1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 5 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org> 6 * Copyright (c) 2000, BSDi 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_acpi.h" 35 #include "opt_bus.h" 36 37 #include <sys/param.h> 38 #include <sys/conf.h> 39 #include <sys/endian.h> 40 #include <sys/eventhandler.h> 41 #include <sys/fcntl.h> 42 #include <sys/kernel.h> 43 #include <sys/limits.h> 44 #include <sys/linker.h> 45 #include <sys/malloc.h> 46 #include <sys/module.h> 47 #include <sys/queue.h> 48 #include <sys/sysctl.h> 49 #include <sys/systm.h> 50 51 #include <vm/vm.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_extern.h> 54 55 #include <sys/bus.h> 56 #include <machine/bus.h> 57 #include <sys/rman.h> 58 #include <machine/resource.h> 59 #include <machine/stdarg.h> 60 61 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 62 #include <machine/intr_machdep.h> 63 #endif 64 65 #include <sys/pciio.h> 66 #include <dev/pci/pcireg.h> 67 #include <dev/pci/pcivar.h> 68 #include <dev/pci/pci_private.h> 69 70 #ifdef PCI_IOV 71 #include <sys/nv.h> 72 #include <dev/pci/pci_iov_private.h> 73 #endif 74 75 #include <dev/usb/controller/xhcireg.h> 76 #include <dev/usb/controller/ehcireg.h> 77 #include <dev/usb/controller/ohcireg.h> 78 #include <dev/usb/controller/uhcireg.h> 79 80 #include "pcib_if.h" 81 #include "pci_if.h" 82 83 #define PCIR_IS_BIOS(cfg, reg) \ 84 (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \ 85 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1)) 86 87 static int pci_has_quirk(uint32_t devid, int quirk); 88 static pci_addr_t pci_mapbase(uint64_t mapreg); 89 static const char *pci_maptype(uint64_t mapreg); 90 static int pci_maprange(uint64_t mapreg); 91 static pci_addr_t pci_rombase(uint64_t mapreg); 92 static int pci_romsize(uint64_t testval); 93 static void pci_fixancient(pcicfgregs *cfg); 94 static int pci_printf(pcicfgregs *cfg, const char *fmt, ...); 95 96 static int pci_porten(device_t dev); 97 static int pci_memen(device_t dev); 98 static void pci_assign_interrupt(device_t bus, device_t dev, 99 int force_route); 100 static int pci_add_map(device_t bus, device_t dev, int reg, 101 struct resource_list *rl, int force, int prefetch); 102 static int pci_probe(device_t dev); 103 static void pci_load_vendor_data(void); 104 static int pci_describe_parse_line(char **ptr, int *vendor, 105 int *device, char **desc); 106 static char *pci_describe_device(device_t dev); 107 static int pci_modevent(module_t mod, int what, void *arg); 108 static void pci_hdrtypedata(device_t pcib, int b, int s, int f, 109 pcicfgregs *cfg); 110 static void pci_read_cap(device_t pcib, pcicfgregs *cfg); 111 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, 112 int reg, uint32_t *data); 113 #if 0 114 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, 115 int reg, uint32_t data); 116 #endif 117 static void pci_read_vpd(device_t pcib, pcicfgregs *cfg); 118 static void pci_mask_msix(device_t dev, u_int index); 119 static void pci_unmask_msix(device_t dev, u_int index); 120 static int pci_msi_blacklisted(void); 121 static int pci_msix_blacklisted(void); 122 static void pci_resume_msi(device_t dev); 123 static void pci_resume_msix(device_t dev); 124 static int pci_remap_intr_method(device_t bus, device_t dev, 125 u_int irq); 126 static void pci_hint_device_unit(device_t acdev, device_t child, 127 const char *name, int *unitp); 128 static int pci_reset_post(device_t dev, device_t child); 129 static int pci_reset_prepare(device_t dev, device_t child); 130 static int pci_reset_child(device_t dev, device_t child, 131 int flags); 132 133 static int pci_get_id_method(device_t dev, device_t child, 134 enum pci_id_type type, uintptr_t *rid); 135 136 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d, 137 int b, int s, int f, uint16_t vid, uint16_t did); 138 139 static device_method_t pci_methods[] = { 140 /* Device interface */ 141 DEVMETHOD(device_probe, pci_probe), 142 DEVMETHOD(device_attach, pci_attach), 143 DEVMETHOD(device_detach, pci_detach), 144 DEVMETHOD(device_shutdown, bus_generic_shutdown), 145 DEVMETHOD(device_suspend, bus_generic_suspend), 146 DEVMETHOD(device_resume, pci_resume), 147 148 /* Bus interface */ 149 DEVMETHOD(bus_print_child, pci_print_child), 150 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch), 151 DEVMETHOD(bus_read_ivar, pci_read_ivar), 152 DEVMETHOD(bus_write_ivar, pci_write_ivar), 153 DEVMETHOD(bus_driver_added, pci_driver_added), 154 DEVMETHOD(bus_setup_intr, pci_setup_intr), 155 DEVMETHOD(bus_teardown_intr, pci_teardown_intr), 156 DEVMETHOD(bus_reset_prepare, pci_reset_prepare), 157 DEVMETHOD(bus_reset_post, pci_reset_post), 158 DEVMETHOD(bus_reset_child, pci_reset_child), 159 160 DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag), 161 DEVMETHOD(bus_get_resource_list,pci_get_resource_list), 162 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 163 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 164 DEVMETHOD(bus_delete_resource, pci_delete_resource), 165 DEVMETHOD(bus_alloc_resource, pci_alloc_resource), 166 DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), 167 DEVMETHOD(bus_release_resource, pci_release_resource), 168 DEVMETHOD(bus_activate_resource, pci_activate_resource), 169 DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), 170 DEVMETHOD(bus_child_deleted, pci_child_deleted), 171 DEVMETHOD(bus_child_detached, pci_child_detached), 172 DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method), 173 DEVMETHOD(bus_child_location_str, pci_child_location_str_method), 174 DEVMETHOD(bus_hint_device_unit, pci_hint_device_unit), 175 DEVMETHOD(bus_remap_intr, pci_remap_intr_method), 176 DEVMETHOD(bus_suspend_child, pci_suspend_child), 177 DEVMETHOD(bus_resume_child, pci_resume_child), 178 DEVMETHOD(bus_rescan, pci_rescan_method), 179 180 /* PCI interface */ 181 DEVMETHOD(pci_read_config, pci_read_config_method), 182 DEVMETHOD(pci_write_config, pci_write_config_method), 183 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method), 184 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method), 185 DEVMETHOD(pci_enable_io, pci_enable_io_method), 186 DEVMETHOD(pci_disable_io, pci_disable_io_method), 187 DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method), 188 DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method), 189 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method), 190 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method), 191 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method), 192 DEVMETHOD(pci_find_cap, pci_find_cap_method), 193 DEVMETHOD(pci_find_next_cap, pci_find_next_cap_method), 194 DEVMETHOD(pci_find_extcap, pci_find_extcap_method), 195 DEVMETHOD(pci_find_next_extcap, pci_find_next_extcap_method), 196 DEVMETHOD(pci_find_htcap, pci_find_htcap_method), 197 DEVMETHOD(pci_find_next_htcap, pci_find_next_htcap_method), 198 DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method), 199 DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method), 200 DEVMETHOD(pci_enable_msi, pci_enable_msi_method), 201 DEVMETHOD(pci_enable_msix, pci_enable_msix_method), 202 DEVMETHOD(pci_disable_msi, pci_disable_msi_method), 203 DEVMETHOD(pci_remap_msix, pci_remap_msix_method), 204 DEVMETHOD(pci_release_msi, pci_release_msi_method), 205 DEVMETHOD(pci_msi_count, pci_msi_count_method), 206 DEVMETHOD(pci_msix_count, pci_msix_count_method), 207 DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method), 208 DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method), 209 DEVMETHOD(pci_get_id, pci_get_id_method), 210 DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method), 211 DEVMETHOD(pci_child_added, pci_child_added_method), 212 #ifdef PCI_IOV 213 DEVMETHOD(pci_iov_attach, pci_iov_attach_method), 214 DEVMETHOD(pci_iov_detach, pci_iov_detach_method), 215 DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method), 216 #endif 217 218 DEVMETHOD_END 219 }; 220 221 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc)); 222 223 static devclass_t pci_devclass; 224 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL, 225 BUS_PASS_BUS); 226 MODULE_VERSION(pci, 1); 227 228 static char *pci_vendordata; 229 static size_t pci_vendordata_size; 230 231 struct pci_quirk { 232 uint32_t devid; /* Vendor/device of the card */ 233 int type; 234 #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */ 235 #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */ 236 #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */ 237 #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */ 238 #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */ 239 #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */ 240 #define PCI_QUIRK_REALLOC_BAR 7 /* Can't allocate memory at the default address */ 241 int arg1; 242 int arg2; 243 }; 244 245 static const struct pci_quirk pci_quirks[] = { 246 /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */ 247 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 248 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 249 /* As does the Serverworks OSB4 (the SMBus mapping register) */ 250 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 }, 251 252 /* 253 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge 254 * or the CMIC-SL (AKA ServerWorks GC_LE). 255 */ 256 { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 257 { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 258 259 /* 260 * MSI doesn't work on earlier Intel chipsets including 261 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855. 262 */ 263 { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 264 { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 265 { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 266 { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 267 { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 268 { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 269 { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 270 271 /* 272 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX 273 * bridge. 274 */ 275 { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 276 277 /* 278 * Some virtualization environments emulate an older chipset 279 * but support MSI just fine. QEMU uses the Intel 82440. 280 */ 281 { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 }, 282 283 /* 284 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus 285 * controller depending on SoftPciRst register (PM_IO 0x55 [7]). 286 * It prevents us from attaching hpet(4) when the bit is unset. 287 * Note this quirk only affects SB600 revision A13 and earlier. 288 * For SB600 A21 and later, firmware must set the bit to hide it. 289 * For SB700 and later, it is unused and hardcoded to zero. 290 */ 291 { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 }, 292 293 /* 294 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have 295 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit 296 * of the command register is set. 297 */ 298 { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 299 { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 300 { 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 301 { 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 302 { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 303 304 /* 305 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't 306 * issue MSI interrupts with PCIM_CMD_INTxDIS set either. 307 */ 308 { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */ 309 { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */ 310 { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */ 311 { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */ 312 { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */ 313 { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */ 314 315 /* 316 * HPE Gen 10 VGA has a memory range that can't be allocated in the 317 * expected place. 318 */ 319 { 0x98741002, PCI_QUIRK_REALLOC_BAR, 0, 0 }, 320 321 { 0 } 322 }; 323 324 /* map register information */ 325 #define PCI_MAPMEM 0x01 /* memory map */ 326 #define PCI_MAPMEMP 0x02 /* prefetchable memory map */ 327 #define PCI_MAPPORT 0x04 /* port map */ 328 329 struct devlist pci_devq; 330 uint32_t pci_generation; 331 uint32_t pci_numdevs = 0; 332 static int pcie_chipset, pcix_chipset; 333 334 /* sysctl vars */ 335 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 336 "PCI bus tuning parameters"); 337 338 static int pci_enable_io_modes = 1; 339 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN, 340 &pci_enable_io_modes, 1, 341 "Enable I/O and memory bits in the config register. Some BIOSes do not" 342 " enable these bits correctly. We'd like to do this all the time, but" 343 " there are some peripherals that this causes problems with."); 344 345 static int pci_do_realloc_bars = 1; 346 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN, 347 &pci_do_realloc_bars, 0, 348 "Attempt to allocate a new range for any BARs whose original " 349 "firmware-assigned ranges fail to allocate during the initial device scan."); 350 351 static int pci_do_power_nodriver = 0; 352 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN, 353 &pci_do_power_nodriver, 0, 354 "Place a function into D3 state when no driver attaches to it. 0 means" 355 " disable. 1 means conservatively place devices into D3 state. 2 means" 356 " aggressively place devices into D3 state. 3 means put absolutely" 357 " everything in D3 state."); 358 359 int pci_do_power_resume = 1; 360 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN, 361 &pci_do_power_resume, 1, 362 "Transition from D3 -> D0 on resume."); 363 364 int pci_do_power_suspend = 1; 365 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN, 366 &pci_do_power_suspend, 1, 367 "Transition from D0 -> D3 on suspend."); 368 369 static int pci_do_msi = 1; 370 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1, 371 "Enable support for MSI interrupts"); 372 373 static int pci_do_msix = 1; 374 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1, 375 "Enable support for MSI-X interrupts"); 376 377 static int pci_msix_rewrite_table = 0; 378 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN, 379 &pci_msix_rewrite_table, 0, 380 "Rewrite entire MSI-X table when updating MSI-X entries"); 381 382 static int pci_honor_msi_blacklist = 1; 383 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN, 384 &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X"); 385 386 #if defined(__i386__) || defined(__amd64__) 387 static int pci_usb_takeover = 1; 388 #else 389 static int pci_usb_takeover = 0; 390 #endif 391 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN, 392 &pci_usb_takeover, 1, 393 "Enable early takeover of USB controllers. Disable this if you depend on" 394 " BIOS emulation of USB devices, that is you use USB devices (like" 395 " keyboard or mouse) but do not load USB drivers"); 396 397 static int pci_clear_bars; 398 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0, 399 "Ignore firmware-assigned resources for BARs."); 400 401 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 402 static int pci_clear_buses; 403 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0, 404 "Ignore firmware-assigned bus numbers."); 405 #endif 406 407 static int pci_enable_ari = 1; 408 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari, 409 0, "Enable support for PCIe Alternative RID Interpretation"); 410 411 int pci_enable_aspm; 412 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm, 413 0, "Enable support for PCIe Active State Power Management"); 414 415 static int pci_clear_aer_on_attach = 0; 416 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN, 417 &pci_clear_aer_on_attach, 0, 418 "Clear port and device AER state on driver attach"); 419 420 static int 421 pci_has_quirk(uint32_t devid, int quirk) 422 { 423 const struct pci_quirk *q; 424 425 for (q = &pci_quirks[0]; q->devid; q++) { 426 if (q->devid == devid && q->type == quirk) 427 return (1); 428 } 429 return (0); 430 } 431 432 /* Find a device_t by bus/slot/function in domain 0 */ 433 434 device_t 435 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func) 436 { 437 438 return (pci_find_dbsf(0, bus, slot, func)); 439 } 440 441 /* Find a device_t by domain/bus/slot/function */ 442 443 device_t 444 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func) 445 { 446 struct pci_devinfo *dinfo = NULL; 447 448 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 449 if ((dinfo->cfg.domain == domain) && 450 (dinfo->cfg.bus == bus) && 451 (dinfo->cfg.slot == slot) && 452 (dinfo->cfg.func == func)) { 453 break; 454 } 455 } 456 457 return (dinfo != NULL ? dinfo->cfg.dev : NULL); 458 } 459 460 /* Find a device_t by vendor/device ID */ 461 462 device_t 463 pci_find_device(uint16_t vendor, uint16_t device) 464 { 465 struct pci_devinfo *dinfo; 466 467 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 468 if ((dinfo->cfg.vendor == vendor) && 469 (dinfo->cfg.device == device)) { 470 return (dinfo->cfg.dev); 471 } 472 } 473 474 return (NULL); 475 } 476 477 device_t 478 pci_find_class(uint8_t class, uint8_t subclass) 479 { 480 struct pci_devinfo *dinfo; 481 482 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 483 if (dinfo->cfg.baseclass == class && 484 dinfo->cfg.subclass == subclass) { 485 return (dinfo->cfg.dev); 486 } 487 } 488 489 return (NULL); 490 } 491 492 static int 493 pci_printf(pcicfgregs *cfg, const char *fmt, ...) 494 { 495 va_list ap; 496 int retval; 497 498 retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot, 499 cfg->func); 500 va_start(ap, fmt); 501 retval += vprintf(fmt, ap); 502 va_end(ap); 503 return (retval); 504 } 505 506 /* return base address of memory or port map */ 507 508 static pci_addr_t 509 pci_mapbase(uint64_t mapreg) 510 { 511 512 if (PCI_BAR_MEM(mapreg)) 513 return (mapreg & PCIM_BAR_MEM_BASE); 514 else 515 return (mapreg & PCIM_BAR_IO_BASE); 516 } 517 518 /* return map type of memory or port map */ 519 520 static const char * 521 pci_maptype(uint64_t mapreg) 522 { 523 524 if (PCI_BAR_IO(mapreg)) 525 return ("I/O Port"); 526 if (mapreg & PCIM_BAR_MEM_PREFETCH) 527 return ("Prefetchable Memory"); 528 return ("Memory"); 529 } 530 531 /* return log2 of map size decoded for memory or port map */ 532 533 int 534 pci_mapsize(uint64_t testval) 535 { 536 int ln2size; 537 538 testval = pci_mapbase(testval); 539 ln2size = 0; 540 if (testval != 0) { 541 while ((testval & 1) == 0) 542 { 543 ln2size++; 544 testval >>= 1; 545 } 546 } 547 return (ln2size); 548 } 549 550 /* return base address of device ROM */ 551 552 static pci_addr_t 553 pci_rombase(uint64_t mapreg) 554 { 555 556 return (mapreg & PCIM_BIOS_ADDR_MASK); 557 } 558 559 /* return log2 of map size decided for device ROM */ 560 561 static int 562 pci_romsize(uint64_t testval) 563 { 564 int ln2size; 565 566 testval = pci_rombase(testval); 567 ln2size = 0; 568 if (testval != 0) { 569 while ((testval & 1) == 0) 570 { 571 ln2size++; 572 testval >>= 1; 573 } 574 } 575 return (ln2size); 576 } 577 578 /* return log2 of address range supported by map register */ 579 580 static int 581 pci_maprange(uint64_t mapreg) 582 { 583 int ln2range = 0; 584 585 if (PCI_BAR_IO(mapreg)) 586 ln2range = 32; 587 else 588 switch (mapreg & PCIM_BAR_MEM_TYPE) { 589 case PCIM_BAR_MEM_32: 590 ln2range = 32; 591 break; 592 case PCIM_BAR_MEM_1MB: 593 ln2range = 20; 594 break; 595 case PCIM_BAR_MEM_64: 596 ln2range = 64; 597 break; 598 } 599 return (ln2range); 600 } 601 602 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */ 603 604 static void 605 pci_fixancient(pcicfgregs *cfg) 606 { 607 if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) 608 return; 609 610 /* PCI to PCI bridges use header type 1 */ 611 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI) 612 cfg->hdrtype = PCIM_HDRTYPE_BRIDGE; 613 } 614 615 /* extract header type specific config data */ 616 617 static void 618 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg) 619 { 620 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 621 switch (cfg->hdrtype & PCIM_HDRTYPE) { 622 case PCIM_HDRTYPE_NORMAL: 623 cfg->subvendor = REG(PCIR_SUBVEND_0, 2); 624 cfg->subdevice = REG(PCIR_SUBDEV_0, 2); 625 cfg->mingnt = REG(PCIR_MINGNT, 1); 626 cfg->maxlat = REG(PCIR_MAXLAT, 1); 627 cfg->nummaps = PCI_MAXMAPS_0; 628 break; 629 case PCIM_HDRTYPE_BRIDGE: 630 cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1); 631 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1); 632 cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1); 633 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1); 634 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2); 635 cfg->nummaps = PCI_MAXMAPS_1; 636 break; 637 case PCIM_HDRTYPE_CARDBUS: 638 cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1); 639 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1); 640 cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1); 641 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1); 642 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2); 643 cfg->subvendor = REG(PCIR_SUBVEND_2, 2); 644 cfg->subdevice = REG(PCIR_SUBDEV_2, 2); 645 cfg->nummaps = PCI_MAXMAPS_2; 646 break; 647 } 648 #undef REG 649 } 650 651 /* read configuration header into pcicfgregs structure */ 652 struct pci_devinfo * 653 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f) 654 { 655 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 656 uint16_t vid, did; 657 658 vid = REG(PCIR_VENDOR, 2); 659 did = REG(PCIR_DEVICE, 2); 660 if (vid != 0xffff) 661 return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did)); 662 663 return (NULL); 664 } 665 666 struct pci_devinfo * 667 pci_alloc_devinfo_method(device_t dev) 668 { 669 670 return (malloc(sizeof(struct pci_devinfo), M_DEVBUF, 671 M_WAITOK | M_ZERO)); 672 } 673 674 static struct pci_devinfo * 675 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f, 676 uint16_t vid, uint16_t did) 677 { 678 struct pci_devinfo *devlist_entry; 679 pcicfgregs *cfg; 680 681 devlist_entry = PCI_ALLOC_DEVINFO(bus); 682 683 cfg = &devlist_entry->cfg; 684 685 cfg->domain = d; 686 cfg->bus = b; 687 cfg->slot = s; 688 cfg->func = f; 689 cfg->vendor = vid; 690 cfg->device = did; 691 cfg->cmdreg = REG(PCIR_COMMAND, 2); 692 cfg->statreg = REG(PCIR_STATUS, 2); 693 cfg->baseclass = REG(PCIR_CLASS, 1); 694 cfg->subclass = REG(PCIR_SUBCLASS, 1); 695 cfg->progif = REG(PCIR_PROGIF, 1); 696 cfg->revid = REG(PCIR_REVID, 1); 697 cfg->hdrtype = REG(PCIR_HDRTYPE, 1); 698 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1); 699 cfg->lattimer = REG(PCIR_LATTIMER, 1); 700 cfg->intpin = REG(PCIR_INTPIN, 1); 701 cfg->intline = REG(PCIR_INTLINE, 1); 702 703 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0; 704 cfg->hdrtype &= ~PCIM_MFDEV; 705 STAILQ_INIT(&cfg->maps); 706 707 cfg->iov = NULL; 708 709 pci_fixancient(cfg); 710 pci_hdrtypedata(pcib, b, s, f, cfg); 711 712 if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) 713 pci_read_cap(pcib, cfg); 714 715 STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links); 716 717 devlist_entry->conf.pc_sel.pc_domain = cfg->domain; 718 devlist_entry->conf.pc_sel.pc_bus = cfg->bus; 719 devlist_entry->conf.pc_sel.pc_dev = cfg->slot; 720 devlist_entry->conf.pc_sel.pc_func = cfg->func; 721 devlist_entry->conf.pc_hdr = cfg->hdrtype; 722 723 devlist_entry->conf.pc_subvendor = cfg->subvendor; 724 devlist_entry->conf.pc_subdevice = cfg->subdevice; 725 devlist_entry->conf.pc_vendor = cfg->vendor; 726 devlist_entry->conf.pc_device = cfg->device; 727 728 devlist_entry->conf.pc_class = cfg->baseclass; 729 devlist_entry->conf.pc_subclass = cfg->subclass; 730 devlist_entry->conf.pc_progif = cfg->progif; 731 devlist_entry->conf.pc_revid = cfg->revid; 732 733 pci_numdevs++; 734 pci_generation++; 735 736 return (devlist_entry); 737 } 738 #undef REG 739 740 static void 741 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg) 742 { 743 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \ 744 cfg->ea.ea_location + (n), w) 745 int num_ent; 746 int ptr; 747 int a, b; 748 uint32_t val; 749 int ent_size; 750 uint32_t dw[4]; 751 uint64_t base, max_offset; 752 struct pci_ea_entry *eae; 753 754 if (cfg->ea.ea_location == 0) 755 return; 756 757 STAILQ_INIT(&cfg->ea.ea_entries); 758 759 /* Determine the number of entries */ 760 num_ent = REG(PCIR_EA_NUM_ENT, 2); 761 num_ent &= PCIM_EA_NUM_ENT_MASK; 762 763 /* Find the first entry to care of */ 764 ptr = PCIR_EA_FIRST_ENT; 765 766 /* Skip DWORD 2 for type 1 functions */ 767 if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) 768 ptr += 4; 769 770 for (a = 0; a < num_ent; a++) { 771 772 eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO); 773 eae->eae_cfg_offset = cfg->ea.ea_location + ptr; 774 775 /* Read a number of dwords in the entry */ 776 val = REG(ptr, 4); 777 ptr += 4; 778 ent_size = (val & PCIM_EA_ES); 779 780 for (b = 0; b < ent_size; b++) { 781 dw[b] = REG(ptr, 4); 782 ptr += 4; 783 } 784 785 eae->eae_flags = val; 786 eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET; 787 788 base = dw[0] & PCIM_EA_FIELD_MASK; 789 max_offset = dw[1] | ~PCIM_EA_FIELD_MASK; 790 b = 2; 791 if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { 792 base |= (uint64_t)dw[b] << 32UL; 793 b++; 794 } 795 if (((dw[1] & PCIM_EA_IS_64) != 0) 796 && (b < ent_size)) { 797 max_offset |= (uint64_t)dw[b] << 32UL; 798 b++; 799 } 800 801 eae->eae_base = base; 802 eae->eae_max_offset = max_offset; 803 804 STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link); 805 806 if (bootverbose) { 807 printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n", 808 cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags, 809 (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset); 810 } 811 } 812 } 813 #undef REG 814 815 static void 816 pci_read_cap(device_t pcib, pcicfgregs *cfg) 817 { 818 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w) 819 #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w) 820 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 821 uint64_t addr; 822 #endif 823 uint32_t val; 824 int ptr, nextptr, ptrptr; 825 826 switch (cfg->hdrtype & PCIM_HDRTYPE) { 827 case PCIM_HDRTYPE_NORMAL: 828 case PCIM_HDRTYPE_BRIDGE: 829 ptrptr = PCIR_CAP_PTR; 830 break; 831 case PCIM_HDRTYPE_CARDBUS: 832 ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */ 833 break; 834 default: 835 return; /* no extended capabilities support */ 836 } 837 nextptr = REG(ptrptr, 1); /* sanity check? */ 838 839 /* 840 * Read capability entries. 