xref: /freebsd/sys/dev/pci/pci.c (revision a9148abd9da5db2f1c682fb17bed791845fc41c9)
1 /*-
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
4  * Copyright (c) 2000, BSDi
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/linker.h>
39 #include <sys/fcntl.h>
40 #include <sys/conf.h>
41 #include <sys/kernel.h>
42 #include <sys/queue.h>
43 #include <sys/sysctl.h>
44 #include <sys/endian.h>
45 
46 #include <vm/vm.h>
47 #include <vm/pmap.h>
48 #include <vm/vm_extern.h>
49 
50 #include <sys/bus.h>
51 #include <machine/bus.h>
52 #include <sys/rman.h>
53 #include <machine/resource.h>
54 
55 #if defined(__i386__) || defined(__amd64__)
56 #include <machine/intr_machdep.h>
57 #endif
58 
59 #include <sys/pciio.h>
60 #include <dev/pci/pcireg.h>
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pci_private.h>
63 
64 #include "pcib_if.h"
65 #include "pci_if.h"
66 
67 #ifdef __HAVE_ACPI
68 #include <contrib/dev/acpica/acpi.h>
69 #include "acpi_if.h"
70 #else
71 #define	ACPI_PWR_FOR_SLEEP(x, y, z)
72 #endif
73 
74 static uint32_t		pci_mapbase(unsigned mapreg);
75 static const char	*pci_maptype(unsigned mapreg);
76 static int		pci_mapsize(unsigned testval);
77 static int		pci_maprange(unsigned mapreg);
78 static void		pci_fixancient(pcicfgregs *cfg);
79 
80 static int		pci_porten(device_t pcib, int b, int s, int f);
81 static int		pci_memen(device_t pcib, int b, int s, int f);
82 static void		pci_assign_interrupt(device_t bus, device_t dev,
83 			    int force_route);
84 static int		pci_add_map(device_t pcib, device_t bus, device_t dev,
85 			    int b, int s, int f, int reg,
86 			    struct resource_list *rl, int force, int prefetch);
87 static int		pci_probe(device_t dev);
88 static int		pci_attach(device_t dev);
89 static void		pci_load_vendor_data(void);
90 static int		pci_describe_parse_line(char **ptr, int *vendor,
91 			    int *device, char **desc);
92 static char		*pci_describe_device(device_t dev);
93 static int		pci_modevent(module_t mod, int what, void *arg);
94 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
95 			    pcicfgregs *cfg);
96 static void		pci_read_extcap(device_t pcib, pcicfgregs *cfg);
97 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
98 			    int reg, uint32_t *data);
99 #if 0
100 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
101 			    int reg, uint32_t data);
102 #endif
103 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
104 static void		pci_disable_msi(device_t dev);
105 static void		pci_enable_msi(device_t dev, uint64_t address,
106 			    uint16_t data);
107 static void		pci_enable_msix(device_t dev, u_int index,
108 			    uint64_t address, uint32_t data);
109 static void		pci_mask_msix(device_t dev, u_int index);
110 static void		pci_unmask_msix(device_t dev, u_int index);
111 static int		pci_msi_blacklisted(void);
112 static void		pci_resume_msi(device_t dev);
113 static void		pci_resume_msix(device_t dev);
114 
115 static device_method_t pci_methods[] = {
116 	/* Device interface */
117 	DEVMETHOD(device_probe,		pci_probe),
118 	DEVMETHOD(device_attach,	pci_attach),
119 	DEVMETHOD(device_detach,	bus_generic_detach),
120 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
121 	DEVMETHOD(device_suspend,	pci_suspend),
122 	DEVMETHOD(device_resume,	pci_resume),
123 
124 	/* Bus interface */
125 	DEVMETHOD(bus_print_child,	pci_print_child),
126 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
127 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
128 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
129 	DEVMETHOD(bus_driver_added,	pci_driver_added),
130 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
131 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
132 
133 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
134 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
135 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
136 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
137 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
138 	DEVMETHOD(bus_release_resource,	bus_generic_rl_release_resource),
139 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
140 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
141 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
142 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
143 
144 	/* PCI interface */
145 	DEVMETHOD(pci_read_config,	pci_read_config_method),
146 	DEVMETHOD(pci_write_config,	pci_write_config_method),
147 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
148 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
149 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
150 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
151 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
152 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
153 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
154 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
155 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
156 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
157 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
158 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
159 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
160 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
161 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
162 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
163 
164 	{ 0, 0 }
165 };
166 
167 DEFINE_CLASS_0(pci, pci_driver, pci_methods, 0);
168 
169 static devclass_t pci_devclass;
170 DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
171 MODULE_VERSION(pci, 1);
172 
173 static char	*pci_vendordata;
174 static size_t	pci_vendordata_size;
175 
176 
177 struct pci_quirk {
178 	uint32_t devid;	/* Vendor/device of the card */
179 	int	type;
180 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
181 #define	PCI_QUIRK_DISABLE_MSI	2 /* MSI/MSI-X doesn't work */
182 	int	arg1;
183 	int	arg2;
184 };
185 
186 struct pci_quirk pci_quirks[] = {
187 	/* The Intel 82371AB and 82443MX has a map register at offset 0x90. */
188 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
189 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
190 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
191 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
192 
193 	/*
194 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
195 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
196 	 */
197 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
198 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
199 
200 	/*
201 	 * MSI doesn't work on earlier Intel chipsets including
202 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
203 	 */
204 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
205 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
206 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
207 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
208 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
209 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
210 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
211 
212 	/*
213 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
214 	 * bridge.
215 	 */
216 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
217 
218 	{ 0 }
219 };
220 
221 /* map register information */
222 #define	PCI_MAPMEM	0x01	/* memory map */
223 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
224 #define	PCI_MAPPORT	0x04	/* port map */
225 
226 struct devlist pci_devq;
227 uint32_t pci_generation;
228 uint32_t pci_numdevs = 0;
229 static int pcie_chipset, pcix_chipset;
230 
231 /* sysctl vars */
232 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters");
233 
234 static int pci_enable_io_modes = 1;
235 TUNABLE_INT("hw.pci.enable_io_modes", &pci_enable_io_modes);
236 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RW,
237     &pci_enable_io_modes, 1,
238     "Enable I/O and memory bits in the config register.  Some BIOSes do not\n\
239 enable these bits correctly.  We'd like to do this all the time, but there\n\
240 are some peripherals that this causes problems with.");
241 
242 static int pci_do_power_nodriver = 0;
243 TUNABLE_INT("hw.pci.do_power_nodriver", &pci_do_power_nodriver);
244 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RW,
245     &pci_do_power_nodriver, 0,
246   "Place a function into D3 state when no driver attaches to it.  0 means\n\
247 disable.  1 means conservatively place devices into D3 state.  2 means\n\
248 agressively place devices into D3 state.  3 means put absolutely everything\n\
249 in D3 state.");
250 
251 static int pci_do_power_resume = 1;
252 TUNABLE_INT("hw.pci.do_power_resume", &pci_do_power_resume);
253 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RW,
254     &pci_do_power_resume, 1,
255   "Transition from D3 -> D0 on resume.");
256 
257 static int pci_do_msi = 1;
258 TUNABLE_INT("hw.pci.enable_msi", &pci_do_msi);
259 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RW, &pci_do_msi, 1,
260     "Enable support for MSI interrupts");
261 
262 static int pci_do_msix = 1;
263 TUNABLE_INT("hw.pci.enable_msix", &pci_do_msix);
264 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RW, &pci_do_msix, 1,
265     "Enable support for MSI-X interrupts");
266 
267 static int pci_honor_msi_blacklist = 1;
268 TUNABLE_INT("hw.pci.honor_msi_blacklist", &pci_honor_msi_blacklist);
269 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RD,
270     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI");
271 
272 /* Find a device_t by bus/slot/function in domain 0 */
273 
274 device_t
275 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
276 {
277 
278 	return (pci_find_dbsf(0, bus, slot, func));
279 }
280 
281 /* Find a device_t by domain/bus/slot/function */
282 
283 device_t
284 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
285 {
286 	struct pci_devinfo *dinfo;
287 
288 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
289 		if ((dinfo->cfg.domain == domain) &&
290 		    (dinfo->cfg.bus == bus) &&
291 		    (dinfo->cfg.slot == slot) &&
292 		    (dinfo->cfg.func == func)) {
293 			return (dinfo->cfg.dev);
294 		}
295 	}
296 
297 	return (NULL);
298 }
299 
300 /* Find a device_t by vendor/device ID */
301 
302 device_t
303 pci_find_device(uint16_t vendor, uint16_t device)
304 {
305 	struct pci_devinfo *dinfo;
306 
307 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
308 		if ((dinfo->cfg.vendor == vendor) &&
309 		    (dinfo->cfg.device == device)) {
310 			return (dinfo->cfg.dev);
311 		}
312 	}
313 
314 	return (NULL);
315 }
316 
317 /* return base address of memory or port map */
318 
319 static uint32_t
320 pci_mapbase(uint32_t mapreg)
321 {
322 
323 	if (PCI_BAR_MEM(mapreg))
324 		return (mapreg & PCIM_BAR_MEM_BASE);
325 	else
326 		return (mapreg & PCIM_BAR_IO_BASE);
327 }
328 
329 /* return map type of memory or port map */
330 
331 static const char *
332 pci_maptype(unsigned mapreg)
333 {
334 
335 	if (PCI_BAR_IO(mapreg))
336 		return ("I/O Port");
337 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
338 		return ("Prefetchable Memory");
339 	return ("Memory");
340 }
341 
342 /* return log2 of map size decoded for memory or port map */
343 
344 static int
345 pci_mapsize(uint32_t testval)
346 {
347 	int ln2size;
348 
349 	testval = pci_mapbase(testval);
350 	ln2size = 0;
351 	if (testval != 0) {
352 		while ((testval & 1) == 0)
353 		{
354 			ln2size++;
355 			testval >>= 1;
356 		}
357 	}
358 	return (ln2size);
359 }
360 
361 /* return log2 of address range supported by map register */
362 
363 static int
364 pci_maprange(unsigned mapreg)
365 {
366 	int ln2range = 0;
367 
368 	if (PCI_BAR_IO(mapreg))
369 		ln2range = 32;
370 	else
371 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
372 		case PCIM_BAR_MEM_32:
373 			ln2range = 32;
374 			break;
375 		case PCIM_BAR_MEM_1MB:
376 			ln2range = 20;
377 			break;
378 		case PCIM_BAR_MEM_64:
379 			ln2range = 64;
380 			break;
381 		}
382 	return (ln2range);
383 }
384 
385 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
386 
387 static void
388 pci_fixancient(pcicfgregs *cfg)
389 {
390 	if (cfg->hdrtype != 0)
391 		return;
392 
393 	/* PCI to PCI bridges use header type 1 */
394 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
395 		cfg->hdrtype = 1;
396 }
397 
398 /* extract header type specific config data */
399 
400 static void
401 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
402 {
403 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
404 	switch (cfg->hdrtype) {
405 	case 0:
406 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
407 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
408 		cfg->nummaps	    = PCI_MAXMAPS_0;
409 		break;
410 	case 1:
411 		cfg->nummaps	    = PCI_MAXMAPS_1;
412 		break;
413 	case 2:
414 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
415 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
416 		cfg->nummaps	    = PCI_MAXMAPS_2;
417 		break;
418 	}
419 #undef REG
420 }
421 
422 /* read configuration header into pcicfgregs structure */
423 struct pci_devinfo *
424 pci_read_device(device_t pcib, int d, int b, int s, int f, size_t size)
425 {
426 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
427 	pcicfgregs *cfg = NULL;
428 	struct pci_devinfo *devlist_entry;
429 	struct devlist *devlist_head;
430 
431 	devlist_head = &pci_devq;
432 
433 	devlist_entry = NULL;
434 
435 	if (REG(PCIR_DEVVENDOR, 4) != 0xfffffffful) {
436 		devlist_entry = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
437 		if (devlist_entry == NULL)
438 			return (NULL);
439 
440 		cfg = &devlist_entry->cfg;
441 
442 		cfg->domain		= d;
443 		cfg->bus		= b;
444 		cfg->slot		= s;
445 		cfg->func		= f;
446 		cfg->vendor		= REG(PCIR_VENDOR, 2);
447 		cfg->device		= REG(PCIR_DEVICE, 2);
448 		cfg->cmdreg		= REG(PCIR_COMMAND, 2);
449 		cfg->statreg		= REG(PCIR_STATUS, 2);
450 		cfg->baseclass		= REG(PCIR_CLASS, 1);
451 		cfg->subclass		= REG(PCIR_SUBCLASS, 1);
452 		cfg->progif		= REG(PCIR_PROGIF, 1);
453 		cfg->revid		= REG(PCIR_REVID, 1);
454 		cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
455 		cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
456 		cfg->lattimer		= REG(PCIR_LATTIMER, 1);
457 		cfg->intpin		= REG(PCIR_INTPIN, 1);
458 		cfg->intline		= REG(PCIR_INTLINE, 1);
459 
460 		cfg->mingnt		= REG(PCIR_MINGNT, 1);
461 		cfg->maxlat		= REG(PCIR_MAXLAT, 1);
462 
463 		cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
464 		cfg->hdrtype		&= ~PCIM_MFDEV;
465 
466 		pci_fixancient(cfg);
467 		pci_hdrtypedata(pcib, b, s, f, cfg);
468 
469 		if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
470 			pci_read_extcap(pcib, cfg);
471 
472 		STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
473 
474 		devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
475 		devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
476 		devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
477 		devlist_entry->conf.pc_sel.pc_func = cfg->func;
478 		devlist_entry->conf.pc_hdr = cfg->hdrtype;
479 
480 		devlist_entry->conf.pc_subvendor = cfg->subvendor;
481 		devlist_entry->conf.pc_subdevice = cfg->subdevice;
482 		devlist_entry->conf.pc_vendor = cfg->vendor;
483 		devlist_entry->conf.pc_device = cfg->device;
484 
485 		devlist_entry->conf.pc_class = cfg->baseclass;
486 		devlist_entry->conf.pc_subclass = cfg->subclass;
487 		devlist_entry->conf.pc_progif = cfg->progif;
488 		devlist_entry->conf.pc_revid = cfg->revid;
489 
490 		pci_numdevs++;
491 		pci_generation++;
492 	}
493 	return (devlist_entry);
494 #undef REG
495 }
496 
497 static void
498 pci_read_extcap(device_t pcib, pcicfgregs *cfg)
499 {
500 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
501 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
502 #if defined(__i386__) || defined(__amd64__)
503 	uint64_t addr;
504 #endif
505 	uint32_t val;
506 	int	ptr, nextptr, ptrptr;
507 
508 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
509 	case 0:
510 	case 1:
511 		ptrptr = PCIR_CAP_PTR;
512 		break;
513 	case 2:
514 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
515 		break;
516 	default:
517 		return;		/* no extended capabilities support */
518 	}
519 	nextptr = REG(ptrptr, 1);	/* sanity check? */
520 
521 	/*
522 	 * Read capability entries.
