1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 5 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org> 6 * Copyright (c) 2000, BSDi 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 #include "opt_acpi.h" 33 #include "opt_iommu.h" 34 #include "opt_bus.h" 35 36 #include <sys/param.h> 37 #include <sys/conf.h> 38 #include <sys/endian.h> 39 #include <sys/eventhandler.h> 40 #include <sys/fcntl.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/linker.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/queue.h> 47 #include <sys/sbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/systm.h> 50 #include <sys/taskqueue.h> 51 #include <sys/tree.h> 52 53 #include <vm/vm.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_extern.h> 56 57 #include <sys/bus.h> 58 #include <machine/bus.h> 59 #include <sys/rman.h> 60 #include <machine/resource.h> 61 #include <machine/stdarg.h> 62 63 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 64 #include <machine/intr_machdep.h> 65 #endif 66 67 #include <sys/pciio.h> 68 #include <dev/pci/pcireg.h> 69 #include <dev/pci/pcivar.h> 70 #include <dev/pci/pci_private.h> 71 72 #ifdef PCI_IOV 73 #include <sys/nv.h> 74 #include <dev/pci/pci_iov_private.h> 75 #endif 76 77 #include <dev/usb/controller/xhcireg.h> 78 #include <dev/usb/controller/ehcireg.h> 79 #include <dev/usb/controller/ohcireg.h> 80 #include <dev/usb/controller/uhcireg.h> 81 82 #include <dev/iommu/iommu.h> 83 84 #include "pcib_if.h" 85 #include "pci_if.h" 86 87 #define PCIR_IS_BIOS(cfg, reg) \ 88 (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \ 89 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1)) 90 91 static device_probe_t pci_probe; 92 93 static bus_reset_post_t pci_reset_post; 94 static bus_reset_prepare_t pci_reset_prepare; 95 static bus_reset_child_t pci_reset_child; 96 static bus_hint_device_unit_t pci_hint_device_unit; 97 static bus_remap_intr_t pci_remap_intr_method; 98 99 static pci_get_id_t pci_get_id_method; 100 101 static int pci_has_quirk(uint32_t devid, int quirk); 102 static pci_addr_t pci_mapbase(uint64_t mapreg); 103 static const char *pci_maptype(uint64_t mapreg); 104 static int pci_maprange(uint64_t mapreg); 105 static pci_addr_t pci_rombase(uint64_t mapreg); 106 static int pci_romsize(uint64_t testval); 107 static void pci_fixancient(pcicfgregs *cfg); 108 static int pci_printf(pcicfgregs *cfg, const char *fmt, ...); 109 110 static int pci_porten(device_t dev); 111 static int pci_memen(device_t dev); 112 static void pci_assign_interrupt(device_t bus, device_t dev, 113 int force_route); 114 static int pci_add_map(device_t bus, device_t dev, int reg, 115 struct resource_list *rl, int force, int prefetch); 116 static void pci_load_vendor_data(void); 117 static int pci_describe_parse_line(char **ptr, int *vendor, 118 int *device, char **desc); 119 static char *pci_describe_device(device_t dev); 120 static int pci_modevent(module_t mod, int what, void *arg); 121 static void pci_hdrtypedata(device_t pcib, int b, int s, int f, 122 pcicfgregs *cfg); 123 static void pci_read_cap(device_t pcib, pcicfgregs *cfg); 124 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, 125 int reg, uint32_t *data); 126 #if 0 127 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, 128 int reg, uint32_t data); 129 #endif 130 static void pci_read_vpd(device_t pcib, pcicfgregs *cfg); 131 static void pci_mask_msix(device_t dev, u_int index); 132 static void pci_unmask_msix(device_t dev, u_int index); 133 static int pci_msi_blacklisted(void); 134 static int pci_msix_blacklisted(void); 135 static void pci_resume_msi(device_t dev); 136 static void pci_resume_msix(device_t dev); 137 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d, 138 int b, int s, int f, uint16_t vid, uint16_t did); 139 140 static device_method_t pci_methods[] = { 141 /* Device interface */ 142 DEVMETHOD(device_probe, pci_probe), 143 DEVMETHOD(device_attach, pci_attach), 144 DEVMETHOD(device_detach, pci_detach), 145 DEVMETHOD(device_shutdown, bus_generic_shutdown), 146 DEVMETHOD(device_suspend, bus_generic_suspend), 147 DEVMETHOD(device_resume, pci_resume), 148 149 /* Bus interface */ 150 DEVMETHOD(bus_print_child, pci_print_child), 151 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch), 152 DEVMETHOD(bus_read_ivar, pci_read_ivar), 153 DEVMETHOD(bus_write_ivar, pci_write_ivar), 154 DEVMETHOD(bus_driver_added, pci_driver_added), 155 DEVMETHOD(bus_setup_intr, pci_setup_intr), 156 DEVMETHOD(bus_teardown_intr, pci_teardown_intr), 157 DEVMETHOD(bus_reset_prepare, pci_reset_prepare), 158 DEVMETHOD(bus_reset_post, pci_reset_post), 159 DEVMETHOD(bus_reset_child, pci_reset_child), 160 161 DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag), 162 DEVMETHOD(bus_get_resource_list,pci_get_resource_list), 163 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 164 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 165 DEVMETHOD(bus_delete_resource, pci_delete_resource), 166 DEVMETHOD(bus_alloc_resource, pci_alloc_resource), 167 DEVMETHOD(bus_adjust_resource, pci_adjust_resource), 168 DEVMETHOD(bus_release_resource, pci_release_resource), 169 DEVMETHOD(bus_activate_resource, pci_activate_resource), 170 DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), 171 DEVMETHOD(bus_map_resource, pci_map_resource), 172 DEVMETHOD(bus_unmap_resource, pci_unmap_resource), 173 DEVMETHOD(bus_child_deleted, pci_child_deleted), 174 DEVMETHOD(bus_child_detached, pci_child_detached), 175 DEVMETHOD(bus_child_pnpinfo, pci_child_pnpinfo_method), 176 DEVMETHOD(bus_child_location, pci_child_location_method), 177 DEVMETHOD(bus_get_device_path, pci_get_device_path_method), 178 DEVMETHOD(bus_hint_device_unit, pci_hint_device_unit), 179 DEVMETHOD(bus_remap_intr, pci_remap_intr_method), 180 DEVMETHOD(bus_suspend_child, pci_suspend_child), 181 DEVMETHOD(bus_resume_child, pci_resume_child), 182 DEVMETHOD(bus_rescan, pci_rescan_method), 183 184 /* PCI interface */ 185 DEVMETHOD(pci_read_config, pci_read_config_method), 186 DEVMETHOD(pci_write_config, pci_write_config_method), 187 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method), 188 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method), 189 DEVMETHOD(pci_enable_io, pci_enable_io_method), 190 DEVMETHOD(pci_disable_io, pci_disable_io_method), 191 DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method), 192 DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method), 193 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method), 194 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method), 195 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method), 196 DEVMETHOD(pci_find_cap, pci_find_cap_method), 197 DEVMETHOD(pci_find_next_cap, pci_find_next_cap_method), 198 DEVMETHOD(pci_find_extcap, pci_find_extcap_method), 199 DEVMETHOD(pci_find_next_extcap, pci_find_next_extcap_method), 200 DEVMETHOD(pci_find_htcap, pci_find_htcap_method), 201 DEVMETHOD(pci_find_next_htcap, pci_find_next_htcap_method), 202 DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method), 203 DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method), 204 DEVMETHOD(pci_enable_msi, pci_enable_msi_method), 205 DEVMETHOD(pci_enable_msix, pci_enable_msix_method), 206 DEVMETHOD(pci_disable_msi, pci_disable_msi_method), 207 DEVMETHOD(pci_remap_msix, pci_remap_msix_method), 208 DEVMETHOD(pci_release_msi, pci_release_msi_method), 209 DEVMETHOD(pci_msi_count, pci_msi_count_method), 210 DEVMETHOD(pci_msix_count, pci_msix_count_method), 211 DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method), 212 DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method), 213 DEVMETHOD(pci_get_id, pci_get_id_method), 214 DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method), 215 DEVMETHOD(pci_child_added, pci_child_added_method), 216 #ifdef PCI_IOV 217 DEVMETHOD(pci_iov_attach, pci_iov_attach_method), 218 DEVMETHOD(pci_iov_detach, pci_iov_detach_method), 219 DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method), 220 #endif 221 222 DEVMETHOD_END 223 }; 224 225 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc)); 226 227 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS); 228 MODULE_VERSION(pci, 1); 229 230 static char *pci_vendordata; 231 static size_t pci_vendordata_size; 232 233 struct pci_quirk { 234 uint32_t devid; /* Vendor/device of the card */ 235 int type; 236 #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */ 237 #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */ 238 #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */ 239 #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */ 240 #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */ 241 #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */ 242 #define PCI_QUIRK_REALLOC_BAR 7 /* Can't allocate memory at the default address */ 243 int arg1; 244 int arg2; 245 }; 246 247 static const struct pci_quirk pci_quirks[] = { 248 /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */ 249 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 250 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 251 /* As does the Serverworks OSB4 (the SMBus mapping register) */ 252 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 }, 253 254 /* 255 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge 256 * or the CMIC-SL (AKA ServerWorks GC_LE). 257 */ 258 { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 259 { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 260 261 /* 262 * MSI doesn't work on earlier Intel chipsets including 263 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855. 264 */ 265 { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 266 { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 267 { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 268 { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 269 { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 270 { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 271 { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 272 273 /* 274 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX 275 * bridge. 276 */ 277 { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 278 279 /* 280 * Some virtualization environments emulate an older chipset 281 * but support MSI just fine. QEMU uses the Intel 82440. 282 */ 283 { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 }, 284 285 /* 286 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus 287 * controller depending on SoftPciRst register (PM_IO 0x55 [7]). 288 * It prevents us from attaching hpet(4) when the bit is unset. 289 * Note this quirk only affects SB600 revision A13 and earlier. 290 * For SB600 A21 and later, firmware must set the bit to hide it. 291 * For SB700 and later, it is unused and hardcoded to zero. 292 */ 293 { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 }, 294 295 /* 296 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have 297 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit 298 * of the command register is set. 299 */ 300 { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 301 { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 302 { 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 303 { 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 304 { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 305 306 /* 307 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't 308 * issue MSI interrupts with PCIM_CMD_INTxDIS set either. 309 */ 310 { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */ 311 { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */ 312 { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */ 313 { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */ 314 { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */ 315 { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */ 316 317 /* 318 * HPE Gen 10 VGA has a memory range that can't be allocated in the 319 * expected place. 320 */ 321 { 0x98741002, PCI_QUIRK_REALLOC_BAR, 0, 0 }, 322 { 0 } 323 }; 324 325 /* map register information */ 326 #define PCI_MAPMEM 0x01 /* memory map */ 327 #define PCI_MAPMEMP 0x02 /* prefetchable memory map */ 328 #define PCI_MAPPORT 0x04 /* port map */ 329 330 struct devlist pci_devq; 331 uint32_t pci_generation; 332 uint32_t pci_numdevs = 0; 333 static int pcie_chipset, pcix_chipset; 334 335 /* sysctl vars */ 336 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 337 "PCI bus tuning parameters"); 338 339 static int pci_enable_io_modes = 1; 340 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN, 341 &pci_enable_io_modes, 1, 342 "Enable I/O and memory bits in the config register. Some BIOSes do not" 343 " enable these bits correctly. We'd like to do this all the time, but" 344 " there are some peripherals that this causes problems with."); 345 346 static int pci_do_realloc_bars = 1; 347 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN, 348 &pci_do_realloc_bars, 0, 349 "Attempt to allocate a new range for any BARs whose original " 350 "firmware-assigned ranges fail to allocate during the initial device scan."); 351 352 static int pci_do_power_nodriver = 0; 353 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN, 354 &pci_do_power_nodriver, 0, 355 "Place a function into D3 state when no driver attaches to it. 0 means" 356 " disable. 1 means conservatively place devices into D3 state. 2 means" 357 " aggressively place devices into D3 state. 3 means put absolutely" 358 " everything in D3 state."); 359 360 int pci_do_power_resume = 1; 361 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN, 362 &pci_do_power_resume, 1, 363 "Transition from D3 -> D0 on resume."); 364 365 int pci_do_power_suspend = 1; 366 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN, 367 &pci_do_power_suspend, 1, 368 "Transition from D0 -> D3 on suspend."); 369 370 static int pci_do_msi = 1; 371 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1, 372 "Enable support for MSI interrupts"); 373 374 static int pci_do_msix = 1; 375 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1, 376 "Enable support for MSI-X interrupts"); 377 378 static int pci_msix_rewrite_table = 0; 379 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN, 380 &pci_msix_rewrite_table, 0, 381 "Rewrite entire MSI-X table when updating MSI-X entries"); 382 383 static int pci_honor_msi_blacklist = 1; 384 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN, 385 &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X"); 386 387 #if defined(__i386__) || defined(__amd64__) 388 static int pci_usb_takeover = 1; 389 #else 390 static int pci_usb_takeover = 0; 391 #endif 392 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN, 393 &pci_usb_takeover, 1, 394 "Enable early takeover of USB controllers. Disable this if you depend on" 395 " BIOS emulation of USB devices, that is you use USB devices (like" 396 " keyboard or mouse) but do not load USB drivers"); 397 398 static int pci_clear_bars; 399 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0, 400 "Ignore firmware-assigned resources for BARs."); 401 402 static int pci_clear_buses; 403 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0, 404 "Ignore firmware-assigned bus numbers."); 405 406 static int pci_enable_ari = 1; 407 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari, 408 0, "Enable support for PCIe Alternative RID Interpretation"); 409 410 int pci_enable_aspm = 1; 411 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm, 412 0, "Enable support for PCIe Active State Power Management"); 413 414 static int pci_clear_aer_on_attach = 0; 415 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN, 416 &pci_clear_aer_on_attach, 0, 417 "Clear port and device AER state on driver attach"); 418 419 static bool pci_enable_mps_tune = true; 420 SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN, 421 &pci_enable_mps_tune, 1, 422 "Enable tuning of MPS(maximum payload size)." ); 423 424 static int 425 pci_has_quirk(uint32_t devid, int quirk) 426 { 427 const struct pci_quirk *q; 428 429 for (q = &pci_quirks[0]; q->devid; q++) { 430 if (q->devid == devid && q->type == quirk) 431 return (1); 432 } 433 return (0); 434 } 435 436 /* Find a device_t by bus/slot/function in domain 0 */ 437 438 device_t 439 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func) 440 { 441 442 return (pci_find_dbsf(0, bus, slot, func)); 443 } 444 445 /* Find a device_t by domain/bus/slot/function */ 446 447 device_t 448 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func) 449 { 450 struct pci_devinfo *dinfo = NULL; 451 452 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 453 if ((dinfo->cfg.domain == domain) && 454 (dinfo->cfg.bus == bus) && 455 (dinfo->cfg.slot == slot) && 456 (dinfo->cfg.func == func)) { 457 break; 458 } 459 } 460 461 return (dinfo != NULL ? dinfo->cfg.dev : NULL); 462 } 463 464 /* Find a device_t by vendor/device ID */ 465 466 device_t 467 pci_find_device(uint16_t vendor, uint16_t device) 468 { 469 struct pci_devinfo *dinfo; 470 471 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 472 if ((dinfo->cfg.vendor == vendor) && 473 (dinfo->cfg.device == device)) { 474 return (dinfo->cfg.dev); 475 } 476 } 477 478 return (NULL); 479 } 480 481 device_t 482 pci_find_class(uint8_t class, uint8_t subclass) 483 { 484 struct pci_devinfo *dinfo; 485 486 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 487 if (dinfo->cfg.baseclass == class && 488 dinfo->cfg.subclass == subclass) { 489 return (dinfo->cfg.dev); 490 } 491 } 492 493 return (NULL); 494 } 495 496 device_t 497 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from) 498 { 499 struct pci_devinfo *dinfo; 500 bool found = false; 501 502 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 503 if (from != NULL && found == false) { 504 if (from != dinfo->cfg.dev) 505 continue; 506 found = true; 507 continue; 508 } 509 if (dinfo->cfg.baseclass == class && 510 dinfo->cfg.subclass == subclass) { 511 return (dinfo->cfg.dev); 512 } 513 } 514 515 return (NULL); 516 } 517 518 static int 519 pci_printf(pcicfgregs *cfg, const char *fmt, ...) 520 { 521 va_list ap; 522 int retval; 523 524 retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot, 525 cfg->func); 526 va_start(ap, fmt); 527 retval += vprintf(fmt, ap); 528 va_end(ap); 529 return (retval); 530 } 531 532 /* return base address of memory or port map */ 533 534 static pci_addr_t 535 pci_mapbase(uint64_t mapreg) 536 { 537 538 if (PCI_BAR_MEM(mapreg)) 539 return (mapreg & PCIM_BAR_MEM_BASE); 540 else 541 return (mapreg & PCIM_BAR_IO_BASE); 542 } 543 544 /* return map type of memory or port map */ 545 546 static const char * 547 pci_maptype(uint64_t mapreg) 548 { 549 550 if (PCI_BAR_IO(mapreg)) 551 return ("I/O Port"); 552 if (mapreg & PCIM_BAR_MEM_PREFETCH) 553 return ("Prefetchable Memory"); 554 return ("Memory"); 555 } 556 557 /* return log2 of map size decoded for memory or port map */ 558 559 int 560 pci_mapsize(uint64_t testval) 561 { 562 int ln2size; 563 564 testval = pci_mapbase(testval); 565 ln2size = 0; 566 if (testval != 0) { 567 while ((testval & 1) == 0) 568 { 569 ln2size++; 570 testval >>= 1; 571 } 572 } 573 return (ln2size); 574 } 575 576 /* return base address of device ROM */ 577 578 static pci_addr_t 579 pci_rombase(uint64_t mapreg) 580 { 581 582 return (mapreg & PCIM_BIOS_ADDR_MASK); 583 } 584 585 /* return log2 of map size decided for device ROM */ 586 587 static int 588 pci_romsize(uint64_t testval) 589 { 590 int ln2size; 591 592 testval = pci_rombase(testval); 593 ln2size = 0; 594 if (testval != 0) { 595 while ((testval & 1) == 0) 596 { 597 ln2size++; 598 testval >>= 1; 599 } 600 } 601 return (ln2size); 602 } 603 604 /* return log2 of address range supported by map register */ 605 606 static int 607 pci_maprange(uint64_t mapreg) 608 { 609 int ln2range = 0; 610 611 if (PCI_BAR_IO(mapreg)) 612 ln2range = 32; 613 else 614 switch (mapreg & PCIM_BAR_MEM_TYPE) { 615 case PCIM_BAR_MEM_32: 616 ln2range = 32; 617 break; 618 case PCIM_BAR_MEM_1MB: 619 ln2range = 20; 620 break; 621 case PCIM_BAR_MEM_64: 622 ln2range = 64; 623 break; 624 } 625 return (ln2range); 626 } 627 628 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */ 629 630 static void 631 pci_fixancient(pcicfgregs *cfg) 632 { 633 if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) 634 return; 635 636 /* PCI to PCI bridges use header type 1 */ 637 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI) 638 cfg->hdrtype = PCIM_HDRTYPE_BRIDGE; 639 } 640 641 /* extract header type specific config data */ 642 643 static void 644 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg) 645 { 646 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 647 switch (cfg->hdrtype & PCIM_HDRTYPE) { 648 case PCIM_HDRTYPE_NORMAL: 649 cfg->subvendor = REG(PCIR_SUBVEND_0, 2); 650 cfg->subdevice = REG(PCIR_SUBDEV_0, 2); 651 cfg->mingnt = REG(PCIR_MINGNT, 1); 652 cfg->maxlat = REG(PCIR_MAXLAT, 1); 653 cfg->nummaps = PCI_MAXMAPS_0; 654 break; 655 case PCIM_HDRTYPE_BRIDGE: 656 cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1); 657 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1); 658 cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1); 659 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1); 660 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2); 661 cfg->nummaps = PCI_MAXMAPS_1; 662 break; 663 case PCIM_HDRTYPE_CARDBUS: 664 cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1); 665 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1); 666 cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1); 667 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1); 668 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2); 669 cfg->subvendor = REG(PCIR_SUBVEND_2, 2); 670 cfg->subdevice = REG(PCIR_SUBDEV_2, 2); 671 cfg->nummaps = PCI_MAXMAPS_2; 672 break; 673 } 674 #undef REG 675 } 676 677 /* read configuration header into pcicfgregs structure */ 678 struct pci_devinfo * 679 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f) 680 { 681 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 682 uint16_t vid, did; 683 684 vid = REG(PCIR_VENDOR, 2); 685 if (vid == PCIV_INVALID) 686 return (NULL); 687 688 did = REG(PCIR_DEVICE, 2); 689 690 return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did)); 691 } 692 693 struct pci_devinfo * 694 pci_alloc_devinfo_method(device_t dev) 695 { 696 697 return (malloc(sizeof(struct pci_devinfo), M_DEVBUF, 698 M_WAITOK | M_ZERO)); 699 } 700 701 static struct pci_devinfo * 702 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f, 703 uint16_t vid, uint16_t did) 704 { 705 struct pci_devinfo *devlist_entry; 706 pcicfgregs *cfg; 707 708 devlist_entry = PCI_ALLOC_DEVINFO(bus); 709 710 cfg = &devlist_entry->cfg; 711 712 cfg->domain = d; 713 cfg->bus = b; 714 cfg->slot = s; 715 cfg->func = f; 716 cfg->vendor = vid; 717 cfg->device = did; 718 cfg->cmdreg = REG(PCIR_COMMAND, 2); 719 cfg->statreg = REG(PCIR_STATUS, 2); 720 cfg->baseclass = REG(PCIR_CLASS, 1); 721 cfg->subclass = REG(PCIR_SUBCLASS, 1); 722 cfg->progif = REG(PCIR_PROGIF, 1); 723 cfg->revid = REG(PCIR_REVID, 1); 724 cfg->hdrtype = REG(PCIR_HDRTYPE, 1); 725 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1); 726 cfg->lattimer = REG(PCIR_LATTIMER, 1); 727 cfg->intpin = REG(PCIR_INTPIN, 1); 728 cfg->intline = REG(PCIR_INTLINE, 1); 729 730 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0; 731 cfg->hdrtype &= ~PCIM_MFDEV; 732 STAILQ_INIT(&cfg->maps); 733 734 cfg->iov = NULL; 735 736 pci_fixancient(cfg); 737 pci_hdrtypedata(pcib, b, s, f, cfg); 738 739 if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) 740 pci_read_cap(pcib, cfg); 741 742 STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links); 743 744 devlist_entry->conf.pc_sel.pc_domain = cfg->domain; 745 devlist_entry->conf.pc_sel.pc_bus = cfg->bus; 746 devlist_entry->conf.pc_sel.pc_dev = cfg->slot; 747 devlist_entry->conf.pc_sel.pc_func = cfg->func; 748 devlist_entry->conf.pc_hdr = cfg->hdrtype; 749 750 devlist_entry->conf.pc_subvendor = cfg->subvendor; 751 devlist_entry->conf.pc_subdevice = cfg->subdevice; 752 devlist_entry->conf.pc_vendor = cfg->vendor; 753 devlist_entry->conf.pc_device = cfg->device; 754 755 devlist_entry->conf.pc_class = cfg->baseclass; 756 devlist_entry->conf.pc_subclass = cfg->subclass; 757 devlist_entry->conf.pc_progif = cfg->progif; 758 devlist_entry->conf.pc_revid = cfg->revid; 759 760 pci_numdevs++; 761 pci_generation++; 762 763 return (devlist_entry); 764 } 765 #undef REG 766 767 static void 768 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg) 769 { 770 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \ 771 cfg->ea.ea_location + (n), w) 772 int num_ent; 773 int ptr; 774 int a, b; 775 uint32_t val; 776 int ent_size; 777 uint32_t dw[4]; 778 uint64_t base, max_offset; 779 struct pci_ea_entry *eae; 780 781 if (cfg->ea.ea_location == 0) 782 return; 783 784 STAILQ_INIT(&cfg->ea.ea_entries); 785 786 /* Determine the number of entries */ 787 num_ent = REG(PCIR_EA_NUM_ENT, 2); 788 num_ent &= PCIM_EA_NUM_ENT_MASK; 789 790 /* Find the first entry to care of */ 791 ptr = PCIR_EA_FIRST_ENT; 792 793 /* Skip DWORD 2 for type 1 functions */ 794 if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) 795 ptr += 4; 796 797 for (a = 0; a < num_ent; a++) { 798 eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO); 799 eae->eae_cfg_offset = cfg->ea.ea_location + ptr; 800 801 /* Read a number of dwords in the entry */ 802 val = REG(ptr, 4); 803 ptr += 4; 804 ent_size = (val & PCIM_EA_ES); 805 806 for (b = 0; b < ent_size; b++) { 807 dw[b] = REG(ptr, 4); 808 ptr += 4; 809 } 810 811 eae->eae_flags = val; 812 eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET; 813 814 base = dw[0] & PCIM_EA_FIELD_MASK; 815 max_offset = dw[1] | ~PCIM_EA_FIELD_MASK; 816 b = 2; 817 if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { 818 base |= (uint64_t)dw[b] << 32UL; 819 b++; 820 } 821 if (((dw[1] & PCIM_EA_IS_64) != 0) 822 && (b < ent_size)) { 823 max_offset |= (uint64_t)dw[b] << 32UL; 824 b++; 825 } 826 827 eae->eae_base = base; 828 eae->eae_max_offset = max_offset; 829 830 STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link); 831 832 if (bootverbose) { 833 printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n", 834 cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags, 835 (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset); 836 } 837 } 838 } 839 #undef REG 840 841 static void 842 pci_read_cap(device_t pcib, pcicfgregs *cfg) 843 { 844 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w) 845 #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w) 846 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 847 uint64_t addr; 848 #endif 849 uint32_t val; 850 int ptr, nextptr, ptrptr; 851 852 switch (cfg->hdrtype & PCIM_HDRTYPE) { 853 case PCIM_HDRTYPE_NORMAL: 854 case PCIM_HDRTYPE_BRIDGE: 855 ptrptr = PCIR_CAP_PTR; 856 break; 857 case PCIM_HDRTYPE_CARDBUS: 858 ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */ 859 break; 860 default: 861 return; /* no extended capabilities support */ 862 } 863 nextptr = REG(ptrptr, 1); /* sanity check? */ 864 865 /* 866 * Read capability entries. 