841 */ 842 while (nextptr != 0) { 843 /* Sanity check */ 844 if (nextptr > 255) { 845 printf("illegal PCI extended capability offset %d\n", 846 nextptr); 847 return; 848 } 849 /* Find the next entry */ 850 ptr = nextptr; 851 nextptr = REG(ptr + PCICAP_NEXTPTR, 1); 852 853 /* Process this entry */ 854 switch (REG(ptr + PCICAP_ID, 1)) { 855 case PCIY_PMG: /* PCI power management */ 856 if (cfg->pp.pp_cap == 0) { 857 cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2); 858 cfg->pp.pp_status = ptr + PCIR_POWER_STATUS; 859 cfg->pp.pp_bse = ptr + PCIR_POWER_BSE; 860 if ((nextptr - ptr) > PCIR_POWER_DATA) 861 cfg->pp.pp_data = ptr + PCIR_POWER_DATA; 862 } 863 break; 864 case PCIY_HT: /* HyperTransport */ 865 /* Determine HT-specific capability type. */ 866 val = REG(ptr + PCIR_HT_COMMAND, 2); 867 868 if ((val & 0xe000) == PCIM_HTCAP_SLAVE) 869 cfg->ht.ht_slave = ptr; 870 871 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 872 switch (val & PCIM_HTCMD_CAP_MASK) { 873 case PCIM_HTCAP_MSI_MAPPING: 874 if (!(val & PCIM_HTCMD_MSI_FIXED)) { 875 /* Sanity check the mapping window. */ 876 addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 877 4); 878 addr <<= 32; 879 addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 880 4); 881 if (addr != MSI_INTEL_ADDR_BASE) 882 device_printf(pcib, 883 "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n", 884 cfg->domain, cfg->bus, 885 cfg->slot, cfg->func, 886 (long long)addr); 887 } else 888 addr = MSI_INTEL_ADDR_BASE; 889 890 cfg->ht.ht_msimap = ptr; 891 cfg->ht.ht_msictrl = val; 892 cfg->ht.ht_msiaddr = addr; 893 break; 894 } 895 #endif 896 break; 897 case PCIY_MSI: /* PCI MSI */ 898 cfg->msi.msi_location = ptr; 899 cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2); 900 cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl & 901 PCIM_MSICTRL_MMC_MASK)>>1); 902 break; 903 case PCIY_MSIX: /* PCI MSI-X */ 904 cfg->msix.msix_location = ptr; 905 cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2); 906 cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl & 907 PCIM_MSIXCTRL_TABLE_SIZE) + 1; 908 val = REG(ptr + PCIR_MSIX_TABLE, 4); 909 cfg->msix.msix_table_bar = PCIR_BAR(val & 910 PCIM_MSIX_BIR_MASK); 911 cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK; 912 val = REG(ptr + PCIR_MSIX_PBA, 4); 913 cfg->msix.msix_pba_bar = PCIR_BAR(val & 914 PCIM_MSIX_BIR_MASK); 915 cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK; 916 break; 917 case PCIY_VPD: /* PCI Vital Product Data */ 918 cfg->vpd.vpd_reg = ptr; 919 break; 920 case PCIY_SUBVENDOR: 921 /* Should always be true. */ 922 if ((cfg->hdrtype & PCIM_HDRTYPE) == 923 PCIM_HDRTYPE_BRIDGE) { 924 val = REG(ptr + PCIR_SUBVENDCAP_ID, 4); 925 cfg->subvendor = val & 0xffff; 926 cfg->subdevice = val >> 16; 927 } 928 break; 929 case PCIY_PCIX: /* PCI-X */ 930 /* 931 * Assume we have a PCI-X chipset if we have 932 * at least one PCI-PCI bridge with a PCI-X 933 * capability. Note that some systems with 934 * PCI-express or HT chipsets might match on 935 * this check as well. 936 */ 937 if ((cfg->hdrtype & PCIM_HDRTYPE) == 938 PCIM_HDRTYPE_BRIDGE) 939 pcix_chipset = 1; 940 cfg->pcix.pcix_location = ptr; 941 break; 942 case PCIY_EXPRESS: /* PCI-express */ 943 /* 944 * Assume we have a PCI-express chipset if we have 945 * at least one PCI-express device. 946 */ 947 pcie_chipset = 1; 948 cfg->pcie.pcie_location = ptr; 949 val = REG(ptr + PCIER_FLAGS, 2); 950 cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE; 951 break; 952 case PCIY_EA: /* Enhanced Allocation */ 953 cfg->ea.ea_location = ptr; 954 pci_ea_fill_info(pcib, cfg); 955 break; 956 default: 957 break; 958 } 959 } 960 961 #if defined(__powerpc__) 962 /* 963 * Enable the MSI mapping window for all HyperTransport 964 * slaves. PCI-PCI bridges have their windows enabled via 965 * PCIB_MAP_MSI(). 966 */ 967 if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 && 968 !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) { 969 device_printf(pcib, 970 "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n", 971 cfg->domain, cfg->bus, cfg->slot, cfg->func); 972 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 973 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl, 974 2); 975 } 976 #endif 977 /* REG and WREG use carry through to next functions */ 978 } 979 980 /* 981 * PCI Vital Product Data 982 */ 983 984 #define PCI_VPD_TIMEOUT 1000000 985 986 static int 987 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data) 988 { 989 int count = PCI_VPD_TIMEOUT; 990 991 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 992 993 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2); 994 995 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) { 996 if (--count < 0) 997 return (ENXIO); 998 DELAY(1); /* limit looping */ 999 } 1000 *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4)); 1001 1002 return (0); 1003 } 1004 1005 #if 0 1006 static int 1007 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data) 1008 { 1009 int count = PCI_VPD_TIMEOUT; 1010 1011 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1012 1013 WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4); 1014 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2); 1015 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) { 1016 if (--count < 0) 1017 return (ENXIO); 1018 DELAY(1); /* limit looping */ 1019 } 1020 1021 return (0); 1022 } 1023 #endif 1024 1025 #undef PCI_VPD_TIMEOUT 1026 1027 struct vpd_readstate { 1028 device_t pcib; 1029 pcicfgregs *cfg; 1030 uint32_t val; 1031 int bytesinval; 1032 int off; 1033 uint8_t cksum; 1034 }; 1035 1036 static int 1037 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data) 1038 { 1039 uint32_t reg; 1040 uint8_t byte; 1041 1042 if (vrs->bytesinval == 0) { 1043 if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®)) 1044 return (ENXIO); 1045 vrs->val = le32toh(reg); 1046 vrs->off += 4; 1047 byte = vrs->val & 0xff; 1048 vrs->bytesinval = 3; 1049 } else { 1050 vrs->val = vrs->val >> 8; 1051 byte = vrs->val & 0xff; 1052 vrs->bytesinval--; 1053 } 1054 1055 vrs->cksum += byte; 1056 *data = byte; 1057 return (0); 1058 } 1059 1060 static void 1061 pci_read_vpd(device_t pcib, pcicfgregs *cfg) 1062 { 1063 struct vpd_readstate vrs; 1064 int state; 1065 int name; 1066 int remain; 1067 int i; 1068 int alloc, off; /* alloc/off for RO/W arrays */ 1069 int cksumvalid; 1070 int dflen; 1071 uint8_t byte; 1072 uint8_t byte2; 1073 1074 /* init vpd reader */ 1075 vrs.bytesinval = 0; 1076 vrs.off = 0; 1077 vrs.pcib = pcib; 1078 vrs.cfg = cfg; 1079 vrs.cksum = 0; 1080 1081 state = 0; 1082 name = remain = i = 0; /* shut up stupid gcc */ 1083 alloc = off = 0; /* shut up stupid gcc */ 1084 dflen = 0; /* shut up stupid gcc */ 1085 cksumvalid = -1; 1086 while (state >= 0) { 1087 if (vpd_nextbyte(&vrs, &byte)) { 1088 state = -2; 1089 break; 1090 } 1091 #if 0 1092 printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \ 1093 "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val, 1094 vrs.off, vrs.bytesinval, byte, state, remain, name, i); 1095 #endif 1096 switch (state) { 1097 case 0: /* item name */ 1098 if (byte & 0x80) { 1099 if (vpd_nextbyte(&vrs, &byte2)) { 1100 state = -2; 1101 break; 1102 } 1103 remain = byte2; 1104 if (vpd_nextbyte(&vrs, &byte2)) { 1105 state = -2; 1106 break; 1107 } 1108 remain |= byte2 << 8; 1109 name = byte & 0x7f; 1110 } else { 1111 remain = byte & 0x7; 1112 name = (byte >> 3) & 0xf; 1113 } 1114 if (vrs.off + remain - vrs.bytesinval > 0x8000) { 1115 pci_printf(cfg, 1116 "VPD data overflow, remain %#x\n", remain); 1117 state = -1; 1118 break; 1119 } 1120 switch (name) { 1121 case 0x2: /* String */ 1122 cfg->vpd.vpd_ident = malloc(remain + 1, 1123 M_DEVBUF, M_WAITOK); 1124 i = 0; 1125 state = 1; 1126 break; 1127 case 0xf: /* End */ 1128 state = -1; 1129 break; 1130 case 0x10: /* VPD-R */ 1131 alloc = 8; 1132 off = 0; 1133 cfg->vpd.vpd_ros = malloc(alloc * 1134 sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, 1135 M_WAITOK | M_ZERO); 1136 state = 2; 1137 break; 1138 case 0x11: /* VPD-W */ 1139 alloc = 8; 1140 off = 0; 1141 cfg->vpd.vpd_w = malloc(alloc * 1142 sizeof(*cfg->vpd.vpd_w), M_DEVBUF, 1143 M_WAITOK | M_ZERO); 1144 state = 5; 1145 break; 1146 default: /* Invalid data, abort */ 1147 state = -1; 1148 break; 1149 } 1150 break; 1151 1152 case 1: /* Identifier String */ 1153 cfg->vpd.vpd_ident[i++] = byte; 1154 remain--; 1155 if (remain == 0) { 1156 cfg->vpd.vpd_ident[i] = '\0'; 1157 state = 0; 1158 } 1159 break; 1160 1161 case 2: /* VPD-R Keyword Header */ 1162 if (off == alloc) { 1163 cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, 1164 (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros), 1165 M_DEVBUF, M_WAITOK | M_ZERO); 1166 } 1167 cfg->vpd.vpd_ros[off].keyword[0] = byte; 1168 if (vpd_nextbyte(&vrs, &byte2)) { 1169 state = -2; 1170 break; 1171 } 1172 cfg->vpd.vpd_ros[off].keyword[1] = byte2; 1173 if (vpd_nextbyte(&vrs, &byte2)) { 1174 state = -2; 1175 break; 1176 } 1177 cfg->vpd.vpd_ros[off].len = dflen = byte2; 1178 if (dflen == 0 && 1179 strncmp(cfg->vpd.vpd_ros[off].keyword, "RV", 1180 2) == 0) { 1181 /* 1182 * if this happens, we can't trust the rest 1183 * of the VPD. 1184 */ 1185 pci_printf(cfg, "bad keyword length: %d\n", 1186 dflen); 1187 cksumvalid = 0; 1188 state = -1; 1189 break; 1190 } else if (dflen == 0) { 1191 cfg->vpd.vpd_ros[off].value = malloc(1 * 1192 sizeof(*cfg->vpd.vpd_ros[off].value), 1193 M_DEVBUF, M_WAITOK); 1194 cfg->vpd.vpd_ros[off].value[0] = '\x00'; 1195 } else 1196 cfg->vpd.vpd_ros[off].value = malloc( 1197 (dflen + 1) * 1198 sizeof(*cfg->vpd.vpd_ros[off].value), 1199 M_DEVBUF, M_WAITOK); 1200 remain -= 3; 1201 i = 0; 1202 /* keep in sync w/ state 3's transistions */ 1203 if (dflen == 0 && remain == 0) 1204 state = 0; 1205 else if (dflen == 0) 1206 state = 2; 1207 else 1208 state = 3; 1209 break; 1210 1211 case 3: /* VPD-R Keyword Value */ 1212 cfg->vpd.vpd_ros[off].value[i++] = byte; 1213 if (strncmp(cfg->vpd.vpd_ros[off].keyword, 1214 "RV", 2) == 0 && cksumvalid == -1) { 1215 if (vrs.cksum == 0) 1216 cksumvalid = 1; 1217 else { 1218 if (bootverbose) 1219 pci_printf(cfg, 1220 "bad VPD cksum, remain %hhu\n", 1221 vrs.cksum); 1222 cksumvalid = 0; 1223 state = -1; 1224 break; 1225 } 1226 } 1227 dflen--; 1228 remain--; 1229 /* keep in sync w/ state 2's transistions */ 1230 if (dflen == 0) 1231 cfg->vpd.vpd_ros[off++].value[i++] = '\0'; 1232 if (dflen == 0 && remain == 0) { 1233 cfg->vpd.vpd_rocnt = off; 1234 cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, 1235 off * sizeof(*cfg->vpd.vpd_ros), 1236 M_DEVBUF, M_WAITOK | M_ZERO); 1237 state = 0; 1238 } else if (dflen == 0) 1239 state = 2; 1240 break; 1241 1242 case 4: 1243 remain--; 1244 if (remain == 0) 1245 state = 0; 1246 break; 1247 1248 case 5: /* VPD-W Keyword Header */ 1249 if (off == alloc) { 1250 cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, 1251 (alloc *= 2) * sizeof(*cfg->vpd.vpd_w), 1252 M_DEVBUF, M_WAITOK | M_ZERO); 1253 } 1254 cfg->vpd.vpd_w[off].keyword[0] = byte; 1255 if (vpd_nextbyte(&vrs, &byte2)) { 1256 state = -2; 1257 break; 1258 } 1259 cfg->vpd.vpd_w[off].keyword[1] = byte2; 1260 if (vpd_nextbyte(&vrs, &byte2)) { 1261 state = -2; 1262 break; 1263 } 1264 cfg->vpd.vpd_w[off].len = dflen = byte2; 1265 cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval; 1266 cfg->vpd.vpd_w[off].value = malloc((dflen + 1) * 1267 sizeof(*cfg->vpd.vpd_w[off].value), 1268 M_DEVBUF, M_WAITOK); 1269 remain -= 3; 1270 i = 0; 1271 /* keep in sync w/ state 6's transistions */ 1272 if (dflen == 0 && remain == 0) 1273 state = 0; 1274 else if (dflen == 0) 1275 state = 5; 1276 else 1277 state = 6; 1278 break; 1279 1280 case 6: /* VPD-W Keyword Value */ 1281 cfg->vpd.vpd_w[off].value[i++] = byte; 1282 dflen--; 1283 remain--; 1284 /* keep in sync w/ state 5's transistions */ 1285 if (dflen == 0) 1286 cfg->vpd.vpd_w[off++].value[i++] = '\0'; 1287 if (dflen == 0 && remain == 0) { 1288 cfg->vpd.vpd_wcnt = off; 1289 cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, 1290 off * sizeof(*cfg->vpd.vpd_w), 1291 M_DEVBUF, M_WAITOK | M_ZERO); 1292 state = 0; 1293 } else if (dflen == 0) 1294 state = 5; 1295 break; 1296 1297 default: 1298 pci_printf(cfg, "invalid state: %d\n", state); 1299 state = -1; 1300 break; 1301 } 1302 } 1303 1304 if (cksumvalid == 0 || state < -1) { 1305 /* read-only data bad, clean up */ 1306 if (cfg->vpd.vpd_ros != NULL) { 1307 for (off = 0; cfg->vpd.vpd_ros[off].value; off++) 1308 free(cfg->vpd.vpd_ros[off].value, M_DEVBUF); 1309 free(cfg->vpd.vpd_ros, M_DEVBUF); 1310 cfg->vpd.vpd_ros = NULL; 1311 } 1312 } 1313 if (state < -1) { 1314 /* I/O error, clean up */ 1315 pci_printf(cfg, "failed to read VPD data.\n"); 1316 if (cfg->vpd.vpd_ident != NULL) { 1317 free(cfg->vpd.vpd_ident, M_DEVBUF); 1318 cfg->vpd.vpd_ident = NULL; 1319 } 1320 if (cfg->vpd.vpd_w != NULL) { 1321 for (off = 0; cfg->vpd.vpd_w[off].value; off++) 1322 free(cfg->vpd.vpd_w[off].value, M_DEVBUF); 1323 free(cfg->vpd.vpd_w, M_DEVBUF); 1324 cfg->vpd.vpd_w = NULL; 1325 } 1326 } 1327 cfg->vpd.vpd_cached = 1; 1328 #undef REG 1329 #undef WREG 1330 } 1331 1332 int 1333 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr) 1334 { 1335 struct pci_devinfo *dinfo = device_get_ivars(child); 1336 pcicfgregs *cfg = &dinfo->cfg; 1337 1338 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1339 pci_read_vpd(device_get_parent(dev), cfg); 1340 1341 *identptr = cfg->vpd.vpd_ident; 1342 1343 if (*identptr == NULL) 1344 return (ENXIO); 1345 1346 return (0); 1347 } 1348 1349 int 1350 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw, 1351 const char **vptr) 1352 { 1353 struct pci_devinfo *dinfo = device_get_ivars(child); 1354 pcicfgregs *cfg = &dinfo->cfg; 1355 int i; 1356 1357 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1358 pci_read_vpd(device_get_parent(dev), cfg); 1359 1360 for (i = 0; i < cfg->vpd.vpd_rocnt; i++) 1361 if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword, 1362 sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) { 1363 *vptr = cfg->vpd.vpd_ros[i].value; 1364 return (0); 1365 } 1366 1367 *vptr = NULL; 1368 return (ENXIO); 1369 } 1370 1371 struct pcicfg_vpd * 1372 pci_fetch_vpd_list(device_t dev) 1373 { 1374 struct pci_devinfo *dinfo = device_get_ivars(dev); 1375 pcicfgregs *cfg = &dinfo->cfg; 1376 1377 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1378 pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg); 1379 return (&cfg->vpd); 1380 } 1381 1382 /* 1383 * Find the requested HyperTransport capability and return the offset 1384 * in configuration space via the pointer provided. The function 1385 * returns 0 on success and an error code otherwise. 1386 */ 1387 int 1388 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg) 1389 { 1390 int ptr, error; 1391 uint16_t val; 1392 1393 error = pci_find_cap(child, PCIY_HT, &ptr); 1394 if (error) 1395 return (error); 1396 1397 /* 1398 * Traverse the capabilities list checking each HT capability 1399 * to see if it matches the requested HT capability. 1400 */ 1401 for (;;) { 1402 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1403 if (capability == PCIM_HTCAP_SLAVE || 1404 capability == PCIM_HTCAP_HOST) 1405 val &= 0xe000; 1406 else 1407 val &= PCIM_HTCMD_CAP_MASK; 1408 if (val == capability) { 1409 if (capreg != NULL) 1410 *capreg = ptr; 1411 return (0); 1412 } 1413 1414 /* Skip to the next HT capability. */ 1415 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1416 break; 1417 } 1418 1419 return (ENOENT); 1420 } 1421 1422 /* 1423 * Find the next requested HyperTransport capability after start and return 1424 * the offset in configuration space via the pointer provided. The function 1425 * returns 0 on success and an error code otherwise. 1426 */ 1427 int 1428 pci_find_next_htcap_method(device_t dev, device_t child, int capability, 1429 int start, int *capreg) 1430 { 1431 int ptr; 1432 uint16_t val; 1433 1434 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT, 1435 ("start capability is not HyperTransport capability")); 1436 ptr = start; 1437 1438 /* 1439 * Traverse the capabilities list checking each HT capability 1440 * to see if it matches the requested HT capability. 1441 */ 1442 for (;;) { 1443 /* Skip to the next HT capability. */ 1444 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1445 break; 1446 1447 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1448 if (capability == PCIM_HTCAP_SLAVE || 1449 capability == PCIM_HTCAP_HOST) 1450 val &= 0xe000; 1451 else 1452 val &= PCIM_HTCMD_CAP_MASK; 1453 if (val == capability) { 1454 if (capreg != NULL) 1455 *capreg = ptr; 1456 return (0); 1457 } 1458 } 1459 1460 return (ENOENT); 1461 } 1462 1463 /* 1464 * Find the requested capability and return the offset in 1465 * configuration space via the pointer provided. The function returns 1466 * 0 on success and an error code otherwise. 1467 */ 1468 int 1469 pci_find_cap_method(device_t dev, device_t child, int capability, 1470 int *capreg) 1471 { 1472 struct pci_devinfo *dinfo = device_get_ivars(child); 1473 pcicfgregs *cfg = &dinfo->cfg; 1474 uint32_t status; 1475 uint8_t ptr; 1476 1477 /* 1478 * Check the CAP_LIST bit of the PCI status register first. 1479 */ 1480 status = pci_read_config(child, PCIR_STATUS, 2); 1481 if (!(status & PCIM_STATUS_CAPPRESENT)) 1482 return (ENXIO); 1483 1484 /* 1485 * Determine the start pointer of the capabilities list. 1486 */ 1487 switch (cfg->hdrtype & PCIM_HDRTYPE) { 1488 case PCIM_HDRTYPE_NORMAL: 1489 case PCIM_HDRTYPE_BRIDGE: 1490 ptr = PCIR_CAP_PTR; 1491 break; 1492 case PCIM_HDRTYPE_CARDBUS: 1493 ptr = PCIR_CAP_PTR_2; 1494 break; 1495 default: 1496 /* XXX: panic? */ 1497 return (ENXIO); /* no extended capabilities support */ 1498 } 1499 ptr = pci_read_config(child, ptr, 1); 1500 1501 /* 1502 * Traverse the capabilities list. 1503 */ 1504 while (ptr != 0) { 1505 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1506 if (capreg != NULL) 1507 *capreg = ptr; 1508 return (0); 1509 } 1510 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1511 } 1512 1513 return (ENOENT); 1514 } 1515 1516 /* 1517 * Find the next requested capability after start and return the offset in 1518 * configuration space via the pointer provided. The function returns 1519 * 0 on success and an error code otherwise. 1520 */ 1521 int 1522 pci_find_next_cap_method(device_t dev, device_t child, int capability, 1523 int start, int *capreg) 1524 { 1525 uint8_t ptr; 1526 1527 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability, 1528 ("start capability is not expected capability")); 1529 1530 ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1); 1531 while (ptr != 0) { 1532 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1533 if (capreg != NULL) 1534 *capreg = ptr; 1535 return (0); 1536 } 1537 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1538 } 1539 1540 return (ENOENT); 1541 } 1542 1543 /* 1544 * Find the requested extended capability and return the offset in 1545 * configuration space via the pointer provided. The function returns 1546 * 0 on success and an error code otherwise. 1547 */ 1548 int 1549 pci_find_extcap_method(device_t dev, device_t child, int capability, 1550 int *capreg) 1551 { 1552 struct pci_devinfo *dinfo = device_get_ivars(child); 1553 pcicfgregs *cfg = &dinfo->cfg; 1554 uint32_t ecap; 1555 uint16_t ptr; 1556 1557 /* Only supported for PCI-express devices. */ 1558 if (cfg->pcie.pcie_location == 0) 1559 return (ENXIO); 1560 1561 ptr = PCIR_EXTCAP; 1562 ecap = pci_read_config(child, ptr, 4); 1563 if (ecap == 0xffffffff || ecap == 0) 1564 return (ENOENT); 1565 for (;;) { 1566 if (PCI_EXTCAP_ID(ecap) == capability) { 1567 if (capreg != NULL) 1568 *capreg = ptr; 1569 return (0); 1570 } 1571 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1572 if (ptr == 0) 1573 break; 1574 ecap = pci_read_config(child, ptr, 4); 1575 } 1576 1577 return (ENOENT); 1578 } 1579 1580 /* 1581 * Find the next requested extended capability after start and return the 1582 * offset in configuration space via the pointer provided. The function 1583 * returns 0 on success and an error code otherwise. 1584 */ 1585 int 1586 pci_find_next_extcap_method(device_t dev, device_t child, int capability, 1587 int start, int *capreg) 1588 { 1589 struct pci_devinfo *dinfo = device_get_ivars(child); 1590 pcicfgregs *cfg = &dinfo->cfg; 1591 uint32_t ecap; 1592 uint16_t ptr; 1593 1594 /* Only supported for PCI-express devices. */ 1595 if (cfg->pcie.pcie_location == 0) 1596 return (ENXIO); 1597 1598 ecap = pci_read_config(child, start, 4); 1599 KASSERT(PCI_EXTCAP_ID(ecap) == capability, 1600 ("start extended capability is not expected capability")); 1601 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1602 while (ptr != 0) { 1603 ecap = pci_read_config(child, ptr, 4); 1604 if (PCI_EXTCAP_ID(ecap) == capability) { 1605 if (capreg != NULL) 1606 *capreg = ptr; 1607 return (0); 1608 } 1609 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1610 } 1611 1612 return (ENOENT); 1613 } 1614 1615 /* 1616 * Support for MSI-X message interrupts. 1617 */ 1618 static void 1619 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data) 1620 { 1621 struct pci_devinfo *dinfo = device_get_ivars(dev); 1622 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1623 uint32_t offset; 1624 1625 KASSERT(msix->msix_table_len > index, ("bogus index")); 1626 offset = msix->msix_table_offset + index * 16; 1627 bus_write_4(msix->msix_table_res, offset, address & 0xffffffff); 1628 bus_write_4(msix->msix_table_res, offset + 4, address >> 32); 1629 bus_write_4(msix->msix_table_res, offset + 8, data); 1630 } 1631 1632 void 1633 pci_enable_msix_method(device_t dev, device_t child, u_int index, 1634 uint64_t address, uint32_t data) 1635 { 1636 1637 if (pci_msix_rewrite_table) { 1638 struct pci_devinfo *dinfo = device_get_ivars(child); 1639 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1640 1641 /* 1642 * Some VM hosts require MSIX to be disabled in the 1643 * control register before updating the MSIX table 1644 * entries are allowed. It is not enough to only 1645 * disable MSIX while updating a single entry. MSIX 1646 * must be disabled while updating all entries in the 1647 * table. 1648 */ 1649 pci_write_config(child, 1650 msix->msix_location + PCIR_MSIX_CTRL, 1651 msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2); 1652 pci_resume_msix(child); 1653 } else 1654 pci_write_msix_entry(child, index, address, data); 1655 1656 /* Enable MSI -> HT mapping. */ 1657 pci_ht_map_msi(child, address); 1658 } 1659 1660 void 1661 pci_mask_msix(device_t dev, u_int index) 1662 { 1663 struct pci_devinfo *dinfo = device_get_ivars(dev); 1664 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1665 uint32_t offset, val; 1666 1667 KASSERT(msix->msix_msgnum > index, ("bogus index")); 1668 offset = msix->msix_table_offset + index * 16 + 12; 1669 val = bus_read_4(msix->msix_table_res, offset); 1670 val |= PCIM_MSIX_VCTRL_MASK; 1671 1672 /* 1673 * Some devices (e.g. Samsung PM961) do not support reads of this 1674 * register, so always write the new value. 1675 */ 1676 bus_write_4(msix->msix_table_res, offset, val); 1677 } 1678 1679 void 1680 pci_unmask_msix(device_t dev, u_int index) 1681 { 1682 struct pci_devinfo *dinfo = device_get_ivars(dev); 1683 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1684 uint32_t offset, val; 1685 1686 KASSERT(msix->msix_table_len > index, ("bogus index")); 1687 offset = msix->msix_table_offset + index * 16 + 12; 1688 val = bus_read_4(msix->msix_table_res, offset); 1689 val &= ~PCIM_MSIX_VCTRL_MASK; 1690 1691 /* 1692 * Some devices (e.g. Samsung PM961) do not support reads of this 1693 * register, so always write the new value. 1694 */ 1695 bus_write_4(msix->msix_table_res, offset, val); 1696 } 1697 1698 int 1699 pci_pending_msix(device_t dev, u_int index) 1700 { 1701 struct pci_devinfo *dinfo = device_get_ivars(dev); 1702 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1703 uint32_t offset, bit; 1704 1705 KASSERT(msix->msix_table_len > index, ("bogus index")); 1706 offset = msix->msix_pba_offset + (index / 32) * 4; 1707 bit = 1 << index % 32; 1708 return (bus_read_4(msix->msix_pba_res, offset) & bit); 1709 } 1710 1711 /* 1712 * Restore MSI-X registers and table during resume. If MSI-X is 1713 * enabled then walk the virtual table to restore the actual MSI-X 1714 * table. 