523 	 */
524 	while (nextptr != 0) {
525 		/* Sanity check */
526 		if (nextptr > 255) {
527 			printf("illegal PCI extended capability offset %d\n",
528 			    nextptr);
529 			return;
530 		}
531 		/* Find the next entry */
532 		ptr = nextptr;
533 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
534 
535 		/* Process this entry */
536 		switch (REG(ptr + PCICAP_ID, 1)) {
537 		case PCIY_PMG:		/* PCI power management */
538 			if (cfg->pp.pp_cap == 0) {
539 				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
540 				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
541 				cfg->pp.pp_pmcsr = ptr + PCIR_POWER_PMCSR;
542 				if ((nextptr - ptr) > PCIR_POWER_DATA)
543 					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
544 			}
545 			break;
546 #if defined(__i386__) || defined(__amd64__)
547 		case PCIY_HT:		/* HyperTransport */
548 			/* Determine HT-specific capability type. */
549 			val = REG(ptr + PCIR_HT_COMMAND, 2);
550 			switch (val & PCIM_HTCMD_CAP_MASK) {
551 			case PCIM_HTCAP_MSI_MAPPING:
552 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
553 					/* Sanity check the mapping window. */
554 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
555 					    4);
556 					addr <<= 32;
557 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_LO,
558 					    4);
559 					if (addr != MSI_INTEL_ADDR_BASE)
560 						device_printf(pcib,
561 	    "HT Bridge at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
562 						    cfg->domain, cfg->bus,
563 						    cfg->slot, cfg->func,
564 						    (long long)addr);
565 				} else
566 					addr = MSI_INTEL_ADDR_BASE;
567 
568 				cfg->ht.ht_msimap = ptr;
569 				cfg->ht.ht_msictrl = val;
570 				cfg->ht.ht_msiaddr = addr;
571 				break;
572 			}
573 			break;
574 #endif
575 		case PCIY_MSI:		/* PCI MSI */
576 			cfg->msi.msi_location = ptr;
577 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
578 			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
579 						     PCIM_MSICTRL_MMC_MASK)>>1);
580 			break;
581 		case PCIY_MSIX:		/* PCI MSI-X */
582 			cfg->msix.msix_location = ptr;
583 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
584 			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
585 			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
586 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
587 			cfg->msix.msix_table_bar = PCIR_BAR(val &
588 			    PCIM_MSIX_BIR_MASK);
589 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
590 			val = REG(ptr + PCIR_MSIX_PBA, 4);
591 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
592 			    PCIM_MSIX_BIR_MASK);
593 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
594 			break;
595 		case PCIY_VPD:		/* PCI Vital Product Data */
596 			cfg->vpd.vpd_reg = ptr;
597 			break;
598 		case PCIY_SUBVENDOR:
599 			/* Should always be true. */
600 			if ((cfg->hdrtype & PCIM_HDRTYPE) == 1) {
601 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
602 				cfg->subvendor = val & 0xffff;
603 				cfg->subdevice = val >> 16;
604 			}
605 			break;
606 		case PCIY_PCIX:		/* PCI-X */
607 			/*
608 			 * Assume we have a PCI-X chipset if we have
609 			 * at least one PCI-PCI bridge with a PCI-X
610 			 * capability.  Note that some systems with
611 			 * PCI-express or HT chipsets might match on
612 			 * this check as well.
613 			 */
614 			if ((cfg->hdrtype & PCIM_HDRTYPE) == 1)
615 				pcix_chipset = 1;
616 			break;
617 		case PCIY_EXPRESS:	/* PCI-express */
618 			/*
619 			 * Assume we have a PCI-express chipset if we have
620 			 * at least one PCI-express device.
621 			 */
622 			pcie_chipset = 1;
623 			break;
624 		default:
625 			break;
626 		}
627 	}
628 /* REG and WREG use carry through to next functions */
629 }
630 
631 /*
632  * PCI Vital Product Data
633  */
634 
635 #define	PCI_VPD_TIMEOUT		1000000
636 
637 static int
638 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
639 {
640 	int count = PCI_VPD_TIMEOUT;
641 
642 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
643 
644 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
645 
646 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
647 		if (--count < 0)
648 			return (ENXIO);
649 		DELAY(1);	/* limit looping */
650 	}
651 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
652 
653 	return (0);
654 }
655 
656 #if 0
657 static int
658 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
659 {
660 	int count = PCI_VPD_TIMEOUT;
661 
662 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
663 
664 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
665 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
666 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
667 		if (--count < 0)
668 			return (ENXIO);
669 		DELAY(1);	/* limit looping */
670 	}
671 
672 	return (0);
673 }
674 #endif
675 
676 #undef PCI_VPD_TIMEOUT
677 
678 struct vpd_readstate {
679 	device_t	pcib;
680 	pcicfgregs	*cfg;
681 	uint32_t	val;
682 	int		bytesinval;
683 	int		off;
684 	uint8_t		cksum;
685 };
686 
687 static int
688 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
689 {
690 	uint32_t reg;
691 	uint8_t byte;
692 
693 	if (vrs->bytesinval == 0) {
694 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
695 			return (ENXIO);
696 		vrs->val = le32toh(reg);
697 		vrs->off += 4;
698 		byte = vrs->val & 0xff;
699 		vrs->bytesinval = 3;
700 	} else {
701 		vrs->val = vrs->val >> 8;
702 		byte = vrs->val & 0xff;
703 		vrs->bytesinval--;
704 	}
705 
706 	vrs->cksum += byte;
707 	*data = byte;
708 	return (0);
709 }
710 
711 static void
712 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
713 {
714 	struct vpd_readstate vrs;
715 	int state;
716 	int name;
717 	int remain;
718 	int i;
719 	int alloc, off;		/* alloc/off for RO/W arrays */
720 	int cksumvalid;
721 	int dflen;
722 	uint8_t byte;
723 	uint8_t byte2;
724 
725 	/* init vpd reader */
726 	vrs.bytesinval = 0;
727 	vrs.off = 0;
728 	vrs.pcib = pcib;
729 	vrs.cfg = cfg;
730 	vrs.cksum = 0;
731 
732 	state = 0;
733 	name = remain = i = 0;	/* shut up stupid gcc */
734 	alloc = off = 0;	/* shut up stupid gcc */
735 	dflen = 0;		/* shut up stupid gcc */
736 	cksumvalid = -1;
737 	while (state >= 0) {
738 		if (vpd_nextbyte(&vrs, &byte)) {
739 			state = -2;
740 			break;
741 		}
742 #if 0
743 		printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
744 		    "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
745 		    vrs.off, vrs.bytesinval, byte, state, remain, name, i);
746 #endif
747 		switch (state) {
748 		case 0:		/* item name */
749 			if (byte & 0x80) {
750 				if (vpd_nextbyte(&vrs, &byte2)) {
751 					state = -2;
752 					break;
753 				}
754 				remain = byte2;
755 				if (vpd_nextbyte(&vrs, &byte2)) {
756 					state = -2;
757 					break;
758 				}
759 				remain |= byte2 << 8;
760 				if (remain > (0x7f*4 - vrs.off)) {
761 					state = -1;
762 					printf(
763 			    "pci%d:%d:%d:%d: invalid VPD data, remain %#x\n",
764 					    cfg->domain, cfg->bus, cfg->slot,
765 					    cfg->func, remain);
766 				}
767 				name = byte & 0x7f;
768 			} else {
769 				remain = byte & 0x7;
770 				name = (byte >> 3) & 0xf;
771 			}
772 			switch (name) {
773 			case 0x2:	/* String */
774 				cfg->vpd.vpd_ident = malloc(remain + 1,
775 				    M_DEVBUF, M_WAITOK);
776 				i = 0;
777 				state = 1;
778 				break;
779 			case 0xf:	/* End */
780 				state = -1;
781 				break;
782 			case 0x10:	/* VPD-R */
783 				alloc = 8;
784 				off = 0;
785 				cfg->vpd.vpd_ros = malloc(alloc *
786 				    sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
787 				    M_WAITOK | M_ZERO);
788 				state = 2;
789 				break;
790 			case 0x11:	/* VPD-W */
791 				alloc = 8;
792 				off = 0;
793 				cfg->vpd.vpd_w = malloc(alloc *
794 				    sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
795 				    M_WAITOK | M_ZERO);
796 				state = 5;
797 				break;
798 			default:	/* Invalid data, abort */
799 				state = -1;
800 				break;
801 			}
802 			break;
803 
804 		case 1:	/* Identifier String */
805 			cfg->vpd.vpd_ident[i++] = byte;
806 			remain--;
807 			if (remain == 0)  {
808 				cfg->vpd.vpd_ident[i] = '\0';
809 				state = 0;
810 			}
811 			break;
812 
813 		case 2:	/* VPD-R Keyword Header */
814 			if (off == alloc) {
815 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
816 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
817 				    M_DEVBUF, M_WAITOK | M_ZERO);
818 			}
819 			cfg->vpd.vpd_ros[off].keyword[0] = byte;
820 			if (vpd_nextbyte(&vrs, &byte2)) {
821 				state = -2;
822 				break;
823 			}
824 			cfg->vpd.vpd_ros[off].keyword[1] = byte2;
825 			if (vpd_nextbyte(&vrs, &byte2)) {
826 				state = -2;
827 				break;
828 			}
829 			dflen = byte2;
830 			if (dflen == 0 &&
831 			    strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
832 			    2) == 0) {
833 				/*
834 				 * if this happens, we can't trust the rest
835 				 * of the VPD.
836 				 */
837 				printf(
838 				    "pci%d:%d:%d:%d: bad keyword length: %d\n",
839 				    cfg->domain, cfg->bus, cfg->slot,
840 				    cfg->func, dflen);
841 				cksumvalid = 0;
842 				state = -1;
843 				break;
844 			} else if (dflen == 0) {
845 				cfg->vpd.vpd_ros[off].value = malloc(1 *
846 				    sizeof(*cfg->vpd.vpd_ros[off].value),
847 				    M_DEVBUF, M_WAITOK);
848 				cfg->vpd.vpd_ros[off].value[0] = '\x00';
849 			} else
850 				cfg->vpd.vpd_ros[off].value = malloc(
851 				    (dflen + 1) *
852 				    sizeof(*cfg->vpd.vpd_ros[off].value),
853 				    M_DEVBUF, M_WAITOK);
854 			remain -= 3;
855 			i = 0;
856 			/* keep in sync w/ state 3's transistions */
857 			if (dflen == 0 && remain == 0)
858 				state = 0;
859 			else if (dflen == 0)
860 				state = 2;
861 			else
862 				state = 3;
863 			break;
864 
865 		case 3:	/* VPD-R Keyword Value */
866 			cfg->vpd.vpd_ros[off].value[i++] = byte;
867 			if (strncmp(cfg->vpd.vpd_ros[off].keyword,
868 			    "RV", 2) == 0 && cksumvalid == -1) {
869 				if (vrs.cksum == 0)
870 					cksumvalid = 1;
871 				else {
872 					if (bootverbose)
873 						printf(
874 				"pci%d:%d:%d:%d: bad VPD cksum, remain %hhu\n",
875 						    cfg->domain, cfg->bus,
876 						    cfg->slot, cfg->func,
877 						    vrs.cksum);
878 					cksumvalid = 0;
879 					state = -1;
880 					break;
881 				}
882 			}
883 			dflen--;
884 			remain--;
885 			/* keep in sync w/ state 2's transistions */
886 			if (dflen == 0)
887 				cfg->vpd.vpd_ros[off++].value[i++] = '\0';
888 			if (dflen == 0 && remain == 0) {
889 				cfg->vpd.vpd_rocnt = off;
890 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
891 				    off * sizeof(*cfg->vpd.vpd_ros),
892 				    M_DEVBUF, M_WAITOK | M_ZERO);
893 				state = 0;
894 			} else if (dflen == 0)
895 				state = 2;
896 			break;
897 
898 		case 4:
899 			remain--;
900 			if (remain == 0)
901 				state = 0;
902 			break;
903 
904 		case 5:	/* VPD-W Keyword Header */
905 			if (off == alloc) {
906 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
907 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
908 				    M_DEVBUF, M_WAITOK | M_ZERO);
909 			}
910 			cfg->vpd.vpd_w[off].keyword[0] = byte;
911 			if (vpd_nextbyte(&vrs, &byte2)) {
912 				state = -2;
913 				break;
914 			}
915 			cfg->vpd.vpd_w[off].keyword[1] = byte2;
916 			if (vpd_nextbyte(&vrs, &byte2)) {
917 				state = -2;
918 				break;
919 			}
920 			cfg->vpd.vpd_w[off].len = dflen = byte2;
921 			cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
922 			cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
923 			    sizeof(*cfg->vpd.vpd_w[off].value),
924 			    M_DEVBUF, M_WAITOK);
925 			remain -= 3;
926 			i = 0;
927 			/* keep in sync w/ state 6's transistions */
928 			if (dflen == 0 && remain == 0)
929 				state = 0;
930 			else if (dflen == 0)
931 				state = 5;
932 			else
933 				state = 6;
934 			break;
935 
936 		case 6:	/* VPD-W Keyword Value */
937 			cfg->vpd.vpd_w[off].value[i++] = byte;
938 			dflen--;
939 			remain--;
940 			/* keep in sync w/ state 5's transistions */
941 			if (dflen == 0)
942 				cfg->vpd.vpd_w[off++].value[i++] = '\0';
943 			if (dflen == 0 && remain == 0) {
944 				cfg->vpd.vpd_wcnt = off;
945 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
946 				    off * sizeof(*cfg->vpd.vpd_w),
947 				    M_DEVBUF, M_WAITOK | M_ZERO);
948 				state = 0;
949 			} else if (dflen == 0)
950 				state = 5;
951 			break;
952 
953 		default:
954 			printf("pci%d:%d:%d:%d: invalid state: %d\n",
955 			    cfg->domain, cfg->bus, cfg->slot, cfg->func,
956 			    state);
957 			state = -1;
958 			break;
959 		}
960 	}
961 
962 	if (cksumvalid == 0 || state < -1) {
963 		/* read-only data bad, clean up */
964 		if (cfg->vpd.vpd_ros != NULL) {
965 			for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
966 				free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
967 			free(cfg->vpd.vpd_ros, M_DEVBUF);
968 			cfg->vpd.vpd_ros = NULL;
969 		}
970 	}
971 	if (state < -1) {
972 		/* I/O error, clean up */
973 		printf("pci%d:%d:%d:%d: failed to read VPD data.\n",
974 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
975 		if (cfg->vpd.vpd_ident != NULL) {
976 			free(cfg->vpd.vpd_ident, M_DEVBUF);
977 			cfg->vpd.vpd_ident = NULL;
978 		}
979 		if (cfg->vpd.vpd_w != NULL) {
980 			for (off = 0; cfg->vpd.vpd_w[off].value; off++)
981 				free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
982 			free(cfg->vpd.vpd_w, M_DEVBUF);
983 			cfg->vpd.vpd_w = NULL;
984 		}
985 	}
986 	cfg->vpd.vpd_cached = 1;
987 #undef REG
988 #undef WREG
989 }
990 
991 int
992 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
993 {
994 	struct pci_devinfo *dinfo = device_get_ivars(child);
995 	pcicfgregs *cfg = &dinfo->cfg;
996 
997 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
998 		pci_read_vpd(device_get_parent(dev), cfg);
999 
1000 	*identptr = cfg->vpd.vpd_ident;
1001 
1002 	if (*identptr == NULL)
1003 		return (ENXIO);
1004 
1005 	return (0);
1006 }
1007 
1008 int
1009 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1010 	const char **vptr)
1011 {
1012 	struct pci_devinfo *dinfo = device_get_ivars(child);
1013 	pcicfgregs *cfg = &dinfo->cfg;
1014 	int i;
1015 
1016 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1017 		pci_read_vpd(device_get_parent(dev), cfg);
1018 
1019 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1020 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1021 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1022 			*vptr = cfg->vpd.vpd_ros[i].value;
1023 		}
1024 
1025 	if (i != cfg->vpd.vpd_rocnt)
1026 		return (0);
1027 
1028 	*vptr = NULL;
1029 	return (ENXIO);
1030 }
1031 
1032 /*
1033  * Return the offset in configuration space of the requested extended
1034  * capability entry or 0 if the specified capability was not found.