867 */ 868 while (nextptr != 0) { 869 /* Sanity check */ 870 if (nextptr > 255) { 871 printf("illegal PCI extended capability offset %d\n", 872 nextptr); 873 return; 874 } 875 /* Find the next entry */ 876 ptr = nextptr; 877 nextptr = REG(ptr + PCICAP_NEXTPTR, 1); 878 879 /* Process this entry */ 880 switch (REG(ptr + PCICAP_ID, 1)) { 881 case PCIY_PMG: /* PCI power management */ 882 if (cfg->pp.pp_cap == 0) { 883 cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2); 884 cfg->pp.pp_status = ptr + PCIR_POWER_STATUS; 885 cfg->pp.pp_bse = ptr + PCIR_POWER_BSE; 886 if ((nextptr - ptr) > PCIR_POWER_DATA) 887 cfg->pp.pp_data = ptr + PCIR_POWER_DATA; 888 } 889 break; 890 case PCIY_HT: /* HyperTransport */ 891 /* Determine HT-specific capability type. */ 892 val = REG(ptr + PCIR_HT_COMMAND, 2); 893 894 if ((val & 0xe000) == PCIM_HTCAP_SLAVE) 895 cfg->ht.ht_slave = ptr; 896 897 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 898 switch (val & PCIM_HTCMD_CAP_MASK) { 899 case PCIM_HTCAP_MSI_MAPPING: 900 if (!(val & PCIM_HTCMD_MSI_FIXED)) { 901 /* Sanity check the mapping window. */ 902 addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 903 4); 904 addr <<= 32; 905 addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 906 4); 907 if (addr != MSI_INTEL_ADDR_BASE) 908 device_printf(pcib, 909 "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n", 910 cfg->domain, cfg->bus, 911 cfg->slot, cfg->func, 912 (long long)addr); 913 } else 914 addr = MSI_INTEL_ADDR_BASE; 915 916 cfg->ht.ht_msimap = ptr; 917 cfg->ht.ht_msictrl = val; 918 cfg->ht.ht_msiaddr = addr; 919 break; 920 } 921 #endif 922 break; 923 case PCIY_MSI: /* PCI MSI */ 924 cfg->msi.msi_location = ptr; 925 cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2); 926 cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl & 927 PCIM_MSICTRL_MMC_MASK)>>1); 928 break; 929 case PCIY_MSIX: /* PCI MSI-X */ 930 cfg->msix.msix_location = ptr; 931 cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2); 932 cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl & 933 PCIM_MSIXCTRL_TABLE_SIZE) + 1; 934 val = REG(ptr + PCIR_MSIX_TABLE, 4); 935 cfg->msix.msix_table_bar = PCIR_BAR(val & 936 PCIM_MSIX_BIR_MASK); 937 cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK; 938 val = REG(ptr + PCIR_MSIX_PBA, 4); 939 cfg->msix.msix_pba_bar = PCIR_BAR(val & 940 PCIM_MSIX_BIR_MASK); 941 cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK; 942 break; 943 case PCIY_VPD: /* PCI Vital Product Data */ 944 cfg->vpd.vpd_reg = ptr; 945 break; 946 case PCIY_SUBVENDOR: 947 /* Should always be true. */ 948 if ((cfg->hdrtype & PCIM_HDRTYPE) == 949 PCIM_HDRTYPE_BRIDGE) { 950 val = REG(ptr + PCIR_SUBVENDCAP_ID, 4); 951 cfg->subvendor = val & 0xffff; 952 cfg->subdevice = val >> 16; 953 } 954 break; 955 case PCIY_PCIX: /* PCI-X */ 956 /* 957 * Assume we have a PCI-X chipset if we have 958 * at least one PCI-PCI bridge with a PCI-X 959 * capability. Note that some systems with 960 * PCI-express or HT chipsets might match on 961 * this check as well. 962 */ 963 if ((cfg->hdrtype & PCIM_HDRTYPE) == 964 PCIM_HDRTYPE_BRIDGE) 965 pcix_chipset = 1; 966 cfg->pcix.pcix_location = ptr; 967 break; 968 case PCIY_EXPRESS: /* PCI-express */ 969 /* 970 * Assume we have a PCI-express chipset if we have 971 * at least one PCI-express device. 972 */ 973 pcie_chipset = 1; 974 cfg->pcie.pcie_location = ptr; 975 val = REG(ptr + PCIER_FLAGS, 2); 976 cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE; 977 break; 978 case PCIY_EA: /* Enhanced Allocation */ 979 cfg->ea.ea_location = ptr; 980 pci_ea_fill_info(pcib, cfg); 981 break; 982 default: 983 break; 984 } 985 } 986 987 #if defined(__powerpc__) 988 /* 989 * Enable the MSI mapping window for all HyperTransport 990 * slaves. PCI-PCI bridges have their windows enabled via 991 * PCIB_MAP_MSI(). 992 */ 993 if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 && 994 !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) { 995 device_printf(pcib, 996 "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n", 997 cfg->domain, cfg->bus, cfg->slot, cfg->func); 998 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 999 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl, 1000 2); 1001 } 1002 #endif 1003 /* REG and WREG use carry through to next functions */ 1004 } 1005 1006 /* 1007 * PCI Vital Product Data 1008 */ 1009 1010 #define PCI_VPD_TIMEOUT 1000000 1011 1012 static int 1013 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data) 1014 { 1015 int count = PCI_VPD_TIMEOUT; 1016 1017 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1018 1019 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2); 1020 1021 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) { 1022 if (--count < 0) 1023 return (ENXIO); 1024 DELAY(1); /* limit looping */ 1025 } 1026 *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4)); 1027 1028 return (0); 1029 } 1030 1031 #if 0 1032 static int 1033 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data) 1034 { 1035 int count = PCI_VPD_TIMEOUT; 1036 1037 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1038 1039 WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4); 1040 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2); 1041 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) { 1042 if (--count < 0) 1043 return (ENXIO); 1044 DELAY(1); /* limit looping */ 1045 } 1046 1047 return (0); 1048 } 1049 #endif 1050 1051 #undef PCI_VPD_TIMEOUT 1052 1053 struct vpd_readstate { 1054 device_t pcib; 1055 pcicfgregs *cfg; 1056 uint32_t val; 1057 int bytesinval; 1058 int off; 1059 uint8_t cksum; 1060 }; 1061 1062 /* return 0 and one byte in *data if no read error, -1 else */ 1063 static int 1064 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data) 1065 { 1066 uint32_t reg; 1067 uint8_t byte; 1068 1069 if (vrs->bytesinval == 0) { 1070 if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®)) 1071 return (-1); 1072 vrs->val = le32toh(reg); 1073 vrs->off += 4; 1074 byte = vrs->val & 0xff; 1075 vrs->bytesinval = 3; 1076 } else { 1077 vrs->val = vrs->val >> 8; 1078 byte = vrs->val & 0xff; 1079 vrs->bytesinval--; 1080 } 1081 1082 vrs->cksum += byte; 1083 *data = byte; 1084 return (0); 1085 } 1086 1087 /* return 0 on match, -1 and "unget" byte on no match */ 1088 static int 1089 vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected) 1090 { 1091 uint8_t data; 1092 1093 if (vpd_nextbyte(vrs, &data) != 0) 1094 return (-1); 1095 1096 if (data == expected) 1097 return (0); 1098 1099 vrs->cksum -= data; 1100 vrs->val = (vrs->val << 8) + data; 1101 vrs->bytesinval++; 1102 return (-1); 1103 } 1104 1105 /* return size if tag matches, -1 on no match, -2 on read error */ 1106 static int 1107 vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag) 1108 { 1109 uint8_t byte1, byte2; 1110 1111 if (vpd_expectbyte(vrs, vpd_tag) != 0) 1112 return (-1); 1113 1114 if ((vpd_tag & 0x80) == 0) 1115 return (vpd_tag & 0x07); 1116 1117 if (vpd_nextbyte(vrs, &byte1) != 0) 1118 return (-2); 1119 if (vpd_nextbyte(vrs, &byte2) != 0) 1120 return (-2); 1121 1122 return ((byte2 << 8) + byte1); 1123 } 1124 1125 /* (re)allocate buffer in multiples of 8 elements */ 1126 static void* 1127 alloc_buffer(void* buffer, size_t element_size, int needed) 1128 { 1129 int alloc, new_alloc; 1130 1131 alloc = roundup2(needed, 8); 1132 new_alloc = roundup2(needed + 1, 8); 1133 if (alloc != new_alloc) { 1134 buffer = reallocf(buffer, 1135 new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO); 1136 } 1137 1138 return (buffer); 1139 } 1140 1141 /* read VPD keyword and return element size, return -1 on read error */ 1142 static int 1143 vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2]) 1144 { 1145 uint8_t data; 1146 1147 if (vpd_nextbyte(vrs, &keyword[0]) != 0) 1148 return (-1); 1149 if (vpd_nextbyte(vrs, &keyword[1]) != 0) 1150 return (-1); 1151 if (vpd_nextbyte(vrs, &data) != 0) 1152 return (-1); 1153 1154 return (data); 1155 } 1156 1157 /* read VPD data element of given size into allocated buffer */ 1158 static char * 1159 vpd_read_value(struct vpd_readstate *vrs, int size) 1160 { 1161 int i; 1162 char char1; 1163 char *value; 1164 1165 value = malloc(size + 1, M_DEVBUF, M_WAITOK); 1166 for (i = 0; i < size; i++) { 1167 if (vpd_nextbyte(vrs, &char1) != 0) { 1168 free(value, M_DEVBUF); 1169 return (NULL); 1170 } 1171 value[i] = char1; 1172 } 1173 value[size] = '\0'; 1174 1175 return (value); 1176 } 1177 1178 /* read VPD into *keyword and *value, return length of data element */ 1179 static int 1180 vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen) 1181 { 1182 int len; 1183 1184 len = vpd_read_elem_head(vrs, keyword); 1185 if (len < 0 || len > maxlen) 1186 return (-1); 1187 *value = vpd_read_value(vrs, len); 1188 1189 return (len); 1190 } 1191 1192 /* subtract all data following first byte from checksum of RV element */ 1193 static void 1194 vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len) 1195 { 1196 int i; 1197 uint8_t fixup; 1198 1199 fixup = 0; 1200 for (i = 1; i < len; i++) 1201 fixup += rvstring[i]; 1202 vrs->cksum -= fixup; 1203 } 1204 1205 /* fetch one read-only element and return size of heading + data */ 1206 static int 1207 next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize) 1208 { 1209 struct pcicfg_vpd *vpd; 1210 pcicfgregs *cfg; 1211 struct vpd_readonly *vpd_ros; 1212 int len; 1213 1214 cfg = vrs->cfg; 1215 vpd = &cfg->vpd; 1216 1217 if (maxsize < 3) 1218 return (-1); 1219 vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt); 1220 vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt]; 1221 maxsize -= 3; 1222 len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize); 1223 if (vpd_ros->value == NULL) 1224 return (-1); 1225 vpd_ros->len = len; 1226 if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') { 1227 vpd_fixup_cksum(vrs, vpd_ros->value, len); 1228 if (vrs->cksum != 0) { 1229 pci_printf(cfg, 1230 "invalid VPD checksum %#hhx\n", vrs->cksum); 1231 return (-1); 1232 } 1233 } 1234 vpd->vpd_rocnt++; 1235 1236 return (len + 3); 1237 } 1238 1239 /* fetch one writable element and return size of heading + data */ 1240 static int 1241 next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize) 1242 { 1243 struct pcicfg_vpd *vpd; 1244 pcicfgregs *cfg; 1245 struct vpd_write *vpd_w; 1246 int len; 1247 1248 cfg = vrs->cfg; 1249 vpd = &cfg->vpd; 1250 1251 if (maxsize < 3) 1252 return (-1); 1253 vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt); 1254 if (vpd->vpd_w == NULL) { 1255 pci_printf(cfg, "out of memory"); 1256 return (-1); 1257 } 1258 vpd_w = &vpd->vpd_w[vpd->vpd_wcnt]; 1259 maxsize -= 3; 1260 vpd_w->start = vrs->off + 3 - vrs->bytesinval; 1261 len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize); 1262 if (vpd_w->value == NULL) 1263 return (-1); 1264 vpd_w->len = len; 1265 vpd->vpd_wcnt++; 1266 1267 return (len + 3); 1268 } 1269 1270 /* free all memory allocated for VPD data */ 1271 static void 1272 vpd_free(struct pcicfg_vpd *vpd) 1273 { 1274 int i; 1275 1276 free(vpd->vpd_ident, M_DEVBUF); 1277 for (i = 0; i < vpd->vpd_rocnt; i++) 1278 free(vpd->vpd_ros[i].value, M_DEVBUF); 1279 free(vpd->vpd_ros, M_DEVBUF); 1280 vpd->vpd_rocnt = 0; 1281 for (i = 0; i < vpd->vpd_wcnt; i++) 1282 free(vpd->vpd_w[i].value, M_DEVBUF); 1283 free(vpd->vpd_w, M_DEVBUF); 1284 vpd->vpd_wcnt = 0; 1285 } 1286 1287 #define VPD_TAG_END ((0x0f << 3) | 0) /* small tag, len == 0 */ 1288 #define VPD_TAG_IDENT (0x02 | 0x80) /* large tag */ 1289 #define VPD_TAG_RO (0x10 | 0x80) /* large tag */ 1290 #define VPD_TAG_RW (0x11 | 0x80) /* large tag */ 1291 1292 static int 1293 pci_parse_vpd(device_t pcib, pcicfgregs *cfg) 1294 { 1295 struct vpd_readstate vrs; 1296 int cksumvalid; 1297 int size, elem_size; 1298 1299 /* init vpd reader */ 1300 vrs.bytesinval = 0; 1301 vrs.off = 0; 1302 vrs.pcib = pcib; 1303 vrs.cfg = cfg; 1304 vrs.cksum = 0; 1305 1306 /* read VPD ident element - mandatory */ 1307 size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT); 1308 if (size <= 0) { 1309 pci_printf(cfg, "no VPD ident found\n"); 1310 return (0); 1311 } 1312 cfg->vpd.vpd_ident = vpd_read_value(&vrs, size); 1313 if (cfg->vpd.vpd_ident == NULL) { 1314 pci_printf(cfg, "error accessing VPD ident data\n"); 1315 return (0); 1316 } 1317 1318 /* read VPD RO elements - mandatory */ 1319 size = vpd_read_tag_size(&vrs, VPD_TAG_RO); 1320 if (size <= 0) { 1321 pci_printf(cfg, "no read-only VPD data found\n"); 1322 return (0); 1323 } 1324 while (size > 0) { 1325 elem_size = next_vpd_ro_elem(&vrs, size); 1326 if (elem_size < 0) { 1327 pci_printf(cfg, "error accessing read-only VPD data\n"); 1328 return (-1); 1329 } 1330 size -= elem_size; 1331 } 1332 cksumvalid = (vrs.cksum == 0); 1333 if (!cksumvalid) 1334 return (-1); 1335 1336 /* read VPD RW elements - optional */ 1337 size = vpd_read_tag_size(&vrs, VPD_TAG_RW); 1338 if (size == -2) 1339 return (-1); 1340 while (size > 0) { 1341 elem_size = next_vpd_rw_elem(&vrs, size); 1342 if (elem_size < 0) { 1343 pci_printf(cfg, "error accessing writeable VPD data\n"); 1344 return (-1); 1345 } 1346 size -= elem_size; 1347 } 1348 1349 /* read empty END tag - mandatory */ 1350 size = vpd_read_tag_size(&vrs, VPD_TAG_END); 1351 if (size != 0) { 1352 pci_printf(cfg, "No valid VPD end tag found\n"); 1353 } 1354 return (0); 1355 } 1356 1357 static void 1358 pci_read_vpd(device_t pcib, pcicfgregs *cfg) 1359 { 1360 int status; 1361 1362 status = pci_parse_vpd(pcib, cfg); 1363 if (status < 0) 1364 vpd_free(&cfg->vpd); 1365 cfg->vpd.vpd_cached = 1; 1366 #undef REG 1367 #undef WREG 1368 } 1369 1370 int 1371 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr) 1372 { 1373 struct pci_devinfo *dinfo = device_get_ivars(child); 1374 pcicfgregs *cfg = &dinfo->cfg; 1375 1376 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1377 pci_read_vpd(device_get_parent(dev), cfg); 1378 1379 *identptr = cfg->vpd.vpd_ident; 1380 1381 if (*identptr == NULL) 1382 return (ENXIO); 1383 1384 return (0); 1385 } 1386 1387 int 1388 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw, 1389 const char **vptr) 1390 { 1391 struct pci_devinfo *dinfo = device_get_ivars(child); 1392 pcicfgregs *cfg = &dinfo->cfg; 1393 int i; 1394 1395 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1396 pci_read_vpd(device_get_parent(dev), cfg); 1397 1398 for (i = 0; i < cfg->vpd.vpd_rocnt; i++) 1399 if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword, 1400 sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) { 1401 *vptr = cfg->vpd.vpd_ros[i].value; 1402 return (0); 1403 } 1404 1405 *vptr = NULL; 1406 return (ENXIO); 1407 } 1408 1409 struct pcicfg_vpd * 1410 pci_fetch_vpd_list(device_t dev) 1411 { 1412 struct pci_devinfo *dinfo = device_get_ivars(dev); 1413 pcicfgregs *cfg = &dinfo->cfg; 1414 1415 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1416 pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg); 1417 return (&cfg->vpd); 1418 } 1419 1420 /* 1421 * Find the requested HyperTransport capability and return the offset 1422 * in configuration space via the pointer provided. The function 1423 * returns 0 on success and an error code otherwise. 1424 */ 1425 int 1426 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg) 1427 { 1428 int ptr, error; 1429 uint16_t val; 1430 1431 error = pci_find_cap(child, PCIY_HT, &ptr); 1432 if (error) 1433 return (error); 1434 1435 /* 1436 * Traverse the capabilities list checking each HT capability 1437 * to see if it matches the requested HT capability. 1438 */ 1439 for (;;) { 1440 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1441 if (capability == PCIM_HTCAP_SLAVE || 1442 capability == PCIM_HTCAP_HOST) 1443 val &= 0xe000; 1444 else 1445 val &= PCIM_HTCMD_CAP_MASK; 1446 if (val == capability) { 1447 if (capreg != NULL) 1448 *capreg = ptr; 1449 return (0); 1450 } 1451 1452 /* Skip to the next HT capability. */ 1453 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1454 break; 1455 } 1456 1457 return (ENOENT); 1458 } 1459 1460 /* 1461 * Find the next requested HyperTransport capability after start and return 1462 * the offset in configuration space via the pointer provided. The function 1463 * returns 0 on success and an error code otherwise. 1464 */ 1465 int 1466 pci_find_next_htcap_method(device_t dev, device_t child, int capability, 1467 int start, int *capreg) 1468 { 1469 int ptr; 1470 uint16_t val; 1471 1472 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT, 1473 ("start capability is not HyperTransport capability")); 1474 ptr = start; 1475 1476 /* 1477 * Traverse the capabilities list checking each HT capability 1478 * to see if it matches the requested HT capability. 1479 */ 1480 for (;;) { 1481 /* Skip to the next HT capability. */ 1482 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1483 break; 1484 1485 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1486 if (capability == PCIM_HTCAP_SLAVE || 1487 capability == PCIM_HTCAP_HOST) 1488 val &= 0xe000; 1489 else 1490 val &= PCIM_HTCMD_CAP_MASK; 1491 if (val == capability) { 1492 if (capreg != NULL) 1493 *capreg = ptr; 1494 return (0); 1495 } 1496 } 1497 1498 return (ENOENT); 1499 } 1500 1501 /* 1502 * Find the requested capability and return the offset in 1503 * configuration space via the pointer provided. The function returns 1504 * 0 on success and an error code otherwise. 1505 */ 1506 int 1507 pci_find_cap_method(device_t dev, device_t child, int capability, 1508 int *capreg) 1509 { 1510 struct pci_devinfo *dinfo = device_get_ivars(child); 1511 pcicfgregs *cfg = &dinfo->cfg; 1512 uint32_t status; 1513 uint8_t ptr; 1514 1515 /* 1516 * Check the CAP_LIST bit of the PCI status register first. 1517 */ 1518 status = pci_read_config(child, PCIR_STATUS, 2); 1519 if (!(status & PCIM_STATUS_CAPPRESENT)) 1520 return (ENXIO); 1521 1522 /* 1523 * Determine the start pointer of the capabilities list. 1524 */ 1525 switch (cfg->hdrtype & PCIM_HDRTYPE) { 1526 case PCIM_HDRTYPE_NORMAL: 1527 case PCIM_HDRTYPE_BRIDGE: 1528 ptr = PCIR_CAP_PTR; 1529 break; 1530 case PCIM_HDRTYPE_CARDBUS: 1531 ptr = PCIR_CAP_PTR_2; 1532 break; 1533 default: 1534 /* XXX: panic? */ 1535 return (ENXIO); /* no extended capabilities support */ 1536 } 1537 ptr = pci_read_config(child, ptr, 1); 1538 1539 /* 1540 * Traverse the capabilities list. 1541 */ 1542 while (ptr != 0) { 1543 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1544 if (capreg != NULL) 1545 *capreg = ptr; 1546 return (0); 1547 } 1548 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1549 } 1550 1551 return (ENOENT); 1552 } 1553 1554 /* 1555 * Find the next requested capability after start and return the offset in 1556 * configuration space via the pointer provided. The function returns 1557 * 0 on success and an error code otherwise. 1558 */ 1559 int 1560 pci_find_next_cap_method(device_t dev, device_t child, int capability, 1561 int start, int *capreg) 1562 { 1563 uint8_t ptr; 1564 1565 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability, 1566 ("start capability is not expected capability")); 1567 1568 ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1); 1569 while (ptr != 0) { 1570 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1571 if (capreg != NULL) 1572 *capreg = ptr; 1573 return (0); 1574 } 1575 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1576 } 1577 1578 return (ENOENT); 1579 } 1580 1581 /* 1582 * Find the requested extended capability and return the offset in 1583 * configuration space via the pointer provided. The function returns 1584 * 0 on success and an error code otherwise. 1585 */ 1586 int 1587 pci_find_extcap_method(device_t dev, device_t child, int capability, 1588 int *capreg) 1589 { 1590 struct pci_devinfo *dinfo = device_get_ivars(child); 1591 pcicfgregs *cfg = &dinfo->cfg; 1592 uint32_t ecap; 1593 uint16_t ptr; 1594 1595 /* Only supported for PCI-express devices. */ 1596 if (cfg->pcie.pcie_location == 0) 1597 return (ENXIO); 1598 1599 ptr = PCIR_EXTCAP; 1600 ecap = pci_read_config(child, ptr, 4); 1601 if (ecap == 0xffffffff || ecap == 0) 1602 return (ENOENT); 1603 for (;;) { 1604 if (PCI_EXTCAP_ID(ecap) == capability) { 1605 if (capreg != NULL) 1606 *capreg = ptr; 1607 return (0); 1608 } 1609 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1610 if (ptr == 0) 1611 break; 1612 ecap = pci_read_config(child, ptr, 4); 1613 } 1614 1615 return (ENOENT); 1616 } 1617 1618 /* 1619 * Find the next requested extended capability after start and return the 1620 * offset in configuration space via the pointer provided. The function 1621 * returns 0 on success and an error code otherwise. 1622 */ 1623 int 1624 pci_find_next_extcap_method(device_t dev, device_t child, int capability, 1625 int start, int *capreg) 1626 { 1627 struct pci_devinfo *dinfo = device_get_ivars(child); 1628 pcicfgregs *cfg = &dinfo->cfg; 1629 uint32_t ecap; 1630 uint16_t ptr; 1631 1632 /* Only supported for PCI-express devices. */ 1633 if (cfg->pcie.pcie_location == 0) 1634 return (ENXIO); 1635 1636 ecap = pci_read_config(child, start, 4); 1637 KASSERT(PCI_EXTCAP_ID(ecap) == capability, 1638 ("start extended capability is not expected capability")); 1639 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1640 while (ptr != 0) { 1641 ecap = pci_read_config(child, ptr, 4); 1642 if (PCI_EXTCAP_ID(ecap) == capability) { 1643 if (capreg != NULL) 1644 *capreg = ptr; 1645 return (0); 1646 } 1647 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1648 } 1649 1650 return (ENOENT); 1651 } 1652 1653 /* 1654 * Support for MSI-X message interrupts. 1655 */ 1656 static void 1657 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data) 1658 { 1659 struct pci_devinfo *dinfo = device_get_ivars(dev); 1660 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1661 uint32_t offset; 1662 1663 KASSERT(msix->msix_table_len > index, ("bogus index")); 1664 offset = msix->msix_table_offset + index * 16; 1665 bus_write_4(msix->msix_table_res, offset, address & 0xffffffff); 1666 bus_write_4(msix->msix_table_res, offset + 4, address >> 32); 1667 bus_write_4(msix->msix_table_res, offset + 8, data); 1668 } 1669 1670 void 1671 pci_enable_msix_method(device_t dev, device_t child, u_int index, 1672 uint64_t address, uint32_t data) 1673 { 1674 1675 if (pci_msix_rewrite_table) { 1676 struct pci_devinfo *dinfo = device_get_ivars(child); 1677 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1678 1679 /* 1680 * Some VM hosts require MSIX to be disabled in the 1681 * control register before updating the MSIX table 1682 * entries are allowed. It is not enough to only 1683 * disable MSIX while updating a single entry. MSIX 1684 * must be disabled while updating all entries in the 1685 * table. 1686 */ 1687 pci_write_config(child, 1688 msix->msix_location + PCIR_MSIX_CTRL, 1689 msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2); 1690 pci_resume_msix(child); 1691 } else 1692 pci_write_msix_entry(child, index, address, data); 1693 1694 /* Enable MSI -> HT mapping. */ 1695 pci_ht_map_msi(child, address); 1696 } 1697 1698 void 1699 pci_mask_msix(device_t dev, u_int index) 1700 { 1701 struct pci_devinfo *dinfo = device_get_ivars(dev); 1702 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1703 uint32_t offset, val; 1704 1705 KASSERT(msix->msix_msgnum > index, ("bogus index")); 1706 offset = msix->msix_table_offset + index * 16 + 12; 1707 val = bus_read_4(msix->msix_table_res, offset); 1708 val |= PCIM_MSIX_VCTRL_MASK; 1709 1710 /* 1711 * Some devices (e.g. Samsung PM961) do not support reads of this 1712 * register, so always write the new value. 1713 */ 1714 bus_write_4(msix->msix_table_res, offset, val); 1715 } 1716 1717 void 1718 pci_unmask_msix(device_t dev, u_int index) 1719 { 1720 struct pci_devinfo *dinfo = device_get_ivars(dev); 1721 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1722 uint32_t offset, val; 1723 1724 KASSERT(msix->msix_table_len > index, ("bogus index")); 1725 offset = msix->msix_table_offset + index * 16 + 12; 1726 val = bus_read_4(msix->msix_table_res, offset); 1727 val &= ~PCIM_MSIX_VCTRL_MASK; 1728 1729 /* 1730 * Some devices (e.g. Samsung PM961) do not support reads of this 1731 * register, so always write the new value. 1732 */ 1733 bus_write_4(msix->msix_table_res, offset, val); 1734 } 1735 1736 int 1737 pci_pending_msix(device_t dev, u_int index) 1738 { 1739 struct pci_devinfo *dinfo = device_get_ivars(dev); 1740 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1741 uint32_t offset, bit; 1742 1743 KASSERT(msix->msix_table_len > index, ("bogus index")); 1744 offset = msix->msix_pba_offset + (index / 32) * 4; 1745 bit = 1 << index % 32; 1746 return (bus_read_4(msix->msix_pba_res, offset) & bit); 1747 } 1748 1749 /* 1750 * Restore MSI-X registers and table during resume. If MSI-X is 1751 * enabled then walk the virtual table to restore the actual MSI-X 1752 * table. 