xref: /freebsd/sys/dev/pci/pci.c (revision 8d30ef92d59567d47a1fee9dc71baf17a555234d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6  * Copyright (c) 2000, BSDi
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_acpi.h"
35 #include "opt_iommu.h"
36 #include "opt_bus.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/endian.h>
41 #include <sys/eventhandler.h>
42 #include <sys/fcntl.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/linker.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/queue.h>
49 #include <sys/sbuf.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/taskqueue.h>
53 #include <sys/tree.h>
54 
55 #include <vm/vm.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_extern.h>
58 
59 #include <sys/bus.h>
60 #include <machine/bus.h>
61 #include <sys/rman.h>
62 #include <machine/resource.h>
63 #include <machine/stdarg.h>
64 
65 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
66 #include <machine/intr_machdep.h>
67 #endif
68 
69 #include <sys/pciio.h>
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pci_private.h>
73 
74 #ifdef PCI_IOV
75 #include <sys/nv.h>
76 #include <dev/pci/pci_iov_private.h>
77 #endif
78 
79 #include <dev/usb/controller/xhcireg.h>
80 #include <dev/usb/controller/ehcireg.h>
81 #include <dev/usb/controller/ohcireg.h>
82 #include <dev/usb/controller/uhcireg.h>
83 
84 #include <dev/iommu/iommu.h>
85 
86 #include "pcib_if.h"
87 #include "pci_if.h"
88 
89 #define	PCIR_IS_BIOS(cfg, reg)						\
90 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
91 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
92 
93 static int		pci_has_quirk(uint32_t devid, int quirk);
94 static pci_addr_t	pci_mapbase(uint64_t mapreg);
95 static const char	*pci_maptype(uint64_t mapreg);
96 static int		pci_maprange(uint64_t mapreg);
97 static pci_addr_t	pci_rombase(uint64_t mapreg);
98 static int		pci_romsize(uint64_t testval);
99 static void		pci_fixancient(pcicfgregs *cfg);
100 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
101 
102 static int		pci_porten(device_t dev);
103 static int		pci_memen(device_t dev);
104 static void		pci_assign_interrupt(device_t bus, device_t dev,
105 			    int force_route);
106 static int		pci_add_map(device_t bus, device_t dev, int reg,
107 			    struct resource_list *rl, int force, int prefetch);
108 static int		pci_probe(device_t dev);
109 static void		pci_load_vendor_data(void);
110 static int		pci_describe_parse_line(char **ptr, int *vendor,
111 			    int *device, char **desc);
112 static char		*pci_describe_device(device_t dev);
113 static int		pci_modevent(module_t mod, int what, void *arg);
114 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
115 			    pcicfgregs *cfg);
116 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
117 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
118 			    int reg, uint32_t *data);
119 #if 0
120 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
121 			    int reg, uint32_t data);
122 #endif
123 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
124 static void		pci_mask_msix(device_t dev, u_int index);
125 static void		pci_unmask_msix(device_t dev, u_int index);
126 static int		pci_msi_blacklisted(void);
127 static int		pci_msix_blacklisted(void);
128 static void		pci_resume_msi(device_t dev);
129 static void		pci_resume_msix(device_t dev);
130 static int		pci_remap_intr_method(device_t bus, device_t dev,
131 			    u_int irq);
132 static void		pci_hint_device_unit(device_t acdev, device_t child,
133 			    const char *name, int *unitp);
134 static int		pci_reset_post(device_t dev, device_t child);
135 static int		pci_reset_prepare(device_t dev, device_t child);
136 static int		pci_reset_child(device_t dev, device_t child,
137 			    int flags);
138 
139 static int		pci_get_id_method(device_t dev, device_t child,
140 			    enum pci_id_type type, uintptr_t *rid);
141 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
142     int b, int s, int f, uint16_t vid, uint16_t did);
143 
144 static device_method_t pci_methods[] = {
145 	/* Device interface */
146 	DEVMETHOD(device_probe,		pci_probe),
147 	DEVMETHOD(device_attach,	pci_attach),
148 	DEVMETHOD(device_detach,	pci_detach),
149 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
150 	DEVMETHOD(device_suspend,	bus_generic_suspend),
151 	DEVMETHOD(device_resume,	pci_resume),
152 
153 	/* Bus interface */
154 	DEVMETHOD(bus_print_child,	pci_print_child),
155 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
156 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
157 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
158 	DEVMETHOD(bus_driver_added,	pci_driver_added),
159 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
160 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
161 	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
162 	DEVMETHOD(bus_reset_post,	pci_reset_post),
163 	DEVMETHOD(bus_reset_child,	pci_reset_child),
164 
165 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
166 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
167 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
168 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
169 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
170 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
171 	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
172 	DEVMETHOD(bus_release_resource,	pci_release_resource),
173 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
174 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
175 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
176 	DEVMETHOD(bus_child_detached,	pci_child_detached),
177 	DEVMETHOD(bus_child_pnpinfo,	pci_child_pnpinfo_method),
178 	DEVMETHOD(bus_child_location,	pci_child_location_method),
179 	DEVMETHOD(bus_get_device_path,	pci_get_device_path_method),
180 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
181 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
182 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
183 	DEVMETHOD(bus_resume_child,	pci_resume_child),
184 	DEVMETHOD(bus_rescan,		pci_rescan_method),
185 
186 	/* PCI interface */
187 	DEVMETHOD(pci_read_config,	pci_read_config_method),
188 	DEVMETHOD(pci_write_config,	pci_write_config_method),
189 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
190 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
191 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
192 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
193 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
194 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
195 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
196 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
197 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
198 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
199 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
200 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
201 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
202 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
203 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
204 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
205 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
206 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
207 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
208 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
209 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
210 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
211 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
212 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
213 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
214 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
215 	DEVMETHOD(pci_get_id,		pci_get_id_method),
216 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
217 	DEVMETHOD(pci_child_added,	pci_child_added_method),
218 #ifdef PCI_IOV
219 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
220 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
221 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
222 #endif
223 
224 	DEVMETHOD_END
225 };
226 
227 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
228 
229 static devclass_t pci_devclass;
230 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL,
231     BUS_PASS_BUS);
232 MODULE_VERSION(pci, 1);
233 
234 static char	*pci_vendordata;
235 static size_t	pci_vendordata_size;
236 
237 struct pci_quirk {
238 	uint32_t devid;	/* Vendor/device of the card */
239 	int	type;
240 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
241 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
242 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
243 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
244 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
245 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
246 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
247 	int	arg1;
248 	int	arg2;
249 };
250 
251 static const struct pci_quirk pci_quirks[] = {
252 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
253 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
254 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
255 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
256 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
257 
258 	/*
259 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
260 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
261 	 */
262 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
263 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
264 
265 	/*
266 	 * MSI doesn't work on earlier Intel chipsets including
267 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
268 	 */
269 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
270 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
271 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
272 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
273 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
274 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
275 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
276 
277 	/*
278 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
279 	 * bridge.
280 	 */
281 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
282 
283 	/*
284 	 * Some virtualization environments emulate an older chipset
285 	 * but support MSI just fine.  QEMU uses the Intel 82440.
286 	 */
287 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
288 
289 	/*
290 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
291 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
292 	 * It prevents us from attaching hpet(4) when the bit is unset.
293 	 * Note this quirk only affects SB600 revision A13 and earlier.
294 	 * For SB600 A21 and later, firmware must set the bit to hide it.
295 	 * For SB700 and later, it is unused and hardcoded to zero.
296 	 */
297 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
298 
299 	/*
300 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
301 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
302 	 * of the command register is set.
303 	 */
304 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
305 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
306 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
307 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
308 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
309 
310 	/*
311 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
312 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
313 	 */
314 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
315 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
316 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
317 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
318 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
319 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
320 
321 	/*
322 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
323 	 * expected place.
324 	 */
325 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
326 	{ 0 }
327 };
328 
329 /* map register information */
330 #define	PCI_MAPMEM	0x01	/* memory map */
331 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
332 #define	PCI_MAPPORT	0x04	/* port map */
333 
334 struct devlist pci_devq;
335 uint32_t pci_generation;
336 uint32_t pci_numdevs = 0;
337 static int pcie_chipset, pcix_chipset;
338 
339 /* sysctl vars */
340 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
341     "PCI bus tuning parameters");
342 
343 static int pci_enable_io_modes = 1;
344 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
345     &pci_enable_io_modes, 1,
346     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
347     " enable these bits correctly.  We'd like to do this all the time, but"
348     " there are some peripherals that this causes problems with.");
349 
350 static int pci_do_realloc_bars = 1;
351 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
352     &pci_do_realloc_bars, 0,
353     "Attempt to allocate a new range for any BARs whose original "
354     "firmware-assigned ranges fail to allocate during the initial device scan.");
355 
356 static int pci_do_power_nodriver = 0;
357 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
358     &pci_do_power_nodriver, 0,
359     "Place a function into D3 state when no driver attaches to it.  0 means"
360     " disable.  1 means conservatively place devices into D3 state.  2 means"
361     " aggressively place devices into D3 state.  3 means put absolutely"
362     " everything in D3 state.");
363 
364 int pci_do_power_resume = 1;
365 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
366     &pci_do_power_resume, 1,
367   "Transition from D3 -> D0 on resume.");
368 
369 int pci_do_power_suspend = 1;
370 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
371     &pci_do_power_suspend, 1,
372   "Transition from D0 -> D3 on suspend.");
373 
374 static int pci_do_msi = 1;
375 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
376     "Enable support for MSI interrupts");
377 
378 static int pci_do_msix = 1;
379 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
380     "Enable support for MSI-X interrupts");
381 
382 static int pci_msix_rewrite_table = 0;
383 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
384     &pci_msix_rewrite_table, 0,
385     "Rewrite entire MSI-X table when updating MSI-X entries");
386 
387 static int pci_honor_msi_blacklist = 1;
388 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
389     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
390 
391 #if defined(__i386__) || defined(__amd64__)
392 static int pci_usb_takeover = 1;
393 #else
394 static int pci_usb_takeover = 0;
395 #endif
396 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
397     &pci_usb_takeover, 1,
398     "Enable early takeover of USB controllers. Disable this if you depend on"
399     " BIOS emulation of USB devices, that is you use USB devices (like"
400     " keyboard or mouse) but do not load USB drivers");
401 
402 static int pci_clear_bars;
403 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
404     "Ignore firmware-assigned resources for BARs.");
405 
406 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
407 static int pci_clear_buses;
408 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
409     "Ignore firmware-assigned bus numbers.");
410 #endif
411 
412 static int pci_enable_ari = 1;
413 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
414     0, "Enable support for PCIe Alternative RID Interpretation");
415 
416 int pci_enable_aspm = 1;
417 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
418     0, "Enable support for PCIe Active State Power Management");
419 
420 static int pci_clear_aer_on_attach = 0;
421 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
422     &pci_clear_aer_on_attach, 0,
423     "Clear port and device AER state on driver attach");
424 
425 static int
426 pci_has_quirk(uint32_t devid, int quirk)
427 {
428 	const struct pci_quirk *q;
429 
430 	for (q = &pci_quirks[0]; q->devid; q++) {
431 		if (q->devid == devid && q->type == quirk)
432 			return (1);
433 	}
434 	return (0);
435 }
436 
437 /* Find a device_t by bus/slot/function in domain 0 */
438 
439 device_t
440 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
441 {
442 
443 	return (pci_find_dbsf(0, bus, slot, func));
444 }
445 
446 /* Find a device_t by domain/bus/slot/function */
447 
448 device_t
449 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
450 {
451 	struct pci_devinfo *dinfo = NULL;
452 
453 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
454 		if ((dinfo->cfg.domain == domain) &&
455 		    (dinfo->cfg.bus == bus) &&
456 		    (dinfo->cfg.slot == slot) &&
457 		    (dinfo->cfg.func == func)) {
458 			break;
459 		}
460 	}
461 
462 	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
463 }
464 
465 /* Find a device_t by vendor/device ID */
466 
467 device_t
468 pci_find_device(uint16_t vendor, uint16_t device)
469 {
470 	struct pci_devinfo *dinfo;
471 
472 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
473 		if ((dinfo->cfg.vendor == vendor) &&
474 		    (dinfo->cfg.device == device)) {
475 			return (dinfo->cfg.dev);
476 		}
477 	}
478 
479 	return (NULL);
480 }
481 
482 device_t
483 pci_find_class(uint8_t class, uint8_t subclass)
484 {
485 	struct pci_devinfo *dinfo;
486 
487 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
488 		if (dinfo->cfg.baseclass == class &&
489 		    dinfo->cfg.subclass == subclass) {
490 			return (dinfo->cfg.dev);
491 		}
492 	}
493 
494 	return (NULL);
495 }
496 
497 device_t
498 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
499 {
500 	struct pci_devinfo *dinfo;
501 	bool found = false;
502 
503 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
504 		if (from != NULL && found == false) {
505 			if (from != dinfo->cfg.dev)
506 				continue;
507 			found = true;
508 			continue;
509 		}
510 		if (dinfo->cfg.baseclass == class &&
511 		    dinfo->cfg.subclass == subclass) {
512 			return (dinfo->cfg.dev);
513 		}
514 	}
515 
516 	return (NULL);
517 }
518 
519 static int
520 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
521 {
522 	va_list ap;
523 	int retval;
524 
525 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
526 	    cfg->func);
527 	va_start(ap, fmt);
528 	retval += vprintf(fmt, ap);
529 	va_end(ap);
530 	return (retval);
531 }
532 
533 /* return base address of memory or port map */
534 
535 static pci_addr_t
536 pci_mapbase(uint64_t mapreg)
537 {
538 
539 	if (PCI_BAR_MEM(mapreg))
540 		return (mapreg & PCIM_BAR_MEM_BASE);
541 	else
542 		return (mapreg & PCIM_BAR_IO_BASE);
543 }
544 
545 /* return map type of memory or port map */
546 
547 static const char *
548 pci_maptype(uint64_t mapreg)
549 {
550 
551 	if (PCI_BAR_IO(mapreg))
552 		return ("I/O Port");
553 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
554 		return ("Prefetchable Memory");
555 	return ("Memory");
556 }
557 
558 /* return log2 of map size decoded for memory or port map */
559 
560 int
561 pci_mapsize(uint64_t testval)
562 {
563 	int ln2size;
564 
565 	testval = pci_mapbase(testval);
566 	ln2size = 0;
567 	if (testval != 0) {
568 		while ((testval & 1) == 0)
569 		{
570 			ln2size++;
571 			testval >>= 1;
572 		}
573 	}
574 	return (ln2size);
575 }
576 
577 /* return base address of device ROM */
578 
579 static pci_addr_t
580 pci_rombase(uint64_t mapreg)
581 {
582 
583 	return (mapreg & PCIM_BIOS_ADDR_MASK);
584 }
585 
586 /* return log2 of map size decided for device ROM */
587 
588 static int
589 pci_romsize(uint64_t testval)
590 {
591 	int ln2size;
592 
593 	testval = pci_rombase(testval);
594 	ln2size = 0;
595 	if (testval != 0) {
596 		while ((testval & 1) == 0)
597 		{
598 			ln2size++;
599 			testval >>= 1;
600 		}
601 	}
602 	return (ln2size);
603 }
604 
605 /* return log2 of address range supported by map register */
606 
607 static int
608 pci_maprange(uint64_t mapreg)
609 {
610 	int ln2range = 0;
611 
612 	if (PCI_BAR_IO(mapreg))
613 		ln2range = 32;
614 	else
615 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
616 		case PCIM_BAR_MEM_32:
617 			ln2range = 32;
618 			break;
619 		case PCIM_BAR_MEM_1MB:
620 			ln2range = 20;
621 			break;
622 		case PCIM_BAR_MEM_64:
623 			ln2range = 64;
624 			break;
625 		}
626 	return (ln2range);
627 }
628 
629 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
630 
631 static void
632 pci_fixancient(pcicfgregs *cfg)
633 {
634 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
635 		return;
636 
637 	/* PCI to PCI bridges use header type 1 */
638 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
639 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
640 }
641 
642 /* extract header type specific config data */
643 
644 static void
645 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
646 {
647 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
648 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
649 	case PCIM_HDRTYPE_NORMAL:
650 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
651 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
652 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
653 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
654 		cfg->nummaps	    = PCI_MAXMAPS_0;
655 		break;
656 	case PCIM_HDRTYPE_BRIDGE:
657 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
658 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
659 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
660 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
661 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
662 		cfg->nummaps	    = PCI_MAXMAPS_1;
663 		break;
664 	case PCIM_HDRTYPE_CARDBUS:
665 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
666 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
667 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
668 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
669 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
670 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
671 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
672 		cfg->nummaps	    = PCI_MAXMAPS_2;
673 		break;
674 	}
675 #undef REG
676 }
677 
678 /* read configuration header into pcicfgregs structure */
679 struct pci_devinfo *
680 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
681 {
682 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
683 	uint16_t vid, did;
684 
685 	vid = REG(PCIR_VENDOR, 2);
686 	if (vid == PCIV_INVALID)
687 		return (NULL);
688 
689 	did = REG(PCIR_DEVICE, 2);
690 
691 	return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
692 }
693 
694 struct pci_devinfo *
695 pci_alloc_devinfo_method(device_t dev)
696 {
697 
698 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
699 	    M_WAITOK | M_ZERO));
700 }
701 
702 static struct pci_devinfo *
703 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
704     uint16_t vid, uint16_t did)
705 {
706 	struct pci_devinfo *devlist_entry;
707 	pcicfgregs *cfg;
708 
709 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
710 
711 	cfg = &devlist_entry->cfg;
712 
713 	cfg->domain		= d;
714 	cfg->bus		= b;
715 	cfg->slot		= s;
716 	cfg->func		= f;
717 	cfg->vendor		= vid;
718 	cfg->device		= did;
719 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
720 	cfg->statreg		= REG(PCIR_STATUS, 2);
721 	cfg->baseclass		= REG(PCIR_CLASS, 1);
722 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
723 	cfg->progif		= REG(PCIR_PROGIF, 1);
724 	cfg->revid		= REG(PCIR_REVID, 1);
725 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
726 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
727 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
728 	cfg->intpin		= REG(PCIR_INTPIN, 1);
729 	cfg->intline		= REG(PCIR_INTLINE, 1);
730 
731 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
732 	cfg->hdrtype		&= ~PCIM_MFDEV;
733 	STAILQ_INIT(&cfg->maps);
734 
735 	cfg->iov		= NULL;
736 
737 	pci_fixancient(cfg);
738 	pci_hdrtypedata(pcib, b, s, f, cfg);
739 
740 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
741 		pci_read_cap(pcib, cfg);
742 
743 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
744 
745 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
746 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
747 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
748 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
749 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
750 
751 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
752 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
753 	devlist_entry->conf.pc_vendor = cfg->vendor;
754 	devlist_entry->conf.pc_device = cfg->device;
755 
756 	devlist_entry->conf.pc_class = cfg->baseclass;
757 	devlist_entry->conf.pc_subclass = cfg->subclass;
758 	devlist_entry->conf.pc_progif = cfg->progif;
759 	devlist_entry->conf.pc_revid = cfg->revid;
760 
761 	pci_numdevs++;
762 	pci_generation++;
763 
764 	return (devlist_entry);
765 }
766 #undef REG
767 
768 static void
769 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
770 {
771 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
772     cfg->ea.ea_location + (n), w)
773 	int num_ent;
774 	int ptr;
775 	int a, b;
776 	uint32_t val;
777 	int ent_size;
778 	uint32_t dw[4];
779 	uint64_t base, max_offset;
780 	struct pci_ea_entry *eae;
781 
782 	if (cfg->ea.ea_location == 0)
783 		return;
784 
785 	STAILQ_INIT(&cfg->ea.ea_entries);
786 
787 	/* Determine the number of entries */
788 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
789 	num_ent &= PCIM_EA_NUM_ENT_MASK;
790 
791 	/* Find the first entry to care of */
792 	ptr = PCIR_EA_FIRST_ENT;
793 
794 	/* Skip DWORD 2 for type 1 functions */
795 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
796 		ptr += 4;
797 
798 	for (a = 0; a < num_ent; a++) {
799 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
800 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
801 
802 		/* Read a number of dwords in the entry */
803 		val = REG(ptr, 4);
804 		ptr += 4;
805 		ent_size = (val & PCIM_EA_ES);
806 
807 		for (b = 0; b < ent_size; b++) {
808 			dw[b] = REG(ptr, 4);
809 			ptr += 4;
810 		}
811 
812 		eae->eae_flags = val;
813 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
814 
815 		base = dw[0] & PCIM_EA_FIELD_MASK;
816 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
817 		b = 2;
818 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
819 			base |= (uint64_t)dw[b] << 32UL;
820 			b++;
821 		}
822 		if (((dw[1] & PCIM_EA_IS_64) != 0)
823 		    && (b < ent_size)) {
824 			max_offset |= (uint64_t)dw[b] << 32UL;
825 			b++;
826 		}
827 
828 		eae->eae_base = base;
829 		eae->eae_max_offset = max_offset;
830 
831 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
832 
833 		if (bootverbose) {
834 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
835 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
836 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
837 		}
838 	}
839 }
840 #undef REG
841 
842 static void
843 pci_read_cap(device_t pcib, pcicfgregs *cfg)
844 {
845 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
846 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
847 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
848 	uint64_t addr;
849 #endif
850 	uint32_t val;
851 	int	ptr, nextptr, ptrptr;
852 
853 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
854 	case PCIM_HDRTYPE_NORMAL:
855 	case PCIM_HDRTYPE_BRIDGE:
856 		ptrptr = PCIR_CAP_PTR;
857 		break;
858 	case PCIM_HDRTYPE_CARDBUS:
859 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
860 		break;
861 	default:
862 		return;		/* no extended capabilities support */
863 	}
864 	nextptr = REG(ptrptr, 1);	/* sanity check? */
865 
866 	/*
867 	 * Read capability entries.
868 	 */
869 	while (nextptr != 0) {
870 		/* Sanity check */
871 		if (nextptr > 255) {
872 			printf("illegal PCI extended capability offset %d\n",
873 			    nextptr);
874 			return;
875 		}
876 		/* Find the next entry */
877 		ptr = nextptr;
878 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
879 
880 		/* Process this entry */
881 		switch (REG(ptr + PCICAP_ID, 1)) {
882 		case PCIY_PMG:		/* PCI power management */
883 			if (cfg->pp.pp_cap == 0) {
884 				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
885 				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
886 				cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
887 				if ((nextptr - ptr) > PCIR_POWER_DATA)
888 					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
889 			}
890 			break;
891 		case PCIY_HT:		/* HyperTransport */
892 			/* Determine HT-specific capability type. */
893 			val = REG(ptr + PCIR_HT_COMMAND, 2);
894 
895 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
896 				cfg->ht.ht_slave = ptr;
897 
898 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
899 			switch (val & PCIM_HTCMD_CAP_MASK) {
900 			case PCIM_HTCAP_MSI_MAPPING:
901 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
902 					/* Sanity check the mapping window. */
903 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
904 					    4);
905 					addr <<= 32;
906 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
907 					    4);
908 					if (addr != MSI_INTEL_ADDR_BASE)
909 						device_printf(pcib,
910 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
911 						    cfg->domain, cfg->bus,
912 						    cfg->slot, cfg->func,
913 						    (long long)addr);
914 				} else
915 					addr = MSI_INTEL_ADDR_BASE;
916 
917 				cfg->ht.ht_msimap = ptr;
918 				cfg->ht.ht_msictrl = val;
919 				cfg->ht.ht_msiaddr = addr;
920 				break;
921 			}
922 #endif
923 			break;
924 		case PCIY_MSI:		/* PCI MSI */
925 			cfg->msi.msi_location = ptr;
926 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
927 			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
928 						     PCIM_MSICTRL_MMC_MASK)>>1);
929 			break;
930 		case PCIY_MSIX:		/* PCI MSI-X */
931 			cfg->msix.msix_location = ptr;
932 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
933 			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
934 			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
935 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
936 			cfg->msix.msix_table_bar = PCIR_BAR(val &
937 			    PCIM_MSIX_BIR_MASK);
938 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
939 			val = REG(ptr + PCIR_MSIX_PBA, 4);
940 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
941 			    PCIM_MSIX_BIR_MASK);
942 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
943 			break;
944 		case PCIY_VPD:		/* PCI Vital Product Data */
945 			cfg->vpd.vpd_reg = ptr;
946 			break;
947 		case PCIY_SUBVENDOR:
948 			/* Should always be true. */
949 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
950 			    PCIM_HDRTYPE_BRIDGE) {
951 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
952 				cfg->subvendor = val & 0xffff;
953 				cfg->subdevice = val >> 16;
954 			}
955 			break;
956 		case PCIY_PCIX:		/* PCI-X */
957 			/*
958 			 * Assume we have a PCI-X chipset if we have
959 			 * at least one PCI-PCI bridge with a PCI-X
960 			 * capability.  Note that some systems with
961 			 * PCI-express or HT chipsets might match on
962 			 * this check as well.
963 			 */
964 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
965 			    PCIM_HDRTYPE_BRIDGE)
966 				pcix_chipset = 1;
967 			cfg->pcix.pcix_location = ptr;
968 			break;
969 		case PCIY_EXPRESS:	/* PCI-express */
970 			/*
971 			 * Assume we have a PCI-express chipset if we have
972 			 * at least one PCI-express device.
