xref: /freebsd/sys/dev/pci/pci.c (revision 44096ebd22ddd0081a357011714eff8963614b65)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6  * Copyright (c) 2000, BSDi
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_acpi.h"
33 #include "opt_iommu.h"
34 #include "opt_bus.h"
35 
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/endian.h>
39 #include <sys/eventhandler.h>
40 #include <sys/fcntl.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/linker.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 #include <sys/taskqueue.h>
51 #include <sys/tree.h>
52 
53 #include <vm/vm.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_extern.h>
56 
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 #include <machine/stdarg.h>
62 
63 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
64 #include <machine/intr_machdep.h>
65 #endif
66 
67 #include <sys/pciio.h>
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pci_private.h>
71 
72 #ifdef PCI_IOV
73 #include <sys/nv.h>
74 #include <dev/pci/pci_iov_private.h>
75 #endif
76 
77 #include <dev/usb/controller/xhcireg.h>
78 #include <dev/usb/controller/ehcireg.h>
79 #include <dev/usb/controller/ohcireg.h>
80 #include <dev/usb/controller/uhcireg.h>
81 
82 #include <dev/iommu/iommu.h>
83 
84 #include "pcib_if.h"
85 #include "pci_if.h"
86 
87 #define	PCIR_IS_BIOS(cfg, reg)						\
88 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
89 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
90 
91 static device_probe_t	pci_probe;
92 
93 static bus_reset_post_t pci_reset_post;
94 static bus_reset_prepare_t pci_reset_prepare;
95 static bus_reset_child_t pci_reset_child;
96 static bus_hint_device_unit_t pci_hint_device_unit;
97 static bus_remap_intr_t pci_remap_intr_method;
98 
99 static pci_get_id_t	pci_get_id_method;
100 
101 static int		pci_has_quirk(uint32_t devid, int quirk);
102 static pci_addr_t	pci_mapbase(uint64_t mapreg);
103 static const char	*pci_maptype(uint64_t mapreg);
104 static int		pci_maprange(uint64_t mapreg);
105 static pci_addr_t	pci_rombase(uint64_t mapreg);
106 static int		pci_romsize(uint64_t testval);
107 static void		pci_fixancient(pcicfgregs *cfg);
108 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
109 
110 static int		pci_porten(device_t dev);
111 static int		pci_memen(device_t dev);
112 static void		pci_assign_interrupt(device_t bus, device_t dev,
113 			    int force_route);
114 static int		pci_add_map(device_t bus, device_t dev, int reg,
115 			    struct resource_list *rl, int force, int prefetch);
116 static void		pci_load_vendor_data(void);
117 static int		pci_describe_parse_line(char **ptr, int *vendor,
118 			    int *device, char **desc);
119 static char		*pci_describe_device(device_t dev);
120 static int		pci_modevent(module_t mod, int what, void *arg);
121 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
122 			    pcicfgregs *cfg);
123 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
124 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
125 			    int reg, uint32_t *data);
126 #if 0
127 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
128 			    int reg, uint32_t data);
129 #endif
130 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
131 static void		pci_mask_msix(device_t dev, u_int index);
132 static void		pci_unmask_msix(device_t dev, u_int index);
133 static int		pci_msi_blacklisted(void);
134 static int		pci_msix_blacklisted(void);
135 static void		pci_resume_msi(device_t dev);
136 static void		pci_resume_msix(device_t dev);
137 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
138     int b, int s, int f, uint16_t vid, uint16_t did);
139 
140 static device_method_t pci_methods[] = {
141 	/* Device interface */
142 	DEVMETHOD(device_probe,		pci_probe),
143 	DEVMETHOD(device_attach,	pci_attach),
144 	DEVMETHOD(device_detach,	pci_detach),
145 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
146 	DEVMETHOD(device_suspend,	bus_generic_suspend),
147 	DEVMETHOD(device_resume,	pci_resume),
148 
149 	/* Bus interface */
150 	DEVMETHOD(bus_print_child,	pci_print_child),
151 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
152 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
153 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
154 	DEVMETHOD(bus_driver_added,	pci_driver_added),
155 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
156 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
157 	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
158 	DEVMETHOD(bus_reset_post,	pci_reset_post),
159 	DEVMETHOD(bus_reset_child,	pci_reset_child),
160 
161 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
162 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
163 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
164 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
165 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
166 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
167 #ifdef PCI_IOV
168 	DEVMETHOD(bus_adjust_resource,	pci_adjust_resource),
169 #else
170 	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
171 #endif
172 	DEVMETHOD(bus_release_resource,	pci_release_resource),
173 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
174 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
175 #ifdef PCI_IOV
176 	DEVMETHOD(bus_map_resource,	pci_map_resource),
177 	DEVMETHOD(bus_unmap_resource,	pci_unmap_resource),
178 #endif
179 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
180 	DEVMETHOD(bus_child_detached,	pci_child_detached),
181 	DEVMETHOD(bus_child_pnpinfo,	pci_child_pnpinfo_method),
182 	DEVMETHOD(bus_child_location,	pci_child_location_method),
183 	DEVMETHOD(bus_get_device_path,	pci_get_device_path_method),
184 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
185 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
186 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
187 	DEVMETHOD(bus_resume_child,	pci_resume_child),
188 	DEVMETHOD(bus_rescan,		pci_rescan_method),
189 
190 	/* PCI interface */
191 	DEVMETHOD(pci_read_config,	pci_read_config_method),
192 	DEVMETHOD(pci_write_config,	pci_write_config_method),
193 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
194 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
195 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
196 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
197 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
198 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
199 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
200 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
201 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
202 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
203 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
204 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
205 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
206 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
207 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
208 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
209 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
210 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
211 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
212 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
213 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
214 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
215 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
216 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
217 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
218 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
219 	DEVMETHOD(pci_get_id,		pci_get_id_method),
220 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
221 	DEVMETHOD(pci_child_added,	pci_child_added_method),
222 #ifdef PCI_IOV
223 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
224 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
225 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
226 #endif
227 
228 	DEVMETHOD_END
229 };
230 
231 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
232 
233 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS);
234 MODULE_VERSION(pci, 1);
235 
236 static char	*pci_vendordata;
237 static size_t	pci_vendordata_size;
238 
239 struct pci_quirk {
240 	uint32_t devid;	/* Vendor/device of the card */
241 	int	type;
242 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
243 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
244 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
245 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
246 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
247 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
248 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
249 	int	arg1;
250 	int	arg2;
251 };
252 
253 static const struct pci_quirk pci_quirks[] = {
254 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
255 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
256 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
257 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
258 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
259 
260 	/*
261 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
262 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
263 	 */
264 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
265 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
266 
267 	/*
268 	 * MSI doesn't work on earlier Intel chipsets including
269 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
270 	 */
271 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
272 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
273 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
274 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
275 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
276 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
277 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
278 
279 	/*
280 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
281 	 * bridge.
282 	 */
283 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
284 
285 	/*
286 	 * Some virtualization environments emulate an older chipset
287 	 * but support MSI just fine.  QEMU uses the Intel 82440.
288 	 */
289 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
290 
291 	/*
292 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
293 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
294 	 * It prevents us from attaching hpet(4) when the bit is unset.
295 	 * Note this quirk only affects SB600 revision A13 and earlier.
296 	 * For SB600 A21 and later, firmware must set the bit to hide it.
297 	 * For SB700 and later, it is unused and hardcoded to zero.
298 	 */
299 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
300 
301 	/*
302 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
303 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
304 	 * of the command register is set.
305 	 */
306 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
307 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
308 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
309 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
310 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
311 
312 	/*
313 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
314 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
315 	 */
316 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
317 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
318 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
319 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
320 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
321 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
322 
323 	/*
324 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
325 	 * expected place.
326 	 */
327 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
328 	{ 0 }
329 };
330 
331 /* map register information */
332 #define	PCI_MAPMEM	0x01	/* memory map */
333 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
334 #define	PCI_MAPPORT	0x04	/* port map */
335 
336 struct devlist pci_devq;
337 uint32_t pci_generation;
338 uint32_t pci_numdevs = 0;
339 static int pcie_chipset, pcix_chipset;
340 
341 /* sysctl vars */
342 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
343     "PCI bus tuning parameters");
344 
345 static int pci_enable_io_modes = 1;
346 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
347     &pci_enable_io_modes, 1,
348     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
349     " enable these bits correctly.  We'd like to do this all the time, but"
350     " there are some peripherals that this causes problems with.");
351 
352 static int pci_do_realloc_bars = 1;
353 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
354     &pci_do_realloc_bars, 0,
355     "Attempt to allocate a new range for any BARs whose original "
356     "firmware-assigned ranges fail to allocate during the initial device scan.");
357 
358 static int pci_do_power_nodriver = 0;
359 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
360     &pci_do_power_nodriver, 0,
361     "Place a function into D3 state when no driver attaches to it.  0 means"
362     " disable.  1 means conservatively place devices into D3 state.  2 means"
363     " aggressively place devices into D3 state.  3 means put absolutely"
364     " everything in D3 state.");
365 
366 int pci_do_power_resume = 1;
367 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
368     &pci_do_power_resume, 1,
369   "Transition from D3 -> D0 on resume.");
370 
371 int pci_do_power_suspend = 1;
372 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
373     &pci_do_power_suspend, 1,
374   "Transition from D0 -> D3 on suspend.");
375 
376 static int pci_do_msi = 1;
377 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
378     "Enable support for MSI interrupts");
379 
380 static int pci_do_msix = 1;
381 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
382     "Enable support for MSI-X interrupts");
383 
384 static int pci_msix_rewrite_table = 0;
385 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
386     &pci_msix_rewrite_table, 0,
387     "Rewrite entire MSI-X table when updating MSI-X entries");
388 
389 static int pci_honor_msi_blacklist = 1;
390 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
391     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
392 
393 #if defined(__i386__) || defined(__amd64__)
394 static int pci_usb_takeover = 1;
395 #else
396 static int pci_usb_takeover = 0;
397 #endif
398 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
399     &pci_usb_takeover, 1,
400     "Enable early takeover of USB controllers. Disable this if you depend on"
401     " BIOS emulation of USB devices, that is you use USB devices (like"
402     " keyboard or mouse) but do not load USB drivers");
403 
404 static int pci_clear_bars;
405 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
406     "Ignore firmware-assigned resources for BARs.");
407 
408 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
409 static int pci_clear_buses;
410 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
411     "Ignore firmware-assigned bus numbers.");
412 #endif
413 
414 static int pci_enable_ari = 1;
415 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
416     0, "Enable support for PCIe Alternative RID Interpretation");
417 
418 int pci_enable_aspm = 1;
419 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
420     0, "Enable support for PCIe Active State Power Management");
421 
422 static int pci_clear_aer_on_attach = 0;
423 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
424     &pci_clear_aer_on_attach, 0,
425     "Clear port and device AER state on driver attach");
426 
427 static bool pci_enable_mps_tune = true;
428 SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN,
429     &pci_enable_mps_tune, 1,
430     "Enable tuning of MPS(maximum payload size)." );
431 
432 static int
433 pci_has_quirk(uint32_t devid, int quirk)
434 {
435 	const struct pci_quirk *q;
436 
437 	for (q = &pci_quirks[0]; q->devid; q++) {
438 		if (q->devid == devid && q->type == quirk)
439 			return (1);
440 	}
441 	return (0);
442 }
443 
444 /* Find a device_t by bus/slot/function in domain 0 */
445 
446 device_t
447 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
448 {
449 
450 	return (pci_find_dbsf(0, bus, slot, func));
451 }
452 
453 /* Find a device_t by domain/bus/slot/function */
454 
455 device_t
456 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
457 {
458 	struct pci_devinfo *dinfo = NULL;
459 
460 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
461 		if ((dinfo->cfg.domain == domain) &&
462 		    (dinfo->cfg.bus == bus) &&
463 		    (dinfo->cfg.slot == slot) &&
464 		    (dinfo->cfg.func == func)) {
465 			break;
466 		}
467 	}
468 
469 	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
470 }
471 
472 /* Find a device_t by vendor/device ID */
473 
474 device_t
475 pci_find_device(uint16_t vendor, uint16_t device)
476 {
477 	struct pci_devinfo *dinfo;
478 
479 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
480 		if ((dinfo->cfg.vendor == vendor) &&
481 		    (dinfo->cfg.device == device)) {
482 			return (dinfo->cfg.dev);
483 		}
484 	}
485 
486 	return (NULL);
487 }
488 
489 device_t
490 pci_find_class(uint8_t class, uint8_t subclass)
491 {
492 	struct pci_devinfo *dinfo;
493 
494 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
495 		if (dinfo->cfg.baseclass == class &&
496 		    dinfo->cfg.subclass == subclass) {
497 			return (dinfo->cfg.dev);
498 		}
499 	}
500 
501 	return (NULL);
502 }
503 
504 device_t
505 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
506 {
507 	struct pci_devinfo *dinfo;
508 	bool found = false;
509 
510 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
511 		if (from != NULL && found == false) {
512 			if (from != dinfo->cfg.dev)
513 				continue;
514 			found = true;
515 			continue;
516 		}
517 		if (dinfo->cfg.baseclass == class &&
518 		    dinfo->cfg.subclass == subclass) {
519 			return (dinfo->cfg.dev);
520 		}
521 	}
522 
523 	return (NULL);
524 }
525 
526 static int
527 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
528 {
529 	va_list ap;
530 	int retval;
531 
532 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
533 	    cfg->func);
534 	va_start(ap, fmt);
535 	retval += vprintf(fmt, ap);
536 	va_end(ap);
537 	return (retval);
538 }
539 
540 /* return base address of memory or port map */
541 
542 static pci_addr_t
543 pci_mapbase(uint64_t mapreg)
544 {
545 
546 	if (PCI_BAR_MEM(mapreg))
547 		return (mapreg & PCIM_BAR_MEM_BASE);
548 	else
549 		return (mapreg & PCIM_BAR_IO_BASE);
550 }
551 
552 /* return map type of memory or port map */
553 
554 static const char *
555 pci_maptype(uint64_t mapreg)
556 {
557 
558 	if (PCI_BAR_IO(mapreg))
559 		return ("I/O Port");
560 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
561 		return ("Prefetchable Memory");
562 	return ("Memory");
563 }
564 
565 /* return log2 of map size decoded for memory or port map */
566 
567 int
568 pci_mapsize(uint64_t testval)
569 {
570 	int ln2size;
571 
572 	testval = pci_mapbase(testval);
573 	ln2size = 0;
574 	if (testval != 0) {
575 		while ((testval & 1) == 0)
576 		{
577 			ln2size++;
578 			testval >>= 1;
579 		}
580 	}
581 	return (ln2size);
582 }
583 
584 /* return base address of device ROM */
585 
586 static pci_addr_t
587 pci_rombase(uint64_t mapreg)
588 {
589 
590 	return (mapreg & PCIM_BIOS_ADDR_MASK);
591 }
592 
593 /* return log2 of map size decided for device ROM */
594 
595 static int
596 pci_romsize(uint64_t testval)
597 {
598 	int ln2size;
599 
600 	testval = pci_rombase(testval);
601 	ln2size = 0;
602 	if (testval != 0) {
603 		while ((testval & 1) == 0)
604 		{
605 			ln2size++;
606 			testval >>= 1;
607 		}
608 	}
609 	return (ln2size);
610 }
611 
612 /* return log2 of address range supported by map register */
613 
614 static int
615 pci_maprange(uint64_t mapreg)
616 {
617 	int ln2range = 0;
618 
619 	if (PCI_BAR_IO(mapreg))
620 		ln2range = 32;
621 	else
622 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
623 		case PCIM_BAR_MEM_32:
624 			ln2range = 32;
625 			break;
626 		case PCIM_BAR_MEM_1MB:
627 			ln2range = 20;
628 			break;
629 		case PCIM_BAR_MEM_64:
630 			ln2range = 64;
631 			break;
632 		}
633 	return (ln2range);
634 }
635 
636 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
637 
638 static void
639 pci_fixancient(pcicfgregs *cfg)
640 {
641 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
642 		return;
643 
644 	/* PCI to PCI bridges use header type 1 */
645 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
646 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
647 }
648 
649 /* extract header type specific config data */
650 
651 static void
652 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
653 {
654 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
655 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
656 	case PCIM_HDRTYPE_NORMAL:
657 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
658 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
659 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
660 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
661 		cfg->nummaps	    = PCI_MAXMAPS_0;
662 		break;
663 	case PCIM_HDRTYPE_BRIDGE:
664 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
665 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
666 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
667 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
668 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
669 		cfg->nummaps	    = PCI_MAXMAPS_1;
670 		break;
671 	case PCIM_HDRTYPE_CARDBUS:
672 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
673 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
674 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
675 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
676 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
677 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
678 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
679 		cfg->nummaps	    = PCI_MAXMAPS_2;
680 		break;
681 	}
682 #undef REG
683 }
684 
685 /* read configuration header into pcicfgregs structure */
686 struct pci_devinfo *
687 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
688 {
689 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
690 	uint16_t vid, did;
691 
692 	vid = REG(PCIR_VENDOR, 2);
693 	if (vid == PCIV_INVALID)
694 		return (NULL);
695 
696 	did = REG(PCIR_DEVICE, 2);
697 
698 	return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
699 }
700 
701 struct pci_devinfo *
702 pci_alloc_devinfo_method(device_t dev)
703 {
704 
705 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
706 	    M_WAITOK | M_ZERO));
707 }
708 
709 static struct pci_devinfo *
710 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
711     uint16_t vid, uint16_t did)
712 {
713 	struct pci_devinfo *devlist_entry;
714 	pcicfgregs *cfg;
715 
716 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
717 
718 	cfg = &devlist_entry->cfg;
719 
720 	cfg->domain		= d;
721 	cfg->bus		= b;
722 	cfg->slot		= s;
723 	cfg->func		= f;
724 	cfg->vendor		= vid;
725 	cfg->device		= did;
726 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
727 	cfg->statreg		= REG(PCIR_STATUS, 2);
728 	cfg->baseclass		= REG(PCIR_CLASS, 1);
729 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
730 	cfg->progif		= REG(PCIR_PROGIF, 1);
731 	cfg->revid		= REG(PCIR_REVID, 1);
732 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
733 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
734 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
735 	cfg->intpin		= REG(PCIR_INTPIN, 1);
736 	cfg->intline		= REG(PCIR_INTLINE, 1);
737 
738 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
739 	cfg->hdrtype		&= ~PCIM_MFDEV;
740 	STAILQ_INIT(&cfg->maps);
741 
742 	cfg->iov		= NULL;
743 
744 	pci_fixancient(cfg);
745 	pci_hdrtypedata(pcib, b, s, f, cfg);
746 
747 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
748 		pci_read_cap(pcib, cfg);
749 
750 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
751 
752 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
753 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
754 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
755 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
756 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
757 
758 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
759 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
760 	devlist_entry->conf.pc_vendor = cfg->vendor;
761 	devlist_entry->conf.pc_device = cfg->device;
762 
763 	devlist_entry->conf.pc_class = cfg->baseclass;
764 	devlist_entry->conf.pc_subclass = cfg->subclass;
765 	devlist_entry->conf.pc_progif = cfg->progif;
766 	devlist_entry->conf.pc_revid = cfg->revid;
767 
768 	pci_numdevs++;
769 	pci_generation++;
770 
771 	return (devlist_entry);
772 }
773 #undef REG
774 
775 static void
776 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
777 {
778 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
779     cfg->ea.ea_location + (n), w)
780 	int num_ent;
781 	int ptr;
782 	int a, b;
783 	uint32_t val;
784 	int ent_size;
785 	uint32_t dw[4];
786 	uint64_t base, max_offset;
787 	struct pci_ea_entry *eae;
788 
789 	if (cfg->ea.ea_location == 0)
790 		return;
791 
792 	STAILQ_INIT(&cfg->ea.ea_entries);
793 
794 	/* Determine the number of entries */
795 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
796 	num_ent &= PCIM_EA_NUM_ENT_MASK;
797 
798 	/* Find the first entry to care of */
799 	ptr = PCIR_EA_FIRST_ENT;
800 
801 	/* Skip DWORD 2 for type 1 functions */
802 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
803 		ptr += 4;
804 
805 	for (a = 0; a < num_ent; a++) {
806 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
807 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
808 
809 		/* Read a number of dwords in the entry */
810 		val = REG(ptr, 4);
811 		ptr += 4;
812 		ent_size = (val & PCIM_EA_ES);
813 
814 		for (b = 0; b < ent_size; b++) {
815 			dw[b] = REG(ptr, 4);
816 			ptr += 4;
817 		}
818 
819 		eae->eae_flags = val;
820 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
821 
822 		base = dw[0] & PCIM_EA_FIELD_MASK;
823 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
824 		b = 2;
825 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
826 			base |= (uint64_t)dw[b] << 32UL;
827 			b++;
828 		}
829 		if (((dw[1] & PCIM_EA_IS_64) != 0)
830 		    && (b < ent_size)) {
831 			max_offset |= (uint64_t)dw[b] << 32UL;
832 			b++;
833 		}
834 
835 		eae->eae_base = base;
836 		eae->eae_max_offset = max_offset;
837 
838 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
839 
840 		if (bootverbose) {
841 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
842 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
843 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
844 		}
845 	}
846 }
847 #undef REG
848 
849 static void
850 pci_read_cap(device_t pcib, pcicfgregs *cfg)
851 {
852 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
853 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
854 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
855 	uint64_t addr;
856 #endif
857 	uint32_t val;
858 	int	ptr, nextptr, ptrptr;
859 
860 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
861 	case PCIM_HDRTYPE_NORMAL:
862 	case PCIM_HDRTYPE_BRIDGE:
863 		ptrptr = PCIR_CAP_PTR;
864 		break;
865 	case PCIM_HDRTYPE_CARDBUS:
866 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
867 		break;
868 	default:
869 		return;		/* no extended capabilities support */
870 	}
871 	nextptr = REG(ptrptr, 1);	/* sanity check? */
872 
873 	/*
874 	 * Read capability entries.
875 	 */
876 	while (nextptr != 0) {
877 		/* Sanity check */
878 		if (nextptr > 255) {
879 			printf("illegal PCI extended capability offset %d\n",
880 			    nextptr);
881 			return;
882 		}
883 		/* Find the next entry */
884 		ptr = nextptr;
885 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
886 
887 		/* Process this entry */
888 		switch (REG(ptr + PCICAP_ID, 1)) {
889 		case PCIY_PMG:		/* PCI power management */
890 			if (cfg->pp.pp_cap == 0) {
891 				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
892 				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
893 				cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
894 				if ((nextptr - ptr) > PCIR_POWER_DATA)
895 					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
896 			}
897 			break;
898 		case PCIY_HT:		/* HyperTransport */
899 			/* Determine HT-specific capability type. */
900 			val = REG(ptr + PCIR_HT_COMMAND, 2);
901 
902 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
903 				cfg->ht.ht_slave = ptr;
904 
905 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
906 			switch (val & PCIM_HTCMD_CAP_MASK) {
907 			case PCIM_HTCAP_MSI_MAPPING:
908 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
909 					/* Sanity check the mapping window. */
910 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
911 					    4);
912 					addr <<= 32;
913 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
914 					    4);
915 					if (addr != MSI_INTEL_ADDR_BASE)
916 						device_printf(pcib,
917 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
918 						    cfg->domain, cfg->bus,
919 						    cfg->slot, cfg->func,
920 						    (long long)addr);
921 				} else
922 					addr = MSI_INTEL_ADDR_BASE;
923 
924 				cfg->ht.ht_msimap = ptr;
925 				cfg->ht.ht_msictrl = val;
926 				cfg->ht.ht_msiaddr = addr;
927 				break;
928 			}
929 #endif
930 			break;
931 		case PCIY_MSI:		/* PCI MSI */
932 			cfg->msi.msi_location = ptr;
933 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
934 			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
935 						     PCIM_MSICTRL_MMC_MASK)>>1);
936 			break;
937 		case PCIY_MSIX:		/* PCI MSI-X */
938 			cfg->msix.msix_location = ptr;
939 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
940 			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
941 			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
942 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
943 			cfg->msix.msix_table_bar = PCIR_BAR(val &
944 			    PCIM_MSIX_BIR_MASK);
945 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
946 			val = REG(ptr + PCIR_MSIX_PBA, 4);
947 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
948 			    PCIM_MSIX_BIR_MASK);
949 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
950 			break;
951 		case PCIY_VPD:		/* PCI Vital Product Data */
952 			cfg->vpd.vpd_reg = ptr;
953 			break;
954 		case PCIY_SUBVENDOR:
955 			/* Should always be true. */
956 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
957 			    PCIM_HDRTYPE_BRIDGE) {
958 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
959 				cfg->subvendor = val & 0xffff;
960 				cfg->subdevice = val >> 16;
961 			}
962 			break;
963 		case PCIY_PCIX:		/* PCI-X */
964 			/*
965 			 * Assume we have a PCI-X chipset if we have
966 			 * at least one PCI-PCI bridge with a PCI-X
967 			 * capability.  Note that some systems with
968 			 * PCI-express or HT chipsets might match on
969 			 * this check as well.
970 			 */
971 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
972 			    PCIM_HDRTYPE_BRIDGE)
973 				pcix_chipset = 1;
974 			cfg->pcix.pcix_location = ptr;
975 			break;
976 		case PCIY_EXPRESS:	/* PCI-express */
977 			/*
978 			 * Assume we have a PCI-express chipset if we have
979 			 * at least one PCI-express device.
980 			 */
981 			pcie_chipset = 1;
982 			cfg->pcie.pcie_location = ptr;
983 			val = REG(ptr + PCIER_FLAGS, 2);
984 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
985 			break;
986 		case PCIY_EA:		/* Enhanced Allocation */
987 			cfg->ea.ea_location = ptr;
988 			pci_ea_fill_info(pcib, cfg);
989 			break;
990 		default:
991 			break;
992 		}
993 	}
994 
995 #if defined(__powerpc__)
996 	/*
997 	 * Enable the MSI mapping window for all HyperTransport
998 	 * slaves.  PCI-PCI bridges have their windows enabled via
999 	 * PCIB_MAP_MSI().