1753 */ 1754 static void 1755 pci_resume_msix(device_t dev) 1756 { 1757 struct pci_devinfo *dinfo = device_get_ivars(dev); 1758 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1759 struct msix_table_entry *mte; 1760 struct msix_vector *mv; 1761 int i; 1762 1763 if (msix->msix_alloc > 0) { 1764 /* First, mask all vectors. */ 1765 for (i = 0; i < msix->msix_msgnum; i++) 1766 pci_mask_msix(dev, i); 1767 1768 /* Second, program any messages with at least one handler. */ 1769 for (i = 0; i < msix->msix_table_len; i++) { 1770 mte = &msix->msix_table[i]; 1771 if (mte->mte_vector == 0 || mte->mte_handlers == 0) 1772 continue; 1773 mv = &msix->msix_vectors[mte->mte_vector - 1]; 1774 pci_write_msix_entry(dev, i, mv->mv_address, 1775 mv->mv_data); 1776 pci_unmask_msix(dev, i); 1777 } 1778 } 1779 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL, 1780 msix->msix_ctrl, 2); 1781 } 1782 1783 /* 1784 * Attempt to allocate *count MSI-X messages. The actual number allocated is 1785 * returned in *count. After this function returns, each message will be 1786 * available to the driver as SYS_RES_IRQ resources starting at rid 1. 1787 */ 1788 int 1789 pci_alloc_msix_method(device_t dev, device_t child, int *count) 1790 { 1791 struct pci_devinfo *dinfo = device_get_ivars(child); 1792 pcicfgregs *cfg = &dinfo->cfg; 1793 struct resource_list_entry *rle; 1794 int actual, error, i, irq, max; 1795 1796 /* Don't let count == 0 get us into trouble. */ 1797 if (*count == 0) 1798 return (EINVAL); 1799 1800 /* If rid 0 is allocated, then fail. */ 1801 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 1802 if (rle != NULL && rle->res != NULL) 1803 return (ENXIO); 1804 1805 /* Already have allocated messages? */ 1806 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 1807 return (ENXIO); 1808 1809 /* If MSI-X is blacklisted for this system, fail. */ 1810 if (pci_msix_blacklisted()) 1811 return (ENXIO); 1812 1813 /* MSI-X capability present? */ 1814 if (cfg->msix.msix_location == 0 || !pci_do_msix) 1815 return (ENODEV); 1816 1817 /* Make sure the appropriate BARs are mapped. */ 1818 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1819 cfg->msix.msix_table_bar); 1820 if (rle == NULL || rle->res == NULL || 1821 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1822 return (ENXIO); 1823 cfg->msix.msix_table_res = rle->res; 1824 if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) { 1825 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1826 cfg->msix.msix_pba_bar); 1827 if (rle == NULL || rle->res == NULL || 1828 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1829 return (ENXIO); 1830 } 1831 cfg->msix.msix_pba_res = rle->res; 1832 1833 if (bootverbose) 1834 device_printf(child, 1835 "attempting to allocate %d MSI-X vectors (%d supported)\n", 1836 *count, cfg->msix.msix_msgnum); 1837 max = min(*count, cfg->msix.msix_msgnum); 1838 for (i = 0; i < max; i++) { 1839 /* Allocate a message. */ 1840 error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq); 1841 if (error) { 1842 if (i == 0) 1843 return (error); 1844 break; 1845 } 1846 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 1847 irq, 1); 1848 } 1849 actual = i; 1850 1851 if (bootverbose) { 1852 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1); 1853 if (actual == 1) 1854 device_printf(child, "using IRQ %ju for MSI-X\n", 1855 rle->start); 1856 else { 1857 int run; 1858 1859 /* 1860 * Be fancy and try to print contiguous runs of 1861 * IRQ values as ranges. 'irq' is the previous IRQ. 1862 * 'run' is true if we are in a range. 1863 */ 1864 device_printf(child, "using IRQs %ju", rle->start); 1865 irq = rle->start; 1866 run = 0; 1867 for (i = 1; i < actual; i++) { 1868 rle = resource_list_find(&dinfo->resources, 1869 SYS_RES_IRQ, i + 1); 1870 1871 /* Still in a run? */ 1872 if (rle->start == irq + 1) { 1873 run = 1; 1874 irq++; 1875 continue; 1876 } 1877 1878 /* Finish previous range. */ 1879 if (run) { 1880 printf("-%d", irq); 1881 run = 0; 1882 } 1883 1884 /* Start new range. */ 1885 printf(",%ju", rle->start); 1886 irq = rle->start; 1887 } 1888 1889 /* Unfinished range? */ 1890 if (run) 1891 printf("-%d", irq); 1892 printf(" for MSI-X\n"); 1893 } 1894 } 1895 1896 /* Mask all vectors. */ 1897 for (i = 0; i < cfg->msix.msix_msgnum; i++) 1898 pci_mask_msix(child, i); 1899 1900 /* Allocate and initialize vector data and virtual table. */ 1901 cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual, 1902 M_DEVBUF, M_WAITOK | M_ZERO); 1903 cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual, 1904 M_DEVBUF, M_WAITOK | M_ZERO); 1905 for (i = 0; i < actual; i++) { 1906 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1907 cfg->msix.msix_vectors[i].mv_irq = rle->start; 1908 cfg->msix.msix_table[i].mte_vector = i + 1; 1909 } 1910 1911 /* Update control register to enable MSI-X. */ 1912 cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE; 1913 pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL, 1914 cfg->msix.msix_ctrl, 2); 1915 1916 /* Update counts of alloc'd messages. */ 1917 cfg->msix.msix_alloc = actual; 1918 cfg->msix.msix_table_len = actual; 1919 *count = actual; 1920 return (0); 1921 } 1922 1923 /* 1924 * By default, pci_alloc_msix() will assign the allocated IRQ 1925 * resources consecutively to the first N messages in the MSI-X table. 1926 * However, device drivers may want to use different layouts if they 1927 * either receive fewer messages than they asked for, or they wish to 1928 * populate the MSI-X table sparsely. This method allows the driver 1929 * to specify what layout it wants. It must be called after a 1930 * successful pci_alloc_msix() but before any of the associated 1931 * SYS_RES_IRQ resources are allocated via bus_alloc_resource(). 1932 * 1933 * The 'vectors' array contains 'count' message vectors. The array 1934 * maps directly to the MSI-X table in that index 0 in the array 1935 * specifies the vector for the first message in the MSI-X table, etc. 1936 * The vector value in each array index can either be 0 to indicate 1937 * that no vector should be assigned to a message slot, or it can be a 1938 * number from 1 to N (where N is the count returned from a 1939 * succcessful call to pci_alloc_msix()) to indicate which message 1940 * vector (IRQ) to be used for the corresponding message. 1941 * 1942 * On successful return, each message with a non-zero vector will have 1943 * an associated SYS_RES_IRQ whose rid is equal to the array index + 1944 * 1. Additionally, if any of the IRQs allocated via the previous 1945 * call to pci_alloc_msix() are not used in the mapping, those IRQs 1946 * will be freed back to the system automatically. 1947 * 1948 * For example, suppose a driver has a MSI-X table with 6 messages and 1949 * asks for 6 messages, but pci_alloc_msix() only returns a count of 1950 * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and 1951 * C. After the call to pci_alloc_msix(), the device will be setup to 1952 * have an MSI-X table of ABC--- (where - means no vector assigned). 1953 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 }, 1954 * then the MSI-X table will look like A-AB-B, and the 'C' vector will 1955 * be freed back to the system. This device will also have valid 1956 * SYS_RES_IRQ rids of 1, 3, 4, and 6. 1957 * 1958 * In any case, the SYS_RES_IRQ rid X will always map to the message 1959 * at MSI-X table index X - 1 and will only be valid if a vector is 1960 * assigned to that table entry. 1961 */ 1962 int 1963 pci_remap_msix_method(device_t dev, device_t child, int count, 1964 const u_int *vectors) 1965 { 1966 struct pci_devinfo *dinfo = device_get_ivars(child); 1967 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1968 struct resource_list_entry *rle; 1969 int i, irq, j, *used; 1970 1971 /* 1972 * Have to have at least one message in the table but the 1973 * table can't be bigger than the actual MSI-X table in the 1974 * device. 1975 */ 1976 if (count == 0 || count > msix->msix_msgnum) 1977 return (EINVAL); 1978 1979 /* Sanity check the vectors. */ 1980 for (i = 0; i < count; i++) 1981 if (vectors[i] > msix->msix_alloc) 1982 return (EINVAL); 1983 1984 /* 1985 * Make sure there aren't any holes in the vectors to be used. 1986 * It's a big pain to support it, and it doesn't really make 1987 * sense anyway. Also, at least one vector must be used. 1988 */ 1989 used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK | 1990 M_ZERO); 1991 for (i = 0; i < count; i++) 1992 if (vectors[i] != 0) 1993 used[vectors[i] - 1] = 1; 1994 for (i = 0; i < msix->msix_alloc - 1; i++) 1995 if (used[i] == 0 && used[i + 1] == 1) { 1996 free(used, M_DEVBUF); 1997 return (EINVAL); 1998 } 1999 if (used[0] != 1) { 2000 free(used, M_DEVBUF); 2001 return (EINVAL); 2002 } 2003 2004 /* Make sure none of the resources are allocated. */ 2005 for (i = 0; i < msix->msix_table_len; i++) { 2006 if (msix->msix_table[i].mte_vector == 0) 2007 continue; 2008 if (msix->msix_table[i].mte_handlers > 0) { 2009 free(used, M_DEVBUF); 2010 return (EBUSY); 2011 } 2012 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2013 KASSERT(rle != NULL, ("missing resource")); 2014 if (rle->res != NULL) { 2015 free(used, M_DEVBUF); 2016 return (EBUSY); 2017 } 2018 } 2019 2020 /* Free the existing resource list entries. */ 2021 for (i = 0; i < msix->msix_table_len; i++) { 2022 if (msix->msix_table[i].mte_vector == 0) 2023 continue; 2024 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2025 } 2026 2027 /* 2028 * Build the new virtual table keeping track of which vectors are 2029 * used. 2030 */ 2031 free(msix->msix_table, M_DEVBUF); 2032 msix->msix_table = malloc(sizeof(struct msix_table_entry) * count, 2033 M_DEVBUF, M_WAITOK | M_ZERO); 2034 for (i = 0; i < count; i++) 2035 msix->msix_table[i].mte_vector = vectors[i]; 2036 msix->msix_table_len = count; 2037 2038 /* Free any unused IRQs and resize the vectors array if necessary. */ 2039 j = msix->msix_alloc - 1; 2040 if (used[j] == 0) { 2041 struct msix_vector *vec; 2042 2043 while (used[j] == 0) { 2044 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2045 msix->msix_vectors[j].mv_irq); 2046 j--; 2047 } 2048 vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF, 2049 M_WAITOK); 2050 bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) * 2051 (j + 1)); 2052 free(msix->msix_vectors, M_DEVBUF); 2053 msix->msix_vectors = vec; 2054 msix->msix_alloc = j + 1; 2055 } 2056 free(used, M_DEVBUF); 2057 2058 /* Map the IRQs onto the rids. */ 2059 for (i = 0; i < count; i++) { 2060 if (vectors[i] == 0) 2061 continue; 2062 irq = msix->msix_vectors[vectors[i] - 1].mv_irq; 2063 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 2064 irq, 1); 2065 } 2066 2067 if (bootverbose) { 2068 device_printf(child, "Remapped MSI-X IRQs as: "); 2069 for (i = 0; i < count; i++) { 2070 if (i != 0) 2071 printf(", "); 2072 if (vectors[i] == 0) 2073 printf("---"); 2074 else 2075 printf("%d", 2076 msix->msix_vectors[vectors[i] - 1].mv_irq); 2077 } 2078 printf("\n"); 2079 } 2080 2081 return (0); 2082 } 2083 2084 static int 2085 pci_release_msix(device_t dev, device_t child) 2086 { 2087 struct pci_devinfo *dinfo = device_get_ivars(child); 2088 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2089 struct resource_list_entry *rle; 2090 int i; 2091 2092 /* Do we have any messages to release? */ 2093 if (msix->msix_alloc == 0) 2094 return (ENODEV); 2095 2096 /* Make sure none of the resources are allocated. */ 2097 for (i = 0; i < msix->msix_table_len; i++) { 2098 if (msix->msix_table[i].mte_vector == 0) 2099 continue; 2100 if (msix->msix_table[i].mte_handlers > 0) 2101 return (EBUSY); 2102 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2103 KASSERT(rle != NULL, ("missing resource")); 2104 if (rle->res != NULL) 2105 return (EBUSY); 2106 } 2107 2108 /* Update control register to disable MSI-X. */ 2109 msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE; 2110 pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, 2111 msix->msix_ctrl, 2); 2112 2113 /* Free the resource list entries. */ 2114 for (i = 0; i < msix->msix_table_len; i++) { 2115 if (msix->msix_table[i].mte_vector == 0) 2116 continue; 2117 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2118 } 2119 free(msix->msix_table, M_DEVBUF); 2120 msix->msix_table_len = 0; 2121 2122 /* Release the IRQs. */ 2123 for (i = 0; i < msix->msix_alloc; i++) 2124 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2125 msix->msix_vectors[i].mv_irq); 2126 free(msix->msix_vectors, M_DEVBUF); 2127 msix->msix_alloc = 0; 2128 return (0); 2129 } 2130 2131 /* 2132 * Return the max supported MSI-X messages this device supports. 2133 * Basically, assuming the MD code can alloc messages, this function 2134 * should return the maximum value that pci_alloc_msix() can return. 2135 * Thus, it is subject to the tunables, etc. 2136 */ 2137 int 2138 pci_msix_count_method(device_t dev, device_t child) 2139 { 2140 struct pci_devinfo *dinfo = device_get_ivars(child); 2141 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2142 2143 if (pci_do_msix && msix->msix_location != 0) 2144 return (msix->msix_msgnum); 2145 return (0); 2146 } 2147 2148 int 2149 pci_msix_pba_bar_method(device_t dev, device_t child) 2150 { 2151 struct pci_devinfo *dinfo = device_get_ivars(child); 2152 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2153 2154 if (pci_do_msix && msix->msix_location != 0) 2155 return (msix->msix_pba_bar); 2156 return (-1); 2157 } 2158 2159 int 2160 pci_msix_table_bar_method(device_t dev, device_t child) 2161 { 2162 struct pci_devinfo *dinfo = device_get_ivars(child); 2163 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2164 2165 if (pci_do_msix && msix->msix_location != 0) 2166 return (msix->msix_table_bar); 2167 return (-1); 2168 } 2169 2170 /* 2171 * HyperTransport MSI mapping control 2172 */ 2173 void 2174 pci_ht_map_msi(device_t dev, uint64_t addr) 2175 { 2176 struct pci_devinfo *dinfo = device_get_ivars(dev); 2177 struct pcicfg_ht *ht = &dinfo->cfg.ht; 2178 2179 if (!ht->ht_msimap) 2180 return; 2181 2182 if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) && 2183 ht->ht_msiaddr >> 20 == addr >> 20) { 2184 /* Enable MSI -> HT mapping. */ 2185 ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 2186 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2187 ht->ht_msictrl, 2); 2188 } 2189 2190 if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) { 2191 /* Disable MSI -> HT mapping. */ 2192 ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE; 2193 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2194 ht->ht_msictrl, 2); 2195 } 2196 } 2197 2198 int 2199 pci_get_relaxed_ordering_enabled(device_t dev) 2200 { 2201 struct pci_devinfo *dinfo = device_get_ivars(dev); 2202 int cap; 2203 uint16_t val; 2204 2205 cap = dinfo->cfg.pcie.pcie_location; 2206 if (cap == 0) 2207 return (0); 2208 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2209 val &= PCIEM_CTL_RELAXED_ORD_ENABLE; 2210 return (val != 0); 2211 } 2212 2213 int 2214 pci_get_max_payload(device_t dev) 2215 { 2216 struct pci_devinfo *dinfo = device_get_ivars(dev); 2217 int cap; 2218 uint16_t val; 2219 2220 cap = dinfo->cfg.pcie.pcie_location; 2221 if (cap == 0) 2222 return (0); 2223 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2224 val &= PCIEM_CTL_MAX_PAYLOAD; 2225 val >>= 5; 2226 return (1 << (val + 7)); 2227 } 2228 2229 int 2230 pci_get_max_read_req(device_t dev) 2231 { 2232 struct pci_devinfo *dinfo = device_get_ivars(dev); 2233 int cap; 2234 uint16_t val; 2235 2236 cap = dinfo->cfg.pcie.pcie_location; 2237 if (cap == 0) 2238 return (0); 2239 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2240 val &= PCIEM_CTL_MAX_READ_REQUEST; 2241 val >>= 12; 2242 return (1 << (val + 7)); 2243 } 2244 2245 int 2246 pci_set_max_read_req(device_t dev, int size) 2247 { 2248 struct pci_devinfo *dinfo = device_get_ivars(dev); 2249 int cap; 2250 uint16_t val; 2251 2252 cap = dinfo->cfg.pcie.pcie_location; 2253 if (cap == 0) 2254 return (0); 2255 if (size < 128) 2256 size = 128; 2257 if (size > 4096) 2258 size = 4096; 2259 size = (1 << (fls(size) - 1)); 2260 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2261 val &= ~PCIEM_CTL_MAX_READ_REQUEST; 2262 val |= (fls(size) - 8) << 12; 2263 pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2); 2264 return (size); 2265 } 2266 2267 uint32_t 2268 pcie_read_config(device_t dev, int reg, int width) 2269 { 2270 struct pci_devinfo *dinfo = device_get_ivars(dev); 2271 int cap; 2272 2273 cap = dinfo->cfg.pcie.pcie_location; 2274 if (cap == 0) { 2275 if (width == 2) 2276 return (0xffff); 2277 return (0xffffffff); 2278 } 2279 2280 return (pci_read_config(dev, cap + reg, width)); 2281 } 2282 2283 void 2284 pcie_write_config(device_t dev, int reg, uint32_t value, int width) 2285 { 2286 struct pci_devinfo *dinfo = device_get_ivars(dev); 2287 int cap; 2288 2289 cap = dinfo->cfg.pcie.pcie_location; 2290 if (cap == 0) 2291 return; 2292 pci_write_config(dev, cap + reg, value, width); 2293 } 2294 2295 /* 2296 * Adjusts a PCI-e capability register by clearing the bits in mask 2297 * and setting the bits in (value & mask). Bits not set in mask are 2298 * not adjusted. 2299 * 2300 * Returns the old value on success or all ones on failure. 2301 */ 2302 uint32_t 2303 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value, 2304 int width) 2305 { 2306 struct pci_devinfo *dinfo = device_get_ivars(dev); 2307 uint32_t old, new; 2308 int cap; 2309 2310 cap = dinfo->cfg.pcie.pcie_location; 2311 if (cap == 0) { 2312 if (width == 2) 2313 return (0xffff); 2314 return (0xffffffff); 2315 } 2316 2317 old = pci_read_config(dev, cap + reg, width); 2318 new = old & ~mask; 2319 new |= (value & mask); 2320 pci_write_config(dev, cap + reg, new, width); 2321 return (old); 2322 } 2323 2324 /* 2325 * Support for MSI message signalled interrupts. 2326 */ 2327 void 2328 pci_enable_msi_method(device_t dev, device_t child, uint64_t address, 2329 uint16_t data) 2330 { 2331 struct pci_devinfo *dinfo = device_get_ivars(child); 2332 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2333 2334 /* Write data and address values. */ 2335 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR, 2336 address & 0xffffffff, 4); 2337 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2338 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH, 2339 address >> 32, 4); 2340 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT, 2341 data, 2); 2342 } else 2343 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data, 2344 2); 2345 2346 /* Enable MSI in the control register. */ 2347 msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE; 2348 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2349 msi->msi_ctrl, 2); 2350 2351 /* Enable MSI -> HT mapping. */ 2352 pci_ht_map_msi(child, address); 2353 } 2354 2355 void 2356 pci_disable_msi_method(device_t dev, device_t child) 2357 { 2358 struct pci_devinfo *dinfo = device_get_ivars(child); 2359 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2360 2361 /* Disable MSI -> HT mapping. */ 2362 pci_ht_map_msi(child, 0); 2363 2364 /* Disable MSI in the control register. */ 2365 msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE; 2366 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2367 msi->msi_ctrl, 2); 2368 } 2369 2370 /* 2371 * Restore MSI registers during resume. If MSI is enabled then 2372 * restore the data and address registers in addition to the control 2373 * register. 2374 */ 2375 static void 2376 pci_resume_msi(device_t dev) 2377 { 2378 struct pci_devinfo *dinfo = device_get_ivars(dev); 2379 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2380 uint64_t address; 2381 uint16_t data; 2382 2383 if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) { 2384 address = msi->msi_addr; 2385 data = msi->msi_data; 2386 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR, 2387 address & 0xffffffff, 4); 2388 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2389 pci_write_config(dev, msi->msi_location + 2390 PCIR_MSI_ADDR_HIGH, address >> 32, 4); 2391 pci_write_config(dev, msi->msi_location + 2392 PCIR_MSI_DATA_64BIT, data, 2); 2393 } else 2394 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, 2395 data, 2); 2396 } 2397 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2398 2); 2399 } 2400 2401 static int 2402 pci_remap_intr_method(device_t bus, device_t dev, u_int irq) 2403 { 2404 struct pci_devinfo *dinfo = device_get_ivars(dev); 2405 pcicfgregs *cfg = &dinfo->cfg; 2406 struct resource_list_entry *rle; 2407 struct msix_table_entry *mte; 2408 struct msix_vector *mv; 2409 uint64_t addr; 2410 uint32_t data; 2411 int error, i, j; 2412 2413 /* 2414 * Handle MSI first. We try to find this IRQ among our list 2415 * of MSI IRQs. If we find it, we request updated address and 2416 * data registers and apply the results. 2417 */ 2418 if (cfg->msi.msi_alloc > 0) { 2419 /* If we don't have any active handlers, nothing to do. */ 2420 if (cfg->msi.msi_handlers == 0) 2421 return (0); 2422 for (i = 0; i < cfg->msi.msi_alloc; i++) { 2423 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 2424 i + 1); 2425 if (rle->start == irq) { 2426 error = PCIB_MAP_MSI(device_get_parent(bus), 2427 dev, irq, &addr, &data); 2428 if (error) 2429 return (error); 2430 pci_disable_msi(dev); 2431 dinfo->cfg.msi.msi_addr = addr; 2432 dinfo->cfg.msi.msi_data = data; 2433 pci_enable_msi(dev, addr, data); 2434 return (0); 2435 } 2436 } 2437 return (ENOENT); 2438 } 2439 2440 /* 2441 * For MSI-X, we check to see if we have this IRQ. If we do, 2442 * we request the updated mapping info. If that works, we go 2443 * through all the slots that use this IRQ and update them. 2444 */ 2445 if (cfg->msix.msix_alloc > 0) { 2446 bool found = false; 2447 2448 for (i = 0; i < cfg->msix.msix_alloc; i++) { 2449 mv = &cfg->msix.msix_vectors[i]; 2450 if (mv->mv_irq == irq) { 2451 error = PCIB_MAP_MSI(device_get_parent(bus), 2452 dev, irq, &addr, &data); 2453 if (error) 2454 return (error); 2455 mv->mv_address = addr; 2456 mv->mv_data = data; 2457 for (j = 0; j < cfg->msix.msix_table_len; j++) { 2458 mte = &cfg->msix.msix_table[j]; 2459 if (mte->mte_vector != i + 1) 2460 continue; 2461 if (mte->mte_handlers == 0) 2462 continue; 2463 pci_mask_msix(dev, j); 2464 pci_enable_msix(dev, j, addr, data); 2465 pci_unmask_msix(dev, j); 2466 } 2467 found = true; 2468 } 2469 } 2470 return (found ? 0 : ENOENT); 2471 } 2472 2473 return (ENOENT); 2474 } 2475 2476 /* 2477 * Returns true if the specified device is blacklisted because MSI 2478 * doesn't work. 2479 */ 2480 int 2481 pci_msi_device_blacklisted(device_t dev) 2482 { 2483 2484 if (!pci_honor_msi_blacklist) 2485 return (0); 2486 2487 return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI)); 2488 } 2489 2490 /* 2491 * Determine if MSI is blacklisted globally on this system. Currently, 2492 * we just check for blacklisted chipsets as represented by the 2493 * host-PCI bridge at device 0:0:0. In the future, it may become 2494 * necessary to check other system attributes, such as the kenv values 2495 * that give the motherboard manufacturer and model number. 2496 */ 2497 static int 2498 pci_msi_blacklisted(void) 2499 { 2500 device_t dev; 2501 2502 if (!pci_honor_msi_blacklist) 2503 return (0); 2504 2505 /* Blacklist all non-PCI-express and non-PCI-X chipsets. */ 2506 if (!(pcie_chipset || pcix_chipset)) { 2507 if (vm_guest != VM_GUEST_NO) { 2508 /* 2509 * Whitelist older chipsets in virtual 2510 * machines known to support MSI. 2511 */ 2512 dev = pci_find_bsf(0, 0, 0); 2513 if (dev != NULL) 2514 return (!pci_has_quirk(pci_get_devid(dev), 2515 PCI_QUIRK_ENABLE_MSI_VM)); 2516 } 2517 return (1); 2518 } 2519 2520 dev = pci_find_bsf(0, 0, 0); 2521 if (dev != NULL) 2522 return (pci_msi_device_blacklisted(dev)); 2523 return (0); 2524 } 2525 2526 /* 2527 * Returns true if the specified device is blacklisted because MSI-X 2528 * doesn't work. Note that this assumes that if MSI doesn't work, 2529 * MSI-X doesn't either. 2530 */ 2531 int 2532 pci_msix_device_blacklisted(device_t dev) 2533 { 2534 2535 if (!pci_honor_msi_blacklist) 2536 return (0); 2537 2538 if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) 2539 return (1); 2540 2541 return (pci_msi_device_blacklisted(dev)); 2542 } 2543 2544 /* 2545 * Determine if MSI-X is blacklisted globally on this system. If MSI 2546 * is blacklisted, assume that MSI-X is as well. Check for additional 2547 * chipsets where MSI works but MSI-X does not. 2548 */ 2549 static int 2550 pci_msix_blacklisted(void) 2551 { 2552 device_t dev; 2553 2554 if (!pci_honor_msi_blacklist) 2555 return (0); 2556 2557 dev = pci_find_bsf(0, 0, 0); 2558 if (dev != NULL && pci_has_quirk(pci_get_devid(dev), 2559 PCI_QUIRK_DISABLE_MSIX)) 2560 return (1); 2561 2562 return (pci_msi_blacklisted()); 2563 } 2564 2565 /* 2566 * Attempt to allocate *count MSI messages. The actual number allocated is 2567 * returned in *count. After this function returns, each message will be 2568 * available to the driver as SYS_RES_IRQ resources starting at a rid 1. 2569 */ 2570 int 2571 pci_alloc_msi_method(device_t dev, device_t child, int *count) 2572 { 2573 struct pci_devinfo *dinfo = device_get_ivars(child); 2574 pcicfgregs *cfg = &dinfo->cfg; 2575 struct resource_list_entry *rle; 2576 int actual, error, i, irqs[32]; 2577 uint16_t ctrl; 2578 2579 /* Don't let count == 0 get us into trouble. */ 2580 if (*count == 0) 2581 return (EINVAL); 2582 2583 /* If rid 0 is allocated, then fail. */ 2584 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 2585 if (rle != NULL && rle->res != NULL) 2586 return (ENXIO); 2587 2588 /* Already have allocated messages? */ 2589 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 2590 return (ENXIO); 2591 2592 /* If MSI is blacklisted for this system, fail. */ 2593 if (pci_msi_blacklisted()) 2594 return (ENXIO); 2595 2596 /* MSI capability present? */ 2597 if (cfg->msi.msi_location == 0 || !pci_do_msi) 2598 return (ENODEV); 2599 2600 if (bootverbose) 2601 device_printf(child, 2602 "attempting to allocate %d MSI vectors (%d supported)\n", 2603 *count, cfg->msi.msi_msgnum); 2604 2605 /* Don't ask for more than the device supports. */ 2606 actual = min(*count, cfg->msi.msi_msgnum); 2607 2608 /* Don't ask for more than 32 messages. */ 2609 actual = min(actual, 32); 2610 2611 /* MSI requires power of 2 number of messages. */ 2612 if (!powerof2(actual)) 2613 return (EINVAL); 2614 2615 for (;;) { 2616 /* Try to allocate N messages. */ 2617 error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual, 2618 actual, irqs); 2619 if (error == 0) 2620 break; 2621 if (actual == 1) 2622 return (error); 2623 2624 /* Try N / 2. */ 2625 actual >>= 1; 2626 } 2627 2628 /* 2629 * We now have N actual messages mapped onto SYS_RES_IRQ 2630 * resources in the irqs[] array, so add new resources 2631 * starting at rid 1. 