1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 5 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org> 6 * Copyright (c) 2000, BSDi 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_acpi.h" 35 #include "opt_iommu.h" 36 #include "opt_bus.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/endian.h> 41 #include <sys/eventhandler.h> 42 #include <sys/fcntl.h> 43 #include <sys/kernel.h> 44 #include <sys/limits.h> 45 #include <sys/linker.h> 46 #include <sys/malloc.h> 47 #include <sys/module.h> 48 #include <sys/queue.h> 49 #include <sys/sysctl.h> 50 #include <sys/systm.h> 51 #include <sys/taskqueue.h> 52 #include <sys/tree.h> 53 54 #include <vm/vm.h> 55 #include <vm/pmap.h> 56 #include <vm/vm_extern.h> 57 58 #include <sys/bus.h> 59 #include <machine/bus.h> 60 #include <sys/rman.h> 61 #include <machine/resource.h> 62 #include <machine/stdarg.h> 63 64 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 65 #include <machine/intr_machdep.h> 66 #endif 67 68 #include <sys/pciio.h> 69 #include <dev/pci/pcireg.h> 70 #include <dev/pci/pcivar.h> 71 #include <dev/pci/pci_private.h> 72 73 #ifdef PCI_IOV 74 #include <sys/nv.h> 75 #include <dev/pci/pci_iov_private.h> 76 #endif 77 78 #include <dev/usb/controller/xhcireg.h> 79 #include <dev/usb/controller/ehcireg.h> 80 #include <dev/usb/controller/ohcireg.h> 81 #include <dev/usb/controller/uhcireg.h> 82 83 #include <dev/iommu/iommu.h> 84 85 #include "pcib_if.h" 86 #include "pci_if.h" 87 88 #define PCIR_IS_BIOS(cfg, reg) \ 89 (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \ 90 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1)) 91 92 static int pci_has_quirk(uint32_t devid, int quirk); 93 static pci_addr_t pci_mapbase(uint64_t mapreg); 94 static const char *pci_maptype(uint64_t mapreg); 95 static int pci_maprange(uint64_t mapreg); 96 static pci_addr_t pci_rombase(uint64_t mapreg); 97 static int pci_romsize(uint64_t testval); 98 static void pci_fixancient(pcicfgregs *cfg); 99 static int pci_printf(pcicfgregs *cfg, const char *fmt, ...); 100 101 static int pci_porten(device_t dev); 102 static int pci_memen(device_t dev); 103 static void pci_assign_interrupt(device_t bus, device_t dev, 104 int force_route); 105 static int pci_add_map(device_t bus, device_t dev, int reg, 106 struct resource_list *rl, int force, int prefetch); 107 static int pci_probe(device_t dev); 108 static void pci_load_vendor_data(void); 109 static int pci_describe_parse_line(char **ptr, int *vendor, 110 int *device, char **desc); 111 static char *pci_describe_device(device_t dev); 112 static int pci_modevent(module_t mod, int what, void *arg); 113 static void pci_hdrtypedata(device_t pcib, int b, int s, int f, 114 pcicfgregs *cfg); 115 static void pci_read_cap(device_t pcib, pcicfgregs *cfg); 116 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, 117 int reg, uint32_t *data); 118 #if 0 119 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, 120 int reg, uint32_t data); 121 #endif 122 static void pci_read_vpd(device_t pcib, pcicfgregs *cfg); 123 static void pci_mask_msix(device_t dev, u_int index); 124 static void pci_unmask_msix(device_t dev, u_int index); 125 static int pci_msi_blacklisted(void); 126 static int pci_msix_blacklisted(void); 127 static void pci_resume_msi(device_t dev); 128 static void pci_resume_msix(device_t dev); 129 static int pci_remap_intr_method(device_t bus, device_t dev, 130 u_int irq); 131 static void pci_hint_device_unit(device_t acdev, device_t child, 132 const char *name, int *unitp); 133 static int pci_reset_post(device_t dev, device_t child); 134 static int pci_reset_prepare(device_t dev, device_t child); 135 static int pci_reset_child(device_t dev, device_t child, 136 int flags); 137 138 static int pci_get_id_method(device_t dev, device_t child, 139 enum pci_id_type type, uintptr_t *rid); 140 141 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d, 142 int b, int s, int f, uint16_t vid, uint16_t did); 143 144 static device_method_t pci_methods[] = { 145 /* Device interface */ 146 DEVMETHOD(device_probe, pci_probe), 147 DEVMETHOD(device_attach, pci_attach), 148 DEVMETHOD(device_detach, pci_detach), 149 DEVMETHOD(device_shutdown, bus_generic_shutdown), 150 DEVMETHOD(device_suspend, bus_generic_suspend), 151 DEVMETHOD(device_resume, pci_resume), 152 153 /* Bus interface */ 154 DEVMETHOD(bus_print_child, pci_print_child), 155 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch), 156 DEVMETHOD(bus_read_ivar, pci_read_ivar), 157 DEVMETHOD(bus_write_ivar, pci_write_ivar), 158 DEVMETHOD(bus_driver_added, pci_driver_added), 159 DEVMETHOD(bus_setup_intr, pci_setup_intr), 160 DEVMETHOD(bus_teardown_intr, pci_teardown_intr), 161 DEVMETHOD(bus_reset_prepare, pci_reset_prepare), 162 DEVMETHOD(bus_reset_post, pci_reset_post), 163 DEVMETHOD(bus_reset_child, pci_reset_child), 164 165 DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag), 166 DEVMETHOD(bus_get_resource_list,pci_get_resource_list), 167 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 168 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 169 DEVMETHOD(bus_delete_resource, pci_delete_resource), 170 DEVMETHOD(bus_alloc_resource, pci_alloc_resource), 171 DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), 172 DEVMETHOD(bus_release_resource, pci_release_resource), 173 DEVMETHOD(bus_activate_resource, pci_activate_resource), 174 DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), 175 DEVMETHOD(bus_child_deleted, pci_child_deleted), 176 DEVMETHOD(bus_child_detached, pci_child_detached), 177 DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method), 178 DEVMETHOD(bus_child_location_str, pci_child_location_str_method), 179 DEVMETHOD(bus_hint_device_unit, pci_hint_device_unit), 180 DEVMETHOD(bus_remap_intr, pci_remap_intr_method), 181 DEVMETHOD(bus_suspend_child, pci_suspend_child), 182 DEVMETHOD(bus_resume_child, pci_resume_child), 183 DEVMETHOD(bus_rescan, pci_rescan_method), 184 185 /* PCI interface */ 186 DEVMETHOD(pci_read_config, pci_read_config_method), 187 DEVMETHOD(pci_write_config, pci_write_config_method), 188 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method), 189 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method), 190 DEVMETHOD(pci_enable_io, pci_enable_io_method), 191 DEVMETHOD(pci_disable_io, pci_disable_io_method), 192 DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method), 193 DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method), 194 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method), 195 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method), 196 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method), 197 DEVMETHOD(pci_find_cap, pci_find_cap_method), 198 DEVMETHOD(pci_find_next_cap, pci_find_next_cap_method), 199 DEVMETHOD(pci_find_extcap, pci_find_extcap_method), 200 DEVMETHOD(pci_find_next_extcap, pci_find_next_extcap_method), 201 DEVMETHOD(pci_find_htcap, pci_find_htcap_method), 202 DEVMETHOD(pci_find_next_htcap, pci_find_next_htcap_method), 203 DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method), 204 DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method), 205 DEVMETHOD(pci_enable_msi, pci_enable_msi_method), 206 DEVMETHOD(pci_enable_msix, pci_enable_msix_method), 207 DEVMETHOD(pci_disable_msi, pci_disable_msi_method), 208 DEVMETHOD(pci_remap_msix, pci_remap_msix_method), 209 DEVMETHOD(pci_release_msi, pci_release_msi_method), 210 DEVMETHOD(pci_msi_count, pci_msi_count_method), 211 DEVMETHOD(pci_msix_count, pci_msix_count_method), 212 DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method), 213 DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method), 214 DEVMETHOD(pci_get_id, pci_get_id_method), 215 DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method), 216 DEVMETHOD(pci_child_added, pci_child_added_method), 217 #ifdef PCI_IOV 218 DEVMETHOD(pci_iov_attach, pci_iov_attach_method), 219 DEVMETHOD(pci_iov_detach, pci_iov_detach_method), 220 DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method), 221 #endif 222 223 DEVMETHOD_END 224 }; 225 226 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc)); 227 228 static devclass_t pci_devclass; 229 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL, 230 BUS_PASS_BUS); 231 MODULE_VERSION(pci, 1); 232 233 static char *pci_vendordata; 234 static size_t pci_vendordata_size; 235 236 struct pci_quirk { 237 uint32_t devid; /* Vendor/device of the card */ 238 int type; 239 #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */ 240 #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */ 241 #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */ 242 #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */ 243 #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */ 244 #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */ 245 #define PCI_QUIRK_REALLOC_BAR 7 /* Can't allocate memory at the default address */ 246 int arg1; 247 int arg2; 248 }; 249 250 static const struct pci_quirk pci_quirks[] = { 251 /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */ 252 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 253 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 254 /* As does the Serverworks OSB4 (the SMBus mapping register) */ 255 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 }, 256 257 /* 258 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge 259 * or the CMIC-SL (AKA ServerWorks GC_LE). 260 */ 261 { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 262 { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 263 264 /* 265 * MSI doesn't work on earlier Intel chipsets including 266 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855. 267 */ 268 { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 269 { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 270 { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 271 { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 272 { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 273 { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 274 { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 275 276 /* 277 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX 278 * bridge. 279 */ 280 { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 281 282 /* 283 * Some virtualization environments emulate an older chipset 284 * but support MSI just fine. QEMU uses the Intel 82440. 285 */ 286 { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 }, 287 288 /* 289 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus 290 * controller depending on SoftPciRst register (PM_IO 0x55 [7]). 291 * It prevents us from attaching hpet(4) when the bit is unset. 292 * Note this quirk only affects SB600 revision A13 and earlier. 293 * For SB600 A21 and later, firmware must set the bit to hide it. 294 * For SB700 and later, it is unused and hardcoded to zero. 295 */ 296 { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 }, 297 298 /* 299 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have 300 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit 301 * of the command register is set. 302 */ 303 { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 304 { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 305 { 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 306 { 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 307 { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 308 309 /* 310 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't 311 * issue MSI interrupts with PCIM_CMD_INTxDIS set either. 312 */ 313 { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */ 314 { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */ 315 { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */ 316 { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */ 317 { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */ 318 { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */ 319 320 /* 321 * HPE Gen 10 VGA has a memory range that can't be allocated in the 322 * expected place. 323 */ 324 { 0x98741002, PCI_QUIRK_REALLOC_BAR, 0, 0 }, 325 { 0 } 326 }; 327 328 /* map register information */ 329 #define PCI_MAPMEM 0x01 /* memory map */ 330 #define PCI_MAPMEMP 0x02 /* prefetchable memory map */ 331 #define PCI_MAPPORT 0x04 /* port map */ 332 333 struct devlist pci_devq; 334 uint32_t pci_generation; 335 uint32_t pci_numdevs = 0; 336 static int pcie_chipset, pcix_chipset; 337 338 /* sysctl vars */ 339 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 340 "PCI bus tuning parameters"); 341 342 static int pci_enable_io_modes = 1; 343 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN, 344 &pci_enable_io_modes, 1, 345 "Enable I/O and memory bits in the config register. Some BIOSes do not" 346 " enable these bits correctly. We'd like to do this all the time, but" 347 " there are some peripherals that this causes problems with."); 348 349 static int pci_do_realloc_bars = 1; 350 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN, 351 &pci_do_realloc_bars, 0, 352 "Attempt to allocate a new range for any BARs whose original " 353 "firmware-assigned ranges fail to allocate during the initial device scan."); 354 355 static int pci_do_power_nodriver = 0; 356 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN, 357 &pci_do_power_nodriver, 0, 358 "Place a function into D3 state when no driver attaches to it. 0 means" 359 " disable. 1 means conservatively place devices into D3 state. 2 means" 360 " aggressively place devices into D3 state. 3 means put absolutely" 361 " everything in D3 state."); 362 363 int pci_do_power_resume = 1; 364 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN, 365 &pci_do_power_resume, 1, 366 "Transition from D3 -> D0 on resume."); 367 368 int pci_do_power_suspend = 1; 369 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN, 370 &pci_do_power_suspend, 1, 371 "Transition from D0 -> D3 on suspend."); 372 373 static int pci_do_msi = 1; 374 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1, 375 "Enable support for MSI interrupts"); 376 377 static int pci_do_msix = 1; 378 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1, 379 "Enable support for MSI-X interrupts"); 380 381 static int pci_msix_rewrite_table = 0; 382 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN, 383 &pci_msix_rewrite_table, 0, 384 "Rewrite entire MSI-X table when updating MSI-X entries"); 385 386 static int pci_honor_msi_blacklist = 1; 387 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN, 388 &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X"); 389 390 #if defined(__i386__) || defined(__amd64__) 391 static int pci_usb_takeover = 1; 392 #else 393 static int pci_usb_takeover = 0; 394 #endif 395 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN, 396 &pci_usb_takeover, 1, 397 "Enable early takeover of USB controllers. Disable this if you depend on" 398 " BIOS emulation of USB devices, that is you use USB devices (like" 399 " keyboard or mouse) but do not load USB drivers"); 400 401 static int pci_clear_bars; 402 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0, 403 "Ignore firmware-assigned resources for BARs."); 404 405 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 406 static int pci_clear_buses; 407 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0, 408 "Ignore firmware-assigned bus numbers."); 409 #endif 410 411 static int pci_enable_ari = 1; 412 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari, 413 0, "Enable support for PCIe Alternative RID Interpretation"); 414 415 int pci_enable_aspm = 1; 416 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm, 417 0, "Enable support for PCIe Active State Power Management"); 418 419 static int pci_clear_aer_on_attach = 0; 420 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN, 421 &pci_clear_aer_on_attach, 0, 422 "Clear port and device AER state on driver attach"); 423 424 static int 425 pci_has_quirk(uint32_t devid, int quirk) 426 { 427 const struct pci_quirk *q; 428 429 for (q = &pci_quirks[0]; q->devid; q++) { 430 if (q->devid == devid && q->type == quirk) 431 return (1); 432 } 433 return (0); 434 } 435 436 /* Find a device_t by bus/slot/function in domain 0 */ 437 438 device_t 439 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func) 440 { 441 442 return (pci_find_dbsf(0, bus, slot, func)); 443 } 444 445 /* Find a device_t by domain/bus/slot/function */ 446 447 device_t 448 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func) 449 { 450 struct pci_devinfo *dinfo = NULL; 451 452 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 453 if ((dinfo->cfg.domain == domain) && 454 (dinfo->cfg.bus == bus) && 455 (dinfo->cfg.slot == slot) && 456 (dinfo->cfg.func == func)) { 457 break; 458 } 459 } 460 461 return (dinfo != NULL ? dinfo->cfg.dev : NULL); 462 } 463 464 /* Find a device_t by vendor/device ID */ 465 466 device_t 467 pci_find_device(uint16_t vendor, uint16_t device) 468 { 469 struct pci_devinfo *dinfo; 470 471 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 472 if ((dinfo->cfg.vendor == vendor) && 473 (dinfo->cfg.device == device)) { 474 return (dinfo->cfg.dev); 475 } 476 } 477 478 return (NULL); 479 } 480 481 device_t 482 pci_find_class(uint8_t class, uint8_t subclass) 483 { 484 struct pci_devinfo *dinfo; 485 486 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 487 if (dinfo->cfg.baseclass == class && 488 dinfo->cfg.subclass == subclass) { 489 return (dinfo->cfg.dev); 490 } 491 } 492 493 return (NULL); 494 } 495 496 device_t 497 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from) 498 { 499 struct pci_devinfo *dinfo; 500 bool found = false; 501 502 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 503 if (from != NULL && found == false) { 504 if (from != dinfo->cfg.dev) 505 continue; 506 found = true; 507 continue; 508 } 509 if (dinfo->cfg.baseclass == class && 510 dinfo->cfg.subclass == subclass) { 511 return (dinfo->cfg.dev); 512 } 513 } 514 515 return (NULL); 516 } 517 518 static int 519 pci_printf(pcicfgregs *cfg, const char *fmt, ...) 