1000 	 */
1001 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
1002 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
1003 		device_printf(pcib,
1004 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
1005 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
1006 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1007 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
1008 		     2);
1009 	}
1010 #endif
1011 /* REG and WREG use carry through to next functions */
1012 }
1013 
1014 /*
1015  * PCI Vital Product Data
1016  */
1017 
1018 #define	PCI_VPD_TIMEOUT		1000000
1019 
1020 static int
1021 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1022 {
1023 	int count = PCI_VPD_TIMEOUT;
1024 
1025 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1026 
1027 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1028 
1029 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1030 		if (--count < 0)
1031 			return (ENXIO);
1032 		DELAY(1);	/* limit looping */
1033 	}
1034 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1035 
1036 	return (0);
1037 }
1038 
1039 #if 0
1040 static int
1041 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1042 {
1043 	int count = PCI_VPD_TIMEOUT;
1044 
1045 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1046 
1047 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1048 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1049 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1050 		if (--count < 0)
1051 			return (ENXIO);
1052 		DELAY(1);	/* limit looping */
1053 	}
1054 
1055 	return (0);
1056 }
1057 #endif
1058 
1059 #undef PCI_VPD_TIMEOUT
1060 
1061 struct vpd_readstate {
1062 	device_t	pcib;
1063 	pcicfgregs	*cfg;
1064 	uint32_t	val;
1065 	int		bytesinval;
1066 	int		off;
1067 	uint8_t		cksum;
1068 };
1069 
1070 /* return 0 and one byte in *data if no read error, -1 else */
1071 static int
1072 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1073 {
1074 	uint32_t reg;
1075 	uint8_t byte;
1076 
1077 	if (vrs->bytesinval == 0) {
1078 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1079 			return (-1);
1080 		vrs->val = le32toh(reg);
1081 		vrs->off += 4;
1082 		byte = vrs->val & 0xff;
1083 		vrs->bytesinval = 3;
1084 	} else {
1085 		vrs->val = vrs->val >> 8;
1086 		byte = vrs->val & 0xff;
1087 		vrs->bytesinval--;
1088 	}
1089 
1090 	vrs->cksum += byte;
1091 	*data = byte;
1092 	return (0);
1093 }
1094 
1095 /* return 0 on match, -1 and "unget" byte on no match */
1096 static int
1097 vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected)
1098 {
1099 	uint8_t data;
1100 
1101 	if (vpd_nextbyte(vrs, &data) != 0)
1102 		return (-1);
1103 
1104 	if (data == expected)
1105 		return (0);
1106 
1107 	vrs->cksum -= data;
1108 	vrs->val = (vrs->val << 8) + data;
1109 	vrs->bytesinval++;
1110 	return (-1);
1111 }
1112 
1113 /* return size if tag matches, -1 on no match, -2 on read error */
1114 static int
1115 vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag)
1116 {
1117 	uint8_t byte1, byte2;
1118 
1119 	if (vpd_expectbyte(vrs, vpd_tag) != 0)
1120 		return (-1);
1121 
1122 	if ((vpd_tag & 0x80) == 0)
1123 		return (vpd_tag & 0x07);
1124 
1125 	if (vpd_nextbyte(vrs, &byte1) != 0)
1126 		return (-2);
1127 	if (vpd_nextbyte(vrs, &byte2) != 0)
1128 		return (-2);
1129 
1130 	return ((byte2 << 8) + byte1);
1131 }
1132 
1133 /* (re)allocate buffer in multiples of 8 elements */
1134 static void*
1135 alloc_buffer(void* buffer, size_t element_size, int needed)
1136 {
1137 	int alloc, new_alloc;
1138 
1139 	alloc = roundup2(needed, 8);
1140 	new_alloc = roundup2(needed + 1, 8);
1141 	if (alloc != new_alloc) {
1142 		buffer = reallocf(buffer,
1143 		    new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO);
1144 	}
1145 
1146 	return (buffer);
1147 }
1148 
1149 /* read VPD keyword and return element size, return -1 on read error */
1150 static int
1151 vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2])
1152 {
1153 	uint8_t data;
1154 
1155 	if (vpd_nextbyte(vrs, &keyword[0]) != 0)
1156 		return (-1);
1157 	if (vpd_nextbyte(vrs, &keyword[1]) != 0)
1158 		return (-1);
1159 	if (vpd_nextbyte(vrs, &data) != 0)
1160 		return (-1);
1161 
1162 	return (data);
1163 }
1164 
1165 /* read VPD data element of given size into allocated buffer */
1166 static char *
1167 vpd_read_value(struct vpd_readstate *vrs, int size)
1168 {
1169 	int i;
1170 	char char1;
1171 	char *value;
1172 
1173 	value = malloc(size + 1, M_DEVBUF, M_WAITOK);
1174 	for (i = 0; i < size; i++) {
1175 		if (vpd_nextbyte(vrs, &char1) != 0) {
1176 			free(value, M_DEVBUF);
1177 			return (NULL);
1178 		}
1179 		value[i] = char1;
1180 	}
1181 	value[size] = '\0';
1182 
1183 	return (value);
1184 }
1185 
1186 /* read VPD into *keyword and *value, return length of data element */
1187 static int
1188 vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen)
1189 {
1190 	int len;
1191 
1192 	len = vpd_read_elem_head(vrs, keyword);
1193 	if (len > maxlen)
1194 		return (-1);
1195 	*value = vpd_read_value(vrs, len);
1196 
1197 	return (len);
1198 }
1199 
1200 /* subtract all data following first byte from checksum of RV element */
1201 static void
1202 vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len)
1203 {
1204 	int i;
1205 	uint8_t fixup;
1206 
1207 	fixup = 0;
1208 	for (i = 1; i < len; i++)
1209 		fixup += rvstring[i];
1210 	vrs->cksum -= fixup;
1211 }
1212 
1213 /* fetch one read-only element and return size of heading + data */
1214 static size_t
1215 next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize)
1216 {
1217 	struct pcicfg_vpd *vpd;
1218 	pcicfgregs *cfg;
1219 	struct vpd_readonly *vpd_ros;
1220 	int len;
1221 
1222 	cfg = vrs->cfg;
1223 	vpd = &cfg->vpd;
1224 
1225 	if (maxsize < 3)
1226 		return (-1);
1227 	vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt);
1228 	vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt];
1229 	maxsize -= 3;
1230 	len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize);
1231 	if (vpd_ros->value == NULL)
1232 		return (-1);
1233 	vpd_ros->len = len;
1234 	if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') {
1235 		vpd_fixup_cksum(vrs, vpd_ros->value, len);
1236 		if (vrs->cksum != 0) {
1237 			pci_printf(cfg,
1238 			    "invalid VPD checksum %#hhx\n", vrs->cksum);
1239 			return (-1);
1240 		}
1241 	}
1242 	vpd->vpd_rocnt++;
1243 
1244 	return (len + 3);
1245 }
1246 
1247 /* fetch one writable element and return size of heading + data */
1248 static size_t
1249 next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize)
1250 {
1251 	struct pcicfg_vpd *vpd;
1252 	pcicfgregs *cfg;
1253 	struct vpd_write *vpd_w;
1254 	int len;
1255 
1256 	cfg = vrs->cfg;
1257 	vpd = &cfg->vpd;
1258 
1259 	if (maxsize < 3)
1260 		return (-1);
1261 	vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt);
1262 	if (vpd->vpd_w == NULL) {
1263 		pci_printf(cfg, "out of memory");
1264 		return (-1);
1265 	}
1266 	vpd_w = &vpd->vpd_w[vpd->vpd_wcnt];
1267 	maxsize -= 3;
1268 	vpd_w->start = vrs->off + 3 - vrs->bytesinval;
1269 	len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize);
1270 	if (vpd_w->value == NULL)
1271 		return (-1);
1272 	vpd_w->len = len;
1273 	vpd->vpd_wcnt++;
1274 
1275 	return (len + 3);
1276 }
1277 
1278 /* free all memory allocated for VPD data */
1279 static void
1280 vpd_free(struct pcicfg_vpd *vpd)
1281 {
1282 	int i;
1283 
1284 	free(vpd->vpd_ident, M_DEVBUF);
1285 	for (i = 0; i < vpd->vpd_rocnt; i++)
1286 		free(vpd->vpd_ros[i].value, M_DEVBUF);
1287 	free(vpd->vpd_ros, M_DEVBUF);
1288 	vpd->vpd_rocnt = 0;
1289 	for (i = 0; i < vpd->vpd_wcnt; i++)
1290 		free(vpd->vpd_w[i].value, M_DEVBUF);
1291 	free(vpd->vpd_w, M_DEVBUF);
1292 	vpd->vpd_wcnt = 0;
1293 }
1294 
1295 #define VPD_TAG_END	((0x0f << 3) | 0)	/* small tag, len == 0 */
1296 #define VPD_TAG_IDENT	(0x02 | 0x80)		/* large tag */
1297 #define VPD_TAG_RO	(0x10 | 0x80)		/* large tag */
1298 #define VPD_TAG_RW	(0x11 | 0x80)		/* large tag */
1299 
1300 static int
1301 pci_parse_vpd(device_t pcib, pcicfgregs *cfg)
1302 {
1303 	struct vpd_readstate vrs;
1304 	int cksumvalid;
1305 	int size, elem_size;
1306 
1307 	/* init vpd reader */
1308 	vrs.bytesinval = 0;
1309 	vrs.off = 0;
1310 	vrs.pcib = pcib;
1311 	vrs.cfg = cfg;
1312 	vrs.cksum = 0;
1313 
1314 	/* read VPD ident element - mandatory */
1315 	size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT);
1316 	if (size <= 0) {
1317 		pci_printf(cfg, "no VPD ident found\n");
1318 		return (0);
1319 	}
1320 	cfg->vpd.vpd_ident = vpd_read_value(&vrs, size);
1321 	if (cfg->vpd.vpd_ident == NULL) {
1322 		pci_printf(cfg, "error accessing VPD ident data\n");
1323 		return (0);
1324 	}
1325 
1326 	/* read VPD RO elements - mandatory */
1327 	size = vpd_read_tag_size(&vrs, VPD_TAG_RO);
1328 	if (size <= 0) {
1329 		pci_printf(cfg, "no read-only VPD data found\n");
1330 		return (0);
1331 	}
1332 	while (size > 0) {
1333 		elem_size = next_vpd_ro_elem(&vrs, size);
1334 		if (elem_size < 0) {
1335 			pci_printf(cfg, "error accessing read-only VPD data\n");
1336 			return (-1);
1337 		}
1338 		size -= elem_size;
1339 	}
1340 	cksumvalid = (vrs.cksum == 0);
1341 	if (!cksumvalid)
1342 		return (-1);
1343 
1344 	/* read VPD RW elements - optional */
1345 	size = vpd_read_tag_size(&vrs, VPD_TAG_RW);
1346 	if (size == -2)
1347 		return (-1);
1348 	while (size > 0) {
1349 		elem_size = next_vpd_rw_elem(&vrs, size);
1350 		if (elem_size < 0) {
1351 			pci_printf(cfg, "error accessing writeable VPD data\n");
1352 			return (-1);
1353 		}
1354 		size -= elem_size;
1355 	}
1356 
1357 	/* read empty END tag - mandatory */
1358 	size = vpd_read_tag_size(&vrs, VPD_TAG_END);
1359 	if (size != 0) {
1360 		pci_printf(cfg, "No valid VPD end tag found\n");
1361 	}
1362 	return (0);
1363 }
1364 
1365 static void
1366 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1367 {
1368 	int status;
1369 
1370 	status = pci_parse_vpd(pcib, cfg);
1371 	if (status < 0)
1372 		vpd_free(&cfg->vpd);
1373 	cfg->vpd.vpd_cached = 1;
1374 #undef REG
1375 #undef WREG
1376 }
1377 
1378 int
1379 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1380 {
1381 	struct pci_devinfo *dinfo = device_get_ivars(child);
1382 	pcicfgregs *cfg = &dinfo->cfg;
1383 
1384 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1385 		pci_read_vpd(device_get_parent(dev), cfg);
1386 
1387 	*identptr = cfg->vpd.vpd_ident;
1388 
1389 	if (*identptr == NULL)
1390 		return (ENXIO);
1391 
1392 	return (0);
1393 }
1394 
1395 int
1396 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1397 	const char **vptr)
1398 {
1399 	struct pci_devinfo *dinfo = device_get_ivars(child);
1400 	pcicfgregs *cfg = &dinfo->cfg;
1401 	int i;
1402 
1403 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1404 		pci_read_vpd(device_get_parent(dev), cfg);
1405 
1406 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1407 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1408 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1409 			*vptr = cfg->vpd.vpd_ros[i].value;
1410 			return (0);
1411 		}
1412 
1413 	*vptr = NULL;
1414 	return (ENXIO);
1415 }
1416 
1417 struct pcicfg_vpd *
1418 pci_fetch_vpd_list(device_t dev)
1419 {
1420 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1421 	pcicfgregs *cfg = &dinfo->cfg;
1422 
1423 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1424 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1425 	return (&cfg->vpd);
1426 }
1427 
1428 /*
1429  * Find the requested HyperTransport capability and return the offset
1430  * in configuration space via the pointer provided.  The function
1431  * returns 0 on success and an error code otherwise.
1432  */
1433 int
1434 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1435 {
1436 	int ptr, error;
1437 	uint16_t val;
1438 
1439 	error = pci_find_cap(child, PCIY_HT, &ptr);
1440 	if (error)
1441 		return (error);
1442 
1443 	/*
1444 	 * Traverse the capabilities list checking each HT capability
1445 	 * to see if it matches the requested HT capability.
1446 	 */
1447 	for (;;) {
1448 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1449 		if (capability == PCIM_HTCAP_SLAVE ||
1450 		    capability == PCIM_HTCAP_HOST)
1451 			val &= 0xe000;
1452 		else
1453 			val &= PCIM_HTCMD_CAP_MASK;
1454 		if (val == capability) {
1455 			if (capreg != NULL)
1456 				*capreg = ptr;
1457 			return (0);
1458 		}
1459 
1460 		/* Skip to the next HT capability. */
1461 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1462 			break;
1463 	}
1464 
1465 	return (ENOENT);
1466 }
1467 
1468 /*
1469  * Find the next requested HyperTransport capability after start and return
1470  * the offset in configuration space via the pointer provided.  The function
1471  * returns 0 on success and an error code otherwise.
1472  */
1473 int
1474 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1475     int start, int *capreg)
1476 {
1477 	int ptr;
1478 	uint16_t val;
1479 
1480 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1481 	    ("start capability is not HyperTransport capability"));
1482 	ptr = start;
1483 
1484 	/*
1485 	 * Traverse the capabilities list checking each HT capability
1486 	 * to see if it matches the requested HT capability.
1487 	 */
1488 	for (;;) {
1489 		/* Skip to the next HT capability. */
1490 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1491 			break;
1492 
1493 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1494 		if (capability == PCIM_HTCAP_SLAVE ||
1495 		    capability == PCIM_HTCAP_HOST)
1496 			val &= 0xe000;
1497 		else
1498 			val &= PCIM_HTCMD_CAP_MASK;
1499 		if (val == capability) {
1500 			if (capreg != NULL)
1501 				*capreg = ptr;
1502 			return (0);
1503 		}
1504 	}
1505 
1506 	return (ENOENT);
1507 }
1508 
1509 /*
1510  * Find the requested capability and return the offset in
1511  * configuration space via the pointer provided.  The function returns
1512  * 0 on success and an error code otherwise.
1513  */
1514 int
1515 pci_find_cap_method(device_t dev, device_t child, int capability,
1516     int *capreg)
1517 {
1518 	struct pci_devinfo *dinfo = device_get_ivars(child);
1519 	pcicfgregs *cfg = &dinfo->cfg;
1520 	uint32_t status;
1521 	uint8_t ptr;
1522 
1523 	/*
1524 	 * Check the CAP_LIST bit of the PCI status register first.
1525 	 */
1526 	status = pci_read_config(child, PCIR_STATUS, 2);
1527 	if (!(status & PCIM_STATUS_CAPPRESENT))
1528 		return (ENXIO);
1529 
1530 	/*
1531 	 * Determine the start pointer of the capabilities list.
1532 	 */
1533 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1534 	case PCIM_HDRTYPE_NORMAL:
1535 	case PCIM_HDRTYPE_BRIDGE:
1536 		ptr = PCIR_CAP_PTR;
1537 		break;
1538 	case PCIM_HDRTYPE_CARDBUS:
1539 		ptr = PCIR_CAP_PTR_2;
1540 		break;
1541 	default:
1542 		/* XXX: panic? */
1543 		return (ENXIO);		/* no extended capabilities support */
1544 	}
1545 	ptr = pci_read_config(child, ptr, 1);
1546 
1547 	/*
1548 	 * Traverse the capabilities list.
1549 	 */
1550 	while (ptr != 0) {
1551 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1552 			if (capreg != NULL)
1553 				*capreg = ptr;
1554 			return (0);
1555 		}
1556 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1557 	}
1558 
1559 	return (ENOENT);
1560 }
1561 
1562 /*
1563  * Find the next requested capability after start and return the offset in
1564  * configuration space via the pointer provided.  The function returns
1565  * 0 on success and an error code otherwise.
1566  */
1567 int
1568 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1569     int start, int *capreg)
1570 {
1571 	uint8_t ptr;
1572 
1573 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1574 	    ("start capability is not expected capability"));
1575 
1576 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1577 	while (ptr != 0) {
1578 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1579 			if (capreg != NULL)
1580 				*capreg = ptr;
1581 			return (0);
1582 		}
1583 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1584 	}
1585 
1586 	return (ENOENT);
1587 }
1588 
1589 /*
1590  * Find the requested extended capability and return the offset in
1591  * configuration space via the pointer provided.  The function returns
1592  * 0 on success and an error code otherwise.
1593  */
1594 int
1595 pci_find_extcap_method(device_t dev, device_t child, int capability,
1596     int *capreg)
1597 {
1598 	struct pci_devinfo *dinfo = device_get_ivars(child);
1599 	pcicfgregs *cfg = &dinfo->cfg;
1600 	uint32_t ecap;
1601 	uint16_t ptr;
1602 
1603 	/* Only supported for PCI-express devices. */
1604 	if (cfg->pcie.pcie_location == 0)
1605 		return (ENXIO);
1606 
1607 	ptr = PCIR_EXTCAP;
1608 	ecap = pci_read_config(child, ptr, 4);
1609 	if (ecap == 0xffffffff || ecap == 0)
1610 		return (ENOENT);
1611 	for (;;) {
1612 		if (PCI_EXTCAP_ID(ecap) == capability) {
1613 			if (capreg != NULL)
1614 				*capreg = ptr;
1615 			return (0);
1616 		}
1617 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1618 		if (ptr == 0)
1619 			break;
1620 		ecap = pci_read_config(child, ptr, 4);
1621 	}
1622 
1623 	return (ENOENT);
1624 }
1625 
1626 /*
1627  * Find the next requested extended capability after start and return the
1628  * offset in configuration space via the pointer provided.  The function
1629  * returns 0 on success and an error code otherwise.
1630  */
1631 int
1632 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1633     int start, int *capreg)
1634 {
1635 	struct pci_devinfo *dinfo = device_get_ivars(child);
1636 	pcicfgregs *cfg = &dinfo->cfg;
1637 	uint32_t ecap;
1638 	uint16_t ptr;
1639 
1640 	/* Only supported for PCI-express devices. */
1641 	if (cfg->pcie.pcie_location == 0)
1642 		return (ENXIO);
1643 
1644 	ecap = pci_read_config(child, start, 4);
1645 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1646 	    ("start extended capability is not expected capability"));
1647 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1648 	while (ptr != 0) {
1649 		ecap = pci_read_config(child, ptr, 4);
1650 		if (PCI_EXTCAP_ID(ecap) == capability) {
1651 			if (capreg != NULL)
1652 				*capreg = ptr;
1653 			return (0);
1654 		}
1655 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1656 	}
1657 
1658 	return (ENOENT);
1659 }
1660 
1661 /*
1662  * Support for MSI-X message interrupts.
1663  */
1664 static void
1665 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1666 {
1667 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1668 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1669 	uint32_t offset;
1670 
1671 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1672 	offset = msix->msix_table_offset + index * 16;
1673 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1674 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1675 	bus_write_4(msix->msix_table_res, offset + 8, data);
1676 }
1677 
1678 void
1679 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1680     uint64_t address, uint32_t data)
1681 {
1682 
1683 	if (pci_msix_rewrite_table) {
1684 		struct pci_devinfo *dinfo = device_get_ivars(child);
1685 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1686 
1687 		/*
1688 		 * Some VM hosts require MSIX to be disabled in the
1689 		 * control register before updating the MSIX table
1690 		 * entries are allowed. It is not enough to only
1691 		 * disable MSIX while updating a single entry. MSIX
1692 		 * must be disabled while updating all entries in the
1693 		 * table.
1694 		 */
1695 		pci_write_config(child,
1696 		    msix->msix_location + PCIR_MSIX_CTRL,
1697 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1698 		pci_resume_msix(child);
1699 	} else
1700 		pci_write_msix_entry(child, index, address, data);
1701 
1702 	/* Enable MSI -> HT mapping. */
1703 	pci_ht_map_msi(child, address);
1704 }
1705 
1706 void
1707 pci_mask_msix(device_t dev, u_int index)
1708 {
1709 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1710 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1711 	uint32_t offset, val;
1712 
1713 	KASSERT(msix->msix_msgnum > index, ("bogus index"));
1714 	offset = msix->msix_table_offset + index * 16 + 12;
1715 	val = bus_read_4(msix->msix_table_res, offset);
1716 	val |= PCIM_MSIX_VCTRL_MASK;
1717 
1718 	/*
1719 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1720 	 * register, so always write the new value.
1721 	 */
1722 	bus_write_4(msix->msix_table_res, offset, val);
1723 }
1724 
1725 void
1726 pci_unmask_msix(device_t dev, u_int index)
1727 {
1728 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1729 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1730 	uint32_t offset, val;
1731 
1732 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1733 	offset = msix->msix_table_offset + index * 16 + 12;
1734 	val = bus_read_4(msix->msix_table_res, offset);
1735 	val &= ~PCIM_MSIX_VCTRL_MASK;
1736 
1737 	/*
1738 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1739 	 * register, so always write the new value.
1740 	 */
1741 	bus_write_4(msix->msix_table_res, offset, val);
1742 }
1743 
1744 int
1745 pci_pending_msix(device_t dev, u_int index)
1746 {
1747 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1748 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1749 	uint32_t offset, bit;
1750 
1751 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1752 	offset = msix->msix_pba_offset + (index / 32) * 4;
1753 	bit = 1 << index % 32;
1754 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1755 }
1756 
1757 /*
1758  * Restore MSI-X registers and table during resume.  If MSI-X is
1759  * enabled then walk the virtual table to restore the actual MSI-X
1760  * table.
1761  */
1762 static void
1763 pci_resume_msix(device_t dev)
1764 {
1765 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1766 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1767 	struct msix_table_entry *mte;
1768 	struct msix_vector *mv;
1769 	int i;
1770 
1771 	if (msix->msix_alloc > 0) {
1772 		/* First, mask all vectors. */
1773 		for (i = 0; i < msix->msix_msgnum; i++)
1774 			pci_mask_msix(dev, i);
1775 
1776 		/* Second, program any messages with at least one handler. */
1777 		for (i = 0; i < msix->msix_table_len; i++) {
1778 			mte = &msix->msix_table[i];
1779 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1780 				continue;
1781 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1782 			pci_write_msix_entry(dev, i, mv->mv_address,
1783 			    mv->mv_data);
1784 			pci_unmask_msix(dev, i);
1785 		}
1786 	}
1787 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1788 	    msix->msix_ctrl, 2);
1789 }
1790 
1791 /*
1792  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1793  * returned in *count.  After this function returns, each message will be
1794  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1795  */
1796 int
1797 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1798 {
1799 	struct pci_devinfo *dinfo = device_get_ivars(child);
1800 	pcicfgregs *cfg = &dinfo->cfg;
1801 	struct resource_list_entry *rle;
1802 	int actual, error, i, irq, max;
1803 
1804 	/* Don't let count == 0 get us into trouble. */
1805 	if (*count == 0)
1806 		return (EINVAL);
1807 
1808 	/* If rid 0 is allocated, then fail. */
1809 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1810 	if (rle != NULL && rle->res != NULL)
1811 		return (ENXIO);
1812 
1813 	/* Already have allocated messages? */
1814 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1815 		return (ENXIO);
1816 
1817 	/* If MSI-X is blacklisted for this system, fail. */
1818 	if (pci_msix_blacklisted())
1819 		return (ENXIO);
1820 
1821 	/* MSI-X capability present? */
1822 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1823 		return (ENODEV);
1824 
1825 	/* Make sure the appropriate BARs are mapped. */
1826 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1827 	    cfg->msix.msix_table_bar);
1828 	if (rle == NULL || rle->res == NULL ||
1829 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1830 		return (ENXIO);
1831 	cfg->msix.msix_table_res = rle->res;
1832 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1833 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1834 		    cfg->msix.msix_pba_bar);
1835 		if (rle == NULL || rle->res == NULL ||
1836 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1837 			return (ENXIO);
1838 	}
1839 	cfg->msix.msix_pba_res = rle->res;
1840 
1841 	if (bootverbose)
1842 		device_printf(child,
1843 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1844 		    *count, cfg->msix.msix_msgnum);
1845 	max = min(*count, cfg->msix.msix_msgnum);
1846 	for (i = 0; i < max; i++) {
1847 		/* Allocate a message. */
1848 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1849 		if (error) {
1850 			if (i == 0)
1851 				return (error);
1852 			break;
1853 		}
1854 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1855 		    irq, 1);
1856 	}
1857 	actual = i;
1858 
1859 	if (bootverbose) {
1860 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1861 		if (actual == 1)
1862 			device_printf(child, "using IRQ %ju for MSI-X\n",
1863 			    rle->start);
1864 		else {
1865 			int run;
1866 
1867 			/*
1868 			 * Be fancy and try to print contiguous runs of
1869 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1870 			 * 'run' is true if we are in a range.