2632 */ 2633 for (i = 0; i < actual; i++) 2634 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, 2635 irqs[i], irqs[i], 1); 2636 2637 if (bootverbose) { 2638 if (actual == 1) 2639 device_printf(child, "using IRQ %d for MSI\n", irqs[0]); 2640 else { 2641 int run; 2642 2643 /* 2644 * Be fancy and try to print contiguous runs 2645 * of IRQ values as ranges. 'run' is true if 2646 * we are in a range. 2647 */ 2648 device_printf(child, "using IRQs %d", irqs[0]); 2649 run = 0; 2650 for (i = 1; i < actual; i++) { 2651 /* Still in a run? */ 2652 if (irqs[i] == irqs[i - 1] + 1) { 2653 run = 1; 2654 continue; 2655 } 2656 2657 /* Finish previous range. */ 2658 if (run) { 2659 printf("-%d", irqs[i - 1]); 2660 run = 0; 2661 } 2662 2663 /* Start new range. */ 2664 printf(",%d", irqs[i]); 2665 } 2666 2667 /* Unfinished range? */ 2668 if (run) 2669 printf("-%d", irqs[actual - 1]); 2670 printf(" for MSI\n"); 2671 } 2672 } 2673 2674 /* Update control register with actual count. */ 2675 ctrl = cfg->msi.msi_ctrl; 2676 ctrl &= ~PCIM_MSICTRL_MME_MASK; 2677 ctrl |= (ffs(actual) - 1) << 4; 2678 cfg->msi.msi_ctrl = ctrl; 2679 pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2); 2680 2681 /* Update counts of alloc'd messages. */ 2682 cfg->msi.msi_alloc = actual; 2683 cfg->msi.msi_handlers = 0; 2684 *count = actual; 2685 return (0); 2686 } 2687 2688 /* Release the MSI messages associated with this device. */ 2689 int 2690 pci_release_msi_method(device_t dev, device_t child) 2691 { 2692 struct pci_devinfo *dinfo = device_get_ivars(child); 2693 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2694 struct resource_list_entry *rle; 2695 int error, i, irqs[32]; 2696 2697 /* Try MSI-X first. */ 2698 error = pci_release_msix(dev, child); 2699 if (error != ENODEV) 2700 return (error); 2701 2702 /* Do we have any messages to release? */ 2703 if (msi->msi_alloc == 0) 2704 return (ENODEV); 2705 KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages")); 2706 2707 /* Make sure none of the resources are allocated. */ 2708 if (msi->msi_handlers > 0) 2709 return (EBUSY); 2710 for (i = 0; i < msi->msi_alloc; i++) { 2711 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2712 KASSERT(rle != NULL, ("missing MSI resource")); 2713 if (rle->res != NULL) 2714 return (EBUSY); 2715 irqs[i] = rle->start; 2716 } 2717 2718 /* Update control register with 0 count. */ 2719 KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE), 2720 ("%s: MSI still enabled", __func__)); 2721 msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK; 2722 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2723 msi->msi_ctrl, 2); 2724 2725 /* Release the messages. */ 2726 PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs); 2727 for (i = 0; i < msi->msi_alloc; i++) 2728 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2729 2730 /* Update alloc count. */ 2731 msi->msi_alloc = 0; 2732 msi->msi_addr = 0; 2733 msi->msi_data = 0; 2734 return (0); 2735 } 2736 2737 /* 2738 * Return the max supported MSI messages this device supports. 2739 * Basically, assuming the MD code can alloc messages, this function 2740 * should return the maximum value that pci_alloc_msi() can return. 2741 * Thus, it is subject to the tunables, etc. 2742 */ 2743 int 2744 pci_msi_count_method(device_t dev, device_t child) 2745 { 2746 struct pci_devinfo *dinfo = device_get_ivars(child); 2747 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2748 2749 if (pci_do_msi && msi->msi_location != 0) 2750 return (msi->msi_msgnum); 2751 return (0); 2752 } 2753 2754 /* free pcicfgregs structure and all depending data structures */ 2755 2756 int 2757 pci_freecfg(struct pci_devinfo *dinfo) 2758 { 2759 struct devlist *devlist_head; 2760 struct pci_map *pm, *next; 2761 2762 devlist_head = &pci_devq; 2763 2764 if (dinfo->cfg.vpd.vpd_reg) 2765 vpd_free(&dinfo->cfg.vpd); 2766 2767 STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) { 2768 free(pm, M_DEVBUF); 2769 } 2770 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links); 2771 free(dinfo, M_DEVBUF); 2772 2773 /* increment the generation count */ 2774 pci_generation++; 2775 2776 /* we're losing one device */ 2777 pci_numdevs--; 2778 return (0); 2779 } 2780 2781 /* 2782 * PCI power manangement 2783 */ 2784 int 2785 pci_set_powerstate_method(device_t dev, device_t child, int state) 2786 { 2787 struct pci_devinfo *dinfo = device_get_ivars(child); 2788 pcicfgregs *cfg = &dinfo->cfg; 2789 uint16_t status; 2790 int oldstate, highest, delay; 2791 2792 if (cfg->pp.pp_cap == 0) 2793 return (EOPNOTSUPP); 2794 2795 /* 2796 * Optimize a no state change request away. While it would be OK to 2797 * write to the hardware in theory, some devices have shown odd 2798 * behavior when going from D3 -> D3. 2799 */ 2800 oldstate = pci_get_powerstate(child); 2801 if (oldstate == state) 2802 return (0); 2803 2804 /* 2805 * The PCI power management specification states that after a state 2806 * transition between PCI power states, system software must 2807 * guarantee a minimal delay before the function accesses the device. 2808 * Compute the worst case delay that we need to guarantee before we 2809 * access the device. Many devices will be responsive much more 2810 * quickly than this delay, but there are some that don't respond 2811 * instantly to state changes. Transitions to/from D3 state require 2812 * 10ms, while D2 requires 200us, and D0/1 require none. The delay 2813 * is done below with DELAY rather than a sleeper function because 2814 * this function can be called from contexts where we cannot sleep. 2815 */ 2816 highest = (oldstate > state) ? oldstate : state; 2817 if (highest == PCI_POWERSTATE_D3) 2818 delay = 10000; 2819 else if (highest == PCI_POWERSTATE_D2) 2820 delay = 200; 2821 else 2822 delay = 0; 2823 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2) 2824 & ~PCIM_PSTAT_DMASK; 2825 switch (state) { 2826 case PCI_POWERSTATE_D0: 2827 status |= PCIM_PSTAT_D0; 2828 break; 2829 case PCI_POWERSTATE_D1: 2830 if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0) 2831 return (EOPNOTSUPP); 2832 status |= PCIM_PSTAT_D1; 2833 break; 2834 case PCI_POWERSTATE_D2: 2835 if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0) 2836 return (EOPNOTSUPP); 2837 status |= PCIM_PSTAT_D2; 2838 break; 2839 case PCI_POWERSTATE_D3: 2840 status |= PCIM_PSTAT_D3; 2841 break; 2842 default: 2843 return (EINVAL); 2844 } 2845 2846 if (bootverbose) 2847 pci_printf(cfg, "Transition from D%d to D%d\n", oldstate, 2848 state); 2849 2850 PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2); 2851 if (delay) 2852 DELAY(delay); 2853 return (0); 2854 } 2855 2856 int 2857 pci_get_powerstate_method(device_t dev, device_t child) 2858 { 2859 struct pci_devinfo *dinfo = device_get_ivars(child); 2860 pcicfgregs *cfg = &dinfo->cfg; 2861 uint16_t status; 2862 int result; 2863 2864 if (cfg->pp.pp_cap != 0) { 2865 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2); 2866 switch (status & PCIM_PSTAT_DMASK) { 2867 case PCIM_PSTAT_D0: 2868 result = PCI_POWERSTATE_D0; 2869 break; 2870 case PCIM_PSTAT_D1: 2871 result = PCI_POWERSTATE_D1; 2872 break; 2873 case PCIM_PSTAT_D2: 2874 result = PCI_POWERSTATE_D2; 2875 break; 2876 case PCIM_PSTAT_D3: 2877 result = PCI_POWERSTATE_D3; 2878 break; 2879 default: 2880 result = PCI_POWERSTATE_UNKNOWN; 2881 break; 2882 } 2883 } else { 2884 /* No support, device is always at D0 */ 2885 result = PCI_POWERSTATE_D0; 2886 } 2887 return (result); 2888 } 2889 2890 /* 2891 * Some convenience functions for PCI device drivers. 2892 */ 2893 2894 static __inline void 2895 pci_set_command_bit(device_t dev, device_t child, uint16_t bit) 2896 { 2897 uint16_t command; 2898 2899 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2900 command |= bit; 2901 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2902 } 2903 2904 static __inline void 2905 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit) 2906 { 2907 uint16_t command; 2908 2909 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2910 command &= ~bit; 2911 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2912 } 2913 2914 int 2915 pci_enable_busmaster_method(device_t dev, device_t child) 2916 { 2917 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2918 return (0); 2919 } 2920 2921 int 2922 pci_disable_busmaster_method(device_t dev, device_t child) 2923 { 2924 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2925 return (0); 2926 } 2927 2928 int 2929 pci_enable_io_method(device_t dev, device_t child, int space) 2930 { 2931 uint16_t bit; 2932 2933 switch(space) { 2934 case SYS_RES_IOPORT: 2935 bit = PCIM_CMD_PORTEN; 2936 break; 2937 case SYS_RES_MEMORY: 2938 bit = PCIM_CMD_MEMEN; 2939 break; 2940 default: 2941 return (EINVAL); 2942 } 2943 pci_set_command_bit(dev, child, bit); 2944 return (0); 2945 } 2946 2947 int 2948 pci_disable_io_method(device_t dev, device_t child, int space) 2949 { 2950 uint16_t bit; 2951 2952 switch(space) { 2953 case SYS_RES_IOPORT: 2954 bit = PCIM_CMD_PORTEN; 2955 break; 2956 case SYS_RES_MEMORY: 2957 bit = PCIM_CMD_MEMEN; 2958 break; 2959 default: 2960 return (EINVAL); 2961 } 2962 pci_clear_command_bit(dev, child, bit); 2963 return (0); 2964 } 2965 2966 /* 2967 * New style pci driver. Parent device is either a pci-host-bridge or a 2968 * pci-pci-bridge. Both kinds are represented by instances of pcib. 2969 */ 2970 2971 void 2972 pci_print_verbose(struct pci_devinfo *dinfo) 2973 { 2974 2975 if (bootverbose) { 2976 pcicfgregs *cfg = &dinfo->cfg; 2977 2978 printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n", 2979 cfg->vendor, cfg->device, cfg->revid); 2980 printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n", 2981 cfg->domain, cfg->bus, cfg->slot, cfg->func); 2982 printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n", 2983 cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype, 2984 cfg->mfdev); 2985 printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n", 2986 cfg->cmdreg, cfg->statreg, cfg->cachelnsz); 2987 printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n", 2988 cfg->lattimer, cfg->lattimer * 30, cfg->mingnt, 2989 cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250); 2990 if (cfg->intpin > 0) 2991 printf("\tintpin=%c, irq=%d\n", 2992 cfg->intpin +'a' -1, cfg->intline); 2993 if (cfg->pp.pp_cap) { 2994 uint16_t status; 2995 2996 status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2); 2997 printf("\tpowerspec %d supports D0%s%s D3 current D%d\n", 2998 cfg->pp.pp_cap & PCIM_PCAP_SPEC, 2999 cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "", 3000 cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "", 3001 status & PCIM_PSTAT_DMASK); 3002 } 3003 if (cfg->msi.msi_location) { 3004 int ctrl; 3005 3006 ctrl = cfg->msi.msi_ctrl; 3007 printf("\tMSI supports %d message%s%s%s\n", 3008 cfg->msi.msi_msgnum, 3009 (cfg->msi.msi_msgnum == 1) ? "" : "s", 3010 (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", 3011 (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":""); 3012 } 3013 if (cfg->msix.msix_location) { 3014 printf("\tMSI-X supports %d message%s ", 3015 cfg->msix.msix_msgnum, 3016 (cfg->msix.msix_msgnum == 1) ? "" : "s"); 3017 if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar) 3018 printf("in map 0x%x\n", 3019 cfg->msix.msix_table_bar); 3020 else 3021 printf("in maps 0x%x and 0x%x\n", 3022 cfg->msix.msix_table_bar, 3023 cfg->msix.msix_pba_bar); 3024 } 3025 } 3026 } 3027 3028 static int 3029 pci_porten(device_t dev) 3030 { 3031 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0; 3032 } 3033 3034 static int 3035 pci_memen(device_t dev) 3036 { 3037 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0; 3038 } 3039 3040 void 3041 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp, 3042 int *bar64) 3043 { 3044 struct pci_devinfo *dinfo; 3045 pci_addr_t map, testval; 3046 int ln2range; 3047 uint16_t cmd; 3048 3049 /* 3050 * The device ROM BAR is special. It is always a 32-bit 3051 * memory BAR. Bit 0 is special and should not be set when 3052 * sizing the BAR. 3053 */ 3054 dinfo = device_get_ivars(dev); 3055 if (PCIR_IS_BIOS(&dinfo->cfg, reg)) { 3056 map = pci_read_config(dev, reg, 4); 3057 pci_write_config(dev, reg, 0xfffffffe, 4); 3058 testval = pci_read_config(dev, reg, 4); 3059 pci_write_config(dev, reg, map, 4); 3060 *mapp = map; 3061 *testvalp = testval; 3062 if (bar64 != NULL) 3063 *bar64 = 0; 3064 return; 3065 } 3066 3067 map = pci_read_config(dev, reg, 4); 3068 ln2range = pci_maprange(map); 3069 if (ln2range == 64) 3070 map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3071 3072 /* 3073 * Disable decoding via the command register before 3074 * determining the BAR's length since we will be placing it in 3075 * a weird state. 3076 */ 3077 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3078 pci_write_config(dev, PCIR_COMMAND, 3079 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 3080 3081 /* 3082 * Determine the BAR's length by writing all 1's. The bottom 3083 * log_2(size) bits of the BAR will stick as 0 when we read 3084 * the value back. 3085 * 3086 * NB: according to the PCI Local Bus Specification, rev. 3.0: 3087 * "Software writes 0FFFFFFFFh to both registers, reads them back, 3088 * and combines the result into a 64-bit value." (section 6.2.5.1) 3089 * 3090 * Writes to both registers must be performed before attempting to 3091 * read back the size value. 3092 */ 3093 testval = 0; 3094 pci_write_config(dev, reg, 0xffffffff, 4); 3095 if (ln2range == 64) { 3096 pci_write_config(dev, reg + 4, 0xffffffff, 4); 3097 testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3098 } 3099 testval |= pci_read_config(dev, reg, 4); 3100 3101 /* 3102 * Restore the original value of the BAR. We may have reprogrammed 3103 * the BAR of the low-level console device and when booting verbose, 3104 * we need the console device addressable. 3105 */ 3106 pci_write_config(dev, reg, map, 4); 3107 if (ln2range == 64) 3108 pci_write_config(dev, reg + 4, map >> 32, 4); 3109 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3110 3111 *mapp = map; 3112 *testvalp = testval; 3113 if (bar64 != NULL) 3114 *bar64 = (ln2range == 64); 3115 } 3116 3117 static void 3118 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base) 3119 { 3120 struct pci_devinfo *dinfo; 3121 int ln2range; 3122 3123 /* The device ROM BAR is always a 32-bit memory BAR. */ 3124 dinfo = device_get_ivars(dev); 3125 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3126 ln2range = 32; 3127 else 3128 ln2range = pci_maprange(pm->pm_value); 3129 pci_write_config(dev, pm->pm_reg, base, 4); 3130 if (ln2range == 64) 3131 pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4); 3132 pm->pm_value = pci_read_config(dev, pm->pm_reg, 4); 3133 if (ln2range == 64) 3134 pm->pm_value |= (pci_addr_t)pci_read_config(dev, 3135 pm->pm_reg + 4, 4) << 32; 3136 } 3137 3138 struct pci_map * 3139 pci_find_bar(device_t dev, int reg) 3140 { 3141 struct pci_devinfo *dinfo; 3142 struct pci_map *pm; 3143 3144 dinfo = device_get_ivars(dev); 3145 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3146 if (pm->pm_reg == reg) 3147 return (pm); 3148 } 3149 return (NULL); 3150 } 3151 3152 struct pci_map * 3153 pci_first_bar(device_t dev) 3154 { 3155 struct pci_devinfo *dinfo; 3156 3157 dinfo = device_get_ivars(dev); 3158 return (STAILQ_FIRST(&dinfo->cfg.maps)); 3159 } 3160 3161 struct pci_map * 3162 pci_next_bar(struct pci_map *pm) 3163 { 3164 return (STAILQ_NEXT(pm, pm_link)); 3165 } 3166 3167 int 3168 pci_bar_enabled(device_t dev, struct pci_map *pm) 3169 { 3170 struct pci_devinfo *dinfo; 3171 uint16_t cmd; 3172 3173 dinfo = device_get_ivars(dev); 3174 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) && 3175 !(pm->pm_value & PCIM_BIOS_ENABLE)) 3176 return (0); 3177 #ifdef PCI_IOV 3178 if ((dinfo->cfg.flags & PCICFG_VF) != 0) { 3179 struct pcicfg_iov *iov; 3180 3181 iov = dinfo->cfg.iov; 3182 cmd = pci_read_config(iov->iov_pf, 3183 iov->iov_pos + PCIR_SRIOV_CTL, 2); 3184 return ((cmd & PCIM_SRIOV_VF_MSE) != 0); 3185 } 3186 #endif 3187 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3188 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value)) 3189 return ((cmd & PCIM_CMD_MEMEN) != 0); 3190 else 3191 return ((cmd & PCIM_CMD_PORTEN) != 0); 3192 } 3193 3194 struct pci_map * 3195 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size) 3196 { 3197 struct pci_devinfo *dinfo; 3198 struct pci_map *pm, *prev; 3199 3200 dinfo = device_get_ivars(dev); 3201 pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO); 3202 pm->pm_reg = reg; 3203 pm->pm_value = value; 3204 pm->pm_size = size; 3205 STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) { 3206 KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x", 3207 reg)); 3208 if (STAILQ_NEXT(prev, pm_link) == NULL || 3209 STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg) 3210 break; 3211 } 3212 if (prev != NULL) 3213 STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link); 3214 else 3215 STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link); 3216 return (pm); 3217 } 3218 3219 static void 3220 pci_restore_bars(device_t dev) 3221 { 3222 struct pci_devinfo *dinfo; 3223 struct pci_map *pm; 3224 int ln2range; 3225 3226 dinfo = device_get_ivars(dev); 3227 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3228 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3229 ln2range = 32; 3230 else 3231 ln2range = pci_maprange(pm->pm_value); 3232 pci_write_config(dev, pm->pm_reg, pm->pm_value, 4); 3233 if (ln2range == 64) 3234 pci_write_config(dev, pm->pm_reg + 4, 3235 pm->pm_value >> 32, 4); 3236 } 3237 } 3238 3239 /* 3240 * Add a resource based on a pci map register. Return 1 if the map 3241 * register is a 32bit map register or 2 if it is a 64bit register. 3242 */ 3243 static int 3244 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, 3245 int force, int prefetch) 3246 { 3247 struct pci_map *pm; 3248 pci_addr_t base, map, testval; 3249 pci_addr_t start, end, count; 3250 int barlen, basezero, flags, maprange, mapsize, type; 3251 uint16_t cmd; 3252 struct resource *res; 3253 3254 /* 3255 * The BAR may already exist if the device is a CardBus card 3256 * whose CIS is stored in this BAR. 3257 */ 3258 pm = pci_find_bar(dev, reg); 3259 if (pm != NULL) { 3260 maprange = pci_maprange(pm->pm_value); 3261 barlen = maprange == 64 ? 2 : 1; 3262 return (barlen); 3263 } 3264 3265 pci_read_bar(dev, reg, &map, &testval, NULL); 3266 if (PCI_BAR_MEM(map)) { 3267 type = SYS_RES_MEMORY; 3268 if (map & PCIM_BAR_MEM_PREFETCH) 3269 prefetch = 1; 3270 } else 3271 type = SYS_RES_IOPORT; 3272 mapsize = pci_mapsize(testval); 3273 base = pci_mapbase(map); 3274 #ifdef __PCI_BAR_ZERO_VALID 3275 basezero = 0; 3276 #else 3277 basezero = base == 0; 3278 #endif 3279 maprange = pci_maprange(map); 3280 barlen = maprange == 64 ? 2 : 1; 3281 3282 /* 3283 * For I/O registers, if bottom bit is set, and the next bit up 3284 * isn't clear, we know we have a BAR that doesn't conform to the 3285 * spec, so ignore it. Also, sanity check the size of the data 3286 * areas to the type of memory involved. Memory must be at least 3287 * 16 bytes in size, while I/O ranges must be at least 4. 3288 */ 3289 if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0) 3290 return (barlen); 3291 if ((type == SYS_RES_MEMORY && mapsize < 4) || 3292 (type == SYS_RES_IOPORT && mapsize < 2)) 3293 return (barlen); 3294 3295 /* Save a record of this BAR. */ 3296 pm = pci_add_bar(dev, reg, map, mapsize); 3297 if (bootverbose) { 3298 printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d", 3299 reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize); 3300 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3301 printf(", port disabled\n"); 3302 else if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3303 printf(", memory disabled\n"); 3304 else 3305 printf(", enabled\n"); 3306 } 3307 3308 /* 3309 * If base is 0, then we have problems if this architecture does 3310 * not allow that. It is best to ignore such entries for the 3311 * moment. These will be allocated later if the driver specifically 3312 * requests them. However, some removable buses look better when 3313 * all resources are allocated, so allow '0' to be overridden. 3314 * 3315 * Similarly treat maps whose values is the same as the test value 3316 * read back. These maps have had all f's written to them by the 3317 * BIOS in an attempt to disable the resources. 3318 */ 3319 if (!force && (basezero || map == testval)) 3320 return (barlen); 3321 if ((u_long)base != base) { 3322 device_printf(bus, 3323 "pci%d:%d:%d:%d bar %#x too many address bits", 3324 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), 3325 pci_get_function(dev), reg); 3326 return (barlen); 3327 } 3328 3329 /* 3330 * This code theoretically does the right thing, but has 3331 * undesirable side effects in some cases where peripherals 3332 * respond oddly to having these bits enabled. Let the user 3333 * be able to turn them off (since pci_enable_io_modes is 1 by 3334 * default). 3335 */ 3336 if (pci_enable_io_modes) { 3337 /* Turn on resources that have been left off by a lazy BIOS */ 3338 if (type == SYS_RES_IOPORT && !pci_porten(dev)) { 3339 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3340 cmd |= PCIM_CMD_PORTEN; 3341 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3342 } 3343 if (type == SYS_RES_MEMORY && !pci_memen(dev)) { 3344 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3345 cmd |= PCIM_CMD_MEMEN; 3346 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3347 } 3348 } else { 3349 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3350 return (barlen); 3351 if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3352 return (barlen); 3353 } 3354 3355 count = (pci_addr_t)1 << mapsize; 3356 flags = RF_ALIGNMENT_LOG2(mapsize); 3357 if (prefetch) 3358 flags |= RF_PREFETCHABLE; 3359 if (basezero || base == pci_mapbase(testval) || pci_clear_bars) { 3360 start = 0; /* Let the parent decide. */ 3361 end = ~0; 3362 } else { 3363 start = base; 3364 end = base + count - 1; 3365 } 3366 resource_list_add(rl, type, reg, start, end, count); 3367 3368 /* 3369 * Try to allocate the resource for this BAR from our parent 3370 * so that this resource range is already reserved. The 3371 * driver for this device will later inherit this resource in 3372 * pci_alloc_resource(). 3373 */ 3374 res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count, 3375 flags); 3376 if ((pci_do_realloc_bars 3377 || pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR)) 3378 && res == NULL && (start != 0 || end != ~0)) { 3379 /* 3380 * If the allocation fails, try to allocate a resource for 3381 * this BAR using any available range. The firmware felt 3382 * it was important enough to assign a resource, so don't 3383 * disable decoding if we can help it. 3384 */ 3385 resource_list_delete(rl, type, reg); 3386 resource_list_add(rl, type, reg, 0, ~0, count); 3387 res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0, 3388 count, flags); 3389 } 3390 if (res == NULL) { 3391 /* 3392 * If the allocation fails, delete the resource list entry 3393 * and disable decoding for this device. 3394 * 3395 * If the driver requests this resource in the future, 3396 * pci_reserve_map() will try to allocate a fresh 3397 * resource range. 3398 */ 3399 resource_list_delete(rl, type, reg); 3400 pci_disable_io(dev, type); 3401 if (bootverbose) 3402 device_printf(bus, 3403 "pci%d:%d:%d:%d bar %#x failed to allocate\n", 3404 pci_get_domain(dev), pci_get_bus(dev), 3405 pci_get_slot(dev), pci_get_function(dev), reg); 3406 } else { 3407 start = rman_get_start(res); 3408 pci_write_bar(dev, pm, start); 3409 } 3410 return (barlen); 3411 } 3412 3413 /* 3414 * For ATA devices we need to decide early what addressing mode to use. 3415 * Legacy demands that the primary and secondary ATA ports sits on the 3416 * same addresses that old ISA hardware did. This dictates that we use 3417 * those addresses and ignore the BAR's if we cannot set PCI native 3418 * addressing mode. 3419 */ 3420 static void 3421 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force, 3422 uint32_t prefetchmask) 3423 { 3424 int rid, type, progif; 3425 #if 0 3426 /* if this device supports PCI native addressing use it */ 3427 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3428 if ((progif & 0x8a) == 0x8a) { 3429 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) && 3430 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) { 3431 printf("Trying ATA native PCI addressing mode\n"); 3432 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1); 3433 } 3434 } 3435 #endif 3436 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3437 type = SYS_RES_IOPORT; 3438 if (progif & PCIP_STORAGE_IDE_MODEPRIM) { 3439 pci_add_map(bus, dev, PCIR_BAR(0), rl, force, 3440 prefetchmask & (1 << 0)); 3441 pci_add_map(bus, dev, PCIR_BAR(1), rl, force, 3442 prefetchmask & (1 << 1)); 3443 } else { 3444 rid = PCIR_BAR(0); 3445 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8); 3446 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0, 3447 0x1f7, 8, 0); 3448 rid = PCIR_BAR(1); 3449 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1); 3450 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6, 3451 0x3f6, 1, 0); 3452 } 3453 if (progif & PCIP_STORAGE_IDE_MODESEC) { 3454 pci_add_map(bus, dev, PCIR_BAR(2), rl, force, 3455 prefetchmask & (1 << 2)); 3456 pci_add_map(bus, dev, PCIR_BAR(3), rl, force, 3457 prefetchmask & (1 << 3)); 3458 } else { 3459 rid = PCIR_BAR(2); 3460 resource_list_add(rl, type, rid, 0x170, 0x177, 8); 3461 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170, 3462 0x177, 8, 0); 3463 rid = PCIR_BAR(3); 3464 resource_list_add(rl, type, rid, 0x376, 0x376, 1); 3465 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376, 3466 0x376, 1, 0); 3467 } 3468 pci_add_map(bus, dev, PCIR_BAR(4), rl, force, 3469 prefetchmask & (1 << 4)); 3470 pci_add_map(bus, dev, PCIR_BAR(5), rl, force, 3471 prefetchmask & (1 << 5)); 3472 } 3473 3474 static void 3475 pci_assign_interrupt(device_t bus, device_t dev, int force_route) 3476 { 3477 struct pci_devinfo *dinfo = device_get_ivars(dev); 3478 pcicfgregs *cfg = &dinfo->cfg; 3479 char tunable_name[64]; 3480 int irq; 3481 3482 /* Has to have an intpin to have an interrupt. */ 3483 if (cfg->intpin == 0) 3484 return; 3485 3486 /* Let the user override the IRQ with a tunable. */ 3487 irq = PCI_INVALID_IRQ; 3488 snprintf(tunable_name, sizeof(tunable_name), 3489 "hw.pci%d.