1035  */
1036 int
1037 pci_find_extcap_method(device_t dev, device_t child, int capability,
1038     int *capreg)
1039 {
1040 	struct pci_devinfo *dinfo = device_get_ivars(child);
1041 	pcicfgregs *cfg = &dinfo->cfg;
1042 	u_int32_t status;
1043 	u_int8_t ptr;
1044 
1045 	/*
1046 	 * Check the CAP_LIST bit of the PCI status register first.
1047 	 */
1048 	status = pci_read_config(child, PCIR_STATUS, 2);
1049 	if (!(status & PCIM_STATUS_CAPPRESENT))
1050 		return (ENXIO);
1051 
1052 	/*
1053 	 * Determine the start pointer of the capabilities list.
1054 	 */
1055 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1056 	case 0:
1057 	case 1:
1058 		ptr = PCIR_CAP_PTR;
1059 		break;
1060 	case 2:
1061 		ptr = PCIR_CAP_PTR_2;
1062 		break;
1063 	default:
1064 		/* XXX: panic? */
1065 		return (ENXIO);		/* no extended capabilities support */
1066 	}
1067 	ptr = pci_read_config(child, ptr, 1);
1068 
1069 	/*
1070 	 * Traverse the capabilities list.
1071 	 */
1072 	while (ptr != 0) {
1073 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1074 			if (capreg != NULL)
1075 				*capreg = ptr;
1076 			return (0);
1077 		}
1078 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1079 	}
1080 
1081 	return (ENOENT);
1082 }
1083 
1084 /*
1085  * Support for MSI-X message interrupts.
1086  */
1087 void
1088 pci_enable_msix(device_t dev, u_int index, uint64_t address, uint32_t data)
1089 {
1090 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1091 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1092 	uint32_t offset;
1093 
1094 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1095 	offset = msix->msix_table_offset + index * 16;
1096 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1097 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1098 	bus_write_4(msix->msix_table_res, offset + 8, data);
1099 
1100 	/* Enable MSI -> HT mapping. */
1101 	pci_ht_map_msi(dev, address);
1102 }
1103 
1104 void
1105 pci_mask_msix(device_t dev, u_int index)
1106 {
1107 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1108 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1109 	uint32_t offset, val;
1110 
1111 	KASSERT(msix->msix_msgnum > index, ("bogus index"));
1112 	offset = msix->msix_table_offset + index * 16 + 12;
1113 	val = bus_read_4(msix->msix_table_res, offset);
1114 	if (!(val & PCIM_MSIX_VCTRL_MASK)) {
1115 		val |= PCIM_MSIX_VCTRL_MASK;
1116 		bus_write_4(msix->msix_table_res, offset, val);
1117 	}
1118 }
1119 
1120 void
1121 pci_unmask_msix(device_t dev, u_int index)
1122 {
1123 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1124 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1125 	uint32_t offset, val;
1126 
1127 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1128 	offset = msix->msix_table_offset + index * 16 + 12;
1129 	val = bus_read_4(msix->msix_table_res, offset);
1130 	if (val & PCIM_MSIX_VCTRL_MASK) {
1131 		val &= ~PCIM_MSIX_VCTRL_MASK;
1132 		bus_write_4(msix->msix_table_res, offset, val);
1133 	}
1134 }
1135 
1136 int
1137 pci_pending_msix(device_t dev, u_int index)
1138 {
1139 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1140 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1141 	uint32_t offset, bit;
1142 
1143 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1144 	offset = msix->msix_pba_offset + (index / 32) * 4;
1145 	bit = 1 << index % 32;
1146 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1147 }
1148 
1149 /*
1150  * Restore MSI-X registers and table during resume.  If MSI-X is
1151  * enabled then walk the virtual table to restore the actual MSI-X
1152  * table.
1153  */
1154 static void
1155 pci_resume_msix(device_t dev)
1156 {
1157 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1158 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1159 	struct msix_table_entry *mte;
1160 	struct msix_vector *mv;
1161 	int i;
1162 
1163 	if (msix->msix_alloc > 0) {
1164 		/* First, mask all vectors. */
1165 		for (i = 0; i < msix->msix_msgnum; i++)
1166 			pci_mask_msix(dev, i);
1167 
1168 		/* Second, program any messages with at least one handler. */
1169 		for (i = 0; i < msix->msix_table_len; i++) {
1170 			mte = &msix->msix_table[i];
1171 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1172 				continue;
1173 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1174 			pci_enable_msix(dev, i, mv->mv_address, mv->mv_data);
1175 			pci_unmask_msix(dev, i);
1176 		}
1177 	}
1178 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1179 	    msix->msix_ctrl, 2);
1180 }
1181 
1182 /*
1183  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1184  * returned in *count.  After this function returns, each message will be
1185  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1186  */
1187 int
1188 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1189 {
1190 	struct pci_devinfo *dinfo = device_get_ivars(child);
1191 	pcicfgregs *cfg = &dinfo->cfg;
1192 	struct resource_list_entry *rle;
1193 	int actual, error, i, irq, max;
1194 
1195 	/* Don't let count == 0 get us into trouble. */
1196 	if (*count == 0)
1197 		return (EINVAL);
1198 
1199 	/* If rid 0 is allocated, then fail. */
1200 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1201 	if (rle != NULL && rle->res != NULL)
1202 		return (ENXIO);
1203 
1204 	/* Already have allocated messages? */
1205 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1206 		return (ENXIO);
1207 
1208 	/* If MSI is blacklisted for this system, fail. */
1209 	if (pci_msi_blacklisted())
1210 		return (ENXIO);
1211 
1212 	/* MSI-X capability present? */
1213 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1214 		return (ENODEV);
1215 
1216 	/* Make sure the appropriate BARs are mapped. */
1217 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1218 	    cfg->msix.msix_table_bar);
1219 	if (rle == NULL || rle->res == NULL ||
1220 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1221 		return (ENXIO);
1222 	cfg->msix.msix_table_res = rle->res;
1223 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1224 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1225 		    cfg->msix.msix_pba_bar);
1226 		if (rle == NULL || rle->res == NULL ||
1227 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1228 			return (ENXIO);
1229 	}
1230 	cfg->msix.msix_pba_res = rle->res;
1231 
1232 	if (bootverbose)
1233 		device_printf(child,
1234 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1235 		    *count, cfg->msix.msix_msgnum);
1236 	max = min(*count, cfg->msix.msix_msgnum);
1237 	for (i = 0; i < max; i++) {
1238 		/* Allocate a message. */
1239 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1240 		if (error)
1241 			break;
1242 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1243 		    irq, 1);
1244 	}
1245 	actual = i;
1246 
1247 	if (bootverbose) {
1248 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1249 		if (actual == 1)
1250 			device_printf(child, "using IRQ %lu for MSI-X\n",
1251 			    rle->start);
1252 		else {
1253 			int run;
1254 
1255 			/*
1256 			 * Be fancy and try to print contiguous runs of
1257 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1258 			 * 'run' is true if we are in a range.
1259 			 */
1260 			device_printf(child, "using IRQs %lu", rle->start);
1261 			irq = rle->start;
1262 			run = 0;
1263 			for (i = 1; i < actual; i++) {
1264 				rle = resource_list_find(&dinfo->resources,
1265 				    SYS_RES_IRQ, i + 1);
1266 
1267 				/* Still in a run? */
1268 				if (rle->start == irq + 1) {
1269 					run = 1;
1270 					irq++;
1271 					continue;
1272 				}
1273 
1274 				/* Finish previous range. */
1275 				if (run) {
1276 					printf("-%d", irq);
1277 					run = 0;
1278 				}
1279 
1280 				/* Start new range. */
1281 				printf(",%lu", rle->start);
1282 				irq = rle->start;
1283 			}
1284 
1285 			/* Unfinished range? */
1286 			if (run)
1287 				printf("-%d", irq);
1288 			printf(" for MSI-X\n");
1289 		}
1290 	}
1291 
1292 	/* Mask all vectors. */
1293 	for (i = 0; i < cfg->msix.msix_msgnum; i++)
1294 		pci_mask_msix(child, i);
1295 
1296 	/* Allocate and initialize vector data and virtual table. */
1297 	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1298 	    M_DEVBUF, M_WAITOK | M_ZERO);
1299 	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1300 	    M_DEVBUF, M_WAITOK | M_ZERO);
1301 	for (i = 0; i < actual; i++) {
1302 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1303 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1304 		cfg->msix.msix_table[i].mte_vector = i + 1;
1305 	}
1306 
1307 	/* Update control register to enable MSI-X. */
1308 	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1309 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1310 	    cfg->msix.msix_ctrl, 2);
1311 
1312 	/* Update counts of alloc'd messages. */
1313 	cfg->msix.msix_alloc = actual;
1314 	cfg->msix.msix_table_len = actual;
1315 	*count = actual;
1316 	return (0);
1317 }
1318 
1319 /*
1320  * By default, pci_alloc_msix() will assign the allocated IRQ
1321  * resources consecutively to the first N messages in the MSI-X table.
1322  * However, device drivers may want to use different layouts if they
1323  * either receive fewer messages than they asked for, or they wish to
1324  * populate the MSI-X table sparsely.  This method allows the driver
1325  * to specify what layout it wants.  It must be called after a
1326  * successful pci_alloc_msix() but before any of the associated
1327  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1328  *
1329  * The 'vectors' array contains 'count' message vectors.  The array
1330  * maps directly to the MSI-X table in that index 0 in the array
1331  * specifies the vector for the first message in the MSI-X table, etc.
1332  * The vector value in each array index can either be 0 to indicate
1333  * that no vector should be assigned to a message slot, or it can be a
1334  * number from 1 to N (where N is the count returned from a
1335  * succcessful call to pci_alloc_msix()) to indicate which message
1336  * vector (IRQ) to be used for the corresponding message.
1337  *
1338  * On successful return, each message with a non-zero vector will have
1339  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1340  * 1.  Additionally, if any of the IRQs allocated via the previous
1341  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1342  * will be freed back to the system automatically.
1343  *
1344  * For example, suppose a driver has a MSI-X table with 6 messages and
1345  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1346  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1347  * C.  After the call to pci_alloc_msix(), the device will be setup to
1348  * have an MSI-X table of ABC--- (where - means no vector assigned).
1349  * If the driver ten passes a vector array of { 1, 0, 1, 2, 0, 2 },
1350  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1351  * be freed back to the system.  This device will also have valid
1352  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1353  *
1354  * In any case, the SYS_RES_IRQ rid X will always map to the message
1355  * at MSI-X table index X - 1 and will only be valid if a vector is
1356  * assigned to that table entry.
1357  */
1358 int
1359 pci_remap_msix_method(device_t dev, device_t child, int count,
1360     const u_int *vectors)
1361 {
1362 	struct pci_devinfo *dinfo = device_get_ivars(child);
1363 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1364 	struct resource_list_entry *rle;
1365 	int i, irq, j, *used;
1366 
1367 	/*
1368 	 * Have to have at least one message in the table but the
1369 	 * table can't be bigger than the actual MSI-X table in the
1370 	 * device.
1371 	 */
1372 	if (count == 0 || count > msix->msix_msgnum)
1373 		return (EINVAL);
1374 
1375 	/* Sanity check the vectors. */
1376 	for (i = 0; i < count; i++)
1377 		if (vectors[i] > msix->msix_alloc)
1378 			return (EINVAL);
1379 
1380 	/*
1381 	 * Make sure there aren't any holes in the vectors to be used.
1382 	 * It's a big pain to support it, and it doesn't really make
1383 	 * sense anyway.  Also, at least one vector must be used.
1384 	 */
1385 	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
1386 	    M_ZERO);
1387 	for (i = 0; i < count; i++)
1388 		if (vectors[i] != 0)
1389 			used[vectors[i] - 1] = 1;
1390 	for (i = 0; i < msix->msix_alloc - 1; i++)
1391 		if (used[i] == 0 && used[i + 1] == 1) {
1392 			free(used, M_DEVBUF);
1393 			return (EINVAL);
1394 		}
1395 	if (used[0] != 1) {
1396 		free(used, M_DEVBUF);
1397 		return (EINVAL);
1398 	}
1399 
1400 	/* Make sure none of the resources are allocated. */
1401 	for (i = 0; i < msix->msix_table_len; i++) {
1402 		if (msix->msix_table[i].mte_vector == 0)
1403 			continue;
1404 		if (msix->msix_table[i].mte_handlers > 0)
1405 			return (EBUSY);
1406 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1407 		KASSERT(rle != NULL, ("missing resource"));
1408 		if (rle->res != NULL)
1409 			return (EBUSY);
1410 	}
1411 
1412 	/* Free the existing resource list entries. */
1413 	for (i = 0; i < msix->msix_table_len; i++) {
1414 		if (msix->msix_table[i].mte_vector == 0)
1415 			continue;
1416 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
1417 	}
1418 
1419 	/*
1420 	 * Build the new virtual table keeping track of which vectors are
1421 	 * used.
1422 	 */
1423 	free(msix->msix_table, M_DEVBUF);
1424 	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
1425 	    M_DEVBUF, M_WAITOK | M_ZERO);
1426 	for (i = 0; i < count; i++)
1427 		msix->msix_table[i].mte_vector = vectors[i];
1428 	msix->msix_table_len = count;
1429 
1430 	/* Free any unused IRQs and resize the vectors array if necessary. */
1431 	j = msix->msix_alloc - 1;
1432 	if (used[j] == 0) {
1433 		struct msix_vector *vec;
1434 
1435 		while (used[j] == 0) {
1436 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
1437 			    msix->msix_vectors[j].mv_irq);
1438 			j--;
1439 		}
1440 		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
1441 		    M_WAITOK);
1442 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
1443 		    (j + 1));
1444 		free(msix->msix_vectors, M_DEVBUF);
1445 		msix->msix_vectors = vec;
1446 		msix->msix_alloc = j + 1;
1447 	}
1448 	free(used, M_DEVBUF);
1449 
1450 	/* Map the IRQs onto the rids. */
1451 	for (i = 0; i < count; i++) {
1452 		if (vectors[i] == 0)
1453 			continue;
1454 		irq = msix->msix_vectors[vectors[i]].mv_irq;
1455 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1456 		    irq, 1);
1457 	}
1458 
1459 	if (bootverbose) {
1460 		device_printf(child, "Remapped MSI-X IRQs as: ");
1461 		for (i = 0; i < count; i++) {
1462 			if (i != 0)
1463 				printf(", ");
1464 			if (vectors[i] == 0)
1465 				printf("---");
1466 			else
1467 				printf("%d",
1468 				    msix->msix_vectors[vectors[i]].mv_irq);
1469 		}
1470 		printf("\n");
1471 	}
1472 
1473 	return (0);
1474 }
1475 
1476 static int
1477 pci_release_msix(device_t dev, device_t child)
1478 {
1479 	struct pci_devinfo *dinfo = device_get_ivars(child);
1480 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1481 	struct resource_list_entry *rle;
1482 	int i;
1483 
1484 	/* Do we have any messages to release? */
1485 	if (msix->msix_alloc == 0)
1486 		return (ENODEV);
1487 
1488 	/* Make sure none of the resources are allocated. */
1489 	for (i = 0; i < msix->msix_table_len; i++) {
1490 		if (msix->msix_table[i].mte_vector == 0)
1491 			continue;
1492 		if (msix->msix_table[i].mte_handlers > 0)
1493 			return (EBUSY);
1494 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1495 		KASSERT(rle != NULL, ("missing resource"));
1496 		if (rle->res != NULL)
1497 			return (EBUSY);
1498 	}
1499 
1500 	/* Update control register to disable MSI-X. */
1501 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
1502 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
1503 	    msix->msix_ctrl, 2);
1504 
1505 	/* Free the resource list entries. */
1506 	for (i = 0; i < msix->msix_table_len; i++) {
1507 		if (msix->msix_table[i].mte_vector == 0)
1508 			continue;
1509 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
1510 	}
1511 	free(msix->msix_table, M_DEVBUF);
1512 	msix->msix_table_len = 0;
1513 
1514 	/* Release the IRQs. */
1515 	for (i = 0; i < msix->msix_alloc; i++)
1516 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
1517 		    msix->msix_vectors[i].mv_irq);
1518 	free(msix->msix_vectors, M_DEVBUF);
1519 	msix->msix_alloc = 0;
1520 	return (0);
1521 }
1522 
1523 /*
1524  * Return the max supported MSI-X messages this device supports.