1715 */ 1716 static void 1717 pci_resume_msix(device_t dev) 1718 { 1719 struct pci_devinfo *dinfo = device_get_ivars(dev); 1720 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1721 struct msix_table_entry *mte; 1722 struct msix_vector *mv; 1723 int i; 1724 1725 if (msix->msix_alloc > 0) { 1726 /* First, mask all vectors. */ 1727 for (i = 0; i < msix->msix_msgnum; i++) 1728 pci_mask_msix(dev, i); 1729 1730 /* Second, program any messages with at least one handler. */ 1731 for (i = 0; i < msix->msix_table_len; i++) { 1732 mte = &msix->msix_table[i]; 1733 if (mte->mte_vector == 0 || mte->mte_handlers == 0) 1734 continue; 1735 mv = &msix->msix_vectors[mte->mte_vector - 1]; 1736 pci_write_msix_entry(dev, i, mv->mv_address, 1737 mv->mv_data); 1738 pci_unmask_msix(dev, i); 1739 } 1740 } 1741 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL, 1742 msix->msix_ctrl, 2); 1743 } 1744 1745 /* 1746 * Attempt to allocate *count MSI-X messages. The actual number allocated is 1747 * returned in *count. After this function returns, each message will be 1748 * available to the driver as SYS_RES_IRQ resources starting at rid 1. 1749 */ 1750 int 1751 pci_alloc_msix_method(device_t dev, device_t child, int *count) 1752 { 1753 struct pci_devinfo *dinfo = device_get_ivars(child); 1754 pcicfgregs *cfg = &dinfo->cfg; 1755 struct resource_list_entry *rle; 1756 int actual, error, i, irq, max; 1757 1758 /* Don't let count == 0 get us into trouble. */ 1759 if (*count == 0) 1760 return (EINVAL); 1761 1762 /* If rid 0 is allocated, then fail. */ 1763 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 1764 if (rle != NULL && rle->res != NULL) 1765 return (ENXIO); 1766 1767 /* Already have allocated messages? */ 1768 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 1769 return (ENXIO); 1770 1771 /* If MSI-X is blacklisted for this system, fail. */ 1772 if (pci_msix_blacklisted()) 1773 return (ENXIO); 1774 1775 /* MSI-X capability present? */ 1776 if (cfg->msix.msix_location == 0 || !pci_do_msix) 1777 return (ENODEV); 1778 1779 /* Make sure the appropriate BARs are mapped. */ 1780 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1781 cfg->msix.msix_table_bar); 1782 if (rle == NULL || rle->res == NULL || 1783 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1784 return (ENXIO); 1785 cfg->msix.msix_table_res = rle->res; 1786 if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) { 1787 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1788 cfg->msix.msix_pba_bar); 1789 if (rle == NULL || rle->res == NULL || 1790 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1791 return (ENXIO); 1792 } 1793 cfg->msix.msix_pba_res = rle->res; 1794 1795 if (bootverbose) 1796 device_printf(child, 1797 "attempting to allocate %d MSI-X vectors (%d supported)\n", 1798 *count, cfg->msix.msix_msgnum); 1799 max = min(*count, cfg->msix.msix_msgnum); 1800 for (i = 0; i < max; i++) { 1801 /* Allocate a message. */ 1802 error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq); 1803 if (error) { 1804 if (i == 0) 1805 return (error); 1806 break; 1807 } 1808 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 1809 irq, 1); 1810 } 1811 actual = i; 1812 1813 if (bootverbose) { 1814 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1); 1815 if (actual == 1) 1816 device_printf(child, "using IRQ %ju for MSI-X\n", 1817 rle->start); 1818 else { 1819 int run; 1820 1821 /* 1822 * Be fancy and try to print contiguous runs of 1823 * IRQ values as ranges. 'irq' is the previous IRQ. 1824 * 'run' is true if we are in a range. 1825 */ 1826 device_printf(child, "using IRQs %ju", rle->start); 1827 irq = rle->start; 1828 run = 0; 1829 for (i = 1; i < actual; i++) { 1830 rle = resource_list_find(&dinfo->resources, 1831 SYS_RES_IRQ, i + 1); 1832 1833 /* Still in a run? */ 1834 if (rle->start == irq + 1) { 1835 run = 1; 1836 irq++; 1837 continue; 1838 } 1839 1840 /* Finish previous range. */ 1841 if (run) { 1842 printf("-%d", irq); 1843 run = 0; 1844 } 1845 1846 /* Start new range. */ 1847 printf(",%ju", rle->start); 1848 irq = rle->start; 1849 } 1850 1851 /* Unfinished range? */ 1852 if (run) 1853 printf("-%d", irq); 1854 printf(" for MSI-X\n"); 1855 } 1856 } 1857 1858 /* Mask all vectors. */ 1859 for (i = 0; i < cfg->msix.msix_msgnum; i++) 1860 pci_mask_msix(child, i); 1861 1862 /* Allocate and initialize vector data and virtual table. */ 1863 cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual, 1864 M_DEVBUF, M_WAITOK | M_ZERO); 1865 cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual, 1866 M_DEVBUF, M_WAITOK | M_ZERO); 1867 for (i = 0; i < actual; i++) { 1868 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1869 cfg->msix.msix_vectors[i].mv_irq = rle->start; 1870 cfg->msix.msix_table[i].mte_vector = i + 1; 1871 } 1872 1873 /* Update control register to enable MSI-X. */ 1874 cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE; 1875 pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL, 1876 cfg->msix.msix_ctrl, 2); 1877 1878 /* Update counts of alloc'd messages. */ 1879 cfg->msix.msix_alloc = actual; 1880 cfg->msix.msix_table_len = actual; 1881 *count = actual; 1882 return (0); 1883 } 1884 1885 /* 1886 * By default, pci_alloc_msix() will assign the allocated IRQ 1887 * resources consecutively to the first N messages in the MSI-X table. 1888 * However, device drivers may want to use different layouts if they 1889 * either receive fewer messages than they asked for, or they wish to 1890 * populate the MSI-X table sparsely. This method allows the driver 1891 * to specify what layout it wants. It must be called after a 1892 * successful pci_alloc_msix() but before any of the associated 1893 * SYS_RES_IRQ resources are allocated via bus_alloc_resource(). 1894 * 1895 * The 'vectors' array contains 'count' message vectors. The array 1896 * maps directly to the MSI-X table in that index 0 in the array 1897 * specifies the vector for the first message in the MSI-X table, etc. 1898 * The vector value in each array index can either be 0 to indicate 1899 * that no vector should be assigned to a message slot, or it can be a 1900 * number from 1 to N (where N is the count returned from a 1901 * succcessful call to pci_alloc_msix()) to indicate which message 1902 * vector (IRQ) to be used for the corresponding message. 1903 * 1904 * On successful return, each message with a non-zero vector will have 1905 * an associated SYS_RES_IRQ whose rid is equal to the array index + 1906 * 1. Additionally, if any of the IRQs allocated via the previous 1907 * call to pci_alloc_msix() are not used in the mapping, those IRQs 1908 * will be freed back to the system automatically. 1909 * 1910 * For example, suppose a driver has a MSI-X table with 6 messages and 1911 * asks for 6 messages, but pci_alloc_msix() only returns a count of 1912 * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and 1913 * C. After the call to pci_alloc_msix(), the device will be setup to 1914 * have an MSI-X table of ABC--- (where - means no vector assigned). 1915 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 }, 1916 * then the MSI-X table will look like A-AB-B, and the 'C' vector will 1917 * be freed back to the system. This device will also have valid 1918 * SYS_RES_IRQ rids of 1, 3, 4, and 6. 1919 * 1920 * In any case, the SYS_RES_IRQ rid X will always map to the message 1921 * at MSI-X table index X - 1 and will only be valid if a vector is 1922 * assigned to that table entry. 1923 */ 1924 int 1925 pci_remap_msix_method(device_t dev, device_t child, int count, 1926 const u_int *vectors) 1927 { 1928 struct pci_devinfo *dinfo = device_get_ivars(child); 1929 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1930 struct resource_list_entry *rle; 1931 int i, irq, j, *used; 1932 1933 /* 1934 * Have to have at least one message in the table but the 1935 * table can't be bigger than the actual MSI-X table in the 1936 * device. 1937 */ 1938 if (count == 0 || count > msix->msix_msgnum) 1939 return (EINVAL); 1940 1941 /* Sanity check the vectors. */ 1942 for (i = 0; i < count; i++) 1943 if (vectors[i] > msix->msix_alloc) 1944 return (EINVAL); 1945 1946 /* 1947 * Make sure there aren't any holes in the vectors to be used. 1948 * It's a big pain to support it, and it doesn't really make 1949 * sense anyway. Also, at least one vector must be used. 1950 */ 1951 used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK | 1952 M_ZERO); 1953 for (i = 0; i < count; i++) 1954 if (vectors[i] != 0) 1955 used[vectors[i] - 1] = 1; 1956 for (i = 0; i < msix->msix_alloc - 1; i++) 1957 if (used[i] == 0 && used[i + 1] == 1) { 1958 free(used, M_DEVBUF); 1959 return (EINVAL); 1960 } 1961 if (used[0] != 1) { 1962 free(used, M_DEVBUF); 1963 return (EINVAL); 1964 } 1965 1966 /* Make sure none of the resources are allocated. */ 1967 for (i = 0; i < msix->msix_table_len; i++) { 1968 if (msix->msix_table[i].mte_vector == 0) 1969 continue; 1970 if (msix->msix_table[i].mte_handlers > 0) { 1971 free(used, M_DEVBUF); 1972 return (EBUSY); 1973 } 1974 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1975 KASSERT(rle != NULL, ("missing resource")); 1976 if (rle->res != NULL) { 1977 free(used, M_DEVBUF); 1978 return (EBUSY); 1979 } 1980 } 1981 1982 /* Free the existing resource list entries. */ 1983 for (i = 0; i < msix->msix_table_len; i++) { 1984 if (msix->msix_table[i].mte_vector == 0) 1985 continue; 1986 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 1987 } 1988 1989 /* 1990 * Build the new virtual table keeping track of which vectors are 1991 * used. 1992 */ 1993 free(msix->msix_table, M_DEVBUF); 1994 msix->msix_table = malloc(sizeof(struct msix_table_entry) * count, 1995 M_DEVBUF, M_WAITOK | M_ZERO); 1996 for (i = 0; i < count; i++) 1997 msix->msix_table[i].mte_vector = vectors[i]; 1998 msix->msix_table_len = count; 1999 2000 /* Free any unused IRQs and resize the vectors array if necessary. */ 2001 j = msix->msix_alloc - 1; 2002 if (used[j] == 0) { 2003 struct msix_vector *vec; 2004 2005 while (used[j] == 0) { 2006 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2007 msix->msix_vectors[j].mv_irq); 2008 j--; 2009 } 2010 vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF, 2011 M_WAITOK); 2012 bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) * 2013 (j + 1)); 2014 free(msix->msix_vectors, M_DEVBUF); 2015 msix->msix_vectors = vec; 2016 msix->msix_alloc = j + 1; 2017 } 2018 free(used, M_DEVBUF); 2019 2020 /* Map the IRQs onto the rids. */ 2021 for (i = 0; i < count; i++) { 2022 if (vectors[i] == 0) 2023 continue; 2024 irq = msix->msix_vectors[vectors[i] - 1].mv_irq; 2025 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 2026 irq, 1); 2027 } 2028 2029 if (bootverbose) { 2030 device_printf(child, "Remapped MSI-X IRQs as: "); 2031 for (i = 0; i < count; i++) { 2032 if (i != 0) 2033 printf(", "); 2034 if (vectors[i] == 0) 2035 printf("---"); 2036 else 2037 printf("%d", 2038 msix->msix_vectors[vectors[i] - 1].mv_irq); 2039 } 2040 printf("\n"); 2041 } 2042 2043 return (0); 2044 } 2045 2046 static int 2047 pci_release_msix(device_t dev, device_t child) 2048 { 2049 struct pci_devinfo *dinfo = device_get_ivars(child); 2050 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2051 struct resource_list_entry *rle; 2052 int i; 2053 2054 /* Do we have any messages to release? */ 2055 if (msix->msix_alloc == 0) 2056 return (ENODEV); 2057 2058 /* Make sure none of the resources are allocated. */ 2059 for (i = 0; i < msix->msix_table_len; i++) { 2060 if (msix->msix_table[i].mte_vector == 0) 2061 continue; 2062 if (msix->msix_table[i].mte_handlers > 0) 2063 return (EBUSY); 2064 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2065 KASSERT(rle != NULL, ("missing resource")); 2066 if (rle->res != NULL) 2067 return (EBUSY); 2068 } 2069 2070 /* Update control register to disable MSI-X. */ 2071 msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE; 2072 pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, 2073 msix->msix_ctrl, 2); 2074 2075 /* Free the resource list entries. */ 2076 for (i = 0; i < msix->msix_table_len; i++) { 2077 if (msix->msix_table[i].mte_vector == 0) 2078 continue; 2079 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2080 } 2081 free(msix->msix_table, M_DEVBUF); 2082 msix->msix_table_len = 0; 2083 2084 /* Release the IRQs. */ 2085 for (i = 0; i < msix->msix_alloc; i++) 2086 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2087 msix->msix_vectors[i].mv_irq); 2088 free(msix->msix_vectors, M_DEVBUF); 2089 msix->msix_alloc = 0; 2090 return (0); 2091 } 2092 2093 /* 2094 * Return the max supported MSI-X messages this device supports. 2095 * Basically, assuming the MD code can alloc messages, this function 2096 * should return the maximum value that pci_alloc_msix() can return. 2097 * Thus, it is subject to the tunables, etc. 2098 */ 2099 int 2100 pci_msix_count_method(device_t dev, device_t child) 2101 { 2102 struct pci_devinfo *dinfo = device_get_ivars(child); 2103 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2104 2105 if (pci_do_msix && msix->msix_location != 0) 2106 return (msix->msix_msgnum); 2107 return (0); 2108 } 2109 2110 int 2111 pci_msix_pba_bar_method(device_t dev, device_t child) 2112 { 2113 struct pci_devinfo *dinfo = device_get_ivars(child); 2114 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2115 2116 if (pci_do_msix && msix->msix_location != 0) 2117 return (msix->msix_pba_bar); 2118 return (-1); 2119 } 2120 2121 int 2122 pci_msix_table_bar_method(device_t dev, device_t child) 2123 { 2124 struct pci_devinfo *dinfo = device_get_ivars(child); 2125 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2126 2127 if (pci_do_msix && msix->msix_location != 0) 2128 return (msix->msix_table_bar); 2129 return (-1); 2130 } 2131 2132 /* 2133 * HyperTransport MSI mapping control 2134 */ 2135 void 2136 pci_ht_map_msi(device_t dev, uint64_t addr) 2137 { 2138 struct pci_devinfo *dinfo = device_get_ivars(dev); 2139 struct pcicfg_ht *ht = &dinfo->cfg.ht; 2140 2141 if (!ht->ht_msimap) 2142 return; 2143 2144 if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) && 2145 ht->ht_msiaddr >> 20 == addr >> 20) { 2146 /* Enable MSI -> HT mapping. */ 2147 ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 2148 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2149 ht->ht_msictrl, 2); 2150 } 2151 2152 if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) { 2153 /* Disable MSI -> HT mapping. */ 2154 ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE; 2155 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2156 ht->ht_msictrl, 2); 2157 } 2158 } 2159 2160 int 2161 pci_get_max_payload(device_t dev) 2162 { 2163 struct pci_devinfo *dinfo = device_get_ivars(dev); 2164 int cap; 2165 uint16_t val; 2166 2167 cap = dinfo->cfg.pcie.pcie_location; 2168 if (cap == 0) 2169 return (0); 2170 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2171 val &= PCIEM_CTL_MAX_PAYLOAD; 2172 val >>= 5; 2173 return (1 << (val + 7)); 2174 } 2175 2176 int 2177 pci_get_max_read_req(device_t dev) 2178 { 2179 struct pci_devinfo *dinfo = device_get_ivars(dev); 2180 int cap; 2181 uint16_t val; 2182 2183 cap = dinfo->cfg.pcie.pcie_location; 2184 if (cap == 0) 2185 return (0); 2186 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2187 val &= PCIEM_CTL_MAX_READ_REQUEST; 2188 val >>= 12; 2189 return (1 << (val + 7)); 2190 } 2191 2192 int 2193 pci_set_max_read_req(device_t dev, int size) 2194 { 2195 struct pci_devinfo *dinfo = device_get_ivars(dev); 2196 int cap; 2197 uint16_t val; 2198 2199 cap = dinfo->cfg.pcie.pcie_location; 2200 if (cap == 0) 2201 return (0); 2202 if (size < 128) 2203 size = 128; 2204 if (size > 4096) 2205 size = 4096; 2206 size = (1 << (fls(size) - 1)); 2207 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2208 val &= ~PCIEM_CTL_MAX_READ_REQUEST; 2209 val |= (fls(size) - 8) << 12; 2210 pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2); 2211 return (size); 2212 } 2213 2214 uint32_t 2215 pcie_read_config(device_t dev, int reg, int width) 2216 { 2217 struct pci_devinfo *dinfo = device_get_ivars(dev); 2218 int cap; 2219 2220 cap = dinfo->cfg.pcie.pcie_location; 2221 if (cap == 0) { 2222 if (width == 2) 2223 return (0xffff); 2224 return (0xffffffff); 2225 } 2226 2227 return (pci_read_config(dev, cap + reg, width)); 2228 } 2229 2230 void 2231 pcie_write_config(device_t dev, int reg, uint32_t value, int width) 2232 { 2233 struct pci_devinfo *dinfo = device_get_ivars(dev); 2234 int cap; 2235 2236 cap = dinfo->cfg.pcie.pcie_location; 2237 if (cap == 0) 2238 return; 2239 pci_write_config(dev, cap + reg, value, width); 2240 } 2241 2242 /* 2243 * Adjusts a PCI-e capability register by clearing the bits in mask 2244 * and setting the bits in (value & mask). Bits not set in mask are 2245 * not adjusted. 2246 * 2247 * Returns the old value on success or all ones on failure. 2248 */ 2249 uint32_t 2250 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value, 2251 int width) 2252 { 2253 struct pci_devinfo *dinfo = device_get_ivars(dev); 2254 uint32_t old, new; 2255 int cap; 2256 2257 cap = dinfo->cfg.pcie.pcie_location; 2258 if (cap == 0) { 2259 if (width == 2) 2260 return (0xffff); 2261 return (0xffffffff); 2262 } 2263 2264 old = pci_read_config(dev, cap + reg, width); 2265 new = old & ~mask; 2266 new |= (value & mask); 2267 pci_write_config(dev, cap + reg, new, width); 2268 return (old); 2269 } 2270 2271 /* 2272 * Support for MSI message signalled interrupts. 2273 */ 2274 void 2275 pci_enable_msi_method(device_t dev, device_t child, uint64_t address, 2276 uint16_t data) 2277 { 2278 struct pci_devinfo *dinfo = device_get_ivars(child); 2279 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2280 2281 /* Write data and address values. */ 2282 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR, 2283 address & 0xffffffff, 4); 2284 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2285 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH, 2286 address >> 32, 4); 2287 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT, 2288 data, 2); 2289 } else 2290 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data, 2291 2); 2292 2293 /* Enable MSI in the control register. */ 2294 msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE; 2295 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2296 msi->msi_ctrl, 2); 2297 2298 /* Enable MSI -> HT mapping. */ 2299 pci_ht_map_msi(child, address); 2300 } 2301 2302 void 2303 pci_disable_msi_method(device_t dev, device_t child) 2304 { 2305 struct pci_devinfo *dinfo = device_get_ivars(child); 2306 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2307 2308 /* Disable MSI -> HT mapping. */ 2309 pci_ht_map_msi(child, 0); 2310 2311 /* Disable MSI in the control register. */ 2312 msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE; 2313 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2314 msi->msi_ctrl, 2); 2315 } 2316 2317 /* 2318 * Restore MSI registers during resume. If MSI is enabled then 2319 * restore the data and address registers in addition to the control 2320 * register. 2321 */ 2322 static void 2323 pci_resume_msi(device_t dev) 2324 { 2325 struct pci_devinfo *dinfo = device_get_ivars(dev); 2326 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2327 uint64_t address; 2328 uint16_t data; 2329 2330 if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) { 2331 address = msi->msi_addr; 2332 data = msi->msi_data; 2333 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR, 2334 address & 0xffffffff, 4); 2335 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2336 pci_write_config(dev, msi->msi_location + 2337 PCIR_MSI_ADDR_HIGH, address >> 32, 4); 2338 pci_write_config(dev, msi->msi_location + 2339 PCIR_MSI_DATA_64BIT, data, 2); 2340 } else 2341 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, 2342 data, 2); 2343 } 2344 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2345 2); 2346 } 2347 2348 static int 2349 pci_remap_intr_method(device_t bus, device_t dev, u_int irq) 2350 { 2351 struct pci_devinfo *dinfo = device_get_ivars(dev); 2352 pcicfgregs *cfg = &dinfo->cfg; 2353 struct resource_list_entry *rle; 2354 struct msix_table_entry *mte; 2355 struct msix_vector *mv; 2356 uint64_t addr; 2357 uint32_t data; 2358 int error, i, j; 2359 2360 /* 2361 * Handle MSI first. We try to find this IRQ among our list 2362 * of MSI IRQs. If we find it, we request updated address and 2363 * data registers and apply the results. 2364 */ 2365 if (cfg->msi.msi_alloc > 0) { 2366 2367 /* If we don't have any active handlers, nothing to do. */ 2368 if (cfg->msi.msi_handlers == 0) 2369 return (0); 2370 for (i = 0; i < cfg->msi.msi_alloc; i++) { 2371 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 2372 i + 1); 2373 if (rle->start == irq) { 2374 error = PCIB_MAP_MSI(device_get_parent(bus), 2375 dev, irq, &addr, &data); 2376 if (error) 2377 return (error); 2378 pci_disable_msi(dev); 2379 dinfo->cfg.msi.msi_addr = addr; 2380 dinfo->cfg.msi.msi_data = data; 2381 pci_enable_msi(dev, addr, data); 2382 return (0); 2383 } 2384 } 2385 return (ENOENT); 2386 } 2387 2388 /* 2389 * For MSI-X, we check to see if we have this IRQ. If we do, 2390 * we request the updated mapping info. If that works, we go 2391 * through all the slots that use this IRQ and update them. 2392 */ 2393 if (cfg->msix.msix_alloc > 0) { 2394 for (i = 0; i < cfg->msix.msix_alloc; i++) { 2395 mv = &cfg->msix.msix_vectors[i]; 2396 if (mv->mv_irq == irq) { 2397 error = PCIB_MAP_MSI(device_get_parent(bus), 2398 dev, irq, &addr, &data); 2399 if (error) 2400 return (error); 2401 mv->mv_address = addr; 2402 mv->mv_data = data; 2403 for (j = 0; j < cfg->msix.msix_table_len; j++) { 2404 mte = &cfg->msix.msix_table[j]; 2405 if (mte->mte_vector != i + 1) 2406 continue; 2407 if (mte->mte_handlers == 0) 2408 continue; 2409 pci_mask_msix(dev, j); 2410 pci_enable_msix(dev, j, addr, data); 2411 pci_unmask_msix(dev, j); 2412 } 2413 } 2414 } 2415 return (ENOENT); 2416 } 2417 2418 return (ENOENT); 2419 } 2420 2421 /* 2422 * Returns true if the specified device is blacklisted because MSI 2423 * doesn't work. 2424 */ 2425 int 2426 pci_msi_device_blacklisted(device_t dev) 2427 { 2428 2429 if (!pci_honor_msi_blacklist) 2430 return (0); 2431 2432 return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI)); 2433 } 2434 2435 /* 2436 * Determine if MSI is blacklisted globally on this system. Currently, 2437 * we just check for blacklisted chipsets as represented by the 2438 * host-PCI bridge at device 0:0:0. In the future, it may become 2439 * necessary to check other system attributes, such as the kenv values 2440 * that give the motherboard manufacturer and model number. 2441 */ 2442 static int 2443 pci_msi_blacklisted(void) 2444 { 2445 device_t dev; 2446 2447 if (!pci_honor_msi_blacklist) 2448 return (0); 2449 2450 /* Blacklist all non-PCI-express and non-PCI-X chipsets. */ 2451 if (!(pcie_chipset || pcix_chipset)) { 2452 if (vm_guest != VM_GUEST_NO) { 2453 /* 2454 * Whitelist older chipsets in virtual 2455 * machines known to support MSI. 2456 */ 2457 dev = pci_find_bsf(0, 0, 0); 2458 if (dev != NULL) 2459 return (!pci_has_quirk(pci_get_devid(dev), 2460 PCI_QUIRK_ENABLE_MSI_VM)); 2461 } 2462 return (1); 2463 } 2464 2465 dev = pci_find_bsf(0, 0, 0); 2466 if (dev != NULL) 2467 return (pci_msi_device_blacklisted(dev)); 2468 return (0); 2469 } 2470 2471 /* 2472 * Returns true if the specified device is blacklisted because MSI-X 2473 * doesn't work. Note that this assumes that if MSI doesn't work, 2474 * MSI-X doesn't either. 2475 */ 2476 int 2477 pci_msix_device_blacklisted(device_t dev) 2478 { 2479 2480 if (!pci_honor_msi_blacklist) 2481 return (0); 2482 2483 if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) 2484 return (1); 2485 2486 return (pci_msi_device_blacklisted(dev)); 2487 } 2488 2489 /* 2490 * Determine if MSI-X is blacklisted globally on this system. If MSI 2491 * is blacklisted, assume that MSI-X is as well. Check for additional 2492 * chipsets where MSI works but MSI-X does not. 2493 */ 2494 static int 2495 pci_msix_blacklisted(void) 2496 { 2497 device_t dev; 2498 2499 if (!pci_honor_msi_blacklist) 2500 return (0); 2501 2502 dev = pci_find_bsf(0, 0, 0); 2503 if (dev != NULL && pci_has_quirk(pci_get_devid(dev), 2504 PCI_QUIRK_DISABLE_MSIX)) 2505 return (1); 2506 2507 return (pci_msi_blacklisted()); 2508 } 2509 2510 /* 2511 * Attempt to allocate *count MSI messages. The actual number allocated is 2512 * returned in *count. After this function returns, each message will be 2513 * available to the driver as SYS_RES_IRQ resources starting at a rid 1. 