1871 			 */
1872 			device_printf(child, "using IRQs %ju", rle->start);
1873 			irq = rle->start;
1874 			run = 0;
1875 			for (i = 1; i < actual; i++) {
1876 				rle = resource_list_find(&dinfo->resources,
1877 				    SYS_RES_IRQ, i + 1);
1878 
1879 				/* Still in a run? */
1880 				if (rle->start == irq + 1) {
1881 					run = 1;
1882 					irq++;
1883 					continue;
1884 				}
1885 
1886 				/* Finish previous range. */
1887 				if (run) {
1888 					printf("-%d", irq);
1889 					run = 0;
1890 				}
1891 
1892 				/* Start new range. */
1893 				printf(",%ju", rle->start);
1894 				irq = rle->start;
1895 			}
1896 
1897 			/* Unfinished range? */
1898 			if (run)
1899 				printf("-%d", irq);
1900 			printf(" for MSI-X\n");
1901 		}
1902 	}
1903 
1904 	/* Mask all vectors. */
1905 	for (i = 0; i < cfg->msix.msix_msgnum; i++)
1906 		pci_mask_msix(child, i);
1907 
1908 	/* Allocate and initialize vector data and virtual table. */
1909 	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1910 	    M_DEVBUF, M_WAITOK | M_ZERO);
1911 	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1912 	    M_DEVBUF, M_WAITOK | M_ZERO);
1913 	for (i = 0; i < actual; i++) {
1914 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1915 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1916 		cfg->msix.msix_table[i].mte_vector = i + 1;
1917 	}
1918 
1919 	/* Update control register to enable MSI-X. */
1920 	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1921 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1922 	    cfg->msix.msix_ctrl, 2);
1923 
1924 	/* Update counts of alloc'd messages. */
1925 	cfg->msix.msix_alloc = actual;
1926 	cfg->msix.msix_table_len = actual;
1927 	*count = actual;
1928 	return (0);
1929 }
1930 
1931 /*
1932  * By default, pci_alloc_msix() will assign the allocated IRQ
1933  * resources consecutively to the first N messages in the MSI-X table.
1934  * However, device drivers may want to use different layouts if they
1935  * either receive fewer messages than they asked for, or they wish to
1936  * populate the MSI-X table sparsely.  This method allows the driver
1937  * to specify what layout it wants.  It must be called after a
1938  * successful pci_alloc_msix() but before any of the associated
1939  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1940  *
1941  * The 'vectors' array contains 'count' message vectors.  The array
1942  * maps directly to the MSI-X table in that index 0 in the array
1943  * specifies the vector for the first message in the MSI-X table, etc.
1944  * The vector value in each array index can either be 0 to indicate
1945  * that no vector should be assigned to a message slot, or it can be a
1946  * number from 1 to N (where N is the count returned from a
1947  * succcessful call to pci_alloc_msix()) to indicate which message
1948  * vector (IRQ) to be used for the corresponding message.
1949  *
1950  * On successful return, each message with a non-zero vector will have
1951  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1952  * 1.  Additionally, if any of the IRQs allocated via the previous
1953  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1954  * will be freed back to the system automatically.
1955  *
1956  * For example, suppose a driver has a MSI-X table with 6 messages and
1957  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1958  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1959  * C.  After the call to pci_alloc_msix(), the device will be setup to
1960  * have an MSI-X table of ABC--- (where - means no vector assigned).
1961  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1962  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1963  * be freed back to the system.  This device will also have valid
1964  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1965  *
1966  * In any case, the SYS_RES_IRQ rid X will always map to the message
1967  * at MSI-X table index X - 1 and will only be valid if a vector is
1968  * assigned to that table entry.
1969  */
1970 int
1971 pci_remap_msix_method(device_t dev, device_t child, int count,
1972     const u_int *vectors)
1973 {
1974 	struct pci_devinfo *dinfo = device_get_ivars(child);
1975 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1976 	struct resource_list_entry *rle;
1977 	int i, irq, j, *used;
1978 
1979 	/*
1980 	 * Have to have at least one message in the table but the
1981 	 * table can't be bigger than the actual MSI-X table in the
1982 	 * device.
1983 	 */
1984 	if (count == 0 || count > msix->msix_msgnum)
1985 		return (EINVAL);
1986 
1987 	/* Sanity check the vectors. */
1988 	for (i = 0; i < count; i++)
1989 		if (vectors[i] > msix->msix_alloc)
1990 			return (EINVAL);
1991 
1992 	/*
1993 	 * Make sure there aren't any holes in the vectors to be used.
1994 	 * It's a big pain to support it, and it doesn't really make
1995 	 * sense anyway.  Also, at least one vector must be used.
1996 	 */
1997 	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
1998 	    M_ZERO);
1999 	for (i = 0; i < count; i++)
2000 		if (vectors[i] != 0)
2001 			used[vectors[i] - 1] = 1;
2002 	for (i = 0; i < msix->msix_alloc - 1; i++)
2003 		if (used[i] == 0 && used[i + 1] == 1) {
2004 			free(used, M_DEVBUF);
2005 			return (EINVAL);
2006 		}
2007 	if (used[0] != 1) {
2008 		free(used, M_DEVBUF);
2009 		return (EINVAL);
2010 	}
2011 
2012 	/* Make sure none of the resources are allocated. */
2013 	for (i = 0; i < msix->msix_table_len; i++) {
2014 		if (msix->msix_table[i].mte_vector == 0)
2015 			continue;
2016 		if (msix->msix_table[i].mte_handlers > 0) {
2017 			free(used, M_DEVBUF);
2018 			return (EBUSY);
2019 		}
2020 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2021 		KASSERT(rle != NULL, ("missing resource"));
2022 		if (rle->res != NULL) {
2023 			free(used, M_DEVBUF);
2024 			return (EBUSY);
2025 		}
2026 	}
2027 
2028 	/* Free the existing resource list entries. */
2029 	for (i = 0; i < msix->msix_table_len; i++) {
2030 		if (msix->msix_table[i].mte_vector == 0)
2031 			continue;
2032 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2033 	}
2034 
2035 	/*
2036 	 * Build the new virtual table keeping track of which vectors are
2037 	 * used.
2038 	 */
2039 	free(msix->msix_table, M_DEVBUF);
2040 	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
2041 	    M_DEVBUF, M_WAITOK | M_ZERO);
2042 	for (i = 0; i < count; i++)
2043 		msix->msix_table[i].mte_vector = vectors[i];
2044 	msix->msix_table_len = count;
2045 
2046 	/* Free any unused IRQs and resize the vectors array if necessary. */
2047 	j = msix->msix_alloc - 1;
2048 	if (used[j] == 0) {
2049 		struct msix_vector *vec;
2050 
2051 		while (used[j] == 0) {
2052 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2053 			    msix->msix_vectors[j].mv_irq);
2054 			j--;
2055 		}
2056 		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
2057 		    M_WAITOK);
2058 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2059 		    (j + 1));
2060 		free(msix->msix_vectors, M_DEVBUF);
2061 		msix->msix_vectors = vec;
2062 		msix->msix_alloc = j + 1;
2063 	}
2064 	free(used, M_DEVBUF);
2065 
2066 	/* Map the IRQs onto the rids. */
2067 	for (i = 0; i < count; i++) {
2068 		if (vectors[i] == 0)
2069 			continue;
2070 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2071 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2072 		    irq, 1);
2073 	}
2074 
2075 	if (bootverbose) {
2076 		device_printf(child, "Remapped MSI-X IRQs as: ");
2077 		for (i = 0; i < count; i++) {
2078 			if (i != 0)
2079 				printf(", ");
2080 			if (vectors[i] == 0)
2081 				printf("---");
2082 			else
2083 				printf("%d",
2084 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2085 		}
2086 		printf("\n");
2087 	}
2088 
2089 	return (0);
2090 }
2091 
2092 static int
2093 pci_release_msix(device_t dev, device_t child)
2094 {
2095 	struct pci_devinfo *dinfo = device_get_ivars(child);
2096 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2097 	struct resource_list_entry *rle;
2098 	int i;
2099 
2100 	/* Do we have any messages to release? */
2101 	if (msix->msix_alloc == 0)
2102 		return (ENODEV);
2103 
2104 	/* Make sure none of the resources are allocated. */
2105 	for (i = 0; i < msix->msix_table_len; i++) {
2106 		if (msix->msix_table[i].mte_vector == 0)
2107 			continue;
2108 		if (msix->msix_table[i].mte_handlers > 0)
2109 			return (EBUSY);
2110 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2111 		KASSERT(rle != NULL, ("missing resource"));
2112 		if (rle->res != NULL)
2113 			return (EBUSY);
2114 	}
2115 
2116 	/* Update control register to disable MSI-X. */
2117 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2118 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2119 	    msix->msix_ctrl, 2);
2120 
2121 	/* Free the resource list entries. */
2122 	for (i = 0; i < msix->msix_table_len; i++) {
2123 		if (msix->msix_table[i].mte_vector == 0)
2124 			continue;
2125 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2126 	}
2127 	free(msix->msix_table, M_DEVBUF);
2128 	msix->msix_table_len = 0;
2129 
2130 	/* Release the IRQs. */
2131 	for (i = 0; i < msix->msix_alloc; i++)
2132 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2133 		    msix->msix_vectors[i].mv_irq);
2134 	free(msix->msix_vectors, M_DEVBUF);
2135 	msix->msix_alloc = 0;
2136 	return (0);
2137 }
2138 
2139 /*
2140  * Return the max supported MSI-X messages this device supports.
2141  * Basically, assuming the MD code can alloc messages, this function
2142  * should return the maximum value that pci_alloc_msix() can return.
2143  * Thus, it is subject to the tunables, etc.
2144  */
2145 int
2146 pci_msix_count_method(device_t dev, device_t child)
2147 {
2148 	struct pci_devinfo *dinfo = device_get_ivars(child);
2149 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2150 
2151 	if (pci_do_msix && msix->msix_location != 0)
2152 		return (msix->msix_msgnum);
2153 	return (0);
2154 }
2155 
2156 int
2157 pci_msix_pba_bar_method(device_t dev, device_t child)
2158 {
2159 	struct pci_devinfo *dinfo = device_get_ivars(child);
2160 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2161 
2162 	if (pci_do_msix && msix->msix_location != 0)
2163 		return (msix->msix_pba_bar);
2164 	return (-1);
2165 }
2166 
2167 int
2168 pci_msix_table_bar_method(device_t dev, device_t child)
2169 {
2170 	struct pci_devinfo *dinfo = device_get_ivars(child);
2171 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2172 
2173 	if (pci_do_msix && msix->msix_location != 0)
2174 		return (msix->msix_table_bar);
2175 	return (-1);
2176 }
2177 
2178 /*
2179  * HyperTransport MSI mapping control
2180  */
2181 void
2182 pci_ht_map_msi(device_t dev, uint64_t addr)
2183 {
2184 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2185 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2186 
2187 	if (!ht->ht_msimap)
2188 		return;
2189 
2190 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2191 	    ht->ht_msiaddr >> 20 == addr >> 20) {
2192 		/* Enable MSI -> HT mapping. */
2193 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2194 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2195 		    ht->ht_msictrl, 2);
2196 	}
2197 
2198 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2199 		/* Disable MSI -> HT mapping. */
2200 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2201 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2202 		    ht->ht_msictrl, 2);
2203 	}
2204 }
2205 
2206 int
2207 pci_get_relaxed_ordering_enabled(device_t dev)
2208 {
2209 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2210 	int cap;
2211 	uint16_t val;
2212 
2213 	cap = dinfo->cfg.pcie.pcie_location;
2214 	if (cap == 0)
2215 		return (0);
2216 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2217 	val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
2218 	return (val != 0);
2219 }
2220 
2221 int
2222 pci_get_max_payload(device_t dev)
2223 {
2224 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2225 	int cap;
2226 	uint16_t val;
2227 
2228 	cap = dinfo->cfg.pcie.pcie_location;
2229 	if (cap == 0)
2230 		return (0);
2231 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2232 	val &= PCIEM_CTL_MAX_PAYLOAD;
2233 	val >>= 5;
2234 	return (1 << (val + 7));
2235 }
2236 
2237 int
2238 pci_get_max_read_req(device_t dev)
2239 {
2240 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2241 	int cap;
2242 	uint16_t val;
2243 
2244 	cap = dinfo->cfg.pcie.pcie_location;
2245 	if (cap == 0)
2246 		return (0);
2247 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2248 	val &= PCIEM_CTL_MAX_READ_REQUEST;
2249 	val >>= 12;
2250 	return (1 << (val + 7));
2251 }
2252 
2253 int
2254 pci_set_max_read_req(device_t dev, int size)
2255 {
2256 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2257 	int cap;
2258 	uint16_t val;
2259 
2260 	cap = dinfo->cfg.pcie.pcie_location;
2261 	if (cap == 0)
2262 		return (0);
2263 	if (size < 128)
2264 		size = 128;
2265 	if (size > 4096)
2266 		size = 4096;
2267 	size = (1 << (fls(size) - 1));
2268 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2269 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2270 	val |= (fls(size) - 8) << 12;
2271 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2272 	return (size);
2273 }
2274 
2275 uint32_t
2276 pcie_read_config(device_t dev, int reg, int width)
2277 {
2278 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2279 	int cap;
2280 
2281 	cap = dinfo->cfg.pcie.pcie_location;
2282 	if (cap == 0) {
2283 		if (width == 2)
2284 			return (0xffff);
2285 		return (0xffffffff);
2286 	}
2287 
2288 	return (pci_read_config(dev, cap + reg, width));
2289 }
2290 
2291 void
2292 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2293 {
2294 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2295 	int cap;
2296 
2297 	cap = dinfo->cfg.pcie.pcie_location;
2298 	if (cap == 0)
2299 		return;
2300 	pci_write_config(dev, cap + reg, value, width);
2301 }
2302 
2303 /*
2304  * Adjusts a PCI-e capability register by clearing the bits in mask
2305  * and setting the bits in (value & mask).  Bits not set in mask are
2306  * not adjusted.
2307  *
2308  * Returns the old value on success or all ones on failure.
2309  */
2310 uint32_t
2311 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2312     int width)
2313 {
2314 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2315 	uint32_t old, new;
2316 	int cap;
2317 
2318 	cap = dinfo->cfg.pcie.pcie_location;
2319 	if (cap == 0) {
2320 		if (width == 2)
2321 			return (0xffff);
2322 		return (0xffffffff);
2323 	}
2324 
2325 	old = pci_read_config(dev, cap + reg, width);
2326 	new = old & ~mask;
2327 	new |= (value & mask);
2328 	pci_write_config(dev, cap + reg, new, width);
2329 	return (old);
2330 }
2331 
2332 /*
2333  * Support for MSI message signalled interrupts.
2334  */
2335 void
2336 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2337     uint16_t data)
2338 {
2339 	struct pci_devinfo *dinfo = device_get_ivars(child);
2340 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2341 
2342 	/* Write data and address values. */
2343 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2344 	    address & 0xffffffff, 4);
2345 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2346 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2347 		    address >> 32, 4);
2348 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2349 		    data, 2);
2350 	} else
2351 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2352 		    2);
2353 
2354 	/* Enable MSI in the control register. */
2355 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2356 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2357 	    msi->msi_ctrl, 2);
2358 
2359 	/* Enable MSI -> HT mapping. */
2360 	pci_ht_map_msi(child, address);
2361 }
2362 
2363 void
2364 pci_disable_msi_method(device_t dev, device_t child)
2365 {
2366 	struct pci_devinfo *dinfo = device_get_ivars(child);
2367 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2368 
2369 	/* Disable MSI -> HT mapping. */
2370 	pci_ht_map_msi(child, 0);
2371 
2372 	/* Disable MSI in the control register. */
2373 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2374 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2375 	    msi->msi_ctrl, 2);
2376 }
2377 
2378 /*
2379  * Restore MSI registers during resume.  If MSI is enabled then
2380  * restore the data and address registers in addition to the control
2381  * register.
2382  */
2383 static void
2384 pci_resume_msi(device_t dev)
2385 {
2386 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2387 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2388 	uint64_t address;
2389 	uint16_t data;
2390 
2391 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2392 		address = msi->msi_addr;
2393 		data = msi->msi_data;
2394 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2395 		    address & 0xffffffff, 4);
2396 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2397 			pci_write_config(dev, msi->msi_location +
2398 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2399 			pci_write_config(dev, msi->msi_location +
2400 			    PCIR_MSI_DATA_64BIT, data, 2);
2401 		} else
2402 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2403 			    data, 2);
2404 	}
2405 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2406 	    2);
2407 }
2408 
2409 static int
2410 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2411 {
2412 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2413 	pcicfgregs *cfg = &dinfo->cfg;
2414 	struct resource_list_entry *rle;
2415 	struct msix_table_entry *mte;
2416 	struct msix_vector *mv;
2417 	uint64_t addr;
2418 	uint32_t data;
2419 	int error, i, j;
2420 
2421 	/*
2422 	 * Handle MSI first.  We try to find this IRQ among our list
2423 	 * of MSI IRQs.  If we find it, we request updated address and
2424 	 * data registers and apply the results.
2425 	 */
2426 	if (cfg->msi.msi_alloc > 0) {
2427 		/* If we don't have any active handlers, nothing to do. */
2428 		if (cfg->msi.msi_handlers == 0)
2429 			return (0);
2430 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2431 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2432 			    i + 1);
2433 			if (rle->start == irq) {
2434 				error = PCIB_MAP_MSI(device_get_parent(bus),
2435 				    dev, irq, &addr, &data);
2436 				if (error)
2437 					return (error);
2438 				pci_disable_msi(dev);
2439 				dinfo->cfg.msi.msi_addr = addr;
2440 				dinfo->cfg.msi.msi_data = data;
2441 				pci_enable_msi(dev, addr, data);
2442 				return (0);
2443 			}
2444 		}
2445 		return (ENOENT);
2446 	}
2447 
2448 	/*
2449 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2450 	 * we request the updated mapping info.  If that works, we go
2451 	 * through all the slots that use this IRQ and update them.
2452 	 */
2453 	if (cfg->msix.msix_alloc > 0) {
2454 		bool found = false;
2455 
2456 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2457 			mv = &cfg->msix.msix_vectors[i];
2458 			if (mv->mv_irq == irq) {
2459 				error = PCIB_MAP_MSI(device_get_parent(bus),
2460 				    dev, irq, &addr, &data);
2461 				if (error)
2462 					return (error);
2463 				mv->mv_address = addr;
2464 				mv->mv_data = data;
2465 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2466 					mte = &cfg->msix.msix_table[j];
2467 					if (mte->mte_vector != i + 1)
2468 						continue;
2469 					if (mte->mte_handlers == 0)
2470 						continue;
2471 					pci_mask_msix(dev, j);
2472 					pci_enable_msix(dev, j, addr, data);
2473 					pci_unmask_msix(dev, j);
2474 				}
2475 				found = true;
2476 			}
2477 		}
2478 		return (found ? 0 : ENOENT);
2479 	}
2480 
2481 	return (ENOENT);
2482 }
2483 
2484 /*
2485  * Returns true if the specified device is blacklisted because MSI
2486  * doesn't work.
2487  */
2488 int
2489 pci_msi_device_blacklisted(device_t dev)
2490 {
2491 
2492 	if (!pci_honor_msi_blacklist)
2493 		return (0);
2494 
2495 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2496 }
2497 
2498 /*
2499  * Determine if MSI is blacklisted globally on this system.  Currently,
2500  * we just check for blacklisted chipsets as represented by the
2501  * host-PCI bridge at device 0:0:0.  In the future, it may become
2502  * necessary to check other system attributes, such as the kenv values
2503  * that give the motherboard manufacturer and model number.
2504  */
2505 static int
2506 pci_msi_blacklisted(void)
2507 {
2508 	device_t dev;
2509 
2510 	if (!pci_honor_msi_blacklist)
2511 		return (0);
2512 
2513 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2514 	if (!(pcie_chipset || pcix_chipset)) {
2515 		if (vm_guest != VM_GUEST_NO) {
2516 			/*
2517 			 * Whitelist older chipsets in virtual
2518 			 * machines known to support MSI.
2519 			 */
2520 			dev = pci_find_bsf(0, 0, 0);
2521 			if (dev != NULL)
2522 				return (!pci_has_quirk(pci_get_devid(dev),
2523 					PCI_QUIRK_ENABLE_MSI_VM));
2524 		}
2525 		return (1);
2526 	}
2527 
2528 	dev = pci_find_bsf(0, 0, 0);
2529 	if (dev != NULL)
2530 		return (pci_msi_device_blacklisted(dev));
2531 	return (0);
2532 }
2533 
2534 /*
2535  * Returns true if the specified device is blacklisted because MSI-X
2536  * doesn't work.  Note that this assumes that if MSI doesn't work,
2537  * MSI-X doesn't either.
2538  */
2539 int
2540 pci_msix_device_blacklisted(device_t dev)
2541 {
2542 
2543 	if (!pci_honor_msi_blacklist)
2544 		return (0);
2545 
2546 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2547 		return (1);
2548 
2549 	return (pci_msi_device_blacklisted(dev));
2550 }
2551 
2552 /*
2553  * Determine if MSI-X is blacklisted globally on this system.  If MSI
2554  * is blacklisted, assume that MSI-X is as well.  Check for additional
2555  * chipsets where MSI works but MSI-X does not.
2556  */
2557 static int
2558 pci_msix_blacklisted(void)
2559 {
2560 	device_t dev;
2561 
2562 	if (!pci_honor_msi_blacklist)
2563 		return (0);
2564 
2565 	dev = pci_find_bsf(0, 0, 0);
2566 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2567 	    PCI_QUIRK_DISABLE_MSIX))
2568 		return (1);
2569 
2570 	return (pci_msi_blacklisted());
2571 }
2572 
2573 /*
2574  * Attempt to allocate *count MSI messages.  The actual number allocated is
2575  * returned in *count.  After this function returns, each message will be
2576  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2577  */
2578 int
2579 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2580 {
2581 	struct pci_devinfo *dinfo = device_get_ivars(child);
2582 	pcicfgregs *cfg = &dinfo->cfg;
2583 	struct resource_list_entry *rle;
2584 	int actual, error, i, irqs[32];
2585 	uint16_t ctrl;
2586 
2587 	/* Don't let count == 0 get us into trouble. */
2588 	if (*count == 0)
2589 		return (EINVAL);
2590 
2591 	/* If rid 0 is allocated, then fail. */
2592 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2593 	if (rle != NULL && rle->res != NULL)
2594 		return (ENXIO);
2595 
2596 	/* Already have allocated messages? */
2597 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2598 		return (ENXIO);
2599 
2600 	/* If MSI is blacklisted for this system, fail. */
2601 	if (pci_msi_blacklisted())
2602 		return (ENXIO);
2603 
2604 	/* MSI capability present? */
2605 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2606 		return (ENODEV);
2607 
2608 	if (bootverbose)
2609 		device_printf(child,
2610 		    "attempting to allocate %d MSI vectors (%d supported)\n",
2611 		    *count, cfg->msi.msi_msgnum);
2612 
2613 	/* Don't ask for more than the device supports. */
2614 	actual = min(*count, cfg->msi.msi_msgnum);
2615 
2616 	/* Don't ask for more than 32 messages. */
2617 	actual = min(actual, 32);
2618 
2619 	/* MSI requires power of 2 number of messages. */
2620 	if (!powerof2(actual))
2621 		return (EINVAL);
2622 
2623 	for (;;) {
2624 		/* Try to allocate N messages. */
2625 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2626 		    actual, irqs);
2627 		if (error == 0)
2628 			break;
2629 		if (actual == 1)
2630 			return (error);
2631 
2632 		/* Try N / 2. */
2633 		actual >>= 1;
2634 	}
2635 
2636 	/*
2637 	 * We now have N actual messages mapped onto SYS_RES_IRQ
2638 	 * resources in the irqs[] array, so add new resources
2639 	 * starting at rid 1.
2640 	 */
2641 	for (i = 0; i < actual; i++)
2642 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2643 		    irqs[i], irqs[i], 1);
2644 
2645 	if (bootverbose) {
2646 		if (actual == 1)
2647 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2648 		else {
2649 			int run;
2650 
2651 			/*
2652 			 * Be fancy and try to print contiguous runs
2653 			 * of IRQ values as ranges.  'run' is true if
2654 			 * we are in a range.