520 { 521 va_list ap; 522 int retval; 523 524 retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot, 525 cfg->func); 526 va_start(ap, fmt); 527 retval += vprintf(fmt, ap); 528 va_end(ap); 529 return (retval); 530 } 531 532 /* return base address of memory or port map */ 533 534 static pci_addr_t 535 pci_mapbase(uint64_t mapreg) 536 { 537 538 if (PCI_BAR_MEM(mapreg)) 539 return (mapreg & PCIM_BAR_MEM_BASE); 540 else 541 return (mapreg & PCIM_BAR_IO_BASE); 542 } 543 544 /* return map type of memory or port map */ 545 546 static const char * 547 pci_maptype(uint64_t mapreg) 548 { 549 550 if (PCI_BAR_IO(mapreg)) 551 return ("I/O Port"); 552 if (mapreg & PCIM_BAR_MEM_PREFETCH) 553 return ("Prefetchable Memory"); 554 return ("Memory"); 555 } 556 557 /* return log2 of map size decoded for memory or port map */ 558 559 int 560 pci_mapsize(uint64_t testval) 561 { 562 int ln2size; 563 564 testval = pci_mapbase(testval); 565 ln2size = 0; 566 if (testval != 0) { 567 while ((testval & 1) == 0) 568 { 569 ln2size++; 570 testval >>= 1; 571 } 572 } 573 return (ln2size); 574 } 575 576 /* return base address of device ROM */ 577 578 static pci_addr_t 579 pci_rombase(uint64_t mapreg) 580 { 581 582 return (mapreg & PCIM_BIOS_ADDR_MASK); 583 } 584 585 /* return log2 of map size decided for device ROM */ 586 587 static int 588 pci_romsize(uint64_t testval) 589 { 590 int ln2size; 591 592 testval = pci_rombase(testval); 593 ln2size = 0; 594 if (testval != 0) { 595 while ((testval & 1) == 0) 596 { 597 ln2size++; 598 testval >>= 1; 599 } 600 } 601 return (ln2size); 602 } 603 604 /* return log2 of address range supported by map register */ 605 606 static int 607 pci_maprange(uint64_t mapreg) 608 { 609 int ln2range = 0; 610 611 if (PCI_BAR_IO(mapreg)) 612 ln2range = 32; 613 else 614 switch (mapreg & PCIM_BAR_MEM_TYPE) { 615 case PCIM_BAR_MEM_32: 616 ln2range = 32; 617 break; 618 case PCIM_BAR_MEM_1MB: 619 ln2range = 20; 620 break; 621 case PCIM_BAR_MEM_64: 622 ln2range = 64; 623 break; 624 } 625 return (ln2range); 626 } 627 628 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */ 629 630 static void 631 pci_fixancient(pcicfgregs *cfg) 632 { 633 if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) 634 return; 635 636 /* PCI to PCI bridges use header type 1 */ 637 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI) 638 cfg->hdrtype = PCIM_HDRTYPE_BRIDGE; 639 } 640 641 /* extract header type specific config data */ 642 643 static void 644 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg) 645 { 646 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 647 switch (cfg->hdrtype & PCIM_HDRTYPE) { 648 case PCIM_HDRTYPE_NORMAL: 649 cfg->subvendor = REG(PCIR_SUBVEND_0, 2); 650 cfg->subdevice = REG(PCIR_SUBDEV_0, 2); 651 cfg->mingnt = REG(PCIR_MINGNT, 1); 652 cfg->maxlat = REG(PCIR_MAXLAT, 1); 653 cfg->nummaps = PCI_MAXMAPS_0; 654 break; 655 case PCIM_HDRTYPE_BRIDGE: 656 cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1); 657 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1); 658 cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1); 659 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1); 660 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2); 661 cfg->nummaps = PCI_MAXMAPS_1; 662 break; 663 case PCIM_HDRTYPE_CARDBUS: 664 cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1); 665 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1); 666 cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1); 667 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1); 668 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2); 669 cfg->subvendor = REG(PCIR_SUBVEND_2, 2); 670 cfg->subdevice = REG(PCIR_SUBDEV_2, 2); 671 cfg->nummaps = PCI_MAXMAPS_2; 672 break; 673 } 674 #undef REG 675 } 676 677 /* read configuration header into pcicfgregs structure */ 678 struct pci_devinfo * 679 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f) 680 { 681 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 682 uint16_t vid, did; 683 684 vid = REG(PCIR_VENDOR, 2); 685 did = REG(PCIR_DEVICE, 2); 686 if (vid != 0xffff) 687 return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did)); 688 689 return (NULL); 690 } 691 692 struct pci_devinfo * 693 pci_alloc_devinfo_method(device_t dev) 694 { 695 696 return (malloc(sizeof(struct pci_devinfo), M_DEVBUF, 697 M_WAITOK | M_ZERO)); 698 } 699 700 static struct pci_devinfo * 701 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f, 702 uint16_t vid, uint16_t did) 703 { 704 struct pci_devinfo *devlist_entry; 705 pcicfgregs *cfg; 706 707 devlist_entry = PCI_ALLOC_DEVINFO(bus); 708 709 cfg = &devlist_entry->cfg; 710 711 cfg->domain = d; 712 cfg->bus = b; 713 cfg->slot = s; 714 cfg->func = f; 715 cfg->vendor = vid; 716 cfg->device = did; 717 cfg->cmdreg = REG(PCIR_COMMAND, 2); 718 cfg->statreg = REG(PCIR_STATUS, 2); 719 cfg->baseclass = REG(PCIR_CLASS, 1); 720 cfg->subclass = REG(PCIR_SUBCLASS, 1); 721 cfg->progif = REG(PCIR_PROGIF, 1); 722 cfg->revid = REG(PCIR_REVID, 1); 723 cfg->hdrtype = REG(PCIR_HDRTYPE, 1); 724 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1); 725 cfg->lattimer = REG(PCIR_LATTIMER, 1); 726 cfg->intpin = REG(PCIR_INTPIN, 1); 727 cfg->intline = REG(PCIR_INTLINE, 1); 728 729 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0; 730 cfg->hdrtype &= ~PCIM_MFDEV; 731 STAILQ_INIT(&cfg->maps); 732 733 cfg->iov = NULL; 734 735 pci_fixancient(cfg); 736 pci_hdrtypedata(pcib, b, s, f, cfg); 737 738 if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) 739 pci_read_cap(pcib, cfg); 740 741 STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links); 742 743 devlist_entry->conf.pc_sel.pc_domain = cfg->domain; 744 devlist_entry->conf.pc_sel.pc_bus = cfg->bus; 745 devlist_entry->conf.pc_sel.pc_dev = cfg->slot; 746 devlist_entry->conf.pc_sel.pc_func = cfg->func; 747 devlist_entry->conf.pc_hdr = cfg->hdrtype; 748 749 devlist_entry->conf.pc_subvendor = cfg->subvendor; 750 devlist_entry->conf.pc_subdevice = cfg->subdevice; 751 devlist_entry->conf.pc_vendor = cfg->vendor; 752 devlist_entry->conf.pc_device = cfg->device; 753 754 devlist_entry->conf.pc_class = cfg->baseclass; 755 devlist_entry->conf.pc_subclass = cfg->subclass; 756 devlist_entry->conf.pc_progif = cfg->progif; 757 devlist_entry->conf.pc_revid = cfg->revid; 758 759 pci_numdevs++; 760 pci_generation++; 761 762 return (devlist_entry); 763 } 764 #undef REG 765 766 static void 767 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg) 768 { 769 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \ 770 cfg->ea.ea_location + (n), w) 771 int num_ent; 772 int ptr; 773 int a, b; 774 uint32_t val; 775 int ent_size; 776 uint32_t dw[4]; 777 uint64_t base, max_offset; 778 struct pci_ea_entry *eae; 779 780 if (cfg->ea.ea_location == 0) 781 return; 782 783 STAILQ_INIT(&cfg->ea.ea_entries); 784 785 /* Determine the number of entries */ 786 num_ent = REG(PCIR_EA_NUM_ENT, 2); 787 num_ent &= PCIM_EA_NUM_ENT_MASK; 788 789 /* Find the first entry to care of */ 790 ptr = PCIR_EA_FIRST_ENT; 791 792 /* Skip DWORD 2 for type 1 functions */ 793 if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) 794 ptr += 4; 795 796 for (a = 0; a < num_ent; a++) { 797 eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO); 798 eae->eae_cfg_offset = cfg->ea.ea_location + ptr; 799 800 /* Read a number of dwords in the entry */ 801 val = REG(ptr, 4); 802 ptr += 4; 803 ent_size = (val & PCIM_EA_ES); 804 805 for (b = 0; b < ent_size; b++) { 806 dw[b] = REG(ptr, 4); 807 ptr += 4; 808 } 809 810 eae->eae_flags = val; 811 eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET; 812 813 base = dw[0] & PCIM_EA_FIELD_MASK; 814 max_offset = dw[1] | ~PCIM_EA_FIELD_MASK; 815 b = 2; 816 if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { 817 base |= (uint64_t)dw[b] << 32UL; 818 b++; 819 } 820 if (((dw[1] & PCIM_EA_IS_64) != 0) 821 && (b < ent_size)) { 822 max_offset |= (uint64_t)dw[b] << 32UL; 823 b++; 824 } 825 826 eae->eae_base = base; 827 eae->eae_max_offset = max_offset; 828 829 STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link); 830 831 if (bootverbose) { 832 printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n", 833 cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags, 834 (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset); 835 } 836 } 837 } 838 #undef REG 839 840 static void 841 pci_read_cap(device_t pcib, pcicfgregs *cfg) 842 { 843 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w) 844 #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w) 845 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 846 uint64_t addr; 847 #endif 848 uint32_t val; 849 int ptr, nextptr, ptrptr; 850 851 switch (cfg->hdrtype & PCIM_HDRTYPE) { 852 case PCIM_HDRTYPE_NORMAL: 853 case PCIM_HDRTYPE_BRIDGE: 854 ptrptr = PCIR_CAP_PTR; 855 break; 856 case PCIM_HDRTYPE_CARDBUS: 857 ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */ 858 break; 859 default: 860 return; /* no extended capabilities support */ 861 } 862 nextptr = REG(ptrptr, 1); /* sanity check? */ 863 864 /* 865 * Read capability entries. 866 */ 867 while (nextptr != 0) { 868 /* Sanity check */ 869 if (nextptr > 255) { 870 printf("illegal PCI extended capability offset %d\n", 871 nextptr); 872 return; 873 } 874 /* Find the next entry */ 875 ptr = nextptr; 876 nextptr = REG(ptr + PCICAP_NEXTPTR, 1); 877 878 /* Process this entry */ 879 switch (REG(ptr + PCICAP_ID, 1)) { 880 case PCIY_PMG: /* PCI power management */ 881 if (cfg->pp.pp_cap == 0) { 882 cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2); 883 cfg->pp.pp_status = ptr + PCIR_POWER_STATUS; 884 cfg->pp.pp_bse = ptr + PCIR_POWER_BSE; 885 if ((nextptr - ptr) > PCIR_POWER_DATA) 886 cfg->pp.pp_data = ptr + PCIR_POWER_DATA; 887 } 888 break; 889 case PCIY_HT: /* HyperTransport */ 890 /* Determine HT-specific capability type. */ 891 val = REG(ptr + PCIR_HT_COMMAND, 2); 892 893 if ((val & 0xe000) == PCIM_HTCAP_SLAVE) 894 cfg->ht.ht_slave = ptr; 895 896 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 897 switch (val & PCIM_HTCMD_CAP_MASK) { 898 case PCIM_HTCAP_MSI_MAPPING: 899 if (!(val & PCIM_HTCMD_MSI_FIXED)) { 900 /* Sanity check the mapping window. */ 901 addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 902 4); 903 addr <<= 32; 904 addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 905 4); 906 if (addr != MSI_INTEL_ADDR_BASE) 907 device_printf(pcib, 908 "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n", 909 cfg->domain, cfg->bus, 910 cfg->slot, cfg->func, 911 (long long)addr); 912 } else 913 addr = MSI_INTEL_ADDR_BASE; 914 915 cfg->ht.ht_msimap = ptr; 916 cfg->ht.ht_msictrl = val; 917 cfg->ht.ht_msiaddr = addr; 918 break; 919 } 920 #endif 921 break; 922 case PCIY_MSI: /* PCI MSI */ 923 cfg->msi.msi_location = ptr; 924 cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2); 925 cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl & 926 PCIM_MSICTRL_MMC_MASK)>>1); 927 break; 928 case PCIY_MSIX: /* PCI MSI-X */ 929 cfg->msix.msix_location = ptr; 930 cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2); 931 cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl & 932 PCIM_MSIXCTRL_TABLE_SIZE) + 1; 933 val = REG(ptr + PCIR_MSIX_TABLE, 4); 934 cfg->msix.msix_table_bar = PCIR_BAR(val & 935 PCIM_MSIX_BIR_MASK); 936 cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK; 937 val = REG(ptr + PCIR_MSIX_PBA, 4); 938 cfg->msix.msix_pba_bar = PCIR_BAR(val & 939 PCIM_MSIX_BIR_MASK); 940 cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK; 941 break; 942 case PCIY_VPD: /* PCI Vital Product Data */ 943 cfg->vpd.vpd_reg = ptr; 944 break; 945 case PCIY_SUBVENDOR: 946 /* Should always be true. */ 947 if ((cfg->hdrtype & PCIM_HDRTYPE) == 948 PCIM_HDRTYPE_BRIDGE) { 949 val = REG(ptr + PCIR_SUBVENDCAP_ID, 4); 950 cfg->subvendor = val & 0xffff; 951 cfg->subdevice = val >> 16; 952 } 953 break; 954 case PCIY_PCIX: /* PCI-X */ 955 /* 956 * Assume we have a PCI-X chipset if we have 957 * at least one PCI-PCI bridge with a PCI-X 958 * capability. Note that some systems with 959 * PCI-express or HT chipsets might match on 960 * this check as well. 961 */ 962 if ((cfg->hdrtype & PCIM_HDRTYPE) == 963 PCIM_HDRTYPE_BRIDGE) 964 pcix_chipset = 1; 965 cfg->pcix.pcix_location = ptr; 966 break; 967 case PCIY_EXPRESS: /* PCI-express */ 968 /* 969 * Assume we have a PCI-express chipset if we have 970 * at least one PCI-express device. 971 */ 972 pcie_chipset = 1; 973 cfg->pcie.pcie_location = ptr; 974 val = REG(ptr + PCIER_FLAGS, 2); 975 cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE; 976 break; 977 case PCIY_EA: /* Enhanced Allocation */ 978 cfg->ea.ea_location = ptr; 979 pci_ea_fill_info(pcib, cfg); 980 break; 981 default: 982 break; 983 } 984 } 985 986 #if defined(__powerpc__) 987 /* 988 * Enable the MSI mapping window for all HyperTransport 989 * slaves. PCI-PCI bridges have their windows enabled via 990 * PCIB_MAP_MSI(). 991 */ 992 if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 && 993 !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) { 994 device_printf(pcib, 995 "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n", 996 cfg->domain, cfg->bus, cfg->slot, cfg->func); 997 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 998 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl, 999 2); 1000 } 1001 #endif 1002 /* REG and WREG use carry through to next functions */ 1003 } 1004 1005 /* 1006 * PCI Vital Product Data 1007 */ 1008 1009 #define PCI_VPD_TIMEOUT 1000000 1010 1011 static int 1012 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data) 1013 { 1014 int count = PCI_VPD_TIMEOUT; 1015 1016 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1017 1018 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2); 1019 1020 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) { 1021 if (--count < 0) 1022 return (ENXIO); 1023 DELAY(1); /* limit looping */ 1024 } 1025 *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4)); 1026 1027 return (0); 1028 } 1029 1030 #if 0 1031 static int 1032 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data) 1033 { 1034 int count = PCI_VPD_TIMEOUT; 1035 1036 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1037 1038 WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4); 1039 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2); 1040 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) { 1041 if (--count < 0) 1042 return (ENXIO); 1043 DELAY(1); /* limit looping */ 1044 } 1045 1046 return (0); 1047 } 1048 #endif 1049 1050 #undef PCI_VPD_TIMEOUT 1051 1052 struct vpd_readstate { 1053 device_t pcib; 1054 pcicfgregs *cfg; 1055 uint32_t val; 1056 int bytesinval; 1057 int off; 1058 uint8_t cksum; 1059 }; 1060 1061 static int 1062 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data) 1063 { 1064 uint32_t reg; 1065 uint8_t byte; 1066 1067 if (vrs->bytesinval == 0) { 1068 if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®)) 1069 return (ENXIO); 1070 vrs->val = le32toh(reg); 1071 vrs->off += 4; 1072 byte = vrs->val & 0xff; 1073 vrs->bytesinval = 3; 1074 } else { 1075 vrs->val = vrs->val >> 8; 1076 byte = vrs->val & 0xff; 1077 vrs->bytesinval--; 1078 } 1079 1080 vrs->cksum += byte; 1081 *data = byte; 1082 return (0); 1083 } 1084 1085 static void 1086 pci_read_vpd(device_t pcib, pcicfgregs *cfg) 1087 { 1088 struct vpd_readstate vrs; 1089 int state; 1090 int name; 1091 int remain; 1092 int i; 1093 int alloc, off; /* alloc/off for RO/W arrays */ 1094 int cksumvalid; 1095 int dflen; 1096 uint8_t byte; 1097 uint8_t byte2; 1098 1099 /* init vpd reader */ 1100 vrs.bytesinval = 0; 1101 vrs.off = 0; 1102 vrs.pcib = pcib; 1103 vrs.cfg = cfg; 1104 vrs.cksum = 0; 1105 1106 state = 0; 1107 name = remain = i = 0; /* shut up stupid gcc */ 1108 alloc = off = 0; /* shut up stupid gcc */ 1109 dflen = 0; /* shut up stupid gcc */ 1110 cksumvalid = -1; 1111 while (state >= 0) { 1112 if (vpd_nextbyte(&vrs, &byte)) { 1113 state = -2; 1114 break; 1115 } 1116 #if 0 1117 printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \ 1118 "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val, 1119 vrs.off, vrs.bytesinval, byte, state, remain, name, i); 1120 #endif 1121 switch (state) { 1122 case 0: /* item name */ 1123 if (byte & 0x80) { 1124 if (vpd_nextbyte(&vrs, &byte2)) { 1125 state = -2; 1126 break; 1127 } 1128 remain = byte2; 1129 if (vpd_nextbyte(&vrs, &byte2)) { 1130 state = -2; 1131 break; 1132 } 1133 remain |= byte2 << 8; 1134 name = byte & 0x7f; 1135 } else { 1136 remain = byte & 0x7; 1137 name = (byte >> 3) & 0xf; 1138 } 1139 if (vrs.off + remain - vrs.bytesinval > 0x8000) { 1140 pci_printf(cfg, 1141 "VPD data overflow, remain %#x\n", remain); 1142 state = -1; 1143 break; 1144 } 1145 switch (name) { 1146 case 0x2: /* String */ 1147 cfg->vpd.vpd_ident = malloc(remain + 1, 1148 M_DEVBUF, M_WAITOK); 1149 i = 0; 1150 state = 1; 1151 break; 1152 case 0xf: /* End */ 1153 state = -1; 1154 break; 1155 case 0x10: /* VPD-R */ 1156 alloc = 8; 1157 off = 0; 1158 cfg->vpd.vpd_ros = malloc(alloc * 1159 sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, 1160 M_WAITOK | M_ZERO); 1161 state = 2; 1162 break; 1163 case 0x11: /* VPD-W */ 1164 alloc = 8; 1165 off = 0; 1166 cfg->vpd.vpd_w = malloc(alloc * 1167 sizeof(*cfg->vpd.vpd_w), M_DEVBUF, 1168 M_WAITOK | M_ZERO); 1169 state = 5; 1170 break; 1171 default: /* Invalid data, abort */ 1172 state = -1; 1173 break; 1174 } 1175 break; 1176 1177 case 1: /* Identifier String */ 1178 cfg->vpd.vpd_ident[i++] = byte; 1179 remain--; 1180 if (remain == 0) { 1181 cfg->vpd.vpd_ident[i] = '\0'; 1182 state = 0; 1183 } 1184 break; 1185 1186 case 2: /* VPD-R Keyword Header */ 1187 if (off == alloc) { 1188 cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, 1189 (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros), 1190 M_DEVBUF, M_WAITOK | M_ZERO); 1191 } 1192 cfg->vpd.vpd_ros[off].keyword[0] = byte; 1193 if (vpd_nextbyte(&vrs, &byte2)) { 1194 state = -2; 1195 break; 1196 } 1197 cfg->vpd.vpd_ros[off].keyword[1] = byte2; 1198 if (vpd_nextbyte(&vrs, &byte2)) { 1199 state = -2; 1200 break; 1201 } 1202 cfg->vpd.vpd_ros[off].len = dflen = byte2; 1203 if (dflen == 0 && 1204 strncmp(cfg->vpd.vpd_ros[off].keyword, "RV", 1205 2) == 0) { 1206 /* 1207 * if this happens, we can't trust the rest 1208 * of the VPD. 1209 */ 1210 pci_printf(cfg, "bad keyword length: %d\n", 1211 dflen); 1212 cksumvalid = 0; 1213 state = -1; 1214 break; 1215 } else if (dflen == 0) { 1216 cfg->vpd.vpd_ros[off].value = malloc(1 * 1217 sizeof(*cfg->vpd.vpd_ros[off].value), 1218 M_DEVBUF, M_WAITOK); 1219 cfg->vpd.vpd_ros[off].value[0] = '\x00'; 1220 } else 1221 cfg->vpd.vpd_ros[off].value = malloc( 1222 (dflen + 1) * 1223 sizeof(*cfg->vpd.vpd_ros[off].value), 1224 M_DEVBUF, M_WAITOK); 1225 remain -= 3; 1226 i = 0; 1227 /* keep in sync w/ state 3's transistions */ 1228 if (dflen == 0 && remain == 0) 1229 state = 0; 1230 else if (dflen == 0) 1231 state = 2; 1232 else 1233 state = 3; 1234 break; 1235 1236 case 3: /* VPD-R Keyword Value */ 1237 cfg->vpd.vpd_ros[off].value[i++] = byte; 1238 if (strncmp(cfg->vpd.vpd_ros[off].keyword, 1239 "RV", 2) == 0 && cksumvalid == -1) { 1240 if (vrs.cksum == 0) 1241 cksumvalid = 1; 1242 else { 1243 if (bootverbose) 1244 pci_printf(cfg, 1245 "bad VPD cksum, remain %hhu\n", 1246 vrs.cksum); 1247 cksumvalid = 0; 1248 state = -1; 1249 break; 1250 } 1251 } 1252 dflen--; 1253 remain--; 1254 /* keep in sync w/ state 2's transistions */ 1255 if (dflen == 0) 1256 cfg->vpd.vpd_ros[off++].value[i++] = '\0'; 1257 if (dflen == 0 && remain == 0) { 1258 cfg->vpd.vpd_rocnt = off; 1259 cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, 1260 off * sizeof(*cfg->vpd.vpd_ros), 1261 M_DEVBUF, M_WAITOK | M_ZERO); 1262 state = 0; 1263 } else if (dflen == 0) 1264 state = 2; 1265 break; 1266 1267 case 4: 1268 remain--; 1269 if (remain == 0) 1270 state = 0; 1271 break; 1272 1273 case 5: /* VPD-W Keyword Header */ 1274 if (off == alloc) { 1275 cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, 1276 (alloc *= 2) * sizeof(*cfg->vpd.vpd_w), 1277 M_DEVBUF, M_WAITOK | M_ZERO); 1278 } 1279 cfg->vpd.vpd_w[off].keyword[0] = byte; 1280 if (vpd_nextbyte(&vrs, &byte2)) { 1281 state = -2; 1282 break; 1283 } 1284 cfg->vpd.vpd_w[off].keyword[1] = byte2; 1285 if (vpd_nextbyte(&vrs, &byte2)) { 1286 state = -2; 1287 break; 1288 } 1289 cfg->vpd.vpd_w[off].len = dflen = byte2; 1290 cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval; 1291 cfg->vpd.vpd_w[off].value = malloc((dflen + 1) * 1292 sizeof(*cfg->vpd.vpd_w[off].value), 1293 M_DEVBUF, M_WAITOK); 1294 remain -= 3; 1295 i = 0; 1296 /* keep in sync w/ state 6's transistions */ 1297 if (dflen == 0 && remain == 0) 1298 state = 0; 1299 else if (dflen == 0) 1300 state = 5; 1301 else 1302 state = 6; 1303 break; 1304 1305 case 6: /* VPD-W Keyword Value */ 1306 cfg->vpd.vpd_w[off].value[i++] = byte; 1307 dflen--; 1308 remain--; 1309 /* keep in sync w/ state 5's transistions */ 1310 if (dflen == 0) 1311 cfg->vpd.vpd_w[off++].value[i++] = '\0'; 1312 if (dflen == 0 && remain == 0) { 1313 cfg->vpd.vpd_wcnt = off; 1314 cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, 1315 off * sizeof(*cfg->vpd.vpd_w), 1316 M_DEVBUF, M_WAITOK | M_ZERO); 1317 state = 0; 1318 } else if (dflen == 0) 1319 state = 5; 1320 break; 1321 1322 default: 1323 pci_printf(cfg, "invalid state: %d\n", state); 1324 state = -1; 1325 break; 1326 } 1327 } 1328 1329 if (cksumvalid == 0 || state < -1) { 1330 /* read-only data bad, clean up */ 1331 if (cfg->vpd.vpd_ros != NULL) { 1332 for (off = 0; cfg->vpd.vpd_ros[off].value; off++) 1333 free(cfg->vpd.vpd_ros[off].value, M_DEVBUF); 1334 free(cfg->vpd.vpd_ros, M_DEVBUF); 1335 cfg->vpd.vpd_ros = NULL; 1336 } 1337 } 1338 if (state < -1) { 1339 /* I/O error, clean up */ 1340 pci_printf(cfg, "failed to read VPD data.