2514 */ 2515 int 2516 pci_alloc_msi_method(device_t dev, device_t child, int *count) 2517 { 2518 struct pci_devinfo *dinfo = device_get_ivars(child); 2519 pcicfgregs *cfg = &dinfo->cfg; 2520 struct resource_list_entry *rle; 2521 int actual, error, i, irqs[32]; 2522 uint16_t ctrl; 2523 2524 /* Don't let count == 0 get us into trouble. */ 2525 if (*count == 0) 2526 return (EINVAL); 2527 2528 /* If rid 0 is allocated, then fail. */ 2529 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 2530 if (rle != NULL && rle->res != NULL) 2531 return (ENXIO); 2532 2533 /* Already have allocated messages? */ 2534 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 2535 return (ENXIO); 2536 2537 /* If MSI is blacklisted for this system, fail. */ 2538 if (pci_msi_blacklisted()) 2539 return (ENXIO); 2540 2541 /* MSI capability present? */ 2542 if (cfg->msi.msi_location == 0 || !pci_do_msi) 2543 return (ENODEV); 2544 2545 if (bootverbose) 2546 device_printf(child, 2547 "attempting to allocate %d MSI vectors (%d supported)\n", 2548 *count, cfg->msi.msi_msgnum); 2549 2550 /* Don't ask for more than the device supports. */ 2551 actual = min(*count, cfg->msi.msi_msgnum); 2552 2553 /* Don't ask for more than 32 messages. */ 2554 actual = min(actual, 32); 2555 2556 /* MSI requires power of 2 number of messages. */ 2557 if (!powerof2(actual)) 2558 return (EINVAL); 2559 2560 for (;;) { 2561 /* Try to allocate N messages. */ 2562 error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual, 2563 actual, irqs); 2564 if (error == 0) 2565 break; 2566 if (actual == 1) 2567 return (error); 2568 2569 /* Try N / 2. */ 2570 actual >>= 1; 2571 } 2572 2573 /* 2574 * We now have N actual messages mapped onto SYS_RES_IRQ 2575 * resources in the irqs[] array, so add new resources 2576 * starting at rid 1. 2577 */ 2578 for (i = 0; i < actual; i++) 2579 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, 2580 irqs[i], irqs[i], 1); 2581 2582 if (bootverbose) { 2583 if (actual == 1) 2584 device_printf(child, "using IRQ %d for MSI\n", irqs[0]); 2585 else { 2586 int run; 2587 2588 /* 2589 * Be fancy and try to print contiguous runs 2590 * of IRQ values as ranges. 'run' is true if 2591 * we are in a range. 2592 */ 2593 device_printf(child, "using IRQs %d", irqs[0]); 2594 run = 0; 2595 for (i = 1; i < actual; i++) { 2596 2597 /* Still in a run? */ 2598 if (irqs[i] == irqs[i - 1] + 1) { 2599 run = 1; 2600 continue; 2601 } 2602 2603 /* Finish previous range. */ 2604 if (run) { 2605 printf("-%d", irqs[i - 1]); 2606 run = 0; 2607 } 2608 2609 /* Start new range. */ 2610 printf(",%d", irqs[i]); 2611 } 2612 2613 /* Unfinished range? */ 2614 if (run) 2615 printf("-%d", irqs[actual - 1]); 2616 printf(" for MSI\n"); 2617 } 2618 } 2619 2620 /* Update control register with actual count. */ 2621 ctrl = cfg->msi.msi_ctrl; 2622 ctrl &= ~PCIM_MSICTRL_MME_MASK; 2623 ctrl |= (ffs(actual) - 1) << 4; 2624 cfg->msi.msi_ctrl = ctrl; 2625 pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2); 2626 2627 /* Update counts of alloc'd messages. */ 2628 cfg->msi.msi_alloc = actual; 2629 cfg->msi.msi_handlers = 0; 2630 *count = actual; 2631 return (0); 2632 } 2633 2634 /* Release the MSI messages associated with this device. */ 2635 int 2636 pci_release_msi_method(device_t dev, device_t child) 2637 { 2638 struct pci_devinfo *dinfo = device_get_ivars(child); 2639 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2640 struct resource_list_entry *rle; 2641 int error, i, irqs[32]; 2642 2643 /* Try MSI-X first. */ 2644 error = pci_release_msix(dev, child); 2645 if (error != ENODEV) 2646 return (error); 2647 2648 /* Do we have any messages to release? */ 2649 if (msi->msi_alloc == 0) 2650 return (ENODEV); 2651 KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages")); 2652 2653 /* Make sure none of the resources are allocated. */ 2654 if (msi->msi_handlers > 0) 2655 return (EBUSY); 2656 for (i = 0; i < msi->msi_alloc; i++) { 2657 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2658 KASSERT(rle != NULL, ("missing MSI resource")); 2659 if (rle->res != NULL) 2660 return (EBUSY); 2661 irqs[i] = rle->start; 2662 } 2663 2664 /* Update control register with 0 count. */ 2665 KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE), 2666 ("%s: MSI still enabled", __func__)); 2667 msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK; 2668 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2669 msi->msi_ctrl, 2); 2670 2671 /* Release the messages. */ 2672 PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs); 2673 for (i = 0; i < msi->msi_alloc; i++) 2674 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2675 2676 /* Update alloc count. */ 2677 msi->msi_alloc = 0; 2678 msi->msi_addr = 0; 2679 msi->msi_data = 0; 2680 return (0); 2681 } 2682 2683 /* 2684 * Return the max supported MSI messages this device supports. 2685 * Basically, assuming the MD code can alloc messages, this function 2686 * should return the maximum value that pci_alloc_msi() can return. 2687 * Thus, it is subject to the tunables, etc. 2688 */ 2689 int 2690 pci_msi_count_method(device_t dev, device_t child) 2691 { 2692 struct pci_devinfo *dinfo = device_get_ivars(child); 2693 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2694 2695 if (pci_do_msi && msi->msi_location != 0) 2696 return (msi->msi_msgnum); 2697 return (0); 2698 } 2699 2700 /* free pcicfgregs structure and all depending data structures */ 2701 2702 int 2703 pci_freecfg(struct pci_devinfo *dinfo) 2704 { 2705 struct devlist *devlist_head; 2706 struct pci_map *pm, *next; 2707 int i; 2708 2709 devlist_head = &pci_devq; 2710 2711 if (dinfo->cfg.vpd.vpd_reg) { 2712 free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF); 2713 for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++) 2714 free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF); 2715 free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF); 2716 for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++) 2717 free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF); 2718 free(dinfo->cfg.vpd.vpd_w, M_DEVBUF); 2719 } 2720 STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) { 2721 free(pm, M_DEVBUF); 2722 } 2723 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links); 2724 free(dinfo, M_DEVBUF); 2725 2726 /* increment the generation count */ 2727 pci_generation++; 2728 2729 /* we're losing one device */ 2730 pci_numdevs--; 2731 return (0); 2732 } 2733 2734 /* 2735 * PCI power manangement 2736 */ 2737 int 2738 pci_set_powerstate_method(device_t dev, device_t child, int state) 2739 { 2740 struct pci_devinfo *dinfo = device_get_ivars(child); 2741 pcicfgregs *cfg = &dinfo->cfg; 2742 uint16_t status; 2743 int oldstate, highest, delay; 2744 2745 if (cfg->pp.pp_cap == 0) 2746 return (EOPNOTSUPP); 2747 2748 /* 2749 * Optimize a no state change request away. While it would be OK to 2750 * write to the hardware in theory, some devices have shown odd 2751 * behavior when going from D3 -> D3. 2752 */ 2753 oldstate = pci_get_powerstate(child); 2754 if (oldstate == state) 2755 return (0); 2756 2757 /* 2758 * The PCI power management specification states that after a state 2759 * transition between PCI power states, system software must 2760 * guarantee a minimal delay before the function accesses the device. 2761 * Compute the worst case delay that we need to guarantee before we 2762 * access the device. Many devices will be responsive much more 2763 * quickly than this delay, but there are some that don't respond 2764 * instantly to state changes. Transitions to/from D3 state require 2765 * 10ms, while D2 requires 200us, and D0/1 require none. The delay 2766 * is done below with DELAY rather than a sleeper function because 2767 * this function can be called from contexts where we cannot sleep. 2768 */ 2769 highest = (oldstate > state) ? oldstate : state; 2770 if (highest == PCI_POWERSTATE_D3) 2771 delay = 10000; 2772 else if (highest == PCI_POWERSTATE_D2) 2773 delay = 200; 2774 else 2775 delay = 0; 2776 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2) 2777 & ~PCIM_PSTAT_DMASK; 2778 switch (state) { 2779 case PCI_POWERSTATE_D0: 2780 status |= PCIM_PSTAT_D0; 2781 break; 2782 case PCI_POWERSTATE_D1: 2783 if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0) 2784 return (EOPNOTSUPP); 2785 status |= PCIM_PSTAT_D1; 2786 break; 2787 case PCI_POWERSTATE_D2: 2788 if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0) 2789 return (EOPNOTSUPP); 2790 status |= PCIM_PSTAT_D2; 2791 break; 2792 case PCI_POWERSTATE_D3: 2793 status |= PCIM_PSTAT_D3; 2794 break; 2795 default: 2796 return (EINVAL); 2797 } 2798 2799 if (bootverbose) 2800 pci_printf(cfg, "Transition from D%d to D%d\n", oldstate, 2801 state); 2802 2803 PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2); 2804 if (delay) 2805 DELAY(delay); 2806 return (0); 2807 } 2808 2809 int 2810 pci_get_powerstate_method(device_t dev, device_t child) 2811 { 2812 struct pci_devinfo *dinfo = device_get_ivars(child); 2813 pcicfgregs *cfg = &dinfo->cfg; 2814 uint16_t status; 2815 int result; 2816 2817 if (cfg->pp.pp_cap != 0) { 2818 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2); 2819 switch (status & PCIM_PSTAT_DMASK) { 2820 case PCIM_PSTAT_D0: 2821 result = PCI_POWERSTATE_D0; 2822 break; 2823 case PCIM_PSTAT_D1: 2824 result = PCI_POWERSTATE_D1; 2825 break; 2826 case PCIM_PSTAT_D2: 2827 result = PCI_POWERSTATE_D2; 2828 break; 2829 case PCIM_PSTAT_D3: 2830 result = PCI_POWERSTATE_D3; 2831 break; 2832 default: 2833 result = PCI_POWERSTATE_UNKNOWN; 2834 break; 2835 } 2836 } else { 2837 /* No support, device is always at D0 */ 2838 result = PCI_POWERSTATE_D0; 2839 } 2840 return (result); 2841 } 2842 2843 /* 2844 * Some convenience functions for PCI device drivers. 2845 */ 2846 2847 static __inline void 2848 pci_set_command_bit(device_t dev, device_t child, uint16_t bit) 2849 { 2850 uint16_t command; 2851 2852 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2853 command |= bit; 2854 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2855 } 2856 2857 static __inline void 2858 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit) 2859 { 2860 uint16_t command; 2861 2862 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2863 command &= ~bit; 2864 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2865 } 2866 2867 int 2868 pci_enable_busmaster_method(device_t dev, device_t child) 2869 { 2870 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2871 return (0); 2872 } 2873 2874 int 2875 pci_disable_busmaster_method(device_t dev, device_t child) 2876 { 2877 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2878 return (0); 2879 } 2880 2881 int 2882 pci_enable_io_method(device_t dev, device_t child, int space) 2883 { 2884 uint16_t bit; 2885 2886 switch(space) { 2887 case SYS_RES_IOPORT: 2888 bit = PCIM_CMD_PORTEN; 2889 break; 2890 case SYS_RES_MEMORY: 2891 bit = PCIM_CMD_MEMEN; 2892 break; 2893 default: 2894 return (EINVAL); 2895 } 2896 pci_set_command_bit(dev, child, bit); 2897 return (0); 2898 } 2899 2900 int 2901 pci_disable_io_method(device_t dev, device_t child, int space) 2902 { 2903 uint16_t bit; 2904 2905 switch(space) { 2906 case SYS_RES_IOPORT: 2907 bit = PCIM_CMD_PORTEN; 2908 break; 2909 case SYS_RES_MEMORY: 2910 bit = PCIM_CMD_MEMEN; 2911 break; 2912 default: 2913 return (EINVAL); 2914 } 2915 pci_clear_command_bit(dev, child, bit); 2916 return (0); 2917 } 2918 2919 /* 2920 * New style pci driver. Parent device is either a pci-host-bridge or a 2921 * pci-pci-bridge. Both kinds are represented by instances of pcib. 2922 */ 2923 2924 void 2925 pci_print_verbose(struct pci_devinfo *dinfo) 2926 { 2927 2928 if (bootverbose) { 2929 pcicfgregs *cfg = &dinfo->cfg; 2930 2931 printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n", 2932 cfg->vendor, cfg->device, cfg->revid); 2933 printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n", 2934 cfg->domain, cfg->bus, cfg->slot, cfg->func); 2935 printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n", 2936 cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype, 2937 cfg->mfdev); 2938 printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n", 2939 cfg->cmdreg, cfg->statreg, cfg->cachelnsz); 2940 printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n", 2941 cfg->lattimer, cfg->lattimer * 30, cfg->mingnt, 2942 cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250); 2943 if (cfg->intpin > 0) 2944 printf("\tintpin=%c, irq=%d\n", 2945 cfg->intpin +'a' -1, cfg->intline); 2946 if (cfg->pp.pp_cap) { 2947 uint16_t status; 2948 2949 status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2); 2950 printf("\tpowerspec %d supports D0%s%s D3 current D%d\n", 2951 cfg->pp.pp_cap & PCIM_PCAP_SPEC, 2952 cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "", 2953 cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "", 2954 status & PCIM_PSTAT_DMASK); 2955 } 2956 if (cfg->msi.msi_location) { 2957 int ctrl; 2958 2959 ctrl = cfg->msi.msi_ctrl; 2960 printf("\tMSI supports %d message%s%s%s\n", 2961 cfg->msi.msi_msgnum, 2962 (cfg->msi.msi_msgnum == 1) ? "" : "s", 2963 (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", 2964 (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":""); 2965 } 2966 if (cfg->msix.msix_location) { 2967 printf("\tMSI-X supports %d message%s ", 2968 cfg->msix.msix_msgnum, 2969 (cfg->msix.msix_msgnum == 1) ? "" : "s"); 2970 if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar) 2971 printf("in map 0x%x\n", 2972 cfg->msix.msix_table_bar); 2973 else 2974 printf("in maps 0x%x and 0x%x\n", 2975 cfg->msix.msix_table_bar, 2976 cfg->msix.msix_pba_bar); 2977 } 2978 } 2979 } 2980 2981 static int 2982 pci_porten(device_t dev) 2983 { 2984 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0; 2985 } 2986 2987 static int 2988 pci_memen(device_t dev) 2989 { 2990 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0; 2991 } 2992 2993 void 2994 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp, 2995 int *bar64) 2996 { 2997 struct pci_devinfo *dinfo; 2998 pci_addr_t map, testval; 2999 int ln2range; 3000 uint16_t cmd; 3001 3002 /* 3003 * The device ROM BAR is special. It is always a 32-bit 3004 * memory BAR. Bit 0 is special and should not be set when 3005 * sizing the BAR. 3006 */ 3007 dinfo = device_get_ivars(dev); 3008 if (PCIR_IS_BIOS(&dinfo->cfg, reg)) { 3009 map = pci_read_config(dev, reg, 4); 3010 pci_write_config(dev, reg, 0xfffffffe, 4); 3011 testval = pci_read_config(dev, reg, 4); 3012 pci_write_config(dev, reg, map, 4); 3013 *mapp = map; 3014 *testvalp = testval; 3015 if (bar64 != NULL) 3016 *bar64 = 0; 3017 return; 3018 } 3019 3020 map = pci_read_config(dev, reg, 4); 3021 ln2range = pci_maprange(map); 3022 if (ln2range == 64) 3023 map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3024 3025 /* 3026 * Disable decoding via the command register before 3027 * determining the BAR's length since we will be placing it in 3028 * a weird state. 3029 */ 3030 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3031 pci_write_config(dev, PCIR_COMMAND, 3032 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 3033 3034 /* 3035 * Determine the BAR's length by writing all 1's. The bottom 3036 * log_2(size) bits of the BAR will stick as 0 when we read 3037 * the value back. 3038 * 3039 * NB: according to the PCI Local Bus Specification, rev. 3.0: 3040 * "Software writes 0FFFFFFFFh to both registers, reads them back, 3041 * and combines the result into a 64-bit value." (section 6.2.5.1) 3042 * 3043 * Writes to both registers must be performed before attempting to 3044 * read back the size value. 3045 */ 3046 testval = 0; 3047 pci_write_config(dev, reg, 0xffffffff, 4); 3048 if (ln2range == 64) { 3049 pci_write_config(dev, reg + 4, 0xffffffff, 4); 3050 testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3051 } 3052 testval |= pci_read_config(dev, reg, 4); 3053 3054 /* 3055 * Restore the original value of the BAR. We may have reprogrammed 3056 * the BAR of the low-level console device and when booting verbose, 3057 * we need the console device addressable. 3058 */ 3059 pci_write_config(dev, reg, map, 4); 3060 if (ln2range == 64) 3061 pci_write_config(dev, reg + 4, map >> 32, 4); 3062 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3063 3064 *mapp = map; 3065 *testvalp = testval; 3066 if (bar64 != NULL) 3067 *bar64 = (ln2range == 64); 3068 } 3069 3070 static void 3071 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base) 3072 { 3073 struct pci_devinfo *dinfo; 3074 int ln2range; 3075 3076 /* The device ROM BAR is always a 32-bit memory BAR. */ 3077 dinfo = device_get_ivars(dev); 3078 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3079 ln2range = 32; 3080 else 3081 ln2range = pci_maprange(pm->pm_value); 3082 pci_write_config(dev, pm->pm_reg, base, 4); 3083 if (ln2range == 64) 3084 pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4); 3085 pm->pm_value = pci_read_config(dev, pm->pm_reg, 4); 3086 if (ln2range == 64) 3087 pm->pm_value |= (pci_addr_t)pci_read_config(dev, 3088 pm->pm_reg + 4, 4) << 32; 3089 } 3090 3091 struct pci_map * 3092 pci_find_bar(device_t dev, int reg) 3093 { 3094 struct pci_devinfo *dinfo; 3095 struct pci_map *pm; 3096 3097 dinfo = device_get_ivars(dev); 3098 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3099 if (pm->pm_reg == reg) 3100 return (pm); 3101 } 3102 return (NULL); 3103 } 3104 3105 int 3106 pci_bar_enabled(device_t dev, struct pci_map *pm) 3107 { 3108 struct pci_devinfo *dinfo; 3109 uint16_t cmd; 3110 3111 dinfo = device_get_ivars(dev); 3112 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) && 3113 !(pm->pm_value & PCIM_BIOS_ENABLE)) 3114 return (0); 3115 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3116 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value)) 3117 return ((cmd & PCIM_CMD_MEMEN) != 0); 3118 else 3119 return ((cmd & PCIM_CMD_PORTEN) != 0); 3120 } 3121 3122 struct pci_map * 3123 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size) 3124 { 3125 struct pci_devinfo *dinfo; 3126 struct pci_map *pm, *prev; 3127 3128 dinfo = device_get_ivars(dev); 3129 pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO); 3130 pm->pm_reg = reg; 3131 pm->pm_value = value; 3132 pm->pm_size = size; 3133 STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) { 3134 KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x", 3135 reg)); 3136 if (STAILQ_NEXT(prev, pm_link) == NULL || 3137 STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg) 3138 break; 3139 } 3140 if (prev != NULL) 3141 STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link); 3142 else 3143 STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link); 3144 return (pm); 3145 } 3146 3147 static void 3148 pci_restore_bars(device_t dev) 3149 { 3150 struct pci_devinfo *dinfo; 3151 struct pci_map *pm; 3152 int ln2range; 3153 3154 dinfo = device_get_ivars(dev); 3155 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3156 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3157 ln2range = 32; 3158 else 3159 ln2range = pci_maprange(pm->pm_value); 3160 pci_write_config(dev, pm->pm_reg, pm->pm_value, 4); 3161 if (ln2range == 64) 3162 pci_write_config(dev, pm->pm_reg + 4, 3163 pm->pm_value >> 32, 4); 3164 } 3165 } 3166 3167 /* 3168 * Add a resource based on a pci map register. Return 1 if the map 3169 * register is a 32bit map register or 2 if it is a 64bit register. 3170 */ 3171 static int 3172 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, 3173 int force, int prefetch) 3174 { 3175 struct pci_map *pm; 3176 pci_addr_t base, map, testval; 3177 pci_addr_t start, end, count; 3178 int barlen, basezero, flags, maprange, mapsize, type; 3179 uint16_t cmd; 3180 struct resource *res; 3181 3182 /* 3183 * The BAR may already exist if the device is a CardBus card 3184 * whose CIS is stored in this BAR. 3185 */ 3186 pm = pci_find_bar(dev, reg); 3187 if (pm != NULL) { 3188 maprange = pci_maprange(pm->pm_value); 3189 barlen = maprange == 64 ? 2 : 1; 3190 return (barlen); 3191 } 3192 3193 pci_read_bar(dev, reg, &map, &testval, NULL); 3194 if (PCI_BAR_MEM(map)) { 3195 type = SYS_RES_MEMORY; 3196 if (map & PCIM_BAR_MEM_PREFETCH) 3197 prefetch = 1; 3198 } else 3199 type = SYS_RES_IOPORT; 3200 mapsize = pci_mapsize(testval); 3201 base = pci_mapbase(map); 3202 #ifdef __PCI_BAR_ZERO_VALID 3203 basezero = 0; 3204 #else 3205 basezero = base == 0; 3206 #endif 3207 maprange = pci_maprange(map); 3208 barlen = maprange == 64 ? 2 : 1; 3209 3210 /* 3211 * For I/O registers, if bottom bit is set, and the next bit up 3212 * isn't clear, we know we have a BAR that doesn't conform to the 3213 * spec, so ignore it. Also, sanity check the size of the data 3214 * areas to the type of memory involved. Memory must be at least 3215 * 16 bytes in size, while I/O ranges must be at least 4. 3216 */ 3217 if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0) 3218 return (barlen); 3219 if ((type == SYS_RES_MEMORY && mapsize < 4) || 3220 (type == SYS_RES_IOPORT && mapsize < 2)) 3221 return (barlen); 3222 3223 /* Save a record of this BAR. */ 3224 pm = pci_add_bar(dev, reg, map, mapsize); 3225 if (bootverbose) { 3226 printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d", 3227 reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize); 3228 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3229 printf(", port disabled\n"); 3230 else if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3231 printf(", memory disabled\n"); 3232 else 3233 printf(", enabled\n"); 3234 } 3235 3236 /* 3237 * If base is 0, then we have problems if this architecture does 3238 * not allow that. It is best to ignore such entries for the 3239 * moment. These will be allocated later if the driver specifically 3240 * requests them. However, some removable buses look better when 3241 * all resources are allocated, so allow '0' to be overriden. 3242 * 3243 * Similarly treat maps whose values is the same as the test value 3244 * read back. These maps have had all f's written to them by the 3245 * BIOS in an attempt to disable the resources. 3246 */ 3247 if (!force && (basezero || map == testval)) 3248 return (barlen); 3249 if ((u_long)base != base) { 3250 device_printf(bus, 3251 "pci%d:%d:%d:%d bar %#x too many address bits", 3252 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), 3253 pci_get_function(dev), reg); 3254 return (barlen); 3255 } 3256 3257 /* 3258 * This code theoretically does the right thing, but has 3259 * undesirable side effects in some cases where peripherals 3260 * respond oddly to having these bits enabled. Let the user 3261 * be able to turn them off (since pci_enable_io_modes is 1 by 3262 * default). 3263 */ 3264 if (pci_enable_io_modes) { 3265 /* Turn on resources that have been left off by a lazy BIOS */ 3266 if (type == SYS_RES_IOPORT && !pci_porten(dev)) { 3267 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3268 cmd |= PCIM_CMD_PORTEN; 3269 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3270 } 3271 if (type == SYS_RES_MEMORY && !pci_memen(dev)) { 3272 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3273 cmd |= PCIM_CMD_MEMEN; 3274 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3275 } 3276 } else { 3277 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3278 return (barlen); 3279 if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3280 return (barlen); 3281 } 3282 3283 count = (pci_addr_t)1 << mapsize; 3284 flags = RF_ALIGNMENT_LOG2(mapsize); 3285 if (prefetch) 3286 flags |= RF_PREFETCHABLE; 3287 if (basezero || base == pci_mapbase(testval) || pci_clear_bars) { 3288 start = 0; /* Let the parent decide. */ 3289 end = ~0; 3290 } else { 3291 start = base; 3292 end = base + count - 1; 3293 } 3294 resource_list_add(rl, type, reg, start, end, count); 3295 3296 /* 3297 * Try to allocate the resource for this BAR from our parent 3298 * so that this resource range is already reserved. The 3299 * driver for this device will later inherit this resource in 3300 * pci_alloc_resource(). 3301 */ 3302 res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count, 3303 flags); 3304 if ((pci_do_realloc_bars 3305 || pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR)) 3306 && res == NULL && (start != 0 || end != ~0)) { 3307 /* 3308 * If the allocation fails, try to allocate a resource for 3309 * this BAR using any available range. The firmware felt 3310 * it was important enough to assign a resource, so don't 3311 * disable decoding if we can help it. 3312 */ 3313 resource_list_delete(rl, type, reg); 3314 resource_list_add(rl, type, reg, 0, ~0, count); 3315 res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0, 3316 count, flags); 3317 } 3318 if (res == NULL) { 3319 /* 3320 * If the allocation fails, delete the resource list entry 3321 * and disable decoding for this device. 3322 * 3323 * If the driver requests this resource in the future, 3324 * pci_reserve_map() will try to allocate a fresh 3325 * resource range. 