2655 			 */
2656 			device_printf(child, "using IRQs %d", irqs[0]);
2657 			run = 0;
2658 			for (i = 1; i < actual; i++) {
2659 				/* Still in a run? */
2660 				if (irqs[i] == irqs[i - 1] + 1) {
2661 					run = 1;
2662 					continue;
2663 				}
2664 
2665 				/* Finish previous range. */
2666 				if (run) {
2667 					printf("-%d", irqs[i - 1]);
2668 					run = 0;
2669 				}
2670 
2671 				/* Start new range. */
2672 				printf(",%d", irqs[i]);
2673 			}
2674 
2675 			/* Unfinished range? */
2676 			if (run)
2677 				printf("-%d", irqs[actual - 1]);
2678 			printf(" for MSI\n");
2679 		}
2680 	}
2681 
2682 	/* Update control register with actual count. */
2683 	ctrl = cfg->msi.msi_ctrl;
2684 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2685 	ctrl |= (ffs(actual) - 1) << 4;
2686 	cfg->msi.msi_ctrl = ctrl;
2687 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2688 
2689 	/* Update counts of alloc'd messages. */
2690 	cfg->msi.msi_alloc = actual;
2691 	cfg->msi.msi_handlers = 0;
2692 	*count = actual;
2693 	return (0);
2694 }
2695 
2696 /* Release the MSI messages associated with this device. */
2697 int
2698 pci_release_msi_method(device_t dev, device_t child)
2699 {
2700 	struct pci_devinfo *dinfo = device_get_ivars(child);
2701 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2702 	struct resource_list_entry *rle;
2703 	int error, i, irqs[32];
2704 
2705 	/* Try MSI-X first. */
2706 	error = pci_release_msix(dev, child);
2707 	if (error != ENODEV)
2708 		return (error);
2709 
2710 	/* Do we have any messages to release? */
2711 	if (msi->msi_alloc == 0)
2712 		return (ENODEV);
2713 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2714 
2715 	/* Make sure none of the resources are allocated. */
2716 	if (msi->msi_handlers > 0)
2717 		return (EBUSY);
2718 	for (i = 0; i < msi->msi_alloc; i++) {
2719 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2720 		KASSERT(rle != NULL, ("missing MSI resource"));
2721 		if (rle->res != NULL)
2722 			return (EBUSY);
2723 		irqs[i] = rle->start;
2724 	}
2725 
2726 	/* Update control register with 0 count. */
2727 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2728 	    ("%s: MSI still enabled", __func__));
2729 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2730 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2731 	    msi->msi_ctrl, 2);
2732 
2733 	/* Release the messages. */
2734 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2735 	for (i = 0; i < msi->msi_alloc; i++)
2736 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2737 
2738 	/* Update alloc count. */
2739 	msi->msi_alloc = 0;
2740 	msi->msi_addr = 0;
2741 	msi->msi_data = 0;
2742 	return (0);
2743 }
2744 
2745 /*
2746  * Return the max supported MSI messages this device supports.
2747  * Basically, assuming the MD code can alloc messages, this function
2748  * should return the maximum value that pci_alloc_msi() can return.
2749  * Thus, it is subject to the tunables, etc.
2750  */
2751 int
2752 pci_msi_count_method(device_t dev, device_t child)
2753 {
2754 	struct pci_devinfo *dinfo = device_get_ivars(child);
2755 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2756 
2757 	if (pci_do_msi && msi->msi_location != 0)
2758 		return (msi->msi_msgnum);
2759 	return (0);
2760 }
2761 
2762 /* free pcicfgregs structure and all depending data structures */
2763 
2764 int
2765 pci_freecfg(struct pci_devinfo *dinfo)
2766 {
2767 	struct devlist *devlist_head;
2768 	struct pci_map *pm, *next;
2769 
2770 	devlist_head = &pci_devq;
2771 
2772 	if (dinfo->cfg.vpd.vpd_reg)
2773 		vpd_free(&dinfo->cfg.vpd);
2774 
2775 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2776 		free(pm, M_DEVBUF);
2777 	}
2778 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2779 	free(dinfo, M_DEVBUF);
2780 
2781 	/* increment the generation count */
2782 	pci_generation++;
2783 
2784 	/* we're losing one device */
2785 	pci_numdevs--;
2786 	return (0);
2787 }
2788 
2789 /*
2790  * PCI power manangement
2791  */
2792 int
2793 pci_set_powerstate_method(device_t dev, device_t child, int state)
2794 {
2795 	struct pci_devinfo *dinfo = device_get_ivars(child);
2796 	pcicfgregs *cfg = &dinfo->cfg;
2797 	uint16_t status;
2798 	int oldstate, highest, delay;
2799 
2800 	if (cfg->pp.pp_cap == 0)
2801 		return (EOPNOTSUPP);
2802 
2803 	/*
2804 	 * Optimize a no state change request away.  While it would be OK to
2805 	 * write to the hardware in theory, some devices have shown odd
2806 	 * behavior when going from D3 -> D3.
2807 	 */
2808 	oldstate = pci_get_powerstate(child);
2809 	if (oldstate == state)
2810 		return (0);
2811 
2812 	/*
2813 	 * The PCI power management specification states that after a state
2814 	 * transition between PCI power states, system software must
2815 	 * guarantee a minimal delay before the function accesses the device.
2816 	 * Compute the worst case delay that we need to guarantee before we
2817 	 * access the device.  Many devices will be responsive much more
2818 	 * quickly than this delay, but there are some that don't respond
2819 	 * instantly to state changes.  Transitions to/from D3 state require
2820 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2821 	 * is done below with DELAY rather than a sleeper function because
2822 	 * this function can be called from contexts where we cannot sleep.
2823 	 */
2824 	highest = (oldstate > state) ? oldstate : state;
2825 	if (highest == PCI_POWERSTATE_D3)
2826 	    delay = 10000;
2827 	else if (highest == PCI_POWERSTATE_D2)
2828 	    delay = 200;
2829 	else
2830 	    delay = 0;
2831 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2832 	    & ~PCIM_PSTAT_DMASK;
2833 	switch (state) {
2834 	case PCI_POWERSTATE_D0:
2835 		status |= PCIM_PSTAT_D0;
2836 		break;
2837 	case PCI_POWERSTATE_D1:
2838 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2839 			return (EOPNOTSUPP);
2840 		status |= PCIM_PSTAT_D1;
2841 		break;
2842 	case PCI_POWERSTATE_D2:
2843 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2844 			return (EOPNOTSUPP);
2845 		status |= PCIM_PSTAT_D2;
2846 		break;
2847 	case PCI_POWERSTATE_D3:
2848 		status |= PCIM_PSTAT_D3;
2849 		break;
2850 	default:
2851 		return (EINVAL);
2852 	}
2853 
2854 	if (bootverbose)
2855 		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2856 		    state);
2857 
2858 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2859 	if (delay)
2860 		DELAY(delay);
2861 	return (0);
2862 }
2863 
2864 int
2865 pci_get_powerstate_method(device_t dev, device_t child)
2866 {
2867 	struct pci_devinfo *dinfo = device_get_ivars(child);
2868 	pcicfgregs *cfg = &dinfo->cfg;
2869 	uint16_t status;
2870 	int result;
2871 
2872 	if (cfg->pp.pp_cap != 0) {
2873 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2874 		switch (status & PCIM_PSTAT_DMASK) {
2875 		case PCIM_PSTAT_D0:
2876 			result = PCI_POWERSTATE_D0;
2877 			break;
2878 		case PCIM_PSTAT_D1:
2879 			result = PCI_POWERSTATE_D1;
2880 			break;
2881 		case PCIM_PSTAT_D2:
2882 			result = PCI_POWERSTATE_D2;
2883 			break;
2884 		case PCIM_PSTAT_D3:
2885 			result = PCI_POWERSTATE_D3;
2886 			break;
2887 		default:
2888 			result = PCI_POWERSTATE_UNKNOWN;
2889 			break;
2890 		}
2891 	} else {
2892 		/* No support, device is always at D0 */
2893 		result = PCI_POWERSTATE_D0;
2894 	}
2895 	return (result);
2896 }
2897 
2898 /*
2899  * Some convenience functions for PCI device drivers.
2900  */
2901 
2902 static __inline void
2903 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2904 {
2905 	uint16_t	command;
2906 
2907 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2908 	command |= bit;
2909 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2910 }
2911 
2912 static __inline void
2913 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2914 {
2915 	uint16_t	command;
2916 
2917 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2918 	command &= ~bit;
2919 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2920 }
2921 
2922 int
2923 pci_enable_busmaster_method(device_t dev, device_t child)
2924 {
2925 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2926 	return (0);
2927 }
2928 
2929 int
2930 pci_disable_busmaster_method(device_t dev, device_t child)
2931 {
2932 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2933 	return (0);
2934 }
2935 
2936 int
2937 pci_enable_io_method(device_t dev, device_t child, int space)
2938 {
2939 	uint16_t bit;
2940 
2941 	switch(space) {
2942 	case SYS_RES_IOPORT:
2943 		bit = PCIM_CMD_PORTEN;
2944 		break;
2945 	case SYS_RES_MEMORY:
2946 		bit = PCIM_CMD_MEMEN;
2947 		break;
2948 	default:
2949 		return (EINVAL);
2950 	}
2951 	pci_set_command_bit(dev, child, bit);
2952 	return (0);
2953 }
2954 
2955 int
2956 pci_disable_io_method(device_t dev, device_t child, int space)
2957 {
2958 	uint16_t bit;
2959 
2960 	switch(space) {
2961 	case SYS_RES_IOPORT:
2962 		bit = PCIM_CMD_PORTEN;
2963 		break;
2964 	case SYS_RES_MEMORY:
2965 		bit = PCIM_CMD_MEMEN;
2966 		break;
2967 	default:
2968 		return (EINVAL);
2969 	}
2970 	pci_clear_command_bit(dev, child, bit);
2971 	return (0);
2972 }
2973 
2974 /*
2975  * New style pci driver.  Parent device is either a pci-host-bridge or a
2976  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
2977  */
2978 
2979 void
2980 pci_print_verbose(struct pci_devinfo *dinfo)
2981 {
2982 
2983 	if (bootverbose) {
2984 		pcicfgregs *cfg = &dinfo->cfg;
2985 
2986 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2987 		    cfg->vendor, cfg->device, cfg->revid);
2988 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2989 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
2990 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2991 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2992 		    cfg->mfdev);
2993 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2994 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2995 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2996 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2997 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2998 		if (cfg->intpin > 0)
2999 			printf("\tintpin=%c, irq=%d\n",
3000 			    cfg->intpin +'a' -1, cfg->intline);
3001 		if (cfg->pp.pp_cap) {
3002 			uint16_t status;
3003 
3004 			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
3005 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
3006 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
3007 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
3008 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
3009 			    status & PCIM_PSTAT_DMASK);
3010 		}
3011 		if (cfg->msi.msi_location) {
3012 			int ctrl;
3013 
3014 			ctrl = cfg->msi.msi_ctrl;
3015 			printf("\tMSI supports %d message%s%s%s\n",
3016 			    cfg->msi.msi_msgnum,
3017 			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
3018 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
3019 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
3020 		}
3021 		if (cfg->msix.msix_location) {
3022 			printf("\tMSI-X supports %d message%s ",
3023 			    cfg->msix.msix_msgnum,
3024 			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
3025 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
3026 				printf("in map 0x%x\n",
3027 				    cfg->msix.msix_table_bar);
3028 			else
3029 				printf("in maps 0x%x and 0x%x\n",
3030 				    cfg->msix.msix_table_bar,
3031 				    cfg->msix.msix_pba_bar);
3032 		}
3033 	}
3034 }
3035 
3036 static int
3037 pci_porten(device_t dev)
3038 {
3039 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3040 }
3041 
3042 static int
3043 pci_memen(device_t dev)
3044 {
3045 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3046 }
3047 
3048 void
3049 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3050     int *bar64)
3051 {
3052 	struct pci_devinfo *dinfo;
3053 	pci_addr_t map, testval;
3054 	int ln2range;
3055 	uint16_t cmd;
3056 
3057 	/*
3058 	 * The device ROM BAR is special.  It is always a 32-bit
3059 	 * memory BAR.  Bit 0 is special and should not be set when
3060 	 * sizing the BAR.
3061 	 */
3062 	dinfo = device_get_ivars(dev);
3063 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3064 		map = pci_read_config(dev, reg, 4);
3065 		pci_write_config(dev, reg, 0xfffffffe, 4);
3066 		testval = pci_read_config(dev, reg, 4);
3067 		pci_write_config(dev, reg, map, 4);
3068 		*mapp = map;
3069 		*testvalp = testval;
3070 		if (bar64 != NULL)
3071 			*bar64 = 0;
3072 		return;
3073 	}
3074 
3075 	map = pci_read_config(dev, reg, 4);
3076 	ln2range = pci_maprange(map);
3077 	if (ln2range == 64)
3078 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3079 
3080 	/*
3081 	 * Disable decoding via the command register before
3082 	 * determining the BAR's length since we will be placing it in
3083 	 * a weird state.
3084 	 */
3085 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3086 	pci_write_config(dev, PCIR_COMMAND,
3087 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3088 
3089 	/*
3090 	 * Determine the BAR's length by writing all 1's.  The bottom
3091 	 * log_2(size) bits of the BAR will stick as 0 when we read
3092 	 * the value back.
3093 	 *
3094 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3095 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3096 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3097 	 *
3098 	 * Writes to both registers must be performed before attempting to
3099 	 * read back the size value.
3100 	 */
3101 	testval = 0;
3102 	pci_write_config(dev, reg, 0xffffffff, 4);
3103 	if (ln2range == 64) {
3104 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3105 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3106 	}
3107 	testval |= pci_read_config(dev, reg, 4);
3108 
3109 	/*
3110 	 * Restore the original value of the BAR.  We may have reprogrammed
3111 	 * the BAR of the low-level console device and when booting verbose,
3112 	 * we need the console device addressable.
3113 	 */
3114 	pci_write_config(dev, reg, map, 4);
3115 	if (ln2range == 64)
3116 		pci_write_config(dev, reg + 4, map >> 32, 4);
3117 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3118 
3119 	*mapp = map;
3120 	*testvalp = testval;
3121 	if (bar64 != NULL)
3122 		*bar64 = (ln2range == 64);
3123 }
3124 
3125 static void
3126 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3127 {
3128 	struct pci_devinfo *dinfo;
3129 	int ln2range;
3130 
3131 	/* The device ROM BAR is always a 32-bit memory BAR. */
3132 	dinfo = device_get_ivars(dev);
3133 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3134 		ln2range = 32;
3135 	else
3136 		ln2range = pci_maprange(pm->pm_value);
3137 	pci_write_config(dev, pm->pm_reg, base, 4);
3138 	if (ln2range == 64)
3139 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3140 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3141 	if (ln2range == 64)
3142 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3143 		    pm->pm_reg + 4, 4) << 32;
3144 }
3145 
3146 struct pci_map *
3147 pci_find_bar(device_t dev, int reg)
3148 {
3149 	struct pci_devinfo *dinfo;
3150 	struct pci_map *pm;
3151 
3152 	dinfo = device_get_ivars(dev);
3153 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3154 		if (pm->pm_reg == reg)
3155 			return (pm);
3156 	}
3157 	return (NULL);
3158 }
3159 
3160 struct pci_map *
3161 pci_first_bar(device_t dev)
3162 {
3163 	struct pci_devinfo *dinfo;
3164 
3165 	dinfo = device_get_ivars(dev);
3166 	return (STAILQ_FIRST(&dinfo->cfg.maps));
3167 }
3168 
3169 struct pci_map *
3170 pci_next_bar(struct pci_map *pm)
3171 {
3172 	return (STAILQ_NEXT(pm, pm_link));
3173 }
3174 
3175 int
3176 pci_bar_enabled(device_t dev, struct pci_map *pm)
3177 {
3178 	struct pci_devinfo *dinfo;
3179 	uint16_t cmd;
3180 
3181 	dinfo = device_get_ivars(dev);
3182 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3183 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3184 		return (0);
3185 #ifdef PCI_IOV
3186 	if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
3187 		struct pcicfg_iov *iov;
3188 
3189 		iov = dinfo->cfg.iov;
3190 		cmd = pci_read_config(iov->iov_pf,
3191 		    iov->iov_pos + PCIR_SRIOV_CTL, 2);
3192 		return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
3193 	}
3194 #endif
3195 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3196 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3197 		return ((cmd & PCIM_CMD_MEMEN) != 0);
3198 	else
3199 		return ((cmd & PCIM_CMD_PORTEN) != 0);
3200 }
3201 
3202 struct pci_map *
3203 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3204 {
3205 	struct pci_devinfo *dinfo;
3206 	struct pci_map *pm, *prev;
3207 
3208 	dinfo = device_get_ivars(dev);
3209 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3210 	pm->pm_reg = reg;
3211 	pm->pm_value = value;
3212 	pm->pm_size = size;
3213 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3214 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3215 		    reg));
3216 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3217 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3218 			break;
3219 	}
3220 	if (prev != NULL)
3221 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3222 	else
3223 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3224 	return (pm);
3225 }
3226 
3227 static void
3228 pci_restore_bars(device_t dev)
3229 {
3230 	struct pci_devinfo *dinfo;
3231 	struct pci_map *pm;
3232 	int ln2range;
3233 
3234 	dinfo = device_get_ivars(dev);
3235 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3236 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3237 			ln2range = 32;
3238 		else
3239 			ln2range = pci_maprange(pm->pm_value);
3240 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3241 		if (ln2range == 64)
3242 			pci_write_config(dev, pm->pm_reg + 4,
3243 			    pm->pm_value >> 32, 4);
3244 	}
3245 }
3246 
3247 /*
3248  * Add a resource based on a pci map register. Return 1 if the map
3249  * register is a 32bit map register or 2 if it is a 64bit register.
3250  */
3251 static int
3252 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3253     int force, int prefetch)
3254 {
3255 	struct pci_map *pm;
3256 	pci_addr_t base, map, testval;
3257 	pci_addr_t start, end, count;
3258 	int barlen, basezero, flags, maprange, mapsize, type;
3259 	uint16_t cmd;
3260 	struct resource *res;
3261 
3262 	/*
3263 	 * The BAR may already exist if the device is a CardBus card
3264 	 * whose CIS is stored in this BAR.
3265 	 */
3266 	pm = pci_find_bar(dev, reg);
3267 	if (pm != NULL) {
3268 		maprange = pci_maprange(pm->pm_value);
3269 		barlen = maprange == 64 ? 2 : 1;
3270 		return (barlen);
3271 	}
3272 
3273 	pci_read_bar(dev, reg, &map, &testval, NULL);
3274 	if (PCI_BAR_MEM(map)) {
3275 		type = SYS_RES_MEMORY;
3276 		if (map & PCIM_BAR_MEM_PREFETCH)
3277 			prefetch = 1;
3278 	} else
3279 		type = SYS_RES_IOPORT;
3280 	mapsize = pci_mapsize(testval);
3281 	base = pci_mapbase(map);
3282 #ifdef __PCI_BAR_ZERO_VALID
3283 	basezero = 0;
3284 #else
3285 	basezero = base == 0;
3286 #endif
3287 	maprange = pci_maprange(map);
3288 	barlen = maprange == 64 ? 2 : 1;
3289 
3290 	/*
3291 	 * For I/O registers, if bottom bit is set, and the next bit up
3292 	 * isn't clear, we know we have a BAR that doesn't conform to the
3293 	 * spec, so ignore it.  Also, sanity check the size of the data
3294 	 * areas to the type of memory involved.  Memory must be at least
3295 	 * 16 bytes in size, while I/O ranges must be at least 4.
3296 	 */
3297 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3298 		return (barlen);
3299 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3300 	    (type == SYS_RES_IOPORT && mapsize < 2))
3301 		return (barlen);
3302 
3303 	/* Save a record of this BAR. */
3304 	pm = pci_add_bar(dev, reg, map, mapsize);
3305 	if (bootverbose) {
3306 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3307 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3308 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3309 			printf(", port disabled\n");
3310 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3311 			printf(", memory disabled\n");
3312 		else
3313 			printf(", enabled\n");
3314 	}
3315 
3316 	/*
3317 	 * If base is 0, then we have problems if this architecture does
3318 	 * not allow that.  It is best to ignore such entries for the
3319 	 * moment.  These will be allocated later if the driver specifically
3320 	 * requests them.  However, some removable buses look better when
3321 	 * all resources are allocated, so allow '0' to be overridden.
3322 	 *
3323 	 * Similarly treat maps whose values is the same as the test value
3324 	 * read back.  These maps have had all f's written to them by the
3325 	 * BIOS in an attempt to disable the resources.
3326 	 */
3327 	if (!force && (basezero || map == testval))
3328 		return (barlen);
3329 	if ((u_long)base != base) {
3330 		device_printf(bus,
3331 		    "pci%d:%d:%d:%d bar %#x too many address bits",
3332 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3333 		    pci_get_function(dev), reg);
3334 		return (barlen);
3335 	}
3336 
3337 	/*
3338 	 * This code theoretically does the right thing, but has
3339 	 * undesirable side effects in some cases where peripherals
3340 	 * respond oddly to having these bits enabled.  Let the user
3341 	 * be able to turn them off (since pci_enable_io_modes is 1 by
3342 	 * default).
3343 	 */
3344 	if (pci_enable_io_modes) {
3345 		/* Turn on resources that have been left off by a lazy BIOS */
3346 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3347 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3348 			cmd |= PCIM_CMD_PORTEN;
3349 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3350 		}
3351 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3352 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3353 			cmd |= PCIM_CMD_MEMEN;
3354 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3355 		}
3356 	} else {
3357 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3358 			return (barlen);
3359 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3360 			return (barlen);
3361 	}
3362 
3363 	count = (pci_addr_t)1 << mapsize;
3364 	flags = RF_ALIGNMENT_LOG2(mapsize);
3365 	if (prefetch)
3366 		flags |= RF_PREFETCHABLE;
3367 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3368 		start = 0;	/* Let the parent decide. */
3369 		end = ~0;
3370 	} else {
3371 		start = base;
3372 		end = base + count - 1;
3373 	}
3374 	resource_list_add(rl, type, reg, start, end, count);
3375 
3376 	/*
3377 	 * Try to allocate the resource for this BAR from our parent
3378 	 * so that this resource range is already reserved.  The
3379 	 * driver for this device will later inherit this resource in
3380 	 * pci_alloc_resource().
3381 	 */
3382 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3383 	    flags);
3384 	if ((pci_do_realloc_bars
3385 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3386 	    && res == NULL && (start != 0 || end != ~0)) {
3387 		/*
3388 		 * If the allocation fails, try to allocate a resource for
3389 		 * this BAR using any available range.  The firmware felt
3390 		 * it was important enough to assign a resource, so don't
3391 		 * disable decoding if we can help it.
3392 		 */
3393 		resource_list_delete(rl, type, reg);
3394 		resource_list_add(rl, type, reg, 0, ~0, count);
3395 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3396 		    count, flags);
3397 	}
3398 	if (res == NULL) {
3399 		/*
3400 		 * If the allocation fails, delete the resource list entry
3401 		 * and disable decoding for this device.
3402 		 *
3403 		 * If the driver requests this resource in the future,
3404 		 * pci_reserve_map() will try to allocate a fresh
3405 		 * resource range.
3406 		 */
3407 		resource_list_delete(rl, type, reg);
3408 		pci_disable_io(dev, type);
3409 		if (bootverbose)
3410 			device_printf(bus,
3411 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3412 			    pci_get_domain(dev), pci_get_bus(dev),
3413 			    pci_get_slot(dev), pci_get_function(dev), reg);
3414 	} else {
3415 		start = rman_get_start(res);
3416 		pci_write_bar(dev, pm, start);
3417 	}
3418 	return (barlen);
3419 }
3420 
3421 /*
3422  * For ATA devices we need to decide early what addressing mode to use.
3423  * Legacy demands that the primary and secondary ATA ports sits on the
3424  * same addresses that old ISA hardware did. This dictates that we use
3425  * those addresses and ignore the BAR's if we cannot set PCI native
3426  * addressing mode.
3427  */
3428 static void
3429 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3430     uint32_t prefetchmask)
3431 {
3432 	int rid, type, progif;
3433 #if 0
3434 	/* if this device supports PCI native addressing use it */
3435 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3436 	if ((progif & 0x8a) == 0x8a) {
3437 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3438 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3439 			printf("Trying ATA native PCI addressing mode\n");
3440 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3441 		}
3442 	}
3443 #endif
3444 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3445 	type = SYS_RES_IOPORT;
3446 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3447 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3448 		    prefetchmask & (1 << 0));
3449 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3450 		    prefetchmask & (1 << 1));
3451 	} else {
3452 		rid = PCIR_BAR(0);
3453 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3454 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3455 		    0x1f7, 8, 0);
3456 		rid = PCIR_BAR(1);
3457 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3458 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3459 		    0x3f6, 1, 0);
3460 	}
3461 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3462 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3463 		    prefetchmask & (1 << 2));
3464 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3465 		    prefetchmask & (1 << 3));
3466 	} else {
3467 		rid = PCIR_BAR(2);
3468 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3469 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3470 		    0x177, 8, 0);
3471 		rid = PCIR_BAR(3);
3472 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3473 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3474 		    0x376, 1, 0);
3475 	}
3476 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3477 	    prefetchmask & (1 << 4));
3478 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3479 	    prefetchmask & (1 << 5));
3480 }
3481 
3482 static void
3483 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3484 {
3485 	struct pci_devinfo *dinfo = device_get_ivars(dev);
3486 	pcicfgregs *cfg = &dinfo->cfg;
3487 	char tunable_name[64];
3488 	int irq;
3489 
3490 	/* Has to have an intpin to have an interrupt. */
3491 	if (cfg->intpin == 0)
3492 		return;
3493 
3494 	/* Let the user override the IRQ with a tunable. */
3495 	irq = PCI_INVALID_IRQ;
3496 	snprintf(tunable_name, sizeof(tunable_name),
3497 	    "hw.pci%d.%d.%d.INT%c.irq",
3498 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3499 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3500 		irq = PCI_INVALID_IRQ;
3501 
3502 	/*
3503 	 * If we didn't get an IRQ via the tunable, then we either use the
3504 	 * IRQ value in the intline register or we ask the bus to route an
3505 	 * interrupt for us.  If force_route is true, then we only use the
3506 	 * value in the intline register if the bus was unable to assign an
3507 	 * IRQ.