1525  * Basically, assuming the MD code can alloc messages, this function
1526  * should return the maximum value that pci_alloc_msix() can return.
1527  * Thus, it is subject to the tunables, etc.
1528  */
1529 int
1530 pci_msix_count_method(device_t dev, device_t child)
1531 {
1532 	struct pci_devinfo *dinfo = device_get_ivars(child);
1533 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1534 
1535 	if (pci_do_msix && msix->msix_location != 0)
1536 		return (msix->msix_msgnum);
1537 	return (0);
1538 }
1539 
1540 /*
1541  * HyperTransport MSI mapping control
1542  */
1543 void
1544 pci_ht_map_msi(device_t dev, uint64_t addr)
1545 {
1546 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1547 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
1548 
1549 	if (!ht->ht_msimap)
1550 		return;
1551 
1552 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
1553 	    ht->ht_msiaddr >> 20 == addr >> 20) {
1554 		/* Enable MSI -> HT mapping. */
1555 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1556 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
1557 		    ht->ht_msictrl, 2);
1558 	}
1559 
1560 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
1561 		/* Disable MSI -> HT mapping. */
1562 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
1563 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
1564 		    ht->ht_msictrl, 2);
1565 	}
1566 }
1567 
1568 /*
1569  * Support for MSI message signalled interrupts.
1570  */
1571 void
1572 pci_enable_msi(device_t dev, uint64_t address, uint16_t data)
1573 {
1574 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1575 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
1576 
1577 	/* Write data and address values. */
1578 	pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
1579 	    address & 0xffffffff, 4);
1580 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
1581 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR_HIGH,
1582 		    address >> 32, 4);
1583 		pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA_64BIT,
1584 		    data, 2);
1585 	} else
1586 		pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, data,
1587 		    2);
1588 
1589 	/* Enable MSI in the control register. */
1590 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
1591 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
1592 	    2);
1593 
1594 	/* Enable MSI -> HT mapping. */
1595 	pci_ht_map_msi(dev, address);
1596 }
1597 
1598 void
1599 pci_disable_msi(device_t dev)
1600 {
1601 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1602 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
1603 
1604 	/* Disable MSI -> HT mapping. */
1605 	pci_ht_map_msi(dev, 0);
1606 
1607 	/* Disable MSI in the control register. */
1608 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
1609 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
1610 	    2);
1611 }
1612 
1613 /*
1614  * Restore MSI registers during resume.  If MSI is enabled then
1615  * restore the data and address registers in addition to the control
1616  * register.
1617  */
1618 static void
1619 pci_resume_msi(device_t dev)
1620 {
1621 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1622 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
1623 	uint64_t address;
1624 	uint16_t data;
1625 
1626 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
1627 		address = msi->msi_addr;
1628 		data = msi->msi_data;
1629 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
1630 		    address & 0xffffffff, 4);
1631 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
1632 			pci_write_config(dev, msi->msi_location +
1633 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
1634 			pci_write_config(dev, msi->msi_location +
1635 			    PCIR_MSI_DATA_64BIT, data, 2);
1636 		} else
1637 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
1638 			    data, 2);
1639 	}
1640 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
1641 	    2);
1642 }
1643 
1644 int
1645 pci_remap_msi_irq(device_t dev, u_int irq)
1646 {
1647 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1648 	pcicfgregs *cfg = &dinfo->cfg;
1649 	struct resource_list_entry *rle;
1650 	struct msix_table_entry *mte;
1651 	struct msix_vector *mv;
1652 	device_t bus;
1653 	uint64_t addr;
1654 	uint32_t data;
1655 	int error, i, j;
1656 
1657 	bus = device_get_parent(dev);
1658 
1659 	/*
1660 	 * Handle MSI first.  We try to find this IRQ among our list
1661 	 * of MSI IRQs.  If we find it, we request updated address and
1662 	 * data registers and apply the results.
1663 	 */
1664 	if (cfg->msi.msi_alloc > 0) {
1665 
1666 		/* If we don't have any active handlers, nothing to do. */
1667 		if (cfg->msi.msi_handlers == 0)
1668 			return (0);
1669 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
1670 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
1671 			    i + 1);
1672 			if (rle->start == irq) {
1673 				error = PCIB_MAP_MSI(device_get_parent(bus),
1674 				    dev, irq, &addr, &data);
1675 				if (error)
1676 					return (error);
1677 				pci_disable_msi(dev);
1678 				dinfo->cfg.msi.msi_addr = addr;
1679 				dinfo->cfg.msi.msi_data = data;
1680 				pci_enable_msi(dev, addr, data);
1681 				return (0);
1682 			}
1683 		}
1684 		return (ENOENT);
1685 	}
1686 
1687 	/*
1688 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
1689 	 * we request the updated mapping info.  If that works, we go
1690 	 * through all the slots that use this IRQ and update them.
1691 	 */
1692 	if (cfg->msix.msix_alloc > 0) {
1693 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
1694 			mv = &cfg->msix.msix_vectors[i];
1695 			if (mv->mv_irq == irq) {
1696 				error = PCIB_MAP_MSI(device_get_parent(bus),
1697 				    dev, irq, &addr, &data);
1698 				if (error)
1699 					return (error);
1700 				mv->mv_address = addr;
1701 				mv->mv_data = data;
1702 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
1703 					mte = &cfg->msix.msix_table[j];
1704 					if (mte->mte_vector != i + 1)
1705 						continue;
1706 					if (mte->mte_handlers == 0)
1707 						continue;
1708 					pci_mask_msix(dev, j);
1709 					pci_enable_msix(dev, j, addr, data);
1710 					pci_unmask_msix(dev, j);
1711 				}
1712 			}
1713 		}
1714 		return (ENOENT);
1715 	}
1716 
1717 	return (ENOENT);
1718 }
1719 
1720 /*
1721  * Returns true if the specified device is blacklisted because MSI
1722  * doesn't work.
1723  */
1724 int
1725 pci_msi_device_blacklisted(device_t dev)
1726 {
1727 	struct pci_quirk *q;
1728 
1729 	if (!pci_honor_msi_blacklist)
1730 		return (0);
1731 
1732 	for (q = &pci_quirks[0]; q->devid; q++) {
1733 		if (q->devid == pci_get_devid(dev) &&
1734 		    q->type == PCI_QUIRK_DISABLE_MSI)
1735 			return (1);
1736 	}
1737 	return (0);
1738 }
1739 
1740 /*
1741  * Determine if MSI is blacklisted globally on this sytem.  Currently,
1742  * we just check for blacklisted chipsets as represented by the
1743  * host-PCI bridge at device 0:0:0.  In the future, it may become
1744  * necessary to check other system attributes, such as the kenv values
1745  * that give the motherboard manufacturer and model number.
1746  */
1747 static int
1748 pci_msi_blacklisted(void)
1749 {
1750 	device_t dev;
1751 
1752 	if (!pci_honor_msi_blacklist)
1753 		return (0);
1754 
1755 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
1756 	if (!(pcie_chipset || pcix_chipset))
1757 		return (1);
1758 
1759 	dev = pci_find_bsf(0, 0, 0);
1760 	if (dev != NULL)
1761 		return (pci_msi_device_blacklisted(dev));
1762 	return (0);
1763 }
1764 
1765 /*
1766  * Attempt to allocate *count MSI messages.  The actual number allocated is
1767  * returned in *count.  After this function returns, each message will be
1768  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
1769  */
1770 int
1771 pci_alloc_msi_method(device_t dev, device_t child, int *count)
1772 {
1773 	struct pci_devinfo *dinfo = device_get_ivars(child);
1774 	pcicfgregs *cfg = &dinfo->cfg;
1775 	struct resource_list_entry *rle;
1776 	int actual, error, i, irqs[32];
1777 	uint16_t ctrl;
1778 
1779 	/* Don't let count == 0 get us into trouble. */
1780 	if (*count == 0)
1781 		return (EINVAL);
1782 
1783 	/* If rid 0 is allocated, then fail. */
1784 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1785 	if (rle != NULL && rle->res != NULL)
1786 		return (ENXIO);
1787 
1788 	/* Already have allocated messages? */
1789 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1790 		return (ENXIO);
1791 
1792 	/* If MSI is blacklisted for this system, fail. */
1793 	if (pci_msi_blacklisted())
1794 		return (ENXIO);
1795 
1796 	/* MSI capability present? */
1797 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
1798 		return (ENODEV);
1799 
1800 	if (bootverbose)
1801 		device_printf(child,
1802 		    "attempting to allocate %d MSI vectors (%d supported)\n",
1803 		    *count, cfg->msi.msi_msgnum);
1804 
1805 	/* Don't ask for more than the device supports. */
1806 	actual = min(*count, cfg->msi.msi_msgnum);
1807 
1808 	/* Don't ask for more than 32 messages. */
1809 	actual = min(actual, 32);
1810 
1811 	/* MSI requires power of 2 number of messages. */
1812 	if (!powerof2(actual))
1813 		return (EINVAL);
1814 
1815 	for (;;) {
1816 		/* Try to allocate N messages. */
1817 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
1818 		    cfg->msi.msi_msgnum, irqs);
1819 		if (error == 0)
1820 			break;
1821 		if (actual == 1)
1822 			return (error);
1823 
1824 		/* Try N / 2. */
1825 		actual >>= 1;
1826 	}
1827 
1828 	/*
1829 	 * We now have N actual messages mapped onto SYS_RES_IRQ
1830 	 * resources in the irqs[] array, so add new resources
1831 	 * starting at rid 1.
1832 	 */
1833 	for (i = 0; i < actual; i++)
1834 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
1835 		    irqs[i], irqs[i], 1);
1836 
1837 	if (bootverbose) {
1838 		if (actual == 1)
1839 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
1840 		else {
1841 			int run;
1842 
1843 			/*
1844 			 * Be fancy and try to print contiguous runs
1845 			 * of IRQ values as ranges.  'run' is true if
1846 			 * we are in a range.
1847 			 */
1848 			device_printf(child, "using IRQs %d", irqs[0]);
1849 			run = 0;
1850 			for (i = 1; i < actual; i++) {
1851 
1852 				/* Still in a run? */
1853 				if (irqs[i] == irqs[i - 1] + 1) {
1854 					run = 1;
1855 					continue;
1856 				}
1857 
1858 				/* Finish previous range. */
1859 				if (run) {
1860 					printf("-%d", irqs[i - 1]);
1861 					run = 0;
1862 				}
1863 
1864 				/* Start new range. */
1865 				printf(",%d", irqs[i]);
1866 			}
1867 
1868 			/* Unfinished range? */
1869 			if (run)
1870 				printf("-%d", irqs[actual - 1]);
1871 			printf(" for MSI\n");
1872 		}
1873 	}
1874 
1875 	/* Update control register with actual count. */
1876 	ctrl = cfg->msi.msi_ctrl;
1877 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
1878 	ctrl |= (ffs(actual) - 1) << 4;
1879 	cfg->msi.msi_ctrl = ctrl;
1880 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
1881 
1882 	/* Update counts of alloc'd messages. */
1883 	cfg->msi.msi_alloc = actual;
1884 	cfg->msi.msi_handlers = 0;
1885 	*count = actual;
1886 	return (0);
1887 }
1888 
1889 /* Release the MSI messages associated with this device. */
1890 int
1891 pci_release_msi_method(device_t dev, device_t child)
1892 {
1893 	struct pci_devinfo *dinfo = device_get_ivars(child);
1894 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
1895 	struct resource_list_entry *rle;
1896 	int error, i, irqs[32];
1897 
1898 	/* Try MSI-X first. */
1899 	error = pci_release_msix(dev, child);
1900 	if (error != ENODEV)
1901 		return (error);
1902 
1903 	/* Do we have any messages to release? */
1904 	if (msi->msi_alloc == 0)
1905 		return (ENODEV);
1906 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
1907 
1908 	/* Make sure none of the resources are allocated. */
1909 	if (msi->msi_handlers > 0)
1910 		return (EBUSY);
1911 	for (i = 0; i < msi->msi_alloc; i++) {
1912 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1913 		KASSERT(rle != NULL, ("missing MSI resource"));
1914 		if (rle->res != NULL)
1915 			return (EBUSY);
1916 		irqs[i] = rle->start;
1917 	}
1918 
1919 	/* Update control register with 0 count. */
1920 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
1921 	    ("%s: MSI still enabled", __func__));
1922 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
1923 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
1924 	    msi->msi_ctrl, 2);
1925 
1926 	/* Release the messages. */
1927 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
1928 	for (i = 0; i < msi->msi_alloc; i++)
1929 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
1930 
1931 	/* Update alloc count. */
1932 	msi->msi_alloc = 0;
1933 	msi->msi_addr = 0;
1934 	msi->msi_data = 0;
1935 	return (0);
1936 }
1937 
1938 /*
1939  * Return the max supported MSI messages this device supports.
1940  * Basically, assuming the MD code can alloc messages, this function
1941  * should return the maximum value that pci_alloc_msi() can return.
1942  * Thus, it is subject to the tunables, etc.
1943  */
1944 int
1945 pci_msi_count_method(device_t dev, device_t child)
1946 {
1947 	struct pci_devinfo *dinfo = device_get_ivars(child);
1948 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
1949 
1950 	if (pci_do_msi && msi->msi_location != 0)
1951 		return (msi->msi_msgnum);
1952 	return (0);
1953 }
1954 
1955 /* free pcicfgregs structure and all depending data structures */
1956 
1957 int
1958 pci_freecfg(struct pci_devinfo *dinfo)
1959 {
1960 	struct devlist *devlist_head;
1961 	int i;
1962 
1963 	devlist_head = &pci_devq;
1964 
1965 	if (dinfo->cfg.vpd.vpd_reg) {
1966 		free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
1967 		for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
1968 			free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
1969 		free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
1970 		for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
1971 			free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
1972 		free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
1973 	}
1974 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
1975 	free(dinfo, M_DEVBUF);
1976 
1977 	/* increment the generation count */
1978 	pci_generation++;
1979 
1980 	/* we're losing one device */
1981 	pci_numdevs--;
1982 	return (0);
1983 }
1984 
1985 /*
1986  * PCI power manangement
1987  */
1988 int
1989 pci_set_powerstate_method(device_t dev, device_t child, int state)
1990 {
1991 	struct pci_devinfo *dinfo = device_get_ivars(child);
1992 	pcicfgregs *cfg = &dinfo->cfg;
1993 	uint16_t status;
1994 	int result, oldstate, highest, delay;
1995 
1996 	if (cfg->pp.pp_cap == 0)
1997 		return (EOPNOTSUPP);
1998 
1999 	/*
2000 	 * Optimize a no state change request away.  While it would be OK to
2001 	 * write to the hardware in theory, some devices have shown odd
2002 	 * behavior when going from D3 -> D3.
