } 2863 2864 int 2865 pci_get_powerstate_method(device_t dev, device_t child) 2866 { 2867 struct pci_devinfo *dinfo = device_get_ivars(child); 2868 pcicfgregs *cfg = &dinfo->cfg; 2869 uint16_t status; 2870 int result; 2871 2872 if (cfg->pp.pp_cap != 0) { 2873 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2); 2874 switch (status & PCIM_PSTAT_DMASK) { 2875 case PCIM_PSTAT_D0: 2876 result = PCI_POWERSTATE_D0; 2877 break; 2878 case PCIM_PSTAT_D1: 2879 result = PCI_POWERSTATE_D1; 2880 break; 2881 case PCIM_PSTAT_D2: 2882 result = PCI_POWERSTATE_D2; 2883 break; 2884 case PCIM_PSTAT_D3: 2885 result = PCI_POWERSTATE_D3; 2886 break; 2887 default: 2888 result = PCI_POWERSTATE_UNKNOWN; 2889 break; 2890 } 2891 } else { 2892 /* No support, device is always at D0 */ 2893 result = PCI_POWERSTATE_D0; 2894 } 2895 return (result); 2896 } 2897 2898 /* 2899 * Some convenience functions for PCI device drivers. 2900 */ 2901 2902 static __inline void 2903 pci_set_command_bit(device_t dev, device_t child, uint16_t bit) 2904 { 2905 uint16_t command; 2906 2907 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2908 command |= bit; 2909 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2910 } 2911 2912 static __inline void 2913 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit) 2914 { 2915 uint16_t command; 2916 2917 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2918 command &= ~bit; 2919 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2920 } 2921 2922 int 2923 pci_enable_busmaster_method(device_t dev, device_t child) 2924 { 2925 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2926 return (0); 2927 } 2928 2929 int 2930 pci_disable_busmaster_method(device_t dev, device_t child) 2931 { 2932 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2933 return (0); 2934 } 2935 2936 int 2937 pci_enable_io_method(device_t dev, device_t child, int space) 2938 { 2939 uint16_t bit; 2940 2941 switch(space) { 2942 case SYS_RES_IOPORT: 2943 bit = PCIM_CMD_PORTEN; 2944 break; 2945 case SYS_RES_MEMORY: 2946 bit = PCIM_CMD_MEMEN; 2947 break; 2948 default: 2949 return (EINVAL); 2950 } 2951 pci_set_command_bit(dev, child, bit); 2952 return (0); 2953 } 2954 2955 int 2956 pci_disable_io_method(device_t dev, device_t child, int space) 2957 { 2958 uint16_t bit; 2959 2960 switch(space) { 2961 case SYS_RES_IOPORT: 2962 bit = PCIM_CMD_PORTEN; 2963 break; 2964 case SYS_RES_MEMORY: 2965 bit = PCIM_CMD_MEMEN; 2966 break; 2967 default: 2968 return (EINVAL); 2969 } 2970 pci_clear_command_bit(dev, child, bit); 2971 return (0); 2972 } 2973 2974 /* 2975 * New style pci driver. Parent device is either a pci-host-bridge or a 2976 * pci-pci-bridge. Both kinds are represented by instances of pcib. 2977 */ 2978 2979 void 2980 pci_print_verbose(struct pci_devinfo *dinfo) 2981 { 2982 2983 if (bootverbose) { 2984 pcicfgregs *cfg = &dinfo->cfg; 2985 2986 printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n", 2987 cfg->vendor, cfg->device, cfg->revid); 2988 printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n", 2989 cfg->domain, cfg->bus, cfg->slot, cfg->func); 2990 printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n", 2991 cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype, 2992 cfg->mfdev); 2993 printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n", 2994 cfg->cmdreg, cfg->statreg, cfg->cachelnsz); 2995 printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n", 2996 cfg->lattimer, cfg->lattimer * 30, cfg->mingnt, 2997 cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250); 2998 if (cfg->intpin > 0) 2999 printf("\tintpin=%c, irq=%d\n", 3000 cfg->intpin +'a' -1, cfg->intline); 3001 if (cfg->pp.pp_cap) { 3002 uint16_t status; 3003 3004 status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2); 3005 printf("\tpowerspec %d supports D0%s%s D3 current D%d\n", 3006 cfg->pp.pp_cap & PCIM_PCAP_SPEC, 3007 cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "", 3008 cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "", 3009 status & PCIM_PSTAT_DMASK); 3010 } 3011 if (cfg->msi.msi_location) { 3012 int ctrl; 3013 3014 ctrl = cfg->msi.msi_ctrl; 3015 printf("\tMSI supports %d message%s%s%s\n", 3016 cfg->msi.msi_msgnum, 3017 (cfg->msi.msi_msgnum == 1) ? "" : "s", 3018 (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", 3019 (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":""); 3020 } 3021 if (cfg->msix.msix_location) { 3022 printf("\tMSI-X supports %d message%s ", 3023 cfg->msix.msix_msgnum, 3024 (cfg->msix.msix_msgnum == 1) ? "" : "s"); 3025 if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar) 3026 printf("in map 0x%x\n", 3027 cfg->msix.msix_table_bar); 3028 else 3029 printf("in maps 0x%x and 0x%x\n", 3030 cfg->msix.msix_table_bar, 3031 cfg->msix.msix_pba_bar); 3032 } 3033 } 3034 } 3035 3036 static int 3037 pci_porten(device_t dev) 3038 { 3039 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0; 3040 } 3041 3042 static int 3043 pci_memen(device_t dev) 3044 { 3045 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0; 3046 } 3047 3048 void 3049 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp, 3050 int *bar64) 3051 { 3052 struct pci_devinfo *dinfo; 3053 pci_addr_t map, testval; 3054 int ln2range; 3055 uint16_t cmd; 3056 3057 /* 3058 * The device ROM BAR is special. It is always a 32-bit 3059 * memory BAR. Bit 0 is special and should not be set when 3060 * sizing the BAR. 3061 */ 3062 dinfo = device_get_ivars(dev); 3063 if (PCIR_IS_BIOS(&dinfo->cfg, reg)) { 3064 map = pci_read_config(dev, reg, 4); 3065 pci_write_config(dev, reg, 0xfffffffe, 4); 3066 testval = pci_read_config(dev, reg, 4); 3067 pci_write_config(dev, reg, map, 4); 3068 *mapp = map; 3069 *testvalp = testval; 3070 if (bar64 != NULL) 3071 *bar64 = 0; 3072 return; 3073 } 3074 3075 map = pci_read_config(dev, reg, 4); 3076 ln2range = pci_maprange(map); 3077 if (ln2range == 64) 3078 map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3079 3080 /* 3081 * Disable decoding via the command register before 3082 * determining the BAR's length since we will be placing it in 3083 * a weird state. 3084 */ 3085 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3086 pci_write_config(dev, PCIR_COMMAND, 3087 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 3088 3089 /* 3090 * Determine the BAR's length by writing all 1's. The bottom 3091 * log_2(size) bits of the BAR will stick as 0 when we read 3092 * the value back. 3093 * 3094 * NB: according to the PCI Local Bus Specification, rev. 3.0: 3095 * "Software writes 0FFFFFFFFh to both registers, reads them back, 3096 * and combines the result into a 64-bit value." (section 6.2.5.1) 3097 * 3098 * Writes to both registers must be performed before attempting to 3099 * read back the size value. 3100 */ 3101 testval = 0; 3102 pci_write_config(dev, reg, 0xffffffff, 4); 3103 if (ln2range == 64) { 3104 pci_write_config(dev, reg + 4, 0xffffffff, 4); 3105 testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3106 } 3107 testval |= pci_read_config(dev, reg, 4); 3108 3109 /* 3110 * Restore the original value of the BAR. We may have reprogrammed 3111 * the BAR of the low-level console device and when booting verbose, 3112 * we need the console device addressable. 3113 */ 3114 pci_write_config(dev, reg, map, 4); 3115 if (ln2range == 64) 3116 pci_write_config(dev, reg + 4, map >> 32, 4); 3117 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3118 3119 *mapp = map; 3120 *testvalp = testval; 3121 if (bar64 != NULL) 3122 *bar64 = (ln2range == 64); 3123 } 3124 3125 static void 3126 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base) 3127 { 3128 struct pci_devinfo *dinfo; 3129 int ln2range; 3130 3131 /* The device ROM BAR is always a 32-bit memory BAR. */ 3132 dinfo = device_get_ivars(dev); 3133 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3134 ln2range = 32; 3135 else 3136 ln2range = pci_maprange(pm->pm_value); 3137 pci_write_config(dev, pm->pm_reg, base, 4); 3138 if (ln2range == 64) 3139 pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4); 3140 pm->pm_value = pci_read_config(dev, pm->pm_reg, 4); 3141 if (ln2range == 64) 3142 pm->pm_value |= (pci_addr_t)pci_read_config(dev, 3143 pm->pm_reg + 4, 4) << 32; 3144 } 3145 3146 struct pci_map * 3147 pci_find_bar(device_t dev, int reg) 3148 { 3149 struct pci_devinfo *dinfo; 3150 struct pci_map *pm; 3151 3152 dinfo = device_get_ivars(dev); 3153 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3154 if (pm->pm_reg == reg) 3155 return (pm); 3156 } 3157 return (NULL); 3158 } 3159 3160 struct pci_map * 3161 pci_first_bar(device_t dev) 3162 { 3163 struct pci_devinfo *dinfo; 3164 3165 dinfo = device_get_ivars(dev); 3166 return (STAILQ_FIRST(&dinfo->cfg.maps)); 3167 } 3168 3169 struct pci_map * 3170 pci_next_bar(struct pci_map *pm) 3171 { 3172 return (STAILQ_NEXT(pm, pm_link)); 3173 } 3174 3175 int 3176 pci_bar_enabled(device_t dev, struct pci_map *pm) 3177 { 3178 struct pci_devinfo *dinfo; 3179 uint16_t cmd; 3180 3181 dinfo = device_get_ivars(dev); 3182 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) && 3183 !(pm->pm_value & PCIM_BIOS_ENABLE)) 3184 return (0); 3185 #ifdef PCI_IOV 3186 if ((dinfo->cfg.flags & PCICFG_VF) != 0) { 3187 struct pcicfg_iov *iov; 3188 3189 iov = dinfo->cfg.iov; 3190 cmd = pci_read_config(iov->iov_pf, 3191 iov->iov_pos + PCIR_SRIOV_CTL, 2); 3192 return ((cmd & PCIM_SRIOV_VF_MSE) != 0); 3193 } 3194 #endif 3195 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3196 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value)) 3197 return ((cmd & PCIM_CMD_MEMEN) != 0); 3198 else 3199 return ((cmd & PCIM_CMD_PORTEN) != 0); 3200 } 3201 3202 struct pci_map * 3203 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size) 3204 { 3205 struct pci_devinfo *dinfo; 3206 struct pci_map *pm, *prev; 3207 3208 dinfo = device_get_ivars(dev); 3209 pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO); 3210 pm->pm_reg = reg; 3211 pm->pm_value = value; 3212 pm->pm_size = size; 3213 STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) { 3214 KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x", 3215 reg)); 3216 if (STAILQ_NEXT(prev, pm_link) == NULL || 3217 STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg) 3218 break; 3219 } 3220 if (prev != NULL) 3221 STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link); 3222 else 3223 STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link); 3224 return (pm); 3225 } 3226 3227 static void 3228 pci_restore_bars(device_t dev) 3229 { 3230 struct pci_devinfo *dinfo; 3231 struct pci_map *pm; 3232 int ln2range; 3233 3234 dinfo = device_get_ivars(dev); 3235 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3236 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3237 ln2range = 32; 3238 else 3239 ln2range = pci_maprange(pm->pm_value); 3240 pci_write_config(dev, pm->pm_reg, pm->pm_value, 4); 3241 if (ln2range == 64) 3242 pci_write_config(dev, pm->pm_reg + 4, 3243 pm->pm_value >> 32, 4); 3244 } 3245 } 3246 3247 /* 3248 * Add a resource based on a pci map register. Return 1 if the map 3249 * register is a 32bit map register or 2 if it is a 64bit register. 3250 */ 3251 static int 3252 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, 3253 int force, int prefetch) 3254 { 3255 struct pci_map *pm; 3256 pci_addr_t base, map, testval; 3257 pci_addr_t start, end, count; 3258 int barlen, basezero, flags, maprange, mapsize, type; 3259 uint16_t cmd; 3260 struct resource *res; 3261 3262 /* 3263 * The BAR may already exist if the device is a CardBus card 3264 * whose CIS is stored in this BAR. 3265 */ 3266 pm = pci_find_bar(dev, reg); 3267 if (pm != NULL) { 3268 maprange = pci_maprange(pm->pm_value); 3269 barlen = maprange == 64 ? 2 : 1; 3270 return (barlen); 3271 } 3272 3273 pci_read_bar(dev, reg, &map, &testval, NULL); 3274 if (PCI_BAR_MEM(map)) { 3275 type = SYS_RES_MEMORY; 3276 if (map & PCIM_BAR_MEM_PREFETCH) 3277 prefetch = 1; 3278 } else 3279 type = SYS_RES_IOPORT; 3280 mapsize = pci_mapsize(testval); 3281 base = pci_mapbase(map); 3282 #ifdef __PCI_BAR_ZERO_VALID 3283 basezero = 0; 3284 #else 3285 basezero = base == 0; 3286 #endif 3287 maprange = pci_maprange(map); 3288 barlen = maprange == 64 ? 2 : 1; 3289 3290 /* 3291 * For I/O registers, if bottom bit is set, and the next bit up 3292 * isn't clear, we know we have a BAR that doesn't conform to the 3293 * spec, so ignore it. Also, sanity check the size of the data 3294 * areas to the type of memory involved. Memory must be at least 3295 * 16 bytes in size, while I/O ranges must be at least 4. 3296 */ 3297 if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0) 3298 return (barlen); 3299 if ((type == SYS_RES_MEMORY && mapsize < 4) || 3300 (type == SYS_RES_IOPORT && mapsize < 2)) 3301 return (barlen); 3302 3303 /* Save a record of this BAR. */ 3304 pm = pci_add_bar(dev, reg, map, mapsize); 3305 if (bootverbose) { 3306 printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d", 3307 reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize); 3308 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3309 printf(", port disabled\n"); 3310 else if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3311 printf(", memory disabled\n"); 3312 else 3313 printf(", enabled\n"); 3314 } 3315 3316 /* 3317 * If base is 0, then we have problems if this architecture does 3318 * not allow that. It is best to ignore such entries for the 3319 * moment. These will be allocated later if the driver specifically 3320 * requests them. However, some removable buses look better when 3321 * all resources are allocated, so allow '0' to be overridden. 3322 * 3323 * Similarly treat maps whose values is the same as the test value 3324 * read back. These maps have had all f's written to them by the 3325 * BIOS in an attempt to disable the resources. 3326 */ 3327 if (!force && (basezero || map == testval)) 3328 return (barlen); 3329 if ((u_long)base != base) { 3330 device_printf(bus, 3331 "pci%d:%d:%d:%d bar %#x too many address bits", 3332 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), 3333 pci_get_function(dev), reg); 3334 return (barlen); 3335 } 3336 3337 /* 3338 * This code theoretically does the right thing, but has 3339 * undesirable side effects in some cases where peripherals 3340 * respond oddly to having these bits enabled. Let the user 3341 * be able to turn them off (since pci_enable_io_modes is 1 by 3342 * default). 3343 */ 3344 if (pci_enable_io_modes) { 3345 /* Turn on resources that have been left off by a lazy BIOS */ 3346 if (type == SYS_RES_IOPORT && !pci_porten(dev)) { 3347 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3348 cmd |= PCIM_CMD_PORTEN; 3349 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3350 } 3351 if (type == SYS_RES_MEMORY && !pci_memen(dev)) { 3352 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3353 cmd |= PCIM_CMD_MEMEN; 3354 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3355 } 3356 } else { 3357 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3358 return (barlen); 3359 if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3360 return (barlen); 3361 } 3362 3363 count = (pci_addr_t)1 << mapsize; 3364 flags = RF_ALIGNMENT_LOG2(mapsize); 3365 if (prefetch) 3366 flags |= RF_PREFETCHABLE; 3367 if (basezero || base == pci_mapbase(testval) || pci_clear_bars) { 3368 start = 0; /* Let the parent decide. */ 3369 end = ~0; 3370 } else { 3371 start = base; 3372 end = base + count - 1; 3373 } 3374 resource_list_add(rl, type, reg, start, end, count); 3375 3376 /* 3377 * Try to allocate the resource for this BAR from our parent 3378 * so that this resource range is already reserved. The 3379 * driver for this device will later inherit this resource in 3380 * pci_alloc_resource(). 