3508 	 */
3509 	if (!PCI_INTERRUPT_VALID(irq)) {
3510 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3511 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3512 		if (!PCI_INTERRUPT_VALID(irq))
3513 			irq = cfg->intline;
3514 	}
3515 
3516 	/* If after all that we don't have an IRQ, just bail. */
3517 	if (!PCI_INTERRUPT_VALID(irq))
3518 		return;
3519 
3520 	/* Update the config register if it changed. */
3521 	if (irq != cfg->intline) {
3522 		cfg->intline = irq;
3523 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3524 	}
3525 
3526 	/* Add this IRQ as rid 0 interrupt resource. */
3527 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3528 }
3529 
3530 /* Perform early OHCI takeover from SMM. */
3531 static void
3532 ohci_early_takeover(device_t self)
3533 {
3534 	struct resource *res;
3535 	uint32_t ctl;
3536 	int rid;
3537 	int i;
3538 
3539 	rid = PCIR_BAR(0);
3540 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3541 	if (res == NULL)
3542 		return;
3543 
3544 	ctl = bus_read_4(res, OHCI_CONTROL);
3545 	if (ctl & OHCI_IR) {
3546 		if (bootverbose)
3547 			printf("ohci early: "
3548 			    "SMM active, request owner change\n");
3549 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3550 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3551 			DELAY(1000);
3552 			ctl = bus_read_4(res, OHCI_CONTROL);
3553 		}
3554 		if (ctl & OHCI_IR) {
3555 			if (bootverbose)
3556 				printf("ohci early: "
3557 				    "SMM does not respond, resetting\n");
3558 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3559 		}
3560 		/* Disable interrupts */
3561 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3562 	}
3563 
3564 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3565 }
3566 
3567 /* Perform early UHCI takeover from SMM. */
3568 static void
3569 uhci_early_takeover(device_t self)
3570 {
3571 	struct resource *res;
3572 	int rid;
3573 
3574 	/*
3575 	 * Set the PIRQD enable bit and switch off all the others. We don't
3576 	 * want legacy support to interfere with us XXX Does this also mean
3577 	 * that the BIOS won't touch the keyboard anymore if it is connected
3578 	 * to the ports of the root hub?
3579 	 */
3580 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3581 
3582 	/* Disable interrupts */
3583 	rid = PCI_UHCI_BASE_REG;
3584 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3585 	if (res != NULL) {
3586 		bus_write_2(res, UHCI_INTR, 0);
3587 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3588 	}
3589 }
3590 
3591 /* Perform early EHCI takeover from SMM. */
3592 static void
3593 ehci_early_takeover(device_t self)
3594 {
3595 	struct resource *res;
3596 	uint32_t cparams;
3597 	uint32_t eec;
3598 	uint8_t eecp;
3599 	uint8_t bios_sem;
3600 	uint8_t offs;
3601 	int rid;
3602 	int i;
3603 
3604 	rid = PCIR_BAR(0);
3605 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3606 	if (res == NULL)
3607 		return;
3608 
3609 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3610 
3611 	/* Synchronise with the BIOS if it owns the controller. */
3612 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3613 	    eecp = EHCI_EECP_NEXT(eec)) {
3614 		eec = pci_read_config(self, eecp, 4);
3615 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3616 			continue;
3617 		}
3618 		bios_sem = pci_read_config(self, eecp +
3619 		    EHCI_LEGSUP_BIOS_SEM, 1);
3620 		if (bios_sem == 0) {
3621 			continue;
3622 		}
3623 		if (bootverbose)
3624 			printf("ehci early: "
3625 			    "SMM active, request owner change\n");
3626 
3627 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3628 
3629 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3630 			DELAY(1000);
3631 			bios_sem = pci_read_config(self, eecp +
3632 			    EHCI_LEGSUP_BIOS_SEM, 1);
3633 		}
3634 
3635 		if (bios_sem != 0) {
3636 			if (bootverbose)
3637 				printf("ehci early: "
3638 				    "SMM does not respond\n");
3639 		}
3640 		/* Disable interrupts */
3641 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3642 		bus_write_4(res, offs + EHCI_USBINTR, 0);
3643 	}
3644 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3645 }
3646 
3647 /* Perform early XHCI takeover from SMM. */
3648 static void
3649 xhci_early_takeover(device_t self)
3650 {
3651 	struct resource *res;
3652 	uint32_t cparams;
3653 	uint32_t eec;
3654 	uint8_t eecp;
3655 	uint8_t bios_sem;
3656 	uint8_t offs;
3657 	int rid;
3658 	int i;
3659 
3660 	rid = PCIR_BAR(0);
3661 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3662 	if (res == NULL)
3663 		return;
3664 
3665 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3666 
3667 	eec = -1;
3668 
3669 	/* Synchronise with the BIOS if it owns the controller. */
3670 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3671 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3672 		eec = bus_read_4(res, eecp);
3673 
3674 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3675 			continue;
3676 
3677 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3678 		if (bios_sem == 0)
3679 			continue;
3680 
3681 		if (bootverbose)
3682 			printf("xhci early: "
3683 			    "SMM active, request owner change\n");
3684 
3685 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3686 
3687 		/* wait a maximum of 5 second */
3688 
3689 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3690 			DELAY(1000);
3691 			bios_sem = bus_read_1(res, eecp +
3692 			    XHCI_XECP_BIOS_SEM);
3693 		}
3694 
3695 		if (bios_sem != 0) {
3696 			if (bootverbose)
3697 				printf("xhci early: "
3698 				    "SMM does not respond\n");
3699 		}
3700 
3701 		/* Disable interrupts */
3702 		offs = bus_read_1(res, XHCI_CAPLENGTH);
3703 		bus_write_4(res, offs + XHCI_USBCMD, 0);
3704 		bus_read_4(res, offs + XHCI_USBSTS);
3705 	}
3706 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3707 }
3708 
3709 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
3710 static void
3711 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3712     struct resource_list *rl)
3713 {
3714 	struct resource *res;
3715 	char *cp;
3716 	rman_res_t start, end, count;
3717 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3718 
3719 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3720 	case PCIM_HDRTYPE_BRIDGE:
3721 		sec_reg = PCIR_SECBUS_1;
3722 		sub_reg = PCIR_SUBBUS_1;
3723 		break;
3724 	case PCIM_HDRTYPE_CARDBUS:
3725 		sec_reg = PCIR_SECBUS_2;
3726 		sub_reg = PCIR_SUBBUS_2;
3727 		break;
3728 	default:
3729 		return;
3730 	}
3731 
3732 	/*
3733 	 * If the existing bus range is valid, attempt to reserve it
3734 	 * from our parent.  If this fails for any reason, clear the
3735 	 * secbus and subbus registers.
3736 	 *
3737 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3738 	 * This would at least preserve the existing sec_bus if it is
3739 	 * valid.
3740 	 */
3741 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3742 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3743 
3744 	/* Quirk handling. */
3745 	switch (pci_get_devid(dev)) {
3746 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3747 		sup_bus = pci_read_config(dev, 0x41, 1);
3748 		if (sup_bus != 0xff) {
3749 			sec_bus = sup_bus + 1;
3750 			sub_bus = sup_bus + 1;
3751 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3752 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3753 		}
3754 		break;
3755 
3756 	case 0x00dd10de:
3757 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3758 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3759 			break;
3760 		if (strncmp(cp, "Compal", 6) != 0) {
3761 			freeenv(cp);
3762 			break;
3763 		}
3764 		freeenv(cp);
3765 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3766 			break;
3767 		if (strncmp(cp, "08A0", 4) != 0) {
3768 			freeenv(cp);
3769 			break;
3770 		}
3771 		freeenv(cp);
3772 		if (sub_bus < 0xa) {
3773 			sub_bus = 0xa;
3774 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3775 		}
3776 		break;
3777 	}
3778 
3779 	if (bootverbose)
3780 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3781 	if (sec_bus > 0 && sub_bus >= sec_bus) {
3782 		start = sec_bus;
3783 		end = sub_bus;
3784 		count = end - start + 1;
3785 
3786 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3787 
3788 		/*
3789 		 * If requested, clear secondary bus registers in
3790 		 * bridge devices to force a complete renumbering
3791 		 * rather than reserving the existing range.  However,
3792 		 * preserve the existing size.
3793 		 */
3794 		if (pci_clear_buses)
3795 			goto clear;
3796 
3797 		rid = 0;
3798 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3799 		    start, end, count, 0);
3800 		if (res != NULL)
3801 			return;
3802 
3803 		if (bootverbose)
3804 			device_printf(bus,
3805 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3806 			    pci_get_domain(dev), pci_get_bus(dev),
3807 			    pci_get_slot(dev), pci_get_function(dev));
3808 	}
3809 
3810 clear:
3811 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3812 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3813 }
3814 
3815 static struct resource *
3816 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3817     rman_res_t end, rman_res_t count, u_int flags)
3818 {
3819 	struct pci_devinfo *dinfo;
3820 	pcicfgregs *cfg;
3821 	struct resource_list *rl;
3822 	struct resource *res;
3823 	int sec_reg, sub_reg;
3824 
3825 	dinfo = device_get_ivars(child);
3826 	cfg = &dinfo->cfg;
3827 	rl = &dinfo->resources;
3828 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3829 	case PCIM_HDRTYPE_BRIDGE:
3830 		sec_reg = PCIR_SECBUS_1;
3831 		sub_reg = PCIR_SUBBUS_1;
3832 		break;
3833 	case PCIM_HDRTYPE_CARDBUS:
3834 		sec_reg = PCIR_SECBUS_2;
3835 		sub_reg = PCIR_SUBBUS_2;
3836 		break;
3837 	default:
3838 		return (NULL);
3839 	}
3840 
3841 	if (*rid != 0)
3842 		return (NULL);
3843 
3844 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3845 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3846 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3847 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3848 		    start, end, count, flags & ~RF_ACTIVE);
3849 		if (res == NULL) {
3850 			resource_list_delete(rl, PCI_RES_BUS, *rid);
3851 			device_printf(child, "allocating %ju bus%s failed\n",
3852 			    count, count == 1 ? "" : "es");
3853 			return (NULL);
3854 		}
3855 		if (bootverbose)
3856 			device_printf(child,
3857 			    "Lazy allocation of %ju bus%s at %ju\n", count,
3858 			    count == 1 ? "" : "es", rman_get_start(res));
3859 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3860 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3861 	}
3862 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3863 	    end, count, flags));
3864 }
3865 #endif
3866 
3867 static int
3868 pci_ea_bei_to_rid(device_t dev, int bei)
3869 {
3870 #ifdef PCI_IOV
3871 	struct pci_devinfo *dinfo;
3872 	int iov_pos;
3873 	struct pcicfg_iov *iov;
3874 
3875 	dinfo = device_get_ivars(dev);
3876 	iov = dinfo->cfg.iov;
3877 	if (iov != NULL)
3878 		iov_pos = iov->iov_pos;
3879 	else
3880 		iov_pos = 0;
3881 #endif
3882 
3883 	/* Check if matches BAR */
3884 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3885 	    (bei <= PCIM_EA_BEI_BAR_5))
3886 		return (PCIR_BAR(bei));
3887 
3888 	/* Check ROM */
3889 	if (bei == PCIM_EA_BEI_ROM)
3890 		return (PCIR_BIOS);
3891 
3892 #ifdef PCI_IOV
3893 	/* Check if matches VF_BAR */
3894 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3895 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3896 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3897 		    iov_pos);
3898 #endif
3899 
3900 	return (-1);
3901 }
3902 
3903 int
3904 pci_ea_is_enabled(device_t dev, int rid)
3905 {
3906 	struct pci_ea_entry *ea;
3907 	struct pci_devinfo *dinfo;
3908 
3909 	dinfo = device_get_ivars(dev);
3910 
3911 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3912 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3913 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3914 	}
3915 
3916 	return (0);
3917 }
3918 
3919 void
3920 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
3921 {
3922 	struct pci_ea_entry *ea;
3923 	struct pci_devinfo *dinfo;
3924 	pci_addr_t start, end, count;
3925 	struct resource_list *rl;
3926 	int type, flags, rid;
3927 	struct resource *res;
3928 	uint32_t tmp;
3929 #ifdef PCI_IOV
3930 	struct pcicfg_iov *iov;
3931 #endif
3932 
3933 	dinfo = device_get_ivars(dev);
3934 	rl = &dinfo->resources;
3935 	flags = 0;
3936 
3937 #ifdef PCI_IOV
3938 	iov = dinfo->cfg.iov;
3939 #endif
3940 
3941 	if (dinfo->cfg.ea.ea_location == 0)
3942 		return;
3943 
3944 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3945 		/*
3946 		 * TODO: Ignore EA-BAR if is not enabled.
3947 		 *   Currently the EA implementation supports
3948 		 *   only situation, where EA structure contains
3949 		 *   predefined entries. In case they are not enabled
3950 		 *   leave them unallocated and proceed with
3951 		 *   a legacy-BAR mechanism.
3952 		 */
3953 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
3954 			continue;
3955 
3956 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
3957 		case PCIM_EA_P_MEM_PREFETCH:
3958 		case PCIM_EA_P_VF_MEM_PREFETCH:
3959 			flags = RF_PREFETCHABLE;
3960 			/* FALLTHROUGH */
3961 		case PCIM_EA_P_VF_MEM:
3962 		case PCIM_EA_P_MEM:
3963 			type = SYS_RES_MEMORY;
3964 			break;
3965 		case PCIM_EA_P_IO:
3966 			type = SYS_RES_IOPORT;
3967 			break;
3968 		default:
3969 			continue;
3970 		}
3971 
3972 		if (alloc_iov != 0) {
3973 #ifdef PCI_IOV
3974 			/* Allocating IOV, confirm BEI matches */
3975 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
3976 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
3977 				continue;
3978 #else
3979 			continue;
3980 #endif
3981 		} else {
3982 			/* Allocating BAR, confirm BEI matches */
3983 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
3984 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
3985 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
3986 				continue;
3987 		}
3988 
3989 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
3990 		if (rid < 0)
3991 			continue;
3992 
3993 		/* Skip resources already allocated by EA */
3994 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
3995 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
3996 			continue;
3997 
3998 		start = ea->eae_base;
3999 		count = ea->eae_max_offset + 1;
4000 #ifdef PCI_IOV
4001 		if (iov != NULL)
4002 			count = count * iov->iov_num_vfs;
4003 #endif
4004 		end = start + count - 1;
4005 		if (count == 0)
4006 			continue;
4007 
4008 		resource_list_add(rl, type, rid, start, end, count);
4009 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
4010 		    flags);
4011 		if (res == NULL) {
4012 			resource_list_delete(rl, type, rid);
4013 
4014 			/*
4015 			 * Failed to allocate using EA, disable entry.
4016 			 * Another attempt to allocation will be performed
4017 			 * further, but this time using legacy BAR registers
4018 			 */
4019 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
4020 			tmp &= ~PCIM_EA_ENABLE;
4021 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
4022 
4023 			/*
4024 			 * Disabling entry might fail in case it is hardwired.
4025 			 * Read flags again to match current status.
4026 			 */
4027 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
4028 
4029 			continue;
4030 		}
4031 
4032 		/* As per specification, fill BAR with zeros */
4033 		pci_write_config(dev, rid, 0, 4);
4034 	}
4035 }
4036 
4037 void
4038 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
4039 {
4040 	struct pci_devinfo *dinfo;
4041 	pcicfgregs *cfg;
4042 	struct resource_list *rl;
4043 	const struct pci_quirk *q;
4044 	uint32_t devid;
4045 	int i;
4046 
4047 	dinfo = device_get_ivars(dev);
4048 	cfg = &dinfo->cfg;
4049 	rl = &dinfo->resources;
4050 	devid = (cfg->device << 16) | cfg->vendor;
4051 
4052 	/* Allocate resources using Enhanced Allocation */
4053 	pci_add_resources_ea(bus, dev, 0);
4054 
4055 	/* ATA devices needs special map treatment */
4056 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
4057 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4058 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4059 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4060 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
4061 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
4062 	else
4063 		for (i = 0; i < cfg->nummaps;) {
4064 			/* Skip resources already managed by EA */
4065 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4066 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4067 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4068 				i++;
4069 				continue;
4070 			}
4071 
4072 			/*
4073 			 * Skip quirked resources.
4074 			 */
4075 			for (q = &pci_quirks[0]; q->devid != 0; q++)
4076 				if (q->devid == devid &&
4077 				    q->type == PCI_QUIRK_UNMAP_REG &&
4078 				    q->arg1 == PCIR_BAR(i))
4079 					break;
4080 			if (q->devid != 0) {
4081 				i++;
4082 				continue;
4083 			}
4084 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4085 			    prefetchmask & (1 << i));
4086 		}
4087 
4088 	/*
4089 	 * Add additional, quirked resources.
4090 	 */
4091 	for (q = &pci_quirks[0]; q->devid != 0; q++)
4092 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4093 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4094 
4095 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4096 #ifdef __PCI_REROUTE_INTERRUPT
4097 		/*
4098 		 * Try to re-route interrupts. Sometimes the BIOS or
4099 		 * firmware may leave bogus values in these registers.
4100 		 * If the re-route fails, then just stick with what we
4101 		 * have.
4102 		 */
4103 		pci_assign_interrupt(bus, dev, 1);
4104 #else
4105 		pci_assign_interrupt(bus, dev, 0);
4106 #endif
4107 	}
4108 
4109 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4110 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4111 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4112 			xhci_early_takeover(dev);
4113 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4114 			ehci_early_takeover(dev);
4115 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4116 			ohci_early_takeover(dev);
4117 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4118 			uhci_early_takeover(dev);
4119 	}
4120 
4121 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
4122 	/*
4123 	 * Reserve resources for secondary bus ranges behind bridge
4124 	 * devices.
4125 	 */
4126 	pci_reserve_secbus(bus, dev, cfg, rl);
4127 #endif
4128 }
4129 
4130 static struct pci_devinfo *
4131 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4132     int slot, int func)
4133 {
4134 	struct pci_devinfo *dinfo;
4135 
4136 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4137 	if (dinfo != NULL)
4138 		pci_add_child(dev, dinfo);
4139 
4140 	return (dinfo);
4141 }
4142 
4143 void
4144 pci_add_children(device_t dev, int domain, int busno)
4145 {
4146 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4147 	device_t pcib = device_get_parent(dev);
4148 	struct pci_devinfo *dinfo;
4149 	int maxslots;
4150 	int s, f, pcifunchigh;
4151 	uint8_t hdrtype;
4152 	int first_func;
4153 
4154 	/*
4155 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4156 	 * enable ARI.  We must enable ARI before detecting the rest of the
4157 	 * functions on this bus as ARI changes the set of slots and functions
4158 	 * that are legal on this bus.
4159 	 */
4160 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4161 	if (dinfo != NULL && pci_enable_ari)
4162 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4163 
4164 	/*
4165 	 * Start looking for new devices on slot 0 at function 1 because we
4166 	 * just identified the device at slot 0, function 0.
4167 	 */
4168 	first_func = 1;
4169 
4170 	maxslots = PCIB_MAXSLOTS(pcib);
4171 	for (s = 0; s <= maxslots; s++, first_func = 0) {
4172 		pcifunchigh = 0;
4173 		f = 0;
4174 		DELAY(1);
4175 
4176 		/* If function 0 is not present, skip to the next slot. */
4177 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4178 			continue;
4179 		hdrtype = REG(PCIR_HDRTYPE, 1);
4180 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4181 			continue;
4182 		if (hdrtype & PCIM_MFDEV)
4183 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4184 		for (f = first_func; f <= pcifunchigh; f++)
4185 			pci_identify_function(pcib, dev, domain, busno, s, f);
4186 	}
4187 #undef REG
4188 }
4189 
4190 int
4191 pci_rescan_method(device_t dev)
4192 {
4193 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4194 	device_t pcib = device_get_parent(dev);
4195 	device_t child, *devlist, *unchanged;
4196 	int devcount, error, i, j, maxslots, oldcount;
4197 	int busno, domain, s, f, pcifunchigh;
4198 	uint8_t hdrtype;
4199 
4200 	/* No need to check for ARI on a rescan. */
4201 	error = device_get_children(dev, &devlist, &devcount);
4202 	if (error)
4203 		return (error);
4204 	if (devcount != 0) {
4205 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4206 		    M_NOWAIT | M_ZERO);
4207 		if (unchanged == NULL) {
4208 			free(devlist, M_TEMP);
4209 			return (ENOMEM);
4210 		}
4211 	} else
4212 		unchanged = NULL;
4213 
4214 	domain = pcib_get_domain(dev);
4215 	busno = pcib_get_bus(dev);
4216 	maxslots = PCIB_MAXSLOTS(pcib);
4217 	for (s = 0; s <= maxslots; s++) {
4218 		/* If function 0 is not present, skip to the next slot. */
4219 		f = 0;
4220 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4221 			continue;
4222 		pcifunchigh = 0;
4223 		hdrtype = REG(PCIR_HDRTYPE, 1);
4224 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4225 			continue;
4226 		if (hdrtype & PCIM_MFDEV)
4227 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4228 		for (f = 0; f <= pcifunchigh; f++) {
4229 			if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4230 				continue;
4231 
4232 			/*
4233 			 * Found a valid function.  Check if a
4234 			 * device_t for this device already exists.
4235 			 */
4236 			for (i = 0; i < devcount; i++) {
4237 				child = devlist[i];
4238 				if (child == NULL)
4239 					continue;
4240 				if (pci_get_slot(child) == s &&
4241 				    pci_get_function(child) == f) {
4242 					unchanged[i] = child;
4243 					goto next_func;
4244 				}
4245 			}
4246 
4247 			pci_identify_function(pcib, dev, domain, busno, s, f);
4248 		next_func:;
4249 		}
4250 	}
4251 
4252 	/* Remove devices that are no longer present. */
4253 	for (i = 0; i < devcount; i++) {
4254 		if (unchanged[i] != NULL)
4255 			continue;
4256 		device_delete_child(dev, devlist[i]);
4257 	}
4258 
4259 	free(devlist, M_TEMP);
4260 	oldcount = devcount;
4261 
4262 	/* Try to attach the devices just added. */
4263 	error = device_get_children(dev, &devlist, &devcount);
4264 	if (error) {
4265 		free(unchanged, M_TEMP);
4266 		return (error);
4267 	}
4268 
4269 	for (i = 0; i < devcount; i++) {
4270 		for (j = 0; j < oldcount; j++) {
4271 			if (devlist[i] == unchanged[j])
4272 				goto next_device;
4273 		}
4274 
4275 		device_probe_and_attach(devlist[i]);
4276 	next_device:;
4277 	}
4278 
4279 	free(unchanged, M_TEMP);
4280 	free(devlist, M_TEMP);
4281 	return (0);
4282 #undef REG
4283 }
4284 
4285 #ifdef PCI_IOV
4286 device_t
4287 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4288     uint16_t did)
4289 {
4290 	struct pci_devinfo *vf_dinfo;
4291 	device_t pcib;
4292 	int busno, slot, func;
4293 
4294 	pcib = device_get_parent(bus);
4295 
4296 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4297 
4298 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4299 	    slot, func, vid, did);
4300 
4301 	vf_dinfo->cfg.flags |= PCICFG_VF;
4302 	pci_add_child(bus, vf_dinfo);
4303 
4304 	return (vf_dinfo->cfg.dev);
4305 }
4306 
4307 device_t
4308 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4309     uint16_t vid, uint16_t did)
4310 {
4311 
4312 	return (pci_add_iov_child(bus, pf, rid, vid, did));
4313 }
4314 #endif
4315 
4316 /*
4317  * For PCIe device set Max_Payload_Size to match PCIe root's.
4318  */
4319 static void
4320 pcie_setup_mps(device_t dev)
4321 {
4322 	struct pci_devinfo *dinfo = device_get_ivars(dev);
4323 	device_t root;
4324 	uint16_t rmps, mmps, mps;
4325 
4326 	if (dinfo->cfg.pcie.pcie_location == 0)
4327 		return;
4328 	root = pci_find_pcie_root_port(dev);
4329 	if (root == NULL)
4330 		return;
4331 	/* Check whether the MPS is already configured. */
4332 	rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
4333 	    PCIEM_CTL_MAX_PAYLOAD;
4334 	mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
4335 	    PCIEM_CTL_MAX_PAYLOAD;
4336 	if (mps == rmps)
4337 		return;
4338 	/* Check whether the device is capable of the root's MPS. */
4339 	mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
4340 	    PCIEM_CAP_MAX_PAYLOAD) << 5;
4341 	if (rmps > mmps) {
4342 		/*
4343 		 * The device is unable to handle root's MPS.  Limit root.
4344 		 * XXX: We should traverse through all the tree, applying
4345 		 * it to all the devices.