973 			 */
974 			pcie_chipset = 1;
975 			cfg->pcie.pcie_location = ptr;
976 			val = REG(ptr + PCIER_FLAGS, 2);
977 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
978 			break;
979 		case PCIY_EA:		/* Enhanced Allocation */
980 			cfg->ea.ea_location = ptr;
981 			pci_ea_fill_info(pcib, cfg);
982 			break;
983 		default:
984 			break;
985 		}
986 	}
987 
988 #if defined(__powerpc__)
989 	/*
990 	 * Enable the MSI mapping window for all HyperTransport
991 	 * slaves.  PCI-PCI bridges have their windows enabled via
992 	 * PCIB_MAP_MSI().
993 	 */
994 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
995 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
996 		device_printf(pcib,
997 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
998 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
999 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1000 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
1001 		     2);
1002 	}
1003 #endif
1004 /* REG and WREG use carry through to next functions */
1005 }
1006 
1007 /*
1008  * PCI Vital Product Data
1009  */
1010 
1011 #define	PCI_VPD_TIMEOUT		1000000
1012 
1013 static int
1014 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1015 {
1016 	int count = PCI_VPD_TIMEOUT;
1017 
1018 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1019 
1020 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1021 
1022 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1023 		if (--count < 0)
1024 			return (ENXIO);
1025 		DELAY(1);	/* limit looping */
1026 	}
1027 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1028 
1029 	return (0);
1030 }
1031 
1032 #if 0
1033 static int
1034 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1035 {
1036 	int count = PCI_VPD_TIMEOUT;
1037 
1038 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1039 
1040 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1041 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1042 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1043 		if (--count < 0)
1044 			return (ENXIO);
1045 		DELAY(1);	/* limit looping */
1046 	}
1047 
1048 	return (0);
1049 }
1050 #endif
1051 
1052 #undef PCI_VPD_TIMEOUT
1053 
1054 struct vpd_readstate {
1055 	device_t	pcib;
1056 	pcicfgregs	*cfg;
1057 	uint32_t	val;
1058 	int		bytesinval;
1059 	int		off;
1060 	uint8_t		cksum;
1061 };
1062 
1063 static int
1064 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1065 {
1066 	uint32_t reg;
1067 	uint8_t byte;
1068 
1069 	if (vrs->bytesinval == 0) {
1070 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1071 			return (ENXIO);
1072 		vrs->val = le32toh(reg);
1073 		vrs->off += 4;
1074 		byte = vrs->val & 0xff;
1075 		vrs->bytesinval = 3;
1076 	} else {
1077 		vrs->val = vrs->val >> 8;
1078 		byte = vrs->val & 0xff;
1079 		vrs->bytesinval--;
1080 	}
1081 
1082 	vrs->cksum += byte;
1083 	*data = byte;
1084 	return (0);
1085 }
1086 
1087 static void
1088 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1089 {
1090 	struct vpd_readstate vrs;
1091 	int state;
1092 	int name;
1093 	int remain;
1094 	int i;
1095 	int alloc, off;		/* alloc/off for RO/W arrays */
1096 	int cksumvalid;
1097 	int dflen;
1098 	int firstrecord;
1099 	uint8_t byte;
1100 	uint8_t byte2;
1101 
1102 	/* init vpd reader */
1103 	vrs.bytesinval = 0;
1104 	vrs.off = 0;
1105 	vrs.pcib = pcib;
1106 	vrs.cfg = cfg;
1107 	vrs.cksum = 0;
1108 
1109 	state = 0;
1110 	name = remain = i = 0;	/* shut up stupid gcc */
1111 	alloc = off = 0;	/* shut up stupid gcc */
1112 	dflen = 0;		/* shut up stupid gcc */
1113 	cksumvalid = -1;
1114 	firstrecord = 1;
1115 	while (state >= 0) {
1116 		if (vpd_nextbyte(&vrs, &byte)) {
1117 			pci_printf(cfg, "VPD read timed out\n");
1118 			state = -2;
1119 			break;
1120 		}
1121 #if 0
1122 		pci_printf(cfg, "vpd: val: %#x, off: %d, bytesinval: %d, byte: "
1123 		    "%#hhx, state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
1124 		    vrs.off, vrs.bytesinval, byte, state, remain, name, i);
1125 #endif
1126 		switch (state) {
1127 		case 0:		/* item name */
1128 			if (byte & 0x80) {
1129 				if (vpd_nextbyte(&vrs, &byte2)) {
1130 					state = -2;
1131 					break;
1132 				}
1133 				remain = byte2;
1134 				if (vpd_nextbyte(&vrs, &byte2)) {
1135 					state = -2;
1136 					break;
1137 				}
1138 				remain |= byte2 << 8;
1139 				name = byte & 0x7f;
1140 			} else {
1141 				remain = byte & 0x7;
1142 				name = (byte >> 3) & 0xf;
1143 			}
1144 			if (firstrecord) {
1145 				if (name != 0x2) {
1146 					pci_printf(cfg, "VPD data does not " \
1147 					    "start with ident (%#x)\n", name);
1148 					state = -2;
1149 					break;
1150 				}
1151 				firstrecord = 0;
1152 			}
1153 			if (vrs.off + remain - vrs.bytesinval > 0x8000) {
1154 				pci_printf(cfg,
1155 				    "VPD data overflow, remain %#x\n", remain);
1156 				state = -1;
1157 				break;
1158 			}
1159 			switch (name) {
1160 			case 0x2:	/* String */
1161 				if (cfg->vpd.vpd_ident != NULL) {
1162 					pci_printf(cfg,
1163 					    "duplicate VPD ident record\n");
1164 					state = -2;
1165 					break;
1166 				}
1167 				if (remain > 255) {
1168 					pci_printf(cfg,
1169 					    "VPD ident length %d exceeds 255\n",
1170 					    remain);
1171 					state = -2;
1172 					break;
1173 				}
1174 				cfg->vpd.vpd_ident = malloc(remain + 1,
1175 				    M_DEVBUF, M_WAITOK);
1176 				i = 0;
1177 				state = 1;
1178 				break;
1179 			case 0xf:	/* End */
1180 				state = -1;
1181 				break;
1182 			case 0x10:	/* VPD-R */
1183 				alloc = 8;
1184 				off = 0;
1185 				cfg->vpd.vpd_ros = malloc(alloc *
1186 				    sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
1187 				    M_WAITOK | M_ZERO);
1188 				state = 2;
1189 				break;
1190 			case 0x11:	/* VPD-W */
1191 				alloc = 8;
1192 				off = 0;
1193 				cfg->vpd.vpd_w = malloc(alloc *
1194 				    sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
1195 				    M_WAITOK | M_ZERO);
1196 				state = 5;
1197 				break;
1198 			default:	/* Invalid data, abort */
1199 				pci_printf(cfg, "invalid VPD name: %#x\n", name);
1200 				state = -2;
1201 				break;
1202 			}
1203 			break;
1204 
1205 		case 1:	/* Identifier String */
1206 			cfg->vpd.vpd_ident[i++] = byte;
1207 			remain--;
1208 			if (remain == 0)  {
1209 				cfg->vpd.vpd_ident[i] = '\0';
1210 				state = 0;
1211 			}
1212 			break;
1213 
1214 		case 2:	/* VPD-R Keyword Header */
1215 			if (off == alloc) {
1216 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1217 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
1218 				    M_DEVBUF, M_WAITOK | M_ZERO);
1219 			}
1220 			cfg->vpd.vpd_ros[off].keyword[0] = byte;
1221 			if (vpd_nextbyte(&vrs, &byte2)) {
1222 				state = -2;
1223 				break;
1224 			}
1225 			cfg->vpd.vpd_ros[off].keyword[1] = byte2;
1226 			if (vpd_nextbyte(&vrs, &byte2)) {
1227 				state = -2;
1228 				break;
1229 			}
1230 			cfg->vpd.vpd_ros[off].len = dflen = byte2;
1231 			if (dflen == 0 &&
1232 			    strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
1233 			    2) == 0) {
1234 				/*
1235 				 * if this happens, we can't trust the rest
1236 				 * of the VPD.
1237 				 */
1238 				pci_printf(cfg, "invalid VPD RV record");
1239 				cksumvalid = 0;
1240 				state = -1;
1241 				break;
1242 			} else if (dflen == 0) {
1243 				cfg->vpd.vpd_ros[off].value = malloc(1 *
1244 				    sizeof(*cfg->vpd.vpd_ros[off].value),
1245 				    M_DEVBUF, M_WAITOK);
1246 				cfg->vpd.vpd_ros[off].value[0] = '\x00';
1247 			} else
1248 				cfg->vpd.vpd_ros[off].value = malloc(
1249 				    (dflen + 1) *
1250 				    sizeof(*cfg->vpd.vpd_ros[off].value),
1251 				    M_DEVBUF, M_WAITOK);
1252 			remain -= 3;
1253 			i = 0;
1254 			/* keep in sync w/ state 3's transistions */
1255 			if (dflen == 0 && remain == 0)
1256 				state = 0;
1257 			else if (dflen == 0)
1258 				state = 2;
1259 			else
1260 				state = 3;
1261 			break;
1262 
1263 		case 3:	/* VPD-R Keyword Value */
1264 			cfg->vpd.vpd_ros[off].value[i++] = byte;
1265 			if (strncmp(cfg->vpd.vpd_ros[off].keyword,
1266 			    "RV", 2) == 0 && cksumvalid == -1) {
1267 				if (vrs.cksum == 0)
1268 					cksumvalid = 1;
1269 				else {
1270 					if (bootverbose)
1271 						pci_printf(cfg,
1272 					    "bad VPD cksum, remain %hhu\n",
1273 						    vrs.cksum);
1274 					cksumvalid = 0;
1275 					state = -1;
1276 					break;
1277 				}
1278 			}
1279 			dflen--;
1280 			remain--;
1281 			/* keep in sync w/ state 2's transistions */
1282 			if (dflen == 0)
1283 				cfg->vpd.vpd_ros[off++].value[i++] = '\0';
1284 			if (dflen == 0 && remain == 0) {
1285 				cfg->vpd.vpd_rocnt = off;
1286 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1287 				    off * sizeof(*cfg->vpd.vpd_ros),
1288 				    M_DEVBUF, M_WAITOK | M_ZERO);
1289 				state = 0;
1290 			} else if (dflen == 0)
1291 				state = 2;
1292 			break;
1293 
1294 		case 4:
1295 			remain--;
1296 			if (remain == 0)
1297 				state = 0;
1298 			break;
1299 
1300 		case 5:	/* VPD-W Keyword Header */
1301 			if (off == alloc) {
1302 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1303 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
1304 				    M_DEVBUF, M_WAITOK | M_ZERO);
1305 			}
1306 			cfg->vpd.vpd_w[off].keyword[0] = byte;
1307 			if (vpd_nextbyte(&vrs, &byte2)) {
1308 				state = -2;
1309 				break;
1310 			}
1311 			cfg->vpd.vpd_w[off].keyword[1] = byte2;
1312 			if (vpd_nextbyte(&vrs, &byte2)) {
1313 				state = -2;
1314 				break;
1315 			}
1316 			cfg->vpd.vpd_w[off].len = dflen = byte2;
1317 			cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
1318 			cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
1319 			    sizeof(*cfg->vpd.vpd_w[off].value),
1320 			    M_DEVBUF, M_WAITOK);
1321 			remain -= 3;
1322 			i = 0;
1323 			/* keep in sync w/ state 6's transistions */
1324 			if (dflen == 0 && remain == 0)
1325 				state = 0;
1326 			else if (dflen == 0)
1327 				state = 5;
1328 			else
1329 				state = 6;
1330 			break;
1331 
1332 		case 6:	/* VPD-W Keyword Value */
1333 			cfg->vpd.vpd_w[off].value[i++] = byte;
1334 			dflen--;
1335 			remain--;
1336 			/* keep in sync w/ state 5's transistions */
1337 			if (dflen == 0)
1338 				cfg->vpd.vpd_w[off++].value[i++] = '\0';
1339 			if (dflen == 0 && remain == 0) {
1340 				cfg->vpd.vpd_wcnt = off;
1341 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1342 				    off * sizeof(*cfg->vpd.vpd_w),
1343 				    M_DEVBUF, M_WAITOK | M_ZERO);
1344 				state = 0;
1345 			} else if (dflen == 0)
1346 				state = 5;
1347 			break;
1348 
1349 		default:
1350 			pci_printf(cfg, "invalid state: %d\n", state);
1351 			state = -1;
1352 			break;
1353 		}
1354 
1355 		if (cfg->vpd.vpd_ident == NULL || cfg->vpd.vpd_ident[0] == '\0') {
1356 			pci_printf(cfg, "no valid vpd ident found\n");
1357 			state = -2;
1358 		}
1359 	}
1360 
1361 	if (cksumvalid <= 0 || state < -1) {
1362 		/* read-only data bad, clean up */
1363 		if (cfg->vpd.vpd_ros != NULL) {
1364 			for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
1365 				free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
1366 			free(cfg->vpd.vpd_ros, M_DEVBUF);
1367 			cfg->vpd.vpd_ros = NULL;
1368 		}
1369 	}
1370 	if (state < -1) {
1371 		/* I/O error, clean up */
1372 		pci_printf(cfg, "failed to read VPD data.\n");
1373 		if (cfg->vpd.vpd_ident != NULL) {
1374 			free(cfg->vpd.vpd_ident, M_DEVBUF);
1375 			cfg->vpd.vpd_ident = NULL;
1376 		}
1377 		if (cfg->vpd.vpd_w != NULL) {
1378 			for (off = 0; cfg->vpd.vpd_w[off].value; off++)
1379 				free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
1380 			free(cfg->vpd.vpd_w, M_DEVBUF);
1381 			cfg->vpd.vpd_w = NULL;
1382 		}
1383 	}
1384 	cfg->vpd.vpd_cached = 1;
1385 #undef REG
1386 #undef WREG
1387 }
1388 
1389 int
1390 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1391 {
1392 	struct pci_devinfo *dinfo = device_get_ivars(child);
1393 	pcicfgregs *cfg = &dinfo->cfg;
1394 
1395 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1396 		pci_read_vpd(device_get_parent(dev), cfg);
1397 
1398 	*identptr = cfg->vpd.vpd_ident;
1399 
1400 	if (*identptr == NULL)
1401 		return (ENXIO);
1402 
1403 	return (0);
1404 }
1405 
1406 int
1407 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1408 	const char **vptr)
1409 {
1410 	struct pci_devinfo *dinfo = device_get_ivars(child);
1411 	pcicfgregs *cfg = &dinfo->cfg;
1412 	int i;
1413 
1414 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1415 		pci_read_vpd(device_get_parent(dev), cfg);
1416 
1417 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1418 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1419 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1420 			*vptr = cfg->vpd.vpd_ros[i].value;
1421 			return (0);
1422 		}
1423 
1424 	*vptr = NULL;
1425 	return (ENXIO);
1426 }
1427 
1428 struct pcicfg_vpd *
1429 pci_fetch_vpd_list(device_t dev)
1430 {
1431 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1432 	pcicfgregs *cfg = &dinfo->cfg;
1433 
1434 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1435 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1436 	return (&cfg->vpd);
1437 }
1438 
1439 /*
1440  * Find the requested HyperTransport capability and return the offset
1441  * in configuration space via the pointer provided.  The function
1442  * returns 0 on success and an error code otherwise.
1443  */
1444 int
1445 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1446 {
1447 	int ptr, error;
1448 	uint16_t val;
1449 
1450 	error = pci_find_cap(child, PCIY_HT, &ptr);
1451 	if (error)
1452 		return (error);
1453 
1454 	/*
1455 	 * Traverse the capabilities list checking each HT capability
1456 	 * to see if it matches the requested HT capability.
1457 	 */
1458 	for (;;) {
1459 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1460 		if (capability == PCIM_HTCAP_SLAVE ||
1461 		    capability == PCIM_HTCAP_HOST)
1462 			val &= 0xe000;
1463 		else
1464 			val &= PCIM_HTCMD_CAP_MASK;
1465 		if (val == capability) {
1466 			if (capreg != NULL)
1467 				*capreg = ptr;
1468 			return (0);
1469 		}
1470 
1471 		/* Skip to the next HT capability. */
1472 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1473 			break;
1474 	}
1475 
1476 	return (ENOENT);
1477 }
1478 
1479 /*
1480  * Find the next requested HyperTransport capability after start and return
1481  * the offset in configuration space via the pointer provided.  The function
1482  * returns 0 on success and an error code otherwise.
1483  */
1484 int
1485 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1486     int start, int *capreg)
1487 {
1488 	int ptr;
1489 	uint16_t val;
1490 
1491 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1492 	    ("start capability is not HyperTransport capability"));
1493 	ptr = start;
1494 
1495 	/*
1496 	 * Traverse the capabilities list checking each HT capability
1497 	 * to see if it matches the requested HT capability.
1498 	 */
1499 	for (;;) {
1500 		/* Skip to the next HT capability. */
1501 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1502 			break;
1503 
1504 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1505 		if (capability == PCIM_HTCAP_SLAVE ||
1506 		    capability == PCIM_HTCAP_HOST)
1507 			val &= 0xe000;
1508 		else
1509 			val &= PCIM_HTCMD_CAP_MASK;
1510 		if (val == capability) {
1511 			if (capreg != NULL)
1512 				*capreg = ptr;
1513 			return (0);
1514 		}
1515 	}
1516 
1517 	return (ENOENT);
1518 }
1519 
1520 /*
1521  * Find the requested capability and return the offset in
1522  * configuration space via the pointer provided.  The function returns
1523  * 0 on success and an error code otherwise.
1524  */
1525 int
1526 pci_find_cap_method(device_t dev, device_t child, int capability,
1527     int *capreg)
1528 {
1529 	struct pci_devinfo *dinfo = device_get_ivars(child);
1530 	pcicfgregs *cfg = &dinfo->cfg;
1531 	uint32_t status;
1532 	uint8_t ptr;
1533 
1534 	/*
1535 	 * Check the CAP_LIST bit of the PCI status register first.
1536 	 */
1537 	status = pci_read_config(child, PCIR_STATUS, 2);
1538 	if (!(status & PCIM_STATUS_CAPPRESENT))
1539 		return (ENXIO);
1540 
1541 	/*
1542 	 * Determine the start pointer of the capabilities list.
1543 	 */
1544 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1545 	case PCIM_HDRTYPE_NORMAL:
1546 	case PCIM_HDRTYPE_BRIDGE:
1547 		ptr = PCIR_CAP_PTR;
1548 		break;
1549 	case PCIM_HDRTYPE_CARDBUS:
1550 		ptr = PCIR_CAP_PTR_2;
1551 		break;
1552 	default:
1553 		/* XXX: panic? */
1554 		return (ENXIO);		/* no extended capabilities support */
1555 	}
1556 	ptr = pci_read_config(child, ptr, 1);
1557 
1558 	/*
1559 	 * Traverse the capabilities list.
1560 	 */
1561 	while (ptr != 0) {
1562 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1563 			if (capreg != NULL)
1564 				*capreg = ptr;
1565 			return (0);
1566 		}
1567 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1568 	}
1569 
1570 	return (ENOENT);
1571 }
1572 
1573 /*
1574  * Find the next requested capability after start and return the offset in
1575  * configuration space via the pointer provided.  The function returns
1576  * 0 on success and an error code otherwise.
1577  */
1578 int
1579 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1580     int start, int *capreg)
1581 {
1582 	uint8_t ptr;
1583 
1584 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1585 	    ("start capability is not expected capability"));
1586 
1587 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1588 	while (ptr != 0) {
1589 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1590 			if (capreg != NULL)
1591 				*capreg = ptr;
1592 			return (0);
1593 		}
1594 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1595 	}
1596 
1597 	return (ENOENT);
1598 }
1599 
1600 /*
1601  * Find the requested extended capability and return the offset in
1602  * configuration space via the pointer provided.  The function returns
1603  * 0 on success and an error code otherwise.
1604  */
1605 int
1606 pci_find_extcap_method(device_t dev, device_t child, int capability,
1607     int *capreg)
1608 {
1609 	struct pci_devinfo *dinfo = device_get_ivars(child);
1610 	pcicfgregs *cfg = &dinfo->cfg;
1611 	uint32_t ecap;
1612 	uint16_t ptr;
1613 
1614 	/* Only supported for PCI-express devices. */
1615 	if (cfg->pcie.pcie_location == 0)
1616 		return (ENXIO);
1617 
1618 	ptr = PCIR_EXTCAP;
1619 	ecap = pci_read_config(child, ptr, 4);
1620 	if (ecap == 0xffffffff || ecap == 0)
1621 		return (ENOENT);
1622 	for (;;) {
1623 		if (PCI_EXTCAP_ID(ecap) == capability) {
1624 			if (capreg != NULL)
1625 				*capreg = ptr;
1626 			return (0);
1627 		}
1628 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1629 		if (ptr == 0)
1630 			break;
1631 		ecap = pci_read_config(child, ptr, 4);
1632 	}
1633 
1634 	return (ENOENT);
1635 }
1636 
1637 /*
1638  * Find the next requested extended capability after start and return the
1639  * offset in configuration space via the pointer provided.  The function
1640  * returns 0 on success and an error code otherwise.
1641  */
1642 int
1643 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1644     int start, int *capreg)
1645 {
1646 	struct pci_devinfo *dinfo = device_get_ivars(child);
1647 	pcicfgregs *cfg = &dinfo->cfg;
1648 	uint32_t ecap;
1649 	uint16_t ptr;
1650 
1651 	/* Only supported for PCI-express devices. */
1652 	if (cfg->pcie.pcie_location == 0)
1653 		return (ENXIO);
1654 
1655 	ecap = pci_read_config(child, start, 4);
1656 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1657 	    ("start extended capability is not expected capability"));
1658 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1659 	while (ptr != 0) {
1660 		ecap = pci_read_config(child, ptr, 4);
1661 		if (PCI_EXTCAP_ID(ecap) == capability) {
1662 			if (capreg != NULL)
1663 				*capreg = ptr;
1664 			return (0);
1665 		}
1666 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1667 	}
1668 
1669 	return (ENOENT);
1670 }
1671 
1672 /*
1673  * Support for MSI-X message interrupts.
1674  */
1675 static void
1676 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1677 {
1678 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1679 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1680 	uint32_t offset;
1681 
1682 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1683 	offset = msix->msix_table_offset + index * 16;
1684 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1685 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1686 	bus_write_4(msix->msix_table_res, offset + 8, data);
1687 }
1688 
1689 void
1690 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1691     uint64_t address, uint32_t data)
1692 {
1693 
1694 	if (pci_msix_rewrite_table) {
1695 		struct pci_devinfo *dinfo = device_get_ivars(child);
1696 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1697 
1698 		/*
1699 		 * Some VM hosts require MSIX to be disabled in the
1700 		 * control register before updating the MSIX table
1701 		 * entries are allowed. It is not enough to only
1702 		 * disable MSIX while updating a single entry. MSIX
1703 		 * must be disabled while updating all entries in the
1704 		 * table.
1705 		 */
1706 		pci_write_config(child,
1707 		    msix->msix_location + PCIR_MSIX_CTRL,
1708 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1709 		pci_resume_msix(child);
1710 	} else
1711 		pci_write_msix_entry(child, index, address, data);
1712 
1713 	/* Enable MSI -> HT mapping. */
1714 	pci_ht_map_msi(child, address);
1715 }
1716 
1717 void
1718 pci_mask_msix(device_t dev, u_int index)
1719 {
1720 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1721 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1722 	uint32_t offset, val;
1723 
1724 	KASSERT(msix->msix_msgnum > index, ("bogus index"));
1725 	offset = msix->msix_table_offset + index * 16 + 12;
1726 	val = bus_read_4(msix->msix_table_res, offset);
1727 	val |= PCIM_MSIX_VCTRL_MASK;
1728 
1729 	/*
1730 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1731 	 * register, so always write the new value.
1732 	 */
1733 	bus_write_4(msix->msix_table_res, offset, val);
1734 }
1735 
1736 void
1737 pci_unmask_msix(device_t dev, u_int index)
1738 {
1739 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1740 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1741 	uint32_t offset, val;
1742 
1743 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1744 	offset = msix->msix_table_offset + index * 16 + 12;
1745 	val = bus_read_4(msix->msix_table_res, offset);
1746 	val &= ~PCIM_MSIX_VCTRL_MASK;
1747 
1748 	/*
1749 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1750 	 * register, so always write the new value.
1751 	 */
1752 	bus_write_4(msix->msix_table_res, offset, val);
1753 }
1754 
1755 int
1756 pci_pending_msix(device_t dev, u_int index)
1757 {
1758 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1759 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1760 	uint32_t offset, bit;
1761 
1762 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1763 	offset = msix->msix_pba_offset + (index / 32) * 4;
1764 	bit = 1 << index % 32;
1765 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1766 }
1767 
1768 /*
1769  * Restore MSI-X registers and table during resume.  If MSI-X is
1770  * enabled then walk the virtual table to restore the actual MSI-X
1771  * table.