%d.%d.INT%c.irq", 3490 cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1); 3491 if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0)) 3492 irq = PCI_INVALID_IRQ; 3493 3494 /* 3495 * If we didn't get an IRQ via the tunable, then we either use the 3496 * IRQ value in the intline register or we ask the bus to route an 3497 * interrupt for us. If force_route is true, then we only use the 3498 * value in the intline register if the bus was unable to assign an 3499 * IRQ. 3500 */ 3501 if (!PCI_INTERRUPT_VALID(irq)) { 3502 if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route) 3503 irq = PCI_ASSIGN_INTERRUPT(bus, dev); 3504 if (!PCI_INTERRUPT_VALID(irq)) 3505 irq = cfg->intline; 3506 } 3507 3508 /* If after all that we don't have an IRQ, just bail. */ 3509 if (!PCI_INTERRUPT_VALID(irq)) 3510 return; 3511 3512 /* Update the config register if it changed. */ 3513 if (irq != cfg->intline) { 3514 cfg->intline = irq; 3515 pci_write_config(dev, PCIR_INTLINE, irq, 1); 3516 } 3517 3518 /* Add this IRQ as rid 0 interrupt resource. */ 3519 resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1); 3520 } 3521 3522 /* Perform early OHCI takeover from SMM. */ 3523 static void 3524 ohci_early_takeover(device_t self) 3525 { 3526 struct resource *res; 3527 uint32_t ctl; 3528 int rid; 3529 int i; 3530 3531 rid = PCIR_BAR(0); 3532 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3533 if (res == NULL) 3534 return; 3535 3536 ctl = bus_read_4(res, OHCI_CONTROL); 3537 if (ctl & OHCI_IR) { 3538 if (bootverbose) 3539 printf("ohci early: " 3540 "SMM active, request owner change\n"); 3541 bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR); 3542 for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) { 3543 DELAY(1000); 3544 ctl = bus_read_4(res, OHCI_CONTROL); 3545 } 3546 if (ctl & OHCI_IR) { 3547 if (bootverbose) 3548 printf("ohci early: " 3549 "SMM does not respond, resetting\n"); 3550 bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET); 3551 } 3552 /* Disable interrupts */ 3553 bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); 3554 } 3555 3556 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3557 } 3558 3559 /* Perform early UHCI takeover from SMM. */ 3560 static void 3561 uhci_early_takeover(device_t self) 3562 { 3563 struct resource *res; 3564 int rid; 3565 3566 /* 3567 * Set the PIRQD enable bit and switch off all the others. We don't 3568 * want legacy support to interfere with us XXX Does this also mean 3569 * that the BIOS won't touch the keyboard anymore if it is connected 3570 * to the ports of the root hub? 3571 */ 3572 pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2); 3573 3574 /* Disable interrupts */ 3575 rid = PCI_UHCI_BASE_REG; 3576 res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE); 3577 if (res != NULL) { 3578 bus_write_2(res, UHCI_INTR, 0); 3579 bus_release_resource(self, SYS_RES_IOPORT, rid, res); 3580 } 3581 } 3582 3583 /* Perform early EHCI takeover from SMM. */ 3584 static void 3585 ehci_early_takeover(device_t self) 3586 { 3587 struct resource *res; 3588 uint32_t cparams; 3589 uint32_t eec; 3590 uint8_t eecp; 3591 uint8_t bios_sem; 3592 uint8_t offs; 3593 int rid; 3594 int i; 3595 3596 rid = PCIR_BAR(0); 3597 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3598 if (res == NULL) 3599 return; 3600 3601 cparams = bus_read_4(res, EHCI_HCCPARAMS); 3602 3603 /* Synchronise with the BIOS if it owns the controller. */ 3604 for (eecp = EHCI_HCC_EECP(cparams); eecp != 0; 3605 eecp = EHCI_EECP_NEXT(eec)) { 3606 eec = pci_read_config(self, eecp, 4); 3607 if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) { 3608 continue; 3609 } 3610 bios_sem = pci_read_config(self, eecp + 3611 EHCI_LEGSUP_BIOS_SEM, 1); 3612 if (bios_sem == 0) { 3613 continue; 3614 } 3615 if (bootverbose) 3616 printf("ehci early: " 3617 "SMM active, request owner change\n"); 3618 3619 pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1); 3620 3621 for (i = 0; (i < 100) && (bios_sem != 0); i++) { 3622 DELAY(1000); 3623 bios_sem = pci_read_config(self, eecp + 3624 EHCI_LEGSUP_BIOS_SEM, 1); 3625 } 3626 3627 if (bios_sem != 0) { 3628 if (bootverbose) 3629 printf("ehci early: " 3630 "SMM does not respond\n"); 3631 } 3632 /* Disable interrupts */ 3633 offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION)); 3634 bus_write_4(res, offs + EHCI_USBINTR, 0); 3635 } 3636 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3637 } 3638 3639 /* Perform early XHCI takeover from SMM. */ 3640 static void 3641 xhci_early_takeover(device_t self) 3642 { 3643 struct resource *res; 3644 uint32_t cparams; 3645 uint32_t eec; 3646 uint8_t eecp; 3647 uint8_t bios_sem; 3648 uint8_t offs; 3649 int rid; 3650 int i; 3651 3652 rid = PCIR_BAR(0); 3653 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3654 if (res == NULL) 3655 return; 3656 3657 cparams = bus_read_4(res, XHCI_HCSPARAMS0); 3658 3659 eec = -1; 3660 3661 /* Synchronise with the BIOS if it owns the controller. */ 3662 for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec); 3663 eecp += XHCI_XECP_NEXT(eec) << 2) { 3664 eec = bus_read_4(res, eecp); 3665 3666 if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY) 3667 continue; 3668 3669 bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); 3670 if (bios_sem == 0) 3671 continue; 3672 3673 if (bootverbose) 3674 printf("xhci early: " 3675 "SMM active, request owner change\n"); 3676 3677 bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1); 3678 3679 /* wait a maximum of 5 second */ 3680 3681 for (i = 0; (i < 5000) && (bios_sem != 0); i++) { 3682 DELAY(1000); 3683 bios_sem = bus_read_1(res, eecp + 3684 XHCI_XECP_BIOS_SEM); 3685 } 3686 3687 if (bios_sem != 0) { 3688 if (bootverbose) 3689 printf("xhci early: " 3690 "SMM does not respond\n"); 3691 } 3692 3693 /* Disable interrupts */ 3694 offs = bus_read_1(res, XHCI_CAPLENGTH); 3695 bus_write_4(res, offs + XHCI_USBCMD, 0); 3696 bus_read_4(res, offs + XHCI_USBSTS); 3697 } 3698 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3699 } 3700 3701 static void 3702 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg, 3703 struct resource_list *rl) 3704 { 3705 struct resource *res; 3706 char *cp; 3707 rman_res_t start, end, count; 3708 int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus; 3709 3710 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3711 case PCIM_HDRTYPE_BRIDGE: 3712 sec_reg = PCIR_SECBUS_1; 3713 sub_reg = PCIR_SUBBUS_1; 3714 break; 3715 case PCIM_HDRTYPE_CARDBUS: 3716 sec_reg = PCIR_SECBUS_2; 3717 sub_reg = PCIR_SUBBUS_2; 3718 break; 3719 default: 3720 return; 3721 } 3722 3723 /* 3724 * If the existing bus range is valid, attempt to reserve it 3725 * from our parent. If this fails for any reason, clear the 3726 * secbus and subbus registers. 3727 * 3728 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus? 3729 * This would at least preserve the existing sec_bus if it is 3730 * valid. 3731 */ 3732 sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1); 3733 sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1); 3734 3735 /* Quirk handling. */ 3736 switch (pci_get_devid(dev)) { 3737 case 0x12258086: /* Intel 82454KX/GX (Orion) */ 3738 sup_bus = pci_read_config(dev, 0x41, 1); 3739 if (sup_bus != 0xff) { 3740 sec_bus = sup_bus + 1; 3741 sub_bus = sup_bus + 1; 3742 PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1); 3743 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3744 } 3745 break; 3746 3747 case 0x00dd10de: 3748 /* Compaq R3000 BIOS sets wrong subordinate bus number. */ 3749 if ((cp = kern_getenv("smbios.planar.maker")) == NULL) 3750 break; 3751 if (strncmp(cp, "Compal", 6) != 0) { 3752 freeenv(cp); 3753 break; 3754 } 3755 freeenv(cp); 3756 if ((cp = kern_getenv("smbios.planar.product")) == NULL) 3757 break; 3758 if (strncmp(cp, "08A0", 4) != 0) { 3759 freeenv(cp); 3760 break; 3761 } 3762 freeenv(cp); 3763 if (sub_bus < 0xa) { 3764 sub_bus = 0xa; 3765 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3766 } 3767 break; 3768 } 3769 3770 if (bootverbose) 3771 printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus); 3772 if (sec_bus > 0 && sub_bus >= sec_bus) { 3773 start = sec_bus; 3774 end = sub_bus; 3775 count = end - start + 1; 3776 3777 resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count); 3778 3779 /* 3780 * If requested, clear secondary bus registers in 3781 * bridge devices to force a complete renumbering 3782 * rather than reserving the existing range. However, 3783 * preserve the existing size. 3784 */ 3785 if (pci_clear_buses) 3786 goto clear; 3787 3788 rid = 0; 3789 res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid, 3790 start, end, count, 0); 3791 if (res != NULL) 3792 return; 3793 3794 if (bootverbose) 3795 device_printf(bus, 3796 "pci%d:%d:%d:%d secbus failed to allocate\n", 3797 pci_get_domain(dev), pci_get_bus(dev), 3798 pci_get_slot(dev), pci_get_function(dev)); 3799 } 3800 3801 clear: 3802 PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1); 3803 PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1); 3804 } 3805 3806 static struct resource * 3807 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start, 3808 rman_res_t end, rman_res_t count, u_int flags) 3809 { 3810 struct pci_devinfo *dinfo; 3811 pcicfgregs *cfg; 3812 struct resource_list *rl; 3813 struct resource *res; 3814 int sec_reg, sub_reg; 3815 3816 dinfo = device_get_ivars(child); 3817 cfg = &dinfo->cfg; 3818 rl = &dinfo->resources; 3819 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3820 case PCIM_HDRTYPE_BRIDGE: 3821 sec_reg = PCIR_SECBUS_1; 3822 sub_reg = PCIR_SUBBUS_1; 3823 break; 3824 case PCIM_HDRTYPE_CARDBUS: 3825 sec_reg = PCIR_SECBUS_2; 3826 sub_reg = PCIR_SUBBUS_2; 3827 break; 3828 default: 3829 return (NULL); 3830 } 3831 3832 if (*rid != 0) 3833 return (NULL); 3834 3835 if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL) 3836 resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count); 3837 if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) { 3838 res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid, 3839 start, end, count, flags & ~RF_ACTIVE); 3840 if (res == NULL) { 3841 resource_list_delete(rl, PCI_RES_BUS, *rid); 3842 device_printf(child, "allocating %ju bus%s failed\n", 3843 count, count == 1 ? "" : "es"); 3844 return (NULL); 3845 } 3846 if (bootverbose) 3847 device_printf(child, 3848 "Lazy allocation of %ju bus%s at %ju\n", count, 3849 count == 1 ? "" : "es", rman_get_start(res)); 3850 PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1); 3851 PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1); 3852 } 3853 return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start, 3854 end, count, flags)); 3855 } 3856 3857 static int 3858 pci_ea_bei_to_rid(device_t dev, int bei) 3859 { 3860 #ifdef PCI_IOV 3861 struct pci_devinfo *dinfo; 3862 int iov_pos; 3863 struct pcicfg_iov *iov; 3864 3865 dinfo = device_get_ivars(dev); 3866 iov = dinfo->cfg.iov; 3867 if (iov != NULL) 3868 iov_pos = iov->iov_pos; 3869 else 3870 iov_pos = 0; 3871 #endif 3872 3873 /* Check if matches BAR */ 3874 if ((bei >= PCIM_EA_BEI_BAR_0) && 3875 (bei <= PCIM_EA_BEI_BAR_5)) 3876 return (PCIR_BAR(bei)); 3877 3878 /* Check ROM */ 3879 if (bei == PCIM_EA_BEI_ROM) 3880 return (PCIR_BIOS); 3881 3882 #ifdef PCI_IOV 3883 /* Check if matches VF_BAR */ 3884 if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) && 3885 (bei <= PCIM_EA_BEI_VF_BAR_5)) 3886 return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) + 3887 iov_pos); 3888 #endif 3889 3890 return (-1); 3891 } 3892 3893 int 3894 pci_ea_is_enabled(device_t dev, int rid) 3895 { 3896 struct pci_ea_entry *ea; 3897 struct pci_devinfo *dinfo; 3898 3899 dinfo = device_get_ivars(dev); 3900 3901 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3902 if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid) 3903 return ((ea->eae_flags & PCIM_EA_ENABLE) > 0); 3904 } 3905 3906 return (0); 3907 } 3908 3909 void 3910 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov) 3911 { 3912 struct pci_ea_entry *ea; 3913 struct pci_devinfo *dinfo; 3914 pci_addr_t start, end, count; 3915 struct resource_list *rl; 3916 int type, flags, rid; 3917 struct resource *res; 3918 uint32_t tmp; 3919 #ifdef PCI_IOV 3920 struct pcicfg_iov *iov; 3921 #endif 3922 3923 dinfo = device_get_ivars(dev); 3924 rl = &dinfo->resources; 3925 flags = 0; 3926 3927 #ifdef PCI_IOV 3928 iov = dinfo->cfg.iov; 3929 #endif 3930 3931 if (dinfo->cfg.ea.ea_location == 0) 3932 return; 3933 3934 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3935 /* 3936 * TODO: Ignore EA-BAR if is not enabled. 3937 * Currently the EA implementation supports 3938 * only situation, where EA structure contains 3939 * predefined entries. In case they are not enabled 3940 * leave them unallocated and proceed with 3941 * a legacy-BAR mechanism. 3942 */ 3943 if ((ea->eae_flags & PCIM_EA_ENABLE) == 0) 3944 continue; 3945 3946 switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) { 3947 case PCIM_EA_P_MEM_PREFETCH: 3948 case PCIM_EA_P_VF_MEM_PREFETCH: 3949 flags = RF_PREFETCHABLE; 3950 /* FALLTHROUGH */ 3951 case PCIM_EA_P_VF_MEM: 3952 case PCIM_EA_P_MEM: 3953 type = SYS_RES_MEMORY; 3954 break; 3955 case PCIM_EA_P_IO: 3956 type = SYS_RES_IOPORT; 3957 break; 3958 default: 3959 continue; 3960 } 3961 3962 if (alloc_iov != 0) { 3963 #ifdef PCI_IOV 3964 /* Allocating IOV, confirm BEI matches */ 3965 if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) || 3966 (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5)) 3967 continue; 3968 #else 3969 continue; 3970 #endif 3971 } else { 3972 /* Allocating BAR, confirm BEI matches */ 3973 if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) || 3974 (ea->eae_bei > PCIM_EA_BEI_BAR_5)) && 3975 (ea->eae_bei != PCIM_EA_BEI_ROM)) 3976 continue; 3977 } 3978 3979 rid = pci_ea_bei_to_rid(dev, ea->eae_bei); 3980 if (rid < 0) 3981 continue; 3982 3983 /* Skip resources already allocated by EA */ 3984 if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) || 3985 (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL)) 3986 continue; 3987 3988 start = ea->eae_base; 3989 count = ea->eae_max_offset + 1; 3990 #ifdef PCI_IOV 3991 if (iov != NULL) 3992 count = count * iov->iov_num_vfs; 3993 #endif 3994 end = start + count - 1; 3995 if (count == 0) 3996 continue; 3997 3998 resource_list_add(rl, type, rid, start, end, count); 3999 res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count, 4000 flags); 4001 if (res == NULL) { 4002 resource_list_delete(rl, type, rid); 4003 4004 /* 4005 * Failed to allocate using EA, disable entry. 4006 * Another attempt to allocation will be performed 4007 * further, but this time using legacy BAR registers 4008 */ 4009 tmp = pci_read_config(dev, ea->eae_cfg_offset, 4); 4010 tmp &= ~PCIM_EA_ENABLE; 4011 pci_write_config(dev, ea->eae_cfg_offset, tmp, 4); 4012 4013 /* 4014 * Disabling entry might fail in case it is hardwired. 4015 * Read flags again to match current status. 4016 */ 4017 ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4); 4018 4019 continue; 4020 } 4021 4022 /* As per specification, fill BAR with zeros */ 4023 pci_write_config(dev, rid, 0, 4); 4024 } 4025 } 4026 4027 void 4028 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask) 4029 { 4030 struct pci_devinfo *dinfo; 4031 pcicfgregs *cfg; 4032 struct resource_list *rl; 4033 const struct pci_quirk *q; 4034 uint32_t devid; 4035 int i; 4036 4037 dinfo = device_get_ivars(dev); 4038 cfg = &dinfo->cfg; 4039 rl = &dinfo->resources; 4040 devid = (cfg->device << 16) | cfg->vendor; 4041 4042 /* Allocate resources using Enhanced Allocation */ 4043 pci_add_resources_ea(bus, dev, 0); 4044 4045 /* ATA devices needs special map treatment */ 4046 if ((pci_get_class(dev) == PCIC_STORAGE) && 4047 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) && 4048 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) || 4049 (!pci_read_config(dev, PCIR_BAR(0), 4) && 4050 !pci_read_config(dev, PCIR_BAR(2), 4))) ) 4051 pci_ata_maps(bus, dev, rl, force, prefetchmask); 4052 else 4053 for (i = 0; i < cfg->nummaps;) { 4054 /* Skip resources already managed by EA */ 4055 if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) || 4056 (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) || 4057 pci_ea_is_enabled(dev, PCIR_BAR(i))) { 4058 i++; 4059 continue; 4060 } 4061 4062 /* 4063 * Skip quirked resources. 4064 */ 4065 for (q = &pci_quirks[0]; q->devid != 0; q++) 4066 if (q->devid == devid && 4067 q->type == PCI_QUIRK_UNMAP_REG && 4068 q->arg1 == PCIR_BAR(i)) 4069 break; 4070 if (q->devid != 0) { 4071 i++; 4072 continue; 4073 } 4074 i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force, 4075 prefetchmask & (1 << i)); 4076 } 4077 4078 /* 4079 * Add additional, quirked resources. 4080 */ 4081 for (q = &pci_quirks[0]; q->devid != 0; q++) 4082 if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG) 4083 pci_add_map(bus, dev, q->arg1, rl, force, 0); 4084 4085 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) { 4086 #ifdef __PCI_REROUTE_INTERRUPT 4087 /* 4088 * Try to re-route interrupts. Sometimes the BIOS or 4089 * firmware may leave bogus values in these registers. 4090 * If the re-route fails, then just stick with what we 4091 * have. 4092 */ 4093 pci_assign_interrupt(bus, dev, 1); 4094 #else 4095 pci_assign_interrupt(bus, dev, 0); 4096 #endif 4097 } 4098 4099 if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS && 4100 pci_get_subclass(dev) == PCIS_SERIALBUS_USB) { 4101 if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI) 4102 xhci_early_takeover(dev); 4103 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI) 4104 ehci_early_takeover(dev); 4105 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI) 4106 ohci_early_takeover(dev); 4107 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI) 4108 uhci_early_takeover(dev); 4109 } 4110 4111 /* 4112 * Reserve resources for secondary bus ranges behind bridge 4113 * devices. 4114 */ 4115 pci_reserve_secbus(bus, dev, cfg, rl); 4116 } 4117 4118 static struct pci_devinfo * 4119 pci_identify_function(device_t pcib, device_t dev, int domain, int busno, 4120 int slot, int func) 4121 { 4122 struct pci_devinfo *dinfo; 4123 4124 dinfo = pci_read_device(pcib, dev, domain, busno, slot, func); 4125 if (dinfo != NULL) 4126 pci_add_child(dev, dinfo); 4127 4128 return (dinfo); 4129 } 4130 4131 void 4132 pci_add_children(device_t dev, int domain, int busno) 4133 { 4134 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4135 device_t pcib = device_get_parent(dev); 4136 struct pci_devinfo *dinfo; 4137 int maxslots; 4138 int s, f, pcifunchigh; 4139 uint8_t hdrtype; 4140 int first_func; 4141 4142 /* 4143 * Try to detect a device at slot 0, function 0. If it exists, try to 4144 * enable ARI. We must enable ARI before detecting the rest of the 4145 * functions on this bus as ARI changes the set of slots and functions 4146 * that are legal on this bus. 4147 */ 4148 dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0); 4149 if (dinfo != NULL && pci_enable_ari) 4150 PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev); 4151 4152 /* 4153 * Start looking for new devices on slot 0 at function 1 because we 4154 * just identified the device at slot 0, function 0. 4155 */ 4156 first_func = 1; 4157 4158 maxslots = PCIB_MAXSLOTS(pcib); 4159 for (s = 0; s <= maxslots; s++, first_func = 0) { 4160 pcifunchigh = 0; 4161 f = 0; 4162 DELAY(1); 4163 4164 /* If function 0 is not present, skip to the next slot. */ 4165 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4166 continue; 4167 hdrtype = REG(PCIR_HDRTYPE, 1); 4168 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4169 continue; 4170 if (hdrtype & PCIM_MFDEV) 4171 pcifunchigh = PCIB_MAXFUNCS(pcib); 4172 for (f = first_func; f <= pcifunchigh; f++) 4173 pci_identify_function(pcib, dev, domain, busno, s, f); 4174 } 4175 #undef REG 4176 } 4177 4178 int 4179 pci_rescan_method(device_t dev) 4180 { 4181 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4182 device_t pcib = device_get_parent(dev); 4183 device_t child, *devlist, *unchanged; 4184 int devcount, error, i, j, maxslots, oldcount; 4185 int busno, domain, s, f, pcifunchigh; 4186 uint8_t hdrtype; 4187 4188 /* No need to check for ARI on a rescan. */ 4189 error = device_get_children(dev, &devlist, &devcount); 4190 if (error) 4191 return (error); 4192 if (devcount != 0) { 4193 unchanged = malloc(devcount * sizeof(device_t), M_TEMP, 4194 M_NOWAIT | M_ZERO); 4195 if (unchanged == NULL) { 4196 free(devlist, M_TEMP); 4197 return (ENOMEM); 4198 } 4199 } else 4200 unchanged = NULL; 4201 4202 domain = pcib_get_domain(dev); 4203 busno = pcib_get_bus(dev); 4204 maxslots = PCIB_MAXSLOTS(pcib); 4205 for (s = 0; s <= maxslots; s++) { 4206 /* If function 0 is not present, skip to the next slot. */ 4207 f = 0; 4208 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4209 continue; 4210 pcifunchigh = 0; 4211 hdrtype = REG(PCIR_HDRTYPE, 1); 4212 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4213 continue; 4214 if (hdrtype & PCIM_MFDEV) 4215 pcifunchigh = PCIB_MAXFUNCS(pcib); 4216 for (f = 0; f <= pcifunchigh; f++) { 4217 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4218 continue; 4219 4220 /* 4221 * Found a valid function. Check if a 4222 * device_t for this device already exists. 4223 */ 4224 for (i = 0; i < devcount; i++) { 4225 child = devlist[i]; 4226 if (child == NULL) 4227 continue; 4228 if (pci_get_slot(child) == s && 4229 pci_get_function(child) == f) { 4230 unchanged[i] = child; 4231 goto next_func; 4232 } 4233 } 4234 4235 pci_identify_function(pcib, dev, domain, busno, s, f); 4236 next_func:; 4237 } 4238 } 4239 4240 /* Remove devices that are no longer present. */ 4241 for (i = 0; i < devcount; i++) { 4242 if (unchanged[i] != NULL) 4243 continue; 4244 device_delete_child(dev, devlist[i]); 4245 } 4246 4247 free(devlist, M_TEMP); 4248 oldcount = devcount; 4249 4250 /* Try to attach the devices just added. */ 4251 error = device_get_children(dev, &devlist, &devcount); 4252 if (error) { 4253 free(unchanged, M_TEMP); 4254 return (error); 4255 } 4256 4257 for (i = 0; i < devcount; i++) { 4258 for (j = 0; j < oldcount; j++) { 4259 if (devlist[i] == unchanged[j]) 4260 goto next_device; 4261 } 4262 4263 device_probe_and_attach(devlist[i]); 4264 next_device:; 4265 } 4266 4267 free(unchanged, M_TEMP); 4268 free(devlist, M_TEMP); 4269 return (0); 4270 #undef REG 4271 } 4272 4273 #ifdef PCI_IOV 4274 device_t 4275 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid, 4276 uint16_t did) 4277 { 4278 struct pci_devinfo *vf_dinfo; 4279 device_t pcib; 4280 int busno, slot, func; 4281 4282 pcib = device_get_parent(bus); 4283 4284 PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func); 4285 4286 vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno, 4287 slot, func, vid, did); 4288 4289 vf_dinfo->cfg.flags |= PCICFG_VF; 4290 pci_add_child(bus, vf_dinfo); 4291 4292 return (vf_dinfo->cfg.dev); 4293 } 4294 4295 device_t 4296 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid, 4297 uint16_t vid, uint16_t did) 4298 { 4299 4300 return (pci_add_iov_child(bus, pf, rid, vid, did)); 4301 } 4302 #endif 4303 4304 /* 4305 * For PCIe device set Max_Payload_Size to match PCIe root's. 4306 */ 4307 static void 4308 pcie_setup_mps(device_t dev) 4309 { 4310 struct pci_devinfo *dinfo = device_get_ivars(dev); 4311 device_t root; 4312 uint16_t rmps, mmps, mps; 4313 4314 if (dinfo->cfg.pcie.pcie_location == 0) 4315 return; 4316 root = pci_find_pcie_root_port(dev); 4317 if (root == NULL) 4318 return; 4319 /* Check whether the MPS is already configured. */ 4320 rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) & 4321 PCIEM_CTL_MAX_PAYLOAD; 4322 mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) & 4323 PCIEM_CTL_MAX_PAYLOAD; 4324 if (mps == rmps) 4325 return; 4326 /* Check whether the device is capable of the root's MPS. */ 4327 mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) & 4328 PCIEM_CAP_MAX_PAYLOAD) << 5; 4329 if (rmps > mmps) { 4330 /* 4331 * The device is unable to handle root's MPS. Limit root. 4332 * XXX: We should traverse through all the tree, applying 4333 * it to all the devices. 