2003 	 */
2004 	oldstate = pci_get_powerstate(child);
2005 	if (oldstate == state)
2006 		return (0);
2007 
2008 	/*
2009 	 * The PCI power management specification states that after a state
2010 	 * transition between PCI power states, system software must
2011 	 * guarantee a minimal delay before the function accesses the device.
2012 	 * Compute the worst case delay that we need to guarantee before we
2013 	 * access the device.  Many devices will be responsive much more
2014 	 * quickly than this delay, but there are some that don't respond
2015 	 * instantly to state changes.  Transitions to/from D3 state require
2016 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2017 	 * is done below with DELAY rather than a sleeper function because
2018 	 * this function can be called from contexts where we cannot sleep.
2019 	 */
2020 	highest = (oldstate > state) ? oldstate : state;
2021 	if (highest == PCI_POWERSTATE_D3)
2022 	    delay = 10000;
2023 	else if (highest == PCI_POWERSTATE_D2)
2024 	    delay = 200;
2025 	else
2026 	    delay = 0;
2027 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2028 	    & ~PCIM_PSTAT_DMASK;
2029 	result = 0;
2030 	switch (state) {
2031 	case PCI_POWERSTATE_D0:
2032 		status |= PCIM_PSTAT_D0;
2033 		break;
2034 	case PCI_POWERSTATE_D1:
2035 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2036 			return (EOPNOTSUPP);
2037 		status |= PCIM_PSTAT_D1;
2038 		break;
2039 	case PCI_POWERSTATE_D2:
2040 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2041 			return (EOPNOTSUPP);
2042 		status |= PCIM_PSTAT_D2;
2043 		break;
2044 	case PCI_POWERSTATE_D3:
2045 		status |= PCIM_PSTAT_D3;
2046 		break;
2047 	default:
2048 		return (EINVAL);
2049 	}
2050 
2051 	if (bootverbose)
2052 		printf(
2053 		    "pci%d:%d:%d:%d: Transition from D%d to D%d\n",
2054 		    dinfo->cfg.domain, dinfo->cfg.bus, dinfo->cfg.slot,
2055 		    dinfo->cfg.func, oldstate, state);
2056 
2057 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2058 	if (delay)
2059 		DELAY(delay);
2060 	return (0);
2061 }
2062 
2063 int
2064 pci_get_powerstate_method(device_t dev, device_t child)
2065 {
2066 	struct pci_devinfo *dinfo = device_get_ivars(child);
2067 	pcicfgregs *cfg = &dinfo->cfg;
2068 	uint16_t status;
2069 	int result;
2070 
2071 	if (cfg->pp.pp_cap != 0) {
2072 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2073 		switch (status & PCIM_PSTAT_DMASK) {
2074 		case PCIM_PSTAT_D0:
2075 			result = PCI_POWERSTATE_D0;
2076 			break;
2077 		case PCIM_PSTAT_D1:
2078 			result = PCI_POWERSTATE_D1;
2079 			break;
2080 		case PCIM_PSTAT_D2:
2081 			result = PCI_POWERSTATE_D2;
2082 			break;
2083 		case PCIM_PSTAT_D3:
2084 			result = PCI_POWERSTATE_D3;
2085 			break;
2086 		default:
2087 			result = PCI_POWERSTATE_UNKNOWN;
2088 			break;
2089 		}
2090 	} else {
2091 		/* No support, device is always at D0 */
2092 		result = PCI_POWERSTATE_D0;
2093 	}
2094 	return (result);
2095 }
2096 
2097 /*
2098  * Some convenience functions for PCI device drivers.
2099  */
2100 
2101 static __inline void
2102 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2103 {
2104 	uint16_t	command;
2105 
2106 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2107 	command |= bit;
2108 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2109 }
2110 
2111 static __inline void
2112 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2113 {
2114 	uint16_t	command;
2115 
2116 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2117 	command &= ~bit;
2118 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2119 }
2120 
2121 int
2122 pci_enable_busmaster_method(device_t dev, device_t child)
2123 {
2124 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2125 	return (0);
2126 }
2127 
2128 int
2129 pci_disable_busmaster_method(device_t dev, device_t child)
2130 {
2131 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2132 	return (0);
2133 }
2134 
2135 int
2136 pci_enable_io_method(device_t dev, device_t child, int space)
2137 {
2138 	uint16_t command;
2139 	uint16_t bit;
2140 	char *error;
2141 
2142 	bit = 0;
2143 	error = NULL;
2144 
2145 	switch(space) {
2146 	case SYS_RES_IOPORT:
2147 		bit = PCIM_CMD_PORTEN;
2148 		error = "port";
2149 		break;
2150 	case SYS_RES_MEMORY:
2151 		bit = PCIM_CMD_MEMEN;
2152 		error = "memory";
2153 		break;
2154 	default:
2155 		return (EINVAL);
2156 	}
2157 	pci_set_command_bit(dev, child, bit);
2158 	/* Some devices seem to need a brief stall here, what do to? */
2159 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2160 	if (command & bit)
2161 		return (0);
2162 	device_printf(child, "failed to enable %s mapping!\n", error);
2163 	return (ENXIO);
2164 }
2165 
2166 int
2167 pci_disable_io_method(device_t dev, device_t child, int space)
2168 {
2169 	uint16_t command;
2170 	uint16_t bit;
2171 	char *error;
2172 
2173 	bit = 0;
2174 	error = NULL;
2175 
2176 	switch(space) {
2177 	case SYS_RES_IOPORT:
2178 		bit = PCIM_CMD_PORTEN;
2179 		error = "port";
2180 		break;
2181 	case SYS_RES_MEMORY:
2182 		bit = PCIM_CMD_MEMEN;
2183 		error = "memory";
2184 		break;
2185 	default:
2186 		return (EINVAL);
2187 	}
2188 	pci_clear_command_bit(dev, child, bit);
2189 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2190 	if (command & bit) {
2191 		device_printf(child, "failed to disable %s mapping!\n", error);
2192 		return (ENXIO);
2193 	}
2194 	return (0);
2195 }
2196 
2197 /*
2198  * New style pci driver.  Parent device is either a pci-host-bridge or a
2199  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
2200  */
2201 
2202 void
2203 pci_print_verbose(struct pci_devinfo *dinfo)
2204 {
2205 
2206 	if (bootverbose) {
2207 		pcicfgregs *cfg = &dinfo->cfg;
2208 
2209 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2210 		    cfg->vendor, cfg->device, cfg->revid);
2211 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2212 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
2213 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2214 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2215 		    cfg->mfdev);
2216 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2217 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2218 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2219 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2220 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2221 		if (cfg->intpin > 0)
2222 			printf("\tintpin=%c, irq=%d\n",
2223 			    cfg->intpin +'a' -1, cfg->intline);
2224 		if (cfg->pp.pp_cap) {
2225 			uint16_t status;
2226 
2227 			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
2228 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
2229 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
2230 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
2231 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
2232 			    status & PCIM_PSTAT_DMASK);
2233 		}
2234 		if (cfg->msi.msi_location) {
2235 			int ctrl;
2236 
2237 			ctrl = cfg->msi.msi_ctrl;
2238 			printf("\tMSI supports %d message%s%s%s\n",
2239 			    cfg->msi.msi_msgnum,
2240 			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
2241 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
2242 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
2243 		}
2244 		if (cfg->msix.msix_location) {
2245 			printf("\tMSI-X supports %d message%s ",
2246 			    cfg->msix.msix_msgnum,
2247 			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
2248 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
2249 				printf("in map 0x%x\n",
2250 				    cfg->msix.msix_table_bar);
2251 			else
2252 				printf("in maps 0x%x and 0x%x\n",
2253 				    cfg->msix.msix_table_bar,
2254 				    cfg->msix.msix_pba_bar);
2255 		}
2256 	}
2257 }
2258 
2259 static int
2260 pci_porten(device_t pcib, int b, int s, int f)
2261 {
2262 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
2263 		& PCIM_CMD_PORTEN) != 0;
2264 }
2265 
2266 static int
2267 pci_memen(device_t pcib, int b, int s, int f)
2268 {
2269 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
2270 		& PCIM_CMD_MEMEN) != 0;
2271 }
2272 
2273 /*
2274  * Add a resource based on a pci map register. Return 1 if the map
2275  * register is a 32bit map register or 2 if it is a 64bit register.
2276  */
2277 static int
2278 pci_add_map(device_t pcib, device_t bus, device_t dev,
2279     int b, int s, int f, int reg, struct resource_list *rl, int force,
2280     int prefetch)
2281 {
2282 	uint32_t map;
2283 	pci_addr_t base;
2284 	pci_addr_t start, end, count;
2285 	uint8_t ln2size;
2286 	uint8_t ln2range;
2287 	uint32_t testval;
2288 	uint16_t cmd;
2289 	int type;
2290 	int barlen;
2291 	struct resource *res;
2292 
2293 	map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
2294 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
2295 	testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
2296 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
2297 
2298 	if (PCI_BAR_MEM(map))
2299 		type = SYS_RES_MEMORY;
2300 	else
2301 		type = SYS_RES_IOPORT;
2302 	ln2size = pci_mapsize(testval);
2303 	ln2range = pci_maprange(testval);
2304 	base = pci_mapbase(map);
2305 	barlen = ln2range == 64 ? 2 : 1;
2306 
2307 	/*
2308 	 * For I/O registers, if bottom bit is set, and the next bit up
2309 	 * isn't clear, we know we have a BAR that doesn't conform to the
2310 	 * spec, so ignore it.  Also, sanity check the size of the data
2311 	 * areas to the type of memory involved.  Memory must be at least
2312 	 * 16 bytes in size, while I/O ranges must be at least 4.
2313 	 */
2314 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
2315 		return (barlen);
2316 	if ((type == SYS_RES_MEMORY && ln2size < 4) ||
2317 	    (type == SYS_RES_IOPORT && ln2size < 2))
2318 		return (barlen);
2319 
2320 	if (ln2range == 64)
2321 		/* Read the other half of a 64bit map register */
2322 		base |= (uint64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg + 4, 4) << 32;
2323 	if (bootverbose) {
2324 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
2325 		    reg, pci_maptype(map), ln2range, (uintmax_t)base, ln2size);
2326 		if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
2327 			printf(", port disabled\n");
2328 		else if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
2329 			printf(", memory disabled\n");
2330 		else
2331 			printf(", enabled\n");
2332 	}
2333 
2334 	/*
2335 	 * If base is 0, then we have problems.  It is best to ignore
2336 	 * such entries for the moment.  These will be allocated later if
2337 	 * the driver specifically requests them.  However, some
2338 	 * removable busses look better when all resources are allocated,
2339 	 * so allow '0' to be overriden.
2340 	 *
2341 	 * Similarly treat maps whose values is the same as the test value
2342 	 * read back.  These maps have had all f's written to them by the
2343 	 * BIOS in an attempt to disable the resources.
2344 	 */
2345 	if (!force && (base == 0 || map == testval))
2346 		return (barlen);
2347 	if ((u_long)base != base) {
2348 		device_printf(bus,
2349 		    "pci%d:%d:%d:%d bar %#x too many address bits",
2350 		    pci_get_domain(dev), b, s, f, reg);
2351 		return (barlen);
2352 	}
2353 
2354 	/*
2355 	 * This code theoretically does the right thing, but has
2356 	 * undesirable side effects in some cases where peripherals
2357 	 * respond oddly to having these bits enabled.  Let the user
2358 	 * be able to turn them off (since pci_enable_io_modes is 1 by
2359 	 * default).
2360 	 */
2361 	if (pci_enable_io_modes) {
2362 		/* Turn on resources that have been left off by a lazy BIOS */
2363 		if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
2364 			cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
2365 			cmd |= PCIM_CMD_PORTEN;
2366 			PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
2367 		}
2368 		if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
2369 			cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
2370 			cmd |= PCIM_CMD_MEMEN;
2371 			PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
2372 		}
2373 	} else {
2374 		if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
2375 			return (barlen);
2376 		if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
2377 			return (barlen);
2378 	}
2379 
2380 	count = 1 << ln2size;
2381 	if (base == 0 || base == pci_mapbase(testval)) {
2382 		start = 0;	/* Let the parent decide. */
2383 		end = ~0ULL;
2384 	} else {
2385 		start = base;
2386 		end = base + (1 << ln2size) - 1;
2387 	}
2388 	resource_list_add(rl, type, reg, start, end, count);
2389 
2390 	/*
2391 	 * Try to allocate the resource for this BAR from our parent
2392 	 * so that this resource range is already reserved.  The
2393 	 * driver for this device will later inherit this resource in
2394 	 * pci_alloc_resource().
2395 	 */
2396 	res = resource_list_alloc(rl, bus, dev, type, &reg, start, end, count,
2397 	    prefetch ? RF_PREFETCHABLE : 0);
2398 	if (res == NULL) {
2399 		/*
2400 		 * If the allocation fails, clear the BAR and delete
2401 		 * the resource list entry to force
2402 		 * pci_alloc_resource() to allocate resources from the
2403 		 * parent.
2404 		 */
2405 		resource_list_delete(rl, type, reg);
2406 		start = 0;
2407 	} else
2408 		start = rman_get_start(res);
2409 	pci_write_config(dev, reg, start, 4);
2410 	if (ln2range == 64)
2411 		pci_write_config(dev, reg + 4, start >> 32, 4);
2412 	return (barlen);
2413 }
2414 
2415 /*
2416  * For ATA devices we need to decide early what addressing mode to use.
2417  * Legacy demands that the primary and secondary ATA ports sits on the
2418  * same addresses that old ISA hardware did. This dictates that we use
2419  * those addresses and ignore the BAR's if we cannot set PCI native
2420  * addressing mode.
2421  */
2422 static void
2423 pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b,
2424     int s, int f, struct resource_list *rl, int force, uint32_t prefetchmask)
2425 {
2426 	int rid, type, progif;
2427 #if 0
2428 	/* if this device supports PCI native addressing use it */
2429 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
2430 	if ((progif & 0x8a) == 0x8a) {
2431 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
2432 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
2433 			printf("Trying ATA native PCI addressing mode\n");
2434 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
2435 		}
2436 	}
2437 #endif
2438 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
2439 	type = SYS_RES_IOPORT;
2440 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
2441 		pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(0), rl, force,
2442 		    prefetchmask & (1 << 0));
2443 		pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(1), rl, force,
2444 		    prefetchmask & (1 << 1));
2445 	} else {
2446 		rid = PCIR_BAR(0);
2447 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
2448 		resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
2449 		    0);
2450 		rid = PCIR_BAR(1);
2451 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
2452 		resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
2453 		    0);
2454 	}
2455 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
2456 		pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(2), rl, force,
2457 		    prefetchmask & (1 << 2));
2458 		pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(3), rl, force,
2459 		    prefetchmask & (1 << 3));
2460 	} else {
2461 		rid = PCIR_BAR(2);
2462 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
2463 		resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
2464 		    0);
2465 		rid = PCIR_BAR(3);
2466 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
2467 		resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
2468 		    0);
2469 	}
2470 	pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(4), rl, force,
2471 	    prefetchmask & (1 << 4));
2472 	pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(5), rl, force,
2473 	    prefetchmask & (1 << 5));
2474 }
2475 
2476 static void
2477 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
2478 {
2479 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2480 	pcicfgregs *cfg = &dinfo->cfg;
2481 	char tunable_name[64];
2482 	int irq;
2483 
2484 	/* Has to have an intpin to have an interrupt. */
2485 	if (cfg->intpin == 0)
2486 		return;
2487 
2488 	/* Let the user override the IRQ with a tunable. */
2489 	irq = PCI_INVALID_IRQ;
2490 	snprintf(tunable_name, sizeof(tunable_name),
2491 	    "hw.pci%d.%d.%d.INT%c.irq",
2492 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
2493 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
2494 		irq = PCI_INVALID_IRQ;
2495 
2496 	/*
2497 	 * If we didn't get an IRQ via the tunable, then we either use the
2498 	 * IRQ value in the intline register or we ask the bus to route an
2499 	 * interrupt for us.  If force_route is true, then we only use the
2500 	 * value in the intline register if the bus was unable to assign an
2501 	 * IRQ.