1772  */
1773 static void
1774 pci_resume_msix(device_t dev)
1775 {
1776 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1777 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1778 	struct msix_table_entry *mte;
1779 	struct msix_vector *mv;
1780 	int i;
1781 
1782 	if (msix->msix_alloc > 0) {
1783 		/* First, mask all vectors. */
1784 		for (i = 0; i < msix->msix_msgnum; i++)
1785 			pci_mask_msix(dev, i);
1786 
1787 		/* Second, program any messages with at least one handler. */
1788 		for (i = 0; i < msix->msix_table_len; i++) {
1789 			mte = &msix->msix_table[i];
1790 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1791 				continue;
1792 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1793 			pci_write_msix_entry(dev, i, mv->mv_address,
1794 			    mv->mv_data);
1795 			pci_unmask_msix(dev, i);
1796 		}
1797 	}
1798 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1799 	    msix->msix_ctrl, 2);
1800 }
1801 
1802 /*
1803  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1804  * returned in *count.  After this function returns, each message will be
1805  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1806  */
1807 int
1808 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1809 {
1810 	struct pci_devinfo *dinfo = device_get_ivars(child);
1811 	pcicfgregs *cfg = &dinfo->cfg;
1812 	struct resource_list_entry *rle;
1813 	int actual, error, i, irq, max;
1814 
1815 	/* Don't let count == 0 get us into trouble. */
1816 	if (*count == 0)
1817 		return (EINVAL);
1818 
1819 	/* If rid 0 is allocated, then fail. */
1820 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1821 	if (rle != NULL && rle->res != NULL)
1822 		return (ENXIO);
1823 
1824 	/* Already have allocated messages? */
1825 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1826 		return (ENXIO);
1827 
1828 	/* If MSI-X is blacklisted for this system, fail. */
1829 	if (pci_msix_blacklisted())
1830 		return (ENXIO);
1831 
1832 	/* MSI-X capability present? */
1833 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1834 		return (ENODEV);
1835 
1836 	/* Make sure the appropriate BARs are mapped. */
1837 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1838 	    cfg->msix.msix_table_bar);
1839 	if (rle == NULL || rle->res == NULL ||
1840 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1841 		return (ENXIO);
1842 	cfg->msix.msix_table_res = rle->res;
1843 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1844 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1845 		    cfg->msix.msix_pba_bar);
1846 		if (rle == NULL || rle->res == NULL ||
1847 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1848 			return (ENXIO);
1849 	}
1850 	cfg->msix.msix_pba_res = rle->res;
1851 
1852 	if (bootverbose)
1853 		device_printf(child,
1854 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1855 		    *count, cfg->msix.msix_msgnum);
1856 	max = min(*count, cfg->msix.msix_msgnum);
1857 	for (i = 0; i < max; i++) {
1858 		/* Allocate a message. */
1859 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1860 		if (error) {
1861 			if (i == 0)
1862 				return (error);
1863 			break;
1864 		}
1865 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1866 		    irq, 1);
1867 	}
1868 	actual = i;
1869 
1870 	if (bootverbose) {
1871 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1872 		if (actual == 1)
1873 			device_printf(child, "using IRQ %ju for MSI-X\n",
1874 			    rle->start);
1875 		else {
1876 			int run;
1877 
1878 			/*
1879 			 * Be fancy and try to print contiguous runs of
1880 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1881 			 * 'run' is true if we are in a range.
1882 			 */
1883 			device_printf(child, "using IRQs %ju", rle->start);
1884 			irq = rle->start;
1885 			run = 0;
1886 			for (i = 1; i < actual; i++) {
1887 				rle = resource_list_find(&dinfo->resources,
1888 				    SYS_RES_IRQ, i + 1);
1889 
1890 				/* Still in a run? */
1891 				if (rle->start == irq + 1) {
1892 					run = 1;
1893 					irq++;
1894 					continue;
1895 				}
1896 
1897 				/* Finish previous range. */
1898 				if (run) {
1899 					printf("-%d", irq);
1900 					run = 0;
1901 				}
1902 
1903 				/* Start new range. */
1904 				printf(",%ju", rle->start);
1905 				irq = rle->start;
1906 			}
1907 
1908 			/* Unfinished range? */
1909 			if (run)
1910 				printf("-%d", irq);
1911 			printf(" for MSI-X\n");
1912 		}
1913 	}
1914 
1915 	/* Mask all vectors. */
1916 	for (i = 0; i < cfg->msix.msix_msgnum; i++)
1917 		pci_mask_msix(child, i);
1918 
1919 	/* Allocate and initialize vector data and virtual table. */
1920 	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1921 	    M_DEVBUF, M_WAITOK | M_ZERO);
1922 	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1923 	    M_DEVBUF, M_WAITOK | M_ZERO);
1924 	for (i = 0; i < actual; i++) {
1925 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1926 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1927 		cfg->msix.msix_table[i].mte_vector = i + 1;
1928 	}
1929 
1930 	/* Update control register to enable MSI-X. */
1931 	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1932 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1933 	    cfg->msix.msix_ctrl, 2);
1934 
1935 	/* Update counts of alloc'd messages. */
1936 	cfg->msix.msix_alloc = actual;
1937 	cfg->msix.msix_table_len = actual;
1938 	*count = actual;
1939 	return (0);
1940 }
1941 
1942 /*
1943  * By default, pci_alloc_msix() will assign the allocated IRQ
1944  * resources consecutively to the first N messages in the MSI-X table.
1945  * However, device drivers may want to use different layouts if they
1946  * either receive fewer messages than they asked for, or they wish to
1947  * populate the MSI-X table sparsely.  This method allows the driver
1948  * to specify what layout it wants.  It must be called after a
1949  * successful pci_alloc_msix() but before any of the associated
1950  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1951  *
1952  * The 'vectors' array contains 'count' message vectors.  The array
1953  * maps directly to the MSI-X table in that index 0 in the array
1954  * specifies the vector for the first message in the MSI-X table, etc.
1955  * The vector value in each array index can either be 0 to indicate
1956  * that no vector should be assigned to a message slot, or it can be a
1957  * number from 1 to N (where N is the count returned from a
1958  * succcessful call to pci_alloc_msix()) to indicate which message
1959  * vector (IRQ) to be used for the corresponding message.
1960  *
1961  * On successful return, each message with a non-zero vector will have
1962  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1963  * 1.  Additionally, if any of the IRQs allocated via the previous
1964  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1965  * will be freed back to the system automatically.
1966  *
1967  * For example, suppose a driver has a MSI-X table with 6 messages and
1968  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1969  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1970  * C.  After the call to pci_alloc_msix(), the device will be setup to
1971  * have an MSI-X table of ABC--- (where - means no vector assigned).
1972  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1973  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1974  * be freed back to the system.  This device will also have valid
1975  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1976  *
1977  * In any case, the SYS_RES_IRQ rid X will always map to the message
1978  * at MSI-X table index X - 1 and will only be valid if a vector is
1979  * assigned to that table entry.
1980  */
1981 int
1982 pci_remap_msix_method(device_t dev, device_t child, int count,
1983     const u_int *vectors)
1984 {
1985 	struct pci_devinfo *dinfo = device_get_ivars(child);
1986 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1987 	struct resource_list_entry *rle;
1988 	int i, irq, j, *used;
1989 
1990 	/*
1991 	 * Have to have at least one message in the table but the
1992 	 * table can't be bigger than the actual MSI-X table in the
1993 	 * device.
1994 	 */
1995 	if (count == 0 || count > msix->msix_msgnum)
1996 		return (EINVAL);
1997 
1998 	/* Sanity check the vectors. */
1999 	for (i = 0; i < count; i++)
2000 		if (vectors[i] > msix->msix_alloc)
2001 			return (EINVAL);
2002 
2003 	/*
2004 	 * Make sure there aren't any holes in the vectors to be used.
2005 	 * It's a big pain to support it, and it doesn't really make
2006 	 * sense anyway.  Also, at least one vector must be used.
2007 	 */
2008 	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
2009 	    M_ZERO);
2010 	for (i = 0; i < count; i++)
2011 		if (vectors[i] != 0)
2012 			used[vectors[i] - 1] = 1;
2013 	for (i = 0; i < msix->msix_alloc - 1; i++)
2014 		if (used[i] == 0 && used[i + 1] == 1) {
2015 			free(used, M_DEVBUF);
2016 			return (EINVAL);
2017 		}
2018 	if (used[0] != 1) {
2019 		free(used, M_DEVBUF);
2020 		return (EINVAL);
2021 	}
2022 
2023 	/* Make sure none of the resources are allocated. */
2024 	for (i = 0; i < msix->msix_table_len; i++) {
2025 		if (msix->msix_table[i].mte_vector == 0)
2026 			continue;
2027 		if (msix->msix_table[i].mte_handlers > 0) {
2028 			free(used, M_DEVBUF);
2029 			return (EBUSY);
2030 		}
2031 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2032 		KASSERT(rle != NULL, ("missing resource"));
2033 		if (rle->res != NULL) {
2034 			free(used, M_DEVBUF);
2035 			return (EBUSY);
2036 		}
2037 	}
2038 
2039 	/* Free the existing resource list entries. */
2040 	for (i = 0; i < msix->msix_table_len; i++) {
2041 		if (msix->msix_table[i].mte_vector == 0)
2042 			continue;
2043 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2044 	}
2045 
2046 	/*
2047 	 * Build the new virtual table keeping track of which vectors are
2048 	 * used.
2049 	 */
2050 	free(msix->msix_table, M_DEVBUF);
2051 	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
2052 	    M_DEVBUF, M_WAITOK | M_ZERO);
2053 	for (i = 0; i < count; i++)
2054 		msix->msix_table[i].mte_vector = vectors[i];
2055 	msix->msix_table_len = count;
2056 
2057 	/* Free any unused IRQs and resize the vectors array if necessary. */
2058 	j = msix->msix_alloc - 1;
2059 	if (used[j] == 0) {
2060 		struct msix_vector *vec;
2061 
2062 		while (used[j] == 0) {
2063 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2064 			    msix->msix_vectors[j].mv_irq);
2065 			j--;
2066 		}
2067 		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
2068 		    M_WAITOK);
2069 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2070 		    (j + 1));
2071 		free(msix->msix_vectors, M_DEVBUF);
2072 		msix->msix_vectors = vec;
2073 		msix->msix_alloc = j + 1;
2074 	}
2075 	free(used, M_DEVBUF);
2076 
2077 	/* Map the IRQs onto the rids. */
2078 	for (i = 0; i < count; i++) {
2079 		if (vectors[i] == 0)
2080 			continue;
2081 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2082 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2083 		    irq, 1);
2084 	}
2085 
2086 	if (bootverbose) {
2087 		device_printf(child, "Remapped MSI-X IRQs as: ");
2088 		for (i = 0; i < count; i++) {
2089 			if (i != 0)
2090 				printf(", ");
2091 			if (vectors[i] == 0)
2092 				printf("---");
2093 			else
2094 				printf("%d",
2095 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2096 		}
2097 		printf("\n");
2098 	}
2099 
2100 	return (0);
2101 }
2102 
2103 static int
2104 pci_release_msix(device_t dev, device_t child)
2105 {
2106 	struct pci_devinfo *dinfo = device_get_ivars(child);
2107 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2108 	struct resource_list_entry *rle;
2109 	int i;
2110 
2111 	/* Do we have any messages to release? */
2112 	if (msix->msix_alloc == 0)
2113 		return (ENODEV);
2114 
2115 	/* Make sure none of the resources are allocated. */
2116 	for (i = 0; i < msix->msix_table_len; i++) {
2117 		if (msix->msix_table[i].mte_vector == 0)
2118 			continue;
2119 		if (msix->msix_table[i].mte_handlers > 0)
2120 			return (EBUSY);
2121 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2122 		KASSERT(rle != NULL, ("missing resource"));
2123 		if (rle->res != NULL)
2124 			return (EBUSY);
2125 	}
2126 
2127 	/* Update control register to disable MSI-X. */
2128 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2129 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2130 	    msix->msix_ctrl, 2);
2131 
2132 	/* Free the resource list entries. */
2133 	for (i = 0; i < msix->msix_table_len; i++) {
2134 		if (msix->msix_table[i].mte_vector == 0)
2135 			continue;
2136 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2137 	}
2138 	free(msix->msix_table, M_DEVBUF);
2139 	msix->msix_table_len = 0;
2140 
2141 	/* Release the IRQs. */
2142 	for (i = 0; i < msix->msix_alloc; i++)
2143 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2144 		    msix->msix_vectors[i].mv_irq);
2145 	free(msix->msix_vectors, M_DEVBUF);
2146 	msix->msix_alloc = 0;
2147 	return (0);
2148 }
2149 
2150 /*
2151  * Return the max supported MSI-X messages this device supports.
2152  * Basically, assuming the MD code can alloc messages, this function
2153  * should return the maximum value that pci_alloc_msix() can return.
2154  * Thus, it is subject to the tunables, etc.
2155  */
2156 int
2157 pci_msix_count_method(device_t dev, device_t child)
2158 {
2159 	struct pci_devinfo *dinfo = device_get_ivars(child);
2160 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2161 
2162 	if (pci_do_msix && msix->msix_location != 0)
2163 		return (msix->msix_msgnum);
2164 	return (0);
2165 }
2166 
2167 int
2168 pci_msix_pba_bar_method(device_t dev, device_t child)
2169 {
2170 	struct pci_devinfo *dinfo = device_get_ivars(child);
2171 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2172 
2173 	if (pci_do_msix && msix->msix_location != 0)
2174 		return (msix->msix_pba_bar);
2175 	return (-1);
2176 }
2177 
2178 int
2179 pci_msix_table_bar_method(device_t dev, device_t child)
2180 {
2181 	struct pci_devinfo *dinfo = device_get_ivars(child);
2182 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2183 
2184 	if (pci_do_msix && msix->msix_location != 0)
2185 		return (msix->msix_table_bar);
2186 	return (-1);
2187 }
2188 
2189 /*
2190  * HyperTransport MSI mapping control
2191  */
2192 void
2193 pci_ht_map_msi(device_t dev, uint64_t addr)
2194 {
2195 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2196 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2197 
2198 	if (!ht->ht_msimap)
2199 		return;
2200 
2201 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2202 	    ht->ht_msiaddr >> 20 == addr >> 20) {
2203 		/* Enable MSI -> HT mapping. */
2204 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2205 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2206 		    ht->ht_msictrl, 2);
2207 	}
2208 
2209 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2210 		/* Disable MSI -> HT mapping. */
2211 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2212 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2213 		    ht->ht_msictrl, 2);
2214 	}
2215 }
2216 
2217 int
2218 pci_get_relaxed_ordering_enabled(device_t dev)
2219 {
2220 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2221 	int cap;
2222 	uint16_t val;
2223 
2224 	cap = dinfo->cfg.pcie.pcie_location;
2225 	if (cap == 0)
2226 		return (0);
2227 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2228 	val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
2229 	return (val != 0);
2230 }
2231 
2232 int
2233 pci_get_max_payload(device_t dev)
2234 {
2235 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2236 	int cap;
2237 	uint16_t val;
2238 
2239 	cap = dinfo->cfg.pcie.pcie_location;
2240 	if (cap == 0)
2241 		return (0);
2242 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2243 	val &= PCIEM_CTL_MAX_PAYLOAD;
2244 	val >>= 5;
2245 	return (1 << (val + 7));
2246 }
2247 
2248 int
2249 pci_get_max_read_req(device_t dev)
2250 {
2251 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2252 	int cap;
2253 	uint16_t val;
2254 
2255 	cap = dinfo->cfg.pcie.pcie_location;
2256 	if (cap == 0)
2257 		return (0);
2258 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2259 	val &= PCIEM_CTL_MAX_READ_REQUEST;
2260 	val >>= 12;
2261 	return (1 << (val + 7));
2262 }
2263 
2264 int
2265 pci_set_max_read_req(device_t dev, int size)
2266 {
2267 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2268 	int cap;
2269 	uint16_t val;
2270 
2271 	cap = dinfo->cfg.pcie.pcie_location;
2272 	if (cap == 0)
2273 		return (0);
2274 	if (size < 128)
2275 		size = 128;
2276 	if (size > 4096)
2277 		size = 4096;
2278 	size = (1 << (fls(size) - 1));
2279 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2280 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2281 	val |= (fls(size) - 8) << 12;
2282 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2283 	return (size);
2284 }
2285 
2286 uint32_t
2287 pcie_read_config(device_t dev, int reg, int width)
2288 {
2289 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2290 	int cap;
2291 
2292 	cap = dinfo->cfg.pcie.pcie_location;
2293 	if (cap == 0) {
2294 		if (width == 2)
2295 			return (0xffff);
2296 		return (0xffffffff);
2297 	}
2298 
2299 	return (pci_read_config(dev, cap + reg, width));
2300 }
2301 
2302 void
2303 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2304 {
2305 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2306 	int cap;
2307 
2308 	cap = dinfo->cfg.pcie.pcie_location;
2309 	if (cap == 0)
2310 		return;
2311 	pci_write_config(dev, cap + reg, value, width);
2312 }
2313 
2314 /*
2315  * Adjusts a PCI-e capability register by clearing the bits in mask
2316  * and setting the bits in (value & mask).  Bits not set in mask are
2317  * not adjusted.
2318  *
2319  * Returns the old value on success or all ones on failure.
2320  */
2321 uint32_t
2322 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2323     int width)
2324 {
2325 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2326 	uint32_t old, new;
2327 	int cap;
2328 
2329 	cap = dinfo->cfg.pcie.pcie_location;
2330 	if (cap == 0) {
2331 		if (width == 2)
2332 			return (0xffff);
2333 		return (0xffffffff);
2334 	}
2335 
2336 	old = pci_read_config(dev, cap + reg, width);
2337 	new = old & ~mask;
2338 	new |= (value & mask);
2339 	pci_write_config(dev, cap + reg, new, width);
2340 	return (old);
2341 }
2342 
2343 /*
2344  * Support for MSI message signalled interrupts.
2345  */
2346 void
2347 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2348     uint16_t data)
2349 {
2350 	struct pci_devinfo *dinfo = device_get_ivars(child);
2351 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2352 
2353 	/* Write data and address values. */
2354 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2355 	    address & 0xffffffff, 4);
2356 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2357 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2358 		    address >> 32, 4);
2359 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2360 		    data, 2);
2361 	} else
2362 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2363 		    2);
2364 
2365 	/* Enable MSI in the control register. */
2366 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2367 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2368 	    msi->msi_ctrl, 2);
2369 
2370 	/* Enable MSI -> HT mapping. */
2371 	pci_ht_map_msi(child, address);
2372 }
2373 
2374 void
2375 pci_disable_msi_method(device_t dev, device_t child)
2376 {
2377 	struct pci_devinfo *dinfo = device_get_ivars(child);
2378 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2379 
2380 	/* Disable MSI -> HT mapping. */
2381 	pci_ht_map_msi(child, 0);
2382 
2383 	/* Disable MSI in the control register. */
2384 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2385 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2386 	    msi->msi_ctrl, 2);
2387 }
2388 
2389 /*
2390  * Restore MSI registers during resume.  If MSI is enabled then
2391  * restore the data and address registers in addition to the control
2392  * register.
2393  */
2394 static void
2395 pci_resume_msi(device_t dev)
2396 {
2397 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2398 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2399 	uint64_t address;
2400 	uint16_t data;
2401 
2402 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2403 		address = msi->msi_addr;
2404 		data = msi->msi_data;
2405 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2406 		    address & 0xffffffff, 4);
2407 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2408 			pci_write_config(dev, msi->msi_location +
2409 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2410 			pci_write_config(dev, msi->msi_location +
2411 			    PCIR_MSI_DATA_64BIT, data, 2);
2412 		} else
2413 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2414 			    data, 2);
2415 	}
2416 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2417 	    2);
2418 }
2419 
2420 static int
2421 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2422 {
2423 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2424 	pcicfgregs *cfg = &dinfo->cfg;
2425 	struct resource_list_entry *rle;
2426 	struct msix_table_entry *mte;
2427 	struct msix_vector *mv;
2428 	uint64_t addr;
2429 	uint32_t data;
2430 	int error, i, j;
2431 
2432 	/*
2433 	 * Handle MSI first.  We try to find this IRQ among our list
2434 	 * of MSI IRQs.  If we find it, we request updated address and
2435 	 * data registers and apply the results.
2436 	 */
2437 	if (cfg->msi.msi_alloc > 0) {
2438 		/* If we don't have any active handlers, nothing to do. */
2439 		if (cfg->msi.msi_handlers == 0)
2440 			return (0);
2441 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2442 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2443 			    i + 1);
2444 			if (rle->start == irq) {
2445 				error = PCIB_MAP_MSI(device_get_parent(bus),
2446 				    dev, irq, &addr, &data);
2447 				if (error)
2448 					return (error);
2449 				pci_disable_msi(dev);
2450 				dinfo->cfg.msi.msi_addr = addr;
2451 				dinfo->cfg.msi.msi_data = data;
2452 				pci_enable_msi(dev, addr, data);
2453 				return (0);
2454 			}
2455 		}
2456 		return (ENOENT);
2457 	}
2458 
2459 	/*
2460 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2461 	 * we request the updated mapping info.  If that works, we go
2462 	 * through all the slots that use this IRQ and update them.
2463 	 */
2464 	if (cfg->msix.msix_alloc > 0) {
2465 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2466 			mv = &cfg->msix.msix_vectors[i];
2467 			if (mv->mv_irq == irq) {
2468 				error = PCIB_MAP_MSI(device_get_parent(bus),
2469 				    dev, irq, &addr, &data);
2470 				if (error)
2471 					return (error);
2472 				mv->mv_address = addr;
2473 				mv->mv_data = data;
2474 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2475 					mte = &cfg->msix.msix_table[j];
2476 					if (mte->mte_vector != i + 1)
2477 						continue;
2478 					if (mte->mte_handlers == 0)
2479 						continue;
2480 					pci_mask_msix(dev, j);
2481 					pci_enable_msix(dev, j, addr, data);
2482 					pci_unmask_msix(dev, j);
2483 				}
2484 			}
2485 		}
2486 		return (ENOENT);
2487 	}
2488 
2489 	return (ENOENT);
2490 }
2491 
2492 /*
2493  * Returns true if the specified device is blacklisted because MSI
2494  * doesn't work.
2495  */
2496 int
2497 pci_msi_device_blacklisted(device_t dev)
2498 {
2499 
2500 	if (!pci_honor_msi_blacklist)
2501 		return (0);
2502 
2503 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2504 }
2505 
2506 /*
2507  * Determine if MSI is blacklisted globally on this system.  Currently,
2508  * we just check for blacklisted chipsets as represented by the
2509  * host-PCI bridge at device 0:0:0.  In the future, it may become
2510  * necessary to check other system attributes, such as the kenv values
2511  * that give the motherboard manufacturer and model number.
2512  */
2513 static int
2514 pci_msi_blacklisted(void)
2515 {
2516 	device_t dev;
2517 
2518 	if (!pci_honor_msi_blacklist)
2519 		return (0);
2520 
2521 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2522 	if (!(pcie_chipset || pcix_chipset)) {
2523 		if (vm_guest != VM_GUEST_NO) {
2524 			/*
2525 			 * Whitelist older chipsets in virtual
2526 			 * machines known to support MSI.
2527 			 */
2528 			dev = pci_find_bsf(0, 0, 0);
2529 			if (dev != NULL)
2530 				return (!pci_has_quirk(pci_get_devid(dev),
2531 					PCI_QUIRK_ENABLE_MSI_VM));
2532 		}
2533 		return (1);
2534 	}
2535 
2536 	dev = pci_find_bsf(0, 0, 0);
2537 	if (dev != NULL)
2538 		return (pci_msi_device_blacklisted(dev));
2539 	return (0);
2540 }
2541 
2542 /*
2543  * Returns true if the specified device is blacklisted because MSI-X
2544  * doesn't work.  Note that this assumes that if MSI doesn't work,
2545  * MSI-X doesn't either.
2546  */
2547 int
2548 pci_msix_device_blacklisted(device_t dev)
2549 {
2550 
2551 	if (!pci_honor_msi_blacklist)
2552 		return (0);
2553 
2554 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2555 		return (1);
2556 
2557 	return (pci_msi_device_blacklisted(dev));
2558 }
2559 
2560 /*
2561  * Determine if MSI-X is blacklisted globally on this system.  If MSI
2562  * is blacklisted, assume that MSI-X is as well.  Check for additional
2563  * chipsets where MSI works but MSI-X does not.
2564  */
2565 static int
2566 pci_msix_blacklisted(void)
2567 {
2568 	device_t dev;
2569 
2570 	if (!pci_honor_msi_blacklist)
2571 		return (0);
2572 
2573 	dev = pci_find_bsf(0, 0, 0);
2574 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2575 	    PCI_QUIRK_DISABLE_MSIX))
2576 		return (1);
2577 
2578 	return (pci_msi_blacklisted());
2579 }
2580 
2581 /*
2582  * Attempt to allocate *count MSI messages.  The actual number allocated is
2583  * returned in *count.  After this function returns, each message will be
2584  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2585  */
2586 int
2587 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2588 {
2589 	struct pci_devinfo *dinfo = device_get_ivars(child);
2590 	pcicfgregs *cfg = &dinfo->cfg;
2591 	struct resource_list_entry *rle;
2592 	int actual, error, i, irqs[32];
2593 	uint16_t ctrl;
2594 
2595 	/* Don't let count == 0 get us into trouble. */
2596 	if (*count == 0)
2597 		return (EINVAL);
2598 
2599 	/* If rid 0 is allocated, then fail. */
2600 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2601 	if (rle != NULL && rle->res != NULL)
2602 		return (ENXIO);
2603 
2604 	/* Already have allocated messages? */
2605 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2606 		return (ENXIO);
2607 
2608 	/* If MSI is blacklisted for this system, fail. */
2609 	if (pci_msi_blacklisted())
2610 		return (ENXIO);
2611 
2612 	/* MSI capability present? */
2613 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2614 		return (ENODEV);
2615 
2616 	if (bootverbose)
2617 		device_printf(child,
2618 		    "attempting to allocate %d MSI vectors (%d supported)\n",
2619 		    *count, cfg->msi.msi_msgnum);
2620 
2621 	/* Don't ask for more than the device supports. */
2622 	actual = min(*count, cfg->msi.msi_msgnum);
2623 
2624 	/* Don't ask for more than 32 messages. */
2625 	actual = min(actual, 32);
2626 
2627 	/* MSI requires power of 2 number of messages. */
2628 	if (!powerof2(actual))
2629 		return (EINVAL);
2630 
2631 	for (;;) {
2632 		/* Try to allocate N messages. */
2633 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2634 		    actual, irqs);
2635 		if (error == 0)
2636 			break;
2637 		if (actual == 1)
2638 			return (error);
2639 
2640 		/* Try N / 2. */
2641 		actual >>= 1;
2642 	}
2643 
2644 	/*
2645 	 * We now have N actual messages mapped onto SYS_RES_IRQ
2646 	 * resources in the irqs[] array, so add new resources
2647 	 * starting at rid 1.