3381 */ 3382 res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count, 3383 flags); 3384 if ((pci_do_realloc_bars 3385 || pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR)) 3386 && res == NULL && (start != 0 || end != ~0)) { 3387 /* 3388 * If the allocation fails, try to allocate a resource for 3389 * this BAR using any available range. The firmware felt 3390 * it was important enough to assign a resource, so don't 3391 * disable decoding if we can help it. 3392 */ 3393 resource_list_delete(rl, type, reg); 3394 resource_list_add(rl, type, reg, 0, ~0, count); 3395 res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0, 3396 count, flags); 3397 } 3398 if (res == NULL) { 3399 /* 3400 * If the allocation fails, delete the resource list entry 3401 * and disable decoding for this device. 3402 * 3403 * If the driver requests this resource in the future, 3404 * pci_reserve_map() will try to allocate a fresh 3405 * resource range. 3406 */ 3407 resource_list_delete(rl, type, reg); 3408 pci_disable_io(dev, type); 3409 if (bootverbose) 3410 device_printf(bus, 3411 "pci%d:%d:%d:%d bar %#x failed to allocate\n", 3412 pci_get_domain(dev), pci_get_bus(dev), 3413 pci_get_slot(dev), pci_get_function(dev), reg); 3414 } else { 3415 start = rman_get_start(res); 3416 pci_write_bar(dev, pm, start); 3417 } 3418 return (barlen); 3419 } 3420 3421 /* 3422 * For ATA devices we need to decide early what addressing mode to use. 3423 * Legacy demands that the primary and secondary ATA ports sits on the 3424 * same addresses that old ISA hardware did. This dictates that we use 3425 * those addresses and ignore the BAR's if we cannot set PCI native 3426 * addressing mode. 3427 */ 3428 static void 3429 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force, 3430 uint32_t prefetchmask) 3431 { 3432 int rid, type, progif; 3433 #if 0 3434 /* if this device supports PCI native addressing use it */ 3435 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3436 if ((progif & 0x8a) == 0x8a) { 3437 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) && 3438 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) { 3439 printf("Trying ATA native PCI addressing mode\n"); 3440 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1); 3441 } 3442 } 3443 #endif 3444 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3445 type = SYS_RES_IOPORT; 3446 if (progif & PCIP_STORAGE_IDE_MODEPRIM) { 3447 pci_add_map(bus, dev, PCIR_BAR(0), rl, force, 3448 prefetchmask & (1 << 0)); 3449 pci_add_map(bus, dev, PCIR_BAR(1), rl, force, 3450 prefetchmask & (1 << 1)); 3451 } else { 3452 rid = PCIR_BAR(0); 3453 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8); 3454 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0, 3455 0x1f7, 8, 0); 3456 rid = PCIR_BAR(1); 3457 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1); 3458 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6, 3459 0x3f6, 1, 0); 3460 } 3461 if (progif & PCIP_STORAGE_IDE_MODESEC) { 3462 pci_add_map(bus, dev, PCIR_BAR(2), rl, force, 3463 prefetchmask & (1 << 2)); 3464 pci_add_map(bus, dev, PCIR_BAR(3), rl, force, 3465 prefetchmask & (1 << 3)); 3466 } else { 3467 rid = PCIR_BAR(2); 3468 resource_list_add(rl, type, rid, 0x170, 0x177, 8); 3469 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170, 3470 0x177, 8, 0); 3471 rid = PCIR_BAR(3); 3472 resource_list_add(rl, type, rid, 0x376, 0x376, 1); 3473 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376, 3474 0x376, 1, 0); 3475 } 3476 pci_add_map(bus, dev, PCIR_BAR(4), rl, force, 3477 prefetchmask & (1 << 4)); 3478 pci_add_map(bus, dev, PCIR_BAR(5), rl, force, 3479 prefetchmask & (1 << 5)); 3480 } 3481 3482 static void 3483 pci_assign_interrupt(device_t bus, device_t dev, int force_route) 3484 { 3485 struct pci_devinfo *dinfo = device_get_ivars(dev); 3486 pcicfgregs *cfg = &dinfo->cfg; 3487 char tunable_name[64]; 3488 int irq; 3489 3490 /* Has to have an intpin to have an interrupt. */ 3491 if (cfg->intpin == 0) 3492 return; 3493 3494 /* Let the user override the IRQ with a tunable. */ 3495 irq = PCI_INVALID_IRQ; 3496 snprintf(tunable_name, sizeof(tunable_name), 3497 "hw.pci%d.%d.%d.INT%c.irq", 3498 cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1); 3499 if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0)) 3500 irq = PCI_INVALID_IRQ; 3501 3502 /* 3503 * If we didn't get an IRQ via the tunable, then we either use the 3504 * IRQ value in the intline register or we ask the bus to route an 3505 * interrupt for us. If force_route is true, then we only use the 3506 * value in the intline register if the bus was unable to assign an 3507 * IRQ. 3508 */ 3509 if (!PCI_INTERRUPT_VALID(irq)) { 3510 if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route) 3511 irq = PCI_ASSIGN_INTERRUPT(bus, dev); 3512 if (!PCI_INTERRUPT_VALID(irq)) 3513 irq = cfg->intline; 3514 } 3515 3516 /* If after all that we don't have an IRQ, just bail. */ 3517 if (!PCI_INTERRUPT_VALID(irq)) 3518 return; 3519 3520 /* Update the config register if it changed. */ 3521 if (irq != cfg->intline) { 3522 cfg->intline = irq; 3523 pci_write_config(dev, PCIR_INTLINE, irq, 1); 3524 } 3525 3526 /* Add this IRQ as rid 0 interrupt resource. */ 3527 resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1); 3528 } 3529 3530 /* Perform early OHCI takeover from SMM. */ 3531 static void 3532 ohci_early_takeover(device_t self) 3533 { 3534 struct resource *res; 3535 uint32_t ctl; 3536 int rid; 3537 int i; 3538 3539 rid = PCIR_BAR(0); 3540 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3541 if (res == NULL) 3542 return; 3543 3544 ctl = bus_read_4(res, OHCI_CONTROL); 3545 if (ctl & OHCI_IR) { 3546 if (bootverbose) 3547 printf("ohci early: " 3548 "SMM active, request owner change\n"); 3549 bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR); 3550 for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) { 3551 DELAY(1000); 3552 ctl = bus_read_4(res, OHCI_CONTROL); 3553 } 3554 if (ctl & OHCI_IR) { 3555 if (bootverbose) 3556 printf("ohci early: " 3557 "SMM does not respond, resetting\n"); 3558 bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET); 3559 } 3560 /* Disable interrupts */ 3561 bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); 3562 } 3563 3564 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3565 } 3566 3567 /* Perform early UHCI takeover from SMM. */ 3568 static void 3569 uhci_early_takeover(device_t self) 3570 { 3571 struct resource *res; 3572 int rid; 3573 3574 /* 3575 * Set the PIRQD enable bit and switch off all the others. We don't 3576 * want legacy support to interfere with us XXX Does this also mean 3577 * that the BIOS won't touch the keyboard anymore if it is connected 3578 * to the ports of the root hub? 3579 */ 3580 pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2); 3581 3582 /* Disable interrupts */ 3583 rid = PCI_UHCI_BASE_REG; 3584 res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE); 3585 if (res != NULL) { 3586 bus_write_2(res, UHCI_INTR, 0); 3587 bus_release_resource(self, SYS_RES_IOPORT, rid, res); 3588 } 3589 } 3590 3591 /* Perform early EHCI takeover from SMM. */ 3592 static void 3593 ehci_early_takeover(device_t self) 3594 { 3595 struct resource *res; 3596 uint32_t cparams; 3597 uint32_t eec; 3598 uint8_t eecp; 3599 uint8_t bios_sem; 3600 uint8_t offs; 3601 int rid; 3602 int i; 3603 3604 rid = PCIR_BAR(0); 3605 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3606 if (res == NULL) 3607 return; 3608 3609 cparams = bus_read_4(res, EHCI_HCCPARAMS); 3610 3611 /* Synchronise with the BIOS if it owns the controller. */ 3612 for (eecp = EHCI_HCC_EECP(cparams); eecp != 0; 3613 eecp = EHCI_EECP_NEXT(eec)) { 3614 eec = pci_read_config(self, eecp, 4); 3615 if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) { 3616 continue; 3617 } 3618 bios_sem = pci_read_config(self, eecp + 3619 EHCI_LEGSUP_BIOS_SEM, 1); 3620 if (bios_sem == 0) { 3621 continue; 3622 } 3623 if (bootverbose) 3624 printf("ehci early: " 3625 "SMM active, request owner change\n"); 3626 3627 pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1); 3628 3629 for (i = 0; (i < 100) && (bios_sem != 0); i++) { 3630 DELAY(1000); 3631 bios_sem = pci_read_config(self, eecp + 3632 EHCI_LEGSUP_BIOS_SEM, 1); 3633 } 3634 3635 if (bios_sem != 0) { 3636 if (bootverbose) 3637 printf("ehci early: " 3638 "SMM does not respond\n"); 3639 } 3640 /* Disable interrupts */ 3641 offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION)); 3642 bus_write_4(res, offs + EHCI_USBINTR, 0); 3643 } 3644 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3645 } 3646 3647 /* Perform early XHCI takeover from SMM. */ 3648 static void 3649 xhci_early_takeover(device_t self) 3650 { 3651 struct resource *res; 3652 uint32_t cparams; 3653 uint32_t eec; 3654 uint8_t eecp; 3655 uint8_t bios_sem; 3656 uint8_t offs; 3657 int rid; 3658 int i; 3659 3660 rid = PCIR_BAR(0); 3661 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3662 if (res == NULL) 3663 return; 3664 3665 cparams = bus_read_4(res, XHCI_HCSPARAMS0); 3666 3667 eec = -1; 3668 3669 /* Synchronise with the BIOS if it owns the controller. */ 3670 for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec); 3671 eecp += XHCI_XECP_NEXT(eec) << 2) { 3672 eec = bus_read_4(res, eecp); 3673 3674 if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY) 3675 continue; 3676 3677 bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); 3678 if (bios_sem == 0) 3679 continue; 3680 3681 if (bootverbose) 3682 printf("xhci early: " 3683 "SMM active, request owner change\n"); 3684 3685 bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1); 3686 3687 /* wait a maximum of 5 second */ 3688 3689 for (i = 0; (i < 5000) && (bios_sem != 0); i++) { 3690 DELAY(1000); 3691 bios_sem = bus_read_1(res, eecp + 3692 XHCI_XECP_BIOS_SEM); 3693 } 3694 3695 if (bios_sem != 0) { 3696 if (bootverbose) 3697 printf("xhci early: " 3698 "SMM does not respond\n"); 3699 } 3700 3701 /* Disable interrupts */ 3702 offs = bus_read_1(res, XHCI_CAPLENGTH); 3703 bus_write_4(res, offs + XHCI_USBCMD, 0); 3704 bus_read_4(res, offs + XHCI_USBSTS); 3705 } 3706 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3707 } 3708 3709 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 3710 static void 3711 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg, 3712 struct resource_list *rl) 3713 { 3714 struct resource *res; 3715 char *cp; 3716 rman_res_t start, end, count; 3717 int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus; 3718 3719 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3720 case PCIM_HDRTYPE_BRIDGE: 3721 sec_reg = PCIR_SECBUS_1; 3722 sub_reg = PCIR_SUBBUS_1; 3723 break; 3724 case PCIM_HDRTYPE_CARDBUS: 3725 sec_reg = PCIR_SECBUS_2; 3726 sub_reg = PCIR_SUBBUS_2; 3727 break; 3728 default: 3729 return; 3730 } 3731 3732 /* 3733 * If the existing bus range is valid, attempt to reserve it 3734 * from our parent. If this fails for any reason, clear the 3735 * secbus and subbus registers. 3736 * 3737 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus? 3738 * This would at least preserve the existing sec_bus if it is 3739 * valid. 3740 */ 3741 sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1); 3742 sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1); 3743 3744 /* Quirk handling. */ 3745 switch (pci_get_devid(dev)) { 3746 case 0x12258086: /* Intel 82454KX/GX (Orion) */ 3747 sup_bus = pci_read_config(dev, 0x41, 1); 3748 if (sup_bus != 0xff) { 3749 sec_bus = sup_bus + 1; 3750 sub_bus = sup_bus + 1; 3751 PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1); 3752 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3753 } 3754 break; 3755 3756 case 0x00dd10de: 3757 /* Compaq R3000 BIOS sets wrong subordinate bus number. */ 3758 if ((cp = kern_getenv("smbios.planar.maker")) == NULL) 3759 break; 3760 if (strncmp(cp, "Compal", 6) != 0) { 3761 freeenv(cp); 3762 break; 3763 } 3764 freeenv(cp); 3765 if ((cp = kern_getenv("smbios.planar.product")) == NULL) 3766 break; 3767 if (strncmp(cp, "08A0", 4) != 0) { 3768 freeenv(cp); 3769 break; 3770 } 3771 freeenv(cp); 3772 if (sub_bus < 0xa) { 3773 sub_bus = 0xa; 3774 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3775 } 3776 break; 3777 } 3778 3779 if (bootverbose) 3780 printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus); 3781 if (sec_bus > 0 && sub_bus >= sec_bus) { 3782 start = sec_bus; 3783 end = sub_bus; 3784 count = end - start + 1; 3785 3786 resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count); 3787 3788 /* 3789 * If requested, clear secondary bus registers in 3790 * bridge devices to force a complete renumbering 3791 * rather than reserving the existing range. However, 3792 * preserve the existing size. 3793 */ 3794 if (pci_clear_buses) 3795 goto clear; 3796 3797 rid = 0; 3798 res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid, 3799 start, end, count, 0); 3800 if (res != NULL) 3801 return; 3802 3803 if (bootverbose) 3804 device_printf(bus, 3805 "pci%d:%d:%d:%d secbus failed to allocate\n", 3806 pci_get_domain(dev), pci_get_bus(dev), 3807 pci_get_slot(dev), pci_get_function(dev)); 3808 } 3809 3810 clear: 3811 PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1); 3812 PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1); 3813 } 3814 3815 static struct resource * 3816 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start, 3817 rman_res_t end, rman_res_t count, u_int flags) 3818 { 3819 struct pci_devinfo *dinfo; 3820 pcicfgregs *cfg; 3821 struct resource_list *rl; 3822 struct resource *res; 3823 int sec_reg, sub_reg; 3824 3825 dinfo = device_get_ivars(child); 3826 cfg = &dinfo->cfg; 3827 rl = &dinfo->resources; 3828 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3829 case PCIM_HDRTYPE_BRIDGE: 3830 sec_reg = PCIR_SECBUS_1; 3831 sub_reg = PCIR_SUBBUS_1; 3832 break; 3833 case PCIM_HDRTYPE_CARDBUS: 3834 sec_reg = PCIR_SECBUS_2; 3835 sub_reg = PCIR_SUBBUS_2; 3836 break; 3837 default: 3838 return (NULL); 3839 } 3840 3841 if (*rid != 0) 3842 return (NULL); 3843 3844 if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL) 3845 resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count); 3846 if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) { 3847 res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid, 3848 start, end, count, flags & ~RF_ACTIVE); 3849 if (res == NULL) { 3850 resource_list_delete(rl, PCI_RES_BUS, *rid); 3851 device_printf(child, "allocating %ju bus%s failed\n", 3852 count, count == 1 ? "" : "es"); 3853 return (NULL); 3854 } 3855 if (bootverbose) 3856 device_printf(child, 3857 "Lazy allocation of %ju bus%s at %ju\n", count, 3858 count == 1 ? "" : "es", rman_get_start(res)); 3859 PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1); 3860 PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1); 3861 } 3862 return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start, 3863 end, count, flags)); 3864 } 3865 #endif 3866 3867 static int 3868 pci_ea_bei_to_rid(device_t dev, int bei) 3869 { 3870 #ifdef PCI_IOV 3871 struct pci_devinfo *dinfo; 3872 int iov_pos; 3873 struct pcicfg_iov *iov; 3874 3875 dinfo = device_get_ivars(dev); 3876 iov = dinfo->cfg.iov; 3877 if (iov != NULL) 3878 iov_pos = iov->iov_pos; 3879 else 3880 iov_pos = 0; 3881 #endif 3882 3883 /* Check if matches BAR */ 3884 if ((bei >= PCIM_EA_BEI_BAR_0) && 3885 (bei <= PCIM_EA_BEI_BAR_5)) 3886 return (PCIR_BAR(bei)); 3887 3888 /* Check ROM */ 3889 if (bei == PCIM_EA_BEI_ROM) 3890 return (PCIR_BIOS); 3891 3892 #ifdef PCI_IOV 3893 /* Check if matches VF_BAR */ 3894 if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) && 3895 (bei <= PCIM_EA_BEI_VF_BAR_5)) 3896 return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) + 3897 iov_pos); 3898 #endif 3899 3900 return (-1); 3901 } 3902 3903 int 3904 pci_ea_is_enabled(device_t dev, int rid) 3905 { 3906 struct pci_ea_entry *ea; 3907 struct pci_devinfo *dinfo; 3908 3909 dinfo = device_get_ivars(dev); 3910 3911 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3912 if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid) 3913 return ((ea->eae_flags & PCIM_EA_ENABLE) > 0); 3914 } 3915 3916 return (0); 3917 } 3918 3919 void 3920 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov) 3921 { 3922 struct pci_ea_entry *ea; 3923 struct pci_devinfo *dinfo; 3924 pci_addr_t start, end, count; 3925 struct resource_list *rl; 3926 int type, flags, rid; 3927 struct resource *res; 3928 uint32_t tmp; 3929 #ifdef PCI_IOV 3930 struct pcicfg_iov *iov; 3931 #endif 3932 3933 dinfo = device_get_ivars(dev); 3934 rl = &dinfo->resources; 3935 flags = 0; 3936 3937 #ifdef PCI_IOV 3938 iov = dinfo->cfg.iov; 3939 #endif 3940 3941 if (dinfo->cfg.ea.ea_location == 0) 3942 return; 3943 3944 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3945 /* 3946 * TODO: Ignore EA-BAR if is not enabled. 