4346 		 */
4347 		pcie_adjust_config(root, PCIER_DEVICE_CTL,
4348 		    PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
4349 	} else {
4350 		pcie_adjust_config(dev, PCIER_DEVICE_CTL,
4351 		    PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
4352 	}
4353 }
4354 
4355 static void
4356 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4357 {
4358 	int aer;
4359 	uint32_t r;
4360 	uint16_t r2;
4361 
4362 	if (dinfo->cfg.pcie.pcie_location != 0 &&
4363 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4364 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4365 		    PCIER_ROOT_CTL, 2);
4366 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4367 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4368 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4369 		    PCIER_ROOT_CTL, r2, 2);
4370 	}
4371 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4372 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4373 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4374 		if (r != 0 && bootverbose) {
4375 			pci_printf(&dinfo->cfg,
4376 			    "clearing AER UC 0x%08x -> 0x%08x\n",
4377 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4378 			    4));
4379 		}
4380 
4381 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4382 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4383 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4384 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4385 		    PCIM_AER_UC_POISONED_TLP |
4386 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4387 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4388 		    PCIM_AER_UC_COMPLETER_ABORT |
4389 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4390 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4391 		    PCIM_AER_UC_MALFORMED_TLP |
4392 		    PCIM_AER_UC_ECRC_ERROR |
4393 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4394 		    PCIM_AER_UC_ACS_VIOLATION |
4395 		    PCIM_AER_UC_INTERNAL_ERROR |
4396 		    PCIM_AER_UC_MC_BLOCKED_TLP |
4397 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4398 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4399 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4400 
4401 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4402 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4403 		if (r != 0 && bootverbose) {
4404 			pci_printf(&dinfo->cfg,
4405 			    "clearing AER COR 0x%08x -> 0x%08x\n",
4406 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4407 			    4));
4408 		}
4409 
4410 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4411 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4412 		    PCIM_AER_COR_BAD_TLP |
4413 		    PCIM_AER_COR_BAD_DLLP |
4414 		    PCIM_AER_COR_REPLAY_ROLLOVER |
4415 		    PCIM_AER_COR_REPLAY_TIMEOUT |
4416 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4417 		    PCIM_AER_COR_INTERNAL_ERROR |
4418 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4419 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4420 
4421 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4422 		    PCIER_DEVICE_CTL, 2);
4423 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4424 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4425 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4426 		    PCIER_DEVICE_CTL, r, 2);
4427 	}
4428 }
4429 
4430 void
4431 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4432 {
4433 	device_t dev;
4434 
4435 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1);
4436 	device_set_ivars(dev, dinfo);
4437 	resource_list_init(&dinfo->resources);
4438 	pci_cfg_save(dev, dinfo, 0);
4439 	pci_cfg_restore(dev, dinfo);
4440 	pci_print_verbose(dinfo);
4441 	pci_add_resources(bus, dev, 0, 0);
4442 	if (pci_enable_mps_tune)
4443 		pcie_setup_mps(dev);
4444 	pci_child_added(dinfo->cfg.dev);
4445 
4446 	if (pci_clear_aer_on_attach)
4447 		pci_add_child_clear_aer(dev, dinfo);
4448 
4449 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4450 }
4451 
4452 void
4453 pci_child_added_method(device_t dev, device_t child)
4454 {
4455 
4456 }
4457 
4458 static int
4459 pci_probe(device_t dev)
4460 {
4461 
4462 	device_set_desc(dev, "PCI bus");
4463 
4464 	/* Allow other subclasses to override this driver. */
4465 	return (BUS_PROBE_GENERIC);
4466 }
4467 
4468 int
4469 pci_attach_common(device_t dev)
4470 {
4471 	struct pci_softc *sc;
4472 	int busno, domain;
4473 #ifdef PCI_RES_BUS
4474 	int rid;
4475 #endif
4476 
4477 	sc = device_get_softc(dev);
4478 	domain = pcib_get_domain(dev);
4479 	busno = pcib_get_bus(dev);
4480 #ifdef PCI_RES_BUS
4481 	rid = 0;
4482 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4483 	    1, 0);
4484 	if (sc->sc_bus == NULL) {
4485 		device_printf(dev, "failed to allocate bus number\n");
4486 		return (ENXIO);
4487 	}
4488 #endif
4489 	if (bootverbose)
4490 		device_printf(dev, "domain=%d, physical bus=%d\n",
4491 		    domain, busno);
4492 	sc->sc_dma_tag = bus_get_dma_tag(dev);
4493 	return (0);
4494 }
4495 
4496 int
4497 pci_attach(device_t dev)
4498 {
4499 	int busno, domain, error;
4500 
4501 	error = pci_attach_common(dev);
4502 	if (error)
4503 		return (error);
4504 
4505 	/*
4506 	 * Since there can be multiple independently numbered PCI
4507 	 * buses on systems with multiple PCI domains, we can't use
4508 	 * the unit number to decide which bus we are probing. We ask
4509 	 * the parent pcib what our domain and bus numbers are.
4510 	 */
4511 	domain = pcib_get_domain(dev);
4512 	busno = pcib_get_bus(dev);
4513 	pci_add_children(dev, domain, busno);
4514 	return (bus_generic_attach(dev));
4515 }
4516 
4517 int
4518 pci_detach(device_t dev)
4519 {
4520 #ifdef PCI_RES_BUS
4521 	struct pci_softc *sc;
4522 #endif
4523 	int error;
4524 
4525 	error = bus_generic_detach(dev);
4526 	if (error)
4527 		return (error);
4528 #ifdef PCI_RES_BUS
4529 	sc = device_get_softc(dev);
4530 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4531 	if (error)
4532 		return (error);
4533 #endif
4534 	return (device_delete_children(dev));
4535 }
4536 
4537 static void
4538 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4539 {
4540 	int line, unit;
4541 	const char *at;
4542 	char me1[24], me2[32];
4543 	uint8_t b, s, f;
4544 	uint32_t d;
4545 	device_location_cache_t *cache;
4546 
4547 	d = pci_get_domain(child);
4548 	b = pci_get_bus(child);
4549 	s = pci_get_slot(child);
4550 	f = pci_get_function(child);
4551 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4552 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4553 	line = 0;
4554 	cache = dev_wired_cache_init();
4555 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4556 		resource_string_value(name, unit, "at", &at);
4557 		if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) {
4558 			*unitp = unit;
4559 			break;
4560 		}
4561 		if (dev_wired_cache_match(cache, child, at)) {
4562 			*unitp = unit;
4563 			break;
4564 		}
4565 	}
4566 	dev_wired_cache_fini(cache);
4567 }
4568 
4569 static void
4570 pci_set_power_child(device_t dev, device_t child, int state)
4571 {
4572 	device_t pcib;
4573 	int dstate;
4574 
4575 	/*
4576 	 * Set the device to the given state.  If the firmware suggests
4577 	 * a different power state, use it instead.  If power management
4578 	 * is not present, the firmware is responsible for managing
4579 	 * device power.  Skip children who aren't attached since they
4580 	 * are handled separately.
4581 	 */
4582 	pcib = device_get_parent(dev);
4583 	dstate = state;
4584 	if (device_is_attached(child) &&
4585 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4586 		pci_set_powerstate(child, dstate);
4587 }
4588 
4589 int
4590 pci_suspend_child(device_t dev, device_t child)
4591 {
4592 	struct pci_devinfo *dinfo;
4593 	struct resource_list_entry *rle;
4594 	int error;
4595 
4596 	dinfo = device_get_ivars(child);
4597 
4598 	/*
4599 	 * Save the PCI configuration space for the child and set the
4600 	 * device in the appropriate power state for this sleep state.
4601 	 */
4602 	pci_cfg_save(child, dinfo, 0);
4603 
4604 	/* Suspend devices before potentially powering them down. */
4605 	error = bus_generic_suspend_child(dev, child);
4606 
4607 	if (error)
4608 		return (error);
4609 
4610 	if (pci_do_power_suspend) {
4611 		/*
4612 		 * Make sure this device's interrupt handler is not invoked
4613 		 * in the case the device uses a shared interrupt that can
4614 		 * be raised by some other device.
4615 		 * This is applicable only to regular (legacy) PCI interrupts
4616 		 * as MSI/MSI-X interrupts are never shared.
4617 		 */
4618 		rle = resource_list_find(&dinfo->resources,
4619 		    SYS_RES_IRQ, 0);
4620 		if (rle != NULL && rle->res != NULL)
4621 			(void)bus_suspend_intr(child, rle->res);
4622 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4623 	}
4624 
4625 	return (0);
4626 }
4627 
4628 int
4629 pci_resume_child(device_t dev, device_t child)
4630 {
4631 	struct pci_devinfo *dinfo;
4632 	struct resource_list_entry *rle;
4633 
4634 	if (pci_do_power_resume)
4635 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4636 
4637 	dinfo = device_get_ivars(child);
4638 	pci_cfg_restore(child, dinfo);
4639 	if (!device_is_attached(child))
4640 		pci_cfg_save(child, dinfo, 1);
4641 
4642 	bus_generic_resume_child(dev, child);
4643 
4644 	/*
4645 	 * Allow interrupts only after fully resuming the driver and hardware.
4646 	 */
4647 	if (pci_do_power_suspend) {
4648 		/* See pci_suspend_child for details. */
4649 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4650 		if (rle != NULL && rle->res != NULL)
4651 			(void)bus_resume_intr(child, rle->res);
4652 	}
4653 
4654 	return (0);
4655 }
4656 
4657 int
4658 pci_resume(device_t dev)
4659 {
4660 	device_t child, *devlist;
4661 	int error, i, numdevs;
4662 
4663 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4664 		return (error);
4665 
4666 	/*
4667 	 * Resume critical devices first, then everything else later.
4668 	 */
4669 	for (i = 0; i < numdevs; i++) {
4670 		child = devlist[i];
4671 		switch (pci_get_class(child)) {
4672 		case PCIC_DISPLAY:
4673 		case PCIC_MEMORY:
4674 		case PCIC_BRIDGE:
4675 		case PCIC_BASEPERIPH:
4676 			BUS_RESUME_CHILD(dev, child);
4677 			break;
4678 		}
4679 	}
4680 	for (i = 0; i < numdevs; i++) {
4681 		child = devlist[i];
4682 		switch (pci_get_class(child)) {
4683 		case PCIC_DISPLAY:
4684 		case PCIC_MEMORY:
4685 		case PCIC_BRIDGE:
4686 		case PCIC_BASEPERIPH:
4687 			break;
4688 		default:
4689 			BUS_RESUME_CHILD(dev, child);
4690 		}
4691 	}
4692 	free(devlist, M_TEMP);
4693 	return (0);
4694 }
4695 
4696 static void
4697 pci_load_vendor_data(void)
4698 {
4699 	caddr_t data;
4700 	void *ptr;
4701 	size_t sz;
4702 
4703 	data = preload_search_by_type("pci_vendor_data");
4704 	if (data != NULL) {
4705 		ptr = preload_fetch_addr(data);
4706 		sz = preload_fetch_size(data);
4707 		if (ptr != NULL && sz != 0) {
4708 			pci_vendordata = ptr;
4709 			pci_vendordata_size = sz;
4710 			/* terminate the database */
4711 			pci_vendordata[pci_vendordata_size] = '\n';
4712 		}
4713 	}
4714 }
4715 
4716 void
4717 pci_driver_added(device_t dev, driver_t *driver)
4718 {
4719 	int numdevs;
4720 	device_t *devlist;
4721 	device_t child;
4722 	struct pci_devinfo *dinfo;
4723 	int i;
4724 
4725 	if (bootverbose)
4726 		device_printf(dev, "driver added\n");
4727 	DEVICE_IDENTIFY(driver, dev);
4728 	if (device_get_children(dev, &devlist, &numdevs) != 0)
4729 		return;
4730 	for (i = 0; i < numdevs; i++) {
4731 		child = devlist[i];
4732 		if (device_get_state(child) != DS_NOTPRESENT)
4733 			continue;
4734 		dinfo = device_get_ivars(child);
4735 		pci_print_verbose(dinfo);
4736 		if (bootverbose)
4737 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4738 		pci_cfg_restore(child, dinfo);
4739 		if (device_probe_and_attach(child) != 0)
4740 			pci_child_detached(dev, child);
4741 	}
4742 	free(devlist, M_TEMP);
4743 }
4744 
4745 int
4746 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4747     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4748 {
4749 	struct pci_devinfo *dinfo;
4750 	struct msix_table_entry *mte;
4751 	struct msix_vector *mv;
4752 	uint64_t addr;
4753 	uint32_t data;
4754 	void *cookie;
4755 	int error, rid;
4756 
4757 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4758 	    arg, &cookie);
4759 	if (error)
4760 		return (error);
4761 
4762 	/* If this is not a direct child, just bail out. */
4763 	if (device_get_parent(child) != dev) {
4764 		*cookiep = cookie;
4765 		return(0);
4766 	}
4767 
4768 	rid = rman_get_rid(irq);
4769 	if (rid == 0) {
4770 		/* Make sure that INTx is enabled */
4771 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4772 	} else {
4773 		/*
4774 		 * Check to see if the interrupt is MSI or MSI-X.
4775 		 * Ask our parent to map the MSI and give
4776 		 * us the address and data register values.
4777 		 * If we fail for some reason, teardown the
4778 		 * interrupt handler.
4779 		 */
4780 		dinfo = device_get_ivars(child);
4781 		if (dinfo->cfg.msi.msi_alloc > 0) {
4782 			if (dinfo->cfg.msi.msi_addr == 0) {
4783 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4784 			    ("MSI has handlers, but vectors not mapped"));
4785 				error = PCIB_MAP_MSI(device_get_parent(dev),
4786 				    child, rman_get_start(irq), &addr, &data);
4787 				if (error)
4788 					goto bad;
4789 				dinfo->cfg.msi.msi_addr = addr;
4790 				dinfo->cfg.msi.msi_data = data;
4791 			}
4792 			if (dinfo->cfg.msi.msi_handlers == 0)
4793 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4794 				    dinfo->cfg.msi.msi_data);
4795 			dinfo->cfg.msi.msi_handlers++;
4796 		} else {
4797 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4798 			    ("No MSI or MSI-X interrupts allocated"));
4799 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4800 			    ("MSI-X index too high"));
4801 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4802 			KASSERT(mte->mte_vector != 0, ("no message vector"));
4803 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4804 			KASSERT(mv->mv_irq == rman_get_start(irq),
4805 			    ("IRQ mismatch"));
4806 			if (mv->mv_address == 0) {
4807 				KASSERT(mte->mte_handlers == 0,
4808 		    ("MSI-X table entry has handlers, but vector not mapped"));
4809 				error = PCIB_MAP_MSI(device_get_parent(dev),
4810 				    child, rman_get_start(irq), &addr, &data);
4811 				if (error)
4812 					goto bad;
4813 				mv->mv_address = addr;
4814 				mv->mv_data = data;
4815 			}
4816 
4817 			/*
4818 			 * The MSIX table entry must be made valid by
4819 			 * incrementing the mte_handlers before
4820 			 * calling pci_enable_msix() and
4821 			 * pci_resume_msix(). Else the MSIX rewrite
4822 			 * table quirk will not work as expected.
4823 			 */
4824 			mte->mte_handlers++;
4825 			if (mte->mte_handlers == 1) {
4826 				pci_enable_msix(child, rid - 1, mv->mv_address,
4827 				    mv->mv_data);
4828 				pci_unmask_msix(child, rid - 1);
4829 			}
4830 		}
4831 
4832 		/*
4833 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4834 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4835 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4836 		 */
4837 		if (!pci_has_quirk(pci_get_devid(child),
4838 		    PCI_QUIRK_MSI_INTX_BUG))
4839 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4840 		else
4841 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4842 	bad:
4843 		if (error) {
4844 			(void)bus_generic_teardown_intr(dev, child, irq,
4845 			    cookie);
4846 			return (error);
4847 		}
4848 	}
4849 	*cookiep = cookie;
4850 	return (0);
4851 }
4852 
4853 int
4854 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4855     void *cookie)
4856 {
4857 	struct msix_table_entry *mte;
4858 	struct resource_list_entry *rle;
4859 	struct pci_devinfo *dinfo;
4860 	int error, rid;
4861 
4862 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4863 		return (EINVAL);
4864 
4865 	/* If this isn't a direct child, just bail out */
4866 	if (device_get_parent(child) != dev)
4867 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4868 
4869 	rid = rman_get_rid(irq);
4870 	if (rid == 0) {
4871 		/* Mask INTx */
4872 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4873 	} else {
4874 		/*
4875 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4876 		 * decrement the appropriate handlers count and mask the
4877 		 * MSI-X message, or disable MSI messages if the count
4878 		 * drops to 0.
4879 		 */
4880 		dinfo = device_get_ivars(child);
4881 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4882 		if (rle->res != irq)
4883 			return (EINVAL);
4884 		if (dinfo->cfg.msi.msi_alloc > 0) {
4885 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4886 			    ("MSI-X index too high"));
4887 			if (dinfo->cfg.msi.msi_handlers == 0)
4888 				return (EINVAL);
4889 			dinfo->cfg.msi.msi_handlers--;
4890 			if (dinfo->cfg.msi.msi_handlers == 0)
4891 				pci_disable_msi(child);
4892 		} else {
4893 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4894 			    ("No MSI or MSI-X interrupts allocated"));
4895 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4896 			    ("MSI-X index too high"));
4897 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4898 			if (mte->mte_handlers == 0)
4899 				return (EINVAL);
4900 			mte->mte_handlers--;
4901 			if (mte->mte_handlers == 0)
4902 				pci_mask_msix(child, rid - 1);
4903 		}
4904 	}
4905 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4906 	if (rid > 0)
4907 		KASSERT(error == 0,
4908 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4909 	return (error);
4910 }
4911 
4912 int
4913 pci_print_child(device_t dev, device_t child)
4914 {
4915 	struct pci_devinfo *dinfo;
4916 	struct resource_list *rl;
4917 	int retval = 0;
4918 
4919 	dinfo = device_get_ivars(child);
4920 	rl = &dinfo->resources;
4921 
4922 	retval += bus_print_child_header(dev, child);
4923 
4924 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4925 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4926 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4927 	if (device_get_flags(dev))
4928 		retval += printf(" flags %#x", device_get_flags(dev));
4929 
4930 	retval += printf(" at device %d.%d", pci_get_slot(child),
4931 	    pci_get_function(child));
4932 
4933 	retval += bus_print_child_domain(dev, child);
4934 	retval += bus_print_child_footer(dev, child);
4935 
4936 	return (retval);
4937 }
4938 
4939 static const struct
4940 {
4941 	int		class;
4942 	int		subclass;
4943 	int		report; /* 0 = bootverbose, 1 = always */
4944 	const char	*desc;
4945 } pci_nomatch_tab[] = {
4946 	{PCIC_OLD,		-1,			1, "old"},
4947 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
4948 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
4949 	{PCIC_STORAGE,		-1,			1, "mass storage"},
4950 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
4951 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
4952 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
4953 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
4954 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
4955 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
4956 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
4957 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
4958 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
4959 	{PCIC_NETWORK,		-1,			1, "network"},
4960 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
4961 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
4962 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
4963 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
4964 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
4965 	{PCIC_DISPLAY,		-1,			1, "display"},
4966 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
4967 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
4968 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
4969 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
4970 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
4971 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
4972 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
4973 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
4974 	{PCIC_MEMORY,		-1,			1, "memory"},
4975 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
4976 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
4977 	{PCIC_BRIDGE,		-1,			1, "bridge"},
4978 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
4979 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
4980 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
4981 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
4982 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
4983 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
4984 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
4985 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
4986 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
4987 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
4988 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
4989 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
4990 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
4991 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
4992 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
4993 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
4994 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
4995 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
4996 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
4997 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
4998 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
4999 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
5000 	{PCIC_INPUTDEV,		-1,			1, "input device"},
5001 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
5002 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
5003 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
5004 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
5005 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
5006 	{PCIC_DOCKING,		-1,			1, "docking station"},
5007 	{PCIC_PROCESSOR,	-1,			1, "processor"},
5008 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
5009 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
5010 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
5011 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
5012 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
5013 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
5014 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
5015 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
5016 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
5017 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
5018 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
5019 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
5020 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
5021 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
5022 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
5023 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
5024 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
5025 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
5026 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
5027 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
5028 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
5029 	{PCIC_DASP,		-1,			0, "dasp"},
5030 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
5031 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
5032 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
5033 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
5034 	{PCIC_INSTRUMENT,	-1,			0, "non-essential instrumentation"},
5035 	{0, 0, 0,		NULL}
5036 };
5037 
5038 void
5039 pci_probe_nomatch(device_t dev, device_t child)
5040 {
5041 	int i, report;
5042 	const char *cp, *scp;
5043 	char *device;
5044 
5045 	/*
5046 	 * Look for a listing for this device in a loaded device database.
5047 	 */
5048 	report = 1;
5049 	if ((device = pci_describe_device(child)) != NULL) {
5050 		device_printf(dev, "<%s>", device);
5051 		free(device, M_DEVBUF);
5052 	} else {
5053 		/*
5054 		 * Scan the class/subclass descriptions for a general
5055 		 * description.
5056 		 */
5057 		cp = "unknown";
5058 		scp = NULL;
5059 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
5060 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
5061 				if (pci_nomatch_tab[i].subclass == -1) {
5062 					cp = pci_nomatch_tab[i].desc;
5063 					report = pci_nomatch_tab[i].report;
5064 				} else if (pci_nomatch_tab[i].subclass ==
5065 				    pci_get_subclass(child)) {
5066 					scp = pci_nomatch_tab[i].desc;
5067 					report = pci_nomatch_tab[i].report;
5068 				}
5069 			}
5070 		}
5071 		if (report || bootverbose) {
5072 			device_printf(dev, "<%s%s%s>",
5073 			    cp ? cp : "",
5074 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
5075 			    scp ? scp : "");
5076 		}
5077 	}
5078 	if (report || bootverbose) {
5079 		printf(" at device %d.%d (no driver attached)\n",
5080 		    pci_get_slot(child), pci_get_function(child));
5081 	}
5082 	pci_cfg_save(child, device_get_ivars(child), 1);
5083 }
5084 
5085 void
5086 pci_child_detached(device_t dev, device_t child)
5087 {
5088 	struct pci_devinfo *dinfo;
5089 	struct resource_list *rl;
5090 
5091 	dinfo = device_get_ivars(child);
5092 	rl = &dinfo->resources;
5093 
5094 	/*
5095 	 * Have to deallocate IRQs before releasing any MSI messages and
5096 	 * have to release MSI messages before deallocating any memory
5097 	 * BARs.
5098 	 */
5099 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
5100 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
5101 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
5102 		if (dinfo->cfg.msi.msi_alloc != 0)
5103 			pci_printf(&dinfo->cfg, "Device leaked %d MSI "
5104 			    "vectors\n", dinfo->cfg.msi.msi_alloc);
5105 		else
5106 			pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
5107 			    "vectors\n", dinfo->cfg.msix.msix_alloc);
5108 		(void)pci_release_msi(child);
5109 	}
5110 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
5111 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
5112 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
5113 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
5114 #ifdef PCI_RES_BUS
5115 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5116 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5117 #endif
5118 
5119 	pci_cfg_save(child, dinfo, 1);
5120 }
5121 
5122 /*
5123  * Parse the PCI device database, if loaded, and return a pointer to a
5124  * description of the device.
5125  *
5126  * The database is flat text formatted as follows:
5127  *
5128  * Any line not in a valid format is ignored.
5129  * Lines are terminated with newline '\n' characters.
5130  *
5131  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5132  * the vendor name.
5133  *
5134  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5135  * - devices cannot be listed without a corresponding VENDOR line.
5136  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5137  * another TAB, then the device name.
5138  */
5139 
5140 /*
5141  * Assuming (ptr) points to the beginning of a line in the database,
5142  * return the vendor or device and description of the next entry.
5143  * The value of (vendor) or (device) inappropriate for the entry type
5144  * is set to -1.  Returns nonzero at the end of the database.
5145  *
5146  * Note that this is slightly unrobust in the face of corrupt data;
5147  * we attempt to safeguard against this by spamming the end of the
5148  * database with a newline when we initialise.
5149  */
5150 static int
5151 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5152 {
5153 	char	*cp = *ptr;
5154 	int	left;
5155 
5156 	*device = -1;
5157 	*vendor = -1;
5158 	**desc = '\0';
5159 	for (;;) {
5160 		left = pci_vendordata_size - (cp - pci_vendordata);
5161 		if (left <= 0) {
5162 			*ptr = cp;
5163 			return(1);
5164 		}
5165 
5166 		/* vendor entry? */
5167 		if (*cp != '\t' &&
5168 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5169 			break;
5170 		/* device entry? */
5171 		if (*cp == '\t' &&
5172 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5173 			break;
5174 
5175 		/* skip to next line */
5176 		while (*cp != '\n' && left > 0) {
5177 			cp++;
5178 			left--;
5179 		}
5180 		if (*cp == '\n') {
5181 			cp++;
5182 			left--;
5183 		}
5184 	}
5185 	/* skip to next line */
5186 	while (*cp != '\n' && left > 0) {
5187 		cp++;
5188 		left--;
5189 	}
5190 	if (*cp == '\n' && left > 0)
5191 		cp++;
5192 	*ptr = cp;
5193 	return(0);
5194 }
5195 
5196 static char *
5197 pci_describe_device(device_t dev)
5198 {
5199 	int	vendor, device;
5200 	char	*desc, *vp, *dp, *line;
5201 
5202 	desc = vp = dp = NULL;
5203 
5204 	/*
5205 	 * If we have no vendor data, we can't do anything.
5206 	 */
5207 	if (pci_vendordata == NULL)
5208 		goto out;
5209 
5210 	/*
5211 	 * Scan the vendor data looking for this device
5212 	 */
5213 	line = pci_vendordata;
5214 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5215 		goto out;
5216 	for (;;) {
5217 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5218 			goto out;
5219 		if (vendor == pci_get_vendor(dev))
5220 			break;
5221 	}
5222 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5223 		goto out;
5224 	for (;;) {
5225 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5226 			*dp = 0;
5227 			break;
5228 		}
5229 		if (vendor != -1) {
5230 			*dp = 0;
5231 			break;
5232 		}
5233 		if (device == pci_get_device(dev))
5234 			break;
5235 	}
5236 	if (dp[0] == '\0')
5237 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5238 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5239 	    NULL)
5240 		sprintf(desc, "%s, %s", vp, dp);
5241 out:
5242 	if (vp != NULL)
5243 		free(vp, M_DEVBUF);
5244 	if (dp != NULL)
5245 		free(dp, M_DEVBUF);
5246 	return(desc);
5247 }
5248 
5249 int
5250 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5251 {
5252 	struct pci_devinfo *dinfo;
5253 	pcicfgregs *cfg;
5254 
5255 	dinfo = device_get_ivars(child);
5256 	cfg = &dinfo->cfg;
5257 
5258 	switch (which) {
5259 	case PCI_IVAR_ETHADDR:
5260 		/*
5261 		 * The generic accessor doesn't deal with failure, so
5262 		 * we set the return value, then return an error.