3326 */ 3327 resource_list_delete(rl, type, reg); 3328 pci_disable_io(dev, type); 3329 if (bootverbose) 3330 device_printf(bus, 3331 "pci%d:%d:%d:%d bar %#x failed to allocate\n", 3332 pci_get_domain(dev), pci_get_bus(dev), 3333 pci_get_slot(dev), pci_get_function(dev), reg); 3334 } else { 3335 start = rman_get_start(res); 3336 pci_write_bar(dev, pm, start); 3337 } 3338 return (barlen); 3339 } 3340 3341 /* 3342 * For ATA devices we need to decide early what addressing mode to use. 3343 * Legacy demands that the primary and secondary ATA ports sits on the 3344 * same addresses that old ISA hardware did. This dictates that we use 3345 * those addresses and ignore the BAR's if we cannot set PCI native 3346 * addressing mode. 3347 */ 3348 static void 3349 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force, 3350 uint32_t prefetchmask) 3351 { 3352 int rid, type, progif; 3353 #if 0 3354 /* if this device supports PCI native addressing use it */ 3355 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3356 if ((progif & 0x8a) == 0x8a) { 3357 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) && 3358 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) { 3359 printf("Trying ATA native PCI addressing mode\n"); 3360 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1); 3361 } 3362 } 3363 #endif 3364 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3365 type = SYS_RES_IOPORT; 3366 if (progif & PCIP_STORAGE_IDE_MODEPRIM) { 3367 pci_add_map(bus, dev, PCIR_BAR(0), rl, force, 3368 prefetchmask & (1 << 0)); 3369 pci_add_map(bus, dev, PCIR_BAR(1), rl, force, 3370 prefetchmask & (1 << 1)); 3371 } else { 3372 rid = PCIR_BAR(0); 3373 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8); 3374 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0, 3375 0x1f7, 8, 0); 3376 rid = PCIR_BAR(1); 3377 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1); 3378 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6, 3379 0x3f6, 1, 0); 3380 } 3381 if (progif & PCIP_STORAGE_IDE_MODESEC) { 3382 pci_add_map(bus, dev, PCIR_BAR(2), rl, force, 3383 prefetchmask & (1 << 2)); 3384 pci_add_map(bus, dev, PCIR_BAR(3), rl, force, 3385 prefetchmask & (1 << 3)); 3386 } else { 3387 rid = PCIR_BAR(2); 3388 resource_list_add(rl, type, rid, 0x170, 0x177, 8); 3389 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170, 3390 0x177, 8, 0); 3391 rid = PCIR_BAR(3); 3392 resource_list_add(rl, type, rid, 0x376, 0x376, 1); 3393 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376, 3394 0x376, 1, 0); 3395 } 3396 pci_add_map(bus, dev, PCIR_BAR(4), rl, force, 3397 prefetchmask & (1 << 4)); 3398 pci_add_map(bus, dev, PCIR_BAR(5), rl, force, 3399 prefetchmask & (1 << 5)); 3400 } 3401 3402 static void 3403 pci_assign_interrupt(device_t bus, device_t dev, int force_route) 3404 { 3405 struct pci_devinfo *dinfo = device_get_ivars(dev); 3406 pcicfgregs *cfg = &dinfo->cfg; 3407 char tunable_name[64]; 3408 int irq; 3409 3410 /* Has to have an intpin to have an interrupt. */ 3411 if (cfg->intpin == 0) 3412 return; 3413 3414 /* Let the user override the IRQ with a tunable. */ 3415 irq = PCI_INVALID_IRQ; 3416 snprintf(tunable_name, sizeof(tunable_name), 3417 "hw.pci%d.%d.%d.INT%c.irq", 3418 cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1); 3419 if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0)) 3420 irq = PCI_INVALID_IRQ; 3421 3422 /* 3423 * If we didn't get an IRQ via the tunable, then we either use the 3424 * IRQ value in the intline register or we ask the bus to route an 3425 * interrupt for us. If force_route is true, then we only use the 3426 * value in the intline register if the bus was unable to assign an 3427 * IRQ. 3428 */ 3429 if (!PCI_INTERRUPT_VALID(irq)) { 3430 if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route) 3431 irq = PCI_ASSIGN_INTERRUPT(bus, dev); 3432 if (!PCI_INTERRUPT_VALID(irq)) 3433 irq = cfg->intline; 3434 } 3435 3436 /* If after all that we don't have an IRQ, just bail. */ 3437 if (!PCI_INTERRUPT_VALID(irq)) 3438 return; 3439 3440 /* Update the config register if it changed. */ 3441 if (irq != cfg->intline) { 3442 cfg->intline = irq; 3443 pci_write_config(dev, PCIR_INTLINE, irq, 1); 3444 } 3445 3446 /* Add this IRQ as rid 0 interrupt resource. */ 3447 resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1); 3448 } 3449 3450 /* Perform early OHCI takeover from SMM. */ 3451 static void 3452 ohci_early_takeover(device_t self) 3453 { 3454 struct resource *res; 3455 uint32_t ctl; 3456 int rid; 3457 int i; 3458 3459 rid = PCIR_BAR(0); 3460 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3461 if (res == NULL) 3462 return; 3463 3464 ctl = bus_read_4(res, OHCI_CONTROL); 3465 if (ctl & OHCI_IR) { 3466 if (bootverbose) 3467 printf("ohci early: " 3468 "SMM active, request owner change\n"); 3469 bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR); 3470 for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) { 3471 DELAY(1000); 3472 ctl = bus_read_4(res, OHCI_CONTROL); 3473 } 3474 if (ctl & OHCI_IR) { 3475 if (bootverbose) 3476 printf("ohci early: " 3477 "SMM does not respond, resetting\n"); 3478 bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET); 3479 } 3480 /* Disable interrupts */ 3481 bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); 3482 } 3483 3484 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3485 } 3486 3487 /* Perform early UHCI takeover from SMM. */ 3488 static void 3489 uhci_early_takeover(device_t self) 3490 { 3491 struct resource *res; 3492 int rid; 3493 3494 /* 3495 * Set the PIRQD enable bit and switch off all the others. We don't 3496 * want legacy support to interfere with us XXX Does this also mean 3497 * that the BIOS won't touch the keyboard anymore if it is connected 3498 * to the ports of the root hub? 3499 */ 3500 pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2); 3501 3502 /* Disable interrupts */ 3503 rid = PCI_UHCI_BASE_REG; 3504 res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE); 3505 if (res != NULL) { 3506 bus_write_2(res, UHCI_INTR, 0); 3507 bus_release_resource(self, SYS_RES_IOPORT, rid, res); 3508 } 3509 } 3510 3511 /* Perform early EHCI takeover from SMM. */ 3512 static void 3513 ehci_early_takeover(device_t self) 3514 { 3515 struct resource *res; 3516 uint32_t cparams; 3517 uint32_t eec; 3518 uint8_t eecp; 3519 uint8_t bios_sem; 3520 uint8_t offs; 3521 int rid; 3522 int i; 3523 3524 rid = PCIR_BAR(0); 3525 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3526 if (res == NULL) 3527 return; 3528 3529 cparams = bus_read_4(res, EHCI_HCCPARAMS); 3530 3531 /* Synchronise with the BIOS if it owns the controller. */ 3532 for (eecp = EHCI_HCC_EECP(cparams); eecp != 0; 3533 eecp = EHCI_EECP_NEXT(eec)) { 3534 eec = pci_read_config(self, eecp, 4); 3535 if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) { 3536 continue; 3537 } 3538 bios_sem = pci_read_config(self, eecp + 3539 EHCI_LEGSUP_BIOS_SEM, 1); 3540 if (bios_sem == 0) { 3541 continue; 3542 } 3543 if (bootverbose) 3544 printf("ehci early: " 3545 "SMM active, request owner change\n"); 3546 3547 pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1); 3548 3549 for (i = 0; (i < 100) && (bios_sem != 0); i++) { 3550 DELAY(1000); 3551 bios_sem = pci_read_config(self, eecp + 3552 EHCI_LEGSUP_BIOS_SEM, 1); 3553 } 3554 3555 if (bios_sem != 0) { 3556 if (bootverbose) 3557 printf("ehci early: " 3558 "SMM does not respond\n"); 3559 } 3560 /* Disable interrupts */ 3561 offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION)); 3562 bus_write_4(res, offs + EHCI_USBINTR, 0); 3563 } 3564 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3565 } 3566 3567 /* Perform early XHCI takeover from SMM. */ 3568 static void 3569 xhci_early_takeover(device_t self) 3570 { 3571 struct resource *res; 3572 uint32_t cparams; 3573 uint32_t eec; 3574 uint8_t eecp; 3575 uint8_t bios_sem; 3576 uint8_t offs; 3577 int rid; 3578 int i; 3579 3580 rid = PCIR_BAR(0); 3581 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3582 if (res == NULL) 3583 return; 3584 3585 cparams = bus_read_4(res, XHCI_HCSPARAMS0); 3586 3587 eec = -1; 3588 3589 /* Synchronise with the BIOS if it owns the controller. */ 3590 for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec); 3591 eecp += XHCI_XECP_NEXT(eec) << 2) { 3592 eec = bus_read_4(res, eecp); 3593 3594 if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY) 3595 continue; 3596 3597 bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); 3598 if (bios_sem == 0) 3599 continue; 3600 3601 if (bootverbose) 3602 printf("xhci early: " 3603 "SMM active, request owner change\n"); 3604 3605 bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1); 3606 3607 /* wait a maximum of 5 second */ 3608 3609 for (i = 0; (i < 5000) && (bios_sem != 0); i++) { 3610 DELAY(1000); 3611 bios_sem = bus_read_1(res, eecp + 3612 XHCI_XECP_BIOS_SEM); 3613 } 3614 3615 if (bios_sem != 0) { 3616 if (bootverbose) 3617 printf("xhci early: " 3618 "SMM does not respond\n"); 3619 } 3620 3621 /* Disable interrupts */ 3622 offs = bus_read_1(res, XHCI_CAPLENGTH); 3623 bus_write_4(res, offs + XHCI_USBCMD, 0); 3624 bus_read_4(res, offs + XHCI_USBSTS); 3625 } 3626 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3627 } 3628 3629 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 3630 static void 3631 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg, 3632 struct resource_list *rl) 3633 { 3634 struct resource *res; 3635 char *cp; 3636 rman_res_t start, end, count; 3637 int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus; 3638 3639 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3640 case PCIM_HDRTYPE_BRIDGE: 3641 sec_reg = PCIR_SECBUS_1; 3642 sub_reg = PCIR_SUBBUS_1; 3643 break; 3644 case PCIM_HDRTYPE_CARDBUS: 3645 sec_reg = PCIR_SECBUS_2; 3646 sub_reg = PCIR_SUBBUS_2; 3647 break; 3648 default: 3649 return; 3650 } 3651 3652 /* 3653 * If the existing bus range is valid, attempt to reserve it 3654 * from our parent. If this fails for any reason, clear the 3655 * secbus and subbus registers. 3656 * 3657 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus? 3658 * This would at least preserve the existing sec_bus if it is 3659 * valid. 3660 */ 3661 sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1); 3662 sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1); 3663 3664 /* Quirk handling. */ 3665 switch (pci_get_devid(dev)) { 3666 case 0x12258086: /* Intel 82454KX/GX (Orion) */ 3667 sup_bus = pci_read_config(dev, 0x41, 1); 3668 if (sup_bus != 0xff) { 3669 sec_bus = sup_bus + 1; 3670 sub_bus = sup_bus + 1; 3671 PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1); 3672 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3673 } 3674 break; 3675 3676 case 0x00dd10de: 3677 /* Compaq R3000 BIOS sets wrong subordinate bus number. */ 3678 if ((cp = kern_getenv("smbios.planar.maker")) == NULL) 3679 break; 3680 if (strncmp(cp, "Compal", 6) != 0) { 3681 freeenv(cp); 3682 break; 3683 } 3684 freeenv(cp); 3685 if ((cp = kern_getenv("smbios.planar.product")) == NULL) 3686 break; 3687 if (strncmp(cp, "08A0", 4) != 0) { 3688 freeenv(cp); 3689 break; 3690 } 3691 freeenv(cp); 3692 if (sub_bus < 0xa) { 3693 sub_bus = 0xa; 3694 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3695 } 3696 break; 3697 } 3698 3699 if (bootverbose) 3700 printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus); 3701 if (sec_bus > 0 && sub_bus >= sec_bus) { 3702 start = sec_bus; 3703 end = sub_bus; 3704 count = end - start + 1; 3705 3706 resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count); 3707 3708 /* 3709 * If requested, clear secondary bus registers in 3710 * bridge devices to force a complete renumbering 3711 * rather than reserving the existing range. However, 3712 * preserve the existing size. 3713 */ 3714 if (pci_clear_buses) 3715 goto clear; 3716 3717 rid = 0; 3718 res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid, 3719 start, end, count, 0); 3720 if (res != NULL) 3721 return; 3722 3723 if (bootverbose) 3724 device_printf(bus, 3725 "pci%d:%d:%d:%d secbus failed to allocate\n", 3726 pci_get_domain(dev), pci_get_bus(dev), 3727 pci_get_slot(dev), pci_get_function(dev)); 3728 } 3729 3730 clear: 3731 PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1); 3732 PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1); 3733 } 3734 3735 static struct resource * 3736 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start, 3737 rman_res_t end, rman_res_t count, u_int flags) 3738 { 3739 struct pci_devinfo *dinfo; 3740 pcicfgregs *cfg; 3741 struct resource_list *rl; 3742 struct resource *res; 3743 int sec_reg, sub_reg; 3744 3745 dinfo = device_get_ivars(child); 3746 cfg = &dinfo->cfg; 3747 rl = &dinfo->resources; 3748 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3749 case PCIM_HDRTYPE_BRIDGE: 3750 sec_reg = PCIR_SECBUS_1; 3751 sub_reg = PCIR_SUBBUS_1; 3752 break; 3753 case PCIM_HDRTYPE_CARDBUS: 3754 sec_reg = PCIR_SECBUS_2; 3755 sub_reg = PCIR_SUBBUS_2; 3756 break; 3757 default: 3758 return (NULL); 3759 } 3760 3761 if (*rid != 0) 3762 return (NULL); 3763 3764 if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL) 3765 resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count); 3766 if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) { 3767 res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid, 3768 start, end, count, flags & ~RF_ACTIVE); 3769 if (res == NULL) { 3770 resource_list_delete(rl, PCI_RES_BUS, *rid); 3771 device_printf(child, "allocating %ju bus%s failed\n", 3772 count, count == 1 ? "" : "es"); 3773 return (NULL); 3774 } 3775 if (bootverbose) 3776 device_printf(child, 3777 "Lazy allocation of %ju bus%s at %ju\n", count, 3778 count == 1 ? "" : "es", rman_get_start(res)); 3779 PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1); 3780 PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1); 3781 } 3782 return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start, 3783 end, count, flags)); 3784 } 3785 #endif 3786 3787 static int 3788 pci_ea_bei_to_rid(device_t dev, int bei) 3789 { 3790 #ifdef PCI_IOV 3791 struct pci_devinfo *dinfo; 3792 int iov_pos; 3793 struct pcicfg_iov *iov; 3794 3795 dinfo = device_get_ivars(dev); 3796 iov = dinfo->cfg.iov; 3797 if (iov != NULL) 3798 iov_pos = iov->iov_pos; 3799 else 3800 iov_pos = 0; 3801 #endif 3802 3803 /* Check if matches BAR */ 3804 if ((bei >= PCIM_EA_BEI_BAR_0) && 3805 (bei <= PCIM_EA_BEI_BAR_5)) 3806 return (PCIR_BAR(bei)); 3807 3808 /* Check ROM */ 3809 if (bei == PCIM_EA_BEI_ROM) 3810 return (PCIR_BIOS); 3811 3812 #ifdef PCI_IOV 3813 /* Check if matches VF_BAR */ 3814 if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) && 3815 (bei <= PCIM_EA_BEI_VF_BAR_5)) 3816 return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) + 3817 iov_pos); 3818 #endif 3819 3820 return (-1); 3821 } 3822 3823 int 3824 pci_ea_is_enabled(device_t dev, int rid) 3825 { 3826 struct pci_ea_entry *ea; 3827 struct pci_devinfo *dinfo; 3828 3829 dinfo = device_get_ivars(dev); 3830 3831 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3832 if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid) 3833 return ((ea->eae_flags & PCIM_EA_ENABLE) > 0); 3834 } 3835 3836 return (0); 3837 } 3838 3839 void 3840 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov) 3841 { 3842 struct pci_ea_entry *ea; 3843 struct pci_devinfo *dinfo; 3844 pci_addr_t start, end, count; 3845 struct resource_list *rl; 3846 int type, flags, rid; 3847 struct resource *res; 3848 uint32_t tmp; 3849 #ifdef PCI_IOV 3850 struct pcicfg_iov *iov; 3851 #endif 3852 3853 dinfo = device_get_ivars(dev); 3854 rl = &dinfo->resources; 3855 flags = 0; 3856 3857 #ifdef PCI_IOV 3858 iov = dinfo->cfg.iov; 3859 #endif 3860 3861 if (dinfo->cfg.ea.ea_location == 0) 3862 return; 3863 3864 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3865 3866 /* 3867 * TODO: Ignore EA-BAR if is not enabled. 3868 * Currently the EA implementation supports 3869 * only situation, where EA structure contains 3870 * predefined entries. In case they are not enabled 3871 * leave them unallocated and proceed with 3872 * a legacy-BAR mechanism. 3873 */ 3874 if ((ea->eae_flags & PCIM_EA_ENABLE) == 0) 3875 continue; 3876 3877 switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) { 3878 case PCIM_EA_P_MEM_PREFETCH: 3879 case PCIM_EA_P_VF_MEM_PREFETCH: 3880 flags = RF_PREFETCHABLE; 3881 /* FALLTHROUGH */ 3882 case PCIM_EA_P_VF_MEM: 3883 case PCIM_EA_P_MEM: 3884 type = SYS_RES_MEMORY; 3885 break; 3886 case PCIM_EA_P_IO: 3887 type = SYS_RES_IOPORT; 3888 break; 3889 default: 3890 continue; 3891 } 3892 3893 if (alloc_iov != 0) { 3894 #ifdef PCI_IOV 3895 /* Allocating IOV, confirm BEI matches */ 3896 if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) || 3897 (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5)) 3898 continue; 3899 #else 3900 continue; 3901 #endif 3902 } else { 3903 /* Allocating BAR, confirm BEI matches */ 3904 if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) || 3905 (ea->eae_bei > PCIM_EA_BEI_BAR_5)) && 3906 (ea->eae_bei != PCIM_EA_BEI_ROM)) 3907 continue; 3908 } 3909 3910 rid = pci_ea_bei_to_rid(dev, ea->eae_bei); 3911 if (rid < 0) 3912 continue; 3913 3914 /* Skip resources already allocated by EA */ 3915 if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) || 3916 (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL)) 3917 continue; 3918 3919 start = ea->eae_base; 3920 count = ea->eae_max_offset + 1; 3921 #ifdef PCI_IOV 3922 if (iov != NULL) 3923 count = count * iov->iov_num_vfs; 3924 #endif 3925 end = start + count - 1; 3926 if (count == 0) 3927 continue; 3928 3929 resource_list_add(rl, type, rid, start, end, count); 3930 res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count, 3931 flags); 3932 if (res == NULL) { 3933 resource_list_delete(rl, type, rid); 3934 3935 /* 3936 * Failed to allocate using EA, disable entry. 3937 * Another attempt to allocation will be performed 3938 * further, but this time using legacy BAR registers 3939 */ 3940 tmp = pci_read_config(dev, ea->eae_cfg_offset, 4); 3941 tmp &= ~PCIM_EA_ENABLE; 3942 pci_write_config(dev, ea->eae_cfg_offset, tmp, 4); 3943 3944 /* 3945 * Disabling entry might fail in case it is hardwired. 3946 * Read flags again to match current status. 3947 */ 3948 ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4); 3949 3950 continue; 3951 } 3952 3953 /* As per specification, fill BAR with zeros */ 3954 pci_write_config(dev, rid, 0, 4); 3955 } 3956 } 3957 3958 void 3959 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask) 3960 { 3961 struct pci_devinfo *dinfo; 3962 pcicfgregs *cfg; 3963 struct resource_list *rl; 3964 const struct pci_quirk *q; 3965 uint32_t devid; 3966 int i; 3967 3968 dinfo = device_get_ivars(dev); 3969 cfg = &dinfo->cfg; 3970 rl = &dinfo->resources; 3971 devid = (cfg->device << 16) | cfg->vendor; 3972 3973 /* Allocate resources using Enhanced Allocation */ 3974 pci_add_resources_ea(bus, dev, 0); 3975 3976 /* ATA devices needs special map treatment */ 3977 if ((pci_get_class(dev) == PCIC_STORAGE) && 3978 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) && 3979 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) || 3980 (!pci_read_config(dev, PCIR_BAR(0), 4) && 3981 !pci_read_config(dev, PCIR_BAR(2), 4))) ) 3982 pci_ata_maps(bus, dev, rl, force, prefetchmask); 3983 else 3984 for (i = 0; i < cfg->nummaps;) { 3985 /* Skip resources already managed by EA */ 3986 if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) || 3987 (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) || 3988 pci_ea_is_enabled(dev, PCIR_BAR(i))) { 3989 i++; 3990 continue; 3991 } 3992 3993 /* 3994 * Skip quirked resources. 3995 */ 3996 for (q = &pci_quirks[0]; q->devid != 0; q++) 3997 if (q->devid == devid && 3998 q->type == PCI_QUIRK_UNMAP_REG && 3999 q->arg1 == PCIR_BAR(i)) 4000 break; 4001 if (q->devid != 0) { 4002 i++; 4003 continue; 4004 } 4005 i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force, 4006 prefetchmask & (1 << i)); 4007 } 4008 4009 /* 4010 * Add additional, quirked resources. 4011 */ 4012 for (q = &pci_quirks[0]; q->devid != 0; q++) 4013 if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG) 4014 pci_add_map(bus, dev, q->arg1, rl, force, 0); 4015 4016 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) { 4017 #ifdef __PCI_REROUTE_INTERRUPT 4018 /* 4019 * Try to re-route interrupts. Sometimes the BIOS or 4020 * firmware may leave bogus values in these registers. 4021 * If the re-route fails, then just stick with what we 4022 * have. 4023 */ 4024 pci_assign_interrupt(bus, dev, 1); 4025 #else 4026 pci_assign_interrupt(bus, dev, 0); 4027 #endif 4028 } 4029 4030 if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS && 4031 pci_get_subclass(dev) == PCIS_SERIALBUS_USB) { 4032 if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI) 4033 xhci_early_takeover(dev); 4034 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI) 4035 ehci_early_takeover(dev); 4036 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI) 4037 ohci_early_takeover(dev); 4038 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI) 4039 uhci_early_takeover(dev); 4040 } 4041 4042 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 4043 /* 4044 * Reserve resources for secondary bus ranges behind bridge 4045 * devices. 4046 */ 4047 pci_reserve_secbus(bus, dev, cfg, rl); 4048 #endif 4049 } 4050 4051 static struct pci_devinfo * 4052 pci_identify_function(device_t pcib, device_t dev, int domain, int busno, 4053 int slot, int func) 4054 { 4055 struct pci_devinfo *dinfo; 4056 4057 dinfo = pci_read_device(pcib, dev, domain, busno, slot, func); 4058 if (dinfo != NULL) 4059 pci_add_child(dev, dinfo); 4060 4061 return (dinfo); 4062 } 4063 4064 void 4065 pci_add_children(device_t dev, int domain, int busno) 4066 { 4067 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4068 device_t pcib = device_get_parent(dev); 4069 struct pci_devinfo *dinfo; 4070 int maxslots; 4071 int s, f, pcifunchigh; 4072 uint8_t hdrtype; 4073 int first_func; 4074 4075 /* 4076 * Try to detect a device at slot 0, function 0. If it exists, try to 4077 * enable ARI. We must enable ARI before detecting the rest of the 4078 * functions on this bus as ARI changes the set of slots and functions 4079 * that are legal on this bus. 4080 */ 4081 dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0); 4082 if (dinfo != NULL && pci_enable_ari) 4083 PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev); 4084 4085 /* 4086 * Start looking for new devices on slot 0 at function 1 because we 4087 * just identified the device at slot 0, function 0. 4088 */ 4089 first_func = 1; 4090 4091 maxslots = PCIB_MAXSLOTS(pcib); 4092 for (s = 0; s <= maxslots; s++, first_func = 0) { 4093 pcifunchigh = 0; 4094 f = 0; 4095 DELAY(1); 4096 hdrtype = REG(PCIR_HDRTYPE, 1); 4097 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4098 continue; 4099 if (hdrtype & PCIM_MFDEV) 4100 pcifunchigh = PCIB_MAXFUNCS(pcib); 4101 for (f = first_func; f <= pcifunchigh; f++) 4102 pci_identify_function(pcib, dev, domain, busno, s, f); 4103 } 4104 #undef REG 4105 } 4106 4107 int 4108 pci_rescan_method(device_t dev) 4109 { 4110 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4111 device_t pcib = device_get_parent(dev); 4112 device_t child, *devlist, *unchanged; 4113 int devcount, error, i, j, maxslots, oldcount; 4114 int busno, domain, s, f, pcifunchigh; 4115 uint8_t hdrtype; 4116 4117 /* No need to check for ARI on a rescan. */ 4118 error = device_get_children(dev, &devlist, &devcount); 4119 if (error) 4120 return (error); 4121 if (devcount != 0) { 4122 unchanged = malloc(devcount * sizeof(device_t), M_TEMP, 4123 M_NOWAIT | M_ZERO); 4124 if (unchanged == NULL) { 4125 free(devlist, M_TEMP); 4126 return (ENOMEM); 4127 } 4128 } else 4129 unchanged = NULL; 4130 4131 domain = pcib_get_domain(dev); 4132 busno = pcib_get_bus(dev); 4133 maxslots = PCIB_MAXSLOTS(pcib); 4134 for (s = 0; s <= maxslots; s++) { 4135 /* If function 0 is not present, skip to the next slot. */ 4136 f = 0; 4137 if (REG(PCIR_VENDOR, 2) == 0xffff) 4138 continue; 4139 pcifunchigh = 0; 4140 hdrtype = REG(PCIR_HDRTYPE, 1); 4141 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4142 continue; 4143 if (hdrtype & PCIM_MFDEV) 4144 pcifunchigh = PCIB_MAXFUNCS(pcib); 4145 for (f = 0; f <= pcifunchigh; f++) { 4146 if (REG(PCIR_VENDOR, 2) == 0xffff) 4147 continue; 4148 4149 /* 4150 * Found a valid function. Check if a 4151 * device_t for this device already exists. 