2648 	 */
2649 	for (i = 0; i < actual; i++)
2650 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2651 		    irqs[i], irqs[i], 1);
2652 
2653 	if (bootverbose) {
2654 		if (actual == 1)
2655 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2656 		else {
2657 			int run;
2658 
2659 			/*
2660 			 * Be fancy and try to print contiguous runs
2661 			 * of IRQ values as ranges.  'run' is true if
2662 			 * we are in a range.
2663 			 */
2664 			device_printf(child, "using IRQs %d", irqs[0]);
2665 			run = 0;
2666 			for (i = 1; i < actual; i++) {
2667 				/* Still in a run? */
2668 				if (irqs[i] == irqs[i - 1] + 1) {
2669 					run = 1;
2670 					continue;
2671 				}
2672 
2673 				/* Finish previous range. */
2674 				if (run) {
2675 					printf("-%d", irqs[i - 1]);
2676 					run = 0;
2677 				}
2678 
2679 				/* Start new range. */
2680 				printf(",%d", irqs[i]);
2681 			}
2682 
2683 			/* Unfinished range? */
2684 			if (run)
2685 				printf("-%d", irqs[actual - 1]);
2686 			printf(" for MSI\n");
2687 		}
2688 	}
2689 
2690 	/* Update control register with actual count. */
2691 	ctrl = cfg->msi.msi_ctrl;
2692 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2693 	ctrl |= (ffs(actual) - 1) << 4;
2694 	cfg->msi.msi_ctrl = ctrl;
2695 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2696 
2697 	/* Update counts of alloc'd messages. */
2698 	cfg->msi.msi_alloc = actual;
2699 	cfg->msi.msi_handlers = 0;
2700 	*count = actual;
2701 	return (0);
2702 }
2703 
2704 /* Release the MSI messages associated with this device. */
2705 int
2706 pci_release_msi_method(device_t dev, device_t child)
2707 {
2708 	struct pci_devinfo *dinfo = device_get_ivars(child);
2709 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2710 	struct resource_list_entry *rle;
2711 	int error, i, irqs[32];
2712 
2713 	/* Try MSI-X first. */
2714 	error = pci_release_msix(dev, child);
2715 	if (error != ENODEV)
2716 		return (error);
2717 
2718 	/* Do we have any messages to release? */
2719 	if (msi->msi_alloc == 0)
2720 		return (ENODEV);
2721 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2722 
2723 	/* Make sure none of the resources are allocated. */
2724 	if (msi->msi_handlers > 0)
2725 		return (EBUSY);
2726 	for (i = 0; i < msi->msi_alloc; i++) {
2727 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2728 		KASSERT(rle != NULL, ("missing MSI resource"));
2729 		if (rle->res != NULL)
2730 			return (EBUSY);
2731 		irqs[i] = rle->start;
2732 	}
2733 
2734 	/* Update control register with 0 count. */
2735 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2736 	    ("%s: MSI still enabled", __func__));
2737 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2738 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2739 	    msi->msi_ctrl, 2);
2740 
2741 	/* Release the messages. */
2742 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2743 	for (i = 0; i < msi->msi_alloc; i++)
2744 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2745 
2746 	/* Update alloc count. */
2747 	msi->msi_alloc = 0;
2748 	msi->msi_addr = 0;
2749 	msi->msi_data = 0;
2750 	return (0);
2751 }
2752 
2753 /*
2754  * Return the max supported MSI messages this device supports.
2755  * Basically, assuming the MD code can alloc messages, this function
2756  * should return the maximum value that pci_alloc_msi() can return.
2757  * Thus, it is subject to the tunables, etc.
2758  */
2759 int
2760 pci_msi_count_method(device_t dev, device_t child)
2761 {
2762 	struct pci_devinfo *dinfo = device_get_ivars(child);
2763 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2764 
2765 	if (pci_do_msi && msi->msi_location != 0)
2766 		return (msi->msi_msgnum);
2767 	return (0);
2768 }
2769 
2770 /* free pcicfgregs structure and all depending data structures */
2771 
2772 int
2773 pci_freecfg(struct pci_devinfo *dinfo)
2774 {
2775 	struct devlist *devlist_head;
2776 	struct pci_map *pm, *next;
2777 	int i;
2778 
2779 	devlist_head = &pci_devq;
2780 
2781 	if (dinfo->cfg.vpd.vpd_reg) {
2782 		free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
2783 		for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
2784 			free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
2785 		free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
2786 		for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
2787 			free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
2788 		free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
2789 	}
2790 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2791 		free(pm, M_DEVBUF);
2792 	}
2793 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2794 	free(dinfo, M_DEVBUF);
2795 
2796 	/* increment the generation count */
2797 	pci_generation++;
2798 
2799 	/* we're losing one device */
2800 	pci_numdevs--;
2801 	return (0);
2802 }
2803 
2804 /*
2805  * PCI power manangement
2806  */
2807 int
2808 pci_set_powerstate_method(device_t dev, device_t child, int state)
2809 {
2810 	struct pci_devinfo *dinfo = device_get_ivars(child);
2811 	pcicfgregs *cfg = &dinfo->cfg;
2812 	uint16_t status;
2813 	int oldstate, highest, delay;
2814 
2815 	if (cfg->pp.pp_cap == 0)
2816 		return (EOPNOTSUPP);
2817 
2818 	/*
2819 	 * Optimize a no state change request away.  While it would be OK to
2820 	 * write to the hardware in theory, some devices have shown odd
2821 	 * behavior when going from D3 -> D3.
2822 	 */
2823 	oldstate = pci_get_powerstate(child);
2824 	if (oldstate == state)
2825 		return (0);
2826 
2827 	/*
2828 	 * The PCI power management specification states that after a state
2829 	 * transition between PCI power states, system software must
2830 	 * guarantee a minimal delay before the function accesses the device.
2831 	 * Compute the worst case delay that we need to guarantee before we
2832 	 * access the device.  Many devices will be responsive much more
2833 	 * quickly than this delay, but there are some that don't respond
2834 	 * instantly to state changes.  Transitions to/from D3 state require
2835 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2836 	 * is done below with DELAY rather than a sleeper function because
2837 	 * this function can be called from contexts where we cannot sleep.
2838 	 */
2839 	highest = (oldstate > state) ? oldstate : state;
2840 	if (highest == PCI_POWERSTATE_D3)
2841 	    delay = 10000;
2842 	else if (highest == PCI_POWERSTATE_D2)
2843 	    delay = 200;
2844 	else
2845 	    delay = 0;
2846 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2847 	    & ~PCIM_PSTAT_DMASK;
2848 	switch (state) {
2849 	case PCI_POWERSTATE_D0:
2850 		status |= PCIM_PSTAT_D0;
2851 		break;
2852 	case PCI_POWERSTATE_D1:
2853 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2854 			return (EOPNOTSUPP);
2855 		status |= PCIM_PSTAT_D1;
2856 		break;
2857 	case PCI_POWERSTATE_D2:
2858 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2859 			return (EOPNOTSUPP);
2860 		status |= PCIM_PSTAT_D2;
2861 		break;
2862 	case PCI_POWERSTATE_D3:
2863 		status |= PCIM_PSTAT_D3;
2864 		break;
2865 	default:
2866 		return (EINVAL);
2867 	}
2868 
2869 	if (bootverbose)
2870 		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2871 		    state);
2872 
2873 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2874 	if (delay)
2875 		DELAY(delay);
2876 	return (0);
2877 }
2878 
2879 int
2880 pci_get_powerstate_method(device_t dev, device_t child)
2881 {
2882 	struct pci_devinfo *dinfo = device_get_ivars(child);
2883 	pcicfgregs *cfg = &dinfo->cfg;
2884 	uint16_t status;
2885 	int result;
2886 
2887 	if (cfg->pp.pp_cap != 0) {
2888 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2889 		switch (status & PCIM_PSTAT_DMASK) {
2890 		case PCIM_PSTAT_D0:
2891 			result = PCI_POWERSTATE_D0;
2892 			break;
2893 		case PCIM_PSTAT_D1:
2894 			result = PCI_POWERSTATE_D1;
2895 			break;
2896 		case PCIM_PSTAT_D2:
2897 			result = PCI_POWERSTATE_D2;
2898 			break;
2899 		case PCIM_PSTAT_D3:
2900 			result = PCI_POWERSTATE_D3;
2901 			break;
2902 		default:
2903 			result = PCI_POWERSTATE_UNKNOWN;
2904 			break;
2905 		}
2906 	} else {
2907 		/* No support, device is always at D0 */
2908 		result = PCI_POWERSTATE_D0;
2909 	}
2910 	return (result);
2911 }
2912 
2913 /*
2914  * Some convenience functions for PCI device drivers.
2915  */
2916 
2917 static __inline void
2918 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2919 {
2920 	uint16_t	command;
2921 
2922 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2923 	command |= bit;
2924 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2925 }
2926 
2927 static __inline void
2928 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2929 {
2930 	uint16_t	command;
2931 
2932 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2933 	command &= ~bit;
2934 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2935 }
2936 
2937 int
2938 pci_enable_busmaster_method(device_t dev, device_t child)
2939 {
2940 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2941 	return (0);
2942 }
2943 
2944 int
2945 pci_disable_busmaster_method(device_t dev, device_t child)
2946 {
2947 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2948 	return (0);
2949 }
2950 
2951 int
2952 pci_enable_io_method(device_t dev, device_t child, int space)
2953 {
2954 	uint16_t bit;
2955 
2956 	switch(space) {
2957 	case SYS_RES_IOPORT:
2958 		bit = PCIM_CMD_PORTEN;
2959 		break;
2960 	case SYS_RES_MEMORY:
2961 		bit = PCIM_CMD_MEMEN;
2962 		break;
2963 	default:
2964 		return (EINVAL);
2965 	}
2966 	pci_set_command_bit(dev, child, bit);
2967 	return (0);
2968 }
2969 
2970 int
2971 pci_disable_io_method(device_t dev, device_t child, int space)
2972 {
2973 	uint16_t bit;
2974 
2975 	switch(space) {
2976 	case SYS_RES_IOPORT:
2977 		bit = PCIM_CMD_PORTEN;
2978 		break;
2979 	case SYS_RES_MEMORY:
2980 		bit = PCIM_CMD_MEMEN;
2981 		break;
2982 	default:
2983 		return (EINVAL);
2984 	}
2985 	pci_clear_command_bit(dev, child, bit);
2986 	return (0);
2987 }
2988 
2989 /*
2990  * New style pci driver.  Parent device is either a pci-host-bridge or a
2991  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
2992  */
2993 
2994 void
2995 pci_print_verbose(struct pci_devinfo *dinfo)
2996 {
2997 
2998 	if (bootverbose) {
2999 		pcicfgregs *cfg = &dinfo->cfg;
3000 
3001 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
3002 		    cfg->vendor, cfg->device, cfg->revid);
3003 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
3004 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
3005 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
3006 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
3007 		    cfg->mfdev);
3008 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
3009 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
3010 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
3011 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
3012 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
3013 		if (cfg->intpin > 0)
3014 			printf("\tintpin=%c, irq=%d\n",
3015 			    cfg->intpin +'a' -1, cfg->intline);
3016 		if (cfg->pp.pp_cap) {
3017 			uint16_t status;
3018 
3019 			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
3020 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
3021 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
3022 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
3023 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
3024 			    status & PCIM_PSTAT_DMASK);
3025 		}
3026 		if (cfg->msi.msi_location) {
3027 			int ctrl;
3028 
3029 			ctrl = cfg->msi.msi_ctrl;
3030 			printf("\tMSI supports %d message%s%s%s\n",
3031 			    cfg->msi.msi_msgnum,
3032 			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
3033 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
3034 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
3035 		}
3036 		if (cfg->msix.msix_location) {
3037 			printf("\tMSI-X supports %d message%s ",
3038 			    cfg->msix.msix_msgnum,
3039 			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
3040 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
3041 				printf("in map 0x%x\n",
3042 				    cfg->msix.msix_table_bar);
3043 			else
3044 				printf("in maps 0x%x and 0x%x\n",
3045 				    cfg->msix.msix_table_bar,
3046 				    cfg->msix.msix_pba_bar);
3047 		}
3048 	}
3049 }
3050 
3051 static int
3052 pci_porten(device_t dev)
3053 {
3054 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3055 }
3056 
3057 static int
3058 pci_memen(device_t dev)
3059 {
3060 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3061 }
3062 
3063 void
3064 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3065     int *bar64)
3066 {
3067 	struct pci_devinfo *dinfo;
3068 	pci_addr_t map, testval;
3069 	int ln2range;
3070 	uint16_t cmd;
3071 
3072 	/*
3073 	 * The device ROM BAR is special.  It is always a 32-bit
3074 	 * memory BAR.  Bit 0 is special and should not be set when
3075 	 * sizing the BAR.
3076 	 */
3077 	dinfo = device_get_ivars(dev);
3078 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3079 		map = pci_read_config(dev, reg, 4);
3080 		pci_write_config(dev, reg, 0xfffffffe, 4);
3081 		testval = pci_read_config(dev, reg, 4);
3082 		pci_write_config(dev, reg, map, 4);
3083 		*mapp = map;
3084 		*testvalp = testval;
3085 		if (bar64 != NULL)
3086 			*bar64 = 0;
3087 		return;
3088 	}
3089 
3090 	map = pci_read_config(dev, reg, 4);
3091 	ln2range = pci_maprange(map);
3092 	if (ln2range == 64)
3093 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3094 
3095 	/*
3096 	 * Disable decoding via the command register before
3097 	 * determining the BAR's length since we will be placing it in
3098 	 * a weird state.
3099 	 */
3100 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3101 	pci_write_config(dev, PCIR_COMMAND,
3102 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3103 
3104 	/*
3105 	 * Determine the BAR's length by writing all 1's.  The bottom
3106 	 * log_2(size) bits of the BAR will stick as 0 when we read
3107 	 * the value back.
3108 	 *
3109 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3110 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3111 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3112 	 *
3113 	 * Writes to both registers must be performed before attempting to
3114 	 * read back the size value.
3115 	 */
3116 	testval = 0;
3117 	pci_write_config(dev, reg, 0xffffffff, 4);
3118 	if (ln2range == 64) {
3119 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3120 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3121 	}
3122 	testval |= pci_read_config(dev, reg, 4);
3123 
3124 	/*
3125 	 * Restore the original value of the BAR.  We may have reprogrammed
3126 	 * the BAR of the low-level console device and when booting verbose,
3127 	 * we need the console device addressable.
3128 	 */
3129 	pci_write_config(dev, reg, map, 4);
3130 	if (ln2range == 64)
3131 		pci_write_config(dev, reg + 4, map >> 32, 4);
3132 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3133 
3134 	*mapp = map;
3135 	*testvalp = testval;
3136 	if (bar64 != NULL)
3137 		*bar64 = (ln2range == 64);
3138 }
3139 
3140 static void
3141 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3142 {
3143 	struct pci_devinfo *dinfo;
3144 	int ln2range;
3145 
3146 	/* The device ROM BAR is always a 32-bit memory BAR. */
3147 	dinfo = device_get_ivars(dev);
3148 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3149 		ln2range = 32;
3150 	else
3151 		ln2range = pci_maprange(pm->pm_value);
3152 	pci_write_config(dev, pm->pm_reg, base, 4);
3153 	if (ln2range == 64)
3154 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3155 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3156 	if (ln2range == 64)
3157 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3158 		    pm->pm_reg + 4, 4) << 32;
3159 }
3160 
3161 struct pci_map *
3162 pci_find_bar(device_t dev, int reg)
3163 {
3164 	struct pci_devinfo *dinfo;
3165 	struct pci_map *pm;
3166 
3167 	dinfo = device_get_ivars(dev);
3168 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3169 		if (pm->pm_reg == reg)
3170 			return (pm);
3171 	}
3172 	return (NULL);
3173 }
3174 
3175 int
3176 pci_bar_enabled(device_t dev, struct pci_map *pm)
3177 {
3178 	struct pci_devinfo *dinfo;
3179 	uint16_t cmd;
3180 
3181 	dinfo = device_get_ivars(dev);
3182 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3183 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3184 		return (0);
3185 #ifdef PCI_IOV
3186 	if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
3187 		struct pcicfg_iov *iov;
3188 
3189 		iov = dinfo->cfg.iov;
3190 		cmd = pci_read_config(iov->iov_pf,
3191 		    iov->iov_pos + PCIR_SRIOV_CTL, 2);
3192 		return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
3193 	}
3194 #endif
3195 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3196 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3197 		return ((cmd & PCIM_CMD_MEMEN) != 0);
3198 	else
3199 		return ((cmd & PCIM_CMD_PORTEN) != 0);
3200 }
3201 
3202 struct pci_map *
3203 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3204 {
3205 	struct pci_devinfo *dinfo;
3206 	struct pci_map *pm, *prev;
3207 
3208 	dinfo = device_get_ivars(dev);
3209 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3210 	pm->pm_reg = reg;
3211 	pm->pm_value = value;
3212 	pm->pm_size = size;
3213 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3214 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3215 		    reg));
3216 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3217 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3218 			break;
3219 	}
3220 	if (prev != NULL)
3221 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3222 	else
3223 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3224 	return (pm);
3225 }
3226 
3227 static void
3228 pci_restore_bars(device_t dev)
3229 {
3230 	struct pci_devinfo *dinfo;
3231 	struct pci_map *pm;
3232 	int ln2range;
3233 
3234 	dinfo = device_get_ivars(dev);
3235 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3236 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3237 			ln2range = 32;
3238 		else
3239 			ln2range = pci_maprange(pm->pm_value);
3240 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3241 		if (ln2range == 64)
3242 			pci_write_config(dev, pm->pm_reg + 4,
3243 			    pm->pm_value >> 32, 4);
3244 	}
3245 }
3246 
3247 /*
3248  * Add a resource based on a pci map register. Return 1 if the map
3249  * register is a 32bit map register or 2 if it is a 64bit register.
3250  */
3251 static int
3252 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3253     int force, int prefetch)
3254 {
3255 	struct pci_map *pm;
3256 	pci_addr_t base, map, testval;
3257 	pci_addr_t start, end, count;
3258 	int barlen, basezero, flags, maprange, mapsize, type;
3259 	uint16_t cmd;
3260 	struct resource *res;
3261 
3262 	/*
3263 	 * The BAR may already exist if the device is a CardBus card
3264 	 * whose CIS is stored in this BAR.
3265 	 */
3266 	pm = pci_find_bar(dev, reg);
3267 	if (pm != NULL) {
3268 		maprange = pci_maprange(pm->pm_value);
3269 		barlen = maprange == 64 ? 2 : 1;
3270 		return (barlen);
3271 	}
3272 
3273 	pci_read_bar(dev, reg, &map, &testval, NULL);
3274 	if (PCI_BAR_MEM(map)) {
3275 		type = SYS_RES_MEMORY;
3276 		if (map & PCIM_BAR_MEM_PREFETCH)
3277 			prefetch = 1;
3278 	} else
3279 		type = SYS_RES_IOPORT;
3280 	mapsize = pci_mapsize(testval);
3281 	base = pci_mapbase(map);
3282 #ifdef __PCI_BAR_ZERO_VALID
3283 	basezero = 0;
3284 #else
3285 	basezero = base == 0;
3286 #endif
3287 	maprange = pci_maprange(map);
3288 	barlen = maprange == 64 ? 2 : 1;
3289 
3290 	/*
3291 	 * For I/O registers, if bottom bit is set, and the next bit up
3292 	 * isn't clear, we know we have a BAR that doesn't conform to the
3293 	 * spec, so ignore it.  Also, sanity check the size of the data
3294 	 * areas to the type of memory involved.  Memory must be at least
3295 	 * 16 bytes in size, while I/O ranges must be at least 4.
3296 	 */
3297 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3298 		return (barlen);
3299 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3300 	    (type == SYS_RES_IOPORT && mapsize < 2))
3301 		return (barlen);
3302 
3303 	/* Save a record of this BAR. */
3304 	pm = pci_add_bar(dev, reg, map, mapsize);
3305 	if (bootverbose) {
3306 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3307 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3308 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3309 			printf(", port disabled\n");
3310 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3311 			printf(", memory disabled\n");
3312 		else
3313 			printf(", enabled\n");
3314 	}
3315 
3316 	/*
3317 	 * If base is 0, then we have problems if this architecture does
3318 	 * not allow that.  It is best to ignore such entries for the
3319 	 * moment.  These will be allocated later if the driver specifically
3320 	 * requests them.  However, some removable buses look better when
3321 	 * all resources are allocated, so allow '0' to be overriden.
3322 	 *
3323 	 * Similarly treat maps whose values is the same as the test value
3324 	 * read back.  These maps have had all f's written to them by the
3325 	 * BIOS in an attempt to disable the resources.
3326 	 */
3327 	if (!force && (basezero || map == testval))
3328 		return (barlen);
3329 	if ((u_long)base != base) {
3330 		device_printf(bus,
3331 		    "pci%d:%d:%d:%d bar %#x too many address bits",
3332 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3333 		    pci_get_function(dev), reg);
3334 		return (barlen);
3335 	}
3336 
3337 	/*
3338 	 * This code theoretically does the right thing, but has
3339 	 * undesirable side effects in some cases where peripherals
3340 	 * respond oddly to having these bits enabled.  Let the user
3341 	 * be able to turn them off (since pci_enable_io_modes is 1 by
3342 	 * default).
3343 	 */
3344 	if (pci_enable_io_modes) {
3345 		/* Turn on resources that have been left off by a lazy BIOS */
3346 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3347 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3348 			cmd |= PCIM_CMD_PORTEN;
3349 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3350 		}
3351 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3352 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3353 			cmd |= PCIM_CMD_MEMEN;
3354 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3355 		}
3356 	} else {
3357 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3358 			return (barlen);
3359 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3360 			return (barlen);
3361 	}
3362 
3363 	count = (pci_addr_t)1 << mapsize;
3364 	flags = RF_ALIGNMENT_LOG2(mapsize);
3365 	if (prefetch)
3366 		flags |= RF_PREFETCHABLE;
3367 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3368 		start = 0;	/* Let the parent decide. */
3369 		end = ~0;
3370 	} else {
3371 		start = base;
3372 		end = base + count - 1;
3373 	}
3374 	resource_list_add(rl, type, reg, start, end, count);
3375 
3376 	/*
3377 	 * Try to allocate the resource for this BAR from our parent
3378 	 * so that this resource range is already reserved.  The
3379 	 * driver for this device will later inherit this resource in
3380 	 * pci_alloc_resource().
3381 	 */
3382 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3383 	    flags);
3384 	if ((pci_do_realloc_bars
3385 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3386 	    && res == NULL && (start != 0 || end != ~0)) {
3387 		/*
3388 		 * If the allocation fails, try to allocate a resource for
3389 		 * this BAR using any available range.  The firmware felt
3390 		 * it was important enough to assign a resource, so don't
3391 		 * disable decoding if we can help it.
3392 		 */
3393 		resource_list_delete(rl, type, reg);
3394 		resource_list_add(rl, type, reg, 0, ~0, count);
3395 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3396 		    count, flags);
3397 	}
3398 	if (res == NULL) {
3399 		/*
3400 		 * If the allocation fails, delete the resource list entry
3401 		 * and disable decoding for this device.
3402 		 *
3403 		 * If the driver requests this resource in the future,
3404 		 * pci_reserve_map() will try to allocate a fresh
3405 		 * resource range.
3406 		 */
3407 		resource_list_delete(rl, type, reg);
3408 		pci_disable_io(dev, type);
3409 		if (bootverbose)
3410 			device_printf(bus,
3411 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3412 			    pci_get_domain(dev), pci_get_bus(dev),
3413 			    pci_get_slot(dev), pci_get_function(dev), reg);
3414 	} else {
3415 		start = rman_get_start(res);
3416 		pci_write_bar(dev, pm, start);
3417 	}
3418 	return (barlen);
3419 }
3420 
3421 /*
3422  * For ATA devices we need to decide early what addressing mode to use.
3423  * Legacy demands that the primary and secondary ATA ports sits on the
3424  * same addresses that old ISA hardware did. This dictates that we use
3425  * those addresses and ignore the BAR's if we cannot set PCI native
3426  * addressing mode.