\n"); 1341 if (cfg->vpd.vpd_ident != NULL) { 1342 free(cfg->vpd.vpd_ident, M_DEVBUF); 1343 cfg->vpd.vpd_ident = NULL; 1344 } 1345 if (cfg->vpd.vpd_w != NULL) { 1346 for (off = 0; cfg->vpd.vpd_w[off].value; off++) 1347 free(cfg->vpd.vpd_w[off].value, M_DEVBUF); 1348 free(cfg->vpd.vpd_w, M_DEVBUF); 1349 cfg->vpd.vpd_w = NULL; 1350 } 1351 } 1352 cfg->vpd.vpd_cached = 1; 1353 #undef REG 1354 #undef WREG 1355 } 1356 1357 int 1358 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr) 1359 { 1360 struct pci_devinfo *dinfo = device_get_ivars(child); 1361 pcicfgregs *cfg = &dinfo->cfg; 1362 1363 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1364 pci_read_vpd(device_get_parent(dev), cfg); 1365 1366 *identptr = cfg->vpd.vpd_ident; 1367 1368 if (*identptr == NULL) 1369 return (ENXIO); 1370 1371 return (0); 1372 } 1373 1374 int 1375 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw, 1376 const char **vptr) 1377 { 1378 struct pci_devinfo *dinfo = device_get_ivars(child); 1379 pcicfgregs *cfg = &dinfo->cfg; 1380 int i; 1381 1382 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1383 pci_read_vpd(device_get_parent(dev), cfg); 1384 1385 for (i = 0; i < cfg->vpd.vpd_rocnt; i++) 1386 if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword, 1387 sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) { 1388 *vptr = cfg->vpd.vpd_ros[i].value; 1389 return (0); 1390 } 1391 1392 *vptr = NULL; 1393 return (ENXIO); 1394 } 1395 1396 struct pcicfg_vpd * 1397 pci_fetch_vpd_list(device_t dev) 1398 { 1399 struct pci_devinfo *dinfo = device_get_ivars(dev); 1400 pcicfgregs *cfg = &dinfo->cfg; 1401 1402 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1403 pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg); 1404 return (&cfg->vpd); 1405 } 1406 1407 /* 1408 * Find the requested HyperTransport capability and return the offset 1409 * in configuration space via the pointer provided. The function 1410 * returns 0 on success and an error code otherwise. 1411 */ 1412 int 1413 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg) 1414 { 1415 int ptr, error; 1416 uint16_t val; 1417 1418 error = pci_find_cap(child, PCIY_HT, &ptr); 1419 if (error) 1420 return (error); 1421 1422 /* 1423 * Traverse the capabilities list checking each HT capability 1424 * to see if it matches the requested HT capability. 1425 */ 1426 for (;;) { 1427 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1428 if (capability == PCIM_HTCAP_SLAVE || 1429 capability == PCIM_HTCAP_HOST) 1430 val &= 0xe000; 1431 else 1432 val &= PCIM_HTCMD_CAP_MASK; 1433 if (val == capability) { 1434 if (capreg != NULL) 1435 *capreg = ptr; 1436 return (0); 1437 } 1438 1439 /* Skip to the next HT capability. */ 1440 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1441 break; 1442 } 1443 1444 return (ENOENT); 1445 } 1446 1447 /* 1448 * Find the next requested HyperTransport capability after start and return 1449 * the offset in configuration space via the pointer provided. The function 1450 * returns 0 on success and an error code otherwise. 1451 */ 1452 int 1453 pci_find_next_htcap_method(device_t dev, device_t child, int capability, 1454 int start, int *capreg) 1455 { 1456 int ptr; 1457 uint16_t val; 1458 1459 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT, 1460 ("start capability is not HyperTransport capability")); 1461 ptr = start; 1462 1463 /* 1464 * Traverse the capabilities list checking each HT capability 1465 * to see if it matches the requested HT capability. 1466 */ 1467 for (;;) { 1468 /* Skip to the next HT capability. */ 1469 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1470 break; 1471 1472 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1473 if (capability == PCIM_HTCAP_SLAVE || 1474 capability == PCIM_HTCAP_HOST) 1475 val &= 0xe000; 1476 else 1477 val &= PCIM_HTCMD_CAP_MASK; 1478 if (val == capability) { 1479 if (capreg != NULL) 1480 *capreg = ptr; 1481 return (0); 1482 } 1483 } 1484 1485 return (ENOENT); 1486 } 1487 1488 /* 1489 * Find the requested capability and return the offset in 1490 * configuration space via the pointer provided. The function returns 1491 * 0 on success and an error code otherwise. 1492 */ 1493 int 1494 pci_find_cap_method(device_t dev, device_t child, int capability, 1495 int *capreg) 1496 { 1497 struct pci_devinfo *dinfo = device_get_ivars(child); 1498 pcicfgregs *cfg = &dinfo->cfg; 1499 uint32_t status; 1500 uint8_t ptr; 1501 1502 /* 1503 * Check the CAP_LIST bit of the PCI status register first. 1504 */ 1505 status = pci_read_config(child, PCIR_STATUS, 2); 1506 if (!(status & PCIM_STATUS_CAPPRESENT)) 1507 return (ENXIO); 1508 1509 /* 1510 * Determine the start pointer of the capabilities list. 1511 */ 1512 switch (cfg->hdrtype & PCIM_HDRTYPE) { 1513 case PCIM_HDRTYPE_NORMAL: 1514 case PCIM_HDRTYPE_BRIDGE: 1515 ptr = PCIR_CAP_PTR; 1516 break; 1517 case PCIM_HDRTYPE_CARDBUS: 1518 ptr = PCIR_CAP_PTR_2; 1519 break; 1520 default: 1521 /* XXX: panic? */ 1522 return (ENXIO); /* no extended capabilities support */ 1523 } 1524 ptr = pci_read_config(child, ptr, 1); 1525 1526 /* 1527 * Traverse the capabilities list. 1528 */ 1529 while (ptr != 0) { 1530 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1531 if (capreg != NULL) 1532 *capreg = ptr; 1533 return (0); 1534 } 1535 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1536 } 1537 1538 return (ENOENT); 1539 } 1540 1541 /* 1542 * Find the next requested capability after start and return the offset in 1543 * configuration space via the pointer provided. The function returns 1544 * 0 on success and an error code otherwise. 1545 */ 1546 int 1547 pci_find_next_cap_method(device_t dev, device_t child, int capability, 1548 int start, int *capreg) 1549 { 1550 uint8_t ptr; 1551 1552 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability, 1553 ("start capability is not expected capability")); 1554 1555 ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1); 1556 while (ptr != 0) { 1557 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1558 if (capreg != NULL) 1559 *capreg = ptr; 1560 return (0); 1561 } 1562 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1563 } 1564 1565 return (ENOENT); 1566 } 1567 1568 /* 1569 * Find the requested extended capability and return the offset in 1570 * configuration space via the pointer provided. The function returns 1571 * 0 on success and an error code otherwise. 1572 */ 1573 int 1574 pci_find_extcap_method(device_t dev, device_t child, int capability, 1575 int *capreg) 1576 { 1577 struct pci_devinfo *dinfo = device_get_ivars(child); 1578 pcicfgregs *cfg = &dinfo->cfg; 1579 uint32_t ecap; 1580 uint16_t ptr; 1581 1582 /* Only supported for PCI-express devices. */ 1583 if (cfg->pcie.pcie_location == 0) 1584 return (ENXIO); 1585 1586 ptr = PCIR_EXTCAP; 1587 ecap = pci_read_config(child, ptr, 4); 1588 if (ecap == 0xffffffff || ecap == 0) 1589 return (ENOENT); 1590 for (;;) { 1591 if (PCI_EXTCAP_ID(ecap) == capability) { 1592 if (capreg != NULL) 1593 *capreg = ptr; 1594 return (0); 1595 } 1596 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1597 if (ptr == 0) 1598 break; 1599 ecap = pci_read_config(child, ptr, 4); 1600 } 1601 1602 return (ENOENT); 1603 } 1604 1605 /* 1606 * Find the next requested extended capability after start and return the 1607 * offset in configuration space via the pointer provided. The function 1608 * returns 0 on success and an error code otherwise. 1609 */ 1610 int 1611 pci_find_next_extcap_method(device_t dev, device_t child, int capability, 1612 int start, int *capreg) 1613 { 1614 struct pci_devinfo *dinfo = device_get_ivars(child); 1615 pcicfgregs *cfg = &dinfo->cfg; 1616 uint32_t ecap; 1617 uint16_t ptr; 1618 1619 /* Only supported for PCI-express devices. */ 1620 if (cfg->pcie.pcie_location == 0) 1621 return (ENXIO); 1622 1623 ecap = pci_read_config(child, start, 4); 1624 KASSERT(PCI_EXTCAP_ID(ecap) == capability, 1625 ("start extended capability is not expected capability")); 1626 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1627 while (ptr != 0) { 1628 ecap = pci_read_config(child, ptr, 4); 1629 if (PCI_EXTCAP_ID(ecap) == capability) { 1630 if (capreg != NULL) 1631 *capreg = ptr; 1632 return (0); 1633 } 1634 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1635 } 1636 1637 return (ENOENT); 1638 } 1639 1640 /* 1641 * Support for MSI-X message interrupts. 1642 */ 1643 static void 1644 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data) 1645 { 1646 struct pci_devinfo *dinfo = device_get_ivars(dev); 1647 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1648 uint32_t offset; 1649 1650 KASSERT(msix->msix_table_len > index, ("bogus index")); 1651 offset = msix->msix_table_offset + index * 16; 1652 bus_write_4(msix->msix_table_res, offset, address & 0xffffffff); 1653 bus_write_4(msix->msix_table_res, offset + 4, address >> 32); 1654 bus_write_4(msix->msix_table_res, offset + 8, data); 1655 } 1656 1657 void 1658 pci_enable_msix_method(device_t dev, device_t child, u_int index, 1659 uint64_t address, uint32_t data) 1660 { 1661 1662 if (pci_msix_rewrite_table) { 1663 struct pci_devinfo *dinfo = device_get_ivars(child); 1664 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1665 1666 /* 1667 * Some VM hosts require MSIX to be disabled in the 1668 * control register before updating the MSIX table 1669 * entries are allowed. It is not enough to only 1670 * disable MSIX while updating a single entry. MSIX 1671 * must be disabled while updating all entries in the 1672 * table. 1673 */ 1674 pci_write_config(child, 1675 msix->msix_location + PCIR_MSIX_CTRL, 1676 msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2); 1677 pci_resume_msix(child); 1678 } else 1679 pci_write_msix_entry(child, index, address, data); 1680 1681 /* Enable MSI -> HT mapping. */ 1682 pci_ht_map_msi(child, address); 1683 } 1684 1685 void 1686 pci_mask_msix(device_t dev, u_int index) 1687 { 1688 struct pci_devinfo *dinfo = device_get_ivars(dev); 1689 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1690 uint32_t offset, val; 1691 1692 KASSERT(msix->msix_msgnum > index, ("bogus index")); 1693 offset = msix->msix_table_offset + index * 16 + 12; 1694 val = bus_read_4(msix->msix_table_res, offset); 1695 val |= PCIM_MSIX_VCTRL_MASK; 1696 1697 /* 1698 * Some devices (e.g. Samsung PM961) do not support reads of this 1699 * register, so always write the new value. 1700 */ 1701 bus_write_4(msix->msix_table_res, offset, val); 1702 } 1703 1704 void 1705 pci_unmask_msix(device_t dev, u_int index) 1706 { 1707 struct pci_devinfo *dinfo = device_get_ivars(dev); 1708 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1709 uint32_t offset, val; 1710 1711 KASSERT(msix->msix_table_len > index, ("bogus index")); 1712 offset = msix->msix_table_offset + index * 16 + 12; 1713 val = bus_read_4(msix->msix_table_res, offset); 1714 val &= ~PCIM_MSIX_VCTRL_MASK; 1715 1716 /* 1717 * Some devices (e.g. Samsung PM961) do not support reads of this 1718 * register, so always write the new value. 1719 */ 1720 bus_write_4(msix->msix_table_res, offset, val); 1721 } 1722 1723 int 1724 pci_pending_msix(device_t dev, u_int index) 1725 { 1726 struct pci_devinfo *dinfo = device_get_ivars(dev); 1727 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1728 uint32_t offset, bit; 1729 1730 KASSERT(msix->msix_table_len > index, ("bogus index")); 1731 offset = msix->msix_pba_offset + (index / 32) * 4; 1732 bit = 1 << index % 32; 1733 return (bus_read_4(msix->msix_pba_res, offset) & bit); 1734 } 1735 1736 /* 1737 * Restore MSI-X registers and table during resume. If MSI-X is 1738 * enabled then walk the virtual table to restore the actual MSI-X 1739 * table. 1740 */ 1741 static void 1742 pci_resume_msix(device_t dev) 1743 { 1744 struct pci_devinfo *dinfo = device_get_ivars(dev); 1745 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1746 struct msix_table_entry *mte; 1747 struct msix_vector *mv; 1748 int i; 1749 1750 if (msix->msix_alloc > 0) { 1751 /* First, mask all vectors. */ 1752 for (i = 0; i < msix->msix_msgnum; i++) 1753 pci_mask_msix(dev, i); 1754 1755 /* Second, program any messages with at least one handler. */ 1756 for (i = 0; i < msix->msix_table_len; i++) { 1757 mte = &msix->msix_table[i]; 1758 if (mte->mte_vector == 0 || mte->mte_handlers == 0) 1759 continue; 1760 mv = &msix->msix_vectors[mte->mte_vector - 1]; 1761 pci_write_msix_entry(dev, i, mv->mv_address, 1762 mv->mv_data); 1763 pci_unmask_msix(dev, i); 1764 } 1765 } 1766 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL, 1767 msix->msix_ctrl, 2); 1768 } 1769 1770 /* 1771 * Attempt to allocate *count MSI-X messages. The actual number allocated is 1772 * returned in *count. After this function returns, each message will be 1773 * available to the driver as SYS_RES_IRQ resources starting at rid 1. 1774 */ 1775 int 1776 pci_alloc_msix_method(device_t dev, device_t child, int *count) 1777 { 1778 struct pci_devinfo *dinfo = device_get_ivars(child); 1779 pcicfgregs *cfg = &dinfo->cfg; 1780 struct resource_list_entry *rle; 1781 int actual, error, i, irq, max; 1782 1783 /* Don't let count == 0 get us into trouble. */ 1784 if (*count == 0) 1785 return (EINVAL); 1786 1787 /* If rid 0 is allocated, then fail. */ 1788 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 1789 if (rle != NULL && rle->res != NULL) 1790 return (ENXIO); 1791 1792 /* Already have allocated messages? */ 1793 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 1794 return (ENXIO); 1795 1796 /* If MSI-X is blacklisted for this system, fail. */ 1797 if (pci_msix_blacklisted()) 1798 return (ENXIO); 1799 1800 /* MSI-X capability present? */ 1801 if (cfg->msix.msix_location == 0 || !pci_do_msix) 1802 return (ENODEV); 1803 1804 /* Make sure the appropriate BARs are mapped. */ 1805 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1806 cfg->msix.msix_table_bar); 1807 if (rle == NULL || rle->res == NULL || 1808 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1809 return (ENXIO); 1810 cfg->msix.msix_table_res = rle->res; 1811 if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) { 1812 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1813 cfg->msix.msix_pba_bar); 1814 if (rle == NULL || rle->res == NULL || 1815 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1816 return (ENXIO); 1817 } 1818 cfg->msix.msix_pba_res = rle->res; 1819 1820 if (bootverbose) 1821 device_printf(child, 1822 "attempting to allocate %d MSI-X vectors (%d supported)\n", 1823 *count, cfg->msix.msix_msgnum); 1824 max = min(*count, cfg->msix.msix_msgnum); 1825 for (i = 0; i < max; i++) { 1826 /* Allocate a message. */ 1827 error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq); 1828 if (error) { 1829 if (i == 0) 1830 return (error); 1831 break; 1832 } 1833 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 1834 irq, 1); 1835 } 1836 actual = i; 1837 1838 if (bootverbose) { 1839 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1); 1840 if (actual == 1) 1841 device_printf(child, "using IRQ %ju for MSI-X\n", 1842 rle->start); 1843 else { 1844 int run; 1845 1846 /* 1847 * Be fancy and try to print contiguous runs of 1848 * IRQ values as ranges. 'irq' is the previous IRQ. 1849 * 'run' is true if we are in a range. 1850 */ 1851 device_printf(child, "using IRQs %ju", rle->start); 1852 irq = rle->start; 1853 run = 0; 1854 for (i = 1; i < actual; i++) { 1855 rle = resource_list_find(&dinfo->resources, 1856 SYS_RES_IRQ, i + 1); 1857 1858 /* Still in a run? */ 1859 if (rle->start == irq + 1) { 1860 run = 1; 1861 irq++; 1862 continue; 1863 } 1864 1865 /* Finish previous range. */ 1866 if (run) { 1867 printf("-%d", irq); 1868 run = 0; 1869 } 1870 1871 /* Start new range. */ 1872 printf(",%ju", rle->start); 1873 irq = rle->start; 1874 } 1875 1876 /* Unfinished range? */ 1877 if (run) 1878 printf("-%d", irq); 1879 printf(" for MSI-X\n"); 1880 } 1881 } 1882 1883 /* Mask all vectors. */ 1884 for (i = 0; i < cfg->msix.msix_msgnum; i++) 1885 pci_mask_msix(child, i); 1886 1887 /* Allocate and initialize vector data and virtual table. */ 1888 cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual, 1889 M_DEVBUF, M_WAITOK | M_ZERO); 1890 cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual, 1891 M_DEVBUF, M_WAITOK | M_ZERO); 1892 for (i = 0; i < actual; i++) { 1893 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1894 cfg->msix.msix_vectors[i].mv_irq = rle->start; 1895 cfg->msix.msix_table[i].mte_vector = i + 1; 1896 } 1897 1898 /* Update control register to enable MSI-X. */ 1899 cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE; 1900 pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL, 1901 cfg->msix.msix_ctrl, 2); 1902 1903 /* Update counts of alloc'd messages. */ 1904 cfg->msix.msix_alloc = actual; 1905 cfg->msix.msix_table_len = actual; 1906 *count = actual; 1907 return (0); 1908 } 1909 1910 /* 1911 * By default, pci_alloc_msix() will assign the allocated IRQ 1912 * resources consecutively to the first N messages in the MSI-X table. 1913 * However, device drivers may want to use different layouts if they 1914 * either receive fewer messages than they asked for, or they wish to 1915 * populate the MSI-X table sparsely. This method allows the driver 1916 * to specify what layout it wants. It must be called after a 1917 * successful pci_alloc_msix() but before any of the associated 1918 * SYS_RES_IRQ resources are allocated via bus_alloc_resource(). 1919 * 1920 * The 'vectors' array contains 'count' message vectors. The array 1921 * maps directly to the MSI-X table in that index 0 in the array 1922 * specifies the vector for the first message in the MSI-X table, etc. 1923 * The vector value in each array index can either be 0 to indicate 1924 * that no vector should be assigned to a message slot, or it can be a 1925 * number from 1 to N (where N is the count returned from a 1926 * succcessful call to pci_alloc_msix()) to indicate which message 1927 * vector (IRQ) to be used for the corresponding message. 1928 * 1929 * On successful return, each message with a non-zero vector will have 1930 * an associated SYS_RES_IRQ whose rid is equal to the array index + 1931 * 1. Additionally, if any of the IRQs allocated via the previous 1932 * call to pci_alloc_msix() are not used in the mapping, those IRQs 1933 * will be freed back to the system automatically. 1934 * 1935 * For example, suppose a driver has a MSI-X table with 6 messages and 1936 * asks for 6 messages, but pci_alloc_msix() only returns a count of 1937 * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and 1938 * C. After the call to pci_alloc_msix(), the device will be setup to 1939 * have an MSI-X table of ABC--- (where - means no vector assigned). 1940 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 }, 1941 * then the MSI-X table will look like A-AB-B, and the 'C' vector will 1942 * be freed back to the system. This device will also have valid 1943 * SYS_RES_IRQ rids of 1, 3, 4, and 6. 1944 * 1945 * In any case, the SYS_RES_IRQ rid X will always map to the message 1946 * at MSI-X table index X - 1 and will only be valid if a vector is 1947 * assigned to that table entry. 1948 */ 1949 int 1950 pci_remap_msix_method(device_t dev, device_t child, int count, 1951 const u_int *vectors) 1952 { 1953 struct pci_devinfo *dinfo = device_get_ivars(child); 1954 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1955 struct resource_list_entry *rle; 1956 int i, irq, j, *used; 1957 1958 /* 1959 * Have to have at least one message in the table but the 1960 * table can't be bigger than the actual MSI-X table in the 1961 * device. 