3947 * Currently the EA implementation supports 3948 * only situation, where EA structure contains 3949 * predefined entries. In case they are not enabled 3950 * leave them unallocated and proceed with 3951 * a legacy-BAR mechanism. 3952 */ 3953 if ((ea->eae_flags & PCIM_EA_ENABLE) == 0) 3954 continue; 3955 3956 switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) { 3957 case PCIM_EA_P_MEM_PREFETCH: 3958 case PCIM_EA_P_VF_MEM_PREFETCH: 3959 flags = RF_PREFETCHABLE; 3960 /* FALLTHROUGH */ 3961 case PCIM_EA_P_VF_MEM: 3962 case PCIM_EA_P_MEM: 3963 type = SYS_RES_MEMORY; 3964 break; 3965 case PCIM_EA_P_IO: 3966 type = SYS_RES_IOPORT; 3967 break; 3968 default: 3969 continue; 3970 } 3971 3972 if (alloc_iov != 0) { 3973 #ifdef PCI_IOV 3974 /* Allocating IOV, confirm BEI matches */ 3975 if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) || 3976 (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5)) 3977 continue; 3978 #else 3979 continue; 3980 #endif 3981 } else { 3982 /* Allocating BAR, confirm BEI matches */ 3983 if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) || 3984 (ea->eae_bei > PCIM_EA_BEI_BAR_5)) && 3985 (ea->eae_bei != PCIM_EA_BEI_ROM)) 3986 continue; 3987 } 3988 3989 rid = pci_ea_bei_to_rid(dev, ea->eae_bei); 3990 if (rid < 0) 3991 continue; 3992 3993 /* Skip resources already allocated by EA */ 3994 if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) || 3995 (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL)) 3996 continue; 3997 3998 start = ea->eae_base; 3999 count = ea->eae_max_offset + 1; 4000 #ifdef PCI_IOV 4001 if (iov != NULL) 4002 count = count * iov->iov_num_vfs; 4003 #endif 4004 end = start + count - 1; 4005 if (count == 0) 4006 continue; 4007 4008 resource_list_add(rl, type, rid, start, end, count); 4009 res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count, 4010 flags); 4011 if (res == NULL) { 4012 resource_list_delete(rl, type, rid); 4013 4014 /* 4015 * Failed to allocate using EA, disable entry. 4016 * Another attempt to allocation will be performed 4017 * further, but this time using legacy BAR registers 4018 */ 4019 tmp = pci_read_config(dev, ea->eae_cfg_offset, 4); 4020 tmp &= ~PCIM_EA_ENABLE; 4021 pci_write_config(dev, ea->eae_cfg_offset, tmp, 4); 4022 4023 /* 4024 * Disabling entry might fail in case it is hardwired. 4025 * Read flags again to match current status. 4026 */ 4027 ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4); 4028 4029 continue; 4030 } 4031 4032 /* As per specification, fill BAR with zeros */ 4033 pci_write_config(dev, rid, 0, 4); 4034 } 4035 } 4036 4037 void 4038 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask) 4039 { 4040 struct pci_devinfo *dinfo; 4041 pcicfgregs *cfg; 4042 struct resource_list *rl; 4043 const struct pci_quirk *q; 4044 uint32_t devid; 4045 int i; 4046 4047 dinfo = device_get_ivars(dev); 4048 cfg = &dinfo->cfg; 4049 rl = &dinfo->resources; 4050 devid = (cfg->device << 16) | cfg->vendor; 4051 4052 /* Allocate resources using Enhanced Allocation */ 4053 pci_add_resources_ea(bus, dev, 0); 4054 4055 /* ATA devices needs special map treatment */ 4056 if ((pci_get_class(dev) == PCIC_STORAGE) && 4057 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) && 4058 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) || 4059 (!pci_read_config(dev, PCIR_BAR(0), 4) && 4060 !pci_read_config(dev, PCIR_BAR(2), 4))) ) 4061 pci_ata_maps(bus, dev, rl, force, prefetchmask); 4062 else 4063 for (i = 0; i < cfg->nummaps;) { 4064 /* Skip resources already managed by EA */ 4065 if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) || 4066 (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) || 4067 pci_ea_is_enabled(dev, PCIR_BAR(i))) { 4068 i++; 4069 continue; 4070 } 4071 4072 /* 4073 * Skip quirked resources. 4074 */ 4075 for (q = &pci_quirks[0]; q->devid != 0; q++) 4076 if (q->devid == devid && 4077 q->type == PCI_QUIRK_UNMAP_REG && 4078 q->arg1 == PCIR_BAR(i)) 4079 break; 4080 if (q->devid != 0) { 4081 i++; 4082 continue; 4083 } 4084 i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force, 4085 prefetchmask & (1 << i)); 4086 } 4087 4088 /* 4089 * Add additional, quirked resources. 4090 */ 4091 for (q = &pci_quirks[0]; q->devid != 0; q++) 4092 if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG) 4093 pci_add_map(bus, dev, q->arg1, rl, force, 0); 4094 4095 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) { 4096 #ifdef __PCI_REROUTE_INTERRUPT 4097 /* 4098 * Try to re-route interrupts. Sometimes the BIOS or 4099 * firmware may leave bogus values in these registers. 4100 * If the re-route fails, then just stick with what we 4101 * have. 4102 */ 4103 pci_assign_interrupt(bus, dev, 1); 4104 #else 4105 pci_assign_interrupt(bus, dev, 0); 4106 #endif 4107 } 4108 4109 if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS && 4110 pci_get_subclass(dev) == PCIS_SERIALBUS_USB) { 4111 if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI) 4112 xhci_early_takeover(dev); 4113 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI) 4114 ehci_early_takeover(dev); 4115 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI) 4116 ohci_early_takeover(dev); 4117 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI) 4118 uhci_early_takeover(dev); 4119 } 4120 4121 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 4122 /* 4123 * Reserve resources for secondary bus ranges behind bridge 4124 * devices. 4125 */ 4126 pci_reserve_secbus(bus, dev, cfg, rl); 4127 #endif 4128 } 4129 4130 static struct pci_devinfo * 4131 pci_identify_function(device_t pcib, device_t dev, int domain, int busno, 4132 int slot, int func) 4133 { 4134 struct pci_devinfo *dinfo; 4135 4136 dinfo = pci_read_device(pcib, dev, domain, busno, slot, func); 4137 if (dinfo != NULL) 4138 pci_add_child(dev, dinfo); 4139 4140 return (dinfo); 4141 } 4142 4143 void 4144 pci_add_children(device_t dev, int domain, int busno) 4145 { 4146 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4147 device_t pcib = device_get_parent(dev); 4148 struct pci_devinfo *dinfo; 4149 int maxslots; 4150 int s, f, pcifunchigh; 4151 uint8_t hdrtype; 4152 int first_func; 4153 4154 /* 4155 * Try to detect a device at slot 0, function 0. If it exists, try to 4156 * enable ARI. We must enable ARI before detecting the rest of the 4157 * functions on this bus as ARI changes the set of slots and functions 4158 * that are legal on this bus. 4159 */ 4160 dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0); 4161 if (dinfo != NULL && pci_enable_ari) 4162 PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev); 4163 4164 /* 4165 * Start looking for new devices on slot 0 at function 1 because we 4166 * just identified the device at slot 0, function 0. 4167 */ 4168 first_func = 1; 4169 4170 maxslots = PCIB_MAXSLOTS(pcib); 4171 for (s = 0; s <= maxslots; s++, first_func = 0) { 4172 pcifunchigh = 0; 4173 f = 0; 4174 DELAY(1); 4175 4176 /* If function 0 is not present, skip to the next slot. */ 4177 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4178 continue; 4179 hdrtype = REG(PCIR_HDRTYPE, 1); 4180 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4181 continue; 4182 if (hdrtype & PCIM_MFDEV) 4183 pcifunchigh = PCIB_MAXFUNCS(pcib); 4184 for (f = first_func; f <= pcifunchigh; f++) 4185 pci_identify_function(pcib, dev, domain, busno, s, f); 4186 } 4187 #undef REG 4188 } 4189 4190 int 4191 pci_rescan_method(device_t dev) 4192 { 4193 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4194 device_t pcib = device_get_parent(dev); 4195 device_t child, *devlist, *unchanged; 4196 int devcount, error, i, j, maxslots, oldcount; 4197 int busno, domain, s, f, pcifunchigh; 4198 uint8_t hdrtype; 4199 4200 /* No need to check for ARI on a rescan. */ 4201 error = device_get_children(dev, &devlist, &devcount); 4202 if (error) 4203 return (error); 4204 if (devcount != 0) { 4205 unchanged = malloc(devcount * sizeof(device_t), M_TEMP, 4206 M_NOWAIT | M_ZERO); 4207 if (unchanged == NULL) { 4208 free(devlist, M_TEMP); 4209 return (ENOMEM); 4210 } 4211 } else 4212 unchanged = NULL; 4213 4214 domain = pcib_get_domain(dev); 4215 busno = pcib_get_bus(dev); 4216 maxslots = PCIB_MAXSLOTS(pcib); 4217 for (s = 0; s <= maxslots; s++) { 4218 /* If function 0 is not present, skip to the next slot. */ 4219 f = 0; 4220 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4221 continue; 4222 pcifunchigh = 0; 4223 hdrtype = REG(PCIR_HDRTYPE, 1); 4224 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4225 continue; 4226 if (hdrtype & PCIM_MFDEV) 4227 pcifunchigh = PCIB_MAXFUNCS(pcib); 4228 for (f = 0; f <= pcifunchigh; f++) { 4229 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4230 continue; 4231 4232 /* 4233 * Found a valid function. Check if a 4234 * device_t for this device already exists. 4235 */ 4236 for (i = 0; i < devcount; i++) { 4237 child = devlist[i]; 4238 if (child == NULL) 4239 continue; 4240 if (pci_get_slot(child) == s && 4241 pci_get_function(child) == f) { 4242 unchanged[i] = child; 4243 goto next_func; 4244 } 4245 } 4246 4247 pci_identify_function(pcib, dev, domain, busno, s, f); 4248 next_func:; 4249 } 4250 } 4251 4252 /* Remove devices that are no longer present. */ 4253 for (i = 0; i < devcount; i++) { 4254 if (unchanged[i] != NULL) 4255 continue; 4256 device_delete_child(dev, devlist[i]); 4257 } 4258 4259 free(devlist, M_TEMP); 4260 oldcount = devcount; 4261 4262 /* Try to attach the devices just added. */ 4263 error = device_get_children(dev, &devlist, &devcount); 4264 if (error) { 4265 free(unchanged, M_TEMP); 4266 return (error); 4267 } 4268 4269 for (i = 0; i < devcount; i++) { 4270 for (j = 0; j < oldcount; j++) { 4271 if (devlist[i] == unchanged[j]) 4272 goto next_device; 4273 } 4274 4275 device_probe_and_attach(devlist[i]); 4276 next_device:; 4277 } 4278 4279 free(unchanged, M_TEMP); 4280 free(devlist, M_TEMP); 4281 return (0); 4282 #undef REG 4283 } 4284 4285 #ifdef PCI_IOV 4286 device_t 4287 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid, 4288 uint16_t did) 4289 { 4290 struct pci_devinfo *vf_dinfo; 4291 device_t pcib; 4292 int busno, slot, func; 4293 4294 pcib = device_get_parent(bus); 4295 4296 PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func); 4297 4298 vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno, 4299 slot, func, vid, did); 4300 4301 vf_dinfo->cfg.flags |= PCICFG_VF; 4302 pci_add_child(bus, vf_dinfo); 4303 4304 return (vf_dinfo->cfg.dev); 4305 } 4306 4307 device_t 4308 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid, 4309 uint16_t vid, uint16_t did) 4310 { 4311 4312 return (pci_add_iov_child(bus, pf, rid, vid, did)); 4313 } 4314 #endif 4315 4316 /* 4317 * For PCIe device set Max_Payload_Size to match PCIe root's. 4318 */ 4319 static void 4320 pcie_setup_mps(device_t dev) 4321 { 4322 struct pci_devinfo *dinfo = device_get_ivars(dev); 4323 device_t root; 4324 uint16_t rmps, mmps, mps; 4325 4326 if (dinfo->cfg.pcie.pcie_location == 0) 4327 return; 4328 root = pci_find_pcie_root_port(dev); 4329 if (root == NULL) 4330 return; 4331 /* Check whether the MPS is already configured. */ 4332 rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) & 4333 PCIEM_CTL_MAX_PAYLOAD; 4334 mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) & 4335 PCIEM_CTL_MAX_PAYLOAD; 4336 if (mps == rmps) 4337 return; 4338 /* Check whether the device is capable of the root's MPS. */ 4339 mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) & 4340 PCIEM_CAP_MAX_PAYLOAD) << 5; 4341 if (rmps > mmps) { 4342 /* 4343 * The device is unable to handle root's MPS. Limit root. 4344 * XXX: We should traverse through all the tree, applying 4345 * it to all the devices. 4346 */ 4347 pcie_adjust_config(root, PCIER_DEVICE_CTL, 4348 PCIEM_CTL_MAX_PAYLOAD, mmps, 2); 4349 } else { 4350 pcie_adjust_config(dev, PCIER_DEVICE_CTL, 4351 PCIEM_CTL_MAX_PAYLOAD, rmps, 2); 4352 } 4353 } 4354 4355 static void 4356 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo) 4357 { 4358 int aer; 4359 uint32_t r; 4360 uint16_t r2; 4361 4362 if (dinfo->cfg.pcie.pcie_location != 0 && 4363 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) { 4364 r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4365 PCIER_ROOT_CTL, 2); 4366 r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR | 4367 PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL); 4368 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4369 PCIER_ROOT_CTL, r2, 2); 4370 } 4371 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 4372 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 4373 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 4374 if (r != 0 && bootverbose) { 4375 pci_printf(&dinfo->cfg, 4376 "clearing AER UC 0x%08x -> 0x%08x\n", 4377 r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4378 4)); 4379 } 4380 4381 r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4); 4382 r &= ~(PCIM_AER_UC_TRAINING_ERROR | 4383 PCIM_AER_UC_DL_PROTOCOL_ERROR | 4384 PCIM_AER_UC_SURPRISE_LINK_DOWN | 4385 PCIM_AER_UC_POISONED_TLP | 4386 PCIM_AER_UC_FC_PROTOCOL_ERROR | 4387 PCIM_AER_UC_COMPLETION_TIMEOUT | 4388 PCIM_AER_UC_COMPLETER_ABORT | 4389 PCIM_AER_UC_UNEXPECTED_COMPLETION | 4390 PCIM_AER_UC_RECEIVER_OVERFLOW | 4391 PCIM_AER_UC_MALFORMED_TLP | 4392 PCIM_AER_UC_ECRC_ERROR | 4393 PCIM_AER_UC_UNSUPPORTED_REQUEST | 4394 PCIM_AER_UC_ACS_VIOLATION | 4395 PCIM_AER_UC_INTERNAL_ERROR | 4396 PCIM_AER_UC_MC_BLOCKED_TLP | 4397 PCIM_AER_UC_ATOMIC_EGRESS_BLK | 4398 PCIM_AER_UC_TLP_PREFIX_BLOCKED); 4399 pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4); 4400 4401 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 4402 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 4403 if (r != 0 && bootverbose) { 4404 pci_printf(&dinfo->cfg, 4405 "clearing AER COR 0x%08x -> 0x%08x\n", 4406 r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4407 4)); 4408 } 4409 4410 r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4); 4411 r &= ~(PCIM_AER_COR_RECEIVER_ERROR | 4412 PCIM_AER_COR_BAD_TLP | 4413 PCIM_AER_COR_BAD_DLLP | 4414 PCIM_AER_COR_REPLAY_ROLLOVER | 4415 PCIM_AER_COR_REPLAY_TIMEOUT | 4416 PCIM_AER_COR_ADVISORY_NF_ERROR | 4417 PCIM_AER_COR_INTERNAL_ERROR | 