2502 	 */
2503 	if (!PCI_INTERRUPT_VALID(irq)) {
2504 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
2505 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
2506 		if (!PCI_INTERRUPT_VALID(irq))
2507 			irq = cfg->intline;
2508 	}
2509 
2510 	/* If after all that we don't have an IRQ, just bail. */
2511 	if (!PCI_INTERRUPT_VALID(irq))
2512 		return;
2513 
2514 	/* Update the config register if it changed. */
2515 	if (irq != cfg->intline) {
2516 		cfg->intline = irq;
2517 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
2518 	}
2519 
2520 	/* Add this IRQ as rid 0 interrupt resource. */
2521 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
2522 }
2523 
2524 void
2525 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
2526 {
2527 	device_t pcib;
2528 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2529 	pcicfgregs *cfg = &dinfo->cfg;
2530 	struct resource_list *rl = &dinfo->resources;
2531 	struct pci_quirk *q;
2532 	int b, i, f, s;
2533 
2534 	pcib = device_get_parent(bus);
2535 
2536 	b = cfg->bus;
2537 	s = cfg->slot;
2538 	f = cfg->func;
2539 
2540 	/* ATA devices needs special map treatment */
2541 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
2542 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
2543 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
2544 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
2545 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
2546 		pci_ata_maps(pcib, bus, dev, b, s, f, rl, force, prefetchmask);
2547 	else
2548 		for (i = 0; i < cfg->nummaps;)
2549 			i += pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(i),
2550 			    rl, force, prefetchmask & (1 << i));
2551 
2552 	/*
2553 	 * Add additional, quirked resources.
2554 	 */
2555 	for (q = &pci_quirks[0]; q->devid; q++) {
2556 		if (q->devid == ((cfg->device << 16) | cfg->vendor)
2557 		    && q->type == PCI_QUIRK_MAP_REG)
2558 			pci_add_map(pcib, bus, dev, b, s, f, q->arg1, rl,
2559 			  force, 0);
2560 	}
2561 
2562 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2563 #ifdef __PCI_REROUTE_INTERRUPT
2564 		/*
2565 		 * Try to re-route interrupts. Sometimes the BIOS or
2566 		 * firmware may leave bogus values in these registers.
2567 		 * If the re-route fails, then just stick with what we
2568 		 * have.
2569 		 */
2570 		pci_assign_interrupt(bus, dev, 1);
2571 #else
2572 		pci_assign_interrupt(bus, dev, 0);
2573 #endif
2574 	}
2575 }
2576 
2577 void
2578 pci_add_children(device_t dev, int domain, int busno, size_t dinfo_size)
2579 {
2580 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
2581 	device_t pcib = device_get_parent(dev);
2582 	struct pci_devinfo *dinfo;
2583 	int maxslots;
2584 	int s, f, pcifunchigh;
2585 	uint8_t hdrtype;
2586 
2587 	KASSERT(dinfo_size >= sizeof(struct pci_devinfo),
2588 	    ("dinfo_size too small"));
2589 	maxslots = PCIB_MAXSLOTS(pcib);
2590 	for (s = 0; s <= maxslots; s++) {
2591 		pcifunchigh = 0;
2592 		f = 0;
2593 		DELAY(1);
2594 		hdrtype = REG(PCIR_HDRTYPE, 1);
2595 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
2596 			continue;
2597 		if (hdrtype & PCIM_MFDEV)
2598 			pcifunchigh = PCI_FUNCMAX;
2599 		for (f = 0; f <= pcifunchigh; f++) {
2600 			dinfo = pci_read_device(pcib, domain, busno, s, f,
2601 			    dinfo_size);
2602 			if (dinfo != NULL) {
2603 				pci_add_child(dev, dinfo);
2604 			}
2605 		}
2606 	}
2607 #undef REG
2608 }
2609 
2610 void
2611 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
2612 {
2613 	dinfo->cfg.dev = device_add_child(bus, NULL, -1);
2614 	device_set_ivars(dinfo->cfg.dev, dinfo);
2615 	resource_list_init(&dinfo->resources);
2616 	pci_cfg_save(dinfo->cfg.dev, dinfo, 0);
2617 	pci_cfg_restore(dinfo->cfg.dev, dinfo);
2618 	pci_print_verbose(dinfo);
2619 	pci_add_resources(bus, dinfo->cfg.dev, 0, 0);
2620 }
2621 
2622 static int
2623 pci_probe(device_t dev)
2624 {
2625 
2626 	device_set_desc(dev, "PCI bus");
2627 
2628 	/* Allow other subclasses to override this driver. */
2629 	return (-1000);
2630 }
2631 
2632 static int
2633 pci_attach(device_t dev)
2634 {
2635 	int busno, domain;
2636 
2637 	/*
2638 	 * Since there can be multiple independantly numbered PCI
2639 	 * busses on systems with multiple PCI domains, we can't use
2640 	 * the unit number to decide which bus we are probing. We ask
2641 	 * the parent pcib what our domain and bus numbers are.
2642 	 */
2643 	domain = pcib_get_domain(dev);
2644 	busno = pcib_get_bus(dev);
2645 	if (bootverbose)
2646 		device_printf(dev, "domain=%d, physical bus=%d\n",
2647 		    domain, busno);
2648 	pci_add_children(dev, domain, busno, sizeof(struct pci_devinfo));
2649 	return (bus_generic_attach(dev));
2650 }
2651 
2652 int
2653 pci_suspend(device_t dev)
2654 {
2655 	int dstate, error, i, numdevs;
2656 	device_t acpi_dev, child, *devlist;
2657 	struct pci_devinfo *dinfo;
2658 
2659 	/*
2660 	 * Save the PCI configuration space for each child and set the
2661 	 * device in the appropriate power state for this sleep state.
2662 	 */
2663 	acpi_dev = NULL;
2664 	if (pci_do_power_resume)
2665 		acpi_dev = devclass_get_device(devclass_find("acpi"), 0);
2666 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
2667 		return (error);
2668 	for (i = 0; i < numdevs; i++) {
2669 		child = devlist[i];
2670 		dinfo = (struct pci_devinfo *) device_get_ivars(child);
2671 		pci_cfg_save(child, dinfo, 0);
2672 	}
2673 
2674 	/* Suspend devices before potentially powering them down. */
2675 	error = bus_generic_suspend(dev);
2676 	if (error) {
2677 		free(devlist, M_TEMP);
2678 		return (error);
2679 	}
2680 
2681 	/*
2682 	 * Always set the device to D3.  If ACPI suggests a different
2683 	 * power state, use it instead.  If ACPI is not present, the
2684 	 * firmware is responsible for managing device power.  Skip
2685 	 * children who aren't attached since they are powered down
2686 	 * separately.  Only manage type 0 devices for now.
2687 	 */
2688 	for (i = 0; acpi_dev && i < numdevs; i++) {
2689 		child = devlist[i];
2690 		dinfo = (struct pci_devinfo *) device_get_ivars(child);
2691 		if (device_is_attached(child) && dinfo->cfg.hdrtype == 0) {
2692 			dstate = PCI_POWERSTATE_D3;
2693 			ACPI_PWR_FOR_SLEEP(acpi_dev, child, &dstate);
2694 			pci_set_powerstate(child, dstate);
2695 		}
2696 	}
2697 	free(devlist, M_TEMP);
2698 	return (0);
2699 }
2700 
2701 int
2702 pci_resume(device_t dev)
2703 {
2704 	int i, numdevs, error;
2705 	device_t acpi_dev, child, *devlist;
2706 	struct pci_devinfo *dinfo;
2707 
2708 	/*
2709 	 * Set each child to D0 and restore its PCI configuration space.
2710 	 */
2711 	acpi_dev = NULL;
2712 	if (pci_do_power_resume)
2713 		acpi_dev = devclass_get_device(devclass_find("acpi"), 0);
2714 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
2715 		return (error);
2716 	for (i = 0; i < numdevs; i++) {
2717 		/*
2718 		 * Notify ACPI we're going to D0 but ignore the result.  If
2719 		 * ACPI is not present, the firmware is responsible for
2720 		 * managing device power.  Only manage type 0 devices for now.
2721 		 */
2722 		child = devlist[i];
2723 		dinfo = (struct pci_devinfo *) device_get_ivars(child);
2724 		if (acpi_dev && device_is_attached(child) &&
2725 		    dinfo->cfg.hdrtype == 0) {
2726 			ACPI_PWR_FOR_SLEEP(acpi_dev, child, NULL);
2727 			pci_set_powerstate(child, PCI_POWERSTATE_D0);
2728 		}
2729 
2730 		/* Now the device is powered up, restore its config space. */
2731 		pci_cfg_restore(child, dinfo);
2732 	}
2733 	free(devlist, M_TEMP);
2734 	return (bus_generic_resume(dev));
2735 }
2736 
2737 static void
2738 pci_load_vendor_data(void)
2739 {
2740 	caddr_t vendordata, info;
2741 
2742 	if ((vendordata = preload_search_by_type("pci_vendor_data")) != NULL) {
2743 		info = preload_search_info(vendordata, MODINFO_ADDR);
2744 		pci_vendordata = *(char **)info;
2745 		info = preload_search_info(vendordata, MODINFO_SIZE);
2746 		pci_vendordata_size = *(size_t *)info;
2747 		/* terminate the database */
2748 		pci_vendordata[pci_vendordata_size] = '\n';
2749 	}
2750 }
2751 
2752 void
2753 pci_driver_added(device_t dev, driver_t *driver)
2754 {
2755 	int numdevs;
2756 	device_t *devlist;
2757 	device_t child;
2758 	struct pci_devinfo *dinfo;
2759 	int i;
2760 
2761 	if (bootverbose)
2762 		device_printf(dev, "driver added\n");
2763 	DEVICE_IDENTIFY(driver, dev);
2764 	if (device_get_children(dev, &devlist, &numdevs) != 0)
2765 		return;
2766 	for (i = 0; i < numdevs; i++) {
2767 		child = devlist[i];
2768 		if (device_get_state(child) != DS_NOTPRESENT)
2769 			continue;
2770 		dinfo = device_get_ivars(child);
2771 		pci_print_verbose(dinfo);
2772 		if (bootverbose)
2773 			printf("pci%d:%d:%d:%d: reprobing on driver added\n",
2774 			    dinfo->cfg.domain, dinfo->cfg.bus, dinfo->cfg.slot,
2775 			    dinfo->cfg.func);
2776 		pci_cfg_restore(child, dinfo);
2777 		if (device_probe_and_attach(child) != 0)
2778 			pci_cfg_save(child, dinfo, 1);
2779 	}
2780 	free(devlist, M_TEMP);
2781 }
2782 
2783 int
2784 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
2785     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
2786 {
2787 	struct pci_devinfo *dinfo;
2788 	struct msix_table_entry *mte;
2789 	struct msix_vector *mv;
2790 	uint64_t addr;
2791 	uint32_t data;
2792 	void *cookie;
2793 	int error, rid;
2794 
2795 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
2796 	    arg, &cookie);
2797 	if (error)
2798 		return (error);
2799 
2800 	/*
2801 	 * If this is a direct child, check to see if the interrupt is
2802 	 * MSI or MSI-X.  If so, ask our parent to map the MSI and give
2803 	 * us the address and data register values.  If we fail for some
2804 	 * reason, teardown the interrupt handler.
2805 	 */
2806 	rid = rman_get_rid(irq);
2807 	if (device_get_parent(child) == dev && rid > 0) {
2808 		dinfo = device_get_ivars(child);
2809 		if (dinfo->cfg.msi.msi_alloc > 0) {
2810 			if (dinfo->cfg.msi.msi_addr == 0) {
2811 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
2812 			    ("MSI has handlers, but vectors not mapped"));
2813 				error = PCIB_MAP_MSI(device_get_parent(dev),
2814 				    child, rman_get_start(irq), &addr, &data);
2815 				if (error)
2816 					goto bad;
2817 				dinfo->cfg.msi.msi_addr = addr;
2818 				dinfo->cfg.msi.msi_data = data;
2819 				pci_enable_msi(child, addr, data);
2820 			}
2821 			dinfo->cfg.msi.msi_handlers++;
2822 		} else {
2823 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
2824 			    ("No MSI or MSI-X interrupts allocated"));
2825 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
2826 			    ("MSI-X index too high"));
2827 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
2828 			KASSERT(mte->mte_vector != 0, ("no message vector"));
2829 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
2830 			KASSERT(mv->mv_irq == rman_get_start(irq),
2831 			    ("IRQ mismatch"));
2832 			if (mv->mv_address == 0) {
2833 				KASSERT(mte->mte_handlers == 0,
2834 		    ("MSI-X table entry has handlers, but vector not mapped"));
2835 				error = PCIB_MAP_MSI(device_get_parent(dev),
2836 				    child, rman_get_start(irq), &addr, &data);
2837 				if (error)
2838 					goto bad;
2839 				mv->mv_address = addr;
2840 				mv->mv_data = data;
2841 			}
2842 			if (mte->mte_handlers == 0) {
2843 				pci_enable_msix(child, rid - 1, mv->mv_address,
2844 				    mv->mv_data);
2845 				pci_unmask_msix(child, rid - 1);
2846 			}
2847 			mte->mte_handlers++;
2848 		}
2849 	bad:
2850 		if (error) {
2851 			(void)bus_generic_teardown_intr(dev, child, irq,
2852 			    cookie);
2853 			return (error);
2854 		}
2855 	}
2856 	*cookiep = cookie;
2857 	return (0);
2858 }
2859 
2860 int
2861 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
2862     void *cookie)
2863 {
2864 	struct msix_table_entry *mte;
2865 	struct resource_list_entry *rle;
2866 	struct pci_devinfo *dinfo;
2867 	int error, rid;
2868 
2869 	/*
2870 	 * If this is a direct child, check to see if the interrupt is
2871 	 * MSI or MSI-X.  If so, decrement the appropriate handlers
2872 	 * count and mask the MSI-X message, or disable MSI messages
2873 	 * if the count drops to 0.