1962 */ 1963 if (count == 0 || count > msix->msix_msgnum) 1964 return (EINVAL); 1965 1966 /* Sanity check the vectors. */ 1967 for (i = 0; i < count; i++) 1968 if (vectors[i] > msix->msix_alloc) 1969 return (EINVAL); 1970 1971 /* 1972 * Make sure there aren't any holes in the vectors to be used. 1973 * It's a big pain to support it, and it doesn't really make 1974 * sense anyway. Also, at least one vector must be used. 1975 */ 1976 used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK | 1977 M_ZERO); 1978 for (i = 0; i < count; i++) 1979 if (vectors[i] != 0) 1980 used[vectors[i] - 1] = 1; 1981 for (i = 0; i < msix->msix_alloc - 1; i++) 1982 if (used[i] == 0 && used[i + 1] == 1) { 1983 free(used, M_DEVBUF); 1984 return (EINVAL); 1985 } 1986 if (used[0] != 1) { 1987 free(used, M_DEVBUF); 1988 return (EINVAL); 1989 } 1990 1991 /* Make sure none of the resources are allocated. */ 1992 for (i = 0; i < msix->msix_table_len; i++) { 1993 if (msix->msix_table[i].mte_vector == 0) 1994 continue; 1995 if (msix->msix_table[i].mte_handlers > 0) { 1996 free(used, M_DEVBUF); 1997 return (EBUSY); 1998 } 1999 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2000 KASSERT(rle != NULL, ("missing resource")); 2001 if (rle->res != NULL) { 2002 free(used, M_DEVBUF); 2003 return (EBUSY); 2004 } 2005 } 2006 2007 /* Free the existing resource list entries. */ 2008 for (i = 0; i < msix->msix_table_len; i++) { 2009 if (msix->msix_table[i].mte_vector == 0) 2010 continue; 2011 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2012 } 2013 2014 /* 2015 * Build the new virtual table keeping track of which vectors are 2016 * used. 2017 */ 2018 free(msix->msix_table, M_DEVBUF); 2019 msix->msix_table = malloc(sizeof(struct msix_table_entry) * count, 2020 M_DEVBUF, M_WAITOK | M_ZERO); 2021 for (i = 0; i < count; i++) 2022 msix->msix_table[i].mte_vector = vectors[i]; 2023 msix->msix_table_len = count; 2024 2025 /* Free any unused IRQs and resize the vectors array if necessary. */ 2026 j = msix->msix_alloc - 1; 2027 if (used[j] == 0) { 2028 struct msix_vector *vec; 2029 2030 while (used[j] == 0) { 2031 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2032 msix->msix_vectors[j].mv_irq); 2033 j--; 2034 } 2035 vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF, 2036 M_WAITOK); 2037 bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) * 2038 (j + 1)); 2039 free(msix->msix_vectors, M_DEVBUF); 2040 msix->msix_vectors = vec; 2041 msix->msix_alloc = j + 1; 2042 } 2043 free(used, M_DEVBUF); 2044 2045 /* Map the IRQs onto the rids. */ 2046 for (i = 0; i < count; i++) { 2047 if (vectors[i] == 0) 2048 continue; 2049 irq = msix->msix_vectors[vectors[i] - 1].mv_irq; 2050 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 2051 irq, 1); 2052 } 2053 2054 if (bootverbose) { 2055 device_printf(child, "Remapped MSI-X IRQs as: "); 2056 for (i = 0; i < count; i++) { 2057 if (i != 0) 2058 printf(", "); 2059 if (vectors[i] == 0) 2060 printf("---"); 2061 else 2062 printf("%d", 2063 msix->msix_vectors[vectors[i] - 1].mv_irq); 2064 } 2065 printf("\n"); 2066 } 2067 2068 return (0); 2069 } 2070 2071 static int 2072 pci_release_msix(device_t dev, device_t child) 2073 { 2074 struct pci_devinfo *dinfo = device_get_ivars(child); 2075 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2076 struct resource_list_entry *rle; 2077 int i; 2078 2079 /* Do we have any messages to release? */ 2080 if (msix->msix_alloc == 0) 2081 return (ENODEV); 2082 2083 /* Make sure none of the resources are allocated. */ 2084 for (i = 0; i < msix->msix_table_len; i++) { 2085 if (msix->msix_table[i].mte_vector == 0) 2086 continue; 2087 if (msix->msix_table[i].mte_handlers > 0) 2088 return (EBUSY); 2089 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2090 KASSERT(rle != NULL, ("missing resource")); 2091 if (rle->res != NULL) 2092 return (EBUSY); 2093 } 2094 2095 /* Update control register to disable MSI-X. */ 2096 msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE; 2097 pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, 2098 msix->msix_ctrl, 2); 2099 2100 /* Free the resource list entries. */ 2101 for (i = 0; i < msix->msix_table_len; i++) { 2102 if (msix->msix_table[i].mte_vector == 0) 2103 continue; 2104 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2105 } 2106 free(msix->msix_table, M_DEVBUF); 2107 msix->msix_table_len = 0; 2108 2109 /* Release the IRQs. */ 2110 for (i = 0; i < msix->msix_alloc; i++) 2111 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2112 msix->msix_vectors[i].mv_irq); 2113 free(msix->msix_vectors, M_DEVBUF); 2114 msix->msix_alloc = 0; 2115 return (0); 2116 } 2117 2118 /* 2119 * Return the max supported MSI-X messages this device supports. 2120 * Basically, assuming the MD code can alloc messages, this function 2121 * should return the maximum value that pci_alloc_msix() can return. 2122 * Thus, it is subject to the tunables, etc. 2123 */ 2124 int 2125 pci_msix_count_method(device_t dev, device_t child) 2126 { 2127 struct pci_devinfo *dinfo = device_get_ivars(child); 2128 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2129 2130 if (pci_do_msix && msix->msix_location != 0) 2131 return (msix->msix_msgnum); 2132 return (0); 2133 } 2134 2135 int 2136 pci_msix_pba_bar_method(device_t dev, device_t child) 2137 { 2138 struct pci_devinfo *dinfo = device_get_ivars(child); 2139 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2140 2141 if (pci_do_msix && msix->msix_location != 0) 2142 return (msix->msix_pba_bar); 2143 return (-1); 2144 } 2145 2146 int 2147 pci_msix_table_bar_method(device_t dev, device_t child) 2148 { 2149 struct pci_devinfo *dinfo = device_get_ivars(child); 2150 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2151 2152 if (pci_do_msix && msix->msix_location != 0) 2153 return (msix->msix_table_bar); 2154 return (-1); 2155 } 2156 2157 /* 2158 * HyperTransport MSI mapping control 2159 */ 2160 void 2161 pci_ht_map_msi(device_t dev, uint64_t addr) 2162 { 2163 struct pci_devinfo *dinfo = device_get_ivars(dev); 2164 struct pcicfg_ht *ht = &dinfo->cfg.ht; 2165 2166 if (!ht->ht_msimap) 2167 return; 2168 2169 if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) && 2170 ht->ht_msiaddr >> 20 == addr >> 20) { 2171 /* Enable MSI -> HT mapping. */ 2172 ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 2173 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2174 ht->ht_msictrl, 2); 2175 } 2176 2177 if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) { 2178 /* Disable MSI -> HT mapping. */ 2179 ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE; 2180 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2181 ht->ht_msictrl, 2); 2182 } 2183 } 2184 2185 int 2186 pci_get_relaxed_ordering_enabled(device_t dev) 2187 { 2188 struct pci_devinfo *dinfo = device_get_ivars(dev); 2189 int cap; 2190 uint16_t val; 2191 2192 cap = dinfo->cfg.pcie.pcie_location; 2193 if (cap == 0) 2194 return (0); 2195 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2196 val &= PCIEM_CTL_RELAXED_ORD_ENABLE; 2197 return (val != 0); 2198 } 2199 2200 int 2201 pci_get_max_payload(device_t dev) 2202 { 2203 struct pci_devinfo *dinfo = device_get_ivars(dev); 2204 int cap; 2205 uint16_t val; 2206 2207 cap = dinfo->cfg.pcie.pcie_location; 2208 if (cap == 0) 2209 return (0); 2210 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2211 val &= PCIEM_CTL_MAX_PAYLOAD; 2212 val >>= 5; 2213 return (1 << (val + 7)); 2214 } 2215 2216 int 2217 pci_get_max_read_req(device_t dev) 2218 { 2219 struct pci_devinfo *dinfo = device_get_ivars(dev); 2220 int cap; 2221 uint16_t val; 2222 2223 cap = dinfo->cfg.pcie.pcie_location; 2224 if (cap == 0) 2225 return (0); 2226 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2227 val &= PCIEM_CTL_MAX_READ_REQUEST; 2228 val >>= 12; 2229 return (1 << (val + 7)); 2230 } 2231 2232 int 2233 pci_set_max_read_req(device_t dev, int size) 2234 { 2235 struct pci_devinfo *dinfo = device_get_ivars(dev); 2236 int cap; 2237 uint16_t val; 2238 2239 cap = dinfo->cfg.pcie.pcie_location; 2240 if (cap == 0) 2241 return (0); 2242 if (size < 128) 2243 size = 128; 2244 if (size > 4096) 2245 size = 4096; 2246 size = (1 << (fls(size) - 1)); 2247 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2248 val &= ~PCIEM_CTL_MAX_READ_REQUEST; 2249 val |= (fls(size) - 8) << 12; 2250 pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2); 2251 return (size); 2252 } 2253 2254 uint32_t 2255 pcie_read_config(device_t dev, int reg, int width) 2256 { 2257 struct pci_devinfo *dinfo = device_get_ivars(dev); 2258 int cap; 2259 2260 cap = dinfo->cfg.pcie.pcie_location; 2261 if (cap == 0) { 2262 if (width == 2) 2263 return (0xffff); 2264 return (0xffffffff); 2265 } 2266 2267 return (pci_read_config(dev, cap + reg, width)); 2268 } 2269 2270 void 2271 pcie_write_config(device_t dev, int reg, uint32_t value, int width) 2272 { 2273 struct pci_devinfo *dinfo = device_get_ivars(dev); 2274 int cap; 2275 2276 cap = dinfo->cfg.pcie.pcie_location; 2277 if (cap == 0) 2278 return; 2279 pci_write_config(dev, cap + reg, value, width); 2280 } 2281 2282 /* 2283 * Adjusts a PCI-e capability register by clearing the bits in mask 2284 * and setting the bits in (value & mask). Bits not set in mask are 2285 * not adjusted. 2286 * 2287 * Returns the old value on success or all ones on failure. 2288 */ 2289 uint32_t 2290 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value, 2291 int width) 2292 { 2293 struct pci_devinfo *dinfo = device_get_ivars(dev); 2294 uint32_t old, new; 2295 int cap; 2296 2297 cap = dinfo->cfg.pcie.pcie_location; 2298 if (cap == 0) { 2299 if (width == 2) 2300 return (0xffff); 2301 return (0xffffffff); 2302 } 2303 2304 old = pci_read_config(dev, cap + reg, width); 2305 new = old & ~mask; 2306 new |= (value & mask); 2307 pci_write_config(dev, cap + reg, new, width); 2308 return (old); 2309 } 2310 2311 /* 2312 * Support for MSI message signalled interrupts. 2313 */ 2314 void 2315 pci_enable_msi_method(device_t dev, device_t child, uint64_t address, 2316 uint16_t data) 2317 { 2318 struct pci_devinfo *dinfo = device_get_ivars(child); 2319 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2320 2321 /* Write data and address values. */ 2322 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR, 2323 address & 0xffffffff, 4); 2324 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2325 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH, 2326 address >> 32, 4); 2327 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT, 2328 data, 2); 2329 } else 2330 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data, 2331 2); 2332 2333 /* Enable MSI in the control register. */ 2334 msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE; 2335 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2336 msi->msi_ctrl, 2); 2337 2338 /* Enable MSI -> HT mapping. */ 2339 pci_ht_map_msi(child, address); 2340 } 2341 2342 void 2343 pci_disable_msi_method(device_t dev, device_t child) 2344 { 2345 struct pci_devinfo *dinfo = device_get_ivars(child); 2346 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2347 2348 /* Disable MSI -> HT mapping. */ 2349 pci_ht_map_msi(child, 0); 2350 2351 /* Disable MSI in the control register. */ 2352 msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE; 2353 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2354 msi->msi_ctrl, 2); 2355 } 2356 2357 /* 2358 * Restore MSI registers during resume. If MSI is enabled then 2359 * restore the data and address registers in addition to the control 2360 * register. 2361 */ 2362 static void 2363 pci_resume_msi(device_t dev) 2364 { 2365 struct pci_devinfo *dinfo = device_get_ivars(dev); 2366 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2367 uint64_t address; 2368 uint16_t data; 2369 2370 if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) { 2371 address = msi->msi_addr; 2372 data = msi->msi_data; 2373 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR, 2374 address & 0xffffffff, 4); 2375 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2376 pci_write_config(dev, msi->msi_location + 2377 PCIR_MSI_ADDR_HIGH, address >> 32, 4); 2378 pci_write_config(dev, msi->msi_location + 2379 PCIR_MSI_DATA_64BIT, data, 2); 2380 } else 2381 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, 2382 data, 2); 2383 } 2384 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2385 2); 2386 } 2387 2388 static int 2389 pci_remap_intr_method(device_t bus, device_t dev, u_int irq) 2390 { 2391 struct pci_devinfo *dinfo = device_get_ivars(dev); 2392 pcicfgregs *cfg = &dinfo->cfg; 2393 struct resource_list_entry *rle; 2394 struct msix_table_entry *mte; 2395 struct msix_vector *mv; 2396 uint64_t addr; 2397 uint32_t data; 2398 int error, i, j; 2399 2400 /* 2401 * Handle MSI first. We try to find this IRQ among our list 2402 * of MSI IRQs. If we find it, we request updated address and 2403 * data registers and apply the results. 2404 */ 2405 if (cfg->msi.msi_alloc > 0) { 2406 /* If we don't have any active handlers, nothing to do. */ 2407 if (cfg->msi.msi_handlers == 0) 2408 return (0); 2409 for (i = 0; i < cfg->msi.msi_alloc; i++) { 2410 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 2411 i + 1); 2412 if (rle->start == irq) { 2413 error = PCIB_MAP_MSI(device_get_parent(bus), 2414 dev, irq, &addr, &data); 2415 if (error) 2416 return (error); 2417 pci_disable_msi(dev); 2418 dinfo->cfg.msi.msi_addr = addr; 2419 dinfo->cfg.msi.msi_data = data; 2420 pci_enable_msi(dev, addr, data); 2421 return (0); 2422 } 2423 } 2424 return (ENOENT); 2425 } 2426 2427 /* 2428 * For MSI-X, we check to see if we have this IRQ. If we do, 2429 * we request the updated mapping info. If that works, we go 2430 * through all the slots that use this IRQ and update them. 2431 */ 2432 if (cfg->msix.msix_alloc > 0) { 2433 for (i = 0; i < cfg->msix.msix_alloc; i++) { 2434 mv = &cfg->msix.msix_vectors[i]; 2435 if (mv->mv_irq == irq) { 2436 error = PCIB_MAP_MSI(device_get_parent(bus), 2437 dev, irq, &addr, &data); 2438 if (error) 2439 return (error); 2440 mv->mv_address = addr; 2441 mv->mv_data = data; 2442 for (j = 0; j < cfg->msix.msix_table_len; j++) { 2443 mte = &cfg->msix.msix_table[j]; 2444 if (mte->mte_vector != i + 1) 2445 continue; 2446 if (mte->mte_handlers == 0) 2447 continue; 2448 pci_mask_msix(dev, j); 2449 pci_enable_msix(dev, j, addr, data); 2450 pci_unmask_msix(dev, j); 2451 } 2452 } 2453 } 2454 return (ENOENT); 2455 } 2456 2457 return (ENOENT); 2458 } 2459 2460 /* 2461 * Returns true if the specified device is blacklisted because MSI 2462 * doesn't work. 2463 */ 2464 int 2465 pci_msi_device_blacklisted(device_t dev) 2466 { 2467 2468 if (!pci_honor_msi_blacklist) 2469 return (0); 2470 2471 return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI)); 2472 } 2473 2474 /* 2475 * Determine if MSI is blacklisted globally on this system. Currently, 2476 * we just check for blacklisted chipsets as represented by the 2477 * host-PCI bridge at device 0:0:0. In the future, it may become 2478 * necessary to check other system attributes, such as the kenv values 2479 * that give the motherboard manufacturer and model number. 2480 */ 2481 static int 2482 pci_msi_blacklisted(void) 2483 { 2484 device_t dev; 2485 2486 if (!pci_honor_msi_blacklist) 2487 return (0); 2488 2489 /* Blacklist all non-PCI-express and non-PCI-X chipsets. */ 2490 if (!(pcie_chipset || pcix_chipset)) { 2491 if (vm_guest != VM_GUEST_NO) { 2492 /* 2493 * Whitelist older chipsets in virtual 2494 * machines known to support MSI. 2495 */ 2496 dev = pci_find_bsf(0, 0, 0); 2497 if (dev != NULL) 2498 return (!pci_has_quirk(pci_get_devid(dev), 2499 PCI_QUIRK_ENABLE_MSI_VM)); 2500 } 2501 return (1); 2502 } 2503 2504 dev = pci_find_bsf(0, 0, 0); 2505 if (dev != NULL) 2506 return (pci_msi_device_blacklisted(dev)); 2507 return (0); 2508 } 2509 2510 /* 2511 * Returns true if the specified device is blacklisted because MSI-X 2512 * doesn't work. Note that this assumes that if MSI doesn't work, 2513 * MSI-X doesn't either. 2514 */ 2515 int 2516 pci_msix_device_blacklisted(device_t dev) 2517 { 2518 2519 if (!pci_honor_msi_blacklist) 2520 return (0); 2521 2522 if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) 2523 return (1); 2524 2525 return (pci_msi_device_blacklisted(dev)); 2526 } 2527 2528 /* 2529 * Determine if MSI-X is blacklisted globally on this system. If MSI 2530 * is blacklisted, assume that MSI-X is as well. Check for additional 2531 * chipsets where MSI works but MSI-X does not. 2532 */ 2533 static int 2534 pci_msix_blacklisted(void) 2535 { 2536 device_t dev; 2537 2538 if (!pci_honor_msi_blacklist) 2539 return (0); 2540 2541 dev = pci_find_bsf(0, 0, 0); 2542 if (dev != NULL && pci_has_quirk(pci_get_devid(dev), 2543 PCI_QUIRK_DISABLE_MSIX)) 2544 return (1); 2545 2546 return (pci_msi_blacklisted()); 2547 } 2548 2549 /* 2550 * Attempt to allocate *count MSI messages. The actual number allocated is 2551 * returned in *count. After this function returns, each message will be 2552 * available to the driver as SYS_RES_IRQ resources starting at a rid 1. 2553 */ 2554 int 2555 pci_alloc_msi_method(device_t dev, device_t child, int *count) 2556 { 2557 struct pci_devinfo *dinfo = device_get_ivars(child); 2558 pcicfgregs *cfg = &dinfo->cfg; 2559 struct resource_list_entry *rle; 2560 int actual, error, i, irqs[32]; 2561 uint16_t ctrl; 2562 2563 /* Don't let count == 0 get us into trouble. */ 2564 if (*count == 0) 2565 return (EINVAL); 2566 2567 /* If rid 0 is allocated, then fail. */ 2568 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 2569 if (rle != NULL && rle->res != NULL) 2570 return (ENXIO); 2571 2572 /* Already have allocated messages? */ 2573 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 2574 return (ENXIO); 2575 2576 /* If MSI is blacklisted for this system, fail. */ 2577 if (pci_msi_blacklisted()) 2578 return (ENXIO); 2579 2580 /* MSI capability present? */ 2581 if (cfg->msi.msi_location == 0 || !pci_do_msi) 2582 return (ENODEV); 2583 2584 if (bootverbose) 2585 device_printf(child, 2586 "attempting to allocate %d MSI vectors (%d supported)\n", 2587 *count, cfg->msi.msi_msgnum); 2588 2589 /* Don't ask for more than the device supports. */ 2590 actual = min(*count, cfg->msi.msi_msgnum); 2591 2592 /* Don't ask for more than 32 messages. */ 2593 actual = min(actual, 32); 2594 2595 /* MSI requires power of 2 number of messages. */ 2596 if (!powerof2(actual)) 2597 return (EINVAL); 2598 2599 for (;;) { 2600 /* Try to allocate N messages. */ 2601 error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual, 2602 actual, irqs); 2603 if (error == 0) 2604 break; 2605 if (actual == 1) 2606 return (error); 2607 2608 /* Try N / 2. */ 2609 actual >>= 1; 2610 } 2611 2612 /* 2613 * We now have N actual messages mapped onto SYS_RES_IRQ 2614 * resources in the irqs[] array, so add new resources 2615 * starting at rid 1. 2616 */ 2617 for (i = 0; i < actual; i++) 2618 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, 2619 irqs[i], irqs[i], 1); 2620 2621 if (bootverbose) { 2622 if (actual == 1) 2623 device_printf(child, "using IRQ %d for MSI\n", irqs[0]); 2624 else { 2625 int run; 2626 2627 /* 2628 * Be fancy and try to print contiguous runs 2629 * of IRQ values as ranges. 'run' is true if 2630 * we are in a range. 2631 */ 2632 device_printf(child, "using IRQs %d", irqs[0]); 2633 run = 0; 2634 for (i = 1; i < actual; i++) { 2635 /* Still in a run? */ 2636 if (irqs[i] == irqs[i - 1] + 1) { 2637 run = 1; 2638 continue; 2639 } 2640 2641 /* Finish previous range. */ 2642 if (run) { 2643 printf("-%d", irqs[i - 1]); 2644 run = 0; 2645 } 2646 2647 /* Start new range. */ 2648 printf(",%d", irqs[i]); 2649 } 2650 2651 /* Unfinished range? */ 2652 if (run) 2653 printf("-%d", irqs[actual - 1]); 2654 printf(" for MSI\n"); 2655 } 2656 } 2657 2658 /* Update control register with actual count. */ 2659 ctrl = cfg->msi.msi_ctrl; 2660 ctrl &= ~PCIM_MSICTRL_MME_MASK; 2661 ctrl |= (ffs(actual) - 1) << 4; 2662 cfg->msi.msi_ctrl = ctrl; 2663 pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2); 2664 2665 /* Update counts of alloc'd messages. */ 2666 cfg->msi.msi_alloc = actual; 2667 cfg->msi.msi_handlers = 0; 2668 *count = actual; 2669 return (0); 2670 } 2671 2672 /* Release the MSI messages associated with this device. */ 2673 int 2674 pci_release_msi_method(device_t dev, device_t child) 2675 { 2676 struct pci_devinfo *dinfo = device_get_ivars(child); 2677 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2678 struct resource_list_entry *rle; 2679 int error, i, irqs[32]; 2680 2681 /* Try MSI-X first. */ 2682 error = pci_release_msix(dev, child); 2683 if (error != ENODEV) 2684 return (error); 2685 2686 /* Do we have any messages to release? */ 2687 if (msi->msi_alloc == 0) 2688 return (ENODEV); 2689 KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages")); 2690 2691 /* Make sure none of the resources are allocated. */ 2692 if (msi->msi_handlers > 0) 2693 return (EBUSY); 2694 for (i = 0; i < msi->msi_alloc; i++) { 2695 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2696 KASSERT(rle != NULL, ("missing MSI resource")); 2697 if (rle->res != NULL) 2698 return (EBUSY); 2699 irqs[i] = rle->start; 2700 } 2701 2702 /* Update control register with 0 count. */ 2703 KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE), 2704 ("%s: MSI still enabled", __func__)); 2705 msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK; 2706 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2707 msi->msi_ctrl, 2); 2708 2709 /* Release the messages. */ 2710 PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs); 2711 for (i = 0; i < msi->msi_alloc; i++) 2712 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2713 2714 /* Update alloc count. */ 2715 msi->msi_alloc = 0; 2716 msi->msi_addr = 0; 2717 msi->msi_data = 0; 2718 return (0); 2719 } 2720 2721 /* 2722 * Return the max supported MSI messages this device supports. 