4152 */ 4153 for (i = 0; i < devcount; i++) { 4154 child = devlist[i]; 4155 if (child == NULL) 4156 continue; 4157 if (pci_get_slot(child) == s && 4158 pci_get_function(child) == f) { 4159 unchanged[i] = child; 4160 goto next_func; 4161 } 4162 } 4163 4164 pci_identify_function(pcib, dev, domain, busno, s, f); 4165 next_func:; 4166 } 4167 } 4168 4169 /* Remove devices that are no longer present. */ 4170 for (i = 0; i < devcount; i++) { 4171 if (unchanged[i] != NULL) 4172 continue; 4173 device_delete_child(dev, devlist[i]); 4174 } 4175 4176 free(devlist, M_TEMP); 4177 oldcount = devcount; 4178 4179 /* Try to attach the devices just added. */ 4180 error = device_get_children(dev, &devlist, &devcount); 4181 if (error) { 4182 free(unchanged, M_TEMP); 4183 return (error); 4184 } 4185 4186 for (i = 0; i < devcount; i++) { 4187 for (j = 0; j < oldcount; j++) { 4188 if (devlist[i] == unchanged[j]) 4189 goto next_device; 4190 } 4191 4192 device_probe_and_attach(devlist[i]); 4193 next_device:; 4194 } 4195 4196 free(unchanged, M_TEMP); 4197 free(devlist, M_TEMP); 4198 return (0); 4199 #undef REG 4200 } 4201 4202 #ifdef PCI_IOV 4203 device_t 4204 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid, 4205 uint16_t did) 4206 { 4207 struct pci_devinfo *vf_dinfo; 4208 device_t pcib; 4209 int busno, slot, func; 4210 4211 pcib = device_get_parent(bus); 4212 4213 PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func); 4214 4215 vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno, 4216 slot, func, vid, did); 4217 4218 vf_dinfo->cfg.flags |= PCICFG_VF; 4219 pci_add_child(bus, vf_dinfo); 4220 4221 return (vf_dinfo->cfg.dev); 4222 } 4223 4224 device_t 4225 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid, 4226 uint16_t vid, uint16_t did) 4227 { 4228 4229 return (pci_add_iov_child(bus, pf, rid, vid, did)); 4230 } 4231 #endif 4232 4233 static void 4234 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo) 4235 { 4236 int aer; 4237 uint32_t r; 4238 uint16_t r2; 4239 4240 if (dinfo->cfg.pcie.pcie_location != 0 && 4241 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) { 4242 r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4243 PCIER_ROOT_CTL, 2); 4244 r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR | 4245 PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL); 4246 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4247 PCIER_ROOT_CTL, r2, 2); 4248 } 4249 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 4250 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 4251 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 4252 if (r != 0 && bootverbose) { 4253 pci_printf(&dinfo->cfg, 4254 "clearing AER UC 0x%08x -> 0x%08x\n", 4255 r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4256 4)); 4257 } 4258 4259 r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4); 4260 r &= ~(PCIM_AER_UC_TRAINING_ERROR | 4261 PCIM_AER_UC_DL_PROTOCOL_ERROR | 4262 PCIM_AER_UC_SURPRISE_LINK_DOWN | 4263 PCIM_AER_UC_POISONED_TLP | 4264 PCIM_AER_UC_FC_PROTOCOL_ERROR | 4265 PCIM_AER_UC_COMPLETION_TIMEOUT | 4266 PCIM_AER_UC_COMPLETER_ABORT | 4267 PCIM_AER_UC_UNEXPECTED_COMPLETION | 4268 PCIM_AER_UC_RECEIVER_OVERFLOW | 4269 PCIM_AER_UC_MALFORMED_TLP | 4270 PCIM_AER_UC_ECRC_ERROR | 4271 PCIM_AER_UC_UNSUPPORTED_REQUEST | 4272 PCIM_AER_UC_ACS_VIOLATION | 4273 PCIM_AER_UC_INTERNAL_ERROR | 4274 PCIM_AER_UC_MC_BLOCKED_TLP | 4275 PCIM_AER_UC_ATOMIC_EGRESS_BLK | 4276 PCIM_AER_UC_TLP_PREFIX_BLOCKED); 4277 pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4); 4278 4279 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 4280 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 4281 if (r != 0 && bootverbose) { 4282 pci_printf(&dinfo->cfg, 4283 "clearing AER COR 0x%08x -> 0x%08x\n", 4284 r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4285 4)); 4286 } 4287 4288 r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4); 4289 r &= ~(PCIM_AER_COR_RECEIVER_ERROR | 4290 PCIM_AER_COR_BAD_TLP | 4291 PCIM_AER_COR_BAD_DLLP | 4292 PCIM_AER_COR_REPLAY_ROLLOVER | 4293 PCIM_AER_COR_REPLAY_TIMEOUT | 4294 PCIM_AER_COR_ADVISORY_NF_ERROR | 4295 PCIM_AER_COR_INTERNAL_ERROR | 4296 PCIM_AER_COR_HEADER_LOG_OVFLOW); 4297 pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4); 4298 4299 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4300 PCIER_DEVICE_CTL, 2); 4301 r |= PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE | 4302 PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE; 4303 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4304 PCIER_DEVICE_CTL, r, 2); 4305 } 4306 } 4307 4308 void 4309 pci_add_child(device_t bus, struct pci_devinfo *dinfo) 4310 { 4311 device_t dev; 4312 4313 dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1); 4314 device_set_ivars(dev, dinfo); 4315 resource_list_init(&dinfo->resources); 4316 pci_cfg_save(dev, dinfo, 0); 4317 pci_cfg_restore(dev, dinfo); 4318 pci_print_verbose(dinfo); 4319 pci_add_resources(bus, dev, 0, 0); 4320 pci_child_added(dinfo->cfg.dev); 4321 4322 if (pci_clear_aer_on_attach) 4323 pci_add_child_clear_aer(dev, dinfo); 4324 4325 EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev); 4326 } 4327 4328 void 4329 pci_child_added_method(device_t dev, device_t child) 4330 { 4331 4332 } 4333 4334 static int 4335 pci_probe(device_t dev) 4336 { 4337 4338 device_set_desc(dev, "PCI bus"); 4339 4340 /* Allow other subclasses to override this driver. */ 4341 return (BUS_PROBE_GENERIC); 4342 } 4343 4344 int 4345 pci_attach_common(device_t dev) 4346 { 4347 struct pci_softc *sc; 4348 int busno, domain; 4349 #ifdef PCI_RES_BUS 4350 int rid; 4351 #endif 4352 4353 sc = device_get_softc(dev); 4354 domain = pcib_get_domain(dev); 4355 busno = pcib_get_bus(dev); 4356 #ifdef PCI_RES_BUS 4357 rid = 0; 4358 sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno, 4359 1, 0); 4360 if (sc->sc_bus == NULL) { 4361 device_printf(dev, "failed to allocate bus number\n"); 4362 return (ENXIO); 4363 } 4364 #endif 4365 if (bootverbose) 4366 device_printf(dev, "domain=%d, physical bus=%d\n", 4367 domain, busno); 4368 sc->sc_dma_tag = bus_get_dma_tag(dev); 4369 return (0); 4370 } 4371 4372 int 4373 pci_attach(device_t dev) 4374 { 4375 int busno, domain, error; 4376 4377 error = pci_attach_common(dev); 4378 if (error) 4379 return (error); 4380 4381 /* 4382 * Since there can be multiple independently numbered PCI 4383 * buses on systems with multiple PCI domains, we can't use 4384 * the unit number to decide which bus we are probing. We ask 4385 * the parent pcib what our domain and bus numbers are. 4386 */ 4387 domain = pcib_get_domain(dev); 4388 busno = pcib_get_bus(dev); 4389 pci_add_children(dev, domain, busno); 4390 return (bus_generic_attach(dev)); 4391 } 4392 4393 int 4394 pci_detach(device_t dev) 4395 { 4396 #ifdef PCI_RES_BUS 4397 struct pci_softc *sc; 4398 #endif 4399 int error; 4400 4401 error = bus_generic_detach(dev); 4402 if (error) 4403 return (error); 4404 #ifdef PCI_RES_BUS 4405 sc = device_get_softc(dev); 4406 error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus); 4407 if (error) 4408 return (error); 4409 #endif 4410 return (device_delete_children(dev)); 4411 } 4412 4413 static void 4414 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp) 4415 { 4416 int line, unit; 4417 const char *at; 4418 char me1[24], me2[32]; 4419 uint8_t b, s, f; 4420 uint32_t d; 4421 4422 d = pci_get_domain(child); 4423 b = pci_get_bus(child); 4424 s = pci_get_slot(child); 4425 f = pci_get_function(child); 4426 snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f); 4427 snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f); 4428 line = 0; 4429 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 4430 resource_string_value(name, unit, "at", &at); 4431 if (strcmp(at, me1) != 0 && strcmp(at, me2) != 0) 4432 continue; /* No match, try next candidate */ 4433 *unitp = unit; 4434 return; 4435 } 4436 } 4437 4438 static void 4439 pci_set_power_child(device_t dev, device_t child, int state) 4440 { 4441 device_t pcib; 4442 int dstate; 4443 4444 /* 4445 * Set the device to the given state. If the firmware suggests 4446 * a different power state, use it instead. If power management 4447 * is not present, the firmware is responsible for managing 4448 * device power. Skip children who aren't attached since they 4449 * are handled separately. 4450 */ 4451 pcib = device_get_parent(dev); 4452 dstate = state; 4453 if (device_is_attached(child) && 4454 PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0) 4455 pci_set_powerstate(child, dstate); 4456 } 4457 4458 int 4459 pci_suspend_child(device_t dev, device_t child) 4460 { 4461 struct pci_devinfo *dinfo; 4462 struct resource_list_entry *rle; 4463 int error; 4464 4465 dinfo = device_get_ivars(child); 4466 4467 /* 4468 * Save the PCI configuration space for the child and set the 4469 * device in the appropriate power state for this sleep state. 4470 */ 4471 pci_cfg_save(child, dinfo, 0); 4472 4473 /* Suspend devices before potentially powering them down. */ 4474 error = bus_generic_suspend_child(dev, child); 4475 4476 if (error) 4477 return (error); 4478 4479 if (pci_do_power_suspend) { 4480 /* 4481 * Make sure this device's interrupt handler is not invoked 4482 * in the case the device uses a shared interrupt that can 4483 * be raised by some other device. 4484 * This is applicable only to regular (legacy) PCI interrupts 4485 * as MSI/MSI-X interrupts are never shared. 4486 */ 4487 rle = resource_list_find(&dinfo->resources, 4488 SYS_RES_IRQ, 0); 4489 if (rle != NULL && rle->res != NULL) 4490 (void)bus_suspend_intr(child, rle->res); 4491 pci_set_power_child(dev, child, PCI_POWERSTATE_D3); 4492 } 4493 4494 return (0); 4495 } 4496 4497 int 4498 pci_resume_child(device_t dev, device_t child) 4499 { 4500 struct pci_devinfo *dinfo; 4501 struct resource_list_entry *rle; 4502 4503 if (pci_do_power_resume) 4504 pci_set_power_child(dev, child, PCI_POWERSTATE_D0); 4505 4506 dinfo = device_get_ivars(child); 4507 pci_cfg_restore(child, dinfo); 4508 if (!device_is_attached(child)) 4509 pci_cfg_save(child, dinfo, 1); 4510 4511 bus_generic_resume_child(dev, child); 4512 4513 /* 4514 * Allow interrupts only after fully resuming the driver and hardware. 4515 */ 4516 if (pci_do_power_suspend) { 4517 /* See pci_suspend_child for details. */ 4518 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 4519 if (rle != NULL && rle->res != NULL) 4520 (void)bus_resume_intr(child, rle->res); 4521 } 4522 4523 return (0); 4524 } 4525 4526 int 4527 pci_resume(device_t dev) 4528 { 4529 device_t child, *devlist; 4530 int error, i, numdevs; 4531 4532 if ((error = device_get_children(dev, &devlist, &numdevs)) != 0) 4533 return (error); 4534 4535 /* 4536 * Resume critical devices first, then everything else later. 4537 */ 4538 for (i = 0; i < numdevs; i++) { 4539 child = devlist[i]; 4540 switch (pci_get_class(child)) { 4541 case PCIC_DISPLAY: 4542 case PCIC_MEMORY: 4543 case PCIC_BRIDGE: 4544 case PCIC_BASEPERIPH: 4545 BUS_RESUME_CHILD(dev, child); 4546 break; 4547 } 4548 } 4549 for (i = 0; i < numdevs; i++) { 4550 child = devlist[i]; 4551 switch (pci_get_class(child)) { 4552 case PCIC_DISPLAY: 4553 case PCIC_MEMORY: 4554 case PCIC_BRIDGE: 4555 case PCIC_BASEPERIPH: 4556 break; 4557 default: 4558 BUS_RESUME_CHILD(dev, child); 4559 } 4560 } 4561 free(devlist, M_TEMP); 4562 return (0); 4563 } 4564 4565 static void 4566 pci_load_vendor_data(void) 4567 { 4568 caddr_t data; 4569 void *ptr; 4570 size_t sz; 4571 4572 data = preload_search_by_type("pci_vendor_data"); 4573 if (data != NULL) { 4574 ptr = preload_fetch_addr(data); 4575 sz = preload_fetch_size(data); 4576 if (ptr != NULL && sz != 0) { 4577 pci_vendordata = ptr; 4578 pci_vendordata_size = sz; 4579 /* terminate the database */ 4580 pci_vendordata[pci_vendordata_size] = '\n'; 4581 } 4582 } 4583 } 4584 4585 void 4586 pci_driver_added(device_t dev, driver_t *driver) 4587 { 4588 int numdevs; 4589 device_t *devlist; 4590 device_t child; 4591 struct pci_devinfo *dinfo; 4592 int i; 4593 4594 if (bootverbose) 4595 device_printf(dev, "driver added\n"); 4596 DEVICE_IDENTIFY(driver, dev); 4597 if (device_get_children(dev, &devlist, &numdevs) != 0) 4598 return; 4599 for (i = 0; i < numdevs; i++) { 4600 child = devlist[i]; 4601 if (device_get_state(child) != DS_NOTPRESENT) 4602 continue; 4603 dinfo = device_get_ivars(child); 4604 pci_print_verbose(dinfo); 4605 if (bootverbose) 4606 pci_printf(&dinfo->cfg, "reprobing on driver added\n"); 4607 pci_cfg_restore(child, dinfo); 4608 if (device_probe_and_attach(child) != 0) 4609 pci_child_detached(dev, child); 4610 } 4611 free(devlist, M_TEMP); 4612 } 4613 4614 int 4615 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4616 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4617 { 4618 struct pci_devinfo *dinfo; 4619 struct msix_table_entry *mte; 4620 struct msix_vector *mv; 4621 uint64_t addr; 4622 uint32_t data; 4623 void *cookie; 4624 int error, rid; 4625 4626 error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr, 4627 arg, &cookie); 4628 if (error) 4629 return (error); 4630 4631 /* If this is not a direct child, just bail out. */ 4632 if (device_get_parent(child) != dev) { 4633 *cookiep = cookie; 4634 return(0); 4635 } 4636 4637 rid = rman_get_rid(irq); 4638 if (rid == 0) { 4639 /* Make sure that INTx is enabled */ 4640 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4641 } else { 4642 /* 4643 * Check to see if the interrupt is MSI or MSI-X. 4644 * Ask our parent to map the MSI and give 4645 * us the address and data register values. 4646 * If we fail for some reason, teardown the 4647 * interrupt handler. 4648 */ 4649 dinfo = device_get_ivars(child); 4650 if (dinfo->cfg.msi.msi_alloc > 0) { 4651 if (dinfo->cfg.msi.msi_addr == 0) { 4652 KASSERT(dinfo->cfg.msi.msi_handlers == 0, 4653 ("MSI has handlers, but vectors not mapped")); 4654 error = PCIB_MAP_MSI(device_get_parent(dev), 4655 child, rman_get_start(irq), &addr, &data); 4656 if (error) 4657 goto bad; 4658 dinfo->cfg.msi.msi_addr = addr; 4659 dinfo->cfg.msi.msi_data = data; 4660 } 4661 if (dinfo->cfg.msi.msi_handlers == 0) 4662 pci_enable_msi(child, dinfo->cfg.msi.msi_addr, 4663 dinfo->cfg.msi.msi_data); 4664 dinfo->cfg.msi.msi_handlers++; 4665 } else { 4666 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4667 ("No MSI or MSI-X interrupts allocated")); 4668 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4669 ("MSI-X index too high")); 4670 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4671 KASSERT(mte->mte_vector != 0, ("no message vector")); 4672 mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1]; 4673 KASSERT(mv->mv_irq == rman_get_start(irq), 4674 ("IRQ mismatch")); 4675 if (mv->mv_address == 0) { 4676 KASSERT(mte->mte_handlers == 0, 4677 ("MSI-X table entry has handlers, but vector not mapped")); 4678 error = PCIB_MAP_MSI(device_get_parent(dev), 4679 child, rman_get_start(irq), &addr, &data); 4680 if (error) 4681 goto bad; 4682 mv->mv_address = addr; 4683 mv->mv_data = data; 4684 } 4685 4686 /* 4687 * The MSIX table entry must be made valid by 4688 * incrementing the mte_handlers before 4689 * calling pci_enable_msix() and 4690 * pci_resume_msix(). Else the MSIX rewrite 4691 * table quirk will not work as expected. 4692 */ 4693 mte->mte_handlers++; 4694 if (mte->mte_handlers == 1) { 4695 pci_enable_msix(child, rid - 1, mv->mv_address, 4696 mv->mv_data); 4697 pci_unmask_msix(child, rid - 1); 4698 } 4699 } 4700 4701 /* 4702 * Make sure that INTx is disabled if we are using MSI/MSI-X, 4703 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG, 4704 * in which case we "enable" INTx so MSI/MSI-X actually works. 4705 */ 4706 if (!pci_has_quirk(pci_get_devid(child), 4707 PCI_QUIRK_MSI_INTX_BUG)) 4708 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4709 else 4710 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4711 bad: 4712 if (error) { 4713 (void)bus_generic_teardown_intr(dev, child, irq, 4714 cookie); 4715 return (error); 4716 } 4717 } 4718 *cookiep = cookie; 4719 return (0); 4720 } 4721 4722 int 4723 pci_teardown_intr(device_t dev, device_t child, struct resource *irq, 4724 void *cookie) 4725 { 4726 struct msix_table_entry *mte; 4727 struct resource_list_entry *rle; 4728 struct pci_devinfo *dinfo; 4729 int error, rid; 4730 4731 if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE)) 4732 return (EINVAL); 4733 4734 /* If this isn't a direct child, just bail out */ 4735 if (device_get_parent(child) != dev) 4736 return(bus_generic_teardown_intr(dev, child, irq, cookie)); 4737 4738 rid = rman_get_rid(irq); 4739 if (rid == 0) { 4740 /* Mask INTx */ 4741 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4742 } else { 4743 /* 4744 * Check to see if the interrupt is MSI or MSI-X. If so, 4745 * decrement the appropriate handlers count and mask the 4746 * MSI-X message, or disable MSI messages if the count 4747 * drops to 0. 4748 */ 4749 dinfo = device_get_ivars(child); 4750 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid); 4751 if (rle->res != irq) 4752 return (EINVAL); 4753 if (dinfo->cfg.msi.msi_alloc > 0) { 4754 KASSERT(rid <= dinfo->cfg.msi.msi_alloc, 4755 ("MSI-X index too high")); 4756 if (dinfo->cfg.msi.msi_handlers == 0) 4757 return (EINVAL); 4758 dinfo->cfg.msi.msi_handlers--; 4759 if (dinfo->cfg.msi.msi_handlers == 0) 4760 pci_disable_msi(child); 4761 } else { 4762 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4763 ("No MSI or MSI-X interrupts allocated")); 4764 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4765 ("MSI-X index too high")); 4766 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4767 if (mte->mte_handlers == 0) 4768 return (EINVAL); 4769 mte->mte_handlers--; 4770 if (mte->mte_handlers == 0) 4771 pci_mask_msix(child, rid - 1); 4772 } 4773 } 4774 error = bus_generic_teardown_intr(dev, child, irq, cookie); 4775 if (rid > 0) 4776 KASSERT(error == 0, 4777 ("%s: generic teardown failed for MSI/MSI-X", __func__)); 4778 return (error); 4779 } 4780 4781 int 4782 pci_print_child(device_t dev, device_t child) 4783 { 4784 struct pci_devinfo *dinfo; 4785 struct resource_list *rl; 4786 int retval = 0; 4787 4788 dinfo = device_get_ivars(child); 4789 rl = &dinfo->resources; 4790 4791 retval += bus_print_child_header(dev, child); 4792 4793 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 4794 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); 4795 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 4796 if (device_get_flags(dev)) 4797 retval += printf(" flags %#x", device_get_flags(dev)); 4798 4799 retval += printf(" at device %d.%d", pci_get_slot(child), 4800 pci_get_function(child)); 4801 4802 retval += bus_print_child_domain(dev, child); 4803 retval += bus_print_child_footer(dev, child); 4804 4805 return (retval); 4806 } 4807 4808 static const struct 4809 { 4810 int class; 4811 int subclass; 4812 int report; /* 0 = bootverbose, 1 = always */ 4813 const char *desc; 4814 } pci_nomatch_tab[] = { 4815 {PCIC_OLD, -1, 1, "old"}, 4816 {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"}, 4817 {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"}, 4818 {PCIC_STORAGE, -1, 1, "mass storage"}, 4819 {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"}, 4820 {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"}, 4821 {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"}, 4822 {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"}, 4823 {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"}, 4824 {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"}, 4825 {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"}, 4826 {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"}, 4827 {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"}, 4828 {PCIC_NETWORK, -1, 1, "network"}, 4829 {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"}, 4830 {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"}, 4831 {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"}, 4832 {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"}, 4833 {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"}, 4834 {PCIC_DISPLAY, -1, 1, "display"}, 4835 {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"}, 4836 {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"}, 4837 {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"}, 4838 {PCIC_MULTIMEDIA, -1, 1, "multimedia"}, 4839 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"}, 4840 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"}, 4841 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"}, 4842 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"}, 4843 {PCIC_MEMORY, -1, 1, "memory"}, 4844 {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"}, 4845 {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"}, 4846 {PCIC_BRIDGE, -1, 1, "bridge"}, 4847 {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"}, 4848 {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"}, 4849 {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"}, 4850 {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"}, 4851 {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"}, 4852 {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"}, 4853 {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"}, 4854 {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"}, 4855 {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"}, 4856 {PCIC_SIMPLECOMM, -1, 1, "simple comms"}, 4857 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */ 4858 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"}, 4859 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"}, 4860 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"}, 4861 {PCIC_BASEPERIPH, -1, 0, "base peripheral"}, 4862 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"}, 4863 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"}, 4864 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"}, 4865 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"}, 4866 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"}, 4867 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"}, 4868 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"}, 4869 {PCIC_INPUTDEV, -1, 1, "input device"}, 4870 {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"}, 4871 {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"}, 4872 {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"}, 4873 {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"}, 4874 {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"}, 4875 {PCIC_DOCKING, -1, 1, "docking station"}, 4876 {PCIC_PROCESSOR, -1, 1, "processor"}, 4877 {PCIC_SERIALBUS, -1, 1, "serial bus"}, 4878 {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"}, 4879 {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"}, 4880 {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"}, 4881 {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"}, 4882 {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"}, 4883 {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"}, 4884 {PCIC_WIRELESS, -1, 1, "wireless controller"}, 4885 {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"}, 4886 {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"}, 4887 {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"}, 4888 {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"}, 4889 {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"}, 4890 {PCIC_SATCOM, -1, 1, "satellite communication"}, 4891 {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"}, 4892 {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"}, 4893 {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"}, 4894 {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"}, 4895 {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"}, 4896 {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"}, 4897 {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"}, 4898 {PCIC_DASP, -1, 0, "dasp"}, 4899 {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"}, 4900 {PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"}, 4901 {PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"}, 4902 {PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"}, 4903 {0, 0, 0, NULL} 4904 }; 4905 4906 void 4907 pci_probe_nomatch(device_t dev, device_t child) 4908 { 4909 int i, report; 4910 const char *cp, *scp; 4911 char *device; 4912 4913 /* 4914 * Look for a listing for this device in a loaded device database. 4915 */ 4916 report = 1; 4917 if ((device = pci_describe_device(child)) != NULL) { 4918 device_printf(dev, "<%s>", device); 4919 free(device, M_DEVBUF); 4920 } else { 4921 /* 4922 * Scan the class/subclass descriptions for a general 4923 * description. 4924 */ 4925 cp = "unknown"; 4926 scp = NULL; 4927 for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { 4928 if (pci_nomatch_tab[i].class == pci_get_class(child)) { 4929 if (pci_nomatch_tab[i].subclass == -1) { 4930 cp = pci_nomatch_tab[i].desc; 4931 report = pci_nomatch_tab[i].report; 4932 } else if (pci_nomatch_tab[i].subclass == 4933 pci_get_subclass(child)) { 4934 scp = pci_nomatch_tab[i].desc; 4935 report = pci_nomatch_tab[i].report; 4936 } 4937 } 4938 } 4939 if (report || bootverbose) { 4940 device_printf(dev, "<%s%s%s>", 4941 cp ? cp : "", 4942 ((cp != NULL) && (scp != NULL)) ? ", " : "", 4943 scp ? scp : ""); 4944 } 4945 } 4946 if (report || bootverbose) { 4947 printf(" at device %d.%d (no driver attached)\n", 4948 pci_get_slot(child), pci_get_function(child)); 4949 } 4950 pci_cfg_save(child, device_get_ivars(child), 1); 4951 } 4952 4953 void 4954 pci_child_detached(device_t dev, device_t child) 4955 { 4956 struct pci_devinfo *dinfo; 4957 struct resource_list *rl; 4958 4959 dinfo = device_get_ivars(child); 4960 rl = &dinfo->resources; 4961 4962 /* 4963 * Have to deallocate IRQs before releasing any MSI messages and 4964 * have to release MSI messages before deallocating any memory 4965 * BARs. 4966 */ 4967 if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0) 4968 pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n"); 4969 if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) { 4970 pci_printf(&dinfo->cfg, "Device leaked MSI vectors\n"); 4971 (void)pci_release_msi(child); 4972 } 4973 if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0) 4974 pci_printf(&dinfo->cfg, "Device leaked memory resources\n"); 4975 if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0) 4976 pci_printf(&dinfo->cfg, "Device leaked I/O resources\n"); 4977 #ifdef PCI_RES_BUS 4978 if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0) 4979 pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n"); 4980 #endif 4981 4982 pci_cfg_save(child, dinfo, 1); 4983 } 4984 4985 /* 4986 * Parse the PCI device database, if loaded, and return a pointer to a 4987 * description of the device. 4988 * 4989 * The database is flat text formatted as follows: 4990 * 4991 * Any line not in a valid format is ignored. 4992 * Lines are terminated with newline '\n' characters. 