2874 	 */
2875 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
2876 		return (EINVAL);
2877 	rid = rman_get_rid(irq);
2878 	if (device_get_parent(child) == dev && rid > 0) {
2879 		dinfo = device_get_ivars(child);
2880 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
2881 		if (rle->res != irq)
2882 			return (EINVAL);
2883 		if (dinfo->cfg.msi.msi_alloc > 0) {
2884 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
2885 			    ("MSI-X index too high"));
2886 			if (dinfo->cfg.msi.msi_handlers == 0)
2887 				return (EINVAL);
2888 			dinfo->cfg.msi.msi_handlers--;
2889 			if (dinfo->cfg.msi.msi_handlers == 0)
2890 				pci_disable_msi(child);
2891 		} else {
2892 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
2893 			    ("No MSI or MSI-X interrupts allocated"));
2894 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
2895 			    ("MSI-X index too high"));
2896 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
2897 			if (mte->mte_handlers == 0)
2898 				return (EINVAL);
2899 			mte->mte_handlers--;
2900 			if (mte->mte_handlers == 0)
2901 				pci_mask_msix(child, rid - 1);
2902 		}
2903 	}
2904 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
2905 	if (device_get_parent(child) == dev && rid > 0)
2906 		KASSERT(error == 0,
2907 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
2908 	return (error);
2909 }
2910 
2911 int
2912 pci_print_child(device_t dev, device_t child)
2913 {
2914 	struct pci_devinfo *dinfo;
2915 	struct resource_list *rl;
2916 	int retval = 0;
2917 
2918 	dinfo = device_get_ivars(child);
2919 	rl = &dinfo->resources;
2920 
2921 	retval += bus_print_child_header(dev, child);
2922 
2923 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx");
2924 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#lx");
2925 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld");
2926 	if (device_get_flags(dev))
2927 		retval += printf(" flags %#x", device_get_flags(dev));
2928 
2929 	retval += printf(" at device %d.%d", pci_get_slot(child),
2930 	    pci_get_function(child));
2931 
2932 	retval += bus_print_child_footer(dev, child);
2933 
2934 	return (retval);
2935 }
2936 
2937 static struct
2938 {
2939 	int	class;
2940 	int	subclass;
2941 	char	*desc;
2942 } pci_nomatch_tab[] = {
2943 	{PCIC_OLD,		-1,			"old"},
2944 	{PCIC_OLD,		PCIS_OLD_NONVGA,	"non-VGA display device"},
2945 	{PCIC_OLD,		PCIS_OLD_VGA,		"VGA-compatible display device"},
2946 	{PCIC_STORAGE,		-1,			"mass storage"},
2947 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	"SCSI"},
2948 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	"ATA"},
2949 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	"floppy disk"},
2950 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	"IPI"},
2951 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	"RAID"},
2952 	{PCIC_NETWORK,		-1,			"network"},
2953 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	"ethernet"},
2954 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	"token ring"},
2955 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	"fddi"},
2956 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	"ATM"},
2957 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	"ISDN"},
2958 	{PCIC_DISPLAY,		-1,			"display"},
2959 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	"VGA"},
2960 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	"XGA"},
2961 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	"3D"},
2962 	{PCIC_MULTIMEDIA,	-1,			"multimedia"},
2963 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	"video"},
2964 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	"audio"},
2965 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	"telephony"},
2966 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	"HDA"},
2967 	{PCIC_MEMORY,		-1,			"memory"},
2968 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	"RAM"},
2969 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	"flash"},
2970 	{PCIC_BRIDGE,		-1,			"bridge"},
2971 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	"HOST-PCI"},
2972 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	"PCI-ISA"},
2973 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	"PCI-EISA"},
2974 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	"PCI-MCA"},
2975 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	"PCI-PCI"},
2976 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	"PCI-PCMCIA"},
2977 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	"PCI-NuBus"},
2978 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	"PCI-CardBus"},
2979 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	"PCI-RACEway"},
2980 	{PCIC_SIMPLECOMM,	-1,			"simple comms"},
2981 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	"UART"},	/* could detect 16550 */
2982 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	"parallel port"},
2983 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	"multiport serial"},
2984 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	"generic modem"},
2985 	{PCIC_BASEPERIPH,	-1,			"base peripheral"},
2986 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	"interrupt controller"},
2987 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	"DMA controller"},
2988 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	"timer"},
2989 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	"realtime clock"},
2990 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	"PCI hot-plug controller"},
2991 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	"SD host controller"},
2992 	{PCIC_INPUTDEV,		-1,			"input device"},
2993 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	"keyboard"},
2994 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,"digitizer"},
2995 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	"mouse"},
2996 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	"scanner"},
2997 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	"gameport"},
2998 	{PCIC_DOCKING,		-1,			"docking station"},
2999 	{PCIC_PROCESSOR,	-1,			"processor"},
3000 	{PCIC_SERIALBUS,	-1,			"serial bus"},
3001 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	"FireWire"},
3002 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	"AccessBus"},
3003 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	"SSA"},
3004 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	"USB"},
3005 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	"Fibre Channel"},
3006 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	"SMBus"},
3007 	{PCIC_WIRELESS,		-1,			"wireless controller"},
3008 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	"iRDA"},
3009 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	"IR"},
3010 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	"RF"},
3011 	{PCIC_INTELLIIO,	-1,			"intelligent I/O controller"},
3012 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	"I2O"},
3013 	{PCIC_SATCOM,		-1,			"satellite communication"},
3014 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		"sat TV"},
3015 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	"sat audio"},
3016 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	"sat voice"},
3017 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	"sat data"},
3018 	{PCIC_CRYPTO,		-1,			"encrypt/decrypt"},
3019 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	"network/computer crypto"},
3020 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	"entertainment crypto"},
3021 	{PCIC_DASP,		-1,			"dasp"},
3022 	{PCIC_DASP,		PCIS_DASP_DPIO,		"DPIO module"},
3023 	{0, 0,		NULL}
3024 };
3025 
3026 void
3027 pci_probe_nomatch(device_t dev, device_t child)
3028 {
3029 	int	i;
3030 	char	*cp, *scp, *device;
3031 
3032 	/*
3033 	 * Look for a listing for this device in a loaded device database.
3034 	 */
3035 	if ((device = pci_describe_device(child)) != NULL) {
3036 		device_printf(dev, "<%s>", device);
3037 		free(device, M_DEVBUF);
3038 	} else {
3039 		/*
3040 		 * Scan the class/subclass descriptions for a general
3041 		 * description.
3042 		 */
3043 		cp = "unknown";
3044 		scp = NULL;
3045 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
3046 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
3047 				if (pci_nomatch_tab[i].subclass == -1) {
3048 					cp = pci_nomatch_tab[i].desc;
3049 				} else if (pci_nomatch_tab[i].subclass ==
3050 				    pci_get_subclass(child)) {
3051 					scp = pci_nomatch_tab[i].desc;
3052 				}
3053 			}
3054 		}
3055 		device_printf(dev, "<%s%s%s>",
3056 		    cp ? cp : "",
3057 		    ((cp != NULL) && (scp != NULL)) ? ", " : "",
3058 		    scp ? scp : "");
3059 	}
3060 	printf(" at device %d.%d (no driver attached)\n",
3061 	    pci_get_slot(child), pci_get_function(child));
3062 	pci_cfg_save(child, (struct pci_devinfo *)device_get_ivars(child), 1);
3063 	return;
3064 }
3065 
3066 /*
3067  * Parse the PCI device database, if loaded, and return a pointer to a
3068  * description of the device.
3069  *
3070  * The database is flat text formatted as follows:
3071  *
3072  * Any line not in a valid format is ignored.
3073  * Lines are terminated with newline '\n' characters.
3074  *
3075  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
3076  * the vendor name.
3077  *
3078  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
3079  * - devices cannot be listed without a corresponding VENDOR line.
3080  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
3081  * another TAB, then the device name.
3082  */
3083 
3084 /*
3085  * Assuming (ptr) points to the beginning of a line in the database,
3086  * return the vendor or device and description of the next entry.
3087  * The value of (vendor) or (device) inappropriate for the entry type
3088  * is set to -1.  Returns nonzero at the end of the database.
3089  *
3090  * Note that this is slightly unrobust in the face of corrupt data;
3091  * we attempt to safeguard against this by spamming the end of the
3092  * database with a newline when we initialise.
3093  */
3094 static int
3095 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
3096 {
3097 	char	*cp = *ptr;
3098 	int	left;
3099 
3100 	*device = -1;
3101 	*vendor = -1;
3102 	**desc = '\0';
3103 	for (;;) {
3104 		left = pci_vendordata_size - (cp - pci_vendordata);
3105 		if (left <= 0) {
3106 			*ptr = cp;
3107 			return(1);
3108 		}
3109 
3110 		/* vendor entry? */
3111 		if (*cp != '\t' &&
3112 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
3113 			break;
3114 		/* device entry? */
3115 		if (*cp == '\t' &&
3116 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
3117 			break;
3118 
3119 		/* skip to next line */
3120 		while (*cp != '\n' && left > 0) {
3121 			cp++;
3122 			left--;
3123 		}
3124 		if (*cp == '\n') {
3125 			cp++;
3126 			left--;
3127 		}
3128 	}
3129 	/* skip to next line */
3130 	while (*cp != '\n' && left > 0) {
3131 		cp++;
3132 		left--;
3133 	}
3134 	if (*cp == '\n' && left > 0)
3135 		cp++;
3136 	*ptr = cp;
3137 	return(0);
3138 }
3139 
3140 static char *
3141 pci_describe_device(device_t dev)
3142 {
3143 	int	vendor, device;
3144 	char	*desc, *vp, *dp, *line;
3145 
3146 	desc = vp = dp = NULL;
3147 
3148 	/*
3149 	 * If we have no vendor data, we can't do anything.
3150 	 */
3151 	if (pci_vendordata == NULL)
3152 		goto out;
3153 
3154 	/*
3155 	 * Scan the vendor data looking for this device
3156 	 */
3157 	line = pci_vendordata;
3158 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
3159 		goto out;
3160 	for (;;) {
3161 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
3162 			goto out;
3163 		if (vendor == pci_get_vendor(dev))
3164 			break;
3165 	}
3166 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
3167 		goto out;
3168 	for (;;) {
3169 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
3170 			*dp = 0;
3171 			break;
3172 		}
3173 		if (vendor != -1) {
3174 			*dp = 0;
3175 			break;
3176 		}
3177 		if (device == pci_get_device(dev))
3178 			break;
3179 	}
3180 	if (dp[0] == '\0')
3181 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
3182 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
3183 	    NULL)
3184 		sprintf(desc, "%s, %s", vp, dp);
3185  out:
3186 	if (vp != NULL)
3187 		free(vp, M_DEVBUF);
3188 	if (dp != NULL)
3189 		free(dp, M_DEVBUF);
3190 	return(desc);
3191 }
3192 
3193 int
3194 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
3195 {
3196 	struct pci_devinfo *dinfo;
3197 	pcicfgregs *cfg;
3198 
3199 	dinfo = device_get_ivars(child);
3200 	cfg = &dinfo->cfg;
3201 
3202 	switch (which) {
3203 	case PCI_IVAR_ETHADDR:
3204 		/*
3205 		 * The generic accessor doesn't deal with failure, so
3206 		 * we set the return value, then return an error.
3207 		 */
3208 		*((uint8_t **) result) = NULL;
3209 		return (EINVAL);
3210 	case PCI_IVAR_SUBVENDOR:
3211 		*result = cfg->subvendor;
3212 		break;
3213 	case PCI_IVAR_SUBDEVICE:
3214 		*result = cfg->subdevice;
3215 		break;
3216 	case PCI_IVAR_VENDOR:
3217 		*result = cfg->vendor;
3218 		break;
3219 	case PCI_IVAR_DEVICE:
3220 		*result = cfg->device;
3221 		break;
3222 	case PCI_IVAR_DEVID:
3223 		*result = (cfg->device << 16) | cfg->vendor;
3224 		break;
3225 	case PCI_IVAR_CLASS:
3226 		*result = cfg->baseclass;
3227 		break;
3228 	case PCI_IVAR_SUBCLASS:
3229 		*result = cfg->subclass;
3230 		break;
3231 	case PCI_IVAR_PROGIF:
3232 		*result = cfg->progif;
3233 		break;
3234 	case PCI_IVAR_REVID:
3235 		*result = cfg->revid;
3236 		break;
3237 	case PCI_IVAR_INTPIN:
3238 		*result = cfg->intpin;
3239 		break;
3240 	case PCI_IVAR_IRQ:
3241 		*result = cfg->intline;
3242 		break;
3243 	case PCI_IVAR_DOMAIN:
3244 		*result = cfg->domain;
3245 		break;
3246 	case PCI_IVAR_BUS:
3247 		*result = cfg->bus;
3248 		break;
3249 	case PCI_IVAR_SLOT:
3250 		*result = cfg->slot;
3251 		break;
3252 	case PCI_IVAR_FUNCTION:
3253 		*result = cfg->func;
3254 		break;
3255 	case PCI_IVAR_CMDREG:
3256 		*result = cfg->cmdreg;
3257 		break;
3258 	case PCI_IVAR_CACHELNSZ:
3259 		*result = cfg->cachelnsz;
3260 		break;
3261 	case PCI_IVAR_MINGNT:
3262 		*result = cfg->mingnt;
3263 		break;
3264 	case PCI_IVAR_MAXLAT:
3265 		*result = cfg->maxlat;
3266 		break;
3267 	case PCI_IVAR_LATTIMER:
3268 		*result = cfg->lattimer;
3269 		break;
3270 	default:
3271 		return (ENOENT);
3272 	}
3273 	return (0);
3274 }
3275 
3276 int
3277 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
3278 {
3279 	struct pci_devinfo *dinfo;
3280 
3281 	dinfo = device_get_ivars(child);
3282 
3283 	switch (which) {
3284 	case PCI_IVAR_INTPIN:
3285 		dinfo->cfg.intpin = value;
3286 		return (0);
3287 	case PCI_IVAR_ETHADDR:
3288 	case PCI_IVAR_SUBVENDOR:
3289 	case PCI_IVAR_SUBDEVICE:
3290 	case PCI_IVAR_VENDOR:
3291 	case PCI_IVAR_DEVICE:
3292 	case PCI_IVAR_DEVID:
3293 	case PCI_IVAR_CLASS:
3294 	case PCI_IVAR_SUBCLASS:
3295 	case PCI_IVAR_PROGIF:
3296 	case PCI_IVAR_REVID:
3297 	case PCI_IVAR_IRQ:
3298 	case PCI_IVAR_DOMAIN:
3299 	case PCI_IVAR_BUS:
3300 	case PCI_IVAR_SLOT:
3301 	case PCI_IVAR_FUNCTION:
3302 		return (EINVAL);	/* disallow for now */
3303 
3304 	default:
3305 		return (ENOENT);
3306 	}
3307 }
3308 
3309 
3310 #include "opt_ddb.h"
3311 #ifdef DDB
3312 #include <ddb/ddb.h>
3313 #include <sys/cons.h>
3314 
3315 /*
3316  * List resources based on pci map registers, used for within ddb
3317  */
3318 
3319 DB_SHOW_COMMAND(pciregs, db_pci_dump)
3320 {
3321 	struct pci_devinfo *dinfo;
3322 	struct devlist *devlist_head;
3323 	struct pci_conf *p;
3324 	const char *name;
3325 	int i, error, none_count;
3326 
3327 	none_count = 0;
3328 	/* get the head of the device queue */
3329 	devlist_head = &pci_devq;
3330 
3331 	/*
3332 	 * Go through the list of devices and print out devices
3333 	 */
3334 	for (error = 0, i = 0,
3335 	     dinfo = STAILQ_FIRST(devlist_head);
3336 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
3337 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
3338 
3339 		/* Populate pd_name and pd_unit */
3340 		name = NULL;
3341 		if (dinfo->cfg.dev)
3342 			name = device_get_name(dinfo->cfg.dev);
3343 
3344 		p = &dinfo->conf;
3345 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
3346 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
3347 			(name && *name) ? name : "none",
3348 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
3349 			none_count++,
3350 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
3351 			p->pc_sel.pc_func, (p->pc_class << 16) |
3352 			(p->pc_subclass << 8) | p->pc_progif,
3353 			(p->pc_subdevice << 16) | p->pc_subvendor,
3354 			(p->pc_device << 16) | p->pc_vendor,
3355 			p->pc_revid, p->pc_hdr);
3356 	}
3357 }
3358 #endif /* DDB */
3359 
3360 static struct resource *
3361 pci_alloc_map(device_t dev, device_t child, int type, int *rid,
3362     u_long start, u_long end, u_long count, u_int flags)
3363 {
3364 	struct pci_devinfo *dinfo = device_get_ivars(child);
3365 	struct resource_list *rl = &dinfo->resources;
3366 	struct resource_list_entry *rle;
3367 	struct resource *res;
3368 	pci_addr_t map, testval;
3369 	int mapsize;
3370 
3371 	/*
3372 	 * Weed out the bogons, and figure out how large the BAR/map
3373 	 * is.  Bars that read back 0 here are bogus and unimplemented.