3427  */
3428 static void
3429 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3430     uint32_t prefetchmask)
3431 {
3432 	int rid, type, progif;
3433 #if 0
3434 	/* if this device supports PCI native addressing use it */
3435 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3436 	if ((progif & 0x8a) == 0x8a) {
3437 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3438 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3439 			printf("Trying ATA native PCI addressing mode\n");
3440 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3441 		}
3442 	}
3443 #endif
3444 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3445 	type = SYS_RES_IOPORT;
3446 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3447 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3448 		    prefetchmask & (1 << 0));
3449 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3450 		    prefetchmask & (1 << 1));
3451 	} else {
3452 		rid = PCIR_BAR(0);
3453 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3454 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3455 		    0x1f7, 8, 0);
3456 		rid = PCIR_BAR(1);
3457 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3458 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3459 		    0x3f6, 1, 0);
3460 	}
3461 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3462 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3463 		    prefetchmask & (1 << 2));
3464 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3465 		    prefetchmask & (1 << 3));
3466 	} else {
3467 		rid = PCIR_BAR(2);
3468 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3469 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3470 		    0x177, 8, 0);
3471 		rid = PCIR_BAR(3);
3472 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3473 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3474 		    0x376, 1, 0);
3475 	}
3476 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3477 	    prefetchmask & (1 << 4));
3478 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3479 	    prefetchmask & (1 << 5));
3480 }
3481 
3482 static void
3483 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3484 {
3485 	struct pci_devinfo *dinfo = device_get_ivars(dev);
3486 	pcicfgregs *cfg = &dinfo->cfg;
3487 	char tunable_name[64];
3488 	int irq;
3489 
3490 	/* Has to have an intpin to have an interrupt. */
3491 	if (cfg->intpin == 0)
3492 		return;
3493 
3494 	/* Let the user override the IRQ with a tunable. */
3495 	irq = PCI_INVALID_IRQ;
3496 	snprintf(tunable_name, sizeof(tunable_name),
3497 	    "hw.pci%d.%d.%d.INT%c.irq",
3498 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3499 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3500 		irq = PCI_INVALID_IRQ;
3501 
3502 	/*
3503 	 * If we didn't get an IRQ via the tunable, then we either use the
3504 	 * IRQ value in the intline register or we ask the bus to route an
3505 	 * interrupt for us.  If force_route is true, then we only use the
3506 	 * value in the intline register if the bus was unable to assign an
3507 	 * IRQ.
3508 	 */
3509 	if (!PCI_INTERRUPT_VALID(irq)) {
3510 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3511 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3512 		if (!PCI_INTERRUPT_VALID(irq))
3513 			irq = cfg->intline;
3514 	}
3515 
3516 	/* If after all that we don't have an IRQ, just bail. */
3517 	if (!PCI_INTERRUPT_VALID(irq))
3518 		return;
3519 
3520 	/* Update the config register if it changed. */
3521 	if (irq != cfg->intline) {
3522 		cfg->intline = irq;
3523 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3524 	}
3525 
3526 	/* Add this IRQ as rid 0 interrupt resource. */
3527 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3528 }
3529 
3530 /* Perform early OHCI takeover from SMM. */
3531 static void
3532 ohci_early_takeover(device_t self)
3533 {
3534 	struct resource *res;
3535 	uint32_t ctl;
3536 	int rid;
3537 	int i;
3538 
3539 	rid = PCIR_BAR(0);
3540 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3541 	if (res == NULL)
3542 		return;
3543 
3544 	ctl = bus_read_4(res, OHCI_CONTROL);
3545 	if (ctl & OHCI_IR) {
3546 		if (bootverbose)
3547 			printf("ohci early: "
3548 			    "SMM active, request owner change\n");
3549 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3550 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3551 			DELAY(1000);
3552 			ctl = bus_read_4(res, OHCI_CONTROL);
3553 		}
3554 		if (ctl & OHCI_IR) {
3555 			if (bootverbose)
3556 				printf("ohci early: "
3557 				    "SMM does not respond, resetting\n");
3558 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3559 		}
3560 		/* Disable interrupts */
3561 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3562 	}
3563 
3564 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3565 }
3566 
3567 /* Perform early UHCI takeover from SMM. */
3568 static void
3569 uhci_early_takeover(device_t self)
3570 {
3571 	struct resource *res;
3572 	int rid;
3573 
3574 	/*
3575 	 * Set the PIRQD enable bit and switch off all the others. We don't
3576 	 * want legacy support to interfere with us XXX Does this also mean
3577 	 * that the BIOS won't touch the keyboard anymore if it is connected
3578 	 * to the ports of the root hub?
3579 	 */
3580 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3581 
3582 	/* Disable interrupts */
3583 	rid = PCI_UHCI_BASE_REG;
3584 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3585 	if (res != NULL) {
3586 		bus_write_2(res, UHCI_INTR, 0);
3587 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3588 	}
3589 }
3590 
3591 /* Perform early EHCI takeover from SMM. */
3592 static void
3593 ehci_early_takeover(device_t self)
3594 {
3595 	struct resource *res;
3596 	uint32_t cparams;
3597 	uint32_t eec;
3598 	uint8_t eecp;
3599 	uint8_t bios_sem;
3600 	uint8_t offs;
3601 	int rid;
3602 	int i;
3603 
3604 	rid = PCIR_BAR(0);
3605 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3606 	if (res == NULL)
3607 		return;
3608 
3609 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3610 
3611 	/* Synchronise with the BIOS if it owns the controller. */
3612 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3613 	    eecp = EHCI_EECP_NEXT(eec)) {
3614 		eec = pci_read_config(self, eecp, 4);
3615 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3616 			continue;
3617 		}
3618 		bios_sem = pci_read_config(self, eecp +
3619 		    EHCI_LEGSUP_BIOS_SEM, 1);
3620 		if (bios_sem == 0) {
3621 			continue;
3622 		}
3623 		if (bootverbose)
3624 			printf("ehci early: "
3625 			    "SMM active, request owner change\n");
3626 
3627 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3628 
3629 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3630 			DELAY(1000);
3631 			bios_sem = pci_read_config(self, eecp +
3632 			    EHCI_LEGSUP_BIOS_SEM, 1);
3633 		}
3634 
3635 		if (bios_sem != 0) {
3636 			if (bootverbose)
3637 				printf("ehci early: "
3638 				    "SMM does not respond\n");
3639 		}
3640 		/* Disable interrupts */
3641 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3642 		bus_write_4(res, offs + EHCI_USBINTR, 0);
3643 	}
3644 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3645 }
3646 
3647 /* Perform early XHCI takeover from SMM. */
3648 static void
3649 xhci_early_takeover(device_t self)
3650 {
3651 	struct resource *res;
3652 	uint32_t cparams;
3653 	uint32_t eec;
3654 	uint8_t eecp;
3655 	uint8_t bios_sem;
3656 	uint8_t offs;
3657 	int rid;
3658 	int i;
3659 
3660 	rid = PCIR_BAR(0);
3661 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3662 	if (res == NULL)
3663 		return;
3664 
3665 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3666 
3667 	eec = -1;
3668 
3669 	/* Synchronise with the BIOS if it owns the controller. */
3670 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3671 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3672 		eec = bus_read_4(res, eecp);
3673 
3674 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3675 			continue;
3676 
3677 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3678 		if (bios_sem == 0)
3679 			continue;
3680 
3681 		if (bootverbose)
3682 			printf("xhci early: "
3683 			    "SMM active, request owner change\n");
3684 
3685 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3686 
3687 		/* wait a maximum of 5 second */
3688 
3689 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3690 			DELAY(1000);
3691 			bios_sem = bus_read_1(res, eecp +
3692 			    XHCI_XECP_BIOS_SEM);
3693 		}
3694 
3695 		if (bios_sem != 0) {
3696 			if (bootverbose)
3697 				printf("xhci early: "
3698 				    "SMM does not respond\n");
3699 		}
3700 
3701 		/* Disable interrupts */
3702 		offs = bus_read_1(res, XHCI_CAPLENGTH);
3703 		bus_write_4(res, offs + XHCI_USBCMD, 0);
3704 		bus_read_4(res, offs + XHCI_USBSTS);
3705 	}
3706 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3707 }
3708 
3709 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
3710 static void
3711 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3712     struct resource_list *rl)
3713 {
3714 	struct resource *res;
3715 	char *cp;
3716 	rman_res_t start, end, count;
3717 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3718 
3719 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3720 	case PCIM_HDRTYPE_BRIDGE:
3721 		sec_reg = PCIR_SECBUS_1;
3722 		sub_reg = PCIR_SUBBUS_1;
3723 		break;
3724 	case PCIM_HDRTYPE_CARDBUS:
3725 		sec_reg = PCIR_SECBUS_2;
3726 		sub_reg = PCIR_SUBBUS_2;
3727 		break;
3728 	default:
3729 		return;
3730 	}
3731 
3732 	/*
3733 	 * If the existing bus range is valid, attempt to reserve it
3734 	 * from our parent.  If this fails for any reason, clear the
3735 	 * secbus and subbus registers.
3736 	 *
3737 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3738 	 * This would at least preserve the existing sec_bus if it is
3739 	 * valid.
3740 	 */
3741 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3742 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3743 
3744 	/* Quirk handling. */
3745 	switch (pci_get_devid(dev)) {
3746 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3747 		sup_bus = pci_read_config(dev, 0x41, 1);
3748 		if (sup_bus != 0xff) {
3749 			sec_bus = sup_bus + 1;
3750 			sub_bus = sup_bus + 1;
3751 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3752 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3753 		}
3754 		break;
3755 
3756 	case 0x00dd10de:
3757 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3758 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3759 			break;
3760 		if (strncmp(cp, "Compal", 6) != 0) {
3761 			freeenv(cp);
3762 			break;
3763 		}
3764 		freeenv(cp);
3765 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3766 			break;
3767 		if (strncmp(cp, "08A0", 4) != 0) {
3768 			freeenv(cp);
3769 			break;
3770 		}
3771 		freeenv(cp);
3772 		if (sub_bus < 0xa) {
3773 			sub_bus = 0xa;
3774 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3775 		}
3776 		break;
3777 	}
3778 
3779 	if (bootverbose)
3780 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3781 	if (sec_bus > 0 && sub_bus >= sec_bus) {
3782 		start = sec_bus;
3783 		end = sub_bus;
3784 		count = end - start + 1;
3785 
3786 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3787 
3788 		/*
3789 		 * If requested, clear secondary bus registers in
3790 		 * bridge devices to force a complete renumbering
3791 		 * rather than reserving the existing range.  However,
3792 		 * preserve the existing size.
3793 		 */
3794 		if (pci_clear_buses)
3795 			goto clear;
3796 
3797 		rid = 0;
3798 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3799 		    start, end, count, 0);
3800 		if (res != NULL)
3801 			return;
3802 
3803 		if (bootverbose)
3804 			device_printf(bus,
3805 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3806 			    pci_get_domain(dev), pci_get_bus(dev),
3807 			    pci_get_slot(dev), pci_get_function(dev));
3808 	}
3809 
3810 clear:
3811 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3812 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3813 }
3814 
3815 static struct resource *
3816 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3817     rman_res_t end, rman_res_t count, u_int flags)
3818 {
3819 	struct pci_devinfo *dinfo;
3820 	pcicfgregs *cfg;
3821 	struct resource_list *rl;
3822 	struct resource *res;
3823 	int sec_reg, sub_reg;
3824 
3825 	dinfo = device_get_ivars(child);
3826 	cfg = &dinfo->cfg;
3827 	rl = &dinfo->resources;
3828 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3829 	case PCIM_HDRTYPE_BRIDGE:
3830 		sec_reg = PCIR_SECBUS_1;
3831 		sub_reg = PCIR_SUBBUS_1;
3832 		break;
3833 	case PCIM_HDRTYPE_CARDBUS:
3834 		sec_reg = PCIR_SECBUS_2;
3835 		sub_reg = PCIR_SUBBUS_2;
3836 		break;
3837 	default:
3838 		return (NULL);
3839 	}
3840 
3841 	if (*rid != 0)
3842 		return (NULL);
3843 
3844 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3845 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3846 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3847 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3848 		    start, end, count, flags & ~RF_ACTIVE);
3849 		if (res == NULL) {
3850 			resource_list_delete(rl, PCI_RES_BUS, *rid);
3851 			device_printf(child, "allocating %ju bus%s failed\n",
3852 			    count, count == 1 ? "" : "es");
3853 			return (NULL);
3854 		}
3855 		if (bootverbose)
3856 			device_printf(child,
3857 			    "Lazy allocation of %ju bus%s at %ju\n", count,
3858 			    count == 1 ? "" : "es", rman_get_start(res));
3859 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3860 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3861 	}
3862 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3863 	    end, count, flags));
3864 }
3865 #endif
3866 
3867 static int
3868 pci_ea_bei_to_rid(device_t dev, int bei)
3869 {
3870 #ifdef PCI_IOV
3871 	struct pci_devinfo *dinfo;
3872 	int iov_pos;
3873 	struct pcicfg_iov *iov;
3874 
3875 	dinfo = device_get_ivars(dev);
3876 	iov = dinfo->cfg.iov;
3877 	if (iov != NULL)
3878 		iov_pos = iov->iov_pos;
3879 	else
3880 		iov_pos = 0;
3881 #endif
3882 
3883 	/* Check if matches BAR */
3884 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3885 	    (bei <= PCIM_EA_BEI_BAR_5))
3886 		return (PCIR_BAR(bei));
3887 
3888 	/* Check ROM */
3889 	if (bei == PCIM_EA_BEI_ROM)
3890 		return (PCIR_BIOS);
3891 
3892 #ifdef PCI_IOV
3893 	/* Check if matches VF_BAR */
3894 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3895 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3896 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3897 		    iov_pos);
3898 #endif
3899 
3900 	return (-1);
3901 }
3902 
3903 int
3904 pci_ea_is_enabled(device_t dev, int rid)
3905 {
3906 	struct pci_ea_entry *ea;
3907 	struct pci_devinfo *dinfo;
3908 
3909 	dinfo = device_get_ivars(dev);
3910 
3911 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3912 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3913 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3914 	}
3915 
3916 	return (0);
3917 }
3918 
3919 void
3920 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
3921 {
3922 	struct pci_ea_entry *ea;
3923 	struct pci_devinfo *dinfo;
3924 	pci_addr_t start, end, count;
3925 	struct resource_list *rl;
3926 	int type, flags, rid;
3927 	struct resource *res;
3928 	uint32_t tmp;
3929 #ifdef PCI_IOV
3930 	struct pcicfg_iov *iov;
3931 #endif
3932 
3933 	dinfo = device_get_ivars(dev);
3934 	rl = &dinfo->resources;
3935 	flags = 0;
3936 
3937 #ifdef PCI_IOV
3938 	iov = dinfo->cfg.iov;
3939 #endif
3940 
3941 	if (dinfo->cfg.ea.ea_location == 0)
3942 		return;
3943 
3944 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3945 		/*
3946 		 * TODO: Ignore EA-BAR if is not enabled.
3947 		 *   Currently the EA implementation supports
3948 		 *   only situation, where EA structure contains
3949 		 *   predefined entries. In case they are not enabled
3950 		 *   leave them unallocated and proceed with
3951 		 *   a legacy-BAR mechanism.
3952 		 */
3953 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
3954 			continue;
3955 
3956 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
3957 		case PCIM_EA_P_MEM_PREFETCH:
3958 		case PCIM_EA_P_VF_MEM_PREFETCH:
3959 			flags = RF_PREFETCHABLE;
3960 			/* FALLTHROUGH */
3961 		case PCIM_EA_P_VF_MEM:
3962 		case PCIM_EA_P_MEM:
3963 			type = SYS_RES_MEMORY;
3964 			break;
3965 		case PCIM_EA_P_IO:
3966 			type = SYS_RES_IOPORT;
3967 			break;
3968 		default:
3969 			continue;
3970 		}
3971 
3972 		if (alloc_iov != 0) {
3973 #ifdef PCI_IOV
3974 			/* Allocating IOV, confirm BEI matches */
3975 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
3976 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
3977 				continue;
3978 #else
3979 			continue;
3980 #endif
3981 		} else {
3982 			/* Allocating BAR, confirm BEI matches */
3983 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
3984 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
3985 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
3986 				continue;
3987 		}
3988 
3989 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
3990 		if (rid < 0)
3991 			continue;
3992 
3993 		/* Skip resources already allocated by EA */
3994 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
3995 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
3996 			continue;
3997 
3998 		start = ea->eae_base;
3999 		count = ea->eae_max_offset + 1;
4000 #ifdef PCI_IOV
4001 		if (iov != NULL)
4002 			count = count * iov->iov_num_vfs;
4003 #endif
4004 		end = start + count - 1;
4005 		if (count == 0)
4006 			continue;
4007 
4008 		resource_list_add(rl, type, rid, start, end, count);
4009 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
4010 		    flags);
4011 		if (res == NULL) {
4012 			resource_list_delete(rl, type, rid);
4013 
4014 			/*
4015 			 * Failed to allocate using EA, disable entry.
4016 			 * Another attempt to allocation will be performed
4017 			 * further, but this time using legacy BAR registers
4018 			 */
4019 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
4020 			tmp &= ~PCIM_EA_ENABLE;
4021 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
4022 
4023 			/*
4024 			 * Disabling entry might fail in case it is hardwired.
4025 			 * Read flags again to match current status.
4026 			 */
4027 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
4028 
4029 			continue;
4030 		}
4031 
4032 		/* As per specification, fill BAR with zeros */
4033 		pci_write_config(dev, rid, 0, 4);
4034 	}
4035 }
4036 
4037 void
4038 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
4039 {
4040 	struct pci_devinfo *dinfo;
4041 	pcicfgregs *cfg;
4042 	struct resource_list *rl;
4043 	const struct pci_quirk *q;
4044 	uint32_t devid;
4045 	int i;
4046 
4047 	dinfo = device_get_ivars(dev);
4048 	cfg = &dinfo->cfg;
4049 	rl = &dinfo->resources;
4050 	devid = (cfg->device << 16) | cfg->vendor;
4051 
4052 	/* Allocate resources using Enhanced Allocation */
4053 	pci_add_resources_ea(bus, dev, 0);
4054 
4055 	/* ATA devices needs special map treatment */
4056 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
4057 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4058 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4059 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4060 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
4061 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
4062 	else
4063 		for (i = 0; i < cfg->nummaps;) {
4064 			/* Skip resources already managed by EA */
4065 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4066 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4067 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4068 				i++;
4069 				continue;
4070 			}
4071 
4072 			/*
4073 			 * Skip quirked resources.
4074 			 */
4075 			for (q = &pci_quirks[0]; q->devid != 0; q++)
4076 				if (q->devid == devid &&
4077 				    q->type == PCI_QUIRK_UNMAP_REG &&
4078 				    q->arg1 == PCIR_BAR(i))
4079 					break;
4080 			if (q->devid != 0) {
4081 				i++;
4082 				continue;
4083 			}
4084 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4085 			    prefetchmask & (1 << i));
4086 		}
4087 
4088 	/*
4089 	 * Add additional, quirked resources.
4090 	 */
4091 	for (q = &pci_quirks[0]; q->devid != 0; q++)
4092 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4093 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4094 
4095 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4096 #ifdef __PCI_REROUTE_INTERRUPT
4097 		/*
4098 		 * Try to re-route interrupts. Sometimes the BIOS or
4099 		 * firmware may leave bogus values in these registers.
4100 		 * If the re-route fails, then just stick with what we
4101 		 * have.
4102 		 */
4103 		pci_assign_interrupt(bus, dev, 1);
4104 #else
4105 		pci_assign_interrupt(bus, dev, 0);
4106 #endif
4107 	}
4108 
4109 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4110 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4111 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4112 			xhci_early_takeover(dev);
4113 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4114 			ehci_early_takeover(dev);
4115 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4116 			ohci_early_takeover(dev);
4117 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4118 			uhci_early_takeover(dev);
4119 	}
4120 
4121 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
4122 	/*
4123 	 * Reserve resources for secondary bus ranges behind bridge
4124 	 * devices.
4125 	 */
4126 	pci_reserve_secbus(bus, dev, cfg, rl);
4127 #endif
4128 }
4129 
4130 static struct pci_devinfo *
4131 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4132     int slot, int func)
4133 {
4134 	struct pci_devinfo *dinfo;
4135 
4136 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4137 	if (dinfo != NULL)
4138 		pci_add_child(dev, dinfo);
4139 
4140 	return (dinfo);
4141 }
4142 
4143 void
4144 pci_add_children(device_t dev, int domain, int busno)
4145 {
4146 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4147 	device_t pcib = device_get_parent(dev);
4148 	struct pci_devinfo *dinfo;
4149 	int maxslots;
4150 	int s, f, pcifunchigh;
4151 	uint8_t hdrtype;
4152 	int first_func;
4153 
4154 	/*
4155 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4156 	 * enable ARI.  We must enable ARI before detecting the rest of the
4157 	 * functions on this bus as ARI changes the set of slots and functions
4158 	 * that are legal on this bus.
4159 	 */
4160 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4161 	if (dinfo != NULL && pci_enable_ari)
4162 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4163 
4164 	/*
4165 	 * Start looking for new devices on slot 0 at function 1 because we
4166 	 * just identified the device at slot 0, function 0.
4167 	 */
4168 	first_func = 1;
4169 
4170 	maxslots = PCIB_MAXSLOTS(pcib);
4171 	for (s = 0; s <= maxslots; s++, first_func = 0) {
4172 		pcifunchigh = 0;
4173 		f = 0;
4174 		DELAY(1);
4175 
4176 		/* If function 0 is not present, skip to the next slot. */
4177 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4178 			continue;
4179 		hdrtype = REG(PCIR_HDRTYPE, 1);
4180 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4181 			continue;
4182 		if (hdrtype & PCIM_MFDEV)
4183 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4184 		for (f = first_func; f <= pcifunchigh; f++)
4185 			pci_identify_function(pcib, dev, domain, busno, s, f);
4186 	}
4187 #undef REG
4188 }
4189 
4190 int
4191 pci_rescan_method(device_t dev)
4192 {
4193 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4194 	device_t pcib = device_get_parent(dev);
4195 	device_t child, *devlist, *unchanged;
4196 	int devcount, error, i, j, maxslots, oldcount;
4197 	int busno, domain, s, f, pcifunchigh;
4198 	uint8_t hdrtype;
4199 
4200 	/* No need to check for ARI on a rescan. */
4201 	error = device_get_children(dev, &devlist, &devcount);
4202 	if (error)
4203 		return (error);
4204 	if (devcount != 0) {
4205 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4206 		    M_NOWAIT | M_ZERO);
4207 		if (unchanged == NULL) {
4208 			free(devlist, M_TEMP);
4209 			return (ENOMEM);
4210 		}
4211 	} else
4212 		unchanged = NULL;
4213 
4214 	domain = pcib_get_domain(dev);
4215 	busno = pcib_get_bus(dev);
4216 	maxslots = PCIB_MAXSLOTS(pcib);
4217 	for (s = 0; s <= maxslots; s++) {
4218 		/* If function 0 is not present, skip to the next slot. */
4219 		f = 0;
4220 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4221 			continue;
4222 		pcifunchigh = 0;
4223 		hdrtype = REG(PCIR_HDRTYPE, 1);
4224 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4225 			continue;
4226 		if (hdrtype & PCIM_MFDEV)
4227 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4228 		for (f = 0; f <= pcifunchigh; f++) {
4229 			if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4230 				continue;
4231 
4232 			/*
4233 			 * Found a valid function.  Check if a
4234 			 * device_t for this device already exists.
4235 			 */
4236 			for (i = 0; i < devcount; i++) {
4237 				child = devlist[i];
4238 				if (child == NULL)
4239 					continue;
4240 				if (pci_get_slot(child) == s &&
4241 				    pci_get_function(child) == f) {
4242 					unchanged[i] = child;
4243 					goto next_func;
4244 				}
4245 			}
4246 
4247 			pci_identify_function(pcib, dev, domain, busno, s, f);
4248 		next_func:;
4249 		}
4250 	}
4251 
4252 	/* Remove devices that are no longer present. */
4253 	for (i = 0; i < devcount; i++) {
4254 		if (unchanged[i] != NULL)
4255 			continue;
4256 		device_delete_child(dev, devlist[i]);
4257 	}
4258 
4259 	free(devlist, M_TEMP);
4260 	oldcount = devcount;
4261 
4262 	/* Try to attach the devices just added. */
4263 	error = device_get_children(dev, &devlist, &devcount);
4264 	if (error) {
4265 		free(unchanged, M_TEMP);
4266 		return (error);
4267 	}
4268 
4269 	for (i = 0; i < devcount; i++) {
4270 		for (j = 0; j < oldcount; j++) {
4271 			if (devlist[i] == unchanged[j])
4272 				goto next_device;
4273 		}
4274 
4275 		device_probe_and_attach(devlist[i]);
4276 	next_device:;
4277 	}
4278 
4279 	free(unchanged, M_TEMP);
4280 	free(devlist, M_TEMP);
4281 	return (0);
4282 #undef REG
4283 }
4284 
4285 #ifdef PCI_IOV
4286 device_t
4287 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4288     uint16_t did)
4289 {
4290 	struct pci_devinfo *vf_dinfo;
4291 	device_t pcib;
4292 	int busno, slot, func;
4293 
4294 	pcib = device_get_parent(bus);
4295 
4296 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4297 
4298 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4299 	    slot, func, vid, did);
4300 
4301 	vf_dinfo->cfg.flags |= PCICFG_VF;
4302 	pci_add_child(bus, vf_dinfo);
4303 
4304 	return (vf_dinfo->cfg.dev);
4305 }
4306 
4307 device_t
4308 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4309     uint16_t vid, uint16_t did)
4310 {
4311 
4312 	return (pci_add_iov_child(bus, pf, rid, vid, did));
4313 }
4314 #endif
4315 
4316 /*
4317  * For PCIe device set Max_Payload_Size to match PCIe root's.