5263 		 */
5264 		*((uint8_t **) result) = NULL;
5265 		return (EINVAL);
5266 	case PCI_IVAR_SUBVENDOR:
5267 		*result = cfg->subvendor;
5268 		break;
5269 	case PCI_IVAR_SUBDEVICE:
5270 		*result = cfg->subdevice;
5271 		break;
5272 	case PCI_IVAR_VENDOR:
5273 		*result = cfg->vendor;
5274 		break;
5275 	case PCI_IVAR_DEVICE:
5276 		*result = cfg->device;
5277 		break;
5278 	case PCI_IVAR_DEVID:
5279 		*result = (cfg->device << 16) | cfg->vendor;
5280 		break;
5281 	case PCI_IVAR_CLASS:
5282 		*result = cfg->baseclass;
5283 		break;
5284 	case PCI_IVAR_SUBCLASS:
5285 		*result = cfg->subclass;
5286 		break;
5287 	case PCI_IVAR_PROGIF:
5288 		*result = cfg->progif;
5289 		break;
5290 	case PCI_IVAR_REVID:
5291 		*result = cfg->revid;
5292 		break;
5293 	case PCI_IVAR_INTPIN:
5294 		*result = cfg->intpin;
5295 		break;
5296 	case PCI_IVAR_IRQ:
5297 		*result = cfg->intline;
5298 		break;
5299 	case PCI_IVAR_DOMAIN:
5300 		*result = cfg->domain;
5301 		break;
5302 	case PCI_IVAR_BUS:
5303 		*result = cfg->bus;
5304 		break;
5305 	case PCI_IVAR_SLOT:
5306 		*result = cfg->slot;
5307 		break;
5308 	case PCI_IVAR_FUNCTION:
5309 		*result = cfg->func;
5310 		break;
5311 	case PCI_IVAR_CMDREG:
5312 		*result = cfg->cmdreg;
5313 		break;
5314 	case PCI_IVAR_CACHELNSZ:
5315 		*result = cfg->cachelnsz;
5316 		break;
5317 	case PCI_IVAR_MINGNT:
5318 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5319 			*result = -1;
5320 			return (EINVAL);
5321 		}
5322 		*result = cfg->mingnt;
5323 		break;
5324 	case PCI_IVAR_MAXLAT:
5325 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5326 			*result = -1;
5327 			return (EINVAL);
5328 		}
5329 		*result = cfg->maxlat;
5330 		break;
5331 	case PCI_IVAR_LATTIMER:
5332 		*result = cfg->lattimer;
5333 		break;
5334 	default:
5335 		return (ENOENT);
5336 	}
5337 	return (0);
5338 }
5339 
5340 int
5341 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5342 {
5343 	struct pci_devinfo *dinfo;
5344 
5345 	dinfo = device_get_ivars(child);
5346 
5347 	switch (which) {
5348 	case PCI_IVAR_INTPIN:
5349 		dinfo->cfg.intpin = value;
5350 		return (0);
5351 	case PCI_IVAR_ETHADDR:
5352 	case PCI_IVAR_SUBVENDOR:
5353 	case PCI_IVAR_SUBDEVICE:
5354 	case PCI_IVAR_VENDOR:
5355 	case PCI_IVAR_DEVICE:
5356 	case PCI_IVAR_DEVID:
5357 	case PCI_IVAR_CLASS:
5358 	case PCI_IVAR_SUBCLASS:
5359 	case PCI_IVAR_PROGIF:
5360 	case PCI_IVAR_REVID:
5361 	case PCI_IVAR_IRQ:
5362 	case PCI_IVAR_DOMAIN:
5363 	case PCI_IVAR_BUS:
5364 	case PCI_IVAR_SLOT:
5365 	case PCI_IVAR_FUNCTION:
5366 		return (EINVAL);	/* disallow for now */
5367 
5368 	default:
5369 		return (ENOENT);
5370 	}
5371 }
5372 
5373 #include "opt_ddb.h"
5374 #ifdef DDB
5375 #include <ddb/ddb.h>
5376 #include <sys/cons.h>
5377 
5378 /*
5379  * List resources based on pci map registers, used for within ddb
5380  */
5381 
5382 DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE)
5383 {
5384 	struct pci_devinfo *dinfo;
5385 	struct devlist *devlist_head;
5386 	struct pci_conf *p;
5387 	const char *name;
5388 	int i, error, none_count;
5389 
5390 	none_count = 0;
5391 	/* get the head of the device queue */
5392 	devlist_head = &pci_devq;
5393 
5394 	/*
5395 	 * Go through the list of devices and print out devices
5396 	 */
5397 	for (error = 0, i = 0,
5398 	     dinfo = STAILQ_FIRST(devlist_head);
5399 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5400 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5401 		/* Populate pd_name and pd_unit */
5402 		name = NULL;
5403 		if (dinfo->cfg.dev)
5404 			name = device_get_name(dinfo->cfg.dev);
5405 
5406 		p = &dinfo->conf;
5407 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5408 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5409 			(name && *name) ? name : "none",
5410 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5411 			none_count++,
5412 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5413 			p->pc_sel.pc_func, (p->pc_class << 16) |
5414 			(p->pc_subclass << 8) | p->pc_progif,
5415 			(p->pc_subdevice << 16) | p->pc_subvendor,
5416 			(p->pc_device << 16) | p->pc_vendor,
5417 			p->pc_revid, p->pc_hdr);
5418 	}
5419 }
5420 #endif /* DDB */
5421 
5422 struct resource *
5423 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5424     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5425     u_int flags)
5426 {
5427 	struct pci_devinfo *dinfo = device_get_ivars(child);
5428 	struct resource_list *rl = &dinfo->resources;
5429 	struct resource *res;
5430 	struct pci_map *pm;
5431 	uint16_t cmd;
5432 	pci_addr_t map, testval;
5433 	int mapsize;
5434 
5435 	res = NULL;
5436 
5437 	/* If rid is managed by EA, ignore it */
5438 	if (pci_ea_is_enabled(child, *rid))
5439 		goto out;
5440 
5441 	pm = pci_find_bar(child, *rid);
5442 	if (pm != NULL) {
5443 		/* This is a BAR that we failed to allocate earlier. */
5444 		mapsize = pm->pm_size;
5445 		map = pm->pm_value;
5446 	} else {
5447 		/*
5448 		 * Weed out the bogons, and figure out how large the
5449 		 * BAR/map is.  BARs that read back 0 here are bogus
5450 		 * and unimplemented.  Note: atapci in legacy mode are
5451 		 * special and handled elsewhere in the code.  If you
5452 		 * have a atapci device in legacy mode and it fails
5453 		 * here, that other code is broken.
5454 		 */
5455 		pci_read_bar(child, *rid, &map, &testval, NULL);
5456 
5457 		/*
5458 		 * Determine the size of the BAR and ignore BARs with a size
5459 		 * of 0.  Device ROM BARs use a different mask value.
5460 		 */
5461 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5462 			mapsize = pci_romsize(testval);
5463 		else
5464 			mapsize = pci_mapsize(testval);
5465 		if (mapsize == 0)
5466 			goto out;
5467 		pm = pci_add_bar(child, *rid, map, mapsize);
5468 	}
5469 
5470 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5471 		if (type != SYS_RES_MEMORY) {
5472 			if (bootverbose)
5473 				device_printf(dev,
5474 				    "child %s requested type %d for rid %#x,"
5475 				    " but the BAR says it is an memio\n",
5476 				    device_get_nameunit(child), type, *rid);
5477 			goto out;
5478 		}
5479 	} else {
5480 		if (type != SYS_RES_IOPORT) {
5481 			if (bootverbose)
5482 				device_printf(dev,
5483 				    "child %s requested type %d for rid %#x,"
5484 				    " but the BAR says it is an ioport\n",
5485 				    device_get_nameunit(child), type, *rid);
5486 			goto out;
5487 		}
5488 	}
5489 
5490 	/*
5491 	 * For real BARs, we need to override the size that
5492 	 * the driver requests, because that's what the BAR
5493 	 * actually uses and we would otherwise have a
5494 	 * situation where we might allocate the excess to
5495 	 * another driver, which won't work.
5496 	 */
5497 	count = ((pci_addr_t)1 << mapsize) * num;
5498 	if (RF_ALIGNMENT(flags) < mapsize)
5499 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5500 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5501 		flags |= RF_PREFETCHABLE;
5502 
5503 	/*
5504 	 * Allocate enough resource, and then write back the
5505 	 * appropriate BAR for that resource.
5506 	 */
5507 	resource_list_add(rl, type, *rid, start, end, count);
5508 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5509 	    count, flags & ~RF_ACTIVE);
5510 	if (res == NULL) {
5511 		resource_list_delete(rl, type, *rid);
5512 		device_printf(child,
5513 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5514 		    count, *rid, type, start, end);
5515 		goto out;
5516 	}
5517 	if (bootverbose)
5518 		device_printf(child,
5519 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5520 		    count, *rid, type, rman_get_start(res));
5521 
5522 	/* Disable decoding via the CMD register before updating the BAR */
5523 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5524 	pci_write_config(child, PCIR_COMMAND,
5525 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5526 
5527 	map = rman_get_start(res);
5528 	pci_write_bar(child, pm, map);
5529 
5530 	/* Restore the original value of the CMD register */
5531 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5532 out:
5533 	return (res);
5534 }
5535 
5536 struct resource *
5537 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5538     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5539     u_int flags)
5540 {
5541 	struct pci_devinfo *dinfo;
5542 	struct resource_list *rl;
5543 	struct resource_list_entry *rle;
5544 	struct resource *res;
5545 	pcicfgregs *cfg;
5546 
5547 	/*
5548 	 * Perform lazy resource allocation
5549 	 */
5550 	dinfo = device_get_ivars(child);
5551 	rl = &dinfo->resources;
5552 	cfg = &dinfo->cfg;
5553 	switch (type) {
5554 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
5555 	case PCI_RES_BUS:
5556 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5557 		    flags));
5558 #endif
5559 	case SYS_RES_IRQ:
5560 		/*
5561 		 * Can't alloc legacy interrupt once MSI messages have
5562 		 * been allocated.
5563 		 */
5564 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5565 		    cfg->msix.msix_alloc > 0))
5566 			return (NULL);
5567 
5568 		/*
5569 		 * If the child device doesn't have an interrupt
5570 		 * routed and is deserving of an interrupt, try to
5571 		 * assign it one.
5572 		 */
5573 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5574 		    (cfg->intpin != 0))
5575 			pci_assign_interrupt(dev, child, 0);
5576 		break;
5577 	case SYS_RES_IOPORT:
5578 	case SYS_RES_MEMORY:
5579 #ifdef NEW_PCIB
5580 		/*
5581 		 * PCI-PCI bridge I/O window resources are not BARs.
5582 		 * For those allocations just pass the request up the
5583 		 * tree.
5584 		 */
5585 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5586 			switch (*rid) {
5587 			case PCIR_IOBASEL_1:
5588 			case PCIR_MEMBASE_1:
5589 			case PCIR_PMBASEL_1:
5590 				/*
5591 				 * XXX: Should we bother creating a resource
5592 				 * list entry?
5593 				 */
5594 				return (bus_generic_alloc_resource(dev, child,
5595 				    type, rid, start, end, count, flags));
5596 			}
5597 		}
5598 #endif
5599 		/* Reserve resources for this BAR if needed. */
5600 		rle = resource_list_find(rl, type, *rid);
5601 		if (rle == NULL) {
5602 			res = pci_reserve_map(dev, child, type, rid, start, end,
5603 			    count, num, flags);
5604 			if (res == NULL)
5605 				return (NULL);
5606 		}
5607 	}
5608 	return (resource_list_alloc(rl, dev, child, type, rid,
5609 	    start, end, count, flags));
5610 }
5611 
5612 struct resource *
5613 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5614     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5615 {
5616 #ifdef PCI_IOV
5617 	struct pci_devinfo *dinfo;
5618 #endif
5619 
5620 	if (device_get_parent(child) != dev)
5621 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5622 		    type, rid, start, end, count, flags));
5623 
5624 #ifdef PCI_IOV
5625 	dinfo = device_get_ivars(child);
5626 	if (dinfo->cfg.flags & PCICFG_VF) {
5627 		switch (type) {
5628 		/* VFs can't have I/O BARs. */
5629 		case SYS_RES_IOPORT:
5630 			return (NULL);
5631 		case SYS_RES_MEMORY:
5632 			return (pci_vf_alloc_mem_resource(dev, child, rid,
5633 			    start, end, count, flags));
5634 		}
5635 
5636 		/* Fall through for other types of resource allocations. */
5637 	}
5638 #endif
5639 
5640 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5641 	    count, 1, flags));
5642 }
5643 
5644 int
5645 pci_release_resource(device_t dev, device_t child, struct resource *r)
5646 {
5647 	struct pci_devinfo *dinfo;
5648 	struct resource_list *rl;
5649 	pcicfgregs *cfg __unused;
5650 
5651 	if (device_get_parent(child) != dev)
5652 		return (bus_generic_release_resource(dev, child, r));
5653 
5654 	dinfo = device_get_ivars(child);
5655 	cfg = &dinfo->cfg;
5656 
5657 #ifdef PCI_IOV
5658 	if (cfg->flags & PCICFG_VF) {
5659 		switch (rman_get_type(r)) {
5660 		/* VFs can't have I/O BARs. */
5661 		case SYS_RES_IOPORT:
5662 			return (EDOOFUS);
5663 		case SYS_RES_MEMORY:
5664 			return (pci_vf_release_mem_resource(dev, child, r));
5665 		}
5666 
5667 		/* Fall through for other types of resource allocations. */
5668 	}
5669 #endif
5670 
5671 #ifdef NEW_PCIB
5672 	/*
5673 	 * PCI-PCI bridge I/O window resources are not BARs.  For
5674 	 * those allocations just pass the request up the tree.
5675 	 */
5676 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5677 	    (rman_get_type(r) == SYS_RES_IOPORT ||
5678 	    rman_get_type(r) == SYS_RES_MEMORY)) {
5679 		switch (rman_get_rid(r)) {
5680 		case PCIR_IOBASEL_1:
5681 		case PCIR_MEMBASE_1:
5682 		case PCIR_PMBASEL_1:
5683 			return (bus_generic_release_resource(dev, child, r));
5684 		}
5685 	}
5686 #endif
5687 
5688 	rl = &dinfo->resources;
5689 	return (resource_list_release(rl, dev, child, r));
5690 }
5691 
5692 int
5693 pci_activate_resource(device_t dev, device_t child, struct resource *r)
5694 {
5695 	struct pci_devinfo *dinfo;
5696 	int error, rid, type;
5697 
5698 	if (device_get_parent(child) != dev)
5699 		return (bus_generic_activate_resource(dev, child, r));
5700 
5701 	dinfo = device_get_ivars(child);
5702 #ifdef PCI_IOV
5703 	if (dinfo->cfg.flags & PCICFG_VF) {
5704 		switch (rman_get_type(r)) {
5705 		/* VFs can't have I/O BARs. */
5706 		case SYS_RES_IOPORT:
5707 			error = EINVAL;
5708 			break;
5709 		case SYS_RES_MEMORY:
5710 			error = pci_vf_activate_mem_resource(dev, child, r);
5711 			break;
5712 		default:
5713 			error = bus_generic_activate_resource(dev, child, r);
5714 			break;
5715 		}
5716 	} else
5717 #endif
5718 		error = bus_generic_activate_resource(dev, child, r);
5719 	if (error)
5720 		return (error);
5721 
5722 	rid = rman_get_rid(r);
5723 	type = rman_get_type(r);
5724 
5725 	/* Device ROMs need their decoding explicitly enabled. */
5726 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5727 		pci_write_bar(child, pci_find_bar(child, rid),
5728 		    rman_get_start(r) | PCIM_BIOS_ENABLE);
5729 
5730 	/* Enable decoding in the command register when activating BARs. */
5731 	switch (type) {
5732 	case SYS_RES_IOPORT:
5733 	case SYS_RES_MEMORY:
5734 		error = PCI_ENABLE_IO(dev, child, type);
5735 		break;
5736 	}
5737 	return (error);
5738 }
5739 
5740 int
5741 pci_deactivate_resource(device_t dev, device_t child, struct resource *r)
5742 {
5743 	struct pci_devinfo *dinfo;
5744 	int error, rid, type;
5745 
5746 	if (device_get_parent(child) != dev)
5747 		return (bus_generic_deactivate_resource(dev, child, r));
5748 
5749 	dinfo = device_get_ivars(child);
5750 #ifdef PCI_IOV
5751 	if (dinfo->cfg.flags & PCICFG_VF) {
5752 		switch (rman_get_type(r)) {
5753 		/* VFs can't have I/O BARs. */
5754 		case SYS_RES_IOPORT:
5755 			error = EINVAL;
5756 			break;
5757 		case SYS_RES_MEMORY:
5758 			error = pci_vf_deactivate_mem_resource(dev, child, r);
5759 			break;
5760 		default:
5761 			error = bus_generic_deactivate_resource(dev, child, r);
5762 			break;
5763 		}
5764 	} else
5765 #endif
5766 		error = bus_generic_deactivate_resource(dev, child, r);
5767 	if (error)
5768 		return (error);
5769 
5770 	/* Disable decoding for device ROMs. */
5771 	rid = rman_get_rid(r);
5772 	type = rman_get_type(r);
5773 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5774 		pci_write_bar(child, pci_find_bar(child, rid),
5775 		    rman_get_start(r));
5776 	return (0);
5777 }
5778 
5779 #ifdef PCI_IOV
5780 int
5781 pci_adjust_resource(device_t dev, device_t child, struct resource *r,
5782     rman_res_t start, rman_res_t end)
5783 {
5784 	struct pci_devinfo *dinfo;
5785 
5786 	if (device_get_parent(child) != dev)
5787 		return (bus_generic_adjust_resource(dev, child, r, start,
5788 		    end));
5789 
5790 	dinfo = device_get_ivars(child);
5791 	if (dinfo->cfg.flags & PCICFG_VF) {
5792 		switch (rman_get_type(r)) {
5793 		/* VFs can't have I/O BARs. */
5794 		case SYS_RES_IOPORT:
5795 			return (EINVAL);
5796 		case SYS_RES_MEMORY:
5797 			return (pci_vf_adjust_mem_resource(dev, child, r,
5798 			    start, end));
5799 		}
5800 
5801 		/* Fall through for other types of resource allocations. */
5802 	}
5803 
5804 	return (bus_generic_adjust_resource(dev, child, r, start, end));
5805 }
5806 
5807 int
5808 pci_map_resource(device_t dev, device_t child, struct resource *r,
5809     struct resource_map_request *argsp, struct resource_map *map)
5810 {
5811 	struct pci_devinfo *dinfo;
5812 
5813 	if (device_get_parent(child) != dev)
5814 		return (bus_generic_map_resource(dev, child, r, argsp,
5815 		    map));
5816 
5817 	dinfo = device_get_ivars(child);
5818 	if (dinfo->cfg.flags & PCICFG_VF) {
5819 		switch (rman_get_type(r)) {
5820 		/* VFs can't have I/O BARs. */
5821 		case SYS_RES_IOPORT:
5822 			return (EINVAL);
5823 		case SYS_RES_MEMORY:
5824 			return (pci_vf_map_mem_resource(dev, child, r, argsp,
5825 			    map));
5826 		}
5827 
5828 		/* Fall through for other types of resource allocations. */
5829 	}
5830 
5831 	return (bus_generic_map_resource(dev, child, r, argsp, map));
5832 }
5833 
5834 int
5835 pci_unmap_resource(device_t dev, device_t child, struct resource *r,
5836     struct resource_map *map)
5837 {
5838 	struct pci_devinfo *dinfo;
5839 
5840 	if (device_get_parent(child) != dev)
5841 		return (bus_generic_unmap_resource(dev, child, r, map));
5842 
5843 	dinfo = device_get_ivars(child);
5844 	if (dinfo->cfg.flags & PCICFG_VF) {
5845 		switch (rman_get_type(r)) {
5846 		/* VFs can't have I/O BARs. */
5847 		case SYS_RES_IOPORT:
5848 			return (EINVAL);
5849 		case SYS_RES_MEMORY:
5850 			return (pci_vf_unmap_mem_resource(dev, child, r, map));
5851 		}
5852 
5853 		/* Fall through for other types of resource allocations. */
5854 	}
5855 
5856 	return (bus_generic_unmap_resource(dev, child, r, map));
5857 }
5858 #endif
5859 
5860 void
5861 pci_child_deleted(device_t dev, device_t child)
5862 {
5863 	struct resource_list_entry *rle;
5864 	struct resource_list *rl;
5865 	struct pci_devinfo *dinfo;
5866 
5867 	dinfo = device_get_ivars(child);
5868 	rl = &dinfo->resources;
5869 
5870 	EVENTHANDLER_INVOKE(pci_delete_device, child);
5871 
5872 	/* Turn off access to resources we're about to free */
5873 	if (bus_child_present(child) != 0) {
5874 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5875 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5876 
5877 		pci_disable_busmaster(child);
5878 	}
5879 
5880 	/* Free all allocated resources */
5881 	STAILQ_FOREACH(rle, rl, link) {
5882 		if (rle->res) {
5883 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5884 			    resource_list_busy(rl, rle->type, rle->rid)) {
5885 				pci_printf(&dinfo->cfg,
5886 				    "Resource still owned, oops. "
5887 				    "(type=%d, rid=%d, addr=%lx)\n",
5888 				    rle->type, rle->rid,
5889 				    rman_get_start(rle->res));
5890 				bus_release_resource(child, rle->type, rle->rid,
5891 				    rle->res);
5892 			}
5893 			resource_list_unreserve(rl, dev, child, rle->type,
5894 			    rle->rid);
5895 		}
5896 	}
5897 	resource_list_free(rl);
5898 
5899 	pci_freecfg(dinfo);
5900 }
5901 
5902 void
5903 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5904 {
5905 	struct pci_devinfo *dinfo;
5906 	struct resource_list *rl;
5907 	struct resource_list_entry *rle;
5908 
5909 	if (device_get_parent(child) != dev)
5910 		return;
5911 
5912 	dinfo = device_get_ivars(child);
5913 	rl = &dinfo->resources;
5914 	rle = resource_list_find(rl, type, rid);
5915 	if (rle == NULL)
5916 		return;
5917 
5918 	if (rle->res) {
5919 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5920 		    resource_list_busy(rl, type, rid)) {
5921 			device_printf(dev, "delete_resource: "
5922 			    "Resource still owned by child, oops. "
5923 			    "(type=%d, rid=%d, addr=%jx)\n",
5924 			    type, rid, rman_get_start(rle->res));
5925 			return;
5926 		}
5927 		resource_list_unreserve(rl, dev, child, type, rid);
5928 	}
5929 	resource_list_delete(rl, type, rid);
5930 }
5931 
5932 struct resource_list *
5933 pci_get_resource_list (device_t dev, device_t child)
5934 {
5935 	struct pci_devinfo *dinfo = device_get_ivars(child);
5936 
5937 	return (&dinfo->resources);
5938 }
5939 
5940 #ifdef IOMMU
5941 bus_dma_tag_t
5942 pci_get_dma_tag(device_t bus, device_t dev)
5943 {
5944 	bus_dma_tag_t tag;
5945 	struct pci_softc *sc;
5946 
5947 	if (device_get_parent(dev) == bus) {
5948 		/* try iommu and return if it works */
5949 		tag = iommu_get_dma_tag(bus, dev);
5950 	} else
5951 		tag = NULL;
5952 	if (tag == NULL) {
5953 		sc = device_get_softc(bus);
5954 		tag = sc->sc_dma_tag;
5955 	}
5956 	return (tag);
5957 }
5958 #else
5959 bus_dma_tag_t
5960 pci_get_dma_tag(device_t bus, device_t dev)
5961 {
5962 	struct pci_softc *sc = device_get_softc(bus);
5963 
5964 	return (sc->sc_dma_tag);
5965 }
5966 #endif
5967 
5968 uint32_t
5969 pci_read_config_method(device_t dev, device_t child, int reg, int width)
5970 {
5971 	struct pci_devinfo *dinfo = device_get_ivars(child);
5972 	pcicfgregs *cfg = &dinfo->cfg;
5973 
5974 #ifdef PCI_IOV
5975 	/*
5976 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
5977 	 * emulate them here.
5978 	 */
5979 	if (cfg->flags & PCICFG_VF) {
5980 		if (reg == PCIR_VENDOR) {
5981 			switch (width) {
5982 			case 4:
5983 				return (cfg->device << 16 | cfg->vendor);
5984 			case 2:
5985 				return (cfg->vendor);
5986 			case 1:
5987 				return (cfg->vendor & 0xff);
5988 			default:
5989 				return (0xffffffff);
5990 			}
5991 		} else if (reg == PCIR_DEVICE) {
5992 			switch (width) {
5993 			/* Note that an unaligned 4-byte read is an error. */
5994 			case 2:
5995 				return (cfg->device);
5996 			case 1:
5997 				return (cfg->device & 0xff);
5998 			default:
5999 				return (0xffffffff);
6000 			}
6001 		}
6002 	}
6003 #endif
6004 
6005 	return (PCIB_READ_CONFIG(device_get_parent(dev),
6006 	    cfg->bus, cfg->slot, cfg->func, reg, width));
6007 }
6008 
6009 void
6010 pci_write_config_method(device_t dev, device_t child, int reg,
6011     uint32_t val, int width)
6012 {
6013 	struct pci_devinfo *dinfo = device_get_ivars(child);
6014 	pcicfgregs *cfg = &dinfo->cfg;
6015 
6016 	PCIB_WRITE_CONFIG(device_get_parent(dev),
6017 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
6018 }
6019 
6020 int
6021 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
6022 {
6023 
6024 	sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
6025 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
6026 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
6027 	return (0);
6028 }
6029 
6030 int
6031 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
6032 {
6033 	struct pci_devinfo *dinfo;
6034 	pcicfgregs *cfg;
6035 
6036 	dinfo = device_get_ivars(child);
6037 	cfg = &dinfo->cfg;
6038 	sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
6039 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
6040 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
6041 	    cfg->progif);
6042 	return (0);
6043 }
6044 
6045 int
6046 pci_get_device_path_method(device_t bus, device_t child, const char *locator,
6047     struct sbuf *sb)
6048 {
6049 	device_t parent = device_get_parent(bus);
6050 	int rv;
6051 
6052 	if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
6053 		rv = bus_generic_get_device_path(parent, bus, locator, sb);
6054 		if (rv == 0) {
6055 			sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child),
6056 			    pci_get_function(child));
6057 		}
6058 		return (0);
6059 	}
6060 	return (bus_generic_get_device_path(bus, child, locator, sb));
6061 }
6062 
6063 int
6064 pci_assign_interrupt_method(device_t dev, device_t child)
6065 {
6066 	struct pci_devinfo *dinfo = device_get_ivars(child);
6067 	pcicfgregs *cfg = &dinfo->cfg;
6068 
6069 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
6070 	    cfg->intpin));
6071 }
6072 
6073 static void
6074 pci_lookup(void *arg, const char *name, device_t *dev)
6075 {
6076 	long val;
6077 	char *end;
6078 	int domain, bus, slot, func;
6079 
6080 	if (*dev != NULL)
6081 		return;
6082 
6083 	/*
6084 	 * Accept pciconf-style selectors of either pciD:B:S:F or
6085 	 * pciB:S:F.  In the latter case, the domain is assumed to
6086 	 * be zero.