3374 	 * Note: atapci in legacy mode are special and handled elsewhere
3375 	 * in the code.  If you have a atapci device in legacy mode and
3376 	 * it fails here, that other code is broken.
3377 	 */
3378 	res = NULL;
3379 	map = pci_read_config(child, *rid, 4);
3380 	pci_write_config(child, *rid, 0xffffffff, 4);
3381 	testval = pci_read_config(child, *rid, 4);
3382 	if (pci_maprange(testval) == 64)
3383 		map |= (pci_addr_t)pci_read_config(child, *rid + 4, 4) << 32;
3384 	if (pci_mapbase(testval) == 0)
3385 		goto out;
3386 
3387 	/*
3388 	 * Restore the original value of the BAR.  We may have reprogrammed
3389 	 * the BAR of the low-level console device and when booting verbose,
3390 	 * we need the console device addressable.
3391 	 */
3392 	pci_write_config(child, *rid, map, 4);
3393 
3394 	if (PCI_BAR_MEM(testval)) {
3395 		if (type != SYS_RES_MEMORY) {
3396 			if (bootverbose)
3397 				device_printf(dev,
3398 				    "child %s requested type %d for rid %#x,"
3399 				    " but the BAR says it is an memio\n",
3400 				    device_get_nameunit(child), type, *rid);
3401 			goto out;
3402 		}
3403 	} else {
3404 		if (type != SYS_RES_IOPORT) {
3405 			if (bootverbose)
3406 				device_printf(dev,
3407 				    "child %s requested type %d for rid %#x,"
3408 				    " but the BAR says it is an ioport\n",
3409 				    device_get_nameunit(child), type, *rid);
3410 			goto out;
3411 		}
3412 	}
3413 	/*
3414 	 * For real BARs, we need to override the size that
3415 	 * the driver requests, because that's what the BAR
3416 	 * actually uses and we would otherwise have a
3417 	 * situation where we might allocate the excess to
3418 	 * another driver, which won't work.
3419 	 */
3420 	mapsize = pci_mapsize(testval);
3421 	count = 1UL << mapsize;
3422 	if (RF_ALIGNMENT(flags) < mapsize)
3423 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
3424 
3425 	/*
3426 	 * Allocate enough resource, and then write back the
3427 	 * appropriate bar for that resource.
3428 	 */
3429 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
3430 	    start, end, count, flags);
3431 	if (res == NULL) {
3432 		device_printf(child,
3433 		    "%#lx bytes of rid %#x res %d failed (%#lx, %#lx).\n",
3434 		    count, *rid, type, start, end);
3435 		goto out;
3436 	}
3437 	resource_list_add(rl, type, *rid, start, end, count);
3438 	rle = resource_list_find(rl, type, *rid);
3439 	if (rle == NULL)
3440 		panic("pci_alloc_map: unexpectedly can't find resource.");
3441 	rle->res = res;
3442 	rle->start = rman_get_start(res);
3443 	rle->end = rman_get_end(res);
3444 	rle->count = count;
3445 	if (bootverbose)
3446 		device_printf(child,
3447 		    "Lazy allocation of %#lx bytes rid %#x type %d at %#lx\n",
3448 		    count, *rid, type, rman_get_start(res));
3449 	map = rman_get_start(res);
3450 out:;
3451 	pci_write_config(child, *rid, map, 4);
3452 	if (pci_maprange(testval) == 64)
3453 		pci_write_config(child, *rid + 4, map >> 32, 4);
3454 	return (res);
3455 }
3456 
3457 
3458 struct resource *
3459 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
3460 		   u_long start, u_long end, u_long count, u_int flags)
3461 {
3462 	struct pci_devinfo *dinfo = device_get_ivars(child);
3463 	struct resource_list *rl = &dinfo->resources;
3464 	struct resource_list_entry *rle;
3465 	pcicfgregs *cfg = &dinfo->cfg;
3466 
3467 	/*
3468 	 * Perform lazy resource allocation
3469 	 */
3470 	if (device_get_parent(child) == dev) {
3471 		switch (type) {
3472 		case SYS_RES_IRQ:
3473 			/*
3474 			 * Can't alloc legacy interrupt once MSI messages
3475 			 * have been allocated.
3476 			 */
3477 			if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
3478 			    cfg->msix.msix_alloc > 0))
3479 				return (NULL);
3480 			/*
3481 			 * If the child device doesn't have an
3482 			 * interrupt routed and is deserving of an
3483 			 * interrupt, try to assign it one.
3484 			 */
3485 			if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
3486 			    (cfg->intpin != 0))
3487 				pci_assign_interrupt(dev, child, 0);
3488 			break;
3489 		case SYS_RES_IOPORT:
3490 		case SYS_RES_MEMORY:
3491 			if (*rid < PCIR_BAR(cfg->nummaps)) {
3492 				/*
3493 				 * Enable the I/O mode.  We should
3494 				 * also be assigning resources too
3495 				 * when none are present.  The
3496 				 * resource_list_alloc kind of sorta does
3497 				 * this...
3498 				 */
3499 				if (PCI_ENABLE_IO(dev, child, type))
3500 					return (NULL);
3501 			}
3502 			rle = resource_list_find(rl, type, *rid);
3503 			if (rle == NULL)
3504 				return (pci_alloc_map(dev, child, type, rid,
3505 				    start, end, count, flags));
3506 			break;
3507 		}
3508 		/*
3509 		 * If we've already allocated the resource, then
3510 		 * return it now.  But first we may need to activate
3511 		 * it, since we don't allocate the resource as active
3512 		 * above.  Normally this would be done down in the
3513 		 * nexus, but since we short-circuit that path we have
3514 		 * to do its job here.  Not sure if we should free the
3515 		 * resource if it fails to activate.
3516 		 */
3517 		rle = resource_list_find(rl, type, *rid);
3518 		if (rle != NULL && rle->res != NULL) {
3519 			if (bootverbose)
3520 				device_printf(child,
3521 			    "Reserved %#lx bytes for rid %#x type %d at %#lx\n",
3522 				    rman_get_size(rle->res), *rid, type,
3523 				    rman_get_start(rle->res));
3524 			if ((flags & RF_ACTIVE) &&
3525 			    bus_generic_activate_resource(dev, child, type,
3526 			    *rid, rle->res) != 0)
3527 				return (NULL);
3528 			return (rle->res);
3529 		}
3530 	}
3531 	return (resource_list_alloc(rl, dev, child, type, rid,
3532 	    start, end, count, flags));
3533 }
3534 
3535 void
3536 pci_delete_resource(device_t dev, device_t child, int type, int rid)
3537 {
3538 	struct pci_devinfo *dinfo;
3539 	struct resource_list *rl;
3540 	struct resource_list_entry *rle;
3541 
3542 	if (device_get_parent(child) != dev)
3543 		return;
3544 
3545 	dinfo = device_get_ivars(child);
3546 	rl = &dinfo->resources;
3547 	rle = resource_list_find(rl, type, rid);
3548 	if (rle) {
3549 		if (rle->res) {
3550 			if (rman_get_device(rle->res) != dev ||
3551 			    rman_get_flags(rle->res) & RF_ACTIVE) {
3552 				device_printf(dev, "delete_resource: "
3553 				    "Resource still owned by child, oops. "
3554 				    "(type=%d, rid=%d, addr=%lx)\n",
3555 				    rle->type, rle->rid,
3556 				    rman_get_start(rle->res));
3557 				return;
3558 			}
3559 			bus_release_resource(dev, type, rid, rle->res);
3560 		}
3561 		resource_list_delete(rl, type, rid);
3562 	}
3563 	/*
3564 	 * Why do we turn off the PCI configuration BAR when we delete a
3565 	 * resource? -- imp
3566 	 */
3567 	pci_write_config(child, rid, 0, 4);
3568 	BUS_DELETE_RESOURCE(device_get_parent(dev), child, type, rid);
3569 }
3570 
3571 struct resource_list *
3572 pci_get_resource_list (device_t dev, device_t child)
3573 {
3574 	struct pci_devinfo *dinfo = device_get_ivars(child);
3575 
3576 	return (&dinfo->resources);
3577 }
3578 
3579 uint32_t
3580 pci_read_config_method(device_t dev, device_t child, int reg, int width)
3581 {
3582 	struct pci_devinfo *dinfo = device_get_ivars(child);
3583 	pcicfgregs *cfg = &dinfo->cfg;
3584 
3585 	return (PCIB_READ_CONFIG(device_get_parent(dev),
3586 	    cfg->bus, cfg->slot, cfg->func, reg, width));
3587 }
3588 
3589 void
3590 pci_write_config_method(device_t dev, device_t child, int reg,
3591     uint32_t val, int width)
3592 {
3593 	struct pci_devinfo *dinfo = device_get_ivars(child);
3594 	pcicfgregs *cfg = &dinfo->cfg;
3595 
3596 	PCIB_WRITE_CONFIG(device_get_parent(dev),
3597 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
3598 }
3599 
3600 int
3601 pci_child_location_str_method(device_t dev, device_t child, char *buf,
3602     size_t buflen)
3603 {
3604 
3605 	snprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
3606 	    pci_get_function(child));
3607 	return (0);
3608 }
3609 
3610 int
3611 pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
3612     size_t buflen)
3613 {
3614 	struct pci_devinfo *dinfo;
3615 	pcicfgregs *cfg;
3616 
3617 	dinfo = device_get_ivars(child);
3618 	cfg = &dinfo->cfg;
3619 	snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
3620 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
3621 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
3622 	    cfg->progif);
3623 	return (0);
3624 }
3625 
3626 int
3627 pci_assign_interrupt_method(device_t dev, device_t child)
3628 {
3629 	struct pci_devinfo *dinfo = device_get_ivars(child);
3630 	pcicfgregs *cfg = &dinfo->cfg;
3631 
3632 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
3633 	    cfg->intpin));
3634 }
3635 
3636 static int
3637 pci_modevent(module_t mod, int what, void *arg)
3638 {
3639 	static struct cdev *pci_cdev;
3640 
3641 	switch (what) {
3642 	case MOD_LOAD:
3643 		STAILQ_INIT(&pci_devq);
3644 		pci_generation = 0;
3645 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
3646 		    "pci");
3647 		pci_load_vendor_data();
3648 		break;
3649 
3650 	case MOD_UNLOAD:
3651 		destroy_dev(pci_cdev);
3652 		break;
3653 	}
3654 
3655 	return (0);
3656 }
3657 
3658 void
3659 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
3660 {
3661 	int i;
3662 
3663 	/*
3664 	 * Only do header type 0 devices.  Type 1 devices are bridges,
3665 	 * which we know need special treatment.  Type 2 devices are
3666 	 * cardbus bridges which also require special treatment.
3667 	 * Other types are unknown, and we err on the side of safety
3668 	 * by ignoring them.
3669 	 */
3670 	if (dinfo->cfg.hdrtype != 0)
3671 		return;
3672 
3673 	/*
3674 	 * Restore the device to full power mode.  We must do this
3675 	 * before we restore the registers because moving from D3 to
3676 	 * D0 will cause the chip's BARs and some other registers to
3677 	 * be reset to some unknown power on reset values.  Cut down
3678 	 * the noise on boot by doing nothing if we are already in
3679 	 * state D0.
3680 	 */
3681 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
3682 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
3683 	}
3684 	for (i = 0; i < dinfo->cfg.nummaps; i++)
3685 		pci_write_config(dev, PCIR_BAR(i), dinfo->cfg.bar[i], 4);
3686 	pci_write_config(dev, PCIR_BIOS, dinfo->cfg.bios, 4);
3687 	pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
3688 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
3689 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
3690 	pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
3691 	pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
3692 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
3693 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
3694 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
3695 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
3696 
3697 	/* Restore MSI and MSI-X configurations if they are present. */
3698 	if (dinfo->cfg.msi.msi_location != 0)
3699 		pci_resume_msi(dev);
3700 	if (dinfo->cfg.msix.msix_location != 0)
3701 		pci_resume_msix(dev);
3702 }
3703 
3704 void
3705 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
3706 {
3707 	int i;
3708 	uint32_t cls;
3709 	int ps;
3710 
3711 	/*
3712 	 * Only do header type 0 devices.  Type 1 devices are bridges, which
3713 	 * we know need special treatment.  Type 2 devices are cardbus bridges
3714 	 * which also require special treatment.  Other types are unknown, and
3715 	 * we err on the side of safety by ignoring them.  Powering down
3716 	 * bridges should not be undertaken lightly.
3717 	 */
3718 	if (dinfo->cfg.hdrtype != 0)
3719 		return;
3720 	for (i = 0; i < dinfo->cfg.nummaps; i++)
3721 		dinfo->cfg.bar[i] = pci_read_config(dev, PCIR_BAR(i), 4);
3722 	dinfo->cfg.bios = pci_read_config(dev, PCIR_BIOS, 4);
3723 
3724 	/*
3725 	 * Some drivers apparently write to these registers w/o updating our
3726 	 * cached copy.  No harm happens if we update the copy, so do so here
3727 	 * so we can restore them.  The COMMAND register is modified by the
3728 	 * bus w/o updating the cache.  This should represent the normally
3729 	 * writable portion of the 'defined' part of type 0 headers.  In
3730 	 * theory we also need to save/restore the PCI capability structures
3731 	 * we know about, but apart from power we don't know any that are
3732 	 * writable.
3733 	 */
3734 	dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
3735 	dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
3736 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
3737 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
3738 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
3739 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
3740 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
3741 	dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
3742 	dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
3743 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3744 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3745 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
3746 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
3747 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
3748 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
3749 
3750 	/*
3751 	 * don't set the state for display devices, base peripherals and
3752 	 * memory devices since bad things happen when they are powered down.
3753 	 * We should (a) have drivers that can easily detach and (b) use
3754 	 * generic drivers for these devices so that some device actually
3755 	 * attaches.  We need to make sure that when we implement (a) we don't
3756 	 * power the device down on a reattach.
3757 	 */
3758 	cls = pci_get_class(dev);
3759 	if (!setstate)
3760 		return;
3761 	switch (pci_do_power_nodriver)
3762 	{
3763 		case 0:		/* NO powerdown at all */
3764 			return;
3765 		case 1:		/* Conservative about what to power down */
3766 			if (cls == PCIC_STORAGE)
3767 				return;
3768 			/*FALLTHROUGH*/
3769 		case 2:		/* Agressive about what to power down */
3770 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
3771 			    cls == PCIC_BASEPERIPH)
3772 				return;
3773 			/*FALLTHROUGH*/
3774 		case 3:		/* Power down everything */
3775 			break;
3776 	}
3777 	/*
3778 	 * PCI spec says we can only go into D3 state from D0 state.
3779 	 * Transition from D[12] into D0 before going to D3 state.
3780 	 */
3781 	ps = pci_get_powerstate(dev);
3782 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
3783 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
3784 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
3785 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
3786 }
3787