4318  */
4319 static void
4320 pcie_setup_mps(device_t dev)
4321 {
4322 	struct pci_devinfo *dinfo = device_get_ivars(dev);
4323 	device_t root;
4324 	uint16_t rmps, mmps, mps;
4325 
4326 	if (dinfo->cfg.pcie.pcie_location == 0)
4327 		return;
4328 	root = pci_find_pcie_root_port(dev);
4329 	if (root == NULL)
4330 		return;
4331 	/* Check whether the MPS is already configured. */
4332 	rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
4333 	    PCIEM_CTL_MAX_PAYLOAD;
4334 	mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
4335 	    PCIEM_CTL_MAX_PAYLOAD;
4336 	if (mps == rmps)
4337 		return;
4338 	/* Check whether the device is capable of the root's MPS. */
4339 	mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
4340 	    PCIEM_CAP_MAX_PAYLOAD) << 5;
4341 	if (rmps > mmps) {
4342 		/*
4343 		 * The device is unable to handle root's MPS.  Limit root.
4344 		 * XXX: We should traverse through all the tree, applying
4345 		 * it to all the devices.
4346 		 */
4347 		pcie_adjust_config(root, PCIER_DEVICE_CTL,
4348 		    PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
4349 	} else {
4350 		pcie_adjust_config(dev, PCIER_DEVICE_CTL,
4351 		    PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
4352 	}
4353 }
4354 
4355 static void
4356 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4357 {
4358 	int aer;
4359 	uint32_t r;
4360 	uint16_t r2;
4361 
4362 	if (dinfo->cfg.pcie.pcie_location != 0 &&
4363 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4364 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4365 		    PCIER_ROOT_CTL, 2);
4366 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4367 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4368 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4369 		    PCIER_ROOT_CTL, r2, 2);
4370 	}
4371 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4372 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4373 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4374 		if (r != 0 && bootverbose) {
4375 			pci_printf(&dinfo->cfg,
4376 			    "clearing AER UC 0x%08x -> 0x%08x\n",
4377 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4378 			    4));
4379 		}
4380 
4381 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4382 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4383 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4384 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4385 		    PCIM_AER_UC_POISONED_TLP |
4386 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4387 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4388 		    PCIM_AER_UC_COMPLETER_ABORT |
4389 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4390 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4391 		    PCIM_AER_UC_MALFORMED_TLP |
4392 		    PCIM_AER_UC_ECRC_ERROR |
4393 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4394 		    PCIM_AER_UC_ACS_VIOLATION |
4395 		    PCIM_AER_UC_INTERNAL_ERROR |
4396 		    PCIM_AER_UC_MC_BLOCKED_TLP |
4397 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4398 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4399 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4400 
4401 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4402 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4403 		if (r != 0 && bootverbose) {
4404 			pci_printf(&dinfo->cfg,
4405 			    "clearing AER COR 0x%08x -> 0x%08x\n",
4406 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4407 			    4));
4408 		}
4409 
4410 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4411 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4412 		    PCIM_AER_COR_BAD_TLP |
4413 		    PCIM_AER_COR_BAD_DLLP |
4414 		    PCIM_AER_COR_REPLAY_ROLLOVER |
4415 		    PCIM_AER_COR_REPLAY_TIMEOUT |
4416 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4417 		    PCIM_AER_COR_INTERNAL_ERROR |
4418 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4419 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4420 
4421 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4422 		    PCIER_DEVICE_CTL, 2);
4423 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4424 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4425 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4426 		    PCIER_DEVICE_CTL, r, 2);
4427 	}
4428 }
4429 
4430 void
4431 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4432 {
4433 	device_t dev;
4434 
4435 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1);
4436 	device_set_ivars(dev, dinfo);
4437 	resource_list_init(&dinfo->resources);
4438 	pci_cfg_save(dev, dinfo, 0);
4439 	pci_cfg_restore(dev, dinfo);
4440 	pci_print_verbose(dinfo);
4441 	pci_add_resources(bus, dev, 0, 0);
4442 	pcie_setup_mps(dev);
4443 	pci_child_added(dinfo->cfg.dev);
4444 
4445 	if (pci_clear_aer_on_attach)
4446 		pci_add_child_clear_aer(dev, dinfo);
4447 
4448 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4449 }
4450 
4451 void
4452 pci_child_added_method(device_t dev, device_t child)
4453 {
4454 
4455 }
4456 
4457 static int
4458 pci_probe(device_t dev)
4459 {
4460 
4461 	device_set_desc(dev, "PCI bus");
4462 
4463 	/* Allow other subclasses to override this driver. */
4464 	return (BUS_PROBE_GENERIC);
4465 }
4466 
4467 int
4468 pci_attach_common(device_t dev)
4469 {
4470 	struct pci_softc *sc;
4471 	int busno, domain;
4472 #ifdef PCI_RES_BUS
4473 	int rid;
4474 #endif
4475 
4476 	sc = device_get_softc(dev);
4477 	domain = pcib_get_domain(dev);
4478 	busno = pcib_get_bus(dev);
4479 #ifdef PCI_RES_BUS
4480 	rid = 0;
4481 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4482 	    1, 0);
4483 	if (sc->sc_bus == NULL) {
4484 		device_printf(dev, "failed to allocate bus number\n");
4485 		return (ENXIO);
4486 	}
4487 #endif
4488 	if (bootverbose)
4489 		device_printf(dev, "domain=%d, physical bus=%d\n",
4490 		    domain, busno);
4491 	sc->sc_dma_tag = bus_get_dma_tag(dev);
4492 	return (0);
4493 }
4494 
4495 int
4496 pci_attach(device_t dev)
4497 {
4498 	int busno, domain, error;
4499 
4500 	error = pci_attach_common(dev);
4501 	if (error)
4502 		return (error);
4503 
4504 	/*
4505 	 * Since there can be multiple independently numbered PCI
4506 	 * buses on systems with multiple PCI domains, we can't use
4507 	 * the unit number to decide which bus we are probing. We ask
4508 	 * the parent pcib what our domain and bus numbers are.
4509 	 */
4510 	domain = pcib_get_domain(dev);
4511 	busno = pcib_get_bus(dev);
4512 	pci_add_children(dev, domain, busno);
4513 	return (bus_generic_attach(dev));
4514 }
4515 
4516 int
4517 pci_detach(device_t dev)
4518 {
4519 #ifdef PCI_RES_BUS
4520 	struct pci_softc *sc;
4521 #endif
4522 	int error;
4523 
4524 	error = bus_generic_detach(dev);
4525 	if (error)
4526 		return (error);
4527 #ifdef PCI_RES_BUS
4528 	sc = device_get_softc(dev);
4529 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4530 	if (error)
4531 		return (error);
4532 #endif
4533 	return (device_delete_children(dev));
4534 }
4535 
4536 static void
4537 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4538 {
4539 	int line, unit;
4540 	const char *at;
4541 	char me1[24], me2[32];
4542 	uint8_t b, s, f;
4543 	uint32_t d;
4544 	device_location_cache_t *cache;
4545 
4546 	d = pci_get_domain(child);
4547 	b = pci_get_bus(child);
4548 	s = pci_get_slot(child);
4549 	f = pci_get_function(child);
4550 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4551 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4552 	line = 0;
4553 	cache = dev_wired_cache_init();
4554 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4555 		resource_string_value(name, unit, "at", &at);
4556 		if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) {
4557 			*unitp = unit;
4558 			break;
4559 		}
4560 		if (dev_wired_cache_match(cache, child, at)) {
4561 			*unitp = unit;
4562 			break;
4563 		}
4564 	}
4565 	dev_wired_cache_fini(cache);
4566 }
4567 
4568 static void
4569 pci_set_power_child(device_t dev, device_t child, int state)
4570 {
4571 	device_t pcib;
4572 	int dstate;
4573 
4574 	/*
4575 	 * Set the device to the given state.  If the firmware suggests
4576 	 * a different power state, use it instead.  If power management
4577 	 * is not present, the firmware is responsible for managing
4578 	 * device power.  Skip children who aren't attached since they
4579 	 * are handled separately.
4580 	 */
4581 	pcib = device_get_parent(dev);
4582 	dstate = state;
4583 	if (device_is_attached(child) &&
4584 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4585 		pci_set_powerstate(child, dstate);
4586 }
4587 
4588 int
4589 pci_suspend_child(device_t dev, device_t child)
4590 {
4591 	struct pci_devinfo *dinfo;
4592 	struct resource_list_entry *rle;
4593 	int error;
4594 
4595 	dinfo = device_get_ivars(child);
4596 
4597 	/*
4598 	 * Save the PCI configuration space for the child and set the
4599 	 * device in the appropriate power state for this sleep state.
4600 	 */
4601 	pci_cfg_save(child, dinfo, 0);
4602 
4603 	/* Suspend devices before potentially powering them down. */
4604 	error = bus_generic_suspend_child(dev, child);
4605 
4606 	if (error)
4607 		return (error);
4608 
4609 	if (pci_do_power_suspend) {
4610 		/*
4611 		 * Make sure this device's interrupt handler is not invoked
4612 		 * in the case the device uses a shared interrupt that can
4613 		 * be raised by some other device.
4614 		 * This is applicable only to regular (legacy) PCI interrupts
4615 		 * as MSI/MSI-X interrupts are never shared.
4616 		 */
4617 		rle = resource_list_find(&dinfo->resources,
4618 		    SYS_RES_IRQ, 0);
4619 		if (rle != NULL && rle->res != NULL)
4620 			(void)bus_suspend_intr(child, rle->res);
4621 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4622 	}
4623 
4624 	return (0);
4625 }
4626 
4627 int
4628 pci_resume_child(device_t dev, device_t child)
4629 {
4630 	struct pci_devinfo *dinfo;
4631 	struct resource_list_entry *rle;
4632 
4633 	if (pci_do_power_resume)
4634 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4635 
4636 	dinfo = device_get_ivars(child);
4637 	pci_cfg_restore(child, dinfo);
4638 	if (!device_is_attached(child))
4639 		pci_cfg_save(child, dinfo, 1);
4640 
4641 	bus_generic_resume_child(dev, child);
4642 
4643 	/*
4644 	 * Allow interrupts only after fully resuming the driver and hardware.
4645 	 */
4646 	if (pci_do_power_suspend) {
4647 		/* See pci_suspend_child for details. */
4648 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4649 		if (rle != NULL && rle->res != NULL)
4650 			(void)bus_resume_intr(child, rle->res);
4651 	}
4652 
4653 	return (0);
4654 }
4655 
4656 int
4657 pci_resume(device_t dev)
4658 {
4659 	device_t child, *devlist;
4660 	int error, i, numdevs;
4661 
4662 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4663 		return (error);
4664 
4665 	/*
4666 	 * Resume critical devices first, then everything else later.
4667 	 */
4668 	for (i = 0; i < numdevs; i++) {
4669 		child = devlist[i];
4670 		switch (pci_get_class(child)) {
4671 		case PCIC_DISPLAY:
4672 		case PCIC_MEMORY:
4673 		case PCIC_BRIDGE:
4674 		case PCIC_BASEPERIPH:
4675 			BUS_RESUME_CHILD(dev, child);
4676 			break;
4677 		}
4678 	}
4679 	for (i = 0; i < numdevs; i++) {
4680 		child = devlist[i];
4681 		switch (pci_get_class(child)) {
4682 		case PCIC_DISPLAY:
4683 		case PCIC_MEMORY:
4684 		case PCIC_BRIDGE:
4685 		case PCIC_BASEPERIPH:
4686 			break;
4687 		default:
4688 			BUS_RESUME_CHILD(dev, child);
4689 		}
4690 	}
4691 	free(devlist, M_TEMP);
4692 	return (0);
4693 }
4694 
4695 static void
4696 pci_load_vendor_data(void)
4697 {
4698 	caddr_t data;
4699 	void *ptr;
4700 	size_t sz;
4701 
4702 	data = preload_search_by_type("pci_vendor_data");
4703 	if (data != NULL) {
4704 		ptr = preload_fetch_addr(data);
4705 		sz = preload_fetch_size(data);
4706 		if (ptr != NULL && sz != 0) {
4707 			pci_vendordata = ptr;
4708 			pci_vendordata_size = sz;
4709 			/* terminate the database */
4710 			pci_vendordata[pci_vendordata_size] = '\n';
4711 		}
4712 	}
4713 }
4714 
4715 void
4716 pci_driver_added(device_t dev, driver_t *driver)
4717 {
4718 	int numdevs;
4719 	device_t *devlist;
4720 	device_t child;
4721 	struct pci_devinfo *dinfo;
4722 	int i;
4723 
4724 	if (bootverbose)
4725 		device_printf(dev, "driver added\n");
4726 	DEVICE_IDENTIFY(driver, dev);
4727 	if (device_get_children(dev, &devlist, &numdevs) != 0)
4728 		return;
4729 	for (i = 0; i < numdevs; i++) {
4730 		child = devlist[i];
4731 		if (device_get_state(child) != DS_NOTPRESENT)
4732 			continue;
4733 		dinfo = device_get_ivars(child);
4734 		pci_print_verbose(dinfo);
4735 		if (bootverbose)
4736 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4737 		pci_cfg_restore(child, dinfo);
4738 		if (device_probe_and_attach(child) != 0)
4739 			pci_child_detached(dev, child);
4740 	}
4741 	free(devlist, M_TEMP);
4742 }
4743 
4744 int
4745 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4746     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4747 {
4748 	struct pci_devinfo *dinfo;
4749 	struct msix_table_entry *mte;
4750 	struct msix_vector *mv;
4751 	uint64_t addr;
4752 	uint32_t data;
4753 	void *cookie;
4754 	int error, rid;
4755 
4756 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4757 	    arg, &cookie);
4758 	if (error)
4759 		return (error);
4760 
4761 	/* If this is not a direct child, just bail out. */
4762 	if (device_get_parent(child) != dev) {
4763 		*cookiep = cookie;
4764 		return(0);
4765 	}
4766 
4767 	rid = rman_get_rid(irq);
4768 	if (rid == 0) {
4769 		/* Make sure that INTx is enabled */
4770 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4771 	} else {
4772 		/*
4773 		 * Check to see if the interrupt is MSI or MSI-X.
4774 		 * Ask our parent to map the MSI and give
4775 		 * us the address and data register values.
4776 		 * If we fail for some reason, teardown the
4777 		 * interrupt handler.
4778 		 */
4779 		dinfo = device_get_ivars(child);
4780 		if (dinfo->cfg.msi.msi_alloc > 0) {
4781 			if (dinfo->cfg.msi.msi_addr == 0) {
4782 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4783 			    ("MSI has handlers, but vectors not mapped"));
4784 				error = PCIB_MAP_MSI(device_get_parent(dev),
4785 				    child, rman_get_start(irq), &addr, &data);
4786 				if (error)
4787 					goto bad;
4788 				dinfo->cfg.msi.msi_addr = addr;
4789 				dinfo->cfg.msi.msi_data = data;
4790 			}
4791 			if (dinfo->cfg.msi.msi_handlers == 0)
4792 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4793 				    dinfo->cfg.msi.msi_data);
4794 			dinfo->cfg.msi.msi_handlers++;
4795 		} else {
4796 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4797 			    ("No MSI or MSI-X interrupts allocated"));
4798 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4799 			    ("MSI-X index too high"));
4800 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4801 			KASSERT(mte->mte_vector != 0, ("no message vector"));
4802 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4803 			KASSERT(mv->mv_irq == rman_get_start(irq),
4804 			    ("IRQ mismatch"));
4805 			if (mv->mv_address == 0) {
4806 				KASSERT(mte->mte_handlers == 0,
4807 		    ("MSI-X table entry has handlers, but vector not mapped"));
4808 				error = PCIB_MAP_MSI(device_get_parent(dev),
4809 				    child, rman_get_start(irq), &addr, &data);
4810 				if (error)
4811 					goto bad;
4812 				mv->mv_address = addr;
4813 				mv->mv_data = data;
4814 			}
4815 
4816 			/*
4817 			 * The MSIX table entry must be made valid by
4818 			 * incrementing the mte_handlers before
4819 			 * calling pci_enable_msix() and
4820 			 * pci_resume_msix(). Else the MSIX rewrite
4821 			 * table quirk will not work as expected.
4822 			 */
4823 			mte->mte_handlers++;
4824 			if (mte->mte_handlers == 1) {
4825 				pci_enable_msix(child, rid - 1, mv->mv_address,
4826 				    mv->mv_data);
4827 				pci_unmask_msix(child, rid - 1);
4828 			}
4829 		}
4830 
4831 		/*
4832 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4833 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4834 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4835 		 */
4836 		if (!pci_has_quirk(pci_get_devid(child),
4837 		    PCI_QUIRK_MSI_INTX_BUG))
4838 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4839 		else
4840 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4841 	bad:
4842 		if (error) {
4843 			(void)bus_generic_teardown_intr(dev, child, irq,
4844 			    cookie);
4845 			return (error);
4846 		}
4847 	}
4848 	*cookiep = cookie;
4849 	return (0);
4850 }
4851 
4852 int
4853 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4854     void *cookie)
4855 {
4856 	struct msix_table_entry *mte;
4857 	struct resource_list_entry *rle;
4858 	struct pci_devinfo *dinfo;
4859 	int error, rid;
4860 
4861 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4862 		return (EINVAL);
4863 
4864 	/* If this isn't a direct child, just bail out */
4865 	if (device_get_parent(child) != dev)
4866 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4867 
4868 	rid = rman_get_rid(irq);
4869 	if (rid == 0) {
4870 		/* Mask INTx */
4871 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4872 	} else {
4873 		/*
4874 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4875 		 * decrement the appropriate handlers count and mask the
4876 		 * MSI-X message, or disable MSI messages if the count
4877 		 * drops to 0.
4878 		 */
4879 		dinfo = device_get_ivars(child);
4880 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4881 		if (rle->res != irq)
4882 			return (EINVAL);
4883 		if (dinfo->cfg.msi.msi_alloc > 0) {
4884 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4885 			    ("MSI-X index too high"));
4886 			if (dinfo->cfg.msi.msi_handlers == 0)
4887 				return (EINVAL);
4888 			dinfo->cfg.msi.msi_handlers--;
4889 			if (dinfo->cfg.msi.msi_handlers == 0)
4890 				pci_disable_msi(child);
4891 		} else {
4892 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4893 			    ("No MSI or MSI-X interrupts allocated"));
4894 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4895 			    ("MSI-X index too high"));
4896 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4897 			if (mte->mte_handlers == 0)
4898 				return (EINVAL);
4899 			mte->mte_handlers--;
4900 			if (mte->mte_handlers == 0)
4901 				pci_mask_msix(child, rid - 1);
4902 		}
4903 	}
4904 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4905 	if (rid > 0)
4906 		KASSERT(error == 0,
4907 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4908 	return (error);
4909 }
4910 
4911 int
4912 pci_print_child(device_t dev, device_t child)
4913 {
4914 	struct pci_devinfo *dinfo;
4915 	struct resource_list *rl;
4916 	int retval = 0;
4917 
4918 	dinfo = device_get_ivars(child);
4919 	rl = &dinfo->resources;
4920 
4921 	retval += bus_print_child_header(dev, child);
4922 
4923 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4924 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4925 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4926 	if (device_get_flags(dev))
4927 		retval += printf(" flags %#x", device_get_flags(dev));
4928 
4929 	retval += printf(" at device %d.%d", pci_get_slot(child),
4930 	    pci_get_function(child));
4931 
4932 	retval += bus_print_child_domain(dev, child);
4933 	retval += bus_print_child_footer(dev, child);
4934 
4935 	return (retval);
4936 }
4937 
4938 static const struct
4939 {
4940 	int		class;
4941 	int		subclass;
4942 	int		report; /* 0 = bootverbose, 1 = always */
4943 	const char	*desc;
4944 } pci_nomatch_tab[] = {
4945 	{PCIC_OLD,		-1,			1, "old"},
4946 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
4947 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
4948 	{PCIC_STORAGE,		-1,			1, "mass storage"},
4949 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
4950 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
4951 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
4952 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
4953 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
4954 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
4955 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
4956 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
4957 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
4958 	{PCIC_NETWORK,		-1,			1, "network"},
4959 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
4960 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
4961 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
4962 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
4963 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
4964 	{PCIC_DISPLAY,		-1,			1, "display"},
4965 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
4966 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
4967 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
4968 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
4969 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
4970 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
4971 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
4972 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
4973 	{PCIC_MEMORY,		-1,			1, "memory"},
4974 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
4975 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
4976 	{PCIC_BRIDGE,		-1,			1, "bridge"},
4977 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
4978 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
4979 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
4980 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
4981 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
4982 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
4983 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
4984 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
4985 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
4986 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
4987 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
4988 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
4989 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
4990 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
4991 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
4992 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
4993 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
4994 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
4995 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
4996 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
4997 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
4998 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
4999 	{PCIC_INPUTDEV,		-1,			1, "input device"},
5000 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
5001 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
5002 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
5003 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
5004 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
5005 	{PCIC_DOCKING,		-1,			1, "docking station"},
5006 	{PCIC_PROCESSOR,	-1,			1, "processor"},
5007 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
5008 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
5009 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
5010 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
5011 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
5012 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
5013 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
5014 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
5015 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
5016 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
5017 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
5018 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
5019 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
5020 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
5021 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
5022 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
5023 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
5024 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
5025 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
5026 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
5027 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
5028 	{PCIC_DASP,		-1,			0, "dasp"},
5029 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
5030 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
5031 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
5032 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
5033 	{0, 0, 0,		NULL}
5034 };
5035 
5036 void
5037 pci_probe_nomatch(device_t dev, device_t child)
5038 {
5039 	int i, report;
5040 	const char *cp, *scp;
5041 	char *device;
5042 
5043 	/*
5044 	 * Look for a listing for this device in a loaded device database.
5045 	 */
5046 	report = 1;
5047 	if ((device = pci_describe_device(child)) != NULL) {
5048 		device_printf(dev, "<%s>", device);
5049 		free(device, M_DEVBUF);
5050 	} else {
5051 		/*
5052 		 * Scan the class/subclass descriptions for a general
5053 		 * description.
5054 		 */
5055 		cp = "unknown";
5056 		scp = NULL;
5057 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
5058 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
5059 				if (pci_nomatch_tab[i].subclass == -1) {
5060 					cp = pci_nomatch_tab[i].desc;
5061 					report = pci_nomatch_tab[i].report;
5062 				} else if (pci_nomatch_tab[i].subclass ==
5063 				    pci_get_subclass(child)) {
5064 					scp = pci_nomatch_tab[i].desc;
5065 					report = pci_nomatch_tab[i].report;
5066 				}
5067 			}
5068 		}
5069 		if (report || bootverbose) {
5070 			device_printf(dev, "<%s%s%s>",
5071 			    cp ? cp : "",
5072 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
5073 			    scp ? scp : "");
5074 		}
5075 	}
5076 	if (report || bootverbose) {
5077 		printf(" at device %d.%d (no driver attached)\n",
5078 		    pci_get_slot(child), pci_get_function(child));
5079 	}
5080 	pci_cfg_save(child, device_get_ivars(child), 1);
5081 }
5082 
5083 void
5084 pci_child_detached(device_t dev, device_t child)
5085 {
5086 	struct pci_devinfo *dinfo;
5087 	struct resource_list *rl;
5088 
5089 	dinfo = device_get_ivars(child);
5090 	rl = &dinfo->resources;
5091 
5092 	/*
5093 	 * Have to deallocate IRQs before releasing any MSI messages and
5094 	 * have to release MSI messages before deallocating any memory
5095 	 * BARs.
5096 	 */
5097 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
5098 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
5099 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
5100 		if (dinfo->cfg.msi.msi_alloc != 0)
5101 			pci_printf(&dinfo->cfg, "Device leaked %d MSI "
5102 			    "vectors\n", dinfo->cfg.msi.msi_alloc);
5103 		else
5104 			pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
5105 			    "vectors\n", dinfo->cfg.msix.msix_alloc);
5106 		(void)pci_release_msi(child);
5107 	}
5108 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
5109 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
5110 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
5111 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
5112 #ifdef PCI_RES_BUS
5113 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5114 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5115 #endif
5116 
5117 	pci_cfg_save(child, dinfo, 1);
5118 }
5119 
5120 /*
5121  * Parse the PCI device database, if loaded, and return a pointer to a
5122  * description of the device.
5123  *
5124  * The database is flat text formatted as follows:
5125  *
5126  * Any line not in a valid format is ignored.
5127  * Lines are terminated with newline '\n' characters.
5128  *
5129  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5130  * the vendor name.
5131  *
5132  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5133  * - devices cannot be listed without a corresponding VENDOR line.
5134  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5135  * another TAB, then the device name.
5136  */
5137 
5138 /*
5139  * Assuming (ptr) points to the beginning of a line in the database,
5140  * return the vendor or device and description of the next entry.
5141  * The value of (vendor) or (device) inappropriate for the entry type
5142  * is set to -1.  Returns nonzero at the end of the database.
5143  *
5144  * Note that this is slightly unrobust in the face of corrupt data;
5145  * we attempt to safeguard against this by spamming the end of the
5146  * database with a newline when we initialise.