2723 * Basically, assuming the MD code can alloc messages, this function 2724 * should return the maximum value that pci_alloc_msi() can return. 2725 * Thus, it is subject to the tunables, etc. 2726 */ 2727 int 2728 pci_msi_count_method(device_t dev, device_t child) 2729 { 2730 struct pci_devinfo *dinfo = device_get_ivars(child); 2731 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2732 2733 if (pci_do_msi && msi->msi_location != 0) 2734 return (msi->msi_msgnum); 2735 return (0); 2736 } 2737 2738 /* free pcicfgregs structure and all depending data structures */ 2739 2740 int 2741 pci_freecfg(struct pci_devinfo *dinfo) 2742 { 2743 struct devlist *devlist_head; 2744 struct pci_map *pm, *next; 2745 int i; 2746 2747 devlist_head = &pci_devq; 2748 2749 if (dinfo->cfg.vpd.vpd_reg) { 2750 free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF); 2751 for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++) 2752 free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF); 2753 free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF); 2754 for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++) 2755 free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF); 2756 free(dinfo->cfg.vpd.vpd_w, M_DEVBUF); 2757 } 2758 STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) { 2759 free(pm, M_DEVBUF); 2760 } 2761 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links); 2762 free(dinfo, M_DEVBUF); 2763 2764 /* increment the generation count */ 2765 pci_generation++; 2766 2767 /* we're losing one device */ 2768 pci_numdevs--; 2769 return (0); 2770 } 2771 2772 /* 2773 * PCI power manangement 2774 */ 2775 int 2776 pci_set_powerstate_method(device_t dev, device_t child, int state) 2777 { 2778 struct pci_devinfo *dinfo = device_get_ivars(child); 2779 pcicfgregs *cfg = &dinfo->cfg; 2780 uint16_t status; 2781 int oldstate, highest, delay; 2782 2783 if (cfg->pp.pp_cap == 0) 2784 return (EOPNOTSUPP); 2785 2786 /* 2787 * Optimize a no state change request away. While it would be OK to 2788 * write to the hardware in theory, some devices have shown odd 2789 * behavior when going from D3 -> D3. 2790 */ 2791 oldstate = pci_get_powerstate(child); 2792 if (oldstate == state) 2793 return (0); 2794 2795 /* 2796 * The PCI power management specification states that after a state 2797 * transition between PCI power states, system software must 2798 * guarantee a minimal delay before the function accesses the device. 2799 * Compute the worst case delay that we need to guarantee before we 2800 * access the device. Many devices will be responsive much more 2801 * quickly than this delay, but there are some that don't respond 2802 * instantly to state changes. Transitions to/from D3 state require 2803 * 10ms, while D2 requires 200us, and D0/1 require none. The delay 2804 * is done below with DELAY rather than a sleeper function because 2805 * this function can be called from contexts where we cannot sleep. 2806 */ 2807 highest = (oldstate > state) ? oldstate : state; 2808 if (highest == PCI_POWERSTATE_D3) 2809 delay = 10000; 2810 else if (highest == PCI_POWERSTATE_D2) 2811 delay = 200; 2812 else 2813 delay = 0; 2814 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2) 2815 & ~PCIM_PSTAT_DMASK; 2816 switch (state) { 2817 case PCI_POWERSTATE_D0: 2818 status |= PCIM_PSTAT_D0; 2819 break; 2820 case PCI_POWERSTATE_D1: 2821 if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0) 2822 return (EOPNOTSUPP); 2823 status |= PCIM_PSTAT_D1; 2824 break; 2825 case PCI_POWERSTATE_D2: 2826 if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0) 2827 return (EOPNOTSUPP); 2828 status |= PCIM_PSTAT_D2; 2829 break; 2830 case PCI_POWERSTATE_D3: 2831 status |= PCIM_PSTAT_D3; 2832 break; 2833 default: 2834 return (EINVAL); 2835 } 2836 2837 if (bootverbose) 2838 pci_printf(cfg, "Transition from D%d to D%d\n", oldstate, 2839 state); 2840 2841 PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2); 2842 if (delay) 2843 DELAY(delay); 2844 return (0); 2845 } 2846 2847 int 2848 pci_get_powerstate_method(device_t dev, device_t child) 2849 { 2850 struct pci_devinfo *dinfo = device_get_ivars(child); 2851 pcicfgregs *cfg = &dinfo->cfg; 2852 uint16_t status; 2853 int result; 2854 2855 if (cfg->pp.pp_cap != 0) { 2856 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2); 2857 switch (status & PCIM_PSTAT_DMASK) { 2858 case PCIM_PSTAT_D0: 2859 result = PCI_POWERSTATE_D0; 2860 break; 2861 case PCIM_PSTAT_D1: 2862 result = PCI_POWERSTATE_D1; 2863 break; 2864 case PCIM_PSTAT_D2: 2865 result = PCI_POWERSTATE_D2; 2866 break; 2867 case PCIM_PSTAT_D3: 2868 result = PCI_POWERSTATE_D3; 2869 break; 2870 default: 2871 result = PCI_POWERSTATE_UNKNOWN; 2872 break; 2873 } 2874 } else { 2875 /* No support, device is always at D0 */ 2876 result = PCI_POWERSTATE_D0; 2877 } 2878 return (result); 2879 } 2880 2881 /* 2882 * Some convenience functions for PCI device drivers. 2883 */ 2884 2885 static __inline void 2886 pci_set_command_bit(device_t dev, device_t child, uint16_t bit) 2887 { 2888 uint16_t command; 2889 2890 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2891 command |= bit; 2892 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2893 } 2894 2895 static __inline void 2896 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit) 2897 { 2898 uint16_t command; 2899 2900 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2901 command &= ~bit; 2902 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2903 } 2904 2905 int 2906 pci_enable_busmaster_method(device_t dev, device_t child) 2907 { 2908 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2909 return (0); 2910 } 2911 2912 int 2913 pci_disable_busmaster_method(device_t dev, device_t child) 2914 { 2915 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2916 return (0); 2917 } 2918 2919 int 2920 pci_enable_io_method(device_t dev, device_t child, int space) 2921 { 2922 uint16_t bit; 2923 2924 switch(space) { 2925 case SYS_RES_IOPORT: 2926 bit = PCIM_CMD_PORTEN; 2927 break; 2928 case SYS_RES_MEMORY: 2929 bit = PCIM_CMD_MEMEN; 2930 break; 2931 default: 2932 return (EINVAL); 2933 } 2934 pci_set_command_bit(dev, child, bit); 2935 return (0); 2936 } 2937 2938 int 2939 pci_disable_io_method(device_t dev, device_t child, int space) 2940 { 2941 uint16_t bit; 2942 2943 switch(space) { 2944 case SYS_RES_IOPORT: 2945 bit = PCIM_CMD_PORTEN; 2946 break; 2947 case SYS_RES_MEMORY: 2948 bit = PCIM_CMD_MEMEN; 2949 break; 2950 default: 2951 return (EINVAL); 2952 } 2953 pci_clear_command_bit(dev, child, bit); 2954 return (0); 2955 } 2956 2957 /* 2958 * New style pci driver. Parent device is either a pci-host-bridge or a 2959 * pci-pci-bridge. Both kinds are represented by instances of pcib. 2960 */ 2961 2962 void 2963 pci_print_verbose(struct pci_devinfo *dinfo) 2964 { 2965 2966 if (bootverbose) { 2967 pcicfgregs *cfg = &dinfo->cfg; 2968 2969 printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n", 2970 cfg->vendor, cfg->device, cfg->revid); 2971 printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n", 2972 cfg->domain, cfg->bus, cfg->slot, cfg->func); 2973 printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n", 2974 cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype, 2975 cfg->mfdev); 2976 printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n", 2977 cfg->cmdreg, cfg->statreg, cfg->cachelnsz); 2978 printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n", 2979 cfg->lattimer, cfg->lattimer * 30, cfg->mingnt, 2980 cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250); 2981 if (cfg->intpin > 0) 2982 printf("\tintpin=%c, irq=%d\n", 2983 cfg->intpin +'a' -1, cfg->intline); 2984 if (cfg->pp.pp_cap) { 2985 uint16_t status; 2986 2987 status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2); 2988 printf("\tpowerspec %d supports D0%s%s D3 current D%d\n", 2989 cfg->pp.pp_cap & PCIM_PCAP_SPEC, 2990 cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "", 2991 cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "", 2992 status & PCIM_PSTAT_DMASK); 2993 } 2994 if (cfg->msi.msi_location) { 2995 int ctrl; 2996 2997 ctrl = cfg->msi.msi_ctrl; 2998 printf("\tMSI supports %d message%s%s%s\n", 2999 cfg->msi.msi_msgnum, 3000 (cfg->msi.msi_msgnum == 1) ? "" : "s", 3001 (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", 3002 (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":""); 3003 } 3004 if (cfg->msix.msix_location) { 3005 printf("\tMSI-X supports %d message%s ", 3006 cfg->msix.msix_msgnum, 3007 (cfg->msix.msix_msgnum == 1) ? "" : "s"); 3008 if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar) 3009 printf("in map 0x%x\n", 3010 cfg->msix.msix_table_bar); 3011 else 3012 printf("in maps 0x%x and 0x%x\n", 3013 cfg->msix.msix_table_bar, 3014 cfg->msix.msix_pba_bar); 3015 } 3016 } 3017 } 3018 3019 static int 3020 pci_porten(device_t dev) 3021 { 3022 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0; 3023 } 3024 3025 static int 3026 pci_memen(device_t dev) 3027 { 3028 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0; 3029 } 3030 3031 void 3032 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp, 3033 int *bar64) 3034 { 3035 struct pci_devinfo *dinfo; 3036 pci_addr_t map, testval; 3037 int ln2range; 3038 uint16_t cmd; 3039 3040 /* 3041 * The device ROM BAR is special. It is always a 32-bit 3042 * memory BAR. Bit 0 is special and should not be set when 3043 * sizing the BAR. 3044 */ 3045 dinfo = device_get_ivars(dev); 3046 if (PCIR_IS_BIOS(&dinfo->cfg, reg)) { 3047 map = pci_read_config(dev, reg, 4); 3048 pci_write_config(dev, reg, 0xfffffffe, 4); 3049 testval = pci_read_config(dev, reg, 4); 3050 pci_write_config(dev, reg, map, 4); 3051 *mapp = map; 3052 *testvalp = testval; 3053 if (bar64 != NULL) 3054 *bar64 = 0; 3055 return; 3056 } 3057 3058 map = pci_read_config(dev, reg, 4); 3059 ln2range = pci_maprange(map); 3060 if (ln2range == 64) 3061 map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3062 3063 /* 3064 * Disable decoding via the command register before 3065 * determining the BAR's length since we will be placing it in 3066 * a weird state. 3067 */ 3068 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3069 pci_write_config(dev, PCIR_COMMAND, 3070 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 3071 3072 /* 3073 * Determine the BAR's length by writing all 1's. The bottom 3074 * log_2(size) bits of the BAR will stick as 0 when we read 3075 * the value back. 3076 * 3077 * NB: according to the PCI Local Bus Specification, rev. 3.0: 3078 * "Software writes 0FFFFFFFFh to both registers, reads them back, 3079 * and combines the result into a 64-bit value." (section 6.2.5.1) 3080 * 3081 * Writes to both registers must be performed before attempting to 3082 * read back the size value. 3083 */ 3084 testval = 0; 3085 pci_write_config(dev, reg, 0xffffffff, 4); 3086 if (ln2range == 64) { 3087 pci_write_config(dev, reg + 4, 0xffffffff, 4); 3088 testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3089 } 3090 testval |= pci_read_config(dev, reg, 4); 3091 3092 /* 3093 * Restore the original value of the BAR. We may have reprogrammed 3094 * the BAR of the low-level console device and when booting verbose, 3095 * we need the console device addressable. 3096 */ 3097 pci_write_config(dev, reg, map, 4); 3098 if (ln2range == 64) 3099 pci_write_config(dev, reg + 4, map >> 32, 4); 3100 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3101 3102 *mapp = map; 3103 *testvalp = testval; 3104 if (bar64 != NULL) 3105 *bar64 = (ln2range == 64); 3106 } 3107 3108 static void 3109 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base) 3110 { 3111 struct pci_devinfo *dinfo; 3112 int ln2range; 3113 3114 /* The device ROM BAR is always a 32-bit memory BAR. */ 3115 dinfo = device_get_ivars(dev); 3116 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3117 ln2range = 32; 3118 else 3119 ln2range = pci_maprange(pm->pm_value); 3120 pci_write_config(dev, pm->pm_reg, base, 4); 3121 if (ln2range == 64) 3122 pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4); 3123 pm->pm_value = pci_read_config(dev, pm->pm_reg, 4); 3124 if (ln2range == 64) 3125 pm->pm_value |= (pci_addr_t)pci_read_config(dev, 3126 pm->pm_reg + 4, 4) << 32; 3127 } 3128 3129 struct pci_map * 3130 pci_find_bar(device_t dev, int reg) 3131 { 3132 struct pci_devinfo *dinfo; 3133 struct pci_map *pm; 3134 3135 dinfo = device_get_ivars(dev); 3136 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3137 if (pm->pm_reg == reg) 3138 return (pm); 3139 } 3140 return (NULL); 3141 } 3142 3143 int 3144 pci_bar_enabled(device_t dev, struct pci_map *pm) 3145 { 3146 struct pci_devinfo *dinfo; 3147 uint16_t cmd; 3148 3149 dinfo = device_get_ivars(dev); 3150 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) && 3151 !(pm->pm_value & PCIM_BIOS_ENABLE)) 3152 return (0); 3153 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3154 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value)) 3155 return ((cmd & PCIM_CMD_MEMEN) != 0); 3156 else 3157 return ((cmd & PCIM_CMD_PORTEN) != 0); 3158 } 3159 3160 struct pci_map * 3161 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size) 3162 { 3163 struct pci_devinfo *dinfo; 3164 struct pci_map *pm, *prev; 3165 3166 dinfo = device_get_ivars(dev); 3167 pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO); 3168 pm->pm_reg = reg; 3169 pm->pm_value = value; 3170 pm->pm_size = size; 3171 STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) { 3172 KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x", 3173 reg)); 3174 if (STAILQ_NEXT(prev, pm_link) == NULL || 3175 STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg) 3176 break; 3177 } 3178 if (prev != NULL) 3179 STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link); 3180 else 3181 STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link); 3182 return (pm); 3183 } 3184 3185 static void 3186 pci_restore_bars(device_t dev) 3187 { 3188 struct pci_devinfo *dinfo; 3189 struct pci_map *pm; 3190 int ln2range; 3191 3192 dinfo = device_get_ivars(dev); 3193 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3194 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3195 ln2range = 32; 3196 else 3197 ln2range = pci_maprange(pm->pm_value); 3198 pci_write_config(dev, pm->pm_reg, pm->pm_value, 4); 3199 if (ln2range == 64) 3200 pci_write_config(dev, pm->pm_reg + 4, 3201 pm->pm_value >> 32, 4); 3202 } 3203 } 3204 3205 /* 3206 * Add a resource based on a pci map register. Return 1 if the map 3207 * register is a 32bit map register or 2 if it is a 64bit register. 3208 */ 3209 static int 3210 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, 3211 int force, int prefetch) 3212 { 3213 struct pci_map *pm; 3214 pci_addr_t base, map, testval; 3215 pci_addr_t start, end, count; 3216 int barlen, basezero, flags, maprange, mapsize, type; 3217 uint16_t cmd; 3218 struct resource *res; 3219 3220 /* 3221 * The BAR may already exist if the device is a CardBus card 3222 * whose CIS is stored in this BAR. 3223 */ 3224 pm = pci_find_bar(dev, reg); 3225 if (pm != NULL) { 3226 maprange = pci_maprange(pm->pm_value); 3227 barlen = maprange == 64 ? 2 : 1; 3228 return (barlen); 3229 } 3230 3231 pci_read_bar(dev, reg, &map, &testval, NULL); 3232 if (PCI_BAR_MEM(map)) { 3233 type = SYS_RES_MEMORY; 3234 if (map & PCIM_BAR_MEM_PREFETCH) 3235 prefetch = 1; 3236 } else 3237 type = SYS_RES_IOPORT; 3238 mapsize = pci_mapsize(testval); 3239 base = pci_mapbase(map); 3240 #ifdef __PCI_BAR_ZERO_VALID 3241 basezero = 0; 3242 #else 3243 basezero = base == 0; 3244 #endif 3245 maprange = pci_maprange(map); 3246 barlen = maprange == 64 ? 2 : 1; 3247 3248 /* 3249 * For I/O registers, if bottom bit is set, and the next bit up 3250 * isn't clear, we know we have a BAR that doesn't conform to the 3251 * spec, so ignore it. Also, sanity check the size of the data 3252 * areas to the type of memory involved. Memory must be at least 3253 * 16 bytes in size, while I/O ranges must be at least 4. 3254 */ 3255 if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0) 3256 return (barlen); 3257 if ((type == SYS_RES_MEMORY && mapsize < 4) || 3258 (type == SYS_RES_IOPORT && mapsize < 2)) 3259 return (barlen); 3260 3261 /* Save a record of this BAR. */ 3262 pm = pci_add_bar(dev, reg, map, mapsize); 3263 if (bootverbose) { 3264 printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d", 3265 reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize); 3266 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3267 printf(", port disabled\n"); 3268 else if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3269 printf(", memory disabled\n"); 3270 else 3271 printf(", enabled\n"); 3272 } 3273 3274 /* 3275 * If base is 0, then we have problems if this architecture does 3276 * not allow that. It is best to ignore such entries for the 3277 * moment. These will be allocated later if the driver specifically 3278 * requests them. However, some removable buses look better when 3279 * all resources are allocated, so allow '0' to be overriden. 3280 * 3281 * Similarly treat maps whose values is the same as the test value 3282 * read back. These maps have had all f's written to them by the 3283 * BIOS in an attempt to disable the resources. 3284 */ 3285 if (!force && (basezero || map == testval)) 3286 return (barlen); 3287 if ((u_long)base != base) { 3288 device_printf(bus, 3289 "pci%d:%d:%d:%d bar %#x too many address bits", 3290 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), 3291 pci_get_function(dev), reg); 3292 return (barlen); 3293 } 3294 3295 /* 3296 * This code theoretically does the right thing, but has 3297 * undesirable side effects in some cases where peripherals 3298 * respond oddly to having these bits enabled. Let the user 3299 * be able to turn them off (since pci_enable_io_modes is 1 by 3300 * default). 3301 */ 3302 if (pci_enable_io_modes) { 3303 /* Turn on resources that have been left off by a lazy BIOS */ 3304 if (type == SYS_RES_IOPORT && !pci_porten(dev)) { 3305 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3306 cmd |= PCIM_CMD_PORTEN; 3307 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3308 } 3309 if (type == SYS_RES_MEMORY && !pci_memen(dev)) { 3310 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3311 cmd |= PCIM_CMD_MEMEN; 3312 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3313 } 3314 } else { 3315 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3316 return (barlen); 3317 if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3318 return (barlen); 3319 } 3320 3321 count = (pci_addr_t)1 << mapsize; 3322 flags = RF_ALIGNMENT_LOG2(mapsize); 3323 if (prefetch) 3324 flags |= RF_PREFETCHABLE; 3325 if (basezero || base == pci_mapbase(testval) || pci_clear_bars) { 3326 start = 0; /* Let the parent decide. */ 3327 end = ~0; 3328 } else { 3329 start = base; 3330 end = base + count - 1; 3331 } 3332 resource_list_add(rl, type, reg, start, end, count); 3333 3334 /* 3335 * Try to allocate the resource for this BAR from our parent 3336 * so that this resource range is already reserved. The 3337 * driver for this device will later inherit this resource in 3338 * pci_alloc_resource(). 