4418 PCIM_AER_COR_HEADER_LOG_OVFLOW); 4419 pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4); 4420 4421 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4422 PCIER_DEVICE_CTL, 2); 4423 r |= PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE | 4424 PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE; 4425 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4426 PCIER_DEVICE_CTL, r, 2); 4427 } 4428 } 4429 4430 void 4431 pci_add_child(device_t bus, struct pci_devinfo *dinfo) 4432 { 4433 device_t dev; 4434 4435 dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1); 4436 device_set_ivars(dev, dinfo); 4437 resource_list_init(&dinfo->resources); 4438 pci_cfg_save(dev, dinfo, 0); 4439 pci_cfg_restore(dev, dinfo); 4440 pci_print_verbose(dinfo); 4441 pci_add_resources(bus, dev, 0, 0); 4442 if (pci_enable_mps_tune) 4443 pcie_setup_mps(dev); 4444 pci_child_added(dinfo->cfg.dev); 4445 4446 if (pci_clear_aer_on_attach) 4447 pci_add_child_clear_aer(dev, dinfo); 4448 4449 EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev); 4450 } 4451 4452 void 4453 pci_child_added_method(device_t dev, device_t child) 4454 { 4455 4456 } 4457 4458 static int 4459 pci_probe(device_t dev) 4460 { 4461 4462 device_set_desc(dev, "PCI bus"); 4463 4464 /* Allow other subclasses to override this driver. */ 4465 return (BUS_PROBE_GENERIC); 4466 } 4467 4468 int 4469 pci_attach_common(device_t dev) 4470 { 4471 struct pci_softc *sc; 4472 int busno, domain; 4473 #ifdef PCI_RES_BUS 4474 int rid; 4475 #endif 4476 4477 sc = device_get_softc(dev); 4478 domain = pcib_get_domain(dev); 4479 busno = pcib_get_bus(dev); 4480 #ifdef PCI_RES_BUS 4481 rid = 0; 4482 sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno, 4483 1, 0); 4484 if (sc->sc_bus == NULL) { 4485 device_printf(dev, "failed to allocate bus number\n"); 4486 return (ENXIO); 4487 } 4488 #endif 4489 if (bootverbose) 4490 device_printf(dev, "domain=%d, physical bus=%d\n", 4491 domain, busno); 4492 sc->sc_dma_tag = bus_get_dma_tag(dev); 4493 return (0); 4494 } 4495 4496 int 4497 pci_attach(device_t dev) 4498 { 4499 int busno, domain, error; 4500 4501 error = pci_attach_common(dev); 4502 if (error) 4503 return (error); 4504 4505 /* 4506 * Since there can be multiple independently numbered PCI 4507 * buses on systems with multiple PCI domains, we can't use 4508 * the unit number to decide which bus we are probing. We ask 4509 * the parent pcib what our domain and bus numbers are. 4510 */ 4511 domain = pcib_get_domain(dev); 4512 busno = pcib_get_bus(dev); 4513 pci_add_children(dev, domain, busno); 4514 return (bus_generic_attach(dev)); 4515 } 4516 4517 int 4518 pci_detach(device_t dev) 4519 { 4520 #ifdef PCI_RES_BUS 4521 struct pci_softc *sc; 4522 #endif 4523 int error; 4524 4525 error = bus_generic_detach(dev); 4526 if (error) 4527 return (error); 4528 #ifdef PCI_RES_BUS 4529 sc = device_get_softc(dev); 4530 error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus); 4531 if (error) 4532 return (error); 4533 #endif 4534 return (device_delete_children(dev)); 4535 } 4536 4537 static void 4538 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp) 4539 { 4540 int line, unit; 4541 const char *at; 4542 char me1[24], me2[32]; 4543 uint8_t b, s, f; 4544 uint32_t d; 4545 device_location_cache_t *cache; 4546 4547 d = pci_get_domain(child); 4548 b = pci_get_bus(child); 4549 s = pci_get_slot(child); 4550 f = pci_get_function(child); 4551 snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f); 4552 snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f); 4553 line = 0; 4554 cache = dev_wired_cache_init(); 4555 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 4556 resource_string_value(name, unit, "at", &at); 4557 if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) { 4558 *unitp = unit; 4559 break; 4560 } 4561 if (dev_wired_cache_match(cache, child, at)) { 4562 *unitp = unit; 4563 break; 4564 } 4565 } 4566 dev_wired_cache_fini(cache); 4567 } 4568 4569 static void 4570 pci_set_power_child(device_t dev, device_t child, int state) 4571 { 4572 device_t pcib; 4573 int dstate; 4574 4575 /* 4576 * Set the device to the given state. If the firmware suggests 4577 * a different power state, use it instead. If power management 4578 * is not present, the firmware is responsible for managing 4579 * device power. Skip children who aren't attached since they 4580 * are handled separately. 4581 */ 4582 pcib = device_get_parent(dev); 4583 dstate = state; 4584 if (device_is_attached(child) && 4585 PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0) 4586 pci_set_powerstate(child, dstate); 4587 } 4588 4589 int 4590 pci_suspend_child(device_t dev, device_t child) 4591 { 4592 struct pci_devinfo *dinfo; 4593 struct resource_list_entry *rle; 4594 int error; 4595 4596 dinfo = device_get_ivars(child); 4597 4598 /* 4599 * Save the PCI configuration space for the child and set the 4600 * device in the appropriate power state for this sleep state. 4601 */ 4602 pci_cfg_save(child, dinfo, 0); 4603 4604 /* Suspend devices before potentially powering them down. */ 4605 error = bus_generic_suspend_child(dev, child); 4606 4607 if (error) 4608 return (error); 4609 4610 if (pci_do_power_suspend) { 4611 /* 4612 * Make sure this device's interrupt handler is not invoked 4613 * in the case the device uses a shared interrupt that can 4614 * be raised by some other device. 4615 * This is applicable only to regular (legacy) PCI interrupts 4616 * as MSI/MSI-X interrupts are never shared. 4617 */ 4618 rle = resource_list_find(&dinfo->resources, 4619 SYS_RES_IRQ, 0); 4620 if (rle != NULL && rle->res != NULL) 4621 (void)bus_suspend_intr(child, rle->res); 4622 pci_set_power_child(dev, child, PCI_POWERSTATE_D3); 4623 } 4624 4625 return (0); 4626 } 4627 4628 int 4629 pci_resume_child(device_t dev, device_t child) 4630 { 4631 struct pci_devinfo *dinfo; 4632 struct resource_list_entry *rle; 4633 4634 if (pci_do_power_resume) 4635 pci_set_power_child(dev, child, PCI_POWERSTATE_D0); 4636 4637 dinfo = device_get_ivars(child); 4638 pci_cfg_restore(child, dinfo); 4639 if (!device_is_attached(child)) 4640 pci_cfg_save(child, dinfo, 1); 4641 4642 bus_generic_resume_child(dev, child); 4643 4644 /* 4645 * Allow interrupts only after fully resuming the driver and hardware. 4646 */ 4647 if (pci_do_power_suspend) { 4648 /* See pci_suspend_child for details. */ 4649 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 4650 if (rle != NULL && rle->res != NULL) 4651 (void)bus_resume_intr(child, rle->res); 4652 } 4653 4654 return (0); 4655 } 4656 4657 int 4658 pci_resume(device_t dev) 4659 { 4660 device_t child, *devlist; 4661 int error, i, numdevs; 4662 4663 if ((error = device_get_children(dev, &devlist, &numdevs)) != 0) 4664 return (error); 4665 4666 /* 4667 * Resume critical devices first, then everything else later. 4668 */ 4669 for (i = 0; i < numdevs; i++) { 4670 child = devlist[i]; 4671 switch (pci_get_class(child)) { 4672 case PCIC_DISPLAY: 4673 case PCIC_MEMORY: 4674 case PCIC_BRIDGE: 4675 case PCIC_BASEPERIPH: 4676 BUS_RESUME_CHILD(dev, child); 4677 break; 4678 } 4679 } 4680 for (i = 0; i < numdevs; i++) { 4681 child = devlist[i]; 4682 switch (pci_get_class(child)) { 4683 case PCIC_DISPLAY: 4684 case PCIC_MEMORY: 4685 case PCIC_BRIDGE: 4686 case PCIC_BASEPERIPH: 4687 break; 4688 default: 4689 BUS_RESUME_CHILD(dev, child); 4690 } 4691 } 4692 free(devlist, M_TEMP); 4693 return (0); 4694 } 4695 4696 static void 4697 pci_load_vendor_data(void) 4698 { 4699 caddr_t data; 4700 void *ptr; 4701 size_t sz; 4702 4703 data = preload_search_by_type("pci_vendor_data"); 4704 if (data != NULL) { 4705 ptr = preload_fetch_addr(data); 4706 sz = preload_fetch_size(data); 4707 if (ptr != NULL && sz != 0) { 4708 pci_vendordata = ptr; 4709 pci_vendordata_size = sz; 4710 /* terminate the database */ 4711 pci_vendordata[pci_vendordata_size] = '\n'; 4712 } 4713 } 4714 } 4715 4716 void 4717 pci_driver_added(device_t dev, driver_t *driver) 4718 { 4719 int numdevs; 4720 device_t *devlist; 4721 device_t child; 4722 struct pci_devinfo *dinfo; 4723 int i; 4724 4725 if (bootverbose) 4726 device_printf(dev, "driver added\n"); 4727 DEVICE_IDENTIFY(driver, dev); 4728 if (device_get_children(dev, &devlist, &numdevs) != 0) 4729 return; 4730 for (i = 0; i < numdevs; i++) { 4731 child = devlist[i]; 4732 if (device_get_state(child) != DS_NOTPRESENT) 4733 continue; 4734 dinfo = device_get_ivars(child); 4735 pci_print_verbose(dinfo); 4736 if (bootverbose) 4737 pci_printf(&dinfo->cfg, "reprobing on driver added\n"); 4738 pci_cfg_restore(child, dinfo); 4739 if (device_probe_and_attach(child) != 0) 4740 pci_child_detached(dev, child); 4741 } 4742 free(devlist, M_TEMP); 4743 } 4744 4745 int 4746 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4747 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4748 { 4749 struct pci_devinfo *dinfo; 4750 struct msix_table_entry *mte; 4751 struct msix_vector *mv; 4752 uint64_t addr; 4753 uint32_t data; 4754 void *cookie; 4755 int error, rid; 4756 4757 error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr, 4758 arg, &cookie); 4759 if (error) 4760 return (error); 4761 4762 /* If this is not a direct child, just bail out. */ 4763 if (device_get_parent(child) != dev) { 4764 *cookiep = cookie; 4765 return(0); 4766 } 4767 4768 rid = rman_get_rid(irq); 4769 if (rid == 0) { 4770 /* Make sure that INTx is enabled */ 4771 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4772 } else { 4773 /* 4774 * Check to see if the interrupt is MSI or MSI-X. 4775 * Ask our parent to map the MSI and give 4776 * us the address and data register values. 4777 * If we fail for some reason, teardown the 4778 * interrupt handler. 4779 */ 4780 dinfo = device_get_ivars(child); 4781 if (dinfo->cfg.msi.msi_alloc > 0) { 4782 if (dinfo->cfg.msi.msi_addr == 0) { 4783 KASSERT(dinfo->cfg.msi.msi_handlers == 0, 4784 ("MSI has handlers, but vectors not mapped")); 4785 error = PCIB_MAP_MSI(device_get_parent(dev), 4786 child, rman_get_start(irq), &addr, &data); 4787 if (error) 4788 goto bad; 4789 dinfo->cfg.msi.msi_addr = addr; 4790 dinfo->cfg.msi.msi_data = data; 4791 } 4792 if (dinfo->cfg.msi.msi_handlers == 0) 4793 pci_enable_msi(child, dinfo->cfg.msi.msi_addr, 4794 dinfo->cfg.msi.msi_data); 4795 dinfo->cfg.msi.msi_handlers++; 4796 } else { 4797 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4798 ("No MSI or MSI-X interrupts allocated")); 4799 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4800 ("MSI-X index too high")); 4801 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4802 KASSERT(mte->mte_vector != 0, ("no message vector")); 4803 mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1]; 4804 KASSERT(mv->mv_irq == rman_get_start(irq), 4805 ("IRQ mismatch")); 4806 if (mv->mv_address == 0) { 4807 KASSERT(mte->mte_handlers == 0, 4808 ("MSI-X table entry has handlers, but vector not mapped")); 4809 error = PCIB_MAP_MSI(device_get_parent(dev), 4810 child, rman_get_start(irq), &addr, &data); 4811 if (error) 4812 goto bad; 4813 mv->mv_address = addr; 4814 mv->mv_data = data; 4815 } 4816 4817 /* 4818 * The MSIX table entry must be made valid by 4819 * incrementing the mte_handlers before 4820 * calling pci_enable_msix() and 4821 * pci_resume_msix(). Else the MSIX rewrite 4822 * table quirk will not work as expected. 4823 */ 4824 mte->mte_handlers++; 4825 if (mte->mte_handlers == 1) { 4826 pci_enable_msix(child, rid - 1, mv->mv_address, 4827 mv->mv_data); 4828 pci_unmask_msix(child, rid - 1); 4829 } 4830 } 4831 4832 /* 4833 * Make sure that INTx is disabled if we are using MSI/MSI-X, 4834 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG, 4835 * in which case we "enable" INTx so MSI/MSI-X actually works. 4836 */ 4837 if (!pci_has_quirk(pci_get_devid(child), 4838 PCI_QUIRK_MSI_INTX_BUG)) 4839 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4840 else 4841 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4842 bad: 4843 if (error) { 4844 (void)bus_generic_teardown_intr(dev, child, irq, 4845 cookie); 4846 return (error); 4847 } 4848 } 4849 *cookiep = cookie; 4850 return (0); 4851 } 4852 4853 int 4854 pci_teardown_intr(device_t dev, device_t child, struct resource *irq, 4855 void *cookie) 4856 { 4857 struct msix_table_entry *mte; 4858 struct resource_list_entry *rle; 4859 struct pci_devinfo *dinfo; 4860 int error, rid; 4861 4862 if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE)) 4863 return (EINVAL); 4864 4865 /* If this isn't a direct child, just bail out */ 4866 if (device_get_parent(child) != dev) 4867 return(bus_generic_teardown_intr(dev, child, irq, cookie)); 4868 4869 rid = rman_get_rid(irq); 4870 if (rid == 0) { 4871 /* Mask INTx */ 4872 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4873 } else { 4874 /* 4875 * Check to see if the interrupt is MSI or MSI-X. If so, 4876 * decrement the appropriate handlers count and mask the 4877 * MSI-X message, or disable MSI messages if the count 4878 * drops to 0. 4879 */ 4880 dinfo = device_get_ivars(child); 4881 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid); 4882 if (rle->res != irq) 4883 return (EINVAL); 4884 if (dinfo->cfg.msi.msi_alloc > 0) { 4885 KASSERT(rid <= dinfo->cfg.msi.msi_alloc, 4886 ("MSI-X index too high")); 4887 if (dinfo->cfg.msi.msi_handlers == 0) 4888 return (EINVAL); 4889 dinfo->cfg.msi.msi_handlers--; 4890 if (dinfo->cfg.msi.msi_handlers == 0) 4891 pci_disable_msi(child); 4892 } else { 4893 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4894 ("No MSI or MSI-X interrupts allocated")); 4895 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4896 ("MSI-X index too high")); 4897 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4898 if (mte->mte_handlers == 0) 4899 return (EINVAL); 4900 mte->mte_handlers--; 4901 if (mte->mte_handlers == 0) 4902 pci_mask_msix(child, rid - 1); 4903 } 4904 } 4905 error = bus_generic_teardown_intr(dev, child, irq, cookie); 4906 if (rid > 0) 4907 KASSERT(error == 0, 4908 ("%s: generic teardown failed for MSI/MSI-X", __func__)); 4909 return (error); 4910 } 4911 4912 int 4913 pci_print_child(device_t dev, device_t child) 4914 { 4915 struct pci_devinfo *dinfo; 4916 struct resource_list *rl; 4917 int retval = 0; 4918 4919 dinfo = device_get_ivars(child); 4920 rl = &dinfo->resources; 4921 4922 retval += bus_print_child_header(dev, child); 4923 4924 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 4925 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); 4926 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 4927 if (device_get_flags(dev)) 4928 retval += printf(" flags %#x", device_get_flags(dev)); 4929 4930 retval += printf(" at device %d.