4334 */ 4335 pcie_adjust_config(root, PCIER_DEVICE_CTL, 4336 PCIEM_CTL_MAX_PAYLOAD, mmps, 2); 4337 } else { 4338 pcie_adjust_config(dev, PCIER_DEVICE_CTL, 4339 PCIEM_CTL_MAX_PAYLOAD, rmps, 2); 4340 } 4341 } 4342 4343 static void 4344 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo) 4345 { 4346 int aer; 4347 uint32_t r; 4348 uint16_t r2; 4349 4350 if (dinfo->cfg.pcie.pcie_location != 0 && 4351 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) { 4352 r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4353 PCIER_ROOT_CTL, 2); 4354 r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR | 4355 PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL); 4356 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4357 PCIER_ROOT_CTL, r2, 2); 4358 } 4359 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 4360 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 4361 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 4362 if (r != 0 && bootverbose) { 4363 pci_printf(&dinfo->cfg, 4364 "clearing AER UC 0x%08x -> 0x%08x\n", 4365 r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4366 4)); 4367 } 4368 4369 r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4); 4370 r &= ~(PCIM_AER_UC_TRAINING_ERROR | 4371 PCIM_AER_UC_DL_PROTOCOL_ERROR | 4372 PCIM_AER_UC_SURPRISE_LINK_DOWN | 4373 PCIM_AER_UC_POISONED_TLP | 4374 PCIM_AER_UC_FC_PROTOCOL_ERROR | 4375 PCIM_AER_UC_COMPLETION_TIMEOUT | 4376 PCIM_AER_UC_COMPLETER_ABORT | 4377 PCIM_AER_UC_UNEXPECTED_COMPLETION | 4378 PCIM_AER_UC_RECEIVER_OVERFLOW | 4379 PCIM_AER_UC_MALFORMED_TLP | 4380 PCIM_AER_UC_ECRC_ERROR | 4381 PCIM_AER_UC_UNSUPPORTED_REQUEST | 4382 PCIM_AER_UC_ACS_VIOLATION | 4383 PCIM_AER_UC_INTERNAL_ERROR | 4384 PCIM_AER_UC_MC_BLOCKED_TLP | 4385 PCIM_AER_UC_ATOMIC_EGRESS_BLK | 4386 PCIM_AER_UC_TLP_PREFIX_BLOCKED); 4387 pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4); 4388 4389 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 4390 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 4391 if (r != 0 && bootverbose) { 4392 pci_printf(&dinfo->cfg, 4393 "clearing AER COR 0x%08x -> 0x%08x\n", 4394 r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4395 4)); 4396 } 4397 4398 r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4); 4399 r &= ~(PCIM_AER_COR_RECEIVER_ERROR | 4400 PCIM_AER_COR_BAD_TLP | 4401 PCIM_AER_COR_BAD_DLLP | 4402 PCIM_AER_COR_REPLAY_ROLLOVER | 4403 PCIM_AER_COR_REPLAY_TIMEOUT | 4404 PCIM_AER_COR_ADVISORY_NF_ERROR | 4405 PCIM_AER_COR_INTERNAL_ERROR | 4406 PCIM_AER_COR_HEADER_LOG_OVFLOW); 4407 pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4); 4408 4409 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4410 PCIER_DEVICE_CTL, 2); 4411 r |= PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE | 4412 PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE; 4413 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4414 PCIER_DEVICE_CTL, r, 2); 4415 } 4416 } 4417 4418 void 4419 pci_add_child(device_t bus, struct pci_devinfo *dinfo) 4420 { 4421 device_t dev; 4422 4423 dinfo->cfg.dev = dev = device_add_child(bus, NULL, DEVICE_UNIT_ANY); 4424 device_set_ivars(dev, dinfo); 4425 resource_list_init(&dinfo->resources); 4426 pci_cfg_save(dev, dinfo, 0); 4427 pci_cfg_restore(dev, dinfo); 4428 pci_print_verbose(dinfo); 4429 pci_add_resources(bus, dev, 0, 0); 4430 if (pci_enable_mps_tune) 4431 pcie_setup_mps(dev); 4432 pci_child_added(dinfo->cfg.dev); 4433 4434 if (pci_clear_aer_on_attach) 4435 pci_add_child_clear_aer(dev, dinfo); 4436 4437 EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev); 4438 } 4439 4440 void 4441 pci_child_added_method(device_t dev, device_t child) 4442 { 4443 4444 } 4445 4446 static int 4447 pci_probe(device_t dev) 4448 { 4449 4450 device_set_desc(dev, "PCI bus"); 4451 4452 /* Allow other subclasses to override this driver. */ 4453 return (BUS_PROBE_GENERIC); 4454 } 4455 4456 int 4457 pci_attach_common(device_t dev) 4458 { 4459 struct pci_softc *sc; 4460 int busno, domain; 4461 int rid; 4462 4463 sc = device_get_softc(dev); 4464 domain = pcib_get_domain(dev); 4465 busno = pcib_get_bus(dev); 4466 rid = 0; 4467 sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno, 4468 1, 0); 4469 if (sc->sc_bus == NULL) { 4470 device_printf(dev, "failed to allocate bus number\n"); 4471 return (ENXIO); 4472 } 4473 if (bootverbose) 4474 device_printf(dev, "domain=%d, physical bus=%d\n", 4475 domain, busno); 4476 sc->sc_dma_tag = bus_get_dma_tag(dev); 4477 return (0); 4478 } 4479 4480 int 4481 pci_attach(device_t dev) 4482 { 4483 int busno, domain, error; 4484 4485 error = pci_attach_common(dev); 4486 if (error) 4487 return (error); 4488 4489 /* 4490 * Since there can be multiple independently numbered PCI 4491 * buses on systems with multiple PCI domains, we can't use 4492 * the unit number to decide which bus we are probing. We ask 4493 * the parent pcib what our domain and bus numbers are. 4494 */ 4495 domain = pcib_get_domain(dev); 4496 busno = pcib_get_bus(dev); 4497 pci_add_children(dev, domain, busno); 4498 bus_attach_children(dev); 4499 return (0); 4500 } 4501 4502 int 4503 pci_detach(device_t dev) 4504 { 4505 struct pci_softc *sc; 4506 int error; 4507 4508 error = bus_generic_detach(dev); 4509 if (error) 4510 return (error); 4511 sc = device_get_softc(dev); 4512 error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus); 4513 if (error) 4514 return (error); 4515 return (device_delete_children(dev)); 4516 } 4517 4518 static void 4519 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp) 4520 { 4521 int line, unit; 4522 const char *at; 4523 char me1[24], me2[32]; 4524 uint8_t b, s, f; 4525 uint32_t d; 4526 device_location_cache_t *cache; 4527 4528 d = pci_get_domain(child); 4529 b = pci_get_bus(child); 4530 s = pci_get_slot(child); 4531 f = pci_get_function(child); 4532 snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f); 4533 snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f); 4534 line = 0; 4535 cache = dev_wired_cache_init(); 4536 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 4537 resource_string_value(name, unit, "at", &at); 4538 if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) { 4539 *unitp = unit; 4540 break; 4541 } 4542 if (dev_wired_cache_match(cache, child, at)) { 4543 *unitp = unit; 4544 break; 4545 } 4546 } 4547 dev_wired_cache_fini(cache); 4548 } 4549 4550 static void 4551 pci_set_power_child(device_t dev, device_t child, int state) 4552 { 4553 device_t pcib; 4554 int dstate; 4555 4556 /* 4557 * Set the device to the given state. If the firmware suggests 4558 * a different power state, use it instead. If power management 4559 * is not present, the firmware is responsible for managing 4560 * device power. Skip children who aren't attached since they 4561 * are handled separately. 4562 */ 4563 pcib = device_get_parent(dev); 4564 dstate = state; 4565 if (device_is_attached(child) && 4566 PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0) 4567 pci_set_powerstate(child, dstate); 4568 } 4569 4570 int 4571 pci_suspend_child(device_t dev, device_t child) 4572 { 4573 struct pci_devinfo *dinfo; 4574 struct resource_list_entry *rle; 4575 int error; 4576 4577 dinfo = device_get_ivars(child); 4578 4579 /* 4580 * Save the PCI configuration space for the child and set the 4581 * device in the appropriate power state for this sleep state. 4582 */ 4583 pci_cfg_save(child, dinfo, 0); 4584 4585 /* Suspend devices before potentially powering them down. */ 4586 error = bus_generic_suspend_child(dev, child); 4587 4588 if (error) 4589 return (error); 4590 4591 if (pci_do_power_suspend) { 4592 /* 4593 * Make sure this device's interrupt handler is not invoked 4594 * in the case the device uses a shared interrupt that can 4595 * be raised by some other device. 4596 * This is applicable only to regular (legacy) PCI interrupts 4597 * as MSI/MSI-X interrupts are never shared. 4598 */ 4599 rle = resource_list_find(&dinfo->resources, 4600 SYS_RES_IRQ, 0); 4601 if (rle != NULL && rle->res != NULL) 4602 (void)bus_suspend_intr(child, rle->res); 4603 pci_set_power_child(dev, child, PCI_POWERSTATE_D3); 4604 } 4605 4606 return (0); 4607 } 4608 4609 int 4610 pci_resume_child(device_t dev, device_t child) 4611 { 4612 struct pci_devinfo *dinfo; 4613 struct resource_list_entry *rle; 4614 4615 if (pci_do_power_resume) 4616 pci_set_power_child(dev, child, PCI_POWERSTATE_D0); 4617 4618 dinfo = device_get_ivars(child); 4619 pci_cfg_restore(child, dinfo); 4620 if (!device_is_attached(child)) 4621 pci_cfg_save(child, dinfo, 1); 4622 4623 bus_generic_resume_child(dev, child); 4624 4625 /* 4626 * Allow interrupts only after fully resuming the driver and hardware. 4627 */ 4628 if (pci_do_power_suspend) { 4629 /* See pci_suspend_child for details. */ 4630 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 4631 if (rle != NULL && rle->res != NULL) 4632 (void)bus_resume_intr(child, rle->res); 4633 } 4634 4635 return (0); 4636 } 4637 4638 int 4639 pci_resume(device_t dev) 4640 { 4641 device_t child, *devlist; 4642 int error, i, numdevs; 4643 4644 if ((error = device_get_children(dev, &devlist, &numdevs)) != 0) 4645 return (error); 4646 4647 /* 4648 * Resume critical devices first, then everything else later. 4649 */ 4650 for (i = 0; i < numdevs; i++) { 4651 child = devlist[i]; 4652 switch (pci_get_class(child)) { 4653 case PCIC_DISPLAY: 4654 case PCIC_MEMORY: 4655 case PCIC_BRIDGE: 4656 case PCIC_BASEPERIPH: 4657 BUS_RESUME_CHILD(dev, child); 4658 break; 4659 } 4660 } 4661 for (i = 0; i < numdevs; i++) { 4662 child = devlist[i]; 4663 switch (pci_get_class(child)) { 4664 case PCIC_DISPLAY: 4665 case PCIC_MEMORY: 4666 case PCIC_BRIDGE: 4667 case PCIC_BASEPERIPH: 4668 break; 4669 default: 4670 BUS_RESUME_CHILD(dev, child); 4671 } 4672 } 4673 free(devlist, M_TEMP); 4674 return (0); 4675 } 4676 4677 static void 4678 pci_load_vendor_data(void) 4679 { 4680 caddr_t data; 4681 void *ptr; 4682 size_t sz; 4683 4684 data = preload_search_by_type("pci_vendor_data"); 4685 if (data != NULL) { 4686 ptr = preload_fetch_addr(data); 4687 sz = preload_fetch_size(data); 4688 if (ptr != NULL && sz != 0) { 4689 pci_vendordata = ptr; 4690 pci_vendordata_size = sz; 4691 /* terminate the database */ 4692 pci_vendordata[pci_vendordata_size] = '\n'; 4693 } 4694 } 4695 } 4696 4697 void 4698 pci_driver_added(device_t dev, driver_t *driver) 4699 { 4700 int numdevs; 4701 device_t *devlist; 4702 device_t child; 4703 struct pci_devinfo *dinfo; 4704 int i; 4705 4706 if (bootverbose) 4707 device_printf(dev, "driver added\n"); 4708 DEVICE_IDENTIFY(driver, dev); 4709 if (device_get_children(dev, &devlist, &numdevs) != 0) 4710 return; 4711 for (i = 0; i < numdevs; i++) { 4712 child = devlist[i]; 4713 if (device_get_state(child) != DS_NOTPRESENT) 4714 continue; 4715 dinfo = device_get_ivars(child); 4716 pci_print_verbose(dinfo); 4717 if (bootverbose) 4718 pci_printf(&dinfo->cfg, "reprobing on driver added\n"); 4719 pci_cfg_restore(child, dinfo); 4720 if (device_probe_and_attach(child) != 0) 4721 pci_child_detached(dev, child); 4722 } 4723 free(devlist, M_TEMP); 4724 } 4725 4726 int 4727 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4728 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4729 { 4730 struct pci_devinfo *dinfo; 4731 struct msix_table_entry *mte; 4732 struct msix_vector *mv; 4733 uint64_t addr; 4734 uint32_t data; 4735 void *cookie; 4736 int error, rid; 4737 4738 error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr, 4739 arg, &cookie); 4740 if (error) 4741 return (error); 4742 4743 /* If this is not a direct child, just bail out. */ 4744 if (device_get_parent(child) != dev) { 4745 *cookiep = cookie; 4746 return(0); 4747 } 4748 4749 rid = rman_get_rid(irq); 4750 if (rid == 0) { 4751 /* Make sure that INTx is enabled */ 4752 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4753 } else { 4754 /* 4755 * Check to see if the interrupt is MSI or MSI-X. 4756 * Ask our parent to map the MSI and give 4757 * us the address and data register values. 4758 * If we fail for some reason, teardown the 4759 * interrupt handler. 4760 */ 4761 dinfo = device_get_ivars(child); 4762 if (dinfo->cfg.msi.msi_alloc > 0) { 4763 if (dinfo->cfg.msi.msi_addr == 0) { 4764 KASSERT(dinfo->cfg.msi.msi_handlers == 0, 4765 ("MSI has handlers, but vectors not mapped")); 4766 error = PCIB_MAP_MSI(device_get_parent(dev), 4767 child, rman_get_start(irq), &addr, &data); 4768 if (error) 4769 goto bad; 4770 dinfo->cfg.msi.msi_addr = addr; 4771 dinfo->cfg.msi.msi_data = data; 4772 } 4773 if (dinfo->cfg.msi.msi_handlers == 0) 4774 pci_enable_msi(child, dinfo->cfg.msi.msi_addr, 4775 dinfo->cfg.msi.msi_data); 4776 dinfo->cfg.msi.msi_handlers++; 4777 } else { 4778 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4779 ("No MSI or MSI-X interrupts allocated")); 4780 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4781 ("MSI-X index too high")); 4782 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4783 KASSERT(mte->mte_vector != 0, ("no message vector")); 4784 mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1]; 4785 KASSERT(mv->mv_irq == rman_get_start(irq), 4786 ("IRQ mismatch")); 4787 if (mv->mv_address == 0) { 4788 KASSERT(mte->mte_handlers == 0, 4789 ("MSI-X table entry has handlers, but vector not mapped")); 4790 error = PCIB_MAP_MSI(device_get_parent(dev), 4791 child, rman_get_start(irq), &addr, &data); 4792 if (error) 4793 goto bad; 4794 mv->mv_address = addr; 4795 mv->mv_data = data; 4796 } 4797 4798 /* 4799 * The MSIX table entry must be made valid by 4800 * incrementing the mte_handlers before 4801 * calling pci_enable_msix() and 4802 * pci_resume_msix(). Else the MSIX rewrite 4803 * table quirk will not work as expected. 4804 */ 4805 mte->mte_handlers++; 4806 if (mte->mte_handlers == 1) { 4807 pci_enable_msix(child, rid - 1, mv->mv_address, 4808 mv->mv_data); 4809 pci_unmask_msix(child, rid - 1); 4810 } 4811 } 4812 4813 /* 4814 * Make sure that INTx is disabled if we are using MSI/MSI-X, 4815 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG, 4816 * in which case we "enable" INTx so MSI/MSI-X actually works. 4817 */ 4818 if (!pci_has_quirk(pci_get_devid(child), 4819 PCI_QUIRK_MSI_INTX_BUG)) 4820 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4821 else 4822 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4823 bad: 4824 if (error) { 4825 (void)bus_generic_teardown_intr(dev, child, irq, 4826 cookie); 4827 return (error); 4828 } 4829 } 4830 *cookiep = cookie; 4831 return (0); 4832 } 4833 4834 int 4835 pci_teardown_intr(device_t dev, device_t child, struct resource *irq, 4836 void *cookie) 4837 { 4838 struct msix_table_entry *mte; 4839 struct resource_list_entry *rle; 4840 struct pci_devinfo *dinfo; 4841 int error, rid; 4842 4843 if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE)) 4844 return (EINVAL); 4845 4846 /* If this isn't a direct child, just bail out */ 4847 if (device_get_parent(child) != dev) 4848 return(bus_generic_teardown_intr(dev, child, irq, cookie)); 4849 4850 rid = rman_get_rid(irq); 4851 if (rid == 0) { 4852 /* Mask INTx */ 4853 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4854 } else { 4855 /* 4856 * Check to see if the interrupt is MSI or MSI-X. If so, 4857 * decrement the appropriate handlers count and mask the 4858 * MSI-X message, or disable MSI messages if the count 4859 * drops to 0. 4860 */ 4861 dinfo = device_get_ivars(child); 4862 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid); 4863 if (rle->res != irq) 4864 return (EINVAL); 4865 if (dinfo->cfg.msi.msi_alloc > 0) { 4866 KASSERT(rid <= dinfo->cfg.msi.msi_alloc, 4867 ("MSI-X index too high")); 4868 if (dinfo->cfg.msi.msi_handlers == 0) 4869 return (EINVAL); 4870 dinfo->cfg.msi.msi_handlers--; 4871 if (dinfo->cfg.msi.msi_handlers == 0) 4872 pci_disable_msi(child); 4873 } else { 4874 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4875 ("No MSI or MSI-X interrupts allocated")); 4876 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4877 ("MSI-X index too high")); 4878 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4879 if (mte->mte_handlers == 0) 4880 return (EINVAL); 4881 mte->mte_handlers--; 4882 if (mte->mte_handlers == 0) 4883 pci_mask_msix(child, rid - 1); 4884 } 4885 } 4886 error = bus_generic_teardown_intr(dev, child, irq, cookie); 4887 if (rid > 0) 4888 KASSERT(error == 0, 4889 ("%s: generic teardown failed for MSI/MSI-X", __func__)); 4890 return (error); 4891 } 4892 4893 int 4894 pci_print_child(device_t dev, device_t child) 4895 { 4896 struct pci_devinfo *dinfo; 4897 struct resource_list *rl; 4898 int retval = 0; 4899 4900 dinfo = device_get_ivars(child); 4901 rl = &dinfo->resources; 4902 4903 retval += bus_print_child_header(dev, child); 4904 4905 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 4906 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); 4907 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 4908 if (device_get_flags(dev)) 4909 retval += printf(" flags %#x", device_get_flags(dev)); 4910 4911 retval += printf(" at device %d.%d", pci_get_slot(child), 4912 pci_get_function(child)); 4913 4914 retval += bus_print_child_domain(dev, child); 4915 retval += bus_print_child_footer(dev, child); 4916 4917 return (retval); 4918 } 4919 4920 static const struct 4921 { 4922 int class; 4923 int subclass; 4924 int report; /* 0 = bootverbose, 1 = always */ 4925 const char *desc; 4926 } pci_nomatch_tab[] = { 4927 {PCIC_OLD, -1, 1, "old"}, 4928 {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"}, 4929 {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"}, 4930 {PCIC_STORAGE, -1, 1, "mass storage"}, 4931 {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"}, 4932 {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"}, 4933 {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"}, 4934 {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"}, 4935 {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"}, 4936 {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"}, 4937 {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"}, 4938 {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"}, 4939 {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"}, 4940 {PCIC_NETWORK, -1, 1, "network"}, 4941 {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"}, 4942 {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"}, 4943 {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"}, 4944 {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"}, 4945 {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"}, 4946 {PCIC_DISPLAY, -1, 1, "display"}, 4947 {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"}, 4948 {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"}, 4949 {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"}, 4950 {PCIC_MULTIMEDIA, -1, 1, "multimedia"}, 4951 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"}, 4952 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"}, 4953 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"}, 4954 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"}, 4955 {PCIC_MEMORY, -1, 1, "memory"}, 4956 {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"}, 4957 {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"}, 4958 {PCIC_BRIDGE, -1, 1, "bridge"}, 4959 {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"}, 4960 {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"}, 4961 {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"}, 4962 {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"}, 4963 {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"}, 4964 {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"}, 4965 {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"}, 4966 {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"}, 4967 {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"}, 4968 {PCIC_SIMPLECOMM, -1, 1, "simple comms"}, 4969 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */ 4970 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"}, 4971 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"}, 4972 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"}, 4973 {PCIC_BASEPERIPH, -1, 0, "base peripheral"}, 4974 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"}, 4975 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"}, 4976 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"}, 4977 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"}, 4978 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"}, 4979 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"}, 4980 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"}, 4981 {PCIC_INPUTDEV, -1, 1, "input device"}, 4982 {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"}, 4983 {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"}, 4984 {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"}, 4985 {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"}, 4986 {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"}, 4987 {PCIC_DOCKING, -1, 1, "docking station"}, 4988 {PCIC_PROCESSOR, -1, 1, "processor"}, 4989 {PCIC_SERIALBUS, -1, 1, "serial bus"}, 4990 {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"}, 4991 {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"}, 4992 {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"}, 4993 {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"}, 4994 {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"}, 4995 {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"}, 4996 {PCIC_WIRELESS, -1, 1, "wireless controller"}, 4997 {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"}, 4998 {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"}, 4999 {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"}, 5000 {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"}, 5001 {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"}, 5002 {PCIC_SATCOM, -1, 1, "satellite communication"}, 5003 {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"}, 5004 {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"}, 5005 {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"}, 5006 {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"}, 5007 {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"}, 5008 {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"}, 5009 {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"}, 5010 {PCIC_DASP, -1, 0, "dasp"}, 5011 {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"}, 5012 {PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"}, 5013 {PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"}, 5014 {PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"}, 5015 {PCIC_INSTRUMENT, -1, 0, "non-essential instrumentation"}, 5016 {0, 0, 0, NULL} 5017 }; 5018 5019 void 5020 pci_probe_nomatch(device_t dev, device_t child) 5021 { 5022 int i, report; 5023 const char *cp, *scp; 5024 char *device; 5025 5026 /* 5027 * Look for a listing for this device in a loaded device database. 5028 */ 5029 report = 1; 5030 if ((device = pci_describe_device(child)) != NULL) { 5031 device_printf(dev, "<%s>", device); 5032 free(device, M_DEVBUF); 5033 } else { 5034 /* 5035 * Scan the class/subclass descriptions for a general 5036 * description. 5037 */ 5038 cp = "unknown"; 5039 scp = NULL; 5040 for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { 5041 if (pci_nomatch_tab[i].class == pci_get_class(child)) { 5042 if (pci_nomatch_tab[i].subclass == -1) { 5043 cp = pci_nomatch_tab[i].desc; 5044 report = pci_nomatch_tab[i].report; 5045 } else if (pci_nomatch_tab[i].subclass == 5046 pci_get_subclass(child)) { 5047 scp = pci_nomatch_tab[i].desc; 5048 report = pci_nomatch_tab[i].report; 5049 } 5050 } 5051 } 5052 if (report || bootverbose) { 5053 device_printf(dev, "<%s%s%s>", 5054 cp ? cp : "", 5055 ((cp != NULL) && (scp != NULL)) ? ", " : "", 5056 scp ? scp : ""); 5057 } 5058 } 5059 if (report || bootverbose) { 5060 printf(" at device %d.%d (no driver attached)\n", 5061 pci_get_slot(child), pci_get_function(child)); 5062 } 5063 pci_cfg_save(child, device_get_ivars(child), 1); 5064 } 5065 5066 void 5067 pci_child_detached(device_t dev, device_t child) 5068 { 5069 struct pci_devinfo *dinfo; 5070 struct resource_list *rl; 5071 5072 dinfo = device_get_ivars(child); 5073 rl = &dinfo->resources; 5074 5075 /* 5076 * Have to deallocate IRQs before releasing any MSI messages and 5077 * have to release MSI messages before deallocating any memory 5078 * BARs. 5079 */ 5080 if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0) 5081 pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n"); 5082 if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) { 5083 if (dinfo->cfg.msi.msi_alloc != 0) 5084 pci_printf(&dinfo->cfg, "Device leaked %d MSI " 5085 "vectors\n", dinfo->cfg.msi.msi_alloc); 5086 else 5087 pci_printf(&dinfo->cfg, "Device leaked %d MSI-X " 5088 "vectors\n", dinfo->cfg.msix.msix_alloc); 5089 (void)pci_release_msi(child); 5090 } 5091 if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0) 5092 pci_printf(&dinfo->cfg, "Device leaked memory resources\n"); 5093 if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0) 5094 pci_printf(&dinfo->cfg, "Device leaked I/O resources\n"); 5095 if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0) 5096 pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n"); 5097 5098 pci_cfg_save(child, dinfo, 1); 5099 } 5100 5101 /* 5102 * Parse the PCI device database, if loaded, and return a pointer to a 5103 * description of the device. 5104 * 5105 * The database is flat text formatted as follows: 5106 * 5107 * Any line not in a valid format is ignored. 5108 * Lines are terminated with newline '\n' characters. 5109 * 5110 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then 5111 * the vendor name. 5112 * 5113 * A DEVICE line is entered immediately below the corresponding VENDOR ID. 5114 * - devices cannot be listed without a corresponding VENDOR line. 5115 * A DEVICE line consists of a TAB, the 4 digit (hex) device code, 5116 * another TAB, then the device name. 5117 */ 5118 5119 /* 5120 * Assuming (ptr) points to the beginning of a line in the database, 5121 * return the vendor or device and description of the next entry. 5122 * The value of (vendor) or (device) inappropriate for the entry type 5123 * is set to -1. Returns nonzero at the end of the database. 5124 * 5125 * Note that this is slightly unrobust in the face of corrupt data; 5126 * we attempt to safeguard against this by spamming the end of the 5127 * database with a newline when we initialise. 5128 */ 5129 static int 5130 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc) 5131 { 5132 char *cp = *ptr; 5133 int left; 5134 5135 *device = -1; 5136 *vendor = -1; 5137 **desc = '\0'; 5138 for (;;) { 5139 left = pci_vendordata_size - (cp - pci_vendordata); 5140 if (left <= 0) { 5141 *ptr = cp; 5142 return(1); 5143 } 5144 5145 /* vendor entry? */ 5146 if (*cp != '\t' && 5147 sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2) 5148 break; 5149 /* device entry? */ 5150 if (*cp == '\t' && 5151 sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2) 5152 break; 5153 5154 /* skip to next line */ 5155 while (*cp != '\n' && left > 0) { 5156 cp++; 5157 left--; 5158 } 5159 if (*cp == '\n') { 5160 cp++; 5161 left--; 5162 } 5163 } 5164 /* skip to next line */ 5165 while (*cp != '\n' && left > 0) { 5166 cp++; 5167 left--; 5168 } 5169 if (*cp == '\n' && left > 0) 5170 cp++; 5171 *ptr = cp; 5172 return(0); 5173 } 5174 5175 static char * 5176 pci_describe_device(device_t dev) 5177 { 5178 int vendor, device; 5179 char *desc, *vp, *dp, *line; 5180 5181 desc = vp = dp = NULL; 5182 5183 /* 5184 * If we have no vendor data, we can't do anything. 