5147  */
5148 static int
5149 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5150 {
5151 	char	*cp = *ptr;
5152 	int	left;
5153 
5154 	*device = -1;
5155 	*vendor = -1;
5156 	**desc = '\0';
5157 	for (;;) {
5158 		left = pci_vendordata_size - (cp - pci_vendordata);
5159 		if (left <= 0) {
5160 			*ptr = cp;
5161 			return(1);
5162 		}
5163 
5164 		/* vendor entry? */
5165 		if (*cp != '\t' &&
5166 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5167 			break;
5168 		/* device entry? */
5169 		if (*cp == '\t' &&
5170 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5171 			break;
5172 
5173 		/* skip to next line */
5174 		while (*cp != '\n' && left > 0) {
5175 			cp++;
5176 			left--;
5177 		}
5178 		if (*cp == '\n') {
5179 			cp++;
5180 			left--;
5181 		}
5182 	}
5183 	/* skip to next line */
5184 	while (*cp != '\n' && left > 0) {
5185 		cp++;
5186 		left--;
5187 	}
5188 	if (*cp == '\n' && left > 0)
5189 		cp++;
5190 	*ptr = cp;
5191 	return(0);
5192 }
5193 
5194 static char *
5195 pci_describe_device(device_t dev)
5196 {
5197 	int	vendor, device;
5198 	char	*desc, *vp, *dp, *line;
5199 
5200 	desc = vp = dp = NULL;
5201 
5202 	/*
5203 	 * If we have no vendor data, we can't do anything.
5204 	 */
5205 	if (pci_vendordata == NULL)
5206 		goto out;
5207 
5208 	/*
5209 	 * Scan the vendor data looking for this device
5210 	 */
5211 	line = pci_vendordata;
5212 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5213 		goto out;
5214 	for (;;) {
5215 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5216 			goto out;
5217 		if (vendor == pci_get_vendor(dev))
5218 			break;
5219 	}
5220 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5221 		goto out;
5222 	for (;;) {
5223 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5224 			*dp = 0;
5225 			break;
5226 		}
5227 		if (vendor != -1) {
5228 			*dp = 0;
5229 			break;
5230 		}
5231 		if (device == pci_get_device(dev))
5232 			break;
5233 	}
5234 	if (dp[0] == '\0')
5235 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5236 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5237 	    NULL)
5238 		sprintf(desc, "%s, %s", vp, dp);
5239 out:
5240 	if (vp != NULL)
5241 		free(vp, M_DEVBUF);
5242 	if (dp != NULL)
5243 		free(dp, M_DEVBUF);
5244 	return(desc);
5245 }
5246 
5247 int
5248 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5249 {
5250 	struct pci_devinfo *dinfo;
5251 	pcicfgregs *cfg;
5252 
5253 	dinfo = device_get_ivars(child);
5254 	cfg = &dinfo->cfg;
5255 
5256 	switch (which) {
5257 	case PCI_IVAR_ETHADDR:
5258 		/*
5259 		 * The generic accessor doesn't deal with failure, so
5260 		 * we set the return value, then return an error.
5261 		 */
5262 		*((uint8_t **) result) = NULL;
5263 		return (EINVAL);
5264 	case PCI_IVAR_SUBVENDOR:
5265 		*result = cfg->subvendor;
5266 		break;
5267 	case PCI_IVAR_SUBDEVICE:
5268 		*result = cfg->subdevice;
5269 		break;
5270 	case PCI_IVAR_VENDOR:
5271 		*result = cfg->vendor;
5272 		break;
5273 	case PCI_IVAR_DEVICE:
5274 		*result = cfg->device;
5275 		break;
5276 	case PCI_IVAR_DEVID:
5277 		*result = (cfg->device << 16) | cfg->vendor;
5278 		break;
5279 	case PCI_IVAR_CLASS:
5280 		*result = cfg->baseclass;
5281 		break;
5282 	case PCI_IVAR_SUBCLASS:
5283 		*result = cfg->subclass;
5284 		break;
5285 	case PCI_IVAR_PROGIF:
5286 		*result = cfg->progif;
5287 		break;
5288 	case PCI_IVAR_REVID:
5289 		*result = cfg->revid;
5290 		break;
5291 	case PCI_IVAR_INTPIN:
5292 		*result = cfg->intpin;
5293 		break;
5294 	case PCI_IVAR_IRQ:
5295 		*result = cfg->intline;
5296 		break;
5297 	case PCI_IVAR_DOMAIN:
5298 		*result = cfg->domain;
5299 		break;
5300 	case PCI_IVAR_BUS:
5301 		*result = cfg->bus;
5302 		break;
5303 	case PCI_IVAR_SLOT:
5304 		*result = cfg->slot;
5305 		break;
5306 	case PCI_IVAR_FUNCTION:
5307 		*result = cfg->func;
5308 		break;
5309 	case PCI_IVAR_CMDREG:
5310 		*result = cfg->cmdreg;
5311 		break;
5312 	case PCI_IVAR_CACHELNSZ:
5313 		*result = cfg->cachelnsz;
5314 		break;
5315 	case PCI_IVAR_MINGNT:
5316 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5317 			*result = -1;
5318 			return (EINVAL);
5319 		}
5320 		*result = cfg->mingnt;
5321 		break;
5322 	case PCI_IVAR_MAXLAT:
5323 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5324 			*result = -1;
5325 			return (EINVAL);
5326 		}
5327 		*result = cfg->maxlat;
5328 		break;
5329 	case PCI_IVAR_LATTIMER:
5330 		*result = cfg->lattimer;
5331 		break;
5332 	default:
5333 		return (ENOENT);
5334 	}
5335 	return (0);
5336 }
5337 
5338 int
5339 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5340 {
5341 	struct pci_devinfo *dinfo;
5342 
5343 	dinfo = device_get_ivars(child);
5344 
5345 	switch (which) {
5346 	case PCI_IVAR_INTPIN:
5347 		dinfo->cfg.intpin = value;
5348 		return (0);
5349 	case PCI_IVAR_ETHADDR:
5350 	case PCI_IVAR_SUBVENDOR:
5351 	case PCI_IVAR_SUBDEVICE:
5352 	case PCI_IVAR_VENDOR:
5353 	case PCI_IVAR_DEVICE:
5354 	case PCI_IVAR_DEVID:
5355 	case PCI_IVAR_CLASS:
5356 	case PCI_IVAR_SUBCLASS:
5357 	case PCI_IVAR_PROGIF:
5358 	case PCI_IVAR_REVID:
5359 	case PCI_IVAR_IRQ:
5360 	case PCI_IVAR_DOMAIN:
5361 	case PCI_IVAR_BUS:
5362 	case PCI_IVAR_SLOT:
5363 	case PCI_IVAR_FUNCTION:
5364 		return (EINVAL);	/* disallow for now */
5365 
5366 	default:
5367 		return (ENOENT);
5368 	}
5369 }
5370 
5371 #include "opt_ddb.h"
5372 #ifdef DDB
5373 #include <ddb/ddb.h>
5374 #include <sys/cons.h>
5375 
5376 /*
5377  * List resources based on pci map registers, used for within ddb
5378  */
5379 
5380 DB_SHOW_COMMAND(pciregs, db_pci_dump)
5381 {
5382 	struct pci_devinfo *dinfo;
5383 	struct devlist *devlist_head;
5384 	struct pci_conf *p;
5385 	const char *name;
5386 	int i, error, none_count;
5387 
5388 	none_count = 0;
5389 	/* get the head of the device queue */
5390 	devlist_head = &pci_devq;
5391 
5392 	/*
5393 	 * Go through the list of devices and print out devices
5394 	 */
5395 	for (error = 0, i = 0,
5396 	     dinfo = STAILQ_FIRST(devlist_head);
5397 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5398 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5399 		/* Populate pd_name and pd_unit */
5400 		name = NULL;
5401 		if (dinfo->cfg.dev)
5402 			name = device_get_name(dinfo->cfg.dev);
5403 
5404 		p = &dinfo->conf;
5405 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5406 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5407 			(name && *name) ? name : "none",
5408 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5409 			none_count++,
5410 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5411 			p->pc_sel.pc_func, (p->pc_class << 16) |
5412 			(p->pc_subclass << 8) | p->pc_progif,
5413 			(p->pc_subdevice << 16) | p->pc_subvendor,
5414 			(p->pc_device << 16) | p->pc_vendor,
5415 			p->pc_revid, p->pc_hdr);
5416 	}
5417 }
5418 #endif /* DDB */
5419 
5420 struct resource *
5421 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5422     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5423     u_int flags)
5424 {
5425 	struct pci_devinfo *dinfo = device_get_ivars(child);
5426 	struct resource_list *rl = &dinfo->resources;
5427 	struct resource *res;
5428 	struct pci_map *pm;
5429 	uint16_t cmd;
5430 	pci_addr_t map, testval;
5431 	int mapsize;
5432 
5433 	res = NULL;
5434 
5435 	/* If rid is managed by EA, ignore it */
5436 	if (pci_ea_is_enabled(child, *rid))
5437 		goto out;
5438 
5439 	pm = pci_find_bar(child, *rid);
5440 	if (pm != NULL) {
5441 		/* This is a BAR that we failed to allocate earlier. */
5442 		mapsize = pm->pm_size;
5443 		map = pm->pm_value;
5444 	} else {
5445 		/*
5446 		 * Weed out the bogons, and figure out how large the
5447 		 * BAR/map is.  BARs that read back 0 here are bogus
5448 		 * and unimplemented.  Note: atapci in legacy mode are
5449 		 * special and handled elsewhere in the code.  If you
5450 		 * have a atapci device in legacy mode and it fails
5451 		 * here, that other code is broken.
5452 		 */
5453 		pci_read_bar(child, *rid, &map, &testval, NULL);
5454 
5455 		/*
5456 		 * Determine the size of the BAR and ignore BARs with a size
5457 		 * of 0.  Device ROM BARs use a different mask value.
5458 		 */
5459 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5460 			mapsize = pci_romsize(testval);
5461 		else
5462 			mapsize = pci_mapsize(testval);
5463 		if (mapsize == 0)
5464 			goto out;
5465 		pm = pci_add_bar(child, *rid, map, mapsize);
5466 	}
5467 
5468 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5469 		if (type != SYS_RES_MEMORY) {
5470 			if (bootverbose)
5471 				device_printf(dev,
5472 				    "child %s requested type %d for rid %#x,"
5473 				    " but the BAR says it is an memio\n",
5474 				    device_get_nameunit(child), type, *rid);
5475 			goto out;
5476 		}
5477 	} else {
5478 		if (type != SYS_RES_IOPORT) {
5479 			if (bootverbose)
5480 				device_printf(dev,
5481 				    "child %s requested type %d for rid %#x,"
5482 				    " but the BAR says it is an ioport\n",
5483 				    device_get_nameunit(child), type, *rid);
5484 			goto out;
5485 		}
5486 	}
5487 
5488 	/*
5489 	 * For real BARs, we need to override the size that
5490 	 * the driver requests, because that's what the BAR
5491 	 * actually uses and we would otherwise have a
5492 	 * situation where we might allocate the excess to
5493 	 * another driver, which won't work.
5494 	 */
5495 	count = ((pci_addr_t)1 << mapsize) * num;
5496 	if (RF_ALIGNMENT(flags) < mapsize)
5497 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5498 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5499 		flags |= RF_PREFETCHABLE;
5500 
5501 	/*
5502 	 * Allocate enough resource, and then write back the
5503 	 * appropriate BAR for that resource.
5504 	 */
5505 	resource_list_add(rl, type, *rid, start, end, count);
5506 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5507 	    count, flags & ~RF_ACTIVE);
5508 	if (res == NULL) {
5509 		resource_list_delete(rl, type, *rid);
5510 		device_printf(child,
5511 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5512 		    count, *rid, type, start, end);
5513 		goto out;
5514 	}
5515 	if (bootverbose)
5516 		device_printf(child,
5517 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5518 		    count, *rid, type, rman_get_start(res));
5519 
5520 	/* Disable decoding via the CMD register before updating the BAR */
5521 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5522 	pci_write_config(child, PCIR_COMMAND,
5523 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5524 
5525 	map = rman_get_start(res);
5526 	pci_write_bar(child, pm, map);
5527 
5528 	/* Restore the original value of the CMD register */
5529 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5530 out:
5531 	return (res);
5532 }
5533 
5534 struct resource *
5535 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5536     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5537     u_int flags)
5538 {
5539 	struct pci_devinfo *dinfo;
5540 	struct resource_list *rl;
5541 	struct resource_list_entry *rle;
5542 	struct resource *res;
5543 	pcicfgregs *cfg;
5544 
5545 	/*
5546 	 * Perform lazy resource allocation
5547 	 */
5548 	dinfo = device_get_ivars(child);
5549 	rl = &dinfo->resources;
5550 	cfg = &dinfo->cfg;
5551 	switch (type) {
5552 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
5553 	case PCI_RES_BUS:
5554 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5555 		    flags));
5556 #endif
5557 	case SYS_RES_IRQ:
5558 		/*
5559 		 * Can't alloc legacy interrupt once MSI messages have
5560 		 * been allocated.
5561 		 */
5562 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5563 		    cfg->msix.msix_alloc > 0))
5564 			return (NULL);
5565 
5566 		/*
5567 		 * If the child device doesn't have an interrupt
5568 		 * routed and is deserving of an interrupt, try to
5569 		 * assign it one.
5570 		 */
5571 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5572 		    (cfg->intpin != 0))
5573 			pci_assign_interrupt(dev, child, 0);
5574 		break;
5575 	case SYS_RES_IOPORT:
5576 	case SYS_RES_MEMORY:
5577 #ifdef NEW_PCIB
5578 		/*
5579 		 * PCI-PCI bridge I/O window resources are not BARs.
5580 		 * For those allocations just pass the request up the
5581 		 * tree.
5582 		 */
5583 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5584 			switch (*rid) {
5585 			case PCIR_IOBASEL_1:
5586 			case PCIR_MEMBASE_1:
5587 			case PCIR_PMBASEL_1:
5588 				/*
5589 				 * XXX: Should we bother creating a resource
5590 				 * list entry?
5591 				 */
5592 				return (bus_generic_alloc_resource(dev, child,
5593 				    type, rid, start, end, count, flags));
5594 			}
5595 		}
5596 #endif
5597 		/* Reserve resources for this BAR if needed. */
5598 		rle = resource_list_find(rl, type, *rid);
5599 		if (rle == NULL) {
5600 			res = pci_reserve_map(dev, child, type, rid, start, end,
5601 			    count, num, flags);
5602 			if (res == NULL)
5603 				return (NULL);
5604 		}
5605 	}
5606 	return (resource_list_alloc(rl, dev, child, type, rid,
5607 	    start, end, count, flags));
5608 }
5609 
5610 struct resource *
5611 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5612     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5613 {
5614 #ifdef PCI_IOV
5615 	struct pci_devinfo *dinfo;
5616 #endif
5617 
5618 	if (device_get_parent(child) != dev)
5619 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5620 		    type, rid, start, end, count, flags));
5621 
5622 #ifdef PCI_IOV
5623 	dinfo = device_get_ivars(child);
5624 	if (dinfo->cfg.flags & PCICFG_VF) {
5625 		switch (type) {
5626 		/* VFs can't have I/O BARs. */
5627 		case SYS_RES_IOPORT:
5628 			return (NULL);
5629 		case SYS_RES_MEMORY:
5630 			return (pci_vf_alloc_mem_resource(dev, child, rid,
5631 			    start, end, count, flags));
5632 		}
5633 
5634 		/* Fall through for other types of resource allocations. */
5635 	}
5636 #endif
5637 
5638 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5639 	    count, 1, flags));
5640 }
5641 
5642 int
5643 pci_release_resource(device_t dev, device_t child, int type, int rid,
5644     struct resource *r)
5645 {
5646 	struct pci_devinfo *dinfo;
5647 	struct resource_list *rl;
5648 	pcicfgregs *cfg;
5649 
5650 	if (device_get_parent(child) != dev)
5651 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
5652 		    type, rid, r));
5653 
5654 	dinfo = device_get_ivars(child);
5655 	cfg = &dinfo->cfg;
5656 
5657 #ifdef PCI_IOV
5658 	if (dinfo->cfg.flags & PCICFG_VF) {
5659 		switch (type) {
5660 		/* VFs can't have I/O BARs. */
5661 		case SYS_RES_IOPORT:
5662 			return (EDOOFUS);
5663 		case SYS_RES_MEMORY:
5664 			return (pci_vf_release_mem_resource(dev, child, rid,
5665 			    r));
5666 		}
5667 
5668 		/* Fall through for other types of resource allocations. */
5669 	}
5670 #endif
5671 
5672 #ifdef NEW_PCIB
5673 	/*
5674 	 * PCI-PCI bridge I/O window resources are not BARs.  For
5675 	 * those allocations just pass the request up the tree.
5676 	 */
5677 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5678 	    (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) {
5679 		switch (rid) {
5680 		case PCIR_IOBASEL_1:
5681 		case PCIR_MEMBASE_1:
5682 		case PCIR_PMBASEL_1:
5683 			return (bus_generic_release_resource(dev, child, type,
5684 			    rid, r));
5685 		}
5686 	}
5687 #endif
5688 
5689 	rl = &dinfo->resources;
5690 	return (resource_list_release(rl, dev, child, type, rid, r));
5691 }
5692 
5693 int
5694 pci_activate_resource(device_t dev, device_t child, int type, int rid,
5695     struct resource *r)
5696 {
5697 	struct pci_devinfo *dinfo;
5698 	int error;
5699 
5700 	error = bus_generic_activate_resource(dev, child, type, rid, r);
5701 	if (error)
5702 		return (error);
5703 
5704 	/* Enable decoding in the command register when activating BARs. */
5705 	if (device_get_parent(child) == dev) {
5706 		/* Device ROMs need their decoding explicitly enabled. */
5707 		dinfo = device_get_ivars(child);
5708 		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5709 			pci_write_bar(child, pci_find_bar(child, rid),
5710 			    rman_get_start(r) | PCIM_BIOS_ENABLE);
5711 		switch (type) {
5712 		case SYS_RES_IOPORT:
5713 		case SYS_RES_MEMORY:
5714 			error = PCI_ENABLE_IO(dev, child, type);
5715 			break;
5716 		}
5717 	}
5718 	return (error);
5719 }
5720 
5721 int
5722 pci_deactivate_resource(device_t dev, device_t child, int type,
5723     int rid, struct resource *r)
5724 {
5725 	struct pci_devinfo *dinfo;
5726 	int error;
5727 
5728 	error = bus_generic_deactivate_resource(dev, child, type, rid, r);
5729 	if (error)
5730 		return (error);
5731 
5732 	/* Disable decoding for device ROMs. */
5733 	if (device_get_parent(child) == dev) {
5734 		dinfo = device_get_ivars(child);
5735 		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5736 			pci_write_bar(child, pci_find_bar(child, rid),
5737 			    rman_get_start(r));
5738 	}
5739 	return (0);
5740 }
5741 
5742 void
5743 pci_child_deleted(device_t dev, device_t child)
5744 {
5745 	struct resource_list_entry *rle;
5746 	struct resource_list *rl;
5747 	struct pci_devinfo *dinfo;
5748 
5749 	dinfo = device_get_ivars(child);
5750 	rl = &dinfo->resources;
5751 
5752 	EVENTHANDLER_INVOKE(pci_delete_device, child);
5753 
5754 	/* Turn off access to resources we're about to free */
5755 	if (bus_child_present(child) != 0) {
5756 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5757 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5758 
5759 		pci_disable_busmaster(child);
5760 	}
5761 
5762 	/* Free all allocated resources */
5763 	STAILQ_FOREACH(rle, rl, link) {
5764 		if (rle->res) {
5765 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5766 			    resource_list_busy(rl, rle->type, rle->rid)) {
5767 				pci_printf(&dinfo->cfg,
5768 				    "Resource still owned, oops. "
5769 				    "(type=%d, rid=%d, addr=%lx)\n",
5770 				    rle->type, rle->rid,
5771 				    rman_get_start(rle->res));
5772 				bus_release_resource(child, rle->type, rle->rid,
5773 				    rle->res);
5774 			}
5775 			resource_list_unreserve(rl, dev, child, rle->type,
5776 			    rle->rid);
5777 		}
5778 	}
5779 	resource_list_free(rl);
5780 
5781 	pci_freecfg(dinfo);
5782 }
5783 
5784 void
5785 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5786 {
5787 	struct pci_devinfo *dinfo;
5788 	struct resource_list *rl;
5789 	struct resource_list_entry *rle;
5790 
5791 	if (device_get_parent(child) != dev)
5792 		return;
5793 
5794 	dinfo = device_get_ivars(child);
5795 	rl = &dinfo->resources;
5796 	rle = resource_list_find(rl, type, rid);
5797 	if (rle == NULL)
5798 		return;
5799 
5800 	if (rle->res) {
5801 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5802 		    resource_list_busy(rl, type, rid)) {
5803 			device_printf(dev, "delete_resource: "
5804 			    "Resource still owned by child, oops. "
5805 			    "(type=%d, rid=%d, addr=%jx)\n",
5806 			    type, rid, rman_get_start(rle->res));
5807 			return;
5808 		}
5809 		resource_list_unreserve(rl, dev, child, type, rid);
5810 	}
5811 	resource_list_delete(rl, type, rid);
5812 }
5813 
5814 struct resource_list *
5815 pci_get_resource_list (device_t dev, device_t child)
5816 {
5817 	struct pci_devinfo *dinfo = device_get_ivars(child);
5818 
5819 	return (&dinfo->resources);
5820 }
5821 
5822 #ifdef IOMMU
5823 bus_dma_tag_t
5824 pci_get_dma_tag(device_t bus, device_t dev)
5825 {
5826 	bus_dma_tag_t tag;
5827 	struct pci_softc *sc;
5828 
5829 	if (device_get_parent(dev) == bus) {
5830 		/* try iommu and return if it works */
5831 		tag = iommu_get_dma_tag(bus, dev);
5832 	} else
5833 		tag = NULL;
5834 	if (tag == NULL) {
5835 		sc = device_get_softc(bus);
5836 		tag = sc->sc_dma_tag;
5837 	}
5838 	return (tag);
5839 }
5840 #else
5841 bus_dma_tag_t
5842 pci_get_dma_tag(device_t bus, device_t dev)
5843 {
5844 	struct pci_softc *sc = device_get_softc(bus);
5845 
5846 	return (sc->sc_dma_tag);
5847 }
5848 #endif
5849 
5850 uint32_t
5851 pci_read_config_method(device_t dev, device_t child, int reg, int width)
5852 {
5853 	struct pci_devinfo *dinfo = device_get_ivars(child);
5854 	pcicfgregs *cfg = &dinfo->cfg;
5855 
5856 #ifdef PCI_IOV
5857 	/*
5858 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
5859 	 * emulate them here.
5860 	 */
5861 	if (cfg->flags & PCICFG_VF) {
5862 		if (reg == PCIR_VENDOR) {
5863 			switch (width) {
5864 			case 4:
5865 				return (cfg->device << 16 | cfg->vendor);
5866 			case 2:
5867 				return (cfg->vendor);
5868 			case 1:
5869 				return (cfg->vendor & 0xff);
5870 			default:
5871 				return (0xffffffff);
5872 			}
5873 		} else if (reg == PCIR_DEVICE) {
5874 			switch (width) {
5875 			/* Note that an unaligned 4-byte read is an error. */
5876 			case 2:
5877 				return (cfg->device);
5878 			case 1:
5879 				return (cfg->device & 0xff);
5880 			default:
5881 				return (0xffffffff);
5882 			}
5883 		}
5884 	}
5885 #endif
5886 
5887 	return (PCIB_READ_CONFIG(device_get_parent(dev),
5888 	    cfg->bus, cfg->slot, cfg->func, reg, width));
5889 }
5890 
5891 void
5892 pci_write_config_method(device_t dev, device_t child, int reg,
5893     uint32_t val, int width)
5894 {
5895 	struct pci_devinfo *dinfo = device_get_ivars(child);
5896 	pcicfgregs *cfg = &dinfo->cfg;
5897 
5898 	PCIB_WRITE_CONFIG(device_get_parent(dev),
5899 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
5900 }
5901 
5902 int
5903 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
5904 {
5905 
5906 	sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
5907 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
5908 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
5909 	return (0);
5910 }
5911 
5912 int
5913 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
5914 {
5915 	struct pci_devinfo *dinfo;
5916 	pcicfgregs *cfg;
5917 
5918 	dinfo = device_get_ivars(child);
5919 	cfg = &dinfo->cfg;
5920 	sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
5921 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
5922 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
5923 	    cfg->progif);
5924 	return (0);
5925 }
5926 
5927 int
5928 pci_get_device_path_method(device_t bus, device_t child, const char *locator,
5929     struct sbuf *sb)
5930 {
5931 	device_t parent = device_get_parent(bus);
5932 	int rv;
5933 
5934 	if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
5935 		rv = bus_generic_get_device_path(parent, bus, locator, sb);
5936 		if (rv == 0) {
5937 			sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child),
5938 			    pci_get_function(child));
5939 		}
5940 		return (0);
5941 	}
5942 	return (bus_generic_get_device_path(bus, child, locator, sb));
5943 }
5944 
5945 int
5946 pci_assign_interrupt_method(device_t dev, device_t child)
5947 {
5948 	struct pci_devinfo *dinfo = device_get_ivars(child);
5949 	pcicfgregs *cfg = &dinfo->cfg;
5950 
5951 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
5952 	    cfg->intpin));
5953 }
5954 
5955 static void
5956 pci_lookup(void *arg, const char *name, device_t *dev)
5957 {
5958 	long val;
5959 	char *end;
5960 	int domain, bus, slot, func;
5961 
5962 	if (*dev != NULL)
5963 		return;
5964 
5965 	/*
5966 	 * Accept pciconf-style selectors of either pciD:B:S:F or
5967 	 * pciB:S:F.  In the latter case, the domain is assumed to
5968 	 * be zero.