%d", pci_get_slot(child), 4931 pci_get_function(child)); 4932 4933 retval += bus_print_child_domain(dev, child); 4934 retval += bus_print_child_footer(dev, child); 4935 4936 return (retval); 4937 } 4938 4939 static const struct 4940 { 4941 int class; 4942 int subclass; 4943 int report; /* 0 = bootverbose, 1 = always */ 4944 const char *desc; 4945 } pci_nomatch_tab[] = { 4946 {PCIC_OLD, -1, 1, "old"}, 4947 {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"}, 4948 {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"}, 4949 {PCIC_STORAGE, -1, 1, "mass storage"}, 4950 {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"}, 4951 {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"}, 4952 {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"}, 4953 {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"}, 4954 {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"}, 4955 {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"}, 4956 {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"}, 4957 {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"}, 4958 {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"}, 4959 {PCIC_NETWORK, -1, 1, "network"}, 4960 {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"}, 4961 {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"}, 4962 {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"}, 4963 {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"}, 4964 {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"}, 4965 {PCIC_DISPLAY, -1, 1, "display"}, 4966 {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"}, 4967 {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"}, 4968 {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"}, 4969 {PCIC_MULTIMEDIA, -1, 1, "multimedia"}, 4970 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"}, 4971 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"}, 4972 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"}, 4973 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"}, 4974 {PCIC_MEMORY, -1, 1, "memory"}, 4975 {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"}, 4976 {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"}, 4977 {PCIC_BRIDGE, -1, 1, "bridge"}, 4978 {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"}, 4979 {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"}, 4980 {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"}, 4981 {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"}, 4982 {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"}, 4983 {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"}, 4984 {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"}, 4985 {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"}, 4986 {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"}, 4987 {PCIC_SIMPLECOMM, -1, 1, "simple comms"}, 4988 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */ 4989 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"}, 4990 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"}, 4991 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"}, 4992 {PCIC_BASEPERIPH, -1, 0, "base peripheral"}, 4993 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"}, 4994 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"}, 4995 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"}, 4996 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"}, 4997 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"}, 4998 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"}, 4999 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"}, 5000 {PCIC_INPUTDEV, -1, 1, "input device"}, 5001 {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"}, 5002 {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"}, 5003 {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"}, 5004 {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"}, 5005 {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"}, 5006 {PCIC_DOCKING, -1, 1, "docking station"}, 5007 {PCIC_PROCESSOR, -1, 1, "processor"}, 5008 {PCIC_SERIALBUS, -1, 1, "serial bus"}, 5009 {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"}, 5010 {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"}, 5011 {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"}, 5012 {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"}, 5013 {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"}, 5014 {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"}, 5015 {PCIC_WIRELESS, -1, 1, "wireless controller"}, 5016 {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"}, 5017 {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"}, 5018 {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"}, 5019 {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"}, 5020 {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"}, 5021 {PCIC_SATCOM, -1, 1, "satellite communication"}, 5022 {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"}, 5023 {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"}, 5024 {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"}, 5025 {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"}, 5026 {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"}, 5027 {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"}, 5028 {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"}, 5029 {PCIC_DASP, -1, 0, "dasp"}, 5030 {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"}, 5031 {PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"}, 5032 {PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"}, 5033 {PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"}, 5034 {PCIC_INSTRUMENT, -1, 0, "non-essential instrumentation"}, 5035 {0, 0, 0, NULL} 5036 }; 5037 5038 void 5039 pci_probe_nomatch(device_t dev, device_t child) 5040 { 5041 int i, report; 5042 const char *cp, *scp; 5043 char *device; 5044 5045 /* 5046 * Look for a listing for this device in a loaded device database. 5047 */ 5048 report = 1; 5049 if ((device = pci_describe_device(child)) != NULL) { 5050 device_printf(dev, "<%s>", device); 5051 free(device, M_DEVBUF); 5052 } else { 5053 /* 5054 * Scan the class/subclass descriptions for a general 5055 * description. 5056 */ 5057 cp = "unknown"; 5058 scp = NULL; 5059 for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { 5060 if (pci_nomatch_tab[i].class == pci_get_class(child)) { 5061 if (pci_nomatch_tab[i].subclass == -1) { 5062 cp = pci_nomatch_tab[i].desc; 5063 report = pci_nomatch_tab[i].report; 5064 } else if (pci_nomatch_tab[i].subclass == 5065 pci_get_subclass(child)) { 5066 scp = pci_nomatch_tab[i].desc; 5067 report = pci_nomatch_tab[i].report; 5068 } 5069 } 5070 } 5071 if (report || bootverbose) { 5072 device_printf(dev, "<%s%s%s>", 5073 cp ? cp : "", 5074 ((cp != NULL) && (scp != NULL)) ? ", " : "", 5075 scp ? scp : ""); 5076 } 5077 } 5078 if (report || bootverbose) { 5079 printf(" at device %d.%d (no driver attached)\n", 5080 pci_get_slot(child), pci_get_function(child)); 5081 } 5082 pci_cfg_save(child, device_get_ivars(child), 1); 5083 } 5084 5085 void 5086 pci_child_detached(device_t dev, device_t child) 5087 { 5088 struct pci_devinfo *dinfo; 5089 struct resource_list *rl; 5090 5091 dinfo = device_get_ivars(child); 5092 rl = &dinfo->resources; 5093 5094 /* 5095 * Have to deallocate IRQs before releasing any MSI messages and 5096 * have to release MSI messages before deallocating any memory 5097 * BARs. 5098 */ 5099 if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0) 5100 pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n"); 5101 if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) { 5102 if (dinfo->cfg.msi.msi_alloc != 0) 5103 pci_printf(&dinfo->cfg, "Device leaked %d MSI " 5104 "vectors\n", dinfo->cfg.msi.msi_alloc); 5105 else 5106 pci_printf(&dinfo->cfg, "Device leaked %d MSI-X " 5107 "vectors\n", dinfo->cfg.msix.msix_alloc); 5108 (void)pci_release_msi(child); 5109 } 5110 if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0) 5111 pci_printf(&dinfo->cfg, "Device leaked memory resources\n"); 5112 if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0) 5113 pci_printf(&dinfo->cfg, "Device leaked I/O resources\n"); 5114 #ifdef PCI_RES_BUS 5115 if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0) 5116 pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n"); 5117 #endif 5118 5119 pci_cfg_save(child, dinfo, 1); 5120 } 5121 5122 /* 5123 * Parse the PCI device database, if loaded, and return a pointer to a 5124 * description of the device. 5125 * 5126 * The database is flat text formatted as follows: 5127 * 5128 * Any line not in a valid format is ignored. 5129 * Lines are terminated with newline '\n' characters. 5130 * 5131 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then 5132 * the vendor name. 5133 * 5134 * A DEVICE line is entered immediately below the corresponding VENDOR ID. 5135 * - devices cannot be listed without a corresponding VENDOR line. 5136 * A DEVICE line consists of a TAB, the 4 digit (hex) device code, 5137 * another TAB, then the device name. 5138 */ 5139 5140 /* 5141 * Assuming (ptr) points to the beginning of a line in the database, 5142 * return the vendor or device and description of the next entry. 5143 * The value of (vendor) or (device) inappropriate for the entry type 5144 * is set to -1. Returns nonzero at the end of the database. 5145 * 5146 * Note that this is slightly unrobust in the face of corrupt data; 5147 * we attempt to safeguard against this by spamming the end of the 5148 * database with a newline when we initialise. 5149 */ 5150 static int 5151 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc) 5152 { 5153 char *cp = *ptr; 5154 int left; 5155 5156 *device = -1; 5157 *vendor = -1; 5158 **desc = '\0'; 5159 for (;;) { 5160 left = pci_vendordata_size - (cp - pci_vendordata); 5161 if (left <= 0) { 5162 *ptr = cp; 5163 return(1); 5164 } 5165 5166 /* vendor entry? */ 5167 if (*cp != '\t' && 5168 sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2) 5169 break; 5170 /* device entry? */ 5171 if (*cp == '\t' && 5172 sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2) 5173 break; 5174 5175 /* skip to next line */ 5176 while (*cp != '\n' && left > 0) { 5177 cp++; 5178 left--; 5179 } 5180 if (*cp == '\n') { 5181 cp++; 5182 left--; 5183 } 5184 } 5185 /* skip to next line */ 5186 while (*cp != '\n' && left > 0) { 5187 cp++; 5188 left--; 5189 } 5190 if (*cp == '\n' && left > 0) 5191 cp++; 5192 *ptr = cp; 5193 return(0); 5194 } 5195 5196 static char * 5197 pci_describe_device(device_t dev) 5198 { 5199 int vendor, device; 5200 char *desc, *vp, *dp, *line; 5201 5202 desc = vp = dp = NULL; 5203 5204 /* 5205 * If we have no vendor data, we can't do anything. 5206 */ 5207 if (pci_vendordata == NULL) 5208 goto out; 5209 5210 /* 5211 * Scan the vendor data looking for this device 5212 */ 5213 line = pci_vendordata; 5214 if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5215 goto out; 5216 for (;;) { 5217 if (pci_describe_parse_line(&line, &vendor, &device, &vp)) 5218 goto out; 5219 if (vendor == pci_get_vendor(dev)) 5220 break; 5221 } 5222 if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5223 goto out; 5224 for (;;) { 5225 if (pci_describe_parse_line(&line, &vendor, &device, &dp)) { 5226 *dp = 0; 5227 break; 5228 } 5229 if (vendor != -1) { 5230 *dp = 0; 5231 break; 5232 } 5233 if (device == pci_get_device(dev)) 5234 break; 5235 } 5236 if (dp[0] == '\0') 5237 snprintf(dp, 80, "0x%x", pci_get_device(dev)); 5238 if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) != 5239 NULL) 5240 sprintf(desc, "%s, %s", vp, dp); 5241 out: 5242 if (vp != NULL) 5243 free(vp, M_DEVBUF); 5244 if (dp != NULL) 5245 free(dp, M_DEVBUF); 5246 return(desc); 5247 } 5248 5249 int 5250 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 5251 { 5252 struct pci_devinfo *dinfo; 5253 pcicfgregs *cfg; 5254 5255 dinfo = device_get_ivars(child); 5256 cfg = &dinfo->cfg; 5257 5258 switch (which) { 5259 case PCI_IVAR_ETHADDR: 5260 /* 5261 * The generic accessor doesn't deal with failure, so 5262 * we set the return value, then return an error. 5263 */ 5264 *((uint8_t **) result) = NULL; 5265 return (EINVAL); 5266 case PCI_IVAR_SUBVENDOR: 5267 *result = cfg->subvendor; 5268 break; 5269 case PCI_IVAR_SUBDEVICE: 5270 *result = cfg->subdevice; 5271 break; 5272 case PCI_IVAR_VENDOR: 5273 *result = cfg->vendor; 5274 break; 5275 case PCI_IVAR_DEVICE: 5276 *result = cfg->device; 5277 break; 5278 case PCI_IVAR_DEVID: 5279 *result = (cfg->device << 16) | cfg->vendor; 5280 break; 5281 case PCI_IVAR_CLASS: 5282 *result = cfg->baseclass; 5283 break; 5284 case PCI_IVAR_SUBCLASS: 5285 *result = cfg->subclass; 5286 break; 5287 case PCI_IVAR_PROGIF: 5288 *result = cfg->progif; 5289 break; 5290 case PCI_IVAR_REVID: 5291 *result = cfg->revid; 5292 break; 5293 case PCI_IVAR_INTPIN: 5294 *result = cfg->intpin; 5295 break; 5296 case PCI_IVAR_IRQ: 5297 *result = cfg->intline; 5298 break; 5299 case PCI_IVAR_DOMAIN: 5300 *result = cfg->domain; 5301 break; 5302 case PCI_IVAR_BUS: 5303 *result = cfg->bus; 5304 break; 5305 case PCI_IVAR_SLOT: 5306 *result = cfg->slot; 5307 break; 5308 case PCI_IVAR_FUNCTION: 5309 *result = cfg->func; 5310 break; 5311 case PCI_IVAR_CMDREG: 5312 *result = cfg->cmdreg; 5313 break; 5314 case PCI_IVAR_CACHELNSZ: 5315 *result = cfg->cachelnsz; 5316 break; 5317 case PCI_IVAR_MINGNT: 5318 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5319 *result = -1; 5320 return (EINVAL); 5321 } 5322 *result = cfg->mingnt; 5323 break; 5324 case PCI_IVAR_MAXLAT: 5325 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5326 *result = -1; 5327 return (EINVAL); 5328 } 5329 *result = cfg->maxlat; 5330 break; 5331 case PCI_IVAR_LATTIMER: 5332 *result = cfg->lattimer; 5333 break; 5334 default: 5335 return (ENOENT); 5336 } 5337 return (0); 5338 } 5339 5340 int 5341 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 5342 { 5343 struct pci_devinfo *dinfo; 5344 5345 dinfo = device_get_ivars(child); 5346 5347 switch (which) { 5348 case PCI_IVAR_INTPIN: 5349 dinfo->cfg.intpin = value; 5350 return (0); 5351 case PCI_IVAR_ETHADDR: 5352 case PCI_IVAR_SUBVENDOR: 5353 case PCI_IVAR_SUBDEVICE: 5354 case PCI_IVAR_VENDOR: 5355 case PCI_IVAR_DEVICE: 5356 case PCI_IVAR_DEVID: 5357 case PCI_IVAR_CLASS: 5358 case PCI_IVAR_SUBCLASS: 5359 case PCI_IVAR_PROGIF: 5360 case PCI_IVAR_REVID: 5361 case PCI_IVAR_IRQ: 5362 case PCI_IVAR_DOMAIN: 5363 case PCI_IVAR_BUS: 5364 case PCI_IVAR_SLOT: 5365 case PCI_IVAR_FUNCTION: 5366 return (EINVAL); /* disallow for now */ 5367 5368 default: 5369 return (ENOENT); 5370 } 5371 } 5372 5373 #include "opt_ddb.h" 5374 #ifdef DDB 5375 #include <ddb/ddb.h> 5376 #include <sys/cons.h> 5377 5378 /* 5379 * List resources based on pci map registers, used for within ddb 5380 */ 5381 5382 DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE) 5383 { 5384 struct pci_devinfo *dinfo; 5385 struct devlist *devlist_head; 5386 struct pci_conf *p; 5387 const char *name; 5388 int i, error, none_count; 5389 5390 none_count = 0; 5391 /* get the head of the device queue */ 5392 devlist_head = &pci_devq; 5393 5394 /* 5395 * Go through the list of devices and print out devices 5396 */ 5397 for (error = 0, i = 0, 5398 dinfo = STAILQ_FIRST(devlist_head); 5399 (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit; 5400 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) { 5401 /* Populate pd_name and pd_unit */ 5402 name = NULL; 5403 if (dinfo->cfg.dev) 5404 name = device_get_name(dinfo->cfg.dev); 5405 5406 p = &dinfo->conf; 5407 db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x " 5408 "chip=0x%08x rev=0x%02x hdr=0x%02x\n", 5409 (name && *name) ? name : "none", 5410 (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) : 5411 none_count++, 5412 p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, 5413 p->pc_sel.pc_func, (p->pc_class << 16) | 5414 (p->pc_subclass << 8) | p->pc_progif, 5415 (p->pc_subdevice << 16) | p->pc_subvendor, 5416 (p->pc_device << 16) | p->pc_vendor, 5417 p->pc_revid, p->pc_hdr); 5418 } 5419 } 5420 #endif /* DDB */ 5421 5422 struct resource * 5423 pci_reserve_map(device_t dev, device_t child, int type, int *rid, 5424 rman_res_t start, rman_res_t end, rman_res_t count, u_int num, 5425 u_int flags) 5426 { 5427 struct pci_devinfo *dinfo = device_get_ivars(child); 5428 struct resource_list *rl = &dinfo->resources; 5429 struct resource *res; 5430 struct pci_map *pm; 5431 uint16_t cmd; 5432 pci_addr_t map, testval; 5433 int mapsize; 5434 5435 res = NULL; 5436 5437 /* If rid is managed by EA, ignore it */ 5438 if (pci_ea_is_enabled(child, *rid)) 5439 goto out; 5440 5441 pm = pci_find_bar(child, *rid); 5442 if (pm != NULL) { 5443 /* This is a BAR that we failed to allocate earlier. */ 5444 mapsize = pm->pm_size; 5445 map = pm->pm_value; 5446 } else { 5447 /* 5448 * Weed out the bogons, and figure out how large the 5449 * BAR/map is. BARs that read back 0 here are bogus 5450 * and unimplemented. Note: atapci in legacy mode are 5451 * special and handled elsewhere in the code. If you 5452 * have a atapci device in legacy mode and it fails 5453 * here, that other code is broken. 