5185 */ 5186 if (pci_vendordata == NULL) 5187 goto out; 5188 5189 /* 5190 * Scan the vendor data looking for this device 5191 */ 5192 line = pci_vendordata; 5193 if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5194 goto out; 5195 for (;;) { 5196 if (pci_describe_parse_line(&line, &vendor, &device, &vp)) 5197 goto out; 5198 if (vendor == pci_get_vendor(dev)) 5199 break; 5200 } 5201 if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5202 goto out; 5203 for (;;) { 5204 if (pci_describe_parse_line(&line, &vendor, &device, &dp)) { 5205 *dp = 0; 5206 break; 5207 } 5208 if (vendor != -1) { 5209 *dp = 0; 5210 break; 5211 } 5212 if (device == pci_get_device(dev)) 5213 break; 5214 } 5215 if (dp[0] == '\0') 5216 snprintf(dp, 80, "0x%x", pci_get_device(dev)); 5217 if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) != 5218 NULL) 5219 sprintf(desc, "%s, %s", vp, dp); 5220 out: 5221 if (vp != NULL) 5222 free(vp, M_DEVBUF); 5223 if (dp != NULL) 5224 free(dp, M_DEVBUF); 5225 return(desc); 5226 } 5227 5228 int 5229 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 5230 { 5231 struct pci_devinfo *dinfo; 5232 pcicfgregs *cfg; 5233 5234 dinfo = device_get_ivars(child); 5235 cfg = &dinfo->cfg; 5236 5237 switch (which) { 5238 case PCI_IVAR_ETHADDR: 5239 /* 5240 * The generic accessor doesn't deal with failure, so 5241 * we set the return value, then return an error. 5242 */ 5243 *((uint8_t **) result) = NULL; 5244 return (EINVAL); 5245 case PCI_IVAR_SUBVENDOR: 5246 *result = cfg->subvendor; 5247 break; 5248 case PCI_IVAR_SUBDEVICE: 5249 *result = cfg->subdevice; 5250 break; 5251 case PCI_IVAR_VENDOR: 5252 *result = cfg->vendor; 5253 break; 5254 case PCI_IVAR_DEVICE: 5255 *result = cfg->device; 5256 break; 5257 case PCI_IVAR_DEVID: 5258 *result = (cfg->device << 16) | cfg->vendor; 5259 break; 5260 case PCI_IVAR_CLASS: 5261 *result = cfg->baseclass; 5262 break; 5263 case PCI_IVAR_SUBCLASS: 5264 *result = cfg->subclass; 5265 break; 5266 case PCI_IVAR_PROGIF: 5267 *result = cfg->progif; 5268 break; 5269 case PCI_IVAR_REVID: 5270 *result = cfg->revid; 5271 break; 5272 case PCI_IVAR_INTPIN: 5273 *result = cfg->intpin; 5274 break; 5275 case PCI_IVAR_IRQ: 5276 *result = cfg->intline; 5277 break; 5278 case PCI_IVAR_DOMAIN: 5279 *result = cfg->domain; 5280 break; 5281 case PCI_IVAR_BUS: 5282 *result = cfg->bus; 5283 break; 5284 case PCI_IVAR_SLOT: 5285 *result = cfg->slot; 5286 break; 5287 case PCI_IVAR_FUNCTION: 5288 *result = cfg->func; 5289 break; 5290 case PCI_IVAR_CMDREG: 5291 *result = cfg->cmdreg; 5292 break; 5293 case PCI_IVAR_CACHELNSZ: 5294 *result = cfg->cachelnsz; 5295 break; 5296 case PCI_IVAR_MINGNT: 5297 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5298 *result = -1; 5299 return (EINVAL); 5300 } 5301 *result = cfg->mingnt; 5302 break; 5303 case PCI_IVAR_MAXLAT: 5304 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5305 *result = -1; 5306 return (EINVAL); 5307 } 5308 *result = cfg->maxlat; 5309 break; 5310 case PCI_IVAR_LATTIMER: 5311 *result = cfg->lattimer; 5312 break; 5313 default: 5314 return (ENOENT); 5315 } 5316 return (0); 5317 } 5318 5319 int 5320 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 5321 { 5322 struct pci_devinfo *dinfo; 5323 5324 dinfo = device_get_ivars(child); 5325 5326 switch (which) { 5327 case PCI_IVAR_INTPIN: 5328 dinfo->cfg.intpin = value; 5329 return (0); 5330 case PCI_IVAR_ETHADDR: 5331 case PCI_IVAR_SUBVENDOR: 5332 case PCI_IVAR_SUBDEVICE: 5333 case PCI_IVAR_VENDOR: 5334 case PCI_IVAR_DEVICE: 5335 case PCI_IVAR_DEVID: 5336 case PCI_IVAR_CLASS: 5337 case PCI_IVAR_SUBCLASS: 5338 case PCI_IVAR_PROGIF: 5339 case PCI_IVAR_REVID: 5340 case PCI_IVAR_IRQ: 5341 case PCI_IVAR_DOMAIN: 5342 case PCI_IVAR_BUS: 5343 case PCI_IVAR_SLOT: 5344 case PCI_IVAR_FUNCTION: 5345 return (EINVAL); /* disallow for now */ 5346 5347 default: 5348 return (ENOENT); 5349 } 5350 } 5351 5352 #include "opt_ddb.h" 5353 #ifdef DDB 5354 #include <ddb/ddb.h> 5355 #include <sys/cons.h> 5356 5357 /* 5358 * List resources based on pci map registers, used for within ddb 5359 */ 5360 5361 DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE) 5362 { 5363 struct pci_devinfo *dinfo; 5364 struct devlist *devlist_head; 5365 struct pci_conf *p; 5366 const char *name; 5367 int i, error, none_count; 5368 5369 none_count = 0; 5370 /* get the head of the device queue */ 5371 devlist_head = &pci_devq; 5372 5373 /* 5374 * Go through the list of devices and print out devices 5375 */ 5376 for (error = 0, i = 0, 5377 dinfo = STAILQ_FIRST(devlist_head); 5378 (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit; 5379 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) { 5380 /* Populate pd_name and pd_unit */ 5381 name = NULL; 5382 if (dinfo->cfg.dev) 5383 name = device_get_name(dinfo->cfg.dev); 5384 5385 p = &dinfo->conf; 5386 db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x " 5387 "chip=0x%08x rev=0x%02x hdr=0x%02x\n", 5388 (name && *name) ? name : "none", 5389 (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) : 5390 none_count++, 5391 p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, 5392 p->pc_sel.pc_func, (p->pc_class << 16) | 5393 (p->pc_subclass << 8) | p->pc_progif, 5394 (p->pc_subdevice << 16) | p->pc_subvendor, 5395 (p->pc_device << 16) | p->pc_vendor, 5396 p->pc_revid, p->pc_hdr); 5397 } 5398 } 5399 #endif /* DDB */ 5400 5401 struct resource * 5402 pci_reserve_map(device_t dev, device_t child, int type, int *rid, 5403 rman_res_t start, rman_res_t end, rman_res_t count, u_int num, 5404 u_int flags) 5405 { 5406 struct pci_devinfo *dinfo = device_get_ivars(child); 5407 struct resource_list *rl = &dinfo->resources; 5408 struct resource *res; 5409 struct pci_map *pm; 5410 uint16_t cmd; 5411 pci_addr_t map, testval; 5412 int mapsize; 5413 5414 res = NULL; 5415 5416 /* If rid is managed by EA, ignore it */ 5417 if (pci_ea_is_enabled(child, *rid)) 5418 goto out; 5419 5420 pm = pci_find_bar(child, *rid); 5421 if (pm != NULL) { 5422 /* This is a BAR that we failed to allocate earlier. */ 5423 mapsize = pm->pm_size; 5424 map = pm->pm_value; 5425 } else { 5426 /* 5427 * Weed out the bogons, and figure out how large the 5428 * BAR/map is. BARs that read back 0 here are bogus 5429 * and unimplemented. Note: atapci in legacy mode are 5430 * special and handled elsewhere in the code. If you 5431 * have a atapci device in legacy mode and it fails 5432 * here, that other code is broken. 5433 */ 5434 pci_read_bar(child, *rid, &map, &testval, NULL); 5435 5436 /* 5437 * Determine the size of the BAR and ignore BARs with a size 5438 * of 0. Device ROM BARs use a different mask value. 5439 */ 5440 if (PCIR_IS_BIOS(&dinfo->cfg, *rid)) 5441 mapsize = pci_romsize(testval); 5442 else 5443 mapsize = pci_mapsize(testval); 5444 if (mapsize == 0) 5445 goto out; 5446 pm = pci_add_bar(child, *rid, map, mapsize); 5447 } 5448 5449 if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) { 5450 if (type != SYS_RES_MEMORY) { 5451 if (bootverbose) 5452 device_printf(dev, 5453 "child %s requested type %d for rid %#x," 5454 " but the BAR says it is an memio\n", 5455 device_get_nameunit(child), type, *rid); 5456 goto out; 5457 } 5458 } else { 5459 if (type != SYS_RES_IOPORT) { 5460 if (bootverbose) 5461 device_printf(dev, 5462 "child %s requested type %d for rid %#x," 5463 " but the BAR says it is an ioport\n", 5464 device_get_nameunit(child), type, *rid); 5465 goto out; 5466 } 5467 } 5468 5469 /* 5470 * For real BARs, we need to override the size that 5471 * the driver requests, because that's what the BAR 5472 * actually uses and we would otherwise have a 5473 * situation where we might allocate the excess to 5474 * another driver, which won't work. 5475 */ 5476 count = ((pci_addr_t)1 << mapsize) * num; 5477 if (RF_ALIGNMENT(flags) < mapsize) 5478 flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize); 5479 if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH)) 5480 flags |= RF_PREFETCHABLE; 5481 5482 /* 5483 * Allocate enough resource, and then write back the 5484 * appropriate BAR for that resource. 5485 */ 5486 resource_list_add(rl, type, *rid, start, end, count); 5487 res = resource_list_reserve(rl, dev, child, type, rid, start, end, 5488 count, flags & ~RF_ACTIVE); 5489 if (res == NULL) { 5490 resource_list_delete(rl, type, *rid); 5491 device_printf(child, 5492 "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n", 5493 count, *rid, type, start, end); 5494 goto out; 5495 } 5496 if (bootverbose) 5497 device_printf(child, 5498 "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n", 5499 count, *rid, type, rman_get_start(res)); 5500 5501 /* Disable decoding via the CMD register before updating the BAR */ 5502 cmd = pci_read_config(child, PCIR_COMMAND, 2); 5503 pci_write_config(child, PCIR_COMMAND, 5504 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 5505 5506 map = rman_get_start(res); 5507 pci_write_bar(child, pm, map); 5508 5509 /* Restore the original value of the CMD register */ 5510 pci_write_config(child, PCIR_COMMAND, cmd, 2); 5511 out: 5512 return (res); 5513 } 5514 5515 struct resource * 5516 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid, 5517 rman_res_t start, rman_res_t end, rman_res_t count, u_long num, 5518 u_int flags) 5519 { 5520 struct pci_devinfo *dinfo; 5521 struct resource_list *rl; 5522 struct resource_list_entry *rle; 5523 struct resource *res; 5524 pcicfgregs *cfg; 5525 5526 /* 5527 * Perform lazy resource allocation 5528 */ 5529 dinfo = device_get_ivars(child); 5530 rl = &dinfo->resources; 5531 cfg = &dinfo->cfg; 5532 switch (type) { 5533 case PCI_RES_BUS: 5534 return (pci_alloc_secbus(dev, child, rid, start, end, count, 5535 flags)); 5536 case SYS_RES_IRQ: 5537 /* 5538 * Can't alloc legacy interrupt once MSI messages have 5539 * been allocated. 5540 */ 5541 if (*rid == 0 && (cfg->msi.msi_alloc > 0 || 5542 cfg->msix.msix_alloc > 0)) 5543 return (NULL); 5544 5545 /* 5546 * If the child device doesn't have an interrupt 5547 * routed and is deserving of an interrupt, try to 5548 * assign it one. 5549 */ 5550 if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) && 5551 (cfg->intpin != 0)) 5552 pci_assign_interrupt(dev, child, 0); 5553 break; 5554 case SYS_RES_IOPORT: 5555 case SYS_RES_MEMORY: 5556 /* 5557 * PCI-PCI bridge I/O window resources are not BARs. 5558 * For those allocations just pass the request up the 5559 * tree. 5560 */ 5561 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) { 5562 switch (*rid) { 5563 case PCIR_IOBASEL_1: 5564 case PCIR_MEMBASE_1: 5565 case PCIR_PMBASEL_1: 5566 /* 5567 * XXX: Should we bother creating a resource 5568 * list entry? 5569 */ 5570 return (bus_generic_alloc_resource(dev, child, 5571 type, rid, start, end, count, flags)); 5572 } 5573 } 5574 /* Reserve resources for this BAR if needed. */ 5575 rle = resource_list_find(rl, type, *rid); 5576 if (rle == NULL) { 5577 res = pci_reserve_map(dev, child, type, rid, start, end, 5578 count, num, flags); 5579 if (res == NULL) 5580 return (NULL); 5581 } 5582 } 5583 return (resource_list_alloc(rl, dev, child, type, rid, 5584 start, end, count, flags)); 5585 } 5586 5587 struct resource * 5588 pci_alloc_resource(device_t dev, device_t child, int type, int *rid, 5589 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 5590 { 5591 #ifdef PCI_IOV 5592 struct pci_devinfo *dinfo; 5593 #endif 5594 5595 if (device_get_parent(child) != dev) 5596 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 5597 type, rid, start, end, count, flags)); 5598 5599 #ifdef PCI_IOV 5600 dinfo = device_get_ivars(child); 5601 if (dinfo->cfg.flags & PCICFG_VF) { 5602 switch (type) { 5603 /* VFs can't have I/O BARs. */ 5604 case SYS_RES_IOPORT: 5605 return (NULL); 5606 case SYS_RES_MEMORY: 5607 return (pci_vf_alloc_mem_resource(dev, child, rid, 5608 start, end, count, flags)); 5609 } 5610 5611 /* Fall through for other types of resource allocations. */ 5612 } 5613 #endif 5614 5615 return (pci_alloc_multi_resource(dev, child, type, rid, start, end, 5616 count, 1, flags)); 5617 } 5618 5619 int 5620 pci_release_resource(device_t dev, device_t child, struct resource *r) 5621 { 5622 struct pci_devinfo *dinfo; 5623 struct resource_list *rl; 5624 pcicfgregs *cfg __unused; 5625 5626 if (device_get_parent(child) != dev) 5627 return (bus_generic_release_resource(dev, child, r)); 5628 5629 dinfo = device_get_ivars(child); 5630 cfg = &dinfo->cfg; 5631 5632 #ifdef PCI_IOV 5633 if (cfg->flags & PCICFG_VF) { 5634 switch (rman_get_type(r)) { 5635 /* VFs can't have I/O BARs. */ 5636 case SYS_RES_IOPORT: 5637 return (EDOOFUS); 5638 case SYS_RES_MEMORY: 5639 return (pci_vf_release_mem_resource(dev, child, r)); 5640 } 5641 5642 /* Fall through for other types of resource allocations. */ 5643 } 5644 #endif 5645 5646 /* 5647 * PCI-PCI bridge I/O window resources are not BARs. For 5648 * those allocations just pass the request up the tree. 5649 */ 5650 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE && 5651 (rman_get_type(r) == SYS_RES_IOPORT || 5652 rman_get_type(r) == SYS_RES_MEMORY)) { 5653 switch (rman_get_rid(r)) { 5654 case PCIR_IOBASEL_1: 5655 case PCIR_MEMBASE_1: 5656 case PCIR_PMBASEL_1: 5657 return (bus_generic_release_resource(dev, child, r)); 5658 } 5659 } 5660 5661 rl = &dinfo->resources; 5662 return (resource_list_release(rl, dev, child, r)); 5663 } 5664 5665 int 5666 pci_activate_resource(device_t dev, device_t child, struct resource *r) 5667 { 5668 struct pci_devinfo *dinfo; 5669 int error, rid, type; 5670 5671 if (device_get_parent(child) != dev) 5672 return (bus_generic_activate_resource(dev, child, r)); 5673 5674 dinfo = device_get_ivars(child); 5675 #ifdef PCI_IOV 5676 if (dinfo->cfg.flags & PCICFG_VF) { 5677 switch (rman_get_type(r)) { 5678 /* VFs can't have I/O BARs. */ 5679 case SYS_RES_IOPORT: 5680 error = EINVAL; 5681 break; 5682 case SYS_RES_MEMORY: 5683 error = pci_vf_activate_mem_resource(dev, child, r); 5684 break; 5685 default: 5686 error = bus_generic_activate_resource(dev, child, r); 5687 break; 5688 } 5689 } else 5690 #endif 5691 error = bus_generic_activate_resource(dev, child, r); 5692 if (error) 5693 return (error); 5694 5695 rid = rman_get_rid(r); 5696 type = rman_get_type(r); 5697 5698 /* Device ROMs need their decoding explicitly enabled. */ 5699 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5700 pci_write_bar(child, pci_find_bar(child, rid), 5701 rman_get_start(r) | PCIM_BIOS_ENABLE); 5702 5703 /* Enable decoding in the command register when activating BARs. */ 5704 switch (type) { 5705 case SYS_RES_IOPORT: 5706 case SYS_RES_MEMORY: 5707 error = PCI_ENABLE_IO(dev, child, type); 5708 break; 5709 } 5710 return (error); 5711 } 5712 5713 int 5714 pci_deactivate_resource(device_t dev, device_t child, struct resource *r) 5715 { 5716 struct pci_devinfo *dinfo; 5717 int error, rid, type; 5718 5719 if (device_get_parent(child) != dev) 5720 return (bus_generic_deactivate_resource(dev, child, r)); 5721 5722 dinfo = device_get_ivars(child); 5723 #ifdef PCI_IOV 5724 if (dinfo->cfg.flags & PCICFG_VF) { 5725 switch (rman_get_type(r)) { 5726 /* VFs can't have I/O BARs. */ 5727 case SYS_RES_IOPORT: 5728 error = EINVAL; 5729 break; 5730 case SYS_RES_MEMORY: 5731 error = pci_vf_deactivate_mem_resource(dev, child, r); 5732 break; 5733 default: 5734 error = bus_generic_deactivate_resource(dev, child, r); 5735 break; 5736 } 5737 } else 5738 #endif 5739 error = bus_generic_deactivate_resource(dev, child, r); 5740 if (error) 5741 return (error); 5742 5743 /* Disable decoding for device ROMs. */ 5744 rid = rman_get_rid(r); 5745 type = rman_get_type(r); 5746 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5747 pci_write_bar(child, pci_find_bar(child, rid), 5748 rman_get_start(r)); 5749 return (0); 5750 } 5751 5752 int 5753 pci_adjust_resource(device_t dev, device_t child, struct resource *r, 5754 rman_res_t start, rman_res_t end) 5755 { 5756 #ifdef PCI_IOV 5757 struct pci_devinfo *dinfo; 5758 5759 if (device_get_parent(child) != dev) 5760 return (bus_generic_adjust_resource(dev, child, r, start, 5761 end)); 5762 5763 dinfo = device_get_ivars(child); 5764 if (dinfo->cfg.flags & PCICFG_VF) { 5765 switch (rman_get_type(r)) { 5766 /* VFs can't have I/O BARs. */ 5767 case SYS_RES_IOPORT: 5768 return (EINVAL); 5769 case SYS_RES_MEMORY: 5770 return (pci_vf_adjust_mem_resource(dev, child, r, 5771 start, end)); 5772 } 5773 5774 /* Fall through for other types of resource allocations. */ 5775 } 5776 #endif 5777 5778 return (bus_generic_adjust_resource(dev, child, r, start, end)); 5779 } 5780 5781 int 5782 pci_map_resource(device_t dev, device_t child, struct resource *r, 5783 struct resource_map_request *argsp, struct resource_map *map) 5784 { 5785 #ifdef PCI_IOV 5786 struct pci_devinfo *dinfo; 5787 5788 if (device_get_parent(child) != dev) 5789 return (bus_generic_map_resource(dev, child, r, argsp, 5790 map)); 5791 5792 dinfo = device_get_ivars(child); 5793 if (dinfo->cfg.flags & PCICFG_VF) { 5794 switch (rman_get_type(r)) { 5795 /* VFs can't have I/O BARs. */ 5796 case SYS_RES_IOPORT: 5797 return (EINVAL); 5798 case SYS_RES_MEMORY: 5799 return (pci_vf_map_mem_resource(dev, child, r, argsp, 5800 map)); 5801 } 5802 5803 /* Fall through for other types of resource allocations. */ 5804 } 5805 #endif 5806 5807 return (bus_generic_map_resource(dev, child, r, argsp, map)); 5808 } 5809 5810 int 5811 pci_unmap_resource(device_t dev, device_t child, struct resource *r, 5812 struct resource_map *map) 5813 { 5814 #ifdef PCI_IOV 5815 struct pci_devinfo *dinfo; 5816 5817 if (device_get_parent(child) != dev) 5818 return (bus_generic_unmap_resource(dev, child, r, map)); 5819 5820 dinfo = device_get_ivars(child); 5821 if (dinfo->cfg.flags & PCICFG_VF) { 5822 switch (rman_get_type(r)) { 5823 /* VFs can't have I/O BARs. */ 5824 case SYS_RES_IOPORT: 5825 return (EINVAL); 5826 case SYS_RES_MEMORY: 5827 return (pci_vf_unmap_mem_resource(dev, child, r, map)); 5828 } 5829 5830 /* Fall through for other types of resource allocations. */ 5831 } 5832 #endif 5833 5834 return (bus_generic_unmap_resource(dev, child, r, map)); 5835 } 5836 5837 void 5838 pci_child_deleted(device_t dev, device_t child) 5839 { 5840 struct resource_list_entry *rle; 5841 struct resource_list *rl; 5842 struct pci_devinfo *dinfo; 5843 5844 dinfo = device_get_ivars(child); 5845 rl = &dinfo->resources; 5846 5847 EVENTHANDLER_INVOKE(pci_delete_device, child); 5848 5849 /* Turn off access to resources we're about to free */ 5850 if (bus_child_present(child) != 0) { 5851 pci_write_config(child, PCIR_COMMAND, pci_read_config(child, 5852 PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2); 5853 5854 pci_disable_busmaster(child); 5855 } 5856 5857 /* Free all allocated resources */ 5858 STAILQ_FOREACH(rle, rl, link) { 5859 if (rle->res) { 5860 if (rman_get_flags(rle->res) & RF_ACTIVE || 5861 resource_list_busy(rl, rle->type, rle->rid)) { 5862 pci_printf(&dinfo->cfg, 5863 "Resource still owned, oops. " 5864 "(type=%d, rid=%d, addr=%lx)\n", 5865 rle->type, rle->rid, 5866 rman_get_start(rle->res)); 5867 bus_release_resource(child, rle->type, rle->rid, 5868 rle->res); 5869 } 5870 resource_list_unreserve(rl, dev, child, rle->type, 5871 rle->rid); 5872 } 5873 } 5874 resource_list_free(rl); 5875 5876 pci_freecfg(dinfo); 5877 } 5878 5879 void 5880 pci_delete_resource(device_t dev, device_t child, int type, int rid) 5881 { 5882 struct pci_devinfo *dinfo; 5883 struct resource_list *rl; 5884 struct resource_list_entry *rle; 5885 5886 if (device_get_parent(child) != dev) 5887 return; 5888 5889 dinfo = device_get_ivars(child); 5890 rl = &dinfo->resources; 5891 rle = resource_list_find(rl, type, rid); 5892 if (rle == NULL) 5893 return; 5894 5895 if (rle->res) { 5896 if (rman_get_flags(rle->res) & RF_ACTIVE || 5897 resource_list_busy(rl, type, rid)) { 5898 device_printf(dev, "delete_resource: " 5899 "Resource still owned by child, oops. " 5900 "(type=%d, rid=%d, addr=%jx)\n", 5901 type, rid, rman_get_start(rle->res)); 5902 return; 5903 } 5904 resource_list_unreserve(rl, dev, child, type, rid); 5905 } 5906 resource_list_delete(rl, type, rid); 5907 } 5908 5909 struct resource_list * 5910 pci_get_resource_list (device_t dev, device_t child) 5911 { 5912 struct pci_devinfo *dinfo = device_get_ivars(child); 5913 5914 return (&dinfo->resources); 5915 } 5916 5917 #ifdef IOMMU 5918 bus_dma_tag_t 5919 pci_get_dma_tag(device_t bus, device_t dev) 5920 { 5921 bus_dma_tag_t tag; 5922 struct pci_softc *sc; 5923 5924 if (device_get_parent(dev) == bus) { 5925 /* try iommu and return if it works */ 5926 tag = iommu_get_dma_tag(bus, dev); 5927 } else 5928 tag = NULL; 5929 if (tag == NULL) { 5930 sc = device_get_softc(bus); 5931 tag = sc->sc_dma_tag; 5932 } 5933 return (tag); 5934 } 5935 #else 5936 bus_dma_tag_t 5937 pci_get_dma_tag(device_t bus, device_t dev) 5938 { 5939 struct pci_softc *sc = device_get_softc(bus); 5940 5941 return (sc->sc_dma_tag); 5942 } 5943 #endif 5944 5945 uint32_t 5946 pci_read_config_method(device_t dev, device_t child, int reg, int width) 5947 { 5948 struct pci_devinfo *dinfo = device_get_ivars(child); 5949 pcicfgregs *cfg = &dinfo->cfg; 5950 5951 #ifdef PCI_IOV 5952 /* 5953 * SR-IOV VFs don't implement the VID or DID registers, so we have to 5954 * emulate them here. 5955 */ 5956 if (cfg->flags & PCICFG_VF) { 5957 if (reg == PCIR_VENDOR) { 5958 switch (width) { 5959 case 4: 5960 return (cfg->device << 16 | cfg->vendor); 5961 case 2: 5962 return (cfg->vendor); 5963 case 1: 5964 return (cfg->vendor & 0xff); 5965 default: 5966 return (0xffffffff); 5967 } 5968 } else if (reg == PCIR_DEVICE) { 5969 switch (width) { 5970 /* Note that an unaligned 4-byte read is an error. */ 5971 case 2: 5972 return (cfg->device); 5973 case 1: 5974 return (cfg->device & 0xff); 5975 default: 5976 return (0xffffffff); 5977 } 5978 } 5979 } 5980 #endif 5981 5982 return (PCIB_READ_CONFIG(device_get_parent(dev), 5983 cfg->bus, cfg->slot, cfg->func, reg, width)); 5984 } 5985 5986 void 5987 pci_write_config_method(device_t dev, device_t child, int reg, 5988 uint32_t val, int width) 5989 { 5990 struct pci_devinfo *dinfo = device_get_ivars(child); 5991 pcicfgregs *cfg = &dinfo->cfg; 5992 5993 PCIB_WRITE_CONFIG(device_get_parent(dev), 5994 cfg->bus, cfg->slot, cfg->func, reg, val, width); 5995 } 5996 5997 int 5998 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb) 5999 { 6000 6001 sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d", 6002 pci_get_slot(child), pci_get_function(child), pci_get_domain(child), 6003 pci_get_bus(child), pci_get_slot(child), pci_get_function(child)); 6004 return (0); 6005 } 6006 6007 int 6008 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb) 6009 { 6010 struct pci_devinfo *dinfo; 6011 pcicfgregs *cfg; 6012 6013 dinfo = device_get_ivars(child); 6014 cfg = &dinfo->cfg; 6015 sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x " 6016 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device, 6017 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass, 6018 cfg->progif); 6019 return (0); 6020 } 6021 6022 int 6023 pci_get_device_path_method(device_t bus, device_t child, const char *locator, 6024 struct sbuf *sb) 6025 { 6026 device_t parent = device_get_parent(bus); 6027 int rv; 6028 6029 if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) { 6030 rv = bus_generic_get_device_path(parent, bus, locator, sb); 6031 if (rv == 0) { 6032 sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child), 6033 pci_get_function(child)); 6034 } 6035 return (0); 6036 } 6037 return (bus_generic_get_device_path(bus, child, locator, sb)); 6038 } 6039 6040 int 6041 pci_assign_interrupt_method(device_t dev, device_t child) 6042 { 6043 struct pci_devinfo *dinfo = device_get_ivars(child); 6044 pcicfgregs *cfg = &dinfo->cfg; 6045 6046 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, 6047 cfg->intpin)); 6048 } 6049 6050 static void 6051 pci_lookup(void *arg, const char *name, device_t *dev) 6052 { 6053 long val; 6054 char *end; 6055 int domain, bus, slot, func; 6056 6057 if (*dev != NULL) 6058 return; 6059 6060 /* 6061 * Accept pciconf-style selectors of either pciD:B:S:F or 6062 * pciB:S:F. In the latter case, the domain is assumed to 6063 * be zero. 6064 */ 6065 if (strncmp(name, "pci", 3) != 0) 6066 return; 6067 val = strtol(name + 3, &end, 10); 6068 if (val < 0 || val > INT_MAX || *end != ':') 6069 return; 6070 domain = val; 6071 val = strtol(end + 1, &end, 10); 6072 if (val < 0 || val > INT_MAX || *end != ':') 6073 return; 6074 bus = val; 6075 val = strtol(end + 1, &end, 10); 6076 if (val < 0 || val > INT_MAX) 6077 return; 6078 slot = val; 6079 if (*end == ':') { 6080 val = strtol(end + 1, &end, 10); 6081 if (val < 0 || val > INT_MAX || *end != '\0') 6082 return; 6083 func = val; 6084 } else if (*end == '\0') { 6085 func = slot; 6086 slot = bus; 6087 bus = domain; 6088 domain = 0; 6089 } else 6090 return; 6091 6092 if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX || 6093 func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX)) 6094 return; 6095 6096 *dev = pci_find_dbsf(domain, bus, slot, func); 6097 } 6098 6099 static int 6100 pci_modevent(module_t mod, int what, void *arg) 6101 { 6102 static struct cdev *pci_cdev; 6103 static eventhandler_tag tag; 6104 6105 switch (what) { 6106 case MOD_LOAD: 6107 STAILQ_INIT(&pci_devq); 6108 pci_generation = 0; 6109 pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644, 6110 "pci"); 6111 pci_load_vendor_data(); 6112 tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL, 6113 1000); 6114 break; 6115 6116 case MOD_UNLOAD: 6117 if (tag != NULL) 6118 EVENTHANDLER_DEREGISTER(dev_lookup, tag); 6119 destroy_dev(pci_cdev); 6120 break; 6121 } 6122 6123 return (0); 6124 } 6125 6126 static void 6127 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo) 6128 { 6129 #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2) 6130 struct pcicfg_pcie *cfg; 6131 int version, pos; 6132 6133 cfg = &dinfo->cfg.pcie; 6134 pos = cfg->pcie_location; 6135 6136 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 6137 6138 WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl); 6139 6140 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6141 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 6142 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 6143 WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl); 6144 6145 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6146 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 6147 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 6148 WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl); 6149 6150 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6151 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 6152 WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl); 6153 6154 if (version > 1) { 6155 WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2); 6156 WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2); 6157 WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2); 6158 } 6159 #undef WREG 6160 } 6161 6162 static void 6163 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo) 6164 { 6165 pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 6166 dinfo->cfg.pcix.pcix_command, 2); 6167 } 6168 6169 void 6170 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo) 6171 { 6172 6173 /* 6174 * Restore the device to full power mode. We must do this 6175 * before we restore the registers because moving from D3 to 6176 * D0 will cause the chip's BARs and some other registers to 6177 * be reset to some unknown power on reset values. Cut down 6178 * the noise on boot by doing nothing if we are already in 6179 * state D0. 