3339 */ 3340 res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count, 3341 flags); 3342 if ((pci_do_realloc_bars 3343 || pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR)) 3344 && res == NULL && (start != 0 || end != ~0)) { 3345 /* 3346 * If the allocation fails, try to allocate a resource for 3347 * this BAR using any available range. The firmware felt 3348 * it was important enough to assign a resource, so don't 3349 * disable decoding if we can help it. 3350 */ 3351 resource_list_delete(rl, type, reg); 3352 resource_list_add(rl, type, reg, 0, ~0, count); 3353 res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0, 3354 count, flags); 3355 } 3356 if (res == NULL) { 3357 /* 3358 * If the allocation fails, delete the resource list entry 3359 * and disable decoding for this device. 3360 * 3361 * If the driver requests this resource in the future, 3362 * pci_reserve_map() will try to allocate a fresh 3363 * resource range. 3364 */ 3365 resource_list_delete(rl, type, reg); 3366 pci_disable_io(dev, type); 3367 if (bootverbose) 3368 device_printf(bus, 3369 "pci%d:%d:%d:%d bar %#x failed to allocate\n", 3370 pci_get_domain(dev), pci_get_bus(dev), 3371 pci_get_slot(dev), pci_get_function(dev), reg); 3372 } else { 3373 start = rman_get_start(res); 3374 pci_write_bar(dev, pm, start); 3375 } 3376 return (barlen); 3377 } 3378 3379 /* 3380 * For ATA devices we need to decide early what addressing mode to use. 3381 * Legacy demands that the primary and secondary ATA ports sits on the 3382 * same addresses that old ISA hardware did. This dictates that we use 3383 * those addresses and ignore the BAR's if we cannot set PCI native 3384 * addressing mode. 3385 */ 3386 static void 3387 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force, 3388 uint32_t prefetchmask) 3389 { 3390 int rid, type, progif; 3391 #if 0 3392 /* if this device supports PCI native addressing use it */ 3393 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3394 if ((progif & 0x8a) == 0x8a) { 3395 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) && 3396 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) { 3397 printf("Trying ATA native PCI addressing mode\n"); 3398 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1); 3399 } 3400 } 3401 #endif 3402 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3403 type = SYS_RES_IOPORT; 3404 if (progif & PCIP_STORAGE_IDE_MODEPRIM) { 3405 pci_add_map(bus, dev, PCIR_BAR(0), rl, force, 3406 prefetchmask & (1 << 0)); 3407 pci_add_map(bus, dev, PCIR_BAR(1), rl, force, 3408 prefetchmask & (1 << 1)); 3409 } else { 3410 rid = PCIR_BAR(0); 3411 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8); 3412 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0, 3413 0x1f7, 8, 0); 3414 rid = PCIR_BAR(1); 3415 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1); 3416 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6, 3417 0x3f6, 1, 0); 3418 } 3419 if (progif & PCIP_STORAGE_IDE_MODESEC) { 3420 pci_add_map(bus, dev, PCIR_BAR(2), rl, force, 3421 prefetchmask & (1 << 2)); 3422 pci_add_map(bus, dev, PCIR_BAR(3), rl, force, 3423 prefetchmask & (1 << 3)); 3424 } else { 3425 rid = PCIR_BAR(2); 3426 resource_list_add(rl, type, rid, 0x170, 0x177, 8); 3427 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170, 3428 0x177, 8, 0); 3429 rid = PCIR_BAR(3); 3430 resource_list_add(rl, type, rid, 0x376, 0x376, 1); 3431 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376, 3432 0x376, 1, 0); 3433 } 3434 pci_add_map(bus, dev, PCIR_BAR(4), rl, force, 3435 prefetchmask & (1 << 4)); 3436 pci_add_map(bus, dev, PCIR_BAR(5), rl, force, 3437 prefetchmask & (1 << 5)); 3438 } 3439 3440 static void 3441 pci_assign_interrupt(device_t bus, device_t dev, int force_route) 3442 { 3443 struct pci_devinfo *dinfo = device_get_ivars(dev); 3444 pcicfgregs *cfg = &dinfo->cfg; 3445 char tunable_name[64]; 3446 int irq; 3447 3448 /* Has to have an intpin to have an interrupt. */ 3449 if (cfg->intpin == 0) 3450 return; 3451 3452 /* Let the user override the IRQ with a tunable. */ 3453 irq = PCI_INVALID_IRQ; 3454 snprintf(tunable_name, sizeof(tunable_name), 3455 "hw.pci%d.%d.%d.INT%c.irq", 3456 cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1); 3457 if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0)) 3458 irq = PCI_INVALID_IRQ; 3459 3460 /* 3461 * If we didn't get an IRQ via the tunable, then we either use the 3462 * IRQ value in the intline register or we ask the bus to route an 3463 * interrupt for us. If force_route is true, then we only use the 3464 * value in the intline register if the bus was unable to assign an 3465 * IRQ. 3466 */ 3467 if (!PCI_INTERRUPT_VALID(irq)) { 3468 if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route) 3469 irq = PCI_ASSIGN_INTERRUPT(bus, dev); 3470 if (!PCI_INTERRUPT_VALID(irq)) 3471 irq = cfg->intline; 3472 } 3473 3474 /* If after all that we don't have an IRQ, just bail. */ 3475 if (!PCI_INTERRUPT_VALID(irq)) 3476 return; 3477 3478 /* Update the config register if it changed. */ 3479 if (irq != cfg->intline) { 3480 cfg->intline = irq; 3481 pci_write_config(dev, PCIR_INTLINE, irq, 1); 3482 } 3483 3484 /* Add this IRQ as rid 0 interrupt resource. */ 3485 resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1); 3486 } 3487 3488 /* Perform early OHCI takeover from SMM. */ 3489 static void 3490 ohci_early_takeover(device_t self) 3491 { 3492 struct resource *res; 3493 uint32_t ctl; 3494 int rid; 3495 int i; 3496 3497 rid = PCIR_BAR(0); 3498 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3499 if (res == NULL) 3500 return; 3501 3502 ctl = bus_read_4(res, OHCI_CONTROL); 3503 if (ctl & OHCI_IR) { 3504 if (bootverbose) 3505 printf("ohci early: " 3506 "SMM active, request owner change\n"); 3507 bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR); 3508 for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) { 3509 DELAY(1000); 3510 ctl = bus_read_4(res, OHCI_CONTROL); 3511 } 3512 if (ctl & OHCI_IR) { 3513 if (bootverbose) 3514 printf("ohci early: " 3515 "SMM does not respond, resetting\n"); 3516 bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET); 3517 } 3518 /* Disable interrupts */ 3519 bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); 3520 } 3521 3522 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3523 } 3524 3525 /* Perform early UHCI takeover from SMM. */ 3526 static void 3527 uhci_early_takeover(device_t self) 3528 { 3529 struct resource *res; 3530 int rid; 3531 3532 /* 3533 * Set the PIRQD enable bit and switch off all the others. We don't 3534 * want legacy support to interfere with us XXX Does this also mean 3535 * that the BIOS won't touch the keyboard anymore if it is connected 3536 * to the ports of the root hub? 3537 */ 3538 pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2); 3539 3540 /* Disable interrupts */ 3541 rid = PCI_UHCI_BASE_REG; 3542 res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE); 3543 if (res != NULL) { 3544 bus_write_2(res, UHCI_INTR, 0); 3545 bus_release_resource(self, SYS_RES_IOPORT, rid, res); 3546 } 3547 } 3548 3549 /* Perform early EHCI takeover from SMM. */ 3550 static void 3551 ehci_early_takeover(device_t self) 3552 { 3553 struct resource *res; 3554 uint32_t cparams; 3555 uint32_t eec; 3556 uint8_t eecp; 3557 uint8_t bios_sem; 3558 uint8_t offs; 3559 int rid; 3560 int i; 3561 3562 rid = PCIR_BAR(0); 3563 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3564 if (res == NULL) 3565 return; 3566 3567 cparams = bus_read_4(res, EHCI_HCCPARAMS); 3568 3569 /* Synchronise with the BIOS if it owns the controller. */ 3570 for (eecp = EHCI_HCC_EECP(cparams); eecp != 0; 3571 eecp = EHCI_EECP_NEXT(eec)) { 3572 eec = pci_read_config(self, eecp, 4); 3573 if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) { 3574 continue; 3575 } 3576 bios_sem = pci_read_config(self, eecp + 3577 EHCI_LEGSUP_BIOS_SEM, 1); 3578 if (bios_sem == 0) { 3579 continue; 3580 } 3581 if (bootverbose) 3582 printf("ehci early: " 3583 "SMM active, request owner change\n"); 3584 3585 pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1); 3586 3587 for (i = 0; (i < 100) && (bios_sem != 0); i++) { 3588 DELAY(1000); 3589 bios_sem = pci_read_config(self, eecp + 3590 EHCI_LEGSUP_BIOS_SEM, 1); 3591 } 3592 3593 if (bios_sem != 0) { 3594 if (bootverbose) 3595 printf("ehci early: " 3596 "SMM does not respond\n"); 3597 } 3598 /* Disable interrupts */ 3599 offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION)); 3600 bus_write_4(res, offs + EHCI_USBINTR, 0); 3601 } 3602 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3603 } 3604 3605 /* Perform early XHCI takeover from SMM. */ 3606 static void 3607 xhci_early_takeover(device_t self) 3608 { 3609 struct resource *res; 3610 uint32_t cparams; 3611 uint32_t eec; 3612 uint8_t eecp; 3613 uint8_t bios_sem; 3614 uint8_t offs; 3615 int rid; 3616 int i; 3617 3618 rid = PCIR_BAR(0); 3619 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3620 if (res == NULL) 3621 return; 3622 3623 cparams = bus_read_4(res, XHCI_HCSPARAMS0); 3624 3625 eec = -1; 3626 3627 /* Synchronise with the BIOS if it owns the controller. */ 3628 for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec); 3629 eecp += XHCI_XECP_NEXT(eec) << 2) { 3630 eec = bus_read_4(res, eecp); 3631 3632 if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY) 3633 continue; 3634 3635 bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); 3636 if (bios_sem == 0) 3637 continue; 3638 3639 if (bootverbose) 3640 printf("xhci early: " 3641 "SMM active, request owner change\n"); 3642 3643 bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1); 3644 3645 /* wait a maximum of 5 second */ 3646 3647 for (i = 0; (i < 5000) && (bios_sem != 0); i++) { 3648 DELAY(1000); 3649 bios_sem = bus_read_1(res, eecp + 3650 XHCI_XECP_BIOS_SEM); 3651 } 3652 3653 if (bios_sem != 0) { 3654 if (bootverbose) 3655 printf("xhci early: " 3656 "SMM does not respond\n"); 3657 } 3658 3659 /* Disable interrupts */ 3660 offs = bus_read_1(res, XHCI_CAPLENGTH); 3661 bus_write_4(res, offs + XHCI_USBCMD, 0); 3662 bus_read_4(res, offs + XHCI_USBSTS); 3663 } 3664 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3665 } 3666 3667 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 3668 static void 3669 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg, 3670 struct resource_list *rl) 3671 { 3672 struct resource *res; 3673 char *cp; 3674 rman_res_t start, end, count; 3675 int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus; 3676 3677 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3678 case PCIM_HDRTYPE_BRIDGE: 3679 sec_reg = PCIR_SECBUS_1; 3680 sub_reg = PCIR_SUBBUS_1; 3681 break; 3682 case PCIM_HDRTYPE_CARDBUS: 3683 sec_reg = PCIR_SECBUS_2; 3684 sub_reg = PCIR_SUBBUS_2; 3685 break; 3686 default: 3687 return; 3688 } 3689 3690 /* 3691 * If the existing bus range is valid, attempt to reserve it 3692 * from our parent. If this fails for any reason, clear the 3693 * secbus and subbus registers. 3694 * 3695 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus? 3696 * This would at least preserve the existing sec_bus if it is 3697 * valid. 3698 */ 3699 sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1); 3700 sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1); 3701 3702 /* Quirk handling. */ 3703 switch (pci_get_devid(dev)) { 3704 case 0x12258086: /* Intel 82454KX/GX (Orion) */ 3705 sup_bus = pci_read_config(dev, 0x41, 1); 3706 if (sup_bus != 0xff) { 3707 sec_bus = sup_bus + 1; 3708 sub_bus = sup_bus + 1; 3709 PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1); 3710 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3711 } 3712 break; 3713 3714 case 0x00dd10de: 3715 /* Compaq R3000 BIOS sets wrong subordinate bus number. */ 3716 if ((cp = kern_getenv("smbios.planar.maker")) == NULL) 3717 break; 3718 if (strncmp(cp, "Compal", 6) != 0) { 3719 freeenv(cp); 3720 break; 3721 } 3722 freeenv(cp); 3723 if ((cp = kern_getenv("smbios.planar.product")) == NULL) 3724 break; 3725 if (strncmp(cp, "08A0", 4) != 0) { 3726 freeenv(cp); 3727 break; 3728 } 3729 freeenv(cp); 3730 if (sub_bus < 0xa) { 3731 sub_bus = 0xa; 3732 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3733 } 3734 break; 3735 } 3736 3737 if (bootverbose) 3738 printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus); 3739 if (sec_bus > 0 && sub_bus >= sec_bus) { 3740 start = sec_bus; 3741 end = sub_bus; 3742 count = end - start + 1; 3743 3744 resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count); 3745 3746 /* 3747 * If requested, clear secondary bus registers in 3748 * bridge devices to force a complete renumbering 3749 * rather than reserving the existing range. However, 3750 * preserve the existing size. 3751 */ 3752 if (pci_clear_buses) 3753 goto clear; 3754 3755 rid = 0; 3756 res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid, 3757 start, end, count, 0); 3758 if (res != NULL) 3759 return; 3760 3761 if (bootverbose) 3762 device_printf(bus, 3763 "pci%d:%d:%d:%d secbus failed to allocate\n", 3764 pci_get_domain(dev), pci_get_bus(dev), 3765 pci_get_slot(dev), pci_get_function(dev)); 3766 } 3767 3768 clear: 3769 PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1); 3770 PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1); 3771 } 3772 3773 static struct resource * 3774 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start, 3775 rman_res_t end, rman_res_t count, u_int flags) 3776 { 3777 struct pci_devinfo *dinfo; 3778 pcicfgregs *cfg; 3779 struct resource_list *rl; 3780 struct resource *res; 3781 int sec_reg, sub_reg; 3782 3783 dinfo = device_get_ivars(child); 3784 cfg = &dinfo->cfg; 3785 rl = &dinfo->resources; 3786 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3787 case PCIM_HDRTYPE_BRIDGE: 3788 sec_reg = PCIR_SECBUS_1; 3789 sub_reg = PCIR_SUBBUS_1; 3790 break; 3791 case PCIM_HDRTYPE_CARDBUS: 3792 sec_reg = PCIR_SECBUS_2; 3793 sub_reg = PCIR_SUBBUS_2; 3794 break; 3795 default: 3796 return (NULL); 3797 } 3798 3799 if (*rid != 0) 3800 return (NULL); 3801 3802 if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL) 3803 resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count); 3804 if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) { 3805 res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid, 3806 start, end, count, flags & ~RF_ACTIVE); 3807 if (res == NULL) { 3808 resource_list_delete(rl, PCI_RES_BUS, *rid); 3809 device_printf(child, "allocating %ju bus%s failed\n", 3810 count, count == 1 ? "" : "es"); 3811 return (NULL); 3812 } 3813 if (bootverbose) 3814 device_printf(child, 3815 "Lazy allocation of %ju bus%s at %ju\n", count, 3816 count == 1 ? "" : "es", rman_get_start(res)); 3817 PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1); 3818 PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1); 3819 } 3820 return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start, 3821 end, count, flags)); 3822 } 3823 #endif 3824 3825 static int 3826 pci_ea_bei_to_rid(device_t dev, int bei) 3827 { 3828 #ifdef PCI_IOV 3829 struct pci_devinfo *dinfo; 3830 int iov_pos; 3831 struct pcicfg_iov *iov; 3832 3833 dinfo = device_get_ivars(dev); 3834 iov = dinfo->cfg.iov; 3835 if (iov != NULL) 3836 iov_pos = iov->iov_pos; 3837 else 3838 iov_pos = 0; 3839 #endif 3840 3841 /* Check if matches BAR */ 3842 if ((bei >= PCIM_EA_BEI_BAR_0) && 3843 (bei <= PCIM_EA_BEI_BAR_5)) 3844 return (PCIR_BAR(bei)); 3845 3846 /* Check ROM */ 3847 if (bei == PCIM_EA_BEI_ROM) 3848 return (PCIR_BIOS); 3849 3850 #ifdef PCI_IOV 3851 /* Check if matches VF_BAR */ 3852 if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) && 3853 (bei <= PCIM_EA_BEI_VF_BAR_5)) 3854 return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) + 3855 iov_pos); 3856 #endif 3857 3858 return (-1); 3859 } 3860 3861 int 3862 pci_ea_is_enabled(device_t dev, int rid) 3863 { 3864 struct pci_ea_entry *ea; 3865 struct pci_devinfo *dinfo; 3866 3867 dinfo = device_get_ivars(dev); 3868 3869 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3870 if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid) 3871 return ((ea->eae_flags & PCIM_EA_ENABLE) > 0); 3872 } 3873 3874 return (0); 3875 } 3876 3877 void 3878 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov) 3879 { 3880 struct pci_ea_entry *ea; 3881 struct pci_devinfo *dinfo; 3882 pci_addr_t start, end, count; 3883 struct resource_list *rl; 3884 int type, flags, rid; 3885 struct resource *res; 3886 uint32_t tmp; 3887 #ifdef PCI_IOV 3888 struct pcicfg_iov *iov; 3889 #endif 3890 3891 dinfo = device_get_ivars(dev); 3892 rl = &dinfo->resources; 3893 flags = 0; 3894 3895 #ifdef PCI_IOV 3896 iov = dinfo->cfg.iov; 3897 #endif 3898 3899 if (dinfo->cfg.ea.ea_location == 0) 3900 return; 3901 3902 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3903 /* 3904 * TODO: Ignore EA-BAR if is not enabled. 3905 * Currently the EA implementation supports 3906 * only situation, where EA structure contains 3907 * predefined entries. In case they are not enabled 3908 * leave them unallocated and proceed with 3909 * a legacy-BAR mechanism. 3910 */ 3911 if ((ea->eae_flags & PCIM_EA_ENABLE) == 0) 3912 continue; 3913 3914 switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) { 3915 case PCIM_EA_P_MEM_PREFETCH: 3916 case PCIM_EA_P_VF_MEM_PREFETCH: 3917 flags = RF_PREFETCHABLE; 3918 /* FALLTHROUGH */ 3919 case PCIM_EA_P_VF_MEM: 3920 case PCIM_EA_P_MEM: 3921 type = SYS_RES_MEMORY; 3922 break; 3923 case PCIM_EA_P_IO: 3924 type = SYS_RES_IOPORT; 3925 break; 3926 default: 3927 continue; 3928 } 3929 3930 if (alloc_iov != 0) { 3931 #ifdef PCI_IOV 3932 /* Allocating IOV, confirm BEI matches */ 3933 if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) || 3934 (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5)) 3935 continue; 3936 #else 3937 continue; 3938 #endif 3939 } else { 3940 /* Allocating BAR, confirm BEI matches */ 3941 if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) || 3942 (ea->eae_bei > PCIM_EA_BEI_BAR_5)) && 3943 (ea->eae_bei != PCIM_EA_BEI_ROM)) 3944 continue; 3945 } 3946 3947 rid = pci_ea_bei_to_rid(dev, ea->eae_bei); 3948 if (rid < 0) 3949 continue; 3950 3951 /* Skip resources already allocated by EA */ 3952 if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) || 3953 (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL)) 3954 continue; 3955 3956 start = ea->eae_base; 3957 count = ea->eae_max_offset + 1; 3958 #ifdef PCI_IOV 3959 if (iov != NULL) 3960 count = count * iov->iov_num_vfs; 3961 #endif 3962 end = start + count - 1; 3963 if (count == 0) 3964 continue; 3965 3966 resource_list_add(rl, type, rid, start, end, count); 3967 res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count, 3968 flags); 3969 if (res == NULL) { 3970 resource_list_delete(rl, type, rid); 3971 3972 /* 3973 * Failed to allocate using EA, disable entry. 3974 * Another attempt to allocation will be performed 3975 * further, but this time using legacy BAR registers 3976 */ 3977 tmp = pci_read_config(dev, ea->eae_cfg_offset, 4); 3978 tmp &= ~PCIM_EA_ENABLE; 3979 pci_write_config(dev, ea->eae_cfg_offset, tmp, 4); 3980 3981 /* 3982 * Disabling entry might fail in case it is hardwired. 3983 * Read flags again to match current status. 3984 */ 3985 ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4); 3986 3987 continue; 3988 } 3989 3990 /* As per specification, fill BAR with zeros */ 3991 pci_write_config(dev, rid, 0, 4); 3992 } 3993 } 3994 3995 void 3996 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask) 3997 { 3998 struct pci_devinfo *dinfo; 3999 pcicfgregs *cfg; 4000 struct resource_list *rl; 4001 const struct pci_quirk *q; 4002 uint32_t devid; 4003 int i; 4004 4005 dinfo = device_get_ivars(dev); 4006 cfg = &dinfo->cfg; 4007 rl = &dinfo->resources; 4008 devid = (cfg->device << 16) | cfg->vendor; 4009 4010 /* Allocate resources using Enhanced Allocation */ 4011 pci_add_resources_ea(bus, dev, 0); 4012 4013 /* ATA devices needs special map treatment */ 4014 if ((pci_get_class(dev) == PCIC_STORAGE) && 4015 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) && 4016 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) || 4017 (!pci_read_config(dev, PCIR_BAR(0), 4) && 4018 !pci_read_config(dev, PCIR_BAR(2), 4))) ) 4019 pci_ata_maps(bus, dev, rl, force, prefetchmask); 4020 else 4021 for (i = 0; i < cfg->nummaps;) { 4022 /* Skip resources already managed by EA */ 4023 if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) || 4024 (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) || 4025 pci_ea_is_enabled(dev, PCIR_BAR(i))) { 4026 i++; 4027 continue; 4028 } 4029 4030 /* 4031 * Skip quirked resources. 