5969 	 */
5970 	if (strncmp(name, "pci", 3) != 0)
5971 		return;
5972 	val = strtol(name + 3, &end, 10);
5973 	if (val < 0 || val > INT_MAX || *end != ':')
5974 		return;
5975 	domain = val;
5976 	val = strtol(end + 1, &end, 10);
5977 	if (val < 0 || val > INT_MAX || *end != ':')
5978 		return;
5979 	bus = val;
5980 	val = strtol(end + 1, &end, 10);
5981 	if (val < 0 || val > INT_MAX)
5982 		return;
5983 	slot = val;
5984 	if (*end == ':') {
5985 		val = strtol(end + 1, &end, 10);
5986 		if (val < 0 || val > INT_MAX || *end != '\0')
5987 			return;
5988 		func = val;
5989 	} else if (*end == '\0') {
5990 		func = slot;
5991 		slot = bus;
5992 		bus = domain;
5993 		domain = 0;
5994 	} else
5995 		return;
5996 
5997 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
5998 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
5999 		return;
6000 
6001 	*dev = pci_find_dbsf(domain, bus, slot, func);
6002 }
6003 
6004 static int
6005 pci_modevent(module_t mod, int what, void *arg)
6006 {
6007 	static struct cdev *pci_cdev;
6008 	static eventhandler_tag tag;
6009 
6010 	switch (what) {
6011 	case MOD_LOAD:
6012 		STAILQ_INIT(&pci_devq);
6013 		pci_generation = 0;
6014 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
6015 		    "pci");
6016 		pci_load_vendor_data();
6017 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
6018 		    1000);
6019 		break;
6020 
6021 	case MOD_UNLOAD:
6022 		if (tag != NULL)
6023 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
6024 		destroy_dev(pci_cdev);
6025 		break;
6026 	}
6027 
6028 	return (0);
6029 }
6030 
6031 static void
6032 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
6033 {
6034 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
6035 	struct pcicfg_pcie *cfg;
6036 	int version, pos;
6037 
6038 	cfg = &dinfo->cfg.pcie;
6039 	pos = cfg->pcie_location;
6040 
6041 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6042 
6043 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
6044 
6045 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6046 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6047 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6048 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
6049 
6050 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6051 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6052 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6053 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
6054 
6055 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6056 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6057 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
6058 
6059 	if (version > 1) {
6060 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
6061 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
6062 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
6063 	}
6064 #undef WREG
6065 }
6066 
6067 static void
6068 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
6069 {
6070 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
6071 	    dinfo->cfg.pcix.pcix_command,  2);
6072 }
6073 
6074 void
6075 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
6076 {
6077 
6078 	/*
6079 	 * Restore the device to full power mode.  We must do this
6080 	 * before we restore the registers because moving from D3 to
6081 	 * D0 will cause the chip's BARs and some other registers to
6082 	 * be reset to some unknown power on reset values.  Cut down
6083 	 * the noise on boot by doing nothing if we are already in
6084 	 * state D0.
6085 	 */
6086 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
6087 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6088 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
6089 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
6090 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
6091 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
6092 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
6093 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
6094 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6095 	case PCIM_HDRTYPE_NORMAL:
6096 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
6097 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
6098 		break;
6099 	case PCIM_HDRTYPE_BRIDGE:
6100 		pci_write_config(dev, PCIR_SECLAT_1,
6101 		    dinfo->cfg.bridge.br_seclat, 1);
6102 		pci_write_config(dev, PCIR_SUBBUS_1,
6103 		    dinfo->cfg.bridge.br_subbus, 1);
6104 		pci_write_config(dev, PCIR_SECBUS_1,
6105 		    dinfo->cfg.bridge.br_secbus, 1);
6106 		pci_write_config(dev, PCIR_PRIBUS_1,
6107 		    dinfo->cfg.bridge.br_pribus, 1);
6108 		pci_write_config(dev, PCIR_BRIDGECTL_1,
6109 		    dinfo->cfg.bridge.br_control, 2);
6110 		break;
6111 	case PCIM_HDRTYPE_CARDBUS:
6112 		pci_write_config(dev, PCIR_SECLAT_2,
6113 		    dinfo->cfg.bridge.br_seclat, 1);
6114 		pci_write_config(dev, PCIR_SUBBUS_2,
6115 		    dinfo->cfg.bridge.br_subbus, 1);
6116 		pci_write_config(dev, PCIR_SECBUS_2,
6117 		    dinfo->cfg.bridge.br_secbus, 1);
6118 		pci_write_config(dev, PCIR_PRIBUS_2,
6119 		    dinfo->cfg.bridge.br_pribus, 1);
6120 		pci_write_config(dev, PCIR_BRIDGECTL_2,
6121 		    dinfo->cfg.bridge.br_control, 2);
6122 		break;
6123 	}
6124 	pci_restore_bars(dev);
6125 
6126 	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
6127 		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
6128 
6129 	/*
6130 	 * Restore extended capabilities for PCI-Express and PCI-X
6131 	 */
6132 	if (dinfo->cfg.pcie.pcie_location != 0)
6133 		pci_cfg_restore_pcie(dev, dinfo);
6134 	if (dinfo->cfg.pcix.pcix_location != 0)
6135 		pci_cfg_restore_pcix(dev, dinfo);
6136 
6137 	/* Restore MSI and MSI-X configurations if they are present. */
6138 	if (dinfo->cfg.msi.msi_location != 0)
6139 		pci_resume_msi(dev);
6140 	if (dinfo->cfg.msix.msix_location != 0)
6141 		pci_resume_msix(dev);
6142 
6143 #ifdef PCI_IOV
6144 	if (dinfo->cfg.iov != NULL)
6145 		pci_iov_cfg_restore(dev, dinfo);
6146 #endif
6147 }
6148 
6149 static void
6150 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6151 {
6152 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
6153 	struct pcicfg_pcie *cfg;
6154 	int version, pos;
6155 
6156 	cfg = &dinfo->cfg.pcie;
6157 	pos = cfg->pcie_location;
6158 
6159 	cfg->pcie_flags = RREG(PCIER_FLAGS);
6160 
6161 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6162 
6163 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6164 
6165 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6166 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6167 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6168 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6169 
6170 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6171 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6172 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6173 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6174 
6175 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6176 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6177 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6178 
6179 	if (version > 1) {
6180 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6181 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6182 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6183 	}
6184 #undef RREG
6185 }
6186 
6187 static void
6188 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6189 {
6190 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6191 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6192 }
6193 
6194 void
6195 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6196 {
6197 	uint32_t cls;
6198 	int ps;
6199 
6200 	/*
6201 	 * Some drivers apparently write to these registers w/o updating our
6202 	 * cached copy.  No harm happens if we update the copy, so do so here
6203 	 * so we can restore them.  The COMMAND register is modified by the
6204 	 * bus w/o updating the cache.  This should represent the normally
6205 	 * writable portion of the 'defined' part of type 0/1/2 headers.
6206 	 */
6207 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6208 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6209 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6210 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6211 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6212 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6213 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6214 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6215 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6216 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6217 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6218 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6219 	case PCIM_HDRTYPE_NORMAL:
6220 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6221 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6222 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6223 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6224 		break;
6225 	case PCIM_HDRTYPE_BRIDGE:
6226 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6227 		    PCIR_SECLAT_1, 1);
6228 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6229 		    PCIR_SUBBUS_1, 1);
6230 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6231 		    PCIR_SECBUS_1, 1);
6232 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6233 		    PCIR_PRIBUS_1, 1);
6234 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6235 		    PCIR_BRIDGECTL_1, 2);
6236 		break;
6237 	case PCIM_HDRTYPE_CARDBUS:
6238 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6239 		    PCIR_SECLAT_2, 1);
6240 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6241 		    PCIR_SUBBUS_2, 1);
6242 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6243 		    PCIR_SECBUS_2, 1);
6244 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6245 		    PCIR_PRIBUS_2, 1);
6246 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6247 		    PCIR_BRIDGECTL_2, 2);
6248 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6249 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6250 		break;
6251 	}
6252 
6253 	if (dinfo->cfg.pcie.pcie_location != 0)
6254 		pci_cfg_save_pcie(dev, dinfo);
6255 
6256 	if (dinfo->cfg.pcix.pcix_location != 0)
6257 		pci_cfg_save_pcix(dev, dinfo);
6258 
6259 #ifdef PCI_IOV
6260 	if (dinfo->cfg.iov != NULL)
6261 		pci_iov_cfg_save(dev, dinfo);
6262 #endif
6263 
6264 	/*
6265 	 * don't set the state for display devices, base peripherals and
6266 	 * memory devices since bad things happen when they are powered down.
6267 	 * We should (a) have drivers that can easily detach and (b) use
6268 	 * generic drivers for these devices so that some device actually
6269 	 * attaches.  We need to make sure that when we implement (a) we don't
6270 	 * power the device down on a reattach.
6271 	 */
6272 	cls = pci_get_class(dev);
6273 	if (!setstate)
6274 		return;
6275 	switch (pci_do_power_nodriver)
6276 	{
6277 		case 0:		/* NO powerdown at all */
6278 			return;
6279 		case 1:		/* Conservative about what to power down */
6280 			if (cls == PCIC_STORAGE)
6281 				return;
6282 			/*FALLTHROUGH*/
6283 		case 2:		/* Aggressive about what to power down */
6284 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6285 			    cls == PCIC_BASEPERIPH)
6286 				return;
6287 			/*FALLTHROUGH*/
6288 		case 3:		/* Power down everything */
6289 			break;
6290 	}
6291 	/*
6292 	 * PCI spec says we can only go into D3 state from D0 state.
6293 	 * Transition from D[12] into D0 before going to D3 state.
6294 	 */
6295 	ps = pci_get_powerstate(dev);
6296 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6297 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6298 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6299 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6300 }
6301 
6302 /* Wrapper APIs suitable for device driver use. */
6303 void
6304 pci_save_state(device_t dev)
6305 {
6306 	struct pci_devinfo *dinfo;
6307 
6308 	dinfo = device_get_ivars(dev);
6309 	pci_cfg_save(dev, dinfo, 0);
6310 }
6311 
6312 void
6313 pci_restore_state(device_t dev)
6314 {
6315 	struct pci_devinfo *dinfo;
6316 
6317 	dinfo = device_get_ivars(dev);
6318 	pci_cfg_restore(dev, dinfo);
6319 }
6320 
6321 static int
6322 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6323     uintptr_t *id)
6324 {
6325 
6326 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6327 }
6328 
6329 /* Find the upstream port of a given PCI device in a root complex. */
6330 device_t
6331 pci_find_pcie_root_port(device_t dev)
6332 {
6333 	struct pci_devinfo *dinfo;
6334 	devclass_t pci_class;
6335 	device_t pcib, bus;
6336 
6337 	pci_class = devclass_find("pci");
6338 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6339 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6340 
6341 	/*
6342 	 * Walk the bridge hierarchy until we find a PCI-e root
6343 	 * port or a non-PCI device.
6344 	 */
6345 	for (;;) {
6346 		bus = device_get_parent(dev);
6347 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6348 		    device_get_nameunit(dev)));
6349 
6350 		pcib = device_get_parent(bus);
6351 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6352 		    device_get_nameunit(bus)));
6353 
6354 		/*
6355 		 * pcib's parent must be a PCI bus for this to be a
6356 		 * PCI-PCI bridge.
6357 		 */
6358 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6359 			return (NULL);
6360 
6361 		dinfo = device_get_ivars(pcib);
6362 		if (dinfo->cfg.pcie.pcie_location != 0 &&
6363 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6364 			return (pcib);
6365 
6366 		dev = pcib;
6367 	}
6368 }
6369 
6370 /*
6371  * Wait for pending transactions to complete on a PCI-express function.
6372  *
6373  * The maximum delay is specified in milliseconds in max_delay.  Note
6374  * that this function may sleep.
6375  *
6376  * Returns true if the function is idle and false if the timeout is
6377  * exceeded.  If dev is not a PCI-express function, this returns true.
6378  */
6379 bool
6380 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6381 {
6382 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6383 	uint16_t sta;
6384 	int cap;
6385 
6386 	cap = dinfo->cfg.pcie.pcie_location;
6387 	if (cap == 0)
6388 		return (true);
6389 
6390 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6391 	while (sta & PCIEM_STA_TRANSACTION_PND) {
6392 		if (max_delay == 0)
6393 			return (false);
6394 
6395 		/* Poll once every 100 milliseconds up to the timeout. */
6396 		if (max_delay > 100) {
6397 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6398 			max_delay -= 100;
6399 		} else {
6400 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6401 			    C_HARDCLOCK);
6402 			max_delay = 0;
6403 		}
6404 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6405 	}
6406 
6407 	return (true);
6408 }
6409 
6410 /*
6411  * Determine the maximum Completion Timeout in microseconds.
6412  *
6413  * For non-PCI-express functions this returns 0.
6414  */
6415 int
6416 pcie_get_max_completion_timeout(device_t dev)
6417 {
6418 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6419 	int cap;
6420 
6421 	cap = dinfo->cfg.pcie.pcie_location;
6422 	if (cap == 0)
6423 		return (0);
6424 
6425 	/*
6426 	 * Functions using the 1.x spec use the default timeout range of
6427 	 * 50 microseconds to 50 milliseconds.  Functions that do not
6428 	 * support programmable timeouts also use this range.
6429 	 */
6430 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6431 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6432 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6433 		return (50 * 1000);
6434 
6435 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6436 	    PCIEM_CTL2_COMP_TIMO_VAL) {
6437 	case PCIEM_CTL2_COMP_TIMO_100US:
6438 		return (100);
6439 	case PCIEM_CTL2_COMP_TIMO_10MS:
6440 		return (10 * 1000);
6441 	case PCIEM_CTL2_COMP_TIMO_55MS:
6442 		return (55 * 1000);
6443 	case PCIEM_CTL2_COMP_TIMO_210MS:
6444 		return (210 * 1000);
6445 	case PCIEM_CTL2_COMP_TIMO_900MS:
6446 		return (900 * 1000);
6447 	case PCIEM_CTL2_COMP_TIMO_3500MS:
6448 		return (3500 * 1000);
6449 	case PCIEM_CTL2_COMP_TIMO_13S:
6450 		return (13 * 1000 * 1000);
6451 	case PCIEM_CTL2_COMP_TIMO_64S:
6452 		return (64 * 1000 * 1000);
6453 	default:
6454 		return (50 * 1000);
6455 	}
6456 }
6457 
6458 void
6459 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6460 {
6461 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6462 	const char *s;
6463 	int aer;
6464 	uint32_t r, r1;
6465 	uint16_t rs;
6466 
6467 	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6468 		s = "Correctable";
6469 	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6470 		s = "Uncorrectable (Non-Fatal)";
6471 	else
6472 		s = "Uncorrectable (Fatal)";
6473 	device_printf(dev, "%s PCIe error reported by APEI\n", s);
6474 	if (aerp) {
6475 		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6476 			r = le32dec(aerp + PCIR_AER_COR_STATUS);
6477 			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6478 		} else {
6479 			r = le32dec(aerp + PCIR_AER_UC_STATUS);
6480 			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6481 		}
6482 		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6483 		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6484 			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6485 			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6486 			printf(" severity 0x%08x first %d\n",
6487 			    r, rs & 0x1f);
6488 		} else
6489 			printf("\n");
6490 	}
6491 
6492 	/* As kind of recovery just report and clear the error statuses. */
6493 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6494 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6495 		if (r != 0) {
6496 			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6497 			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6498 		}
6499 
6500 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6501 		if (r != 0) {
6502 			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6503 			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6504 		}
6505 	}
6506 	if (dinfo->cfg.pcie.pcie_location != 0) {
6507 		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6508 		    PCIER_DEVICE_STA, 2);
6509 		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6510 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6511 		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6512 			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6513 			    PCIER_DEVICE_STA, rs, 2);
6514 			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6515 		}
6516 	}
6517 }
6518 
6519 /*
6520  * Perform a Function Level Reset (FLR) on a device.
6521  *
6522  * This function first waits for any pending transactions to complete
6523  * within the timeout specified by max_delay.  If transactions are
6524  * still pending, the function will return false without attempting a
6525  * reset.
6526  *
6527  * If dev is not a PCI-express function or does not support FLR, this
6528  * function returns false.
6529  *
6530  * Note that no registers are saved or restored.  The caller is
6531  * responsible for saving and restoring any registers including
6532  * PCI-standard registers via pci_save_state() and
6533  * pci_restore_state().
6534  */
6535 bool
6536 pcie_flr(device_t dev, u_int max_delay, bool force)
6537 {
6538 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6539 	uint16_t cmd, ctl;
6540 	int compl_delay;
6541 	int cap;
6542 
6543 	cap = dinfo->cfg.pcie.pcie_location;
6544 	if (cap == 0)
6545 		return (false);
6546 
6547 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6548 		return (false);
6549 
6550 	/*
6551 	 * Disable busmastering to prevent generation of new
6552 	 * transactions while waiting for the device to go idle.  If
6553 	 * the idle timeout fails, the command register is restored
6554 	 * which will re-enable busmastering.
6555 	 */
6556 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6557 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6558 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6559 		if (!force) {
6560 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6561 			return (false);
6562 		}
6563 		pci_printf(&dinfo->cfg,
6564 		    "Resetting with transactions pending after %d ms\n",
6565 		    max_delay);
6566 
6567 		/*
6568 		 * Extend the post-FLR delay to cover the maximum
6569 		 * Completion Timeout delay of anything in flight
6570 		 * during the FLR delay.  Enforce a minimum delay of
6571 		 * at least 10ms.
6572 		 */
6573 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6574 		if (compl_delay < 10)
6575 			compl_delay = 10;
6576 	} else
6577 		compl_delay = 0;
6578 
6579 	/* Initiate the reset. */
6580 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6581 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6582 	    PCIEM_CTL_INITIATE_FLR, 2);
6583 
6584 	/* Wait for 100ms. */
6585 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6586 
6587 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6588 	    PCIEM_STA_TRANSACTION_PND)
6589 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6590 	return (true);
6591 }
6592 
6593 /*
6594  * Attempt a power-management reset by cycling the device in/out of D3
6595  * state.  PCI spec says we can only go into D3 state from D0 state.
6596  * Transition from D[12] into D0 before going to D3 state.
6597  */
6598 int
6599 pci_power_reset(device_t dev)
6600 {
6601 	int ps;
6602 
6603 	ps = pci_get_powerstate(dev);
6604 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6605 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6606 	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6607 	pci_set_powerstate(dev, ps);
6608 	return (0);
6609 }
6610 
6611 /*
6612  * Try link drop and retrain of the downstream port of upstream
6613  * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6614  * cause Conventional Hot reset of the device in the slot.
6615  * Alternative, for PCIe, could be the secondary bus reset initiatied
6616  * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6617  */
6618 int
6619 pcie_link_reset(device_t port, int pcie_location)
6620 {
6621 	uint16_t v;
6622 
6623 	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6624 	v |= PCIEM_LINK_CTL_LINK_DIS;
6625 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6626 	pause_sbt("pcier1", mstosbt(20), 0, 0);
6627 	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6628 	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6629 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6630 	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6631 	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6632 	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6633 }
6634 
6635 static int
6636 pci_reset_post(device_t dev, device_t child)
6637 {
6638 
6639 	if (dev == device_get_parent(child))
6640 		pci_restore_state(child);
6641 	return (0);
6642 }
6643 
6644 static int
6645 pci_reset_prepare(device_t dev, device_t child)
6646 {
6647 
6648 	if (dev == device_get_parent(child))
6649 		pci_save_state(child);
6650 	return (0);
6651 }
6652 
6653 static int
6654 pci_reset_child(device_t dev, device_t child, int flags)
6655 {
6656 	int error;
6657 
6658 	if (dev == NULL || device_get_parent(child) != dev)
6659 		return (0);
6660 	if ((flags & DEVF_RESET_DETACH) != 0) {
6661 		error = device_get_state(child) == DS_ATTACHED ?
6662 		    device_detach(child) : 0;
6663 	} else {
6664 		error = BUS_SUSPEND_CHILD(dev, child);
6665 	}
6666 	if (error == 0) {
6667 		if (!pcie_flr(child, 1000, false)) {
6668 			error = BUS_RESET_PREPARE(dev, child);
6669 			if (error == 0)
6670 				pci_power_reset(child);
6671 			BUS_RESET_POST(dev, child);
6672 		}
6673 		if ((flags & DEVF_RESET_DETACH) != 0)
6674 			device_probe_and_attach(child);
6675 		else
6676 			BUS_RESUME_CHILD(dev, child);
6677 	}
6678 	return (error);
6679 }
6680 
6681 const struct pci_device_table *
6682 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6683 {
6684 	bool match;
6685 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6686 
6687 	vendor = pci_get_vendor(child);
6688 	device = pci_get_device(child);
6689 	subvendor = pci_get_subvendor(child);
6690 	subdevice = pci_get_subdevice(child);
6691 	class = pci_get_class(child);
6692 	subclass = pci_get_subclass(child);
6693 	revid = pci_get_revid(child);
6694 	while (nelt-- > 0) {
6695 		match = true;
6696 		if (id->match_flag_vendor)
6697 			match &= vendor == id->vendor;
6698 		if (id->match_flag_device)
6699 			match &= device == id->device;
6700 		if (id->match_flag_subvendor)
6701 			match &= subvendor == id->subvendor;
6702 		if (id->match_flag_subdevice)
6703 			match &= subdevice == id->subdevice;
6704 		if (id->match_flag_class)
6705 			match &= class == id->class_id;
6706 		if (id->match_flag_subclass)
6707 			match &= subclass == id->subclass;
6708 		if (id->match_flag_revid)
6709 			match &= revid == id->revid;
6710 		if (match)
6711 			return (id);
6712 		id++;
6713 	}
6714 	return (NULL);
6715 }
6716 
6717 static void
6718 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6719 {
6720 	const char *dev_name;
6721 	device_t dev;
6722 
6723 	dev = dinfo->cfg.dev;
6724 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6725 	    dinfo->cfg.slot, dinfo->cfg.func);
6726 	dev_name = device_get_name(dev);
6727 	if (dev_name != NULL)
6728 		printf(" (%s%d)", dev_name, device_get_unit(dev));
6729 }
6730 
6731 void
6732 pci_print_faulted_dev(void)
6733 {
6734 	struct pci_devinfo *dinfo;
6735 	device_t dev;
6736 	int aer, i;
6737 	uint32_t r1, r2;
6738 	uint16_t status;
6739 
6740 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6741 		dev = dinfo->cfg.dev;
6742 		status = pci_read_config(dev, PCIR_STATUS, 2);
6743 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6744 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6745 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6746 		if (status != 0) {
6747 			pci_print_faulted_dev_name(dinfo);
6748 			printf(" error 0x%04x\n", status);
6749 		}
6750 		if (dinfo->cfg.pcie.pcie_location != 0) {
6751 			status = pci_read_config(dev,
6752 			    dinfo->cfg.pcie.pcie_location +
6753 			    PCIER_DEVICE_STA, 2);
6754 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6755 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6756 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6757 				pci_print_faulted_dev_name(dinfo);
6758 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6759 				    pci_read_config(dev,
6760 				    dinfo->cfg.pcie.pcie_location +
6761 				    PCIER_DEVICE_CTL, 2),
6762 				    status);
6763 			}
6764 		}
6765 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6766 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6767 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6768 			if (r1 != 0 || r2 != 0) {
6769 				pci_print_faulted_dev_name(dinfo);
6770 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6771 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6772 				    r1, pci_read_config(dev, aer +
6773 				    PCIR_AER_UC_MASK, 4),
6774 				    pci_read_config(dev, aer +
6775 				    PCIR_AER_UC_SEVERITY, 4),
6776 				    r2, pci_read_config(dev, aer +
6777 				    PCIR_AER_COR_MASK, 4),
6778 				    pci_read_config(dev, aer +
6779 				    PCIR_AER_CAP_CONTROL, 4));
6780 				for (i = 0; i < 4; i++) {
6781 					r1 = pci_read_config(dev, aer +
6782 					    PCIR_AER_HEADER_LOG + i * 4, 4);
6783 					printf("    HL%d: 0x%08x\n", i, r1);
6784 				}
6785 			}
6786 		}
6787 	}
6788 }
6789 
6790 #ifdef DDB
6791 DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db)
6792 {
6793 
6794 	pci_print_faulted_dev();
6795 }
6796 
6797 static void
6798 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6799 {
6800 	device_t dev;
6801 	int aer;
6802 	uint32_t r;
6803 
6804 	dev = dinfo->cfg.dev;
6805 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6806 	    PCIER_DEVICE_STA, 2);
6807 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6808 	    PCIER_DEVICE_STA, r, 2);
6809 
6810 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6811 		return;
6812 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6813 	if (r != 0)
6814 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6815 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6816 	if (r != 0)
6817 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6818 }
6819 
6820 DB_COMMAND(pci_clearerr, db_pci_clearerr)
6821 {
6822 	struct pci_devinfo *dinfo;
6823 	device_t dev;
6824 	uint16_t status, status1;
6825 
6826 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6827 		dev = dinfo->cfg.dev;
6828 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
6829 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6830 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6831 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6832 		if (status1 != 0) {
6833 			status &= ~status1;
6834 			pci_write_config(dev, PCIR_STATUS, status, 2);
6835 		}
6836 		if (dinfo->cfg.pcie.pcie_location != 0)
6837 			db_clear_pcie_errors(dinfo);
6838 	}
6839 }
6840 #endif
6841