6180 */ 6181 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) 6182 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6183 pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1); 6184 pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1); 6185 pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1); 6186 pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1); 6187 pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1); 6188 pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1); 6189 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 6190 case PCIM_HDRTYPE_NORMAL: 6191 pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); 6192 pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); 6193 break; 6194 case PCIM_HDRTYPE_BRIDGE: 6195 pci_write_config(dev, PCIR_SECLAT_1, 6196 dinfo->cfg.bridge.br_seclat, 1); 6197 pci_write_config(dev, PCIR_SUBBUS_1, 6198 dinfo->cfg.bridge.br_subbus, 1); 6199 pci_write_config(dev, PCIR_SECBUS_1, 6200 dinfo->cfg.bridge.br_secbus, 1); 6201 pci_write_config(dev, PCIR_PRIBUS_1, 6202 dinfo->cfg.bridge.br_pribus, 1); 6203 pci_write_config(dev, PCIR_BRIDGECTL_1, 6204 dinfo->cfg.bridge.br_control, 2); 6205 break; 6206 case PCIM_HDRTYPE_CARDBUS: 6207 pci_write_config(dev, PCIR_SECLAT_2, 6208 dinfo->cfg.bridge.br_seclat, 1); 6209 pci_write_config(dev, PCIR_SUBBUS_2, 6210 dinfo->cfg.bridge.br_subbus, 1); 6211 pci_write_config(dev, PCIR_SECBUS_2, 6212 dinfo->cfg.bridge.br_secbus, 1); 6213 pci_write_config(dev, PCIR_PRIBUS_2, 6214 dinfo->cfg.bridge.br_pribus, 1); 6215 pci_write_config(dev, PCIR_BRIDGECTL_2, 6216 dinfo->cfg.bridge.br_control, 2); 6217 break; 6218 } 6219 pci_restore_bars(dev); 6220 6221 if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE) 6222 pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2); 6223 6224 /* 6225 * Restore extended capabilities for PCI-Express and PCI-X 6226 */ 6227 if (dinfo->cfg.pcie.pcie_location != 0) 6228 pci_cfg_restore_pcie(dev, dinfo); 6229 if (dinfo->cfg.pcix.pcix_location != 0) 6230 pci_cfg_restore_pcix(dev, dinfo); 6231 6232 /* Restore MSI and MSI-X configurations if they are present. */ 6233 if (dinfo->cfg.msi.msi_location != 0) 6234 pci_resume_msi(dev); 6235 if (dinfo->cfg.msix.msix_location != 0) 6236 pci_resume_msix(dev); 6237 6238 #ifdef PCI_IOV 6239 if (dinfo->cfg.iov != NULL) 6240 pci_iov_cfg_restore(dev, dinfo); 6241 #endif 6242 } 6243 6244 static void 6245 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo) 6246 { 6247 #define RREG(n) pci_read_config(dev, pos + (n), 2) 6248 struct pcicfg_pcie *cfg; 6249 int version, pos; 6250 6251 cfg = &dinfo->cfg.pcie; 6252 pos = cfg->pcie_location; 6253 6254 cfg->pcie_flags = RREG(PCIER_FLAGS); 6255 6256 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 6257 6258 cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL); 6259 6260 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6261 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 6262 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 6263 cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL); 6264 6265 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6266 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 6267 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 6268 cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL); 6269 6270 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6271 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 6272 cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL); 6273 6274 if (version > 1) { 6275 cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2); 6276 cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2); 6277 cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2); 6278 } 6279 #undef RREG 6280 } 6281 6282 static void 6283 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo) 6284 { 6285 dinfo->cfg.pcix.pcix_command = pci_read_config(dev, 6286 dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2); 6287 } 6288 6289 void 6290 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate) 6291 { 6292 uint32_t cls; 6293 int ps; 6294 6295 /* 6296 * Some drivers apparently write to these registers w/o updating our 6297 * cached copy. No harm happens if we update the copy, so do so here 6298 * so we can restore them. The COMMAND register is modified by the 6299 * bus w/o updating the cache. This should represent the normally 6300 * writable portion of the 'defined' part of type 0/1/2 headers. 6301 */ 6302 dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2); 6303 dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2); 6304 dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2); 6305 dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1); 6306 dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1); 6307 dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 6308 dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 6309 dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1); 6310 dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1); 6311 dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1); 6312 dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1); 6313 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 6314 case PCIM_HDRTYPE_NORMAL: 6315 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); 6316 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); 6317 dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); 6318 dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); 6319 break; 6320 case PCIM_HDRTYPE_BRIDGE: 6321 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6322 PCIR_SECLAT_1, 1); 6323 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6324 PCIR_SUBBUS_1, 1); 6325 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6326 PCIR_SECBUS_1, 1); 6327 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6328 PCIR_PRIBUS_1, 1); 6329 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6330 PCIR_BRIDGECTL_1, 2); 6331 break; 6332 case PCIM_HDRTYPE_CARDBUS: 6333 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6334 PCIR_SECLAT_2, 1); 6335 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6336 PCIR_SUBBUS_2, 1); 6337 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6338 PCIR_SECBUS_2, 1); 6339 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6340 PCIR_PRIBUS_2, 1); 6341 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6342 PCIR_BRIDGECTL_2, 2); 6343 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2); 6344 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2); 6345 break; 6346 } 6347 6348 if (dinfo->cfg.pcie.pcie_location != 0) 6349 pci_cfg_save_pcie(dev, dinfo); 6350 6351 if (dinfo->cfg.pcix.pcix_location != 0) 6352 pci_cfg_save_pcix(dev, dinfo); 6353 6354 #ifdef PCI_IOV 6355 if (dinfo->cfg.iov != NULL) 6356 pci_iov_cfg_save(dev, dinfo); 6357 #endif 6358 6359 /* 6360 * don't set the state for display devices, base peripherals and 6361 * memory devices since bad things happen when they are powered down. 6362 * We should (a) have drivers that can easily detach and (b) use 6363 * generic drivers for these devices so that some device actually 6364 * attaches. We need to make sure that when we implement (a) we don't 6365 * power the device down on a reattach. 6366 */ 6367 cls = pci_get_class(dev); 6368 if (!setstate) 6369 return; 6370 switch (pci_do_power_nodriver) 6371 { 6372 case 0: /* NO powerdown at all */ 6373 return; 6374 case 1: /* Conservative about what to power down */ 6375 if (cls == PCIC_STORAGE) 6376 return; 6377 /*FALLTHROUGH*/ 6378 case 2: /* Aggressive about what to power down */ 6379 if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY || 6380 cls == PCIC_BASEPERIPH) 6381 return; 6382 /*FALLTHROUGH*/ 6383 case 3: /* Power down everything */ 6384 break; 6385 } 6386 /* 6387 * PCI spec says we can only go into D3 state from D0 state. 6388 * Transition from D[12] into D0 before going to D3 state. 6389 */ 6390 ps = pci_get_powerstate(dev); 6391 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6392 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6393 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3) 6394 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6395 } 6396 6397 /* Wrapper APIs suitable for device driver use. */ 6398 void 6399 pci_save_state(device_t dev) 6400 { 6401 struct pci_devinfo *dinfo; 6402 6403 dinfo = device_get_ivars(dev); 6404 pci_cfg_save(dev, dinfo, 0); 6405 } 6406 6407 void 6408 pci_restore_state(device_t dev) 6409 { 6410 struct pci_devinfo *dinfo; 6411 6412 dinfo = device_get_ivars(dev); 6413 pci_cfg_restore(dev, dinfo); 6414 } 6415 6416 static int 6417 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type, 6418 uintptr_t *id) 6419 { 6420 6421 return (PCIB_GET_ID(device_get_parent(dev), child, type, id)); 6422 } 6423 6424 /* Find the upstream port of a given PCI device in a root complex. */ 6425 device_t 6426 pci_find_pcie_root_port(device_t dev) 6427 { 6428 struct pci_devinfo *dinfo; 6429 devclass_t pci_class; 6430 device_t pcib, bus; 6431 6432 pci_class = devclass_find("pci"); 6433 KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class, 6434 ("%s: non-pci device %s", __func__, device_get_nameunit(dev))); 6435 6436 /* 6437 * Walk the bridge hierarchy until we find a PCI-e root 6438 * port or a non-PCI device. 6439 */ 6440 for (;;) { 6441 bus = device_get_parent(dev); 6442 KASSERT(bus != NULL, ("%s: null parent of %s", __func__, 6443 device_get_nameunit(dev))); 6444 6445 pcib = device_get_parent(bus); 6446 KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__, 6447 device_get_nameunit(bus))); 6448 6449 /* 6450 * pcib's parent must be a PCI bus for this to be a 6451 * PCI-PCI bridge. 6452 */ 6453 if (device_get_devclass(device_get_parent(pcib)) != pci_class) 6454 return (NULL); 6455 6456 dinfo = device_get_ivars(pcib); 6457 if (dinfo->cfg.pcie.pcie_location != 0 && 6458 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) 6459 return (pcib); 6460 6461 dev = pcib; 6462 } 6463 } 6464 6465 /* 6466 * Wait for pending transactions to complete on a PCI-express function. 6467 * 6468 * The maximum delay is specified in milliseconds in max_delay. Note 6469 * that this function may sleep. 6470 * 6471 * Returns true if the function is idle and false if the timeout is 6472 * exceeded. If dev is not a PCI-express function, this returns true. 6473 */ 6474 bool 6475 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay) 6476 { 6477 struct pci_devinfo *dinfo = device_get_ivars(dev); 6478 uint16_t sta; 6479 int cap; 6480 6481 cap = dinfo->cfg.pcie.pcie_location; 6482 if (cap == 0) 6483 return (true); 6484 6485 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6486 while (sta & PCIEM_STA_TRANSACTION_PND) { 6487 if (max_delay == 0) 6488 return (false); 6489 6490 /* Poll once every 100 milliseconds up to the timeout. */ 6491 if (max_delay > 100) { 6492 pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK); 6493 max_delay -= 100; 6494 } else { 6495 pause_sbt("pcietp", max_delay * SBT_1MS, 0, 6496 C_HARDCLOCK); 6497 max_delay = 0; 6498 } 6499 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6500 } 6501 6502 return (true); 6503 } 6504 6505 /* 6506 * Determine the maximum Completion Timeout in microseconds. 6507 * 6508 * For non-PCI-express functions this returns 0. 6509 */ 6510 int 6511 pcie_get_max_completion_timeout(device_t dev) 6512 { 6513 struct pci_devinfo *dinfo = device_get_ivars(dev); 6514 int cap; 6515 6516 cap = dinfo->cfg.pcie.pcie_location; 6517 if (cap == 0) 6518 return (0); 6519 6520 /* 6521 * Functions using the 1.x spec use the default timeout range of 6522 * 50 microseconds to 50 milliseconds. Functions that do not 6523 * support programmable timeouts also use this range. 6524 */ 6525 if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 || 6526 (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) & 6527 PCIEM_CAP2_COMP_TIMO_RANGES) == 0) 6528 return (50 * 1000); 6529 6530 switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) & 6531 PCIEM_CTL2_COMP_TIMO_VAL) { 6532 case PCIEM_CTL2_COMP_TIMO_100US: 6533 return (100); 6534 case PCIEM_CTL2_COMP_TIMO_10MS: 6535 return (10 * 1000); 6536 case PCIEM_CTL2_COMP_TIMO_55MS: 6537 return (55 * 1000); 6538 case PCIEM_CTL2_COMP_TIMO_210MS: 6539 return (210 * 1000); 6540 case PCIEM_CTL2_COMP_TIMO_900MS: 6541 return (900 * 1000); 6542 case PCIEM_CTL2_COMP_TIMO_3500MS: 6543 return (3500 * 1000); 6544 case PCIEM_CTL2_COMP_TIMO_13S: 6545 return (13 * 1000 * 1000); 6546 case PCIEM_CTL2_COMP_TIMO_64S: 6547 return (64 * 1000 * 1000); 6548 default: 6549 return (50 * 1000); 6550 } 6551 } 6552 6553 void 6554 pcie_apei_error(device_t dev, int sev, uint8_t *aerp) 6555 { 6556 struct pci_devinfo *dinfo = device_get_ivars(dev); 6557 const char *s; 6558 int aer; 6559 uint32_t r, r1; 6560 uint16_t rs; 6561 6562 if (sev == PCIEM_STA_CORRECTABLE_ERROR) 6563 s = "Correctable"; 6564 else if (sev == PCIEM_STA_NON_FATAL_ERROR) 6565 s = "Uncorrectable (Non-Fatal)"; 6566 else 6567 s = "Uncorrectable (Fatal)"; 6568 device_printf(dev, "%s PCIe error reported by APEI\n", s); 6569 if (aerp) { 6570 if (sev == PCIEM_STA_CORRECTABLE_ERROR) { 6571 r = le32dec(aerp + PCIR_AER_COR_STATUS); 6572 r1 = le32dec(aerp + PCIR_AER_COR_MASK); 6573 } else { 6574 r = le32dec(aerp + PCIR_AER_UC_STATUS); 6575 r1 = le32dec(aerp + PCIR_AER_UC_MASK); 6576 } 6577 device_printf(dev, "status 0x%08x mask 0x%08x", r, r1); 6578 if (sev != PCIEM_STA_CORRECTABLE_ERROR) { 6579 r = le32dec(aerp + PCIR_AER_UC_SEVERITY); 6580 rs = le16dec(aerp + PCIR_AER_CAP_CONTROL); 6581 printf(" severity 0x%08x first %d\n", 6582 r, rs & 0x1f); 6583 } else 6584 printf("\n"); 6585 } 6586 6587 /* As kind of recovery just report and clear the error statuses. */ 6588 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6589 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6590 if (r != 0) { 6591 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6592 device_printf(dev, "Clearing UC AER errors 0x%08x\n", r); 6593 } 6594 6595 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6596 if (r != 0) { 6597 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6598 device_printf(dev, "Clearing COR AER errors 0x%08x\n", r); 6599 } 6600 } 6601 if (dinfo->cfg.pcie.pcie_location != 0) { 6602 rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6603 PCIER_DEVICE_STA, 2); 6604 if ((rs & (PCIEM_STA_CORRECTABLE_ERROR | 6605 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6606 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6607 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6608 PCIER_DEVICE_STA, rs, 2); 6609 device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs); 6610 } 6611 } 6612 } 6613 6614 /* 6615 * Perform a Function Level Reset (FLR) on a device. 6616 * 6617 * This function first waits for any pending transactions to complete 6618 * within the timeout specified by max_delay. If transactions are 6619 * still pending, the function will return false without attempting a 6620 * reset. 6621 * 6622 * If dev is not a PCI-express function or does not support FLR, this 6623 * function returns false. 6624 * 6625 * Note that no registers are saved or restored. The caller is 6626 * responsible for saving and restoring any registers including 6627 * PCI-standard registers via pci_save_state() and 6628 * pci_restore_state(). 6629 */ 6630 bool 6631 pcie_flr(device_t dev, u_int max_delay, bool force) 6632 { 6633 struct pci_devinfo *dinfo = device_get_ivars(dev); 6634 uint16_t cmd, ctl; 6635 int compl_delay; 6636 int cap; 6637 6638 cap = dinfo->cfg.pcie.pcie_location; 6639 if (cap == 0) 6640 return (false); 6641 6642 if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR)) 6643 return (false); 6644 6645 /* 6646 * Disable busmastering to prevent generation of new 6647 * transactions while waiting for the device to go idle. If 6648 * the idle timeout fails, the command register is restored 6649 * which will re-enable busmastering. 6650 */ 6651 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 6652 pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2); 6653 if (!pcie_wait_for_pending_transactions(dev, max_delay)) { 6654 if (!force) { 6655 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 6656 return (false); 6657 } 6658 pci_printf(&dinfo->cfg, 6659 "Resetting with transactions pending after %d ms\n", 6660 max_delay); 6661 6662 /* 6663 * Extend the post-FLR delay to cover the maximum 6664 * Completion Timeout delay of anything in flight 6665 * during the FLR delay. Enforce a minimum delay of 6666 * at least 10ms. 6667 */ 6668 compl_delay = pcie_get_max_completion_timeout(dev) / 1000; 6669 if (compl_delay < 10) 6670 compl_delay = 10; 6671 } else 6672 compl_delay = 0; 6673 6674 /* Initiate the reset. */ 6675 ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 6676 pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl | 6677 PCIEM_CTL_INITIATE_FLR, 2); 6678 6679 /* Wait for 100ms. */ 6680 pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK); 6681 6682 if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) & 6683 PCIEM_STA_TRANSACTION_PND) 6684 pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n"); 6685 return (true); 6686 } 6687 6688 /* 6689 * Attempt a power-management reset by cycling the device in/out of D3 6690 * state. PCI spec says we can only go into D3 state from D0 state. 6691 * Transition from D[12] into D0 before going to D3 state. 6692 */ 6693 int 6694 pci_power_reset(device_t dev) 6695 { 6696 int ps; 6697 6698 ps = pci_get_powerstate(dev); 6699 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6700 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6701 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6702 pci_set_powerstate(dev, ps); 6703 return (0); 6704 } 6705 6706 /* 6707 * Try link drop and retrain of the downstream port of upstream 6708 * switch, for PCIe. According to the PCIe 3.0 spec 6.6.1, this must 6709 * cause Conventional Hot reset of the device in the slot. 6710 * Alternative, for PCIe, could be the secondary bus reset initiatied 6711 * on the upstream switch PCIR_BRIDGECTL_1, bit 6. 6712 */ 6713 int 6714 pcie_link_reset(device_t port, int pcie_location) 6715 { 6716 uint16_t v; 6717 6718 v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2); 6719 v |= PCIEM_LINK_CTL_LINK_DIS; 6720 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6721 pause_sbt("pcier1", mstosbt(20), 0, 0); 6722 v &= ~PCIEM_LINK_CTL_LINK_DIS; 6723 v |= PCIEM_LINK_CTL_RETRAIN_LINK; 6724 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6725 pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */ 6726 v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2); 6727 return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0); 6728 } 6729 6730 static int 6731 pci_reset_post(device_t dev, device_t child) 6732 { 6733 6734 if (dev == device_get_parent(child)) 6735 pci_restore_state(child); 6736 return (0); 6737 } 6738 6739 static int 6740 pci_reset_prepare(device_t dev, device_t child) 6741 { 6742 6743 if (dev == device_get_parent(child)) 6744 pci_save_state(child); 6745 return (0); 6746 } 6747 6748 static int 6749 pci_reset_child(device_t dev, device_t child, int flags) 6750 { 6751 int error; 6752 6753 if (dev == NULL || device_get_parent(child) != dev) 6754 return (0); 6755 if ((flags & DEVF_RESET_DETACH) != 0) { 6756 error = device_get_state(child) == DS_ATTACHED ? 6757 device_detach(child) : 0; 6758 } else { 6759 error = BUS_SUSPEND_CHILD(dev, child); 6760 } 6761 if (error == 0) { 6762 if (!pcie_flr(child, 1000, false)) { 6763 error = BUS_RESET_PREPARE(dev, child); 6764 if (error == 0) 6765 pci_power_reset(child); 6766 BUS_RESET_POST(dev, child); 6767 } 6768 if ((flags & DEVF_RESET_DETACH) != 0) 6769 device_probe_and_attach(child); 6770 else 6771 BUS_RESUME_CHILD(dev, child); 6772 } 6773 return (error); 6774 } 6775 6776 const struct pci_device_table * 6777 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt) 6778 { 6779 bool match; 6780 uint16_t vendor, device, subvendor, subdevice, class, subclass, revid; 6781 6782 vendor = pci_get_vendor(child); 6783 device = pci_get_device(child); 6784 subvendor = pci_get_subvendor(child); 6785 subdevice = pci_get_subdevice(child); 6786 class = pci_get_class(child); 6787 subclass = pci_get_subclass(child); 6788 revid = pci_get_revid(child); 6789 while (nelt-- > 0) { 6790 match = true; 6791 if (id->match_flag_vendor) 6792 match &= vendor == id->vendor; 6793 if (id->match_flag_device) 6794 match &= device == id->device; 6795 if (id->match_flag_subvendor) 6796 match &= subvendor == id->subvendor; 6797 if (id->match_flag_subdevice) 6798 match &= subdevice == id->subdevice; 6799 if (id->match_flag_class) 6800 match &= class == id->class_id; 6801 if (id->match_flag_subclass) 6802 match &= subclass == id->subclass; 6803 if (id->match_flag_revid) 6804 match &= revid == id->revid; 6805 if (match) 6806 return (id); 6807 id++; 6808 } 6809 return (NULL); 6810 } 6811 6812 static void 6813 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo) 6814 { 6815 const char *dev_name; 6816 device_t dev; 6817 6818 dev = dinfo->cfg.dev; 6819 printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus, 6820 dinfo->cfg.slot, dinfo->cfg.func); 6821 dev_name = device_get_name(dev); 6822 if (dev_name != NULL) 6823 printf(" (%s%d)", dev_name, device_get_unit(dev)); 6824 } 6825 6826 void 6827 pci_print_faulted_dev(void) 6828 { 6829 struct pci_devinfo *dinfo; 6830 device_t dev; 6831 int aer, i; 6832 uint32_t r1, r2; 6833 uint16_t status; 6834 6835 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6836 dev = dinfo->cfg.dev; 6837 status = pci_read_config(dev, PCIR_STATUS, 2); 6838 status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6839 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6840 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6841 if (status != 0) { 6842 pci_print_faulted_dev_name(dinfo); 6843 printf(" error 0x%04x\n", status); 6844 } 6845 if (dinfo->cfg.pcie.pcie_location != 0) { 6846 status = pci_read_config(dev, 6847 dinfo->cfg.pcie.pcie_location + 6848 PCIER_DEVICE_STA, 2); 6849 if ((status & (PCIEM_STA_CORRECTABLE_ERROR | 6850 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6851 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6852 pci_print_faulted_dev_name(dinfo); 6853 printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n", 6854 pci_read_config(dev, 6855 dinfo->cfg.pcie.pcie_location + 6856 PCIER_DEVICE_CTL, 2), 6857 status); 6858 } 6859 } 6860 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6861 r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6862 r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6863 if (r1 != 0 || r2 != 0) { 6864 pci_print_faulted_dev_name(dinfo); 6865 printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n" 6866 " COR 0x%08x Mask 0x%08x Ctl 0x%08x\n", 6867 r1, pci_read_config(dev, aer + 6868 PCIR_AER_UC_MASK, 4), 6869 pci_read_config(dev, aer + 6870 PCIR_AER_UC_SEVERITY, 4), 6871 r2, pci_read_config(dev, aer + 6872 PCIR_AER_COR_MASK, 4), 6873 pci_read_config(dev, aer + 6874 PCIR_AER_CAP_CONTROL, 4)); 6875 for (i = 0; i < 4; i++) { 6876 r1 = pci_read_config(dev, aer + 6877 PCIR_AER_HEADER_LOG + i * 4, 4); 6878 printf(" HL%d: 0x%08x\n", i, r1); 6879 } 6880 } 6881 } 6882 } 6883 } 6884 6885 #ifdef DDB 6886 DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE) 6887 { 6888 6889 pci_print_faulted_dev(); 6890 } 6891 6892 static void 6893 db_clear_pcie_errors(const struct pci_devinfo *dinfo) 6894 { 6895 device_t dev; 6896 int aer; 6897 uint32_t r; 6898 6899 dev = dinfo->cfg.dev; 6900 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6901 PCIER_DEVICE_STA, 2); 6902 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6903 PCIER_DEVICE_STA, r, 2); 6904 6905 if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0) 6906 return; 6907 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6908 if (r != 0) 6909 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6910 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6911 if (r != 0) 6912 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6913 } 6914 6915 DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE) 6916 { 6917 struct pci_devinfo *dinfo; 6918 device_t dev; 6919 uint16_t status, status1; 6920 6921 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6922 dev = dinfo->cfg.dev; 6923 status1 = status = pci_read_config(dev, PCIR_STATUS, 2); 6924 status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6925 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6926 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6927 if (status1 != 0) { 6928 status &= ~status1; 6929 pci_write_config(dev, PCIR_STATUS, status, 2); 6930 } 6931 if (dinfo->cfg.pcie.pcie_location != 0) 6932 db_clear_pcie_errors(dinfo); 6933 } 6934 } 6935 #endif 6936