5454 */ 5455 pci_read_bar(child, *rid, &map, &testval, NULL); 5456 5457 /* 5458 * Determine the size of the BAR and ignore BARs with a size 5459 * of 0. Device ROM BARs use a different mask value. 5460 */ 5461 if (PCIR_IS_BIOS(&dinfo->cfg, *rid)) 5462 mapsize = pci_romsize(testval); 5463 else 5464 mapsize = pci_mapsize(testval); 5465 if (mapsize == 0) 5466 goto out; 5467 pm = pci_add_bar(child, *rid, map, mapsize); 5468 } 5469 5470 if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) { 5471 if (type != SYS_RES_MEMORY) { 5472 if (bootverbose) 5473 device_printf(dev, 5474 "child %s requested type %d for rid %#x," 5475 " but the BAR says it is an memio\n", 5476 device_get_nameunit(child), type, *rid); 5477 goto out; 5478 } 5479 } else { 5480 if (type != SYS_RES_IOPORT) { 5481 if (bootverbose) 5482 device_printf(dev, 5483 "child %s requested type %d for rid %#x," 5484 " but the BAR says it is an ioport\n", 5485 device_get_nameunit(child), type, *rid); 5486 goto out; 5487 } 5488 } 5489 5490 /* 5491 * For real BARs, we need to override the size that 5492 * the driver requests, because that's what the BAR 5493 * actually uses and we would otherwise have a 5494 * situation where we might allocate the excess to 5495 * another driver, which won't work. 5496 */ 5497 count = ((pci_addr_t)1 << mapsize) * num; 5498 if (RF_ALIGNMENT(flags) < mapsize) 5499 flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize); 5500 if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH)) 5501 flags |= RF_PREFETCHABLE; 5502 5503 /* 5504 * Allocate enough resource, and then write back the 5505 * appropriate BAR for that resource. 5506 */ 5507 resource_list_add(rl, type, *rid, start, end, count); 5508 res = resource_list_reserve(rl, dev, child, type, rid, start, end, 5509 count, flags & ~RF_ACTIVE); 5510 if (res == NULL) { 5511 resource_list_delete(rl, type, *rid); 5512 device_printf(child, 5513 "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n", 5514 count, *rid, type, start, end); 5515 goto out; 5516 } 5517 if (bootverbose) 5518 device_printf(child, 5519 "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n", 5520 count, *rid, type, rman_get_start(res)); 5521 5522 /* Disable decoding via the CMD register before updating the BAR */ 5523 cmd = pci_read_config(child, PCIR_COMMAND, 2); 5524 pci_write_config(child, PCIR_COMMAND, 5525 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 5526 5527 map = rman_get_start(res); 5528 pci_write_bar(child, pm, map); 5529 5530 /* Restore the original value of the CMD register */ 5531 pci_write_config(child, PCIR_COMMAND, cmd, 2); 5532 out: 5533 return (res); 5534 } 5535 5536 struct resource * 5537 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid, 5538 rman_res_t start, rman_res_t end, rman_res_t count, u_long num, 5539 u_int flags) 5540 { 5541 struct pci_devinfo *dinfo; 5542 struct resource_list *rl; 5543 struct resource_list_entry *rle; 5544 struct resource *res; 5545 pcicfgregs *cfg; 5546 5547 /* 5548 * Perform lazy resource allocation 5549 */ 5550 dinfo = device_get_ivars(child); 5551 rl = &dinfo->resources; 5552 cfg = &dinfo->cfg; 5553 switch (type) { 5554 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 5555 case PCI_RES_BUS: 5556 return (pci_alloc_secbus(dev, child, rid, start, end, count, 5557 flags)); 5558 #endif 5559 case SYS_RES_IRQ: 5560 /* 5561 * Can't alloc legacy interrupt once MSI messages have 5562 * been allocated. 5563 */ 5564 if (*rid == 0 && (cfg->msi.msi_alloc > 0 || 5565 cfg->msix.msix_alloc > 0)) 5566 return (NULL); 5567 5568 /* 5569 * If the child device doesn't have an interrupt 5570 * routed and is deserving of an interrupt, try to 5571 * assign it one. 5572 */ 5573 if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) && 5574 (cfg->intpin != 0)) 5575 pci_assign_interrupt(dev, child, 0); 5576 break; 5577 case SYS_RES_IOPORT: 5578 case SYS_RES_MEMORY: 5579 #ifdef NEW_PCIB 5580 /* 5581 * PCI-PCI bridge I/O window resources are not BARs. 5582 * For those allocations just pass the request up the 5583 * tree. 5584 */ 5585 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) { 5586 switch (*rid) { 5587 case PCIR_IOBASEL_1: 5588 case PCIR_MEMBASE_1: 5589 case PCIR_PMBASEL_1: 5590 /* 5591 * XXX: Should we bother creating a resource 5592 * list entry? 5593 */ 5594 return (bus_generic_alloc_resource(dev, child, 5595 type, rid, start, end, count, flags)); 5596 } 5597 } 5598 #endif 5599 /* Reserve resources for this BAR if needed. */ 5600 rle = resource_list_find(rl, type, *rid); 5601 if (rle == NULL) { 5602 res = pci_reserve_map(dev, child, type, rid, start, end, 5603 count, num, flags); 5604 if (res == NULL) 5605 return (NULL); 5606 } 5607 } 5608 return (resource_list_alloc(rl, dev, child, type, rid, 5609 start, end, count, flags)); 5610 } 5611 5612 struct resource * 5613 pci_alloc_resource(device_t dev, device_t child, int type, int *rid, 5614 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 5615 { 5616 #ifdef PCI_IOV 5617 struct pci_devinfo *dinfo; 5618 #endif 5619 5620 if (device_get_parent(child) != dev) 5621 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 5622 type, rid, start, end, count, flags)); 5623 5624 #ifdef PCI_IOV 5625 dinfo = device_get_ivars(child); 5626 if (dinfo->cfg.flags & PCICFG_VF) { 5627 switch (type) { 5628 /* VFs can't have I/O BARs. */ 5629 case SYS_RES_IOPORT: 5630 return (NULL); 5631 case SYS_RES_MEMORY: 5632 return (pci_vf_alloc_mem_resource(dev, child, rid, 5633 start, end, count, flags)); 5634 } 5635 5636 /* Fall through for other types of resource allocations. */ 5637 } 5638 #endif 5639 5640 return (pci_alloc_multi_resource(dev, child, type, rid, start, end, 5641 count, 1, flags)); 5642 } 5643 5644 int 5645 pci_release_resource(device_t dev, device_t child, struct resource *r) 5646 { 5647 struct pci_devinfo *dinfo; 5648 struct resource_list *rl; 5649 pcicfgregs *cfg __unused; 5650 5651 if (device_get_parent(child) != dev) 5652 return (bus_generic_release_resource(dev, child, r)); 5653 5654 dinfo = device_get_ivars(child); 5655 cfg = &dinfo->cfg; 5656 5657 #ifdef PCI_IOV 5658 if (cfg->flags & PCICFG_VF) { 5659 switch (rman_get_type(r)) { 5660 /* VFs can't have I/O BARs. */ 5661 case SYS_RES_IOPORT: 5662 return (EDOOFUS); 5663 case SYS_RES_MEMORY: 5664 return (pci_vf_release_mem_resource(dev, child, r)); 5665 } 5666 5667 /* Fall through for other types of resource allocations. */ 5668 } 5669 #endif 5670 5671 #ifdef NEW_PCIB 5672 /* 5673 * PCI-PCI bridge I/O window resources are not BARs. For 5674 * those allocations just pass the request up the tree. 5675 */ 5676 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE && 5677 (rman_get_type(r) == SYS_RES_IOPORT || 5678 rman_get_type(r) == SYS_RES_MEMORY)) { 5679 switch (rman_get_rid(r)) { 5680 case PCIR_IOBASEL_1: 5681 case PCIR_MEMBASE_1: 5682 case PCIR_PMBASEL_1: 5683 return (bus_generic_release_resource(dev, child, r)); 5684 } 5685 } 5686 #endif 5687 5688 rl = &dinfo->resources; 5689 return (resource_list_release(rl, dev, child, r)); 5690 } 5691 5692 int 5693 pci_activate_resource(device_t dev, device_t child, struct resource *r) 5694 { 5695 struct pci_devinfo *dinfo; 5696 int error, rid, type; 5697 5698 if (device_get_parent(child) != dev) 5699 return (bus_generic_activate_resource(dev, child, r)); 5700 5701 dinfo = device_get_ivars(child); 5702 #ifdef PCI_IOV 5703 if (dinfo->cfg.flags & PCICFG_VF) { 5704 switch (rman_get_type(r)) { 5705 /* VFs can't have I/O BARs. */ 5706 case SYS_RES_IOPORT: 5707 error = EINVAL; 5708 break; 5709 case SYS_RES_MEMORY: 5710 error = pci_vf_activate_mem_resource(dev, child, r); 5711 break; 5712 default: 5713 error = bus_generic_activate_resource(dev, child, r); 5714 break; 5715 } 5716 } else 5717 #endif 5718 error = bus_generic_activate_resource(dev, child, r); 5719 if (error) 5720 return (error); 5721 5722 rid = rman_get_rid(r); 5723 type = rman_get_type(r); 5724 5725 /* Device ROMs need their decoding explicitly enabled. */ 5726 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5727 pci_write_bar(child, pci_find_bar(child, rid), 5728 rman_get_start(r) | PCIM_BIOS_ENABLE); 5729 5730 /* Enable decoding in the command register when activating BARs. */ 5731 switch (type) { 5732 case SYS_RES_IOPORT: 5733 case SYS_RES_MEMORY: 5734 error = PCI_ENABLE_IO(dev, child, type); 5735 break; 5736 } 5737 return (error); 5738 } 5739 5740 int 5741 pci_deactivate_resource(device_t dev, device_t child, struct resource *r) 5742 { 5743 struct pci_devinfo *dinfo; 5744 int error, rid, type; 5745 5746 if (device_get_parent(child) != dev) 5747 return (bus_generic_deactivate_resource(dev, child, r)); 5748 5749 dinfo = device_get_ivars(child); 5750 #ifdef PCI_IOV 5751 if (dinfo->cfg.flags & PCICFG_VF) { 5752 switch (rman_get_type(r)) { 5753 /* VFs can't have I/O BARs. */ 5754 case SYS_RES_IOPORT: 5755 error = EINVAL; 5756 break; 5757 case SYS_RES_MEMORY: 5758 error = pci_vf_deactivate_mem_resource(dev, child, r); 5759 break; 5760 default: 5761 error = bus_generic_deactivate_resource(dev, child, r); 5762 break; 5763 } 5764 } else 5765 #endif 5766 error = bus_generic_deactivate_resource(dev, child, r); 5767 if (error) 5768 return (error); 5769 5770 /* Disable decoding for device ROMs. */ 5771 rid = rman_get_rid(r); 5772 type = rman_get_type(r); 5773 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5774 pci_write_bar(child, pci_find_bar(child, rid), 5775 rman_get_start(r)); 5776 return (0); 5777 } 5778 5779 #ifdef PCI_IOV 5780 int 5781 pci_adjust_resource(device_t dev, device_t child, struct resource *r, 5782 rman_res_t start, rman_res_t end) 5783 { 5784 struct pci_devinfo *dinfo; 5785 5786 if (device_get_parent(child) != dev) 5787 return (bus_generic_adjust_resource(dev, child, r, start, 5788 end)); 5789 5790 dinfo = device_get_ivars(child); 5791 if (dinfo->cfg.flags & PCICFG_VF) { 5792 switch (rman_get_type(r)) { 5793 /* VFs can't have I/O BARs. */ 5794 case SYS_RES_IOPORT: 5795 return (EINVAL); 5796 case SYS_RES_MEMORY: 5797 return (pci_vf_adjust_mem_resource(dev, child, r, 5798 start, end)); 5799 } 5800 5801 /* Fall through for other types of resource allocations. */ 5802 } 5803 5804 return (bus_generic_adjust_resource(dev, child, r, start, end)); 5805 } 5806 5807 int 5808 pci_map_resource(device_t dev, device_t child, struct resource *r, 5809 struct resource_map_request *argsp, struct resource_map *map) 5810 { 5811 struct pci_devinfo *dinfo; 5812 5813 if (device_get_parent(child) != dev) 5814 return (bus_generic_map_resource(dev, child, r, argsp, 5815 map)); 5816 5817 dinfo = device_get_ivars(child); 5818 if (dinfo->cfg.flags & PCICFG_VF) { 5819 switch (rman_get_type(r)) { 5820 /* VFs can't have I/O BARs. */ 5821 case SYS_RES_IOPORT: 5822 return (EINVAL); 5823 case SYS_RES_MEMORY: 5824 return (pci_vf_map_mem_resource(dev, child, r, argsp, 5825 map)); 5826 } 5827 5828 /* Fall through for other types of resource allocations. */ 5829 } 5830 5831 return (bus_generic_map_resource(dev, child, r, argsp, map)); 5832 } 5833 5834 int 5835 pci_unmap_resource(device_t dev, device_t child, struct resource *r, 5836 struct resource_map *map) 5837 { 5838 struct pci_devinfo *dinfo; 5839 5840 if (device_get_parent(child) != dev) 5841 return (bus_generic_unmap_resource(dev, child, r, map)); 5842 5843 dinfo = device_get_ivars(child); 5844 if (dinfo->cfg.flags & PCICFG_VF) { 5845 switch (rman_get_type(r)) { 5846 /* VFs can't have I/O BARs. */ 5847 case SYS_RES_IOPORT: 5848 return (EINVAL); 5849 case SYS_RES_MEMORY: 5850 return (pci_vf_unmap_mem_resource(dev, child, r, map)); 5851 } 5852 5853 /* Fall through for other types of resource allocations. */ 5854 } 5855 5856 return (bus_generic_unmap_resource(dev, child, r, map)); 5857 } 5858 #endif 5859 5860 void 5861 pci_child_deleted(device_t dev, device_t child) 5862 { 5863 struct resource_list_entry *rle; 5864 struct resource_list *rl; 5865 struct pci_devinfo *dinfo; 5866 5867 dinfo = device_get_ivars(child); 5868 rl = &dinfo->resources; 5869 5870 EVENTHANDLER_INVOKE(pci_delete_device, child); 5871 5872 /* Turn off access to resources we're about to free */ 5873 if (bus_child_present(child) != 0) { 5874 pci_write_config(child, PCIR_COMMAND, pci_read_config(child, 5875 PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2); 5876 5877 pci_disable_busmaster(child); 5878 } 5879 5880 /* Free all allocated resources */ 5881 STAILQ_FOREACH(rle, rl, link) { 5882 if (rle->res) { 5883 if (rman_get_flags(rle->res) & RF_ACTIVE || 5884 resource_list_busy(rl, rle->type, rle->rid)) { 5885 pci_printf(&dinfo->cfg, 5886 "Resource still owned, oops. " 5887 "(type=%d, rid=%d, addr=%lx)\n", 5888 rle->type, rle->rid, 5889 rman_get_start(rle->res)); 5890 bus_release_resource(child, rle->type, rle->rid, 5891 rle->res); 5892 } 5893 resource_list_unreserve(rl, dev, child, rle->type, 5894 rle->rid); 5895 } 5896 } 5897 resource_list_free(rl); 5898 5899 pci_freecfg(dinfo); 5900 } 5901 5902 void 5903 pci_delete_resource(device_t dev, device_t child, int type, int rid) 5904 { 5905 struct pci_devinfo *dinfo; 5906 struct resource_list *rl; 5907 struct resource_list_entry *rle; 5908 5909 if (device_get_parent(child) != dev) 5910 return; 5911 5912 dinfo = device_get_ivars(child); 5913 rl = &dinfo->resources; 5914 rle = resource_list_find(rl, type, rid); 5915 if (rle == NULL) 5916 return; 5917 5918 if (rle->res) { 5919 if (rman_get_flags(rle->res) & RF_ACTIVE || 5920 resource_list_busy(rl, type, rid)) { 5921 device_printf(dev, "delete_resource: " 5922 "Resource still owned by child, oops. " 5923 "(type=%d, rid=%d, addr=%jx)\n", 5924 type, rid, rman_get_start(rle->res)); 5925 return; 5926 } 5927 resource_list_unreserve(rl, dev, child, type, rid); 5928 } 5929 resource_list_delete(rl, type, rid); 5930 } 5931 5932 struct resource_list * 5933 pci_get_resource_list (device_t dev, device_t child) 5934 { 5935 struct pci_devinfo *dinfo = device_get_ivars(child); 5936 5937 return (&dinfo->resources); 5938 } 5939 5940 #ifdef IOMMU 5941 bus_dma_tag_t 5942 pci_get_dma_tag(device_t bus, device_t dev) 5943 { 5944 bus_dma_tag_t tag; 5945 struct pci_softc *sc; 5946 5947 if (device_get_parent(dev) == bus) { 5948 /* try iommu and return if it works */ 5949 tag = iommu_get_dma_tag(bus, dev); 5950 } else 5951 tag = NULL; 5952 if (tag == NULL) { 5953 sc = device_get_softc(bus); 5954 tag = sc->sc_dma_tag; 5955 } 5956 return (tag); 5957 } 5958 #else 5959 bus_dma_tag_t 5960 pci_get_dma_tag(device_t bus, device_t dev) 5961 { 5962 struct pci_softc *sc = device_get_softc(bus); 5963 5964 return (sc->sc_dma_tag); 5965 } 5966 #endif 5967 5968 uint32_t 5969 pci_read_config_method(device_t dev, device_t child, int reg, int width) 5970 { 5971 struct pci_devinfo *dinfo = device_get_ivars(child); 5972 pcicfgregs *cfg = &dinfo->cfg; 5973 5974 #ifdef PCI_IOV 5975 /* 5976 * SR-IOV VFs don't implement the VID or DID registers, so we have to 5977 * emulate them here. 5978 */ 5979 if (cfg->flags & PCICFG_VF) { 5980 if (reg == PCIR_VENDOR) { 5981 switch (width) { 5982 case 4: 5983 return (cfg->device << 16 | cfg->vendor); 5984 case 2: 5985 return (cfg->vendor); 5986 case 1: 5987 return (cfg->vendor & 0xff); 5988 default: 5989 return (0xffffffff); 5990 } 5991 } else if (reg == PCIR_DEVICE) { 5992 switch (width) { 5993 /* Note that an unaligned 4-byte read is an error. */ 5994 case 2: 5995 return (cfg->device); 5996 case 1: 5997 return (cfg->device & 0xff); 5998 default: 5999 return (0xffffffff); 6000 } 6001 } 6002 } 6003 #endif 6004 6005 return (PCIB_READ_CONFIG(device_get_parent(dev), 6006 cfg->bus, cfg->slot, cfg->func, reg, width)); 6007 } 6008 6009 void 6010 pci_write_config_method(device_t dev, device_t child, int reg, 6011 uint32_t val, int width) 6012 { 6013 struct pci_devinfo *dinfo = device_get_ivars(child); 6014 pcicfgregs *cfg = &dinfo->cfg; 6015 6016 PCIB_WRITE_CONFIG(device_get_parent(dev), 6017 cfg->bus, cfg->slot, cfg->func, reg, val, width); 6018 } 6019 6020 int 6021 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb) 6022 { 6023 6024 sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d", 6025 pci_get_slot(child), pci_get_function(child), pci_get_domain(child), 6026 pci_get_bus(child), pci_get_slot(child), pci_get_function(child)); 6027 return (0); 6028 } 6029 6030 int 6031 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb) 6032 { 6033 struct pci_devinfo *dinfo; 6034 pcicfgregs *cfg; 6035 6036 dinfo = device_get_ivars(child); 6037 cfg = &dinfo->cfg; 6038 sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x " 6039 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device, 6040 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass, 6041 cfg->progif); 6042 return (0); 6043 } 6044 6045 int 6046 pci_get_device_path_method(device_t bus, device_t child, const char *locator, 6047 struct sbuf *sb) 6048 { 6049 device_t parent = device_get_parent(bus); 6050 int rv; 6051 6052 if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) { 6053 rv = bus_generic_get_device_path(parent, bus, locator, sb); 6054 if (rv == 0) { 6055 sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child), 6056 pci_get_function(child)); 6057 } 6058 return (0); 6059 } 6060 return (bus_generic_get_device_path(bus, child, locator, sb)); 6061 } 6062 6063 int 6064 pci_assign_interrupt_method(device_t dev, device_t child) 6065 { 6066 struct pci_devinfo *dinfo = device_get_ivars(child); 6067 pcicfgregs *cfg = &dinfo->cfg; 6068 6069 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, 6070 cfg->intpin)); 6071 } 6072 6073 static void 6074 pci_lookup(void *arg, const char *name, device_t *dev) 6075 { 6076 long val; 6077 char *end; 6078 int domain, bus, slot, func; 6079 6080 if (*dev != NULL) 6081 return; 6082 6083 /* 6084 * Accept pciconf-style selectors of either pciD:B:S:F or 6085 * pciB:S:F. In the latter case, the domain is assumed to 6086 * be zero. 6087 */ 6088 if (strncmp(name, "pci", 3) != 0) 6089 return; 6090 val = strtol(name + 3, &end, 10); 6091 if (val < 0 || val > INT_MAX || *end != ':') 6092 return; 6093 domain = val; 6094 val = strtol(end + 1, &end, 10); 6095 if (val < 0 || val > INT_MAX || *end != ':') 6096 return; 6097 bus = val; 6098 val = strtol(end + 1, &end, 10); 6099 if (val < 0 || val > INT_MAX) 6100 return; 6101 slot = val; 6102 if (*end == ':') { 6103 val = strtol(end + 1, &end, 10); 6104 if (val < 0 || val > INT_MAX || *end != '\0') 6105 return; 6106 func = val; 6107 } else if (*end == '\0') { 6108 func = slot; 6109 slot = bus; 6110 bus = domain; 6111 domain = 0; 6112 } else 6113 return; 6114 6115 if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX || 6116 func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX)) 6117 return; 6118 6119 *dev = pci_find_dbsf(domain, bus, slot, func); 6120 } 6121 6122 static int 6123 pci_modevent(module_t mod, int what, void *arg) 6124 { 6125 static struct cdev *pci_cdev; 6126 static eventhandler_tag tag; 6127 6128 switch (what) { 6129 case MOD_LOAD: 6130 STAILQ_INIT(&pci_devq); 6131 pci_generation = 0; 6132 pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644, 6133 "pci"); 6134 pci_load_vendor_data(); 6135 tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL, 6136 1000); 6137 break; 6138 6139 case MOD_UNLOAD: 6140 if (tag != NULL) 6141 EVENTHANDLER_DEREGISTER(dev_lookup, tag); 6142 destroy_dev(pci_cdev); 6143 break; 6144 } 6145 6146 return (0); 6147 } 6148 6149 static void 6150 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo) 6151 { 6152 #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2) 6153 struct pcicfg_pcie *cfg; 6154 int version, pos; 6155 6156 cfg = &dinfo->cfg.pcie; 6157 pos = cfg->pcie_location; 6158 6159 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 6160 6161 WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl); 6162 6163 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6164 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 6165 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 6166 WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl); 6167 6168 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6169 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 6170 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 6171 WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl); 6172 6173 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6174 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 6175 WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl); 6176 6177 if (version > 1) { 6178 WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2); 6179 WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2); 6180 WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2); 6181 } 6182 #undef WREG 6183 } 6184 6185 static void 6186 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo) 6187 { 6188 pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 6189 dinfo->cfg.pcix.pcix_command, 2); 6190 } 6191 6192 void 6193 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo) 6194 { 6195 6196 /* 6197 * Restore the device to full power mode. We must do this 6198 * before we restore the registers because moving from D3 to 6199 * D0 will cause the chip's BARs and some other registers to 6200 * be reset to some unknown power on reset values. Cut down 6201 * the noise on boot by doing nothing if we are already in 6202 * state D0. 6203 */ 6204 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) 6205 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6206 pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1); 6207 pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1); 6208 pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1); 6209 pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1); 6210 pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1); 6211 pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1); 6212 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 6213 case PCIM_HDRTYPE_NORMAL: 6214 pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); 6215 pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); 6216 break; 6217 case PCIM_HDRTYPE_BRIDGE: 6218 pci_write_config(dev, PCIR_SECLAT_1, 6219 dinfo->cfg.bridge.br_seclat, 1); 6220 pci_write_config(dev, PCIR_SUBBUS_1, 6221 dinfo->cfg.bridge.br_subbus, 1); 6222 pci_write_config(dev, PCIR_SECBUS_1, 6223 dinfo->cfg.bridge.br_secbus, 1); 6224 pci_write_config(dev, PCIR_PRIBUS_1, 6225 dinfo->cfg.bridge.br_pribus, 1); 6226 pci_write_config(dev, PCIR_BRIDGECTL_1, 6227 dinfo->cfg.bridge.br_control, 2); 6228 break; 6229 case PCIM_HDRTYPE_CARDBUS: 6230 pci_write_config(dev, PCIR_SECLAT_2, 6231 dinfo->cfg.bridge.br_seclat, 1); 6232 pci_write_config(dev, PCIR_SUBBUS_2, 6233 dinfo->cfg.bridge.br_subbus, 1); 6234 pci_write_config(dev, PCIR_SECBUS_2, 6235 dinfo->cfg.bridge.br_secbus, 1); 6236 pci_write_config(dev, PCIR_PRIBUS_2, 6237 dinfo->cfg.bridge.br_pribus, 1); 6238 pci_write_config(dev, PCIR_BRIDGECTL_2, 6239 dinfo->cfg.bridge.br_control, 2); 6240 break; 6241 } 6242 pci_restore_bars(dev); 6243 6244 if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE) 6245 pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2); 6246 6247 /* 6248 * Restore extended capabilities for PCI-Express and PCI-X 6249 */ 6250 if (dinfo->cfg.pcie.pcie_location != 0) 6251 pci_cfg_restore_pcie(dev, dinfo); 6252 if (dinfo->cfg.pcix.pcix_location != 0) 6253 pci_cfg_restore_pcix(dev, dinfo); 6254 6255 /* Restore MSI and MSI-X configurations if they are present. */ 6256 if (dinfo->cfg.msi.msi_location != 0) 6257 pci_resume_msi(dev); 6258 if (dinfo->cfg.msix.msix_location != 0) 6259 pci_resume_msix(dev); 6260 6261 #ifdef PCI_IOV 6262 if (dinfo->cfg.iov != NULL) 6263 pci_iov_cfg_restore(dev, dinfo); 6264 #endif 6265 } 6266 6267 static void 6268 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo) 6269 { 6270 #define RREG(n) pci_read_config(dev, pos + (n), 2) 6271 struct pcicfg_pcie *cfg; 6272 int version, pos; 6273 6274 cfg = &dinfo->cfg.pcie; 6275 pos = cfg->pcie_location; 6276 6277 cfg->pcie_flags = RREG(PCIER_FLAGS); 6278 6279 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 6280 6281 cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL); 6282 6283 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6284 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 6285 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 6286 cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL); 6287 6288 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6289 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 6290 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 6291 cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL); 6292 6293 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6294 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 6295 cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL); 6296 6297 if (version > 1) { 6298 cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2); 6299 cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2); 6300 cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2); 6301 } 6302 #undef RREG 6303 } 6304 6305 static void 6306 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo) 6307 { 6308 dinfo->cfg.pcix.pcix_command = pci_read_config(dev, 6309 dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2); 6310 } 6311 6312 void 6313 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate) 6314 { 6315 uint32_t cls; 6316 int ps; 6317 6318 /* 6319 * Some drivers apparently write to these registers w/o updating our 6320 * cached copy. No harm happens if we update the copy, so do so here 6321 * so we can restore them. The COMMAND register is modified by the 6322 * bus w/o updating the cache. This should represent the normally 6323 * writable portion of the 'defined' part of type 0/1/2 headers. 6324 */ 6325 dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2); 6326 dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2); 6327 dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2); 6328 dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1); 6329 dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1); 6330 dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 6331 dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 6332 dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1); 6333 dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1); 6334 dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1); 6335 dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1); 6336 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 6337 case PCIM_HDRTYPE_NORMAL: 6338 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); 6339 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); 6340 dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); 6341 dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); 6342 break; 6343 case PCIM_HDRTYPE_BRIDGE: 6344 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6345 PCIR_SECLAT_1, 1); 6346 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6347 PCIR_SUBBUS_1, 1); 6348 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6349 PCIR_SECBUS_1, 1); 6350 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6351 PCIR_PRIBUS_1, 1); 6352 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6353 PCIR_BRIDGECTL_1, 2); 6354 break; 6355 case PCIM_HDRTYPE_CARDBUS: 6356 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6357 PCIR_SECLAT_2, 1); 6358 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6359 PCIR_SUBBUS_2, 1); 6360 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6361 PCIR_SECBUS_2, 1); 6362 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6363 PCIR_PRIBUS_2, 1); 6364 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6365 PCIR_BRIDGECTL_2, 2); 6366 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2); 6367 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2); 6368 break; 6369 } 6370 6371 if (dinfo->cfg.pcie.pcie_location != 0) 6372 pci_cfg_save_pcie(dev, dinfo); 6373 6374 if (dinfo->cfg.pcix.pcix_location != 0) 6375 pci_cfg_save_pcix(dev, dinfo); 6376 6377 #ifdef PCI_IOV 6378 if (dinfo->cfg.iov != NULL) 6379 pci_iov_cfg_save(dev, dinfo); 6380 #endif 6381 6382 /* 6383 * don't set the state for display devices, base peripherals and 6384 * memory devices since bad things happen when they are powered down. 6385 * We should (a) have drivers that can easily detach and (b) use 6386 * generic drivers for these devices so that some device actually 6387 * attaches. We need to make sure that when we implement (a) we don't 6388 * power the device down on a reattach. 6389 */ 6390 cls = pci_get_class(dev); 6391 if (!setstate) 6392 return; 6393 switch (pci_do_power_nodriver) 6394 { 6395 case 0: /* NO powerdown at all */ 6396 return; 6397 case 1: /* Conservative about what to power down */ 6398 if (cls == PCIC_STORAGE) 6399 return; 6400 /*FALLTHROUGH*/ 6401 case 2: /* Aggressive about what to power down */ 6402 if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY || 6403 cls == PCIC_BASEPERIPH) 6404 return; 6405 /*FALLTHROUGH*/ 6406 case 3: /* Power down everything */ 6407 break; 6408 } 6409 /* 6410 * PCI spec says we can only go into D3 state from D0 state. 6411 * Transition from D[12] into D0 before going to D3 state. 6412 */ 6413 ps = pci_get_powerstate(dev); 6414 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6415 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6416 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3) 6417 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6418 } 6419 6420 /* Wrapper APIs suitable for device driver use. */ 6421 void 6422 pci_save_state(device_t dev) 6423 { 6424 struct pci_devinfo *dinfo; 6425 6426 dinfo = device_get_ivars(dev); 6427 pci_cfg_save(dev, dinfo, 0); 6428 } 6429 6430 void 6431 pci_restore_state(device_t dev) 6432 { 6433 struct pci_devinfo *dinfo; 6434 6435 dinfo = device_get_ivars(dev); 6436 pci_cfg_restore(dev, dinfo); 6437 } 6438 6439 static int 6440 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type, 6441 uintptr_t *id) 6442 { 6443 6444 return (PCIB_GET_ID(device_get_parent(dev), child, type, id)); 6445 } 6446 6447 /* Find the upstream port of a given PCI device in a root complex. */ 6448 device_t 6449 pci_find_pcie_root_port(device_t dev) 6450 { 6451 struct pci_devinfo *dinfo; 6452 devclass_t pci_class; 6453 device_t pcib, bus; 6454 6455 pci_class = devclass_find("pci"); 6456 KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class, 6457 ("%s: non-pci device %s", __func__, device_get_nameunit(dev))); 6458 6459 /* 6460 * Walk the bridge hierarchy until we find a PCI-e root 6461 * port or a non-PCI device. 