6087 	 */
6088 	if (strncmp(name, "pci", 3) != 0)
6089 		return;
6090 	val = strtol(name + 3, &end, 10);
6091 	if (val < 0 || val > INT_MAX || *end != ':')
6092 		return;
6093 	domain = val;
6094 	val = strtol(end + 1, &end, 10);
6095 	if (val < 0 || val > INT_MAX || *end != ':')
6096 		return;
6097 	bus = val;
6098 	val = strtol(end + 1, &end, 10);
6099 	if (val < 0 || val > INT_MAX)
6100 		return;
6101 	slot = val;
6102 	if (*end == ':') {
6103 		val = strtol(end + 1, &end, 10);
6104 		if (val < 0 || val > INT_MAX || *end != '\0')
6105 			return;
6106 		func = val;
6107 	} else if (*end == '\0') {
6108 		func = slot;
6109 		slot = bus;
6110 		bus = domain;
6111 		domain = 0;
6112 	} else
6113 		return;
6114 
6115 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
6116 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
6117 		return;
6118 
6119 	*dev = pci_find_dbsf(domain, bus, slot, func);
6120 }
6121 
6122 static int
6123 pci_modevent(module_t mod, int what, void *arg)
6124 {
6125 	static struct cdev *pci_cdev;
6126 	static eventhandler_tag tag;
6127 
6128 	switch (what) {
6129 	case MOD_LOAD:
6130 		STAILQ_INIT(&pci_devq);
6131 		pci_generation = 0;
6132 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
6133 		    "pci");
6134 		pci_load_vendor_data();
6135 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
6136 		    1000);
6137 		break;
6138 
6139 	case MOD_UNLOAD:
6140 		if (tag != NULL)
6141 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
6142 		destroy_dev(pci_cdev);
6143 		break;
6144 	}
6145 
6146 	return (0);
6147 }
6148 
6149 static void
6150 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
6151 {
6152 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
6153 	struct pcicfg_pcie *cfg;
6154 	int version, pos;
6155 
6156 	cfg = &dinfo->cfg.pcie;
6157 	pos = cfg->pcie_location;
6158 
6159 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6160 
6161 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
6162 
6163 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6164 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6165 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6166 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
6167 
6168 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6169 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6170 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6171 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
6172 
6173 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6174 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6175 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
6176 
6177 	if (version > 1) {
6178 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
6179 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
6180 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
6181 	}
6182 #undef WREG
6183 }
6184 
6185 static void
6186 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
6187 {
6188 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
6189 	    dinfo->cfg.pcix.pcix_command,  2);
6190 }
6191 
6192 void
6193 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
6194 {
6195 
6196 	/*
6197 	 * Restore the device to full power mode.  We must do this
6198 	 * before we restore the registers because moving from D3 to
6199 	 * D0 will cause the chip's BARs and some other registers to
6200 	 * be reset to some unknown power on reset values.  Cut down
6201 	 * the noise on boot by doing nothing if we are already in
6202 	 * state D0.
6203 	 */
6204 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
6205 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6206 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
6207 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
6208 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
6209 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
6210 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
6211 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
6212 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6213 	case PCIM_HDRTYPE_NORMAL:
6214 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
6215 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
6216 		break;
6217 	case PCIM_HDRTYPE_BRIDGE:
6218 		pci_write_config(dev, PCIR_SECLAT_1,
6219 		    dinfo->cfg.bridge.br_seclat, 1);
6220 		pci_write_config(dev, PCIR_SUBBUS_1,
6221 		    dinfo->cfg.bridge.br_subbus, 1);
6222 		pci_write_config(dev, PCIR_SECBUS_1,
6223 		    dinfo->cfg.bridge.br_secbus, 1);
6224 		pci_write_config(dev, PCIR_PRIBUS_1,
6225 		    dinfo->cfg.bridge.br_pribus, 1);
6226 		pci_write_config(dev, PCIR_BRIDGECTL_1,
6227 		    dinfo->cfg.bridge.br_control, 2);
6228 		break;
6229 	case PCIM_HDRTYPE_CARDBUS:
6230 		pci_write_config(dev, PCIR_SECLAT_2,
6231 		    dinfo->cfg.bridge.br_seclat, 1);
6232 		pci_write_config(dev, PCIR_SUBBUS_2,
6233 		    dinfo->cfg.bridge.br_subbus, 1);
6234 		pci_write_config(dev, PCIR_SECBUS_2,
6235 		    dinfo->cfg.bridge.br_secbus, 1);
6236 		pci_write_config(dev, PCIR_PRIBUS_2,
6237 		    dinfo->cfg.bridge.br_pribus, 1);
6238 		pci_write_config(dev, PCIR_BRIDGECTL_2,
6239 		    dinfo->cfg.bridge.br_control, 2);
6240 		break;
6241 	}
6242 	pci_restore_bars(dev);
6243 
6244 	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
6245 		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
6246 
6247 	/*
6248 	 * Restore extended capabilities for PCI-Express and PCI-X
6249 	 */
6250 	if (dinfo->cfg.pcie.pcie_location != 0)
6251 		pci_cfg_restore_pcie(dev, dinfo);
6252 	if (dinfo->cfg.pcix.pcix_location != 0)
6253 		pci_cfg_restore_pcix(dev, dinfo);
6254 
6255 	/* Restore MSI and MSI-X configurations if they are present. */
6256 	if (dinfo->cfg.msi.msi_location != 0)
6257 		pci_resume_msi(dev);
6258 	if (dinfo->cfg.msix.msix_location != 0)
6259 		pci_resume_msix(dev);
6260 
6261 #ifdef PCI_IOV
6262 	if (dinfo->cfg.iov != NULL)
6263 		pci_iov_cfg_restore(dev, dinfo);
6264 #endif
6265 }
6266 
6267 static void
6268 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6269 {
6270 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
6271 	struct pcicfg_pcie *cfg;
6272 	int version, pos;
6273 
6274 	cfg = &dinfo->cfg.pcie;
6275 	pos = cfg->pcie_location;
6276 
6277 	cfg->pcie_flags = RREG(PCIER_FLAGS);
6278 
6279 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6280 
6281 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6282 
6283 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6284 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6285 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6286 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6287 
6288 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6289 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6290 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6291 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6292 
6293 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6294 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6295 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6296 
6297 	if (version > 1) {
6298 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6299 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6300 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6301 	}
6302 #undef RREG
6303 }
6304 
6305 static void
6306 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6307 {
6308 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6309 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6310 }
6311 
6312 void
6313 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6314 {
6315 	uint32_t cls;
6316 	int ps;
6317 
6318 	/*
6319 	 * Some drivers apparently write to these registers w/o updating our
6320 	 * cached copy.  No harm happens if we update the copy, so do so here
6321 	 * so we can restore them.  The COMMAND register is modified by the
6322 	 * bus w/o updating the cache.  This should represent the normally
6323 	 * writable portion of the 'defined' part of type 0/1/2 headers.
6324 	 */
6325 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6326 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6327 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6328 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6329 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6330 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6331 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6332 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6333 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6334 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6335 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6336 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6337 	case PCIM_HDRTYPE_NORMAL:
6338 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6339 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6340 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6341 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6342 		break;
6343 	case PCIM_HDRTYPE_BRIDGE:
6344 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6345 		    PCIR_SECLAT_1, 1);
6346 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6347 		    PCIR_SUBBUS_1, 1);
6348 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6349 		    PCIR_SECBUS_1, 1);
6350 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6351 		    PCIR_PRIBUS_1, 1);
6352 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6353 		    PCIR_BRIDGECTL_1, 2);
6354 		break;
6355 	case PCIM_HDRTYPE_CARDBUS:
6356 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6357 		    PCIR_SECLAT_2, 1);
6358 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6359 		    PCIR_SUBBUS_2, 1);
6360 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6361 		    PCIR_SECBUS_2, 1);
6362 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6363 		    PCIR_PRIBUS_2, 1);
6364 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6365 		    PCIR_BRIDGECTL_2, 2);
6366 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6367 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6368 		break;
6369 	}
6370 
6371 	if (dinfo->cfg.pcie.pcie_location != 0)
6372 		pci_cfg_save_pcie(dev, dinfo);
6373 
6374 	if (dinfo->cfg.pcix.pcix_location != 0)
6375 		pci_cfg_save_pcix(dev, dinfo);
6376 
6377 #ifdef PCI_IOV
6378 	if (dinfo->cfg.iov != NULL)
6379 		pci_iov_cfg_save(dev, dinfo);
6380 #endif
6381 
6382 	/*
6383 	 * don't set the state for display devices, base peripherals and
6384 	 * memory devices since bad things happen when they are powered down.
6385 	 * We should (a) have drivers that can easily detach and (b) use
6386 	 * generic drivers for these devices so that some device actually
6387 	 * attaches.  We need to make sure that when we implement (a) we don't
6388 	 * power the device down on a reattach.
6389 	 */
6390 	cls = pci_get_class(dev);
6391 	if (!setstate)
6392 		return;
6393 	switch (pci_do_power_nodriver)
6394 	{
6395 		case 0:		/* NO powerdown at all */
6396 			return;
6397 		case 1:		/* Conservative about what to power down */
6398 			if (cls == PCIC_STORAGE)
6399 				return;
6400 			/*FALLTHROUGH*/
6401 		case 2:		/* Aggressive about what to power down */
6402 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6403 			    cls == PCIC_BASEPERIPH)
6404 				return;
6405 			/*FALLTHROUGH*/
6406 		case 3:		/* Power down everything */
6407 			break;
6408 	}
6409 	/*
6410 	 * PCI spec says we can only go into D3 state from D0 state.
6411 	 * Transition from D[12] into D0 before going to D3 state.
6412 	 */
6413 	ps = pci_get_powerstate(dev);
6414 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6415 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6416 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6417 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6418 }
6419 
6420 /* Wrapper APIs suitable for device driver use. */
6421 void
6422 pci_save_state(device_t dev)
6423 {
6424 	struct pci_devinfo *dinfo;
6425 
6426 	dinfo = device_get_ivars(dev);
6427 	pci_cfg_save(dev, dinfo, 0);
6428 }
6429 
6430 void
6431 pci_restore_state(device_t dev)
6432 {
6433 	struct pci_devinfo *dinfo;
6434 
6435 	dinfo = device_get_ivars(dev);
6436 	pci_cfg_restore(dev, dinfo);
6437 }
6438 
6439 static int
6440 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6441     uintptr_t *id)
6442 {
6443 
6444 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6445 }
6446 
6447 /* Find the upstream port of a given PCI device in a root complex. */
6448 device_t
6449 pci_find_pcie_root_port(device_t dev)
6450 {
6451 	struct pci_devinfo *dinfo;
6452 	devclass_t pci_class;
6453 	device_t pcib, bus;
6454 
6455 	pci_class = devclass_find("pci");
6456 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6457 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6458 
6459 	/*
6460 	 * Walk the bridge hierarchy until we find a PCI-e root
6461 	 * port or a non-PCI device.
6462 	 */
6463 	for (;;) {
6464 		bus = device_get_parent(dev);
6465 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6466 		    device_get_nameunit(dev)));
6467 
6468 		pcib = device_get_parent(bus);
6469 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6470 		    device_get_nameunit(bus)));
6471 
6472 		/*
6473 		 * pcib's parent must be a PCI bus for this to be a
6474 		 * PCI-PCI bridge.
6475 		 */
6476 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6477 			return (NULL);
6478 
6479 		dinfo = device_get_ivars(pcib);
6480 		if (dinfo->cfg.pcie.pcie_location != 0 &&
6481 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6482 			return (pcib);
6483 
6484 		dev = pcib;
6485 	}
6486 }
6487 
6488 /*
6489  * Wait for pending transactions to complete on a PCI-express function.
6490  *
6491  * The maximum delay is specified in milliseconds in max_delay.  Note
6492  * that this function may sleep.
6493  *
6494  * Returns true if the function is idle and false if the timeout is
6495  * exceeded.  If dev is not a PCI-express function, this returns true.
6496  */
6497 bool
6498 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6499 {
6500 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6501 	uint16_t sta;
6502 	int cap;
6503 
6504 	cap = dinfo->cfg.pcie.pcie_location;
6505 	if (cap == 0)
6506 		return (true);
6507 
6508 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6509 	while (sta & PCIEM_STA_TRANSACTION_PND) {
6510 		if (max_delay == 0)
6511 			return (false);
6512 
6513 		/* Poll once every 100 milliseconds up to the timeout. */
6514 		if (max_delay > 100) {
6515 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6516 			max_delay -= 100;
6517 		} else {
6518 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6519 			    C_HARDCLOCK);
6520 			max_delay = 0;
6521 		}
6522 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6523 	}
6524 
6525 	return (true);
6526 }
6527 
6528 /*
6529  * Determine the maximum Completion Timeout in microseconds.
6530  *
6531  * For non-PCI-express functions this returns 0.
6532  */
6533 int
6534 pcie_get_max_completion_timeout(device_t dev)
6535 {
6536 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6537 	int cap;
6538 
6539 	cap = dinfo->cfg.pcie.pcie_location;
6540 	if (cap == 0)
6541 		return (0);
6542 
6543 	/*
6544 	 * Functions using the 1.x spec use the default timeout range of
6545 	 * 50 microseconds to 50 milliseconds.  Functions that do not
6546 	 * support programmable timeouts also use this range.
6547 	 */
6548 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6549 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6550 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6551 		return (50 * 1000);
6552 
6553 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6554 	    PCIEM_CTL2_COMP_TIMO_VAL) {
6555 	case PCIEM_CTL2_COMP_TIMO_100US:
6556 		return (100);
6557 	case PCIEM_CTL2_COMP_TIMO_10MS:
6558 		return (10 * 1000);
6559 	case PCIEM_CTL2_COMP_TIMO_55MS:
6560 		return (55 * 1000);
6561 	case PCIEM_CTL2_COMP_TIMO_210MS:
6562 		return (210 * 1000);
6563 	case PCIEM_CTL2_COMP_TIMO_900MS:
6564 		return (900 * 1000);
6565 	case PCIEM_CTL2_COMP_TIMO_3500MS:
6566 		return (3500 * 1000);
6567 	case PCIEM_CTL2_COMP_TIMO_13S:
6568 		return (13 * 1000 * 1000);
6569 	case PCIEM_CTL2_COMP_TIMO_64S:
6570 		return (64 * 1000 * 1000);
6571 	default:
6572 		return (50 * 1000);
6573 	}
6574 }
6575 
6576 void
6577 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6578 {
6579 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6580 	const char *s;
6581 	int aer;
6582 	uint32_t r, r1;
6583 	uint16_t rs;
6584 
6585 	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6586 		s = "Correctable";
6587 	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6588 		s = "Uncorrectable (Non-Fatal)";
6589 	else
6590 		s = "Uncorrectable (Fatal)";
6591 	device_printf(dev, "%s PCIe error reported by APEI\n", s);
6592 	if (aerp) {
6593 		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6594 			r = le32dec(aerp + PCIR_AER_COR_STATUS);
6595 			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6596 		} else {
6597 			r = le32dec(aerp + PCIR_AER_UC_STATUS);
6598 			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6599 		}
6600 		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6601 		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6602 			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6603 			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6604 			printf(" severity 0x%08x first %d\n",
6605 			    r, rs & 0x1f);
6606 		} else
6607 			printf("\n");
6608 	}
6609 
6610 	/* As kind of recovery just report and clear the error statuses. */
6611 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6612 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6613 		if (r != 0) {
6614 			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6615 			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6616 		}
6617 
6618 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6619 		if (r != 0) {
6620 			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6621 			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6622 		}
6623 	}
6624 	if (dinfo->cfg.pcie.pcie_location != 0) {
6625 		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6626 		    PCIER_DEVICE_STA, 2);
6627 		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6628 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6629 		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6630 			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6631 			    PCIER_DEVICE_STA, rs, 2);
6632 			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6633 		}
6634 	}
6635 }
6636 
6637 /*
6638  * Perform a Function Level Reset (FLR) on a device.
6639  *
6640  * This function first waits for any pending transactions to complete
6641  * within the timeout specified by max_delay.  If transactions are
6642  * still pending, the function will return false without attempting a
6643  * reset.
6644  *
6645  * If dev is not a PCI-express function or does not support FLR, this
6646  * function returns false.
6647  *
6648  * Note that no registers are saved or restored.  The caller is
6649  * responsible for saving and restoring any registers including
6650  * PCI-standard registers via pci_save_state() and
6651  * pci_restore_state().
6652  */
6653 bool
6654 pcie_flr(device_t dev, u_int max_delay, bool force)
6655 {
6656 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6657 	uint16_t cmd, ctl;
6658 	int compl_delay;
6659 	int cap;
6660 
6661 	cap = dinfo->cfg.pcie.pcie_location;
6662 	if (cap == 0)
6663 		return (false);
6664 
6665 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6666 		return (false);
6667 
6668 	/*
6669 	 * Disable busmastering to prevent generation of new
6670 	 * transactions while waiting for the device to go idle.  If
6671 	 * the idle timeout fails, the command register is restored
6672 	 * which will re-enable busmastering.
6673 	 */
6674 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6675 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6676 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6677 		if (!force) {
6678 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6679 			return (false);
6680 		}
6681 		pci_printf(&dinfo->cfg,
6682 		    "Resetting with transactions pending after %d ms\n",
6683 		    max_delay);
6684 
6685 		/*
6686 		 * Extend the post-FLR delay to cover the maximum
6687 		 * Completion Timeout delay of anything in flight
6688 		 * during the FLR delay.  Enforce a minimum delay of
6689 		 * at least 10ms.
6690 		 */
6691 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6692 		if (compl_delay < 10)
6693 			compl_delay = 10;
6694 	} else
6695 		compl_delay = 0;
6696 
6697 	/* Initiate the reset. */
6698 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6699 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6700 	    PCIEM_CTL_INITIATE_FLR, 2);
6701 
6702 	/* Wait for 100ms. */
6703 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6704 
6705 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6706 	    PCIEM_STA_TRANSACTION_PND)
6707 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6708 	return (true);
6709 }
6710 
6711 /*
6712  * Attempt a power-management reset by cycling the device in/out of D3
6713  * state.  PCI spec says we can only go into D3 state from D0 state.
6714  * Transition from D[12] into D0 before going to D3 state.
6715  */
6716 int
6717 pci_power_reset(device_t dev)
6718 {
6719 	int ps;
6720 
6721 	ps = pci_get_powerstate(dev);
6722 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6723 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6724 	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6725 	pci_set_powerstate(dev, ps);
6726 	return (0);
6727 }
6728 
6729 /*
6730  * Try link drop and retrain of the downstream port of upstream
6731  * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6732  * cause Conventional Hot reset of the device in the slot.
6733  * Alternative, for PCIe, could be the secondary bus reset initiatied
6734  * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6735  */
6736 int
6737 pcie_link_reset(device_t port, int pcie_location)
6738 {
6739 	uint16_t v;
6740 
6741 	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6742 	v |= PCIEM_LINK_CTL_LINK_DIS;
6743 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6744 	pause_sbt("pcier1", mstosbt(20), 0, 0);
6745 	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6746 	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6747 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6748 	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6749 	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6750 	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6751 }
6752 
6753 static int
6754 pci_reset_post(device_t dev, device_t child)
6755 {
6756 
6757 	if (dev == device_get_parent(child))
6758 		pci_restore_state(child);
6759 	return (0);
6760 }
6761 
6762 static int
6763 pci_reset_prepare(device_t dev, device_t child)
6764 {
6765 
6766 	if (dev == device_get_parent(child))
6767 		pci_save_state(child);
6768 	return (0);
6769 }
6770 
6771 static int
6772 pci_reset_child(device_t dev, device_t child, int flags)
6773 {
6774 	int error;
6775 
6776 	if (dev == NULL || device_get_parent(child) != dev)
6777 		return (0);
6778 	if ((flags & DEVF_RESET_DETACH) != 0) {
6779 		error = device_get_state(child) == DS_ATTACHED ?
6780 		    device_detach(child) : 0;
6781 	} else {
6782 		error = BUS_SUSPEND_CHILD(dev, child);
6783 	}
6784 	if (error == 0) {
6785 		if (!pcie_flr(child, 1000, false)) {
6786 			error = BUS_RESET_PREPARE(dev, child);
6787 			if (error == 0)
6788 				pci_power_reset(child);
6789 			BUS_RESET_POST(dev, child);
6790 		}
6791 		if ((flags & DEVF_RESET_DETACH) != 0)
6792 			device_probe_and_attach(child);
6793 		else
6794 			BUS_RESUME_CHILD(dev, child);
6795 	}
6796 	return (error);
6797 }
6798 
6799 const struct pci_device_table *
6800 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6801 {
6802 	bool match;
6803 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6804 
6805 	vendor = pci_get_vendor(child);
6806 	device = pci_get_device(child);
6807 	subvendor = pci_get_subvendor(child);
6808 	subdevice = pci_get_subdevice(child);
6809 	class = pci_get_class(child);
6810 	subclass = pci_get_subclass(child);
6811 	revid = pci_get_revid(child);
6812 	while (nelt-- > 0) {
6813 		match = true;
6814 		if (id->match_flag_vendor)
6815 			match &= vendor == id->vendor;
6816 		if (id->match_flag_device)
6817 			match &= device == id->device;
6818 		if (id->match_flag_subvendor)
6819 			match &= subvendor == id->subvendor;
6820 		if (id->match_flag_subdevice)
6821 			match &= subdevice == id->subdevice;
6822 		if (id->match_flag_class)
6823 			match &= class == id->class_id;
6824 		if (id->match_flag_subclass)
6825 			match &= subclass == id->subclass;
6826 		if (id->match_flag_revid)
6827 			match &= revid == id->revid;
6828 		if (match)
6829 			return (id);
6830 		id++;
6831 	}
6832 	return (NULL);
6833 }
6834 
6835 static void
6836 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6837 {
6838 	const char *dev_name;
6839 	device_t dev;
6840 
6841 	dev = dinfo->cfg.dev;
6842 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6843 	    dinfo->cfg.slot, dinfo->cfg.func);
6844 	dev_name = device_get_name(dev);
6845 	if (dev_name != NULL)
6846 		printf(" (%s%d)", dev_name, device_get_unit(dev));
6847 }
6848 
6849 void
6850 pci_print_faulted_dev(void)
6851 {
6852 	struct pci_devinfo *dinfo;
6853 	device_t dev;
6854 	int aer, i;
6855 	uint32_t r1, r2;
6856 	uint16_t status;
6857 
6858 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6859 		dev = dinfo->cfg.dev;
6860 		status = pci_read_config(dev, PCIR_STATUS, 2);
6861 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6862 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6863 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6864 		if (status != 0) {
6865 			pci_print_faulted_dev_name(dinfo);
6866 			printf(" error 0x%04x\n", status);
6867 		}
6868 		if (dinfo->cfg.pcie.pcie_location != 0) {
6869 			status = pci_read_config(dev,
6870 			    dinfo->cfg.pcie.pcie_location +
6871 			    PCIER_DEVICE_STA, 2);
6872 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6873 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6874 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6875 				pci_print_faulted_dev_name(dinfo);
6876 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6877 				    pci_read_config(dev,
6878 				    dinfo->cfg.pcie.pcie_location +
6879 				    PCIER_DEVICE_CTL, 2),
6880 				    status);
6881 			}
6882 		}
6883 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6884 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6885 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6886 			if (r1 != 0 || r2 != 0) {
6887 				pci_print_faulted_dev_name(dinfo);
6888 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6889 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6890 				    r1, pci_read_config(dev, aer +
6891 				    PCIR_AER_UC_MASK, 4),
6892 				    pci_read_config(dev, aer +
6893 				    PCIR_AER_UC_SEVERITY, 4),
6894 				    r2, pci_read_config(dev, aer +
6895 				    PCIR_AER_COR_MASK, 4),
6896 				    pci_read_config(dev, aer +
6897 				    PCIR_AER_CAP_CONTROL, 4));
6898 				for (i = 0; i < 4; i++) {
6899 					r1 = pci_read_config(dev, aer +
6900 					    PCIR_AER_HEADER_LOG + i * 4, 4);
6901 					printf("    HL%d: 0x%08x\n", i, r1);
6902 				}
6903 			}
6904 		}
6905 	}
6906 }
6907 
6908 #ifdef DDB
6909 DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE)
6910 {
6911 
6912 	pci_print_faulted_dev();
6913 }
6914 
6915 static void
6916 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6917 {
6918 	device_t dev;
6919 	int aer;
6920 	uint32_t r;
6921 
6922 	dev = dinfo->cfg.dev;
6923 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6924 	    PCIER_DEVICE_STA, 2);
6925 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6926 	    PCIER_DEVICE_STA, r, 2);
6927 
6928 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6929 		return;
6930 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6931 	if (r != 0)
6932 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6933 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6934 	if (r != 0)
6935 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6936 }
6937 
6938 DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE)
6939 {
6940 	struct pci_devinfo *dinfo;
6941 	device_t dev;
6942 	uint16_t status, status1;
6943 
6944 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6945 		dev = dinfo->cfg.dev;
6946 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
6947 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6948 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6949 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6950 		if (status1 != 0) {
6951 			status &= ~status1;
6952 			pci_write_config(dev, PCIR_STATUS, status, 2);
6953 		}
6954 		if (dinfo->cfg.pcie.pcie_location != 0)
6955 			db_clear_pcie_errors(dinfo);
6956 	}
6957 }
6958 #endif
6959