4993 * 4994 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then 4995 * the vendor name. 4996 * 4997 * A DEVICE line is entered immediately below the corresponding VENDOR ID. 4998 * - devices cannot be listed without a corresponding VENDOR line. 4999 * A DEVICE line consists of a TAB, the 4 digit (hex) device code, 5000 * another TAB, then the device name. 5001 */ 5002 5003 /* 5004 * Assuming (ptr) points to the beginning of a line in the database, 5005 * return the vendor or device and description of the next entry. 5006 * The value of (vendor) or (device) inappropriate for the entry type 5007 * is set to -1. Returns nonzero at the end of the database. 5008 * 5009 * Note that this is slightly unrobust in the face of corrupt data; 5010 * we attempt to safeguard against this by spamming the end of the 5011 * database with a newline when we initialise. 5012 */ 5013 static int 5014 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc) 5015 { 5016 char *cp = *ptr; 5017 int left; 5018 5019 *device = -1; 5020 *vendor = -1; 5021 **desc = '\0'; 5022 for (;;) { 5023 left = pci_vendordata_size - (cp - pci_vendordata); 5024 if (left <= 0) { 5025 *ptr = cp; 5026 return(1); 5027 } 5028 5029 /* vendor entry? */ 5030 if (*cp != '\t' && 5031 sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2) 5032 break; 5033 /* device entry? */ 5034 if (*cp == '\t' && 5035 sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2) 5036 break; 5037 5038 /* skip to next line */ 5039 while (*cp != '\n' && left > 0) { 5040 cp++; 5041 left--; 5042 } 5043 if (*cp == '\n') { 5044 cp++; 5045 left--; 5046 } 5047 } 5048 /* skip to next line */ 5049 while (*cp != '\n' && left > 0) { 5050 cp++; 5051 left--; 5052 } 5053 if (*cp == '\n' && left > 0) 5054 cp++; 5055 *ptr = cp; 5056 return(0); 5057 } 5058 5059 static char * 5060 pci_describe_device(device_t dev) 5061 { 5062 int vendor, device; 5063 char *desc, *vp, *dp, *line; 5064 5065 desc = vp = dp = NULL; 5066 5067 /* 5068 * If we have no vendor data, we can't do anything. 5069 */ 5070 if (pci_vendordata == NULL) 5071 goto out; 5072 5073 /* 5074 * Scan the vendor data looking for this device 5075 */ 5076 line = pci_vendordata; 5077 if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5078 goto out; 5079 for (;;) { 5080 if (pci_describe_parse_line(&line, &vendor, &device, &vp)) 5081 goto out; 5082 if (vendor == pci_get_vendor(dev)) 5083 break; 5084 } 5085 if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5086 goto out; 5087 for (;;) { 5088 if (pci_describe_parse_line(&line, &vendor, &device, &dp)) { 5089 *dp = 0; 5090 break; 5091 } 5092 if (vendor != -1) { 5093 *dp = 0; 5094 break; 5095 } 5096 if (device == pci_get_device(dev)) 5097 break; 5098 } 5099 if (dp[0] == '\0') 5100 snprintf(dp, 80, "0x%x", pci_get_device(dev)); 5101 if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) != 5102 NULL) 5103 sprintf(desc, "%s, %s", vp, dp); 5104 out: 5105 if (vp != NULL) 5106 free(vp, M_DEVBUF); 5107 if (dp != NULL) 5108 free(dp, M_DEVBUF); 5109 return(desc); 5110 } 5111 5112 int 5113 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 5114 { 5115 struct pci_devinfo *dinfo; 5116 pcicfgregs *cfg; 5117 5118 dinfo = device_get_ivars(child); 5119 cfg = &dinfo->cfg; 5120 5121 switch (which) { 5122 case PCI_IVAR_ETHADDR: 5123 /* 5124 * The generic accessor doesn't deal with failure, so 5125 * we set the return value, then return an error. 5126 */ 5127 *((uint8_t **) result) = NULL; 5128 return (EINVAL); 5129 case PCI_IVAR_SUBVENDOR: 5130 *result = cfg->subvendor; 5131 break; 5132 case PCI_IVAR_SUBDEVICE: 5133 *result = cfg->subdevice; 5134 break; 5135 case PCI_IVAR_VENDOR: 5136 *result = cfg->vendor; 5137 break; 5138 case PCI_IVAR_DEVICE: 5139 *result = cfg->device; 5140 break; 5141 case PCI_IVAR_DEVID: 5142 *result = (cfg->device << 16) | cfg->vendor; 5143 break; 5144 case PCI_IVAR_CLASS: 5145 *result = cfg->baseclass; 5146 break; 5147 case PCI_IVAR_SUBCLASS: 5148 *result = cfg->subclass; 5149 break; 5150 case PCI_IVAR_PROGIF: 5151 *result = cfg->progif; 5152 break; 5153 case PCI_IVAR_REVID: 5154 *result = cfg->revid; 5155 break; 5156 case PCI_IVAR_INTPIN: 5157 *result = cfg->intpin; 5158 break; 5159 case PCI_IVAR_IRQ: 5160 *result = cfg->intline; 5161 break; 5162 case PCI_IVAR_DOMAIN: 5163 *result = cfg->domain; 5164 break; 5165 case PCI_IVAR_BUS: 5166 *result = cfg->bus; 5167 break; 5168 case PCI_IVAR_SLOT: 5169 *result = cfg->slot; 5170 break; 5171 case PCI_IVAR_FUNCTION: 5172 *result = cfg->func; 5173 break; 5174 case PCI_IVAR_CMDREG: 5175 *result = cfg->cmdreg; 5176 break; 5177 case PCI_IVAR_CACHELNSZ: 5178 *result = cfg->cachelnsz; 5179 break; 5180 case PCI_IVAR_MINGNT: 5181 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5182 *result = -1; 5183 return (EINVAL); 5184 } 5185 *result = cfg->mingnt; 5186 break; 5187 case PCI_IVAR_MAXLAT: 5188 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5189 *result = -1; 5190 return (EINVAL); 5191 } 5192 *result = cfg->maxlat; 5193 break; 5194 case PCI_IVAR_LATTIMER: 5195 *result = cfg->lattimer; 5196 break; 5197 default: 5198 return (ENOENT); 5199 } 5200 return (0); 5201 } 5202 5203 int 5204 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 5205 { 5206 struct pci_devinfo *dinfo; 5207 5208 dinfo = device_get_ivars(child); 5209 5210 switch (which) { 5211 case PCI_IVAR_INTPIN: 5212 dinfo->cfg.intpin = value; 5213 return (0); 5214 case PCI_IVAR_ETHADDR: 5215 case PCI_IVAR_SUBVENDOR: 5216 case PCI_IVAR_SUBDEVICE: 5217 case PCI_IVAR_VENDOR: 5218 case PCI_IVAR_DEVICE: 5219 case PCI_IVAR_DEVID: 5220 case PCI_IVAR_CLASS: 5221 case PCI_IVAR_SUBCLASS: 5222 case PCI_IVAR_PROGIF: 5223 case PCI_IVAR_REVID: 5224 case PCI_IVAR_IRQ: 5225 case PCI_IVAR_DOMAIN: 5226 case PCI_IVAR_BUS: 5227 case PCI_IVAR_SLOT: 5228 case PCI_IVAR_FUNCTION: 5229 return (EINVAL); /* disallow for now */ 5230 5231 default: 5232 return (ENOENT); 5233 } 5234 } 5235 5236 #include "opt_ddb.h" 5237 #ifdef DDB 5238 #include <ddb/ddb.h> 5239 #include <sys/cons.h> 5240 5241 /* 5242 * List resources based on pci map registers, used for within ddb 5243 */ 5244 5245 DB_SHOW_COMMAND(pciregs, db_pci_dump) 5246 { 5247 struct pci_devinfo *dinfo; 5248 struct devlist *devlist_head; 5249 struct pci_conf *p; 5250 const char *name; 5251 int i, error, none_count; 5252 5253 none_count = 0; 5254 /* get the head of the device queue */ 5255 devlist_head = &pci_devq; 5256 5257 /* 5258 * Go through the list of devices and print out devices 5259 */ 5260 for (error = 0, i = 0, 5261 dinfo = STAILQ_FIRST(devlist_head); 5262 (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit; 5263 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) { 5264 5265 /* Populate pd_name and pd_unit */ 5266 name = NULL; 5267 if (dinfo->cfg.dev) 5268 name = device_get_name(dinfo->cfg.dev); 5269 5270 p = &dinfo->conf; 5271 db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x " 5272 "chip=0x%08x rev=0x%02x hdr=0x%02x\n", 5273 (name && *name) ? name : "none", 5274 (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) : 5275 none_count++, 5276 p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, 5277 p->pc_sel.pc_func, (p->pc_class << 16) | 5278 (p->pc_subclass << 8) | p->pc_progif, 5279 (p->pc_subdevice << 16) | p->pc_subvendor, 5280 (p->pc_device << 16) | p->pc_vendor, 5281 p->pc_revid, p->pc_hdr); 5282 } 5283 } 5284 #endif /* DDB */ 5285 5286 static struct resource * 5287 pci_reserve_map(device_t dev, device_t child, int type, int *rid, 5288 rman_res_t start, rman_res_t end, rman_res_t count, u_int num, 5289 u_int flags) 5290 { 5291 struct pci_devinfo *dinfo = device_get_ivars(child); 5292 struct resource_list *rl = &dinfo->resources; 5293 struct resource *res; 5294 struct pci_map *pm; 5295 uint16_t cmd; 5296 pci_addr_t map, testval; 5297 int mapsize; 5298 5299 res = NULL; 5300 5301 /* If rid is managed by EA, ignore it */ 5302 if (pci_ea_is_enabled(child, *rid)) 5303 goto out; 5304 5305 pm = pci_find_bar(child, *rid); 5306 if (pm != NULL) { 5307 /* This is a BAR that we failed to allocate earlier. */ 5308 mapsize = pm->pm_size; 5309 map = pm->pm_value; 5310 } else { 5311 /* 5312 * Weed out the bogons, and figure out how large the 5313 * BAR/map is. BARs that read back 0 here are bogus 5314 * and unimplemented. Note: atapci in legacy mode are 5315 * special and handled elsewhere in the code. If you 5316 * have a atapci device in legacy mode and it fails 5317 * here, that other code is broken. 5318 */ 5319 pci_read_bar(child, *rid, &map, &testval, NULL); 5320 5321 /* 5322 * Determine the size of the BAR and ignore BARs with a size 5323 * of 0. Device ROM BARs use a different mask value. 5324 */ 5325 if (PCIR_IS_BIOS(&dinfo->cfg, *rid)) 5326 mapsize = pci_romsize(testval); 5327 else 5328 mapsize = pci_mapsize(testval); 5329 if (mapsize == 0) 5330 goto out; 5331 pm = pci_add_bar(child, *rid, map, mapsize); 5332 } 5333 5334 if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) { 5335 if (type != SYS_RES_MEMORY) { 5336 if (bootverbose) 5337 device_printf(dev, 5338 "child %s requested type %d for rid %#x," 5339 " but the BAR says it is an memio\n", 5340 device_get_nameunit(child), type, *rid); 5341 goto out; 5342 } 5343 } else { 5344 if (type != SYS_RES_IOPORT) { 5345 if (bootverbose) 5346 device_printf(dev, 5347 "child %s requested type %d for rid %#x," 5348 " but the BAR says it is an ioport\n", 5349 device_get_nameunit(child), type, *rid); 5350 goto out; 5351 } 5352 } 5353 5354 /* 5355 * For real BARs, we need to override the size that 5356 * the driver requests, because that's what the BAR 5357 * actually uses and we would otherwise have a 5358 * situation where we might allocate the excess to 5359 * another driver, which won't work. 5360 */ 5361 count = ((pci_addr_t)1 << mapsize) * num; 5362 if (RF_ALIGNMENT(flags) < mapsize) 5363 flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize); 5364 if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH)) 5365 flags |= RF_PREFETCHABLE; 5366 5367 /* 5368 * Allocate enough resource, and then write back the 5369 * appropriate BAR for that resource. 5370 */ 5371 resource_list_add(rl, type, *rid, start, end, count); 5372 res = resource_list_reserve(rl, dev, child, type, rid, start, end, 5373 count, flags & ~RF_ACTIVE); 5374 if (res == NULL) { 5375 resource_list_delete(rl, type, *rid); 5376 device_printf(child, 5377 "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n", 5378 count, *rid, type, start, end); 5379 goto out; 5380 } 5381 if (bootverbose) 5382 device_printf(child, 5383 "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n", 5384 count, *rid, type, rman_get_start(res)); 5385 5386 /* Disable decoding via the CMD register before updating the BAR */ 5387 cmd = pci_read_config(child, PCIR_COMMAND, 2); 5388 pci_write_config(child, PCIR_COMMAND, 5389 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 5390 5391 map = rman_get_start(res); 5392 pci_write_bar(child, pm, map); 5393 5394 /* Restore the original value of the CMD register */ 5395 pci_write_config(child, PCIR_COMMAND, cmd, 2); 5396 out: 5397 return (res); 5398 } 5399 5400 struct resource * 5401 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid, 5402 rman_res_t start, rman_res_t end, rman_res_t count, u_long num, 5403 u_int flags) 5404 { 5405 struct pci_devinfo *dinfo; 5406 struct resource_list *rl; 5407 struct resource_list_entry *rle; 5408 struct resource *res; 5409 pcicfgregs *cfg; 5410 5411 /* 5412 * Perform lazy resource allocation 5413 */ 5414 dinfo = device_get_ivars(child); 5415 rl = &dinfo->resources; 5416 cfg = &dinfo->cfg; 5417 switch (type) { 5418 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 5419 case PCI_RES_BUS: 5420 return (pci_alloc_secbus(dev, child, rid, start, end, count, 5421 flags)); 5422 #endif 5423 case SYS_RES_IRQ: 5424 /* 5425 * Can't alloc legacy interrupt once MSI messages have 5426 * been allocated. 5427 */ 5428 if (*rid == 0 && (cfg->msi.msi_alloc > 0 || 5429 cfg->msix.msix_alloc > 0)) 5430 return (NULL); 5431 5432 /* 5433 * If the child device doesn't have an interrupt 5434 * routed and is deserving of an interrupt, try to 5435 * assign it one. 5436 */ 5437 if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) && 5438 (cfg->intpin != 0)) 5439 pci_assign_interrupt(dev, child, 0); 5440 break; 5441 case SYS_RES_IOPORT: 5442 case SYS_RES_MEMORY: 5443 #ifdef NEW_PCIB 5444 /* 5445 * PCI-PCI bridge I/O window resources are not BARs. 5446 * For those allocations just pass the request up the 5447 * tree. 5448 */ 5449 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) { 5450 switch (*rid) { 5451 case PCIR_IOBASEL_1: 5452 case PCIR_MEMBASE_1: 5453 case PCIR_PMBASEL_1: 5454 /* 5455 * XXX: Should we bother creating a resource 5456 * list entry? 5457 */ 5458 return (bus_generic_alloc_resource(dev, child, 5459 type, rid, start, end, count, flags)); 5460 } 5461 } 5462 #endif 5463 /* Reserve resources for this BAR if needed. */ 5464 rle = resource_list_find(rl, type, *rid); 5465 if (rle == NULL) { 5466 res = pci_reserve_map(dev, child, type, rid, start, end, 5467 count, num, flags); 5468 if (res == NULL) 5469 return (NULL); 5470 } 5471 } 5472 return (resource_list_alloc(rl, dev, child, type, rid, 5473 start, end, count, flags)); 5474 } 5475 5476 struct resource * 5477 pci_alloc_resource(device_t dev, device_t child, int type, int *rid, 5478 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 5479 { 5480 #ifdef PCI_IOV 5481 struct pci_devinfo *dinfo; 5482 #endif 5483 5484 if (device_get_parent(child) != dev) 5485 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 5486 type, rid, start, end, count, flags)); 5487 5488 #ifdef PCI_IOV 5489 dinfo = device_get_ivars(child); 5490 if (dinfo->cfg.flags & PCICFG_VF) { 5491 switch (type) { 5492 /* VFs can't have I/O BARs. */ 5493 case SYS_RES_IOPORT: 5494 return (NULL); 5495 case SYS_RES_MEMORY: 5496 return (pci_vf_alloc_mem_resource(dev, child, rid, 5497 start, end, count, flags)); 5498 } 5499 5500 /* Fall through for other types of resource allocations. */ 5501 } 5502 #endif 5503 5504 return (pci_alloc_multi_resource(dev, child, type, rid, start, end, 5505 count, 1, flags)); 5506 } 5507 5508 int 5509 pci_release_resource(device_t dev, device_t child, int type, int rid, 5510 struct resource *r) 5511 { 5512 struct pci_devinfo *dinfo; 5513 struct resource_list *rl; 5514 pcicfgregs *cfg; 5515 5516 if (device_get_parent(child) != dev) 5517 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 5518 type, rid, r)); 5519 5520 dinfo = device_get_ivars(child); 5521 cfg = &dinfo->cfg; 5522 5523 #ifdef PCI_IOV 5524 if (dinfo->cfg.flags & PCICFG_VF) { 5525 switch (type) { 5526 /* VFs can't have I/O BARs. */ 5527 case SYS_RES_IOPORT: 5528 return (EDOOFUS); 5529 case SYS_RES_MEMORY: 5530 return (pci_vf_release_mem_resource(dev, child, rid, 5531 r)); 5532 } 5533 5534 /* Fall through for other types of resource allocations. */ 5535 } 5536 #endif 5537 5538 #ifdef NEW_PCIB 5539 /* 5540 * PCI-PCI bridge I/O window resources are not BARs. For 5541 * those allocations just pass the request up the tree. 5542 */ 5543 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE && 5544 (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) { 5545 switch (rid) { 5546 case PCIR_IOBASEL_1: 5547 case PCIR_MEMBASE_1: 5548 case PCIR_PMBASEL_1: 5549 return (bus_generic_release_resource(dev, child, type, 5550 rid, r)); 5551 } 5552 } 5553 #endif 5554 5555 rl = &dinfo->resources; 5556 return (resource_list_release(rl, dev, child, type, rid, r)); 5557 } 5558 5559 int 5560 pci_activate_resource(device_t dev, device_t child, int type, int rid, 5561 struct resource *r) 5562 { 5563 struct pci_devinfo *dinfo; 5564 int error; 5565 5566 error = bus_generic_activate_resource(dev, child, type, rid, r); 5567 if (error) 5568 return (error); 5569 5570 /* Enable decoding in the command register when activating BARs. */ 5571 if (device_get_parent(child) == dev) { 5572 /* Device ROMs need their decoding explicitly enabled. */ 5573 dinfo = device_get_ivars(child); 5574 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5575 pci_write_bar(child, pci_find_bar(child, rid), 5576 rman_get_start(r) | PCIM_BIOS_ENABLE); 5577 switch (type) { 5578 case SYS_RES_IOPORT: 5579 case SYS_RES_MEMORY: 5580 error = PCI_ENABLE_IO(dev, child, type); 5581 break; 5582 } 5583 } 5584 return (error); 5585 } 5586 5587 int 5588 pci_deactivate_resource(device_t dev, device_t child, int type, 5589 int rid, struct resource *r) 5590 { 5591 struct pci_devinfo *dinfo; 5592 int error; 5593 5594 error = bus_generic_deactivate_resource(dev, child, type, rid, r); 5595 if (error) 5596 return (error); 5597 5598 /* Disable decoding for device ROMs. */ 5599 if (device_get_parent(child) == dev) { 5600 dinfo = device_get_ivars(child); 5601 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5602 pci_write_bar(child, pci_find_bar(child, rid), 5603 rman_get_start(r)); 5604 } 5605 return (0); 5606 } 5607 5608 void 5609 pci_child_deleted(device_t dev, device_t child) 5610 { 5611 struct resource_list_entry *rle; 5612 struct resource_list *rl; 5613 struct pci_devinfo *dinfo; 5614 5615 dinfo = device_get_ivars(child); 5616 rl = &dinfo->resources; 5617 5618 EVENTHANDLER_INVOKE(pci_delete_device, child); 5619 5620 /* Turn off access to resources we're about to free */ 5621 if (bus_child_present(child) != 0) { 5622 pci_write_config(child, PCIR_COMMAND, pci_read_config(child, 5623 PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2); 5624 5625 pci_disable_busmaster(child); 5626 } 5627 5628 /* Free all allocated resources */ 5629 STAILQ_FOREACH(rle, rl, link) { 5630 if (rle->res) { 5631 if (rman_get_flags(rle->res) & RF_ACTIVE || 5632 resource_list_busy(rl, rle->type, rle->rid)) { 5633 pci_printf(&dinfo->cfg, 5634 "Resource still owned, oops. " 5635 "(type=%d, rid=%d, addr=%lx)\n", 5636 rle->type, rle->rid, 5637 rman_get_start(rle->res)); 5638 bus_release_resource(child, rle->type, rle->rid, 5639 rle->res); 5640 } 5641 resource_list_unreserve(rl, dev, child, rle->type, 5642 rle->rid); 5643 } 5644 } 5645 resource_list_free(rl); 5646 5647 pci_freecfg(dinfo); 5648 } 5649 5650 void 5651 pci_delete_resource(device_t dev, device_t child, int type, int rid) 5652 { 5653 struct pci_devinfo *dinfo; 5654 struct resource_list *rl; 5655 struct resource_list_entry *rle; 5656 5657 if (device_get_parent(child) != dev) 5658 return; 5659 5660 dinfo = device_get_ivars(child); 5661 rl = &dinfo->resources; 5662 rle = resource_list_find(rl, type, rid); 5663 if (rle == NULL) 5664 return; 5665 5666 if (rle->res) { 5667 if (rman_get_flags(rle->res) & RF_ACTIVE || 5668 resource_list_busy(rl, type, rid)) { 5669 device_printf(dev, "delete_resource: " 5670 "Resource still owned by child, oops. " 5671 "(type=%d, rid=%d, addr=%jx)\n", 5672 type, rid, rman_get_start(rle->res)); 5673 return; 5674 } 5675 resource_list_unreserve(rl, dev, child, type, rid); 5676 } 5677 resource_list_delete(rl, type, rid); 5678 } 5679 5680 struct resource_list * 5681 pci_get_resource_list (device_t dev, device_t child) 5682 { 5683 struct pci_devinfo *dinfo = device_get_ivars(child); 5684 5685 return (&dinfo->resources); 5686 } 5687 5688 #ifdef ACPI_DMAR 5689 bus_dma_tag_t acpi_iommu_get_dma_tag(device_t dev, device_t child); 5690 bus_dma_tag_t 5691 pci_get_dma_tag(device_t bus, device_t dev) 5692 { 5693 bus_dma_tag_t tag; 5694 struct pci_softc *sc; 5695 5696 if (device_get_parent(dev) == bus) { 5697 /* try iommu and return if it works */ 5698 tag = acpi_iommu_get_dma_tag(bus, dev); 5699 } else 5700 tag = NULL; 5701 if (tag == NULL) { 5702 sc = device_get_softc(bus); 5703 tag = sc->sc_dma_tag; 5704 } 5705 return (tag); 5706 } 5707 #else 5708 bus_dma_tag_t 5709 pci_get_dma_tag(device_t bus, device_t dev) 5710 { 5711 struct pci_softc *sc = device_get_softc(bus); 5712 5713 return (sc->sc_dma_tag); 5714 } 5715 #endif 5716 5717 uint32_t 5718 pci_read_config_method(device_t dev, device_t child, int reg, int width) 5719 { 5720 struct pci_devinfo *dinfo = device_get_ivars(child); 5721 pcicfgregs *cfg = &dinfo->cfg; 5722 5723 #ifdef PCI_IOV 5724 /* 5725 * SR-IOV VFs don't implement the VID or DID registers, so we have to 5726 * emulate them here. 5727 */ 5728 if (cfg->flags & PCICFG_VF) { 5729 if (reg == PCIR_VENDOR) { 5730 switch (width) { 5731 case 4: 5732 return (cfg->device << 16 | cfg->vendor); 5733 case 2: 5734 return (cfg->vendor); 5735 case 1: 5736 return (cfg->vendor & 0xff); 5737 default: 5738 return (0xffffffff); 5739 } 5740 } else if (reg == PCIR_DEVICE) { 5741 switch (width) { 5742 /* Note that an unaligned 4-byte read is an error. */ 5743 case 2: 5744 return (cfg->device); 5745 case 1: 5746 return (cfg->device & 0xff); 5747 default: 5748 return (0xffffffff); 5749 } 5750 } 5751 } 5752 #endif 5753 5754 return (PCIB_READ_CONFIG(device_get_parent(dev), 5755 cfg->bus, cfg->slot, cfg->func, reg, width)); 5756 } 5757 5758 void 5759 pci_write_config_method(device_t dev, device_t child, int reg, 5760 uint32_t val, int width) 5761 { 5762 struct pci_devinfo *dinfo = device_get_ivars(child); 5763 pcicfgregs *cfg = &dinfo->cfg; 5764 5765 PCIB_WRITE_CONFIG(device_get_parent(dev), 5766 cfg->bus, cfg->slot, cfg->func, reg, val, width); 5767 } 5768 5769 int 5770 pci_child_location_str_method(device_t dev, device_t child, char *buf, 5771 size_t buflen) 5772 { 5773 5774 snprintf(buf, buflen, "slot=%d function=%d dbsf=pci%d:%d:%d:%d", 5775 pci_get_slot(child), pci_get_function(child), pci_get_domain(child), 5776 pci_get_bus(child), pci_get_slot(child), pci_get_function(child)); 5777 return (0); 5778 } 5779 5780 int 5781 pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf, 5782 size_t buflen) 5783 { 5784 struct pci_devinfo *dinfo; 5785 pcicfgregs *cfg; 5786 5787 dinfo = device_get_ivars(child); 5788 cfg = &dinfo->cfg; 5789 snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x " 5790 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device, 5791 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass, 5792 cfg->progif); 5793 return (0); 5794 } 5795 5796 int 5797 pci_assign_interrupt_method(device_t dev, device_t child) 5798 { 5799 struct pci_devinfo *dinfo = device_get_ivars(child); 5800 pcicfgregs *cfg = &dinfo->cfg; 5801 5802 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, 5803 cfg->intpin)); 5804 } 5805 5806 static void 5807 pci_lookup(void *arg, const char *name, device_t *dev) 5808 { 5809 long val; 5810 char *end; 5811 int domain, bus, slot, func; 5812 5813 if (*dev != NULL) 5814 return; 5815 5816 /* 5817 * Accept pciconf-style selectors of either pciD:B:S:F or 5818 * pciB:S:F. In the latter case, the domain is assumed to 5819 * be zero. 5820 */ 5821 if (strncmp(name, "pci", 3) != 0) 5822 return; 5823 val = strtol(name + 3, &end, 10); 5824 if (val < 0 || val > INT_MAX || *end != ':') 5825 return; 5826 domain = val; 5827 val = strtol(end + 1, &end, 10); 5828 if (val < 0 || val > INT_MAX || *end != ':') 5829 return; 5830 bus = val; 5831 val = strtol(end + 1, &end, 10); 5832 if (val < 0 || val > INT_MAX) 5833 return; 5834 slot = val; 5835 if (*end == ':') { 5836 val = strtol(end + 1, &end, 10); 5837 if (val < 0 || val > INT_MAX || *end != '\0') 5838 return; 5839 func = val; 5840 } else if (*end == '\0') { 5841 func = slot; 5842 slot = bus; 5843 bus = domain; 5844 domain = 0; 5845 } else 5846 return; 5847 5848 if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX || 5849 func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX)) 5850 return; 5851 5852 *dev = pci_find_dbsf(domain, bus, slot, func); 5853 } 5854 5855 static int 5856 pci_modevent(module_t mod, int what, void *arg) 5857 { 5858 static struct cdev *pci_cdev; 5859 static eventhandler_tag tag; 5860 5861 switch (what) { 5862 case MOD_LOAD: 5863 STAILQ_INIT(&pci_devq); 5864 pci_generation = 0; 5865 pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644, 5866 "pci"); 5867 pci_load_vendor_data(); 5868 tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL, 5869 1000); 5870 break; 5871 5872 case MOD_UNLOAD: 5873 if (tag != NULL) 5874 EVENTHANDLER_DEREGISTER(dev_lookup, tag); 5875 destroy_dev(pci_cdev); 5876 break; 5877 } 5878 5879 return (0); 5880 } 5881 5882 static void 5883 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo) 5884 { 5885 #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2) 5886 struct pcicfg_pcie *cfg; 5887 int version, pos; 5888 5889 cfg = &dinfo->cfg.pcie; 5890 pos = cfg->pcie_location; 5891 5892 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 5893 5894 WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl); 5895 5896 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5897 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 5898 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 5899 WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl); 5900 5901 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5902 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 5903 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 5904 WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl); 5905 5906 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5907 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 5908 WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl); 5909 5910 if (version > 1) { 5911 WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2); 5912 WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2); 5913 WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2); 5914 } 5915 #undef WREG 5916 } 5917 5918 static void 5919 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo) 5920 { 5921 pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 5922 dinfo->cfg.pcix.pcix_command, 2); 5923 } 5924 5925 void 5926 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo) 5927 { 5928 5929 /* 5930 * Restore the device to full power mode. We must do this 5931 * before we restore the registers because moving from D3 to 5932 * D0 will cause the chip's BARs and some other registers to 5933 * be reset to some unknown power on reset values. Cut down 5934 * the noise on boot by doing nothing if we are already in 5935 * state D0. 