4032 */ 4033 for (q = &pci_quirks[0]; q->devid != 0; q++) 4034 if (q->devid == devid && 4035 q->type == PCI_QUIRK_UNMAP_REG && 4036 q->arg1 == PCIR_BAR(i)) 4037 break; 4038 if (q->devid != 0) { 4039 i++; 4040 continue; 4041 } 4042 i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force, 4043 prefetchmask & (1 << i)); 4044 } 4045 4046 /* 4047 * Add additional, quirked resources. 4048 */ 4049 for (q = &pci_quirks[0]; q->devid != 0; q++) 4050 if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG) 4051 pci_add_map(bus, dev, q->arg1, rl, force, 0); 4052 4053 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) { 4054 #ifdef __PCI_REROUTE_INTERRUPT 4055 /* 4056 * Try to re-route interrupts. Sometimes the BIOS or 4057 * firmware may leave bogus values in these registers. 4058 * If the re-route fails, then just stick with what we 4059 * have. 4060 */ 4061 pci_assign_interrupt(bus, dev, 1); 4062 #else 4063 pci_assign_interrupt(bus, dev, 0); 4064 #endif 4065 } 4066 4067 if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS && 4068 pci_get_subclass(dev) == PCIS_SERIALBUS_USB) { 4069 if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI) 4070 xhci_early_takeover(dev); 4071 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI) 4072 ehci_early_takeover(dev); 4073 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI) 4074 ohci_early_takeover(dev); 4075 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI) 4076 uhci_early_takeover(dev); 4077 } 4078 4079 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 4080 /* 4081 * Reserve resources for secondary bus ranges behind bridge 4082 * devices. 4083 */ 4084 pci_reserve_secbus(bus, dev, cfg, rl); 4085 #endif 4086 } 4087 4088 static struct pci_devinfo * 4089 pci_identify_function(device_t pcib, device_t dev, int domain, int busno, 4090 int slot, int func) 4091 { 4092 struct pci_devinfo *dinfo; 4093 4094 dinfo = pci_read_device(pcib, dev, domain, busno, slot, func); 4095 if (dinfo != NULL) 4096 pci_add_child(dev, dinfo); 4097 4098 return (dinfo); 4099 } 4100 4101 void 4102 pci_add_children(device_t dev, int domain, int busno) 4103 { 4104 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4105 device_t pcib = device_get_parent(dev); 4106 struct pci_devinfo *dinfo; 4107 int maxslots; 4108 int s, f, pcifunchigh; 4109 uint8_t hdrtype; 4110 int first_func; 4111 4112 /* 4113 * Try to detect a device at slot 0, function 0. If it exists, try to 4114 * enable ARI. We must enable ARI before detecting the rest of the 4115 * functions on this bus as ARI changes the set of slots and functions 4116 * that are legal on this bus. 4117 */ 4118 dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0); 4119 if (dinfo != NULL && pci_enable_ari) 4120 PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev); 4121 4122 /* 4123 * Start looking for new devices on slot 0 at function 1 because we 4124 * just identified the device at slot 0, function 0. 4125 */ 4126 first_func = 1; 4127 4128 maxslots = PCIB_MAXSLOTS(pcib); 4129 for (s = 0; s <= maxslots; s++, first_func = 0) { 4130 pcifunchigh = 0; 4131 f = 0; 4132 DELAY(1); 4133 hdrtype = REG(PCIR_HDRTYPE, 1); 4134 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4135 continue; 4136 if (hdrtype & PCIM_MFDEV) 4137 pcifunchigh = PCIB_MAXFUNCS(pcib); 4138 for (f = first_func; f <= pcifunchigh; f++) 4139 pci_identify_function(pcib, dev, domain, busno, s, f); 4140 } 4141 #undef REG 4142 } 4143 4144 int 4145 pci_rescan_method(device_t dev) 4146 { 4147 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4148 device_t pcib = device_get_parent(dev); 4149 device_t child, *devlist, *unchanged; 4150 int devcount, error, i, j, maxslots, oldcount; 4151 int busno, domain, s, f, pcifunchigh; 4152 uint8_t hdrtype; 4153 4154 /* No need to check for ARI on a rescan. */ 4155 error = device_get_children(dev, &devlist, &devcount); 4156 if (error) 4157 return (error); 4158 if (devcount != 0) { 4159 unchanged = malloc(devcount * sizeof(device_t), M_TEMP, 4160 M_NOWAIT | M_ZERO); 4161 if (unchanged == NULL) { 4162 free(devlist, M_TEMP); 4163 return (ENOMEM); 4164 } 4165 } else 4166 unchanged = NULL; 4167 4168 domain = pcib_get_domain(dev); 4169 busno = pcib_get_bus(dev); 4170 maxslots = PCIB_MAXSLOTS(pcib); 4171 for (s = 0; s <= maxslots; s++) { 4172 /* If function 0 is not present, skip to the next slot. */ 4173 f = 0; 4174 if (REG(PCIR_VENDOR, 2) == 0xffff) 4175 continue; 4176 pcifunchigh = 0; 4177 hdrtype = REG(PCIR_HDRTYPE, 1); 4178 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4179 continue; 4180 if (hdrtype & PCIM_MFDEV) 4181 pcifunchigh = PCIB_MAXFUNCS(pcib); 4182 for (f = 0; f <= pcifunchigh; f++) { 4183 if (REG(PCIR_VENDOR, 2) == 0xffff) 4184 continue; 4185 4186 /* 4187 * Found a valid function. Check if a 4188 * device_t for this device already exists. 4189 */ 4190 for (i = 0; i < devcount; i++) { 4191 child = devlist[i]; 4192 if (child == NULL) 4193 continue; 4194 if (pci_get_slot(child) == s && 4195 pci_get_function(child) == f) { 4196 unchanged[i] = child; 4197 goto next_func; 4198 } 4199 } 4200 4201 pci_identify_function(pcib, dev, domain, busno, s, f); 4202 next_func:; 4203 } 4204 } 4205 4206 /* Remove devices that are no longer present. */ 4207 for (i = 0; i < devcount; i++) { 4208 if (unchanged[i] != NULL) 4209 continue; 4210 device_delete_child(dev, devlist[i]); 4211 } 4212 4213 free(devlist, M_TEMP); 4214 oldcount = devcount; 4215 4216 /* Try to attach the devices just added. */ 4217 error = device_get_children(dev, &devlist, &devcount); 4218 if (error) { 4219 free(unchanged, M_TEMP); 4220 return (error); 4221 } 4222 4223 for (i = 0; i < devcount; i++) { 4224 for (j = 0; j < oldcount; j++) { 4225 if (devlist[i] == unchanged[j]) 4226 goto next_device; 4227 } 4228 4229 device_probe_and_attach(devlist[i]); 4230 next_device:; 4231 } 4232 4233 free(unchanged, M_TEMP); 4234 free(devlist, M_TEMP); 4235 return (0); 4236 #undef REG 4237 } 4238 4239 #ifdef PCI_IOV 4240 device_t 4241 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid, 4242 uint16_t did) 4243 { 4244 struct pci_devinfo *vf_dinfo; 4245 device_t pcib; 4246 int busno, slot, func; 4247 4248 pcib = device_get_parent(bus); 4249 4250 PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func); 4251 4252 vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno, 4253 slot, func, vid, did); 4254 4255 vf_dinfo->cfg.flags |= PCICFG_VF; 4256 pci_add_child(bus, vf_dinfo); 4257 4258 return (vf_dinfo->cfg.dev); 4259 } 4260 4261 device_t 4262 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid, 4263 uint16_t vid, uint16_t did) 4264 { 4265 4266 return (pci_add_iov_child(bus, pf, rid, vid, did)); 4267 } 4268 #endif 4269 4270 static void 4271 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo) 4272 { 4273 int aer; 4274 uint32_t r; 4275 uint16_t r2; 4276 4277 if (dinfo->cfg.pcie.pcie_location != 0 && 4278 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) { 4279 r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4280 PCIER_ROOT_CTL, 2); 4281 r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR | 4282 PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL); 4283 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4284 PCIER_ROOT_CTL, r2, 2); 4285 } 4286 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 4287 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 4288 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 4289 if (r != 0 && bootverbose) { 4290 pci_printf(&dinfo->cfg, 4291 "clearing AER UC 0x%08x -> 0x%08x\n", 4292 r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4293 4)); 4294 } 4295 4296 r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4); 4297 r &= ~(PCIM_AER_UC_TRAINING_ERROR | 4298 PCIM_AER_UC_DL_PROTOCOL_ERROR | 4299 PCIM_AER_UC_SURPRISE_LINK_DOWN | 4300 PCIM_AER_UC_POISONED_TLP | 4301 PCIM_AER_UC_FC_PROTOCOL_ERROR | 4302 PCIM_AER_UC_COMPLETION_TIMEOUT | 4303 PCIM_AER_UC_COMPLETER_ABORT | 4304 PCIM_AER_UC_UNEXPECTED_COMPLETION | 4305 PCIM_AER_UC_RECEIVER_OVERFLOW | 4306 PCIM_AER_UC_MALFORMED_TLP | 4307 PCIM_AER_UC_ECRC_ERROR | 4308 PCIM_AER_UC_UNSUPPORTED_REQUEST | 4309 PCIM_AER_UC_ACS_VIOLATION | 4310 PCIM_AER_UC_INTERNAL_ERROR | 4311 PCIM_AER_UC_MC_BLOCKED_TLP | 4312 PCIM_AER_UC_ATOMIC_EGRESS_BLK | 4313 PCIM_AER_UC_TLP_PREFIX_BLOCKED); 4314 pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4); 4315 4316 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 4317 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 4318 if (r != 0 && bootverbose) { 4319 pci_printf(&dinfo->cfg, 4320 "clearing AER COR 0x%08x -> 0x%08x\n", 4321 r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4322 4)); 4323 } 4324 4325 r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4); 4326 r &= ~(PCIM_AER_COR_RECEIVER_ERROR | 4327 PCIM_AER_COR_BAD_TLP | 4328 PCIM_AER_COR_BAD_DLLP | 4329 PCIM_AER_COR_REPLAY_ROLLOVER | 4330 PCIM_AER_COR_REPLAY_TIMEOUT | 4331 PCIM_AER_COR_ADVISORY_NF_ERROR | 4332 PCIM_AER_COR_INTERNAL_ERROR | 4333 PCIM_AER_COR_HEADER_LOG_OVFLOW); 4334 pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4); 4335 4336 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4337 PCIER_DEVICE_CTL, 2); 4338 r |= PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE | 4339 PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE; 4340 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4341 PCIER_DEVICE_CTL, r, 2); 4342 } 4343 } 4344 4345 void 4346 pci_add_child(device_t bus, struct pci_devinfo *dinfo) 4347 { 4348 device_t dev; 4349 4350 dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1); 4351 device_set_ivars(dev, dinfo); 4352 resource_list_init(&dinfo->resources); 4353 pci_cfg_save(dev, dinfo, 0); 4354 pci_cfg_restore(dev, dinfo); 4355 pci_print_verbose(dinfo); 4356 pci_add_resources(bus, dev, 0, 0); 4357 pci_child_added(dinfo->cfg.dev); 4358 4359 if (pci_clear_aer_on_attach) 4360 pci_add_child_clear_aer(dev, dinfo); 4361 4362 EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev); 4363 } 4364 4365 void 4366 pci_child_added_method(device_t dev, device_t child) 4367 { 4368 4369 } 4370 4371 static int 4372 pci_probe(device_t dev) 4373 { 4374 4375 device_set_desc(dev, "PCI bus"); 4376 4377 /* Allow other subclasses to override this driver. */ 4378 return (BUS_PROBE_GENERIC); 4379 } 4380 4381 int 4382 pci_attach_common(device_t dev) 4383 { 4384 struct pci_softc *sc; 4385 int busno, domain; 4386 #ifdef PCI_RES_BUS 4387 int rid; 4388 #endif 4389 4390 sc = device_get_softc(dev); 4391 domain = pcib_get_domain(dev); 4392 busno = pcib_get_bus(dev); 4393 #ifdef PCI_RES_BUS 4394 rid = 0; 4395 sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno, 4396 1, 0); 4397 if (sc->sc_bus == NULL) { 4398 device_printf(dev, "failed to allocate bus number\n"); 4399 return (ENXIO); 4400 } 4401 #endif 4402 if (bootverbose) 4403 device_printf(dev, "domain=%d, physical bus=%d\n", 4404 domain, busno); 4405 sc->sc_dma_tag = bus_get_dma_tag(dev); 4406 return (0); 4407 } 4408 4409 int 4410 pci_attach(device_t dev) 4411 { 4412 int busno, domain, error; 4413 4414 error = pci_attach_common(dev); 4415 if (error) 4416 return (error); 4417 4418 /* 4419 * Since there can be multiple independently numbered PCI 4420 * buses on systems with multiple PCI domains, we can't use 4421 * the unit number to decide which bus we are probing. We ask 4422 * the parent pcib what our domain and bus numbers are. 4423 */ 4424 domain = pcib_get_domain(dev); 4425 busno = pcib_get_bus(dev); 4426 pci_add_children(dev, domain, busno); 4427 return (bus_generic_attach(dev)); 4428 } 4429 4430 int 4431 pci_detach(device_t dev) 4432 { 4433 #ifdef PCI_RES_BUS 4434 struct pci_softc *sc; 4435 #endif 4436 int error; 4437 4438 error = bus_generic_detach(dev); 4439 if (error) 4440 return (error); 4441 #ifdef PCI_RES_BUS 4442 sc = device_get_softc(dev); 4443 error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus); 4444 if (error) 4445 return (error); 4446 #endif 4447 return (device_delete_children(dev)); 4448 } 4449 4450 static void 4451 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp) 4452 { 4453 int line, unit; 4454 const char *at; 4455 char me1[24], me2[32]; 4456 uint8_t b, s, f; 4457 uint32_t d; 4458 4459 d = pci_get_domain(child); 4460 b = pci_get_bus(child); 4461 s = pci_get_slot(child); 4462 f = pci_get_function(child); 4463 snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f); 4464 snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f); 4465 line = 0; 4466 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 4467 resource_string_value(name, unit, "at", &at); 4468 if (strcmp(at, me1) != 0 && strcmp(at, me2) != 0) 4469 continue; /* No match, try next candidate */ 4470 *unitp = unit; 4471 return; 4472 } 4473 } 4474 4475 static void 4476 pci_set_power_child(device_t dev, device_t child, int state) 4477 { 4478 device_t pcib; 4479 int dstate; 4480 4481 /* 4482 * Set the device to the given state. If the firmware suggests 4483 * a different power state, use it instead. If power management 4484 * is not present, the firmware is responsible for managing 4485 * device power. Skip children who aren't attached since they 4486 * are handled separately. 4487 */ 4488 pcib = device_get_parent(dev); 4489 dstate = state; 4490 if (device_is_attached(child) && 4491 PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0) 4492 pci_set_powerstate(child, dstate); 4493 } 4494 4495 int 4496 pci_suspend_child(device_t dev, device_t child) 4497 { 4498 struct pci_devinfo *dinfo; 4499 struct resource_list_entry *rle; 4500 int error; 4501 4502 dinfo = device_get_ivars(child); 4503 4504 /* 4505 * Save the PCI configuration space for the child and set the 4506 * device in the appropriate power state for this sleep state. 4507 */ 4508 pci_cfg_save(child, dinfo, 0); 4509 4510 /* Suspend devices before potentially powering them down. */ 4511 error = bus_generic_suspend_child(dev, child); 4512 4513 if (error) 4514 return (error); 4515 4516 if (pci_do_power_suspend) { 4517 /* 4518 * Make sure this device's interrupt handler is not invoked 4519 * in the case the device uses a shared interrupt that can 4520 * be raised by some other device. 4521 * This is applicable only to regular (legacy) PCI interrupts 4522 * as MSI/MSI-X interrupts are never shared. 4523 */ 4524 rle = resource_list_find(&dinfo->resources, 4525 SYS_RES_IRQ, 0); 4526 if (rle != NULL && rle->res != NULL) 4527 (void)bus_suspend_intr(child, rle->res); 4528 pci_set_power_child(dev, child, PCI_POWERSTATE_D3); 4529 } 4530 4531 return (0); 4532 } 4533 4534 int 4535 pci_resume_child(device_t dev, device_t child) 4536 { 4537 struct pci_devinfo *dinfo; 4538 struct resource_list_entry *rle; 4539 4540 if (pci_do_power_resume) 4541 pci_set_power_child(dev, child, PCI_POWERSTATE_D0); 4542 4543 dinfo = device_get_ivars(child); 4544 pci_cfg_restore(child, dinfo); 4545 if (!device_is_attached(child)) 4546 pci_cfg_save(child, dinfo, 1); 4547 4548 bus_generic_resume_child(dev, child); 4549 4550 /* 4551 * Allow interrupts only after fully resuming the driver and hardware. 4552 */ 4553 if (pci_do_power_suspend) { 4554 /* See pci_suspend_child for details. */ 4555 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 4556 if (rle != NULL && rle->res != NULL) 4557 (void)bus_resume_intr(child, rle->res); 4558 } 4559 4560 return (0); 4561 } 4562 4563 int 4564 pci_resume(device_t dev) 4565 { 4566 device_t child, *devlist; 4567 int error, i, numdevs; 4568 4569 if ((error = device_get_children(dev, &devlist, &numdevs)) != 0) 4570 return (error); 4571 4572 /* 4573 * Resume critical devices first, then everything else later. 4574 */ 4575 for (i = 0; i < numdevs; i++) { 4576 child = devlist[i]; 4577 switch (pci_get_class(child)) { 4578 case PCIC_DISPLAY: 4579 case PCIC_MEMORY: 4580 case PCIC_BRIDGE: 4581 case PCIC_BASEPERIPH: 4582 BUS_RESUME_CHILD(dev, child); 4583 break; 4584 } 4585 } 4586 for (i = 0; i < numdevs; i++) { 4587 child = devlist[i]; 4588 switch (pci_get_class(child)) { 4589 case PCIC_DISPLAY: 4590 case PCIC_MEMORY: 4591 case PCIC_BRIDGE: 4592 case PCIC_BASEPERIPH: 4593 break; 4594 default: 4595 BUS_RESUME_CHILD(dev, child); 4596 } 4597 } 4598 free(devlist, M_TEMP); 4599 return (0); 4600 } 4601 4602 static void 4603 pci_load_vendor_data(void) 4604 { 4605 caddr_t data; 4606 void *ptr; 4607 size_t sz; 4608 4609 data = preload_search_by_type("pci_vendor_data"); 4610 if (data != NULL) { 4611 ptr = preload_fetch_addr(data); 4612 sz = preload_fetch_size(data); 4613 if (ptr != NULL && sz != 0) { 4614 pci_vendordata = ptr; 4615 pci_vendordata_size = sz; 4616 /* terminate the database */ 4617 pci_vendordata[pci_vendordata_size] = '\n'; 4618 } 4619 } 4620 } 4621 4622 void 4623 pci_driver_added(device_t dev, driver_t *driver) 4624 { 4625 int numdevs; 4626 device_t *devlist; 4627 device_t child; 4628 struct pci_devinfo *dinfo; 4629 int i; 4630 4631 if (bootverbose) 4632 device_printf(dev, "driver added\n"); 4633 DEVICE_IDENTIFY(driver, dev); 4634 if (device_get_children(dev, &devlist, &numdevs) != 0) 4635 return; 4636 for (i = 0; i < numdevs; i++) { 4637 child = devlist[i]; 4638 if (device_get_state(child) != DS_NOTPRESENT) 4639 continue; 4640 dinfo = device_get_ivars(child); 4641 pci_print_verbose(dinfo); 4642 if (bootverbose) 4643 pci_printf(&dinfo->cfg, "reprobing on driver added\n"); 4644 pci_cfg_restore(child, dinfo); 4645 if (device_probe_and_attach(child) != 0) 4646 pci_child_detached(dev, child); 4647 } 4648 free(devlist, M_TEMP); 4649 } 4650 4651 int 4652 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4653 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4654 { 4655 struct pci_devinfo *dinfo; 4656 struct msix_table_entry *mte; 4657 struct msix_vector *mv; 4658 uint64_t addr; 4659 uint32_t data; 4660 void *cookie; 4661 int error, rid; 4662 4663 error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr, 4664 arg, &cookie); 4665 if (error) 4666 return (error); 4667 4668 /* If this is not a direct child, just bail out. */ 4669 if (device_get_parent(child) != dev) { 4670 *cookiep = cookie; 4671 return(0); 4672 } 4673 4674 rid = rman_get_rid(irq); 4675 if (rid == 0) { 4676 /* Make sure that INTx is enabled */ 4677 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4678 } else { 4679 /* 4680 * Check to see if the interrupt is MSI or MSI-X. 4681 * Ask our parent to map the MSI and give 4682 * us the address and data register values. 4683 * If we fail for some reason, teardown the 4684 * interrupt handler. 4685 */ 4686 dinfo = device_get_ivars(child); 4687 if (dinfo->cfg.msi.msi_alloc > 0) { 4688 if (dinfo->cfg.msi.msi_addr == 0) { 4689 KASSERT(dinfo->cfg.msi.msi_handlers == 0, 4690 ("MSI has handlers, but vectors not mapped")); 4691 error = PCIB_MAP_MSI(device_get_parent(dev), 4692 child, rman_get_start(irq), &addr, &data); 4693 if (error) 4694 goto bad; 4695 dinfo->cfg.msi.msi_addr = addr; 4696 dinfo->cfg.msi.msi_data = data; 4697 } 4698 if (dinfo->cfg.msi.msi_handlers == 0) 4699 pci_enable_msi(child, dinfo->cfg.msi.msi_addr, 4700 dinfo->cfg.msi.msi_data); 4701 dinfo->cfg.msi.msi_handlers++; 4702 } else { 4703 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4704 ("No MSI or MSI-X interrupts allocated")); 4705 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4706 ("MSI-X index too high")); 4707 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4708 KASSERT(mte->mte_vector != 0, ("no message vector")); 4709 mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1]; 4710 KASSERT(mv->mv_irq == rman_get_start(irq), 4711 ("IRQ mismatch")); 4712 if (mv->mv_address == 0) { 4713 KASSERT(mte->mte_handlers == 0, 4714 ("MSI-X table entry has handlers, but vector not mapped")); 4715 error = PCIB_MAP_MSI(device_get_parent(dev), 4716 child, rman_get_start(irq), &addr, &data); 4717 if (error) 4718 goto bad; 4719 mv->mv_address = addr; 4720 mv->mv_data = data; 4721 } 4722 4723 /* 4724 * The MSIX table entry must be made valid by 4725 * incrementing the mte_handlers before 4726 * calling pci_enable_msix() and 4727 * pci_resume_msix(). Else the MSIX rewrite 4728 * table quirk will not work as expected. 