6462 */ 6463 for (;;) { 6464 bus = device_get_parent(dev); 6465 KASSERT(bus != NULL, ("%s: null parent of %s", __func__, 6466 device_get_nameunit(dev))); 6467 6468 pcib = device_get_parent(bus); 6469 KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__, 6470 device_get_nameunit(bus))); 6471 6472 /* 6473 * pcib's parent must be a PCI bus for this to be a 6474 * PCI-PCI bridge. 6475 */ 6476 if (device_get_devclass(device_get_parent(pcib)) != pci_class) 6477 return (NULL); 6478 6479 dinfo = device_get_ivars(pcib); 6480 if (dinfo->cfg.pcie.pcie_location != 0 && 6481 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) 6482 return (pcib); 6483 6484 dev = pcib; 6485 } 6486 } 6487 6488 /* 6489 * Wait for pending transactions to complete on a PCI-express function. 6490 * 6491 * The maximum delay is specified in milliseconds in max_delay. Note 6492 * that this function may sleep. 6493 * 6494 * Returns true if the function is idle and false if the timeout is 6495 * exceeded. If dev is not a PCI-express function, this returns true. 6496 */ 6497 bool 6498 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay) 6499 { 6500 struct pci_devinfo *dinfo = device_get_ivars(dev); 6501 uint16_t sta; 6502 int cap; 6503 6504 cap = dinfo->cfg.pcie.pcie_location; 6505 if (cap == 0) 6506 return (true); 6507 6508 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6509 while (sta & PCIEM_STA_TRANSACTION_PND) { 6510 if (max_delay == 0) 6511 return (false); 6512 6513 /* Poll once every 100 milliseconds up to the timeout. */ 6514 if (max_delay > 100) { 6515 pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK); 6516 max_delay -= 100; 6517 } else { 6518 pause_sbt("pcietp", max_delay * SBT_1MS, 0, 6519 C_HARDCLOCK); 6520 max_delay = 0; 6521 } 6522 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6523 } 6524 6525 return (true); 6526 } 6527 6528 /* 6529 * Determine the maximum Completion Timeout in microseconds. 6530 * 6531 * For non-PCI-express functions this returns 0. 6532 */ 6533 int 6534 pcie_get_max_completion_timeout(device_t dev) 6535 { 6536 struct pci_devinfo *dinfo = device_get_ivars(dev); 6537 int cap; 6538 6539 cap = dinfo->cfg.pcie.pcie_location; 6540 if (cap == 0) 6541 return (0); 6542 6543 /* 6544 * Functions using the 1.x spec use the default timeout range of 6545 * 50 microseconds to 50 milliseconds. Functions that do not 6546 * support programmable timeouts also use this range. 6547 */ 6548 if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 || 6549 (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) & 6550 PCIEM_CAP2_COMP_TIMO_RANGES) == 0) 6551 return (50 * 1000); 6552 6553 switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) & 6554 PCIEM_CTL2_COMP_TIMO_VAL) { 6555 case PCIEM_CTL2_COMP_TIMO_100US: 6556 return (100); 6557 case PCIEM_CTL2_COMP_TIMO_10MS: 6558 return (10 * 1000); 6559 case PCIEM_CTL2_COMP_TIMO_55MS: 6560 return (55 * 1000); 6561 case PCIEM_CTL2_COMP_TIMO_210MS: 6562 return (210 * 1000); 6563 case PCIEM_CTL2_COMP_TIMO_900MS: 6564 return (900 * 1000); 6565 case PCIEM_CTL2_COMP_TIMO_3500MS: 6566 return (3500 * 1000); 6567 case PCIEM_CTL2_COMP_TIMO_13S: 6568 return (13 * 1000 * 1000); 6569 case PCIEM_CTL2_COMP_TIMO_64S: 6570 return (64 * 1000 * 1000); 6571 default: 6572 return (50 * 1000); 6573 } 6574 } 6575 6576 void 6577 pcie_apei_error(device_t dev, int sev, uint8_t *aerp) 6578 { 6579 struct pci_devinfo *dinfo = device_get_ivars(dev); 6580 const char *s; 6581 int aer; 6582 uint32_t r, r1; 6583 uint16_t rs; 6584 6585 if (sev == PCIEM_STA_CORRECTABLE_ERROR) 6586 s = "Correctable"; 6587 else if (sev == PCIEM_STA_NON_FATAL_ERROR) 6588 s = "Uncorrectable (Non-Fatal)"; 6589 else 6590 s = "Uncorrectable (Fatal)"; 6591 device_printf(dev, "%s PCIe error reported by APEI\n", s); 6592 if (aerp) { 6593 if (sev == PCIEM_STA_CORRECTABLE_ERROR) { 6594 r = le32dec(aerp + PCIR_AER_COR_STATUS); 6595 r1 = le32dec(aerp + PCIR_AER_COR_MASK); 6596 } else { 6597 r = le32dec(aerp + PCIR_AER_UC_STATUS); 6598 r1 = le32dec(aerp + PCIR_AER_UC_MASK); 6599 } 6600 device_printf(dev, "status 0x%08x mask 0x%08x", r, r1); 6601 if (sev != PCIEM_STA_CORRECTABLE_ERROR) { 6602 r = le32dec(aerp + PCIR_AER_UC_SEVERITY); 6603 rs = le16dec(aerp + PCIR_AER_CAP_CONTROL); 6604 printf(" severity 0x%08x first %d\n", 6605 r, rs & 0x1f); 6606 } else 6607 printf("\n"); 6608 } 6609 6610 /* As kind of recovery just report and clear the error statuses. */ 6611 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6612 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6613 if (r != 0) { 6614 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6615 device_printf(dev, "Clearing UC AER errors 0x%08x\n", r); 6616 } 6617 6618 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6619 if (r != 0) { 6620 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6621 device_printf(dev, "Clearing COR AER errors 0x%08x\n", r); 6622 } 6623 } 6624 if (dinfo->cfg.pcie.pcie_location != 0) { 6625 rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6626 PCIER_DEVICE_STA, 2); 6627 if ((rs & (PCIEM_STA_CORRECTABLE_ERROR | 6628 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6629 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6630 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6631 PCIER_DEVICE_STA, rs, 2); 6632 device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs); 6633 } 6634 } 6635 } 6636 6637 /* 6638 * Perform a Function Level Reset (FLR) on a device. 6639 * 6640 * This function first waits for any pending transactions to complete 6641 * within the timeout specified by max_delay. If transactions are 6642 * still pending, the function will return false without attempting a 6643 * reset. 6644 * 6645 * If dev is not a PCI-express function or does not support FLR, this 6646 * function returns false. 6647 * 6648 * Note that no registers are saved or restored. The caller is 6649 * responsible for saving and restoring any registers including 6650 * PCI-standard registers via pci_save_state() and 6651 * pci_restore_state(). 6652 */ 6653 bool 6654 pcie_flr(device_t dev, u_int max_delay, bool force) 6655 { 6656 struct pci_devinfo *dinfo = device_get_ivars(dev); 6657 uint16_t cmd, ctl; 6658 int compl_delay; 6659 int cap; 6660 6661 cap = dinfo->cfg.pcie.pcie_location; 6662 if (cap == 0) 6663 return (false); 6664 6665 if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR)) 6666 return (false); 6667 6668 /* 6669 * Disable busmastering to prevent generation of new 6670 * transactions while waiting for the device to go idle. If 6671 * the idle timeout fails, the command register is restored 6672 * which will re-enable busmastering. 6673 */ 6674 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 6675 pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2); 6676 if (!pcie_wait_for_pending_transactions(dev, max_delay)) { 6677 if (!force) { 6678 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 6679 return (false); 6680 } 6681 pci_printf(&dinfo->cfg, 6682 "Resetting with transactions pending after %d ms\n", 6683 max_delay); 6684 6685 /* 6686 * Extend the post-FLR delay to cover the maximum 6687 * Completion Timeout delay of anything in flight 6688 * during the FLR delay. Enforce a minimum delay of 6689 * at least 10ms. 6690 */ 6691 compl_delay = pcie_get_max_completion_timeout(dev) / 1000; 6692 if (compl_delay < 10) 6693 compl_delay = 10; 6694 } else 6695 compl_delay = 0; 6696 6697 /* Initiate the reset. */ 6698 ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 6699 pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl | 6700 PCIEM_CTL_INITIATE_FLR, 2); 6701 6702 /* Wait for 100ms. */ 6703 pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK); 6704 6705 if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) & 6706 PCIEM_STA_TRANSACTION_PND) 6707 pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n"); 6708 return (true); 6709 } 6710 6711 /* 6712 * Attempt a power-management reset by cycling the device in/out of D3 6713 * state. PCI spec says we can only go into D3 state from D0 state. 6714 * Transition from D[12] into D0 before going to D3 state. 6715 */ 6716 int 6717 pci_power_reset(device_t dev) 6718 { 6719 int ps; 6720 6721 ps = pci_get_powerstate(dev); 6722 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6723 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6724 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6725 pci_set_powerstate(dev, ps); 6726 return (0); 6727 } 6728 6729 /* 6730 * Try link drop and retrain of the downstream port of upstream 6731 * switch, for PCIe. According to the PCIe 3.0 spec 6.6.1, this must 6732 * cause Conventional Hot reset of the device in the slot. 6733 * Alternative, for PCIe, could be the secondary bus reset initiatied 6734 * on the upstream switch PCIR_BRIDGECTL_1, bit 6. 6735 */ 6736 int 6737 pcie_link_reset(device_t port, int pcie_location) 6738 { 6739 uint16_t v; 6740 6741 v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2); 6742 v |= PCIEM_LINK_CTL_LINK_DIS; 6743 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6744 pause_sbt("pcier1", mstosbt(20), 0, 0); 6745 v &= ~PCIEM_LINK_CTL_LINK_DIS; 6746 v |= PCIEM_LINK_CTL_RETRAIN_LINK; 6747 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6748 pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */ 6749 v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2); 6750 return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0); 6751 } 6752 6753 static int 6754 pci_reset_post(device_t dev, device_t child) 6755 { 6756 6757 if (dev == device_get_parent(child)) 6758 pci_restore_state(child); 6759 return (0); 6760 } 6761 6762 static int 6763 pci_reset_prepare(device_t dev, device_t child) 6764 { 6765 6766 if (dev == device_get_parent(child)) 6767 pci_save_state(child); 6768 return (0); 6769 } 6770 6771 static int 6772 pci_reset_child(device_t dev, device_t child, int flags) 6773 { 6774 int error; 6775 6776 if (dev == NULL || device_get_parent(child) != dev) 6777 return (0); 6778 if ((flags & DEVF_RESET_DETACH) != 0) { 6779 error = device_get_state(child) == DS_ATTACHED ? 6780 device_detach(child) : 0; 6781 } else { 6782 error = BUS_SUSPEND_CHILD(dev, child); 6783 } 6784 if (error == 0) { 6785 if (!pcie_flr(child, 1000, false)) { 6786 error = BUS_RESET_PREPARE(dev, child); 6787 if (error == 0) 6788 pci_power_reset(child); 6789 BUS_RESET_POST(dev, child); 6790 } 6791 if ((flags & DEVF_RESET_DETACH) != 0) 6792 device_probe_and_attach(child); 6793 else 6794 BUS_RESUME_CHILD(dev, child); 6795 } 6796 return (error); 6797 } 6798 6799 const struct pci_device_table * 6800 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt) 6801 { 6802 bool match; 6803 uint16_t vendor, device, subvendor, subdevice, class, subclass, revid; 6804 6805 vendor = pci_get_vendor(child); 6806 device = pci_get_device(child); 6807 subvendor = pci_get_subvendor(child); 6808 subdevice = pci_get_subdevice(child); 6809 class = pci_get_class(child); 6810 subclass = pci_get_subclass(child); 6811 revid = pci_get_revid(child); 6812 while (nelt-- > 0) { 6813 match = true; 6814 if (id->match_flag_vendor) 6815 match &= vendor == id->vendor; 6816 if (id->match_flag_device) 6817 match &= device == id->device; 6818 if (id->match_flag_subvendor) 6819 match &= subvendor == id->subvendor; 6820 if (id->match_flag_subdevice) 6821 match &= subdevice == id->subdevice; 6822 if (id->match_flag_class) 6823 match &= class == id->class_id; 6824 if (id->match_flag_subclass) 6825 match &= subclass == id->subclass; 6826 if (id->match_flag_revid) 6827 match &= revid == id->revid; 6828 if (match) 6829 return (id); 6830 id++; 6831 } 6832 return (NULL); 6833 } 6834 6835 static void 6836 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo) 6837 { 6838 const char *dev_name; 6839 device_t dev; 6840 6841 dev = dinfo->cfg.dev; 6842 printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus, 6843 dinfo->cfg.slot, dinfo->cfg.func); 6844 dev_name = device_get_name(dev); 6845 if (dev_name != NULL) 6846 printf(" (%s%d)", dev_name, device_get_unit(dev)); 6847 } 6848 6849 void 6850 pci_print_faulted_dev(void) 6851 { 6852 struct pci_devinfo *dinfo; 6853 device_t dev; 6854 int aer, i; 6855 uint32_t r1, r2; 6856 uint16_t status; 6857 6858 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6859 dev = dinfo->cfg.dev; 6860 status = pci_read_config(dev, PCIR_STATUS, 2); 6861 status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6862 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6863 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6864 if (status != 0) { 6865 pci_print_faulted_dev_name(dinfo); 6866 printf(" error 0x%04x\n", status); 6867 } 6868 if (dinfo->cfg.pcie.pcie_location != 0) { 6869 status = pci_read_config(dev, 6870 dinfo->cfg.pcie.pcie_location + 6871 PCIER_DEVICE_STA, 2); 6872 if ((status & (PCIEM_STA_CORRECTABLE_ERROR | 6873 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6874 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6875 pci_print_faulted_dev_name(dinfo); 6876 printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n", 6877 pci_read_config(dev, 6878 dinfo->cfg.pcie.pcie_location + 6879 PCIER_DEVICE_CTL, 2), 6880 status); 6881 } 6882 } 6883 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6884 r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6885 r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6886 if (r1 != 0 || r2 != 0) { 6887 pci_print_faulted_dev_name(dinfo); 6888 printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n" 6889 " COR 0x%08x Mask 0x%08x Ctl 0x%08x\n", 6890 r1, pci_read_config(dev, aer + 6891 PCIR_AER_UC_MASK, 4), 6892 pci_read_config(dev, aer + 6893 PCIR_AER_UC_SEVERITY, 4), 6894 r2, pci_read_config(dev, aer + 6895 PCIR_AER_COR_MASK, 4), 6896 pci_read_config(dev, aer + 6897 PCIR_AER_CAP_CONTROL, 4)); 6898 for (i = 0; i < 4; i++) { 6899 r1 = pci_read_config(dev, aer + 6900 PCIR_AER_HEADER_LOG + i * 4, 4); 6901 printf(" HL%d: 0x%08x\n", i, r1); 6902 } 6903 } 6904 } 6905 } 6906 } 6907 6908 #ifdef DDB 6909 DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE) 6910 { 6911 6912 pci_print_faulted_dev(); 6913 } 6914 6915 static void 6916 db_clear_pcie_errors(const struct pci_devinfo *dinfo) 6917 { 6918 device_t dev; 6919 int aer; 6920 uint32_t r; 6921 6922 dev = dinfo->cfg.dev; 6923 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6924 PCIER_DEVICE_STA, 2); 6925 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6926 PCIER_DEVICE_STA, r, 2); 6927 6928 if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0) 6929 return; 6930 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6931 if (r != 0) 6932 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6933 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6934 if (r != 0) 6935 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6936 } 6937 6938 DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE) 6939 { 6940 struct pci_devinfo *dinfo; 6941 device_t dev; 6942 uint16_t status, status1; 6943 6944 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6945 dev = dinfo->cfg.dev; 6946 status1 = status = pci_read_config(dev, PCIR_STATUS, 2); 6947 status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6948 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6949 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6950 if (status1 != 0) { 6951 status &= ~status1; 6952 pci_write_config(dev, PCIR_STATUS, status, 2); 6953 } 6954 if (dinfo->cfg.pcie.pcie_location != 0) 6955 db_clear_pcie_errors(dinfo); 6956 } 6957 } 6958 #endif 6959