5936 */ 5937 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) 5938 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 5939 pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1); 5940 pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1); 5941 pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1); 5942 pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1); 5943 pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1); 5944 pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1); 5945 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 5946 case PCIM_HDRTYPE_NORMAL: 5947 pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); 5948 pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); 5949 break; 5950 case PCIM_HDRTYPE_BRIDGE: 5951 pci_write_config(dev, PCIR_SECLAT_1, 5952 dinfo->cfg.bridge.br_seclat, 1); 5953 pci_write_config(dev, PCIR_SUBBUS_1, 5954 dinfo->cfg.bridge.br_subbus, 1); 5955 pci_write_config(dev, PCIR_SECBUS_1, 5956 dinfo->cfg.bridge.br_secbus, 1); 5957 pci_write_config(dev, PCIR_PRIBUS_1, 5958 dinfo->cfg.bridge.br_pribus, 1); 5959 pci_write_config(dev, PCIR_BRIDGECTL_1, 5960 dinfo->cfg.bridge.br_control, 2); 5961 break; 5962 case PCIM_HDRTYPE_CARDBUS: 5963 pci_write_config(dev, PCIR_SECLAT_2, 5964 dinfo->cfg.bridge.br_seclat, 1); 5965 pci_write_config(dev, PCIR_SUBBUS_2, 5966 dinfo->cfg.bridge.br_subbus, 1); 5967 pci_write_config(dev, PCIR_SECBUS_2, 5968 dinfo->cfg.bridge.br_secbus, 1); 5969 pci_write_config(dev, PCIR_PRIBUS_2, 5970 dinfo->cfg.bridge.br_pribus, 1); 5971 pci_write_config(dev, PCIR_BRIDGECTL_2, 5972 dinfo->cfg.bridge.br_control, 2); 5973 break; 5974 } 5975 pci_restore_bars(dev); 5976 5977 if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE) 5978 pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2); 5979 5980 /* 5981 * Restore extended capabilities for PCI-Express and PCI-X 5982 */ 5983 if (dinfo->cfg.pcie.pcie_location != 0) 5984 pci_cfg_restore_pcie(dev, dinfo); 5985 if (dinfo->cfg.pcix.pcix_location != 0) 5986 pci_cfg_restore_pcix(dev, dinfo); 5987 5988 /* Restore MSI and MSI-X configurations if they are present. */ 5989 if (dinfo->cfg.msi.msi_location != 0) 5990 pci_resume_msi(dev); 5991 if (dinfo->cfg.msix.msix_location != 0) 5992 pci_resume_msix(dev); 5993 5994 #ifdef PCI_IOV 5995 if (dinfo->cfg.iov != NULL) 5996 pci_iov_cfg_restore(dev, dinfo); 5997 #endif 5998 } 5999 6000 static void 6001 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo) 6002 { 6003 #define RREG(n) pci_read_config(dev, pos + (n), 2) 6004 struct pcicfg_pcie *cfg; 6005 int version, pos; 6006 6007 cfg = &dinfo->cfg.pcie; 6008 pos = cfg->pcie_location; 6009 6010 cfg->pcie_flags = RREG(PCIER_FLAGS); 6011 6012 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 6013 6014 cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL); 6015 6016 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6017 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 6018 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 6019 cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL); 6020 6021 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6022 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 6023 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 6024 cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL); 6025 6026 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6027 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 6028 cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL); 6029 6030 if (version > 1) { 6031 cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2); 6032 cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2); 6033 cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2); 6034 } 6035 #undef RREG 6036 } 6037 6038 static void 6039 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo) 6040 { 6041 dinfo->cfg.pcix.pcix_command = pci_read_config(dev, 6042 dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2); 6043 } 6044 6045 void 6046 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate) 6047 { 6048 uint32_t cls; 6049 int ps; 6050 6051 /* 6052 * Some drivers apparently write to these registers w/o updating our 6053 * cached copy. No harm happens if we update the copy, so do so here 6054 * so we can restore them. The COMMAND register is modified by the 6055 * bus w/o updating the cache. This should represent the normally 6056 * writable portion of the 'defined' part of type 0/1/2 headers. 6057 */ 6058 dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2); 6059 dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2); 6060 dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2); 6061 dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1); 6062 dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1); 6063 dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 6064 dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 6065 dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1); 6066 dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1); 6067 dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1); 6068 dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1); 6069 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 6070 case PCIM_HDRTYPE_NORMAL: 6071 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); 6072 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); 6073 dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); 6074 dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); 6075 break; 6076 case PCIM_HDRTYPE_BRIDGE: 6077 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6078 PCIR_SECLAT_1, 1); 6079 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6080 PCIR_SUBBUS_1, 1); 6081 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6082 PCIR_SECBUS_1, 1); 6083 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6084 PCIR_PRIBUS_1, 1); 6085 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6086 PCIR_BRIDGECTL_1, 2); 6087 break; 6088 case PCIM_HDRTYPE_CARDBUS: 6089 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6090 PCIR_SECLAT_2, 1); 6091 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6092 PCIR_SUBBUS_2, 1); 6093 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6094 PCIR_SECBUS_2, 1); 6095 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6096 PCIR_PRIBUS_2, 1); 6097 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6098 PCIR_BRIDGECTL_2, 2); 6099 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2); 6100 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2); 6101 break; 6102 } 6103 6104 if (dinfo->cfg.pcie.pcie_location != 0) 6105 pci_cfg_save_pcie(dev, dinfo); 6106 6107 if (dinfo->cfg.pcix.pcix_location != 0) 6108 pci_cfg_save_pcix(dev, dinfo); 6109 6110 #ifdef PCI_IOV 6111 if (dinfo->cfg.iov != NULL) 6112 pci_iov_cfg_save(dev, dinfo); 6113 #endif 6114 6115 /* 6116 * don't set the state for display devices, base peripherals and 6117 * memory devices since bad things happen when they are powered down. 6118 * We should (a) have drivers that can easily detach and (b) use 6119 * generic drivers for these devices so that some device actually 6120 * attaches. We need to make sure that when we implement (a) we don't 6121 * power the device down on a reattach. 6122 */ 6123 cls = pci_get_class(dev); 6124 if (!setstate) 6125 return; 6126 switch (pci_do_power_nodriver) 6127 { 6128 case 0: /* NO powerdown at all */ 6129 return; 6130 case 1: /* Conservative about what to power down */ 6131 if (cls == PCIC_STORAGE) 6132 return; 6133 /*FALLTHROUGH*/ 6134 case 2: /* Aggressive about what to power down */ 6135 if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY || 6136 cls == PCIC_BASEPERIPH) 6137 return; 6138 /*FALLTHROUGH*/ 6139 case 3: /* Power down everything */ 6140 break; 6141 } 6142 /* 6143 * PCI spec says we can only go into D3 state from D0 state. 6144 * Transition from D[12] into D0 before going to D3 state. 6145 */ 6146 ps = pci_get_powerstate(dev); 6147 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6148 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6149 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3) 6150 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6151 } 6152 6153 /* Wrapper APIs suitable for device driver use. */ 6154 void 6155 pci_save_state(device_t dev) 6156 { 6157 struct pci_devinfo *dinfo; 6158 6159 dinfo = device_get_ivars(dev); 6160 pci_cfg_save(dev, dinfo, 0); 6161 } 6162 6163 void 6164 pci_restore_state(device_t dev) 6165 { 6166 struct pci_devinfo *dinfo; 6167 6168 dinfo = device_get_ivars(dev); 6169 pci_cfg_restore(dev, dinfo); 6170 } 6171 6172 static int 6173 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type, 6174 uintptr_t *id) 6175 { 6176 6177 return (PCIB_GET_ID(device_get_parent(dev), child, type, id)); 6178 } 6179 6180 /* Find the upstream port of a given PCI device in a root complex. */ 6181 device_t 6182 pci_find_pcie_root_port(device_t dev) 6183 { 6184 struct pci_devinfo *dinfo; 6185 devclass_t pci_class; 6186 device_t pcib, bus; 6187 6188 pci_class = devclass_find("pci"); 6189 KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class, 6190 ("%s: non-pci device %s", __func__, device_get_nameunit(dev))); 6191 6192 /* 6193 * Walk the bridge hierarchy until we find a PCI-e root 6194 * port or a non-PCI device. 6195 */ 6196 for (;;) { 6197 bus = device_get_parent(dev); 6198 KASSERT(bus != NULL, ("%s: null parent of %s", __func__, 6199 device_get_nameunit(dev))); 6200 6201 pcib = device_get_parent(bus); 6202 KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__, 6203 device_get_nameunit(bus))); 6204 6205 /* 6206 * pcib's parent must be a PCI bus for this to be a 6207 * PCI-PCI bridge. 6208 */ 6209 if (device_get_devclass(device_get_parent(pcib)) != pci_class) 6210 return (NULL); 6211 6212 dinfo = device_get_ivars(pcib); 6213 if (dinfo->cfg.pcie.pcie_location != 0 && 6214 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) 6215 return (pcib); 6216 6217 dev = pcib; 6218 } 6219 } 6220 6221 /* 6222 * Wait for pending transactions to complete on a PCI-express function. 6223 * 6224 * The maximum delay is specified in milliseconds in max_delay. Note 6225 * that this function may sleep. 6226 * 6227 * Returns true if the function is idle and false if the timeout is 6228 * exceeded. If dev is not a PCI-express function, this returns true. 6229 */ 6230 bool 6231 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay) 6232 { 6233 struct pci_devinfo *dinfo = device_get_ivars(dev); 6234 uint16_t sta; 6235 int cap; 6236 6237 cap = dinfo->cfg.pcie.pcie_location; 6238 if (cap == 0) 6239 return (true); 6240 6241 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6242 while (sta & PCIEM_STA_TRANSACTION_PND) { 6243 if (max_delay == 0) 6244 return (false); 6245 6246 /* Poll once every 100 milliseconds up to the timeout. */ 6247 if (max_delay > 100) { 6248 pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK); 6249 max_delay -= 100; 6250 } else { 6251 pause_sbt("pcietp", max_delay * SBT_1MS, 0, 6252 C_HARDCLOCK); 6253 max_delay = 0; 6254 } 6255 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6256 } 6257 6258 return (true); 6259 } 6260 6261 /* 6262 * Determine the maximum Completion Timeout in microseconds. 6263 * 6264 * For non-PCI-express functions this returns 0. 6265 */ 6266 int 6267 pcie_get_max_completion_timeout(device_t dev) 6268 { 6269 struct pci_devinfo *dinfo = device_get_ivars(dev); 6270 int cap; 6271 6272 cap = dinfo->cfg.pcie.pcie_location; 6273 if (cap == 0) 6274 return (0); 6275 6276 /* 6277 * Functions using the 1.x spec use the default timeout range of 6278 * 50 microseconds to 50 milliseconds. Functions that do not 6279 * support programmable timeouts also use this range. 6280 */ 6281 if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 || 6282 (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) & 6283 PCIEM_CAP2_COMP_TIMO_RANGES) == 0) 6284 return (50 * 1000); 6285 6286 switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) & 6287 PCIEM_CTL2_COMP_TIMO_VAL) { 6288 case PCIEM_CTL2_COMP_TIMO_100US: 6289 return (100); 6290 case PCIEM_CTL2_COMP_TIMO_10MS: 6291 return (10 * 1000); 6292 case PCIEM_CTL2_COMP_TIMO_55MS: 6293 return (55 * 1000); 6294 case PCIEM_CTL2_COMP_TIMO_210MS: 6295 return (210 * 1000); 6296 case PCIEM_CTL2_COMP_TIMO_900MS: 6297 return (900 * 1000); 6298 case PCIEM_CTL2_COMP_TIMO_3500MS: 6299 return (3500 * 1000); 6300 case PCIEM_CTL2_COMP_TIMO_13S: 6301 return (13 * 1000 * 1000); 6302 case PCIEM_CTL2_COMP_TIMO_64S: 6303 return (64 * 1000 * 1000); 6304 default: 6305 return (50 * 1000); 6306 } 6307 } 6308 6309 void 6310 pcie_apei_error(device_t dev, int sev, uint8_t *aerp) 6311 { 6312 struct pci_devinfo *dinfo = device_get_ivars(dev); 6313 const char *s; 6314 int aer; 6315 uint32_t r, r1; 6316 uint16_t rs; 6317 6318 if (sev == PCIEM_STA_CORRECTABLE_ERROR) 6319 s = "Correctable"; 6320 else if (sev == PCIEM_STA_NON_FATAL_ERROR) 6321 s = "Uncorrectable (Non-Fatal)"; 6322 else 6323 s = "Uncorrectable (Fatal)"; 6324 device_printf(dev, "%s PCIe error reported by APEI\n", s); 6325 if (aerp) { 6326 if (sev == PCIEM_STA_CORRECTABLE_ERROR) { 6327 r = le32dec(aerp + PCIR_AER_COR_STATUS); 6328 r1 = le32dec(aerp + PCIR_AER_COR_MASK); 6329 } else { 6330 r = le32dec(aerp + PCIR_AER_UC_STATUS); 6331 r1 = le32dec(aerp + PCIR_AER_UC_MASK); 6332 } 6333 device_printf(dev, "status 0x%08x mask 0x%08x", r, r1); 6334 if (sev != PCIEM_STA_CORRECTABLE_ERROR) { 6335 r = le32dec(aerp + PCIR_AER_UC_SEVERITY); 6336 rs = le16dec(aerp + PCIR_AER_CAP_CONTROL); 6337 printf(" severity 0x%08x first %d\n", 6338 r, rs & 0x1f); 6339 } else 6340 printf("\n"); 6341 } 6342 6343 /* As kind of recovery just report and clear the error statuses. */ 6344 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6345 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6346 if (r != 0) { 6347 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6348 device_printf(dev, "Clearing UC AER errors 0x%08x\n", r); 6349 } 6350 6351 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6352 if (r != 0) { 6353 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6354 device_printf(dev, "Clearing COR AER errors 0x%08x\n", r); 6355 } 6356 } 6357 if (dinfo->cfg.pcie.pcie_location != 0) { 6358 rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6359 PCIER_DEVICE_STA, 2); 6360 if ((rs & (PCIEM_STA_CORRECTABLE_ERROR | 6361 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6362 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6363 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6364 PCIER_DEVICE_STA, rs, 2); 6365 device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs); 6366 } 6367 } 6368 } 6369 6370 /* 6371 * Perform a Function Level Reset (FLR) on a device. 6372 * 6373 * This function first waits for any pending transactions to complete 6374 * within the timeout specified by max_delay. If transactions are 6375 * still pending, the function will return false without attempting a 6376 * reset. 6377 * 6378 * If dev is not a PCI-express function or does not support FLR, this 6379 * function returns false. 6380 * 6381 * Note that no registers are saved or restored. The caller is 6382 * responsible for saving and restoring any registers including 6383 * PCI-standard registers via pci_save_state() and 6384 * pci_restore_state(). 6385 */ 6386 bool 6387 pcie_flr(device_t dev, u_int max_delay, bool force) 6388 { 6389 struct pci_devinfo *dinfo = device_get_ivars(dev); 6390 uint16_t cmd, ctl; 6391 int compl_delay; 6392 int cap; 6393 6394 cap = dinfo->cfg.pcie.pcie_location; 6395 if (cap == 0) 6396 return (false); 6397 6398 if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR)) 6399 return (false); 6400 6401 /* 6402 * Disable busmastering to prevent generation of new 6403 * transactions while waiting for the device to go idle. If 6404 * the idle timeout fails, the command register is restored 6405 * which will re-enable busmastering. 6406 */ 6407 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 6408 pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2); 6409 if (!pcie_wait_for_pending_transactions(dev, max_delay)) { 6410 if (!force) { 6411 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 6412 return (false); 6413 } 6414 pci_printf(&dinfo->cfg, 6415 "Resetting with transactions pending after %d ms\n", 6416 max_delay); 6417 6418 /* 6419 * Extend the post-FLR delay to cover the maximum 6420 * Completion Timeout delay of anything in flight 6421 * during the FLR delay. Enforce a minimum delay of 6422 * at least 10ms. 6423 */ 6424 compl_delay = pcie_get_max_completion_timeout(dev) / 1000; 6425 if (compl_delay < 10) 6426 compl_delay = 10; 6427 } else 6428 compl_delay = 0; 6429 6430 /* Initiate the reset. */ 6431 ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 6432 pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl | 6433 PCIEM_CTL_INITIATE_FLR, 2); 6434 6435 /* Wait for 100ms. */ 6436 pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK); 6437 6438 if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) & 6439 PCIEM_STA_TRANSACTION_PND) 6440 pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n"); 6441 return (true); 6442 } 6443 6444 /* 6445 * Attempt a power-management reset by cycling the device in/out of D3 6446 * state. PCI spec says we can only go into D3 state from D0 state. 6447 * Transition from D[12] into D0 before going to D3 state. 6448 */ 6449 int 6450 pci_power_reset(device_t dev) 6451 { 6452 int ps; 6453 6454 ps = pci_get_powerstate(dev); 6455 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6456 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6457 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6458 pci_set_powerstate(dev, ps); 6459 return (0); 6460 } 6461 6462 /* 6463 * Try link drop and retrain of the downstream port of upstream 6464 * switch, for PCIe. According to the PCIe 3.0 spec 6.6.1, this must 6465 * cause Conventional Hot reset of the device in the slot. 6466 * Alternative, for PCIe, could be the secondary bus reset initiatied 6467 * on the upstream switch PCIR_BRIDGECTL_1, bit 6. 6468 */ 6469 int 6470 pcie_link_reset(device_t port, int pcie_location) 6471 { 6472 uint16_t v; 6473 6474 v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2); 6475 v |= PCIEM_LINK_CTL_LINK_DIS; 6476 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6477 pause_sbt("pcier1", mstosbt(20), 0, 0); 6478 v &= ~PCIEM_LINK_CTL_LINK_DIS; 6479 v |= PCIEM_LINK_CTL_RETRAIN_LINK; 6480 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6481 pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */ 6482 v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2); 6483 return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0); 6484 } 6485 6486 static int 6487 pci_reset_post(device_t dev, device_t child) 6488 { 6489 6490 if (dev == device_get_parent(child)) 6491 pci_restore_state(child); 6492 return (0); 6493 } 6494 6495 static int 6496 pci_reset_prepare(device_t dev, device_t child) 6497 { 6498 6499 if (dev == device_get_parent(child)) 6500 pci_save_state(child); 6501 return (0); 6502 } 6503 6504 static int 6505 pci_reset_child(device_t dev, device_t child, int flags) 6506 { 6507 int error; 6508 6509 if (dev == NULL || device_get_parent(child) != dev) 6510 return (0); 6511 if ((flags & DEVF_RESET_DETACH) != 0) { 6512 error = device_get_state(child) == DS_ATTACHED ? 6513 device_detach(child) : 0; 6514 } else { 6515 error = BUS_SUSPEND_CHILD(dev, child); 6516 } 6517 if (error == 0) { 6518 if (!pcie_flr(child, 1000, false)) { 6519 error = BUS_RESET_PREPARE(dev, child); 6520 if (error == 0) 6521 pci_power_reset(child); 6522 BUS_RESET_POST(dev, child); 6523 } 6524 if ((flags & DEVF_RESET_DETACH) != 0) 6525 device_probe_and_attach(child); 6526 else 6527 BUS_RESUME_CHILD(dev, child); 6528 } 6529 return (error); 6530 } 6531 6532 const struct pci_device_table * 6533 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt) 6534 { 6535 bool match; 6536 uint16_t vendor, device, subvendor, subdevice, class, subclass, revid; 6537 6538 vendor = pci_get_vendor(child); 6539 device = pci_get_device(child); 6540 subvendor = pci_get_subvendor(child); 6541 subdevice = pci_get_subdevice(child); 6542 class = pci_get_class(child); 6543 subclass = pci_get_subclass(child); 6544 revid = pci_get_revid(child); 6545 while (nelt-- > 0) { 6546 match = true; 6547 if (id->match_flag_vendor) 6548 match &= vendor == id->vendor; 6549 if (id->match_flag_device) 6550 match &= device == id->device; 6551 if (id->match_flag_subvendor) 6552 match &= subvendor == id->subvendor; 6553 if (id->match_flag_subdevice) 6554 match &= subdevice == id->subdevice; 6555 if (id->match_flag_class) 6556 match &= class == id->class_id; 6557 if (id->match_flag_subclass) 6558 match &= subclass == id->subclass; 6559 if (id->match_flag_revid) 6560 match &= revid == id->revid; 6561 if (match) 6562 return (id); 6563 id++; 6564 } 6565 return (NULL); 6566 } 6567 6568 static void 6569 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo) 6570 { 6571 const char *dev_name; 6572 device_t dev; 6573 6574 dev = dinfo->cfg.dev; 6575 printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus, 6576 dinfo->cfg.slot, dinfo->cfg.func); 6577 dev_name = device_get_name(dev); 6578 if (dev_name != NULL) 6579 printf(" (%s%d)", dev_name, device_get_unit(dev)); 6580 } 6581 6582 void 6583 pci_print_faulted_dev(void) 6584 { 6585 struct pci_devinfo *dinfo; 6586 device_t dev; 6587 int aer, i; 6588 uint32_t r1, r2; 6589 uint16_t status; 6590 6591 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6592 dev = dinfo->cfg.dev; 6593 status = pci_read_config(dev, PCIR_STATUS, 2); 6594 status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6595 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6596 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6597 if (status != 0) { 6598 pci_print_faulted_dev_name(dinfo); 6599 printf(" error 0x%04x\n", status); 6600 } 6601 if (dinfo->cfg.pcie.pcie_location != 0) { 6602 status = pci_read_config(dev, 6603 dinfo->cfg.pcie.pcie_location + 6604 PCIER_DEVICE_STA, 2); 6605 if ((status & (PCIEM_STA_CORRECTABLE_ERROR | 6606 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6607 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6608 pci_print_faulted_dev_name(dinfo); 6609 printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n", 6610 pci_read_config(dev, 6611 dinfo->cfg.pcie.pcie_location + 6612 PCIER_DEVICE_CTL, 2), 6613 status); 6614 } 6615 } 6616 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6617 r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6618 r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6619 if (r1 != 0 || r2 != 0) { 6620 pci_print_faulted_dev_name(dinfo); 6621 printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n" 6622 " COR 0x%08x Mask 0x%08x Ctl 0x%08x\n", 6623 r1, pci_read_config(dev, aer + 6624 PCIR_AER_UC_MASK, 4), 6625 pci_read_config(dev, aer + 6626 PCIR_AER_UC_SEVERITY, 4), 6627 r2, pci_read_config(dev, aer + 6628 PCIR_AER_COR_MASK, 4), 6629 pci_read_config(dev, aer + 6630 PCIR_AER_CAP_CONTROL, 4)); 6631 for (i = 0; i < 4; i++) { 6632 r1 = pci_read_config(dev, aer + 6633 PCIR_AER_HEADER_LOG + i * 4, 4); 6634 printf(" HL%d: 0x%08x\n", i, r1); 6635 } 6636 } 6637 } 6638 } 6639 } 6640 6641 #ifdef DDB 6642 DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db) 6643 { 6644 6645 pci_print_faulted_dev(); 6646 } 6647 6648 static void 6649 db_clear_pcie_errors(const struct pci_devinfo *dinfo) 6650 { 6651 device_t dev; 6652 int aer; 6653 uint32_t r; 6654 6655 dev = dinfo->cfg.dev; 6656 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6657 PCIER_DEVICE_STA, 2); 6658 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6659 PCIER_DEVICE_STA, r, 2); 6660 6661 if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0) 6662 return; 6663 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6664 if (r != 0) 6665 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6666 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6667 if (r != 0) 6668 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6669 } 6670 6671 DB_COMMAND(pci_clearerr, db_pci_clearerr) 6672 { 6673 struct pci_devinfo *dinfo; 6674 device_t dev; 6675 uint16_t status, status1; 6676 6677 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6678 dev = dinfo->cfg.dev; 6679 status1 = status = pci_read_config(dev, PCIR_STATUS, 2); 6680 status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6681 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6682 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6683 if (status1 != 0) { 6684 status &= ~status1; 6685 pci_write_config(dev, PCIR_STATUS, status, 2); 6686 } 6687 if (dinfo->cfg.pcie.pcie_location != 0) 6688 db_clear_pcie_errors(dinfo); 6689 } 6690 } 6691 #endif 6692