4729 */ 4730 mte->mte_handlers++; 4731 if (mte->mte_handlers == 1) { 4732 pci_enable_msix(child, rid - 1, mv->mv_address, 4733 mv->mv_data); 4734 pci_unmask_msix(child, rid - 1); 4735 } 4736 } 4737 4738 /* 4739 * Make sure that INTx is disabled if we are using MSI/MSI-X, 4740 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG, 4741 * in which case we "enable" INTx so MSI/MSI-X actually works. 4742 */ 4743 if (!pci_has_quirk(pci_get_devid(child), 4744 PCI_QUIRK_MSI_INTX_BUG)) 4745 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4746 else 4747 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4748 bad: 4749 if (error) { 4750 (void)bus_generic_teardown_intr(dev, child, irq, 4751 cookie); 4752 return (error); 4753 } 4754 } 4755 *cookiep = cookie; 4756 return (0); 4757 } 4758 4759 int 4760 pci_teardown_intr(device_t dev, device_t child, struct resource *irq, 4761 void *cookie) 4762 { 4763 struct msix_table_entry *mte; 4764 struct resource_list_entry *rle; 4765 struct pci_devinfo *dinfo; 4766 int error, rid; 4767 4768 if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE)) 4769 return (EINVAL); 4770 4771 /* If this isn't a direct child, just bail out */ 4772 if (device_get_parent(child) != dev) 4773 return(bus_generic_teardown_intr(dev, child, irq, cookie)); 4774 4775 rid = rman_get_rid(irq); 4776 if (rid == 0) { 4777 /* Mask INTx */ 4778 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4779 } else { 4780 /* 4781 * Check to see if the interrupt is MSI or MSI-X. If so, 4782 * decrement the appropriate handlers count and mask the 4783 * MSI-X message, or disable MSI messages if the count 4784 * drops to 0. 4785 */ 4786 dinfo = device_get_ivars(child); 4787 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid); 4788 if (rle->res != irq) 4789 return (EINVAL); 4790 if (dinfo->cfg.msi.msi_alloc > 0) { 4791 KASSERT(rid <= dinfo->cfg.msi.msi_alloc, 4792 ("MSI-X index too high")); 4793 if (dinfo->cfg.msi.msi_handlers == 0) 4794 return (EINVAL); 4795 dinfo->cfg.msi.msi_handlers--; 4796 if (dinfo->cfg.msi.msi_handlers == 0) 4797 pci_disable_msi(child); 4798 } else { 4799 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4800 ("No MSI or MSI-X interrupts allocated")); 4801 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4802 ("MSI-X index too high")); 4803 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4804 if (mte->mte_handlers == 0) 4805 return (EINVAL); 4806 mte->mte_handlers--; 4807 if (mte->mte_handlers == 0) 4808 pci_mask_msix(child, rid - 1); 4809 } 4810 } 4811 error = bus_generic_teardown_intr(dev, child, irq, cookie); 4812 if (rid > 0) 4813 KASSERT(error == 0, 4814 ("%s: generic teardown failed for MSI/MSI-X", __func__)); 4815 return (error); 4816 } 4817 4818 int 4819 pci_print_child(device_t dev, device_t child) 4820 { 4821 struct pci_devinfo *dinfo; 4822 struct resource_list *rl; 4823 int retval = 0; 4824 4825 dinfo = device_get_ivars(child); 4826 rl = &dinfo->resources; 4827 4828 retval += bus_print_child_header(dev, child); 4829 4830 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 4831 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); 4832 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 4833 if (device_get_flags(dev)) 4834 retval += printf(" flags %#x", device_get_flags(dev)); 4835 4836 retval += printf(" at device %d.%d", pci_get_slot(child), 4837 pci_get_function(child)); 4838 4839 retval += bus_print_child_domain(dev, child); 4840 retval += bus_print_child_footer(dev, child); 4841 4842 return (retval); 4843 } 4844 4845 static const struct 4846 { 4847 int class; 4848 int subclass; 4849 int report; /* 0 = bootverbose, 1 = always */ 4850 const char *desc; 4851 } pci_nomatch_tab[] = { 4852 {PCIC_OLD, -1, 1, "old"}, 4853 {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"}, 4854 {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"}, 4855 {PCIC_STORAGE, -1, 1, "mass storage"}, 4856 {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"}, 4857 {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"}, 4858 {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"}, 4859 {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"}, 4860 {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"}, 4861 {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"}, 4862 {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"}, 4863 {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"}, 4864 {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"}, 4865 {PCIC_NETWORK, -1, 1, "network"}, 4866 {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"}, 4867 {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"}, 4868 {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"}, 4869 {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"}, 4870 {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"}, 4871 {PCIC_DISPLAY, -1, 1, "display"}, 4872 {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"}, 4873 {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"}, 4874 {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"}, 4875 {PCIC_MULTIMEDIA, -1, 1, "multimedia"}, 4876 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"}, 4877 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"}, 4878 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"}, 4879 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"}, 4880 {PCIC_MEMORY, -1, 1, "memory"}, 4881 {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"}, 4882 {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"}, 4883 {PCIC_BRIDGE, -1, 1, "bridge"}, 4884 {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"}, 4885 {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"}, 4886 {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"}, 4887 {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"}, 4888 {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"}, 4889 {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"}, 4890 {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"}, 4891 {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"}, 4892 {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"}, 4893 {PCIC_SIMPLECOMM, -1, 1, "simple comms"}, 4894 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */ 4895 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"}, 4896 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"}, 4897 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"}, 4898 {PCIC_BASEPERIPH, -1, 0, "base peripheral"}, 4899 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"}, 4900 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"}, 4901 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"}, 4902 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"}, 4903 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"}, 4904 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"}, 4905 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"}, 4906 {PCIC_INPUTDEV, -1, 1, "input device"}, 4907 {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"}, 4908 {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"}, 4909 {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"}, 4910 {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"}, 4911 {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"}, 4912 {PCIC_DOCKING, -1, 1, "docking station"}, 4913 {PCIC_PROCESSOR, -1, 1, "processor"}, 4914 {PCIC_SERIALBUS, -1, 1, "serial bus"}, 4915 {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"}, 4916 {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"}, 4917 {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"}, 4918 {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"}, 4919 {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"}, 4920 {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"}, 4921 {PCIC_WIRELESS, -1, 1, "wireless controller"}, 4922 {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"}, 4923 {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"}, 4924 {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"}, 4925 {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"}, 4926 {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"}, 4927 {PCIC_SATCOM, -1, 1, "satellite communication"}, 4928 {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"}, 4929 {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"}, 4930 {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"}, 4931 {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"}, 4932 {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"}, 4933 {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"}, 4934 {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"}, 4935 {PCIC_DASP, -1, 0, "dasp"}, 4936 {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"}, 4937 {PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"}, 4938 {PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"}, 4939 {PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"}, 4940 {0, 0, 0, NULL} 4941 }; 4942 4943 void 4944 pci_probe_nomatch(device_t dev, device_t child) 4945 { 4946 int i, report; 4947 const char *cp, *scp; 4948 char *device; 4949 4950 /* 4951 * Look for a listing for this device in a loaded device database. 4952 */ 4953 report = 1; 4954 if ((device = pci_describe_device(child)) != NULL) { 4955 device_printf(dev, "<%s>", device); 4956 free(device, M_DEVBUF); 4957 } else { 4958 /* 4959 * Scan the class/subclass descriptions for a general 4960 * description. 4961 */ 4962 cp = "unknown"; 4963 scp = NULL; 4964 for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { 4965 if (pci_nomatch_tab[i].class == pci_get_class(child)) { 4966 if (pci_nomatch_tab[i].subclass == -1) { 4967 cp = pci_nomatch_tab[i].desc; 4968 report = pci_nomatch_tab[i].report; 4969 } else if (pci_nomatch_tab[i].subclass == 4970 pci_get_subclass(child)) { 4971 scp = pci_nomatch_tab[i].desc; 4972 report = pci_nomatch_tab[i].report; 4973 } 4974 } 4975 } 4976 if (report || bootverbose) { 4977 device_printf(dev, "<%s%s%s>", 4978 cp ? cp : "", 4979 ((cp != NULL) && (scp != NULL)) ? ", " : "", 4980 scp ? scp : ""); 4981 } 4982 } 4983 if (report || bootverbose) { 4984 printf(" at device %d.%d (no driver attached)\n", 4985 pci_get_slot(child), pci_get_function(child)); 4986 } 4987 pci_cfg_save(child, device_get_ivars(child), 1); 4988 } 4989 4990 void 4991 pci_child_detached(device_t dev, device_t child) 4992 { 4993 struct pci_devinfo *dinfo; 4994 struct resource_list *rl; 4995 4996 dinfo = device_get_ivars(child); 4997 rl = &dinfo->resources; 4998 4999 /* 5000 * Have to deallocate IRQs before releasing any MSI messages and 5001 * have to release MSI messages before deallocating any memory 5002 * BARs. 5003 */ 5004 if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0) 5005 pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n"); 5006 if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) { 5007 if (dinfo->cfg.msi.msi_alloc != 0) 5008 pci_printf(&dinfo->cfg, "Device leaked %d MSI " 5009 "vectors\n", dinfo->cfg.msi.msi_alloc); 5010 else 5011 pci_printf(&dinfo->cfg, "Device leaked %d MSI-X " 5012 "vectors\n", dinfo->cfg.msix.msix_alloc); 5013 (void)pci_release_msi(child); 5014 } 5015 if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0) 5016 pci_printf(&dinfo->cfg, "Device leaked memory resources\n"); 5017 if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0) 5018 pci_printf(&dinfo->cfg, "Device leaked I/O resources\n"); 5019 #ifdef PCI_RES_BUS 5020 if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0) 5021 pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n"); 5022 #endif 5023 5024 pci_cfg_save(child, dinfo, 1); 5025 } 5026 5027 /* 5028 * Parse the PCI device database, if loaded, and return a pointer to a 5029 * description of the device. 5030 * 5031 * The database is flat text formatted as follows: 5032 * 5033 * Any line not in a valid format is ignored. 5034 * Lines are terminated with newline '\n' characters. 5035 * 5036 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then 5037 * the vendor name. 5038 * 5039 * A DEVICE line is entered immediately below the corresponding VENDOR ID. 5040 * - devices cannot be listed without a corresponding VENDOR line. 5041 * A DEVICE line consists of a TAB, the 4 digit (hex) device code, 5042 * another TAB, then the device name. 5043 */ 5044 5045 /* 5046 * Assuming (ptr) points to the beginning of a line in the database, 5047 * return the vendor or device and description of the next entry. 5048 * The value of (vendor) or (device) inappropriate for the entry type 5049 * is set to -1. Returns nonzero at the end of the database. 5050 * 5051 * Note that this is slightly unrobust in the face of corrupt data; 5052 * we attempt to safeguard against this by spamming the end of the 5053 * database with a newline when we initialise. 5054 */ 5055 static int 5056 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc) 5057 { 5058 char *cp = *ptr; 5059 int left; 5060 5061 *device = -1; 5062 *vendor = -1; 5063 **desc = '\0'; 5064 for (;;) { 5065 left = pci_vendordata_size - (cp - pci_vendordata); 5066 if (left <= 0) { 5067 *ptr = cp; 5068 return(1); 5069 } 5070 5071 /* vendor entry? */ 5072 if (*cp != '\t' && 5073 sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2) 5074 break; 5075 /* device entry? */ 5076 if (*cp == '\t' && 5077 sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2) 5078 break; 5079 5080 /* skip to next line */ 5081 while (*cp != '\n' && left > 0) { 5082 cp++; 5083 left--; 5084 } 5085 if (*cp == '\n') { 5086 cp++; 5087 left--; 5088 } 5089 } 5090 /* skip to next line */ 5091 while (*cp != '\n' && left > 0) { 5092 cp++; 5093 left--; 5094 } 5095 if (*cp == '\n' && left > 0) 5096 cp++; 5097 *ptr = cp; 5098 return(0); 5099 } 5100 5101 static char * 5102 pci_describe_device(device_t dev) 5103 { 5104 int vendor, device; 5105 char *desc, *vp, *dp, *line; 5106 5107 desc = vp = dp = NULL; 5108 5109 /* 5110 * If we have no vendor data, we can't do anything. 5111 */ 5112 if (pci_vendordata == NULL) 5113 goto out; 5114 5115 /* 5116 * Scan the vendor data looking for this device 5117 */ 5118 line = pci_vendordata; 5119 if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5120 goto out; 5121 for (;;) { 5122 if (pci_describe_parse_line(&line, &vendor, &device, &vp)) 5123 goto out; 5124 if (vendor == pci_get_vendor(dev)) 5125 break; 5126 } 5127 if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5128 goto out; 5129 for (;;) { 5130 if (pci_describe_parse_line(&line, &vendor, &device, &dp)) { 5131 *dp = 0; 5132 break; 5133 } 5134 if (vendor != -1) { 5135 *dp = 0; 5136 break; 5137 } 5138 if (device == pci_get_device(dev)) 5139 break; 5140 } 5141 if (dp[0] == '\0') 5142 snprintf(dp, 80, "0x%x", pci_get_device(dev)); 5143 if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) != 5144 NULL) 5145 sprintf(desc, "%s, %s", vp, dp); 5146 out: 5147 if (vp != NULL) 5148 free(vp, M_DEVBUF); 5149 if (dp != NULL) 5150 free(dp, M_DEVBUF); 5151 return(desc); 5152 } 5153 5154 int 5155 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 5156 { 5157 struct pci_devinfo *dinfo; 5158 pcicfgregs *cfg; 5159 5160 dinfo = device_get_ivars(child); 5161 cfg = &dinfo->cfg; 5162 5163 switch (which) { 5164 case PCI_IVAR_ETHADDR: 5165 /* 5166 * The generic accessor doesn't deal with failure, so 5167 * we set the return value, then return an error. 5168 */ 5169 *((uint8_t **) result) = NULL; 5170 return (EINVAL); 5171 case PCI_IVAR_SUBVENDOR: 5172 *result = cfg->subvendor; 5173 break; 5174 case PCI_IVAR_SUBDEVICE: 5175 *result = cfg->subdevice; 5176 break; 5177 case PCI_IVAR_VENDOR: 5178 *result = cfg->vendor; 5179 break; 5180 case PCI_IVAR_DEVICE: 5181 *result = cfg->device; 5182 break; 5183 case PCI_IVAR_DEVID: 5184 *result = (cfg->device << 16) | cfg->vendor; 5185 break; 5186 case PCI_IVAR_CLASS: 5187 *result = cfg->baseclass; 5188 break; 5189 case PCI_IVAR_SUBCLASS: 5190 *result = cfg->subclass; 5191 break; 5192 case PCI_IVAR_PROGIF: 5193 *result = cfg->progif; 5194 break; 5195 case PCI_IVAR_REVID: 5196 *result = cfg->revid; 5197 break; 5198 case PCI_IVAR_INTPIN: 5199 *result = cfg->intpin; 5200 break; 5201 case PCI_IVAR_IRQ: 5202 *result = cfg->intline; 5203 break; 5204 case PCI_IVAR_DOMAIN: 5205 *result = cfg->domain; 5206 break; 5207 case PCI_IVAR_BUS: 5208 *result = cfg->bus; 5209 break; 5210 case PCI_IVAR_SLOT: 5211 *result = cfg->slot; 5212 break; 5213 case PCI_IVAR_FUNCTION: 5214 *result = cfg->func; 5215 break; 5216 case PCI_IVAR_CMDREG: 5217 *result = cfg->cmdreg; 5218 break; 5219 case PCI_IVAR_CACHELNSZ: 5220 *result = cfg->cachelnsz; 5221 break; 5222 case PCI_IVAR_MINGNT: 5223 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5224 *result = -1; 5225 return (EINVAL); 5226 } 5227 *result = cfg->mingnt; 5228 break; 5229 case PCI_IVAR_MAXLAT: 5230 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5231 *result = -1; 5232 return (EINVAL); 5233 } 5234 *result = cfg->maxlat; 5235 break; 5236 case PCI_IVAR_LATTIMER: 5237 *result = cfg->lattimer; 5238 break; 5239 default: 5240 return (ENOENT); 5241 } 5242 return (0); 5243 } 5244 5245 int 5246 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 5247 { 5248 struct pci_devinfo *dinfo; 5249 5250 dinfo = device_get_ivars(child); 5251 5252 switch (which) { 5253 case PCI_IVAR_INTPIN: 5254 dinfo->cfg.intpin = value; 5255 return (0); 5256 case PCI_IVAR_ETHADDR: 5257 case PCI_IVAR_SUBVENDOR: 5258 case PCI_IVAR_SUBDEVICE: 5259 case PCI_IVAR_VENDOR: 5260 case PCI_IVAR_DEVICE: 5261 case PCI_IVAR_DEVID: 5262 case PCI_IVAR_CLASS: 5263 case PCI_IVAR_SUBCLASS: 5264 case PCI_IVAR_PROGIF: 5265 case PCI_IVAR_REVID: 5266 case PCI_IVAR_IRQ: 5267 case PCI_IVAR_DOMAIN: 5268 case PCI_IVAR_BUS: 5269 case PCI_IVAR_SLOT: 5270 case PCI_IVAR_FUNCTION: 5271 return (EINVAL); /* disallow for now */ 5272 5273 default: 5274 return (ENOENT); 5275 } 5276 } 5277 5278 #include "opt_ddb.h" 5279 #ifdef DDB 5280 #include <ddb/ddb.h> 5281 #include <sys/cons.h> 5282 5283 /* 5284 * List resources based on pci map registers, used for within ddb 5285 */ 5286 5287 DB_SHOW_COMMAND(pciregs, db_pci_dump) 5288 { 5289 struct pci_devinfo *dinfo; 5290 struct devlist *devlist_head; 5291 struct pci_conf *p; 5292 const char *name; 5293 int i, error, none_count; 5294 5295 none_count = 0; 5296 /* get the head of the device queue */ 5297 devlist_head = &pci_devq; 5298 5299 /* 5300 * Go through the list of devices and print out devices 5301 */ 5302 for (error = 0, i = 0, 5303 dinfo = STAILQ_FIRST(devlist_head); 5304 (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit; 5305 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) { 5306 /* Populate pd_name and pd_unit */ 5307 name = NULL; 5308 if (dinfo->cfg.dev) 5309 name = device_get_name(dinfo->cfg.dev); 5310 5311 p = &dinfo->conf; 5312 db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x " 5313 "chip=0x%08x rev=0x%02x hdr=0x%02x\n", 5314 (name && *name) ? name : "none", 5315 (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) : 5316 none_count++, 5317 p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, 5318 p->pc_sel.pc_func, (p->pc_class << 16) | 5319 (p->pc_subclass << 8) | p->pc_progif, 5320 (p->pc_subdevice << 16) | p->pc_subvendor, 5321 (p->pc_device << 16) | p->pc_vendor, 5322 p->pc_revid, p->pc_hdr); 5323 } 5324 } 5325 #endif /* DDB */ 5326 5327 static struct resource * 5328 pci_reserve_map(device_t dev, device_t child, int type, int *rid, 5329 rman_res_t start, rman_res_t end, rman_res_t count, u_int num, 5330 u_int flags) 5331 { 5332 struct pci_devinfo *dinfo = device_get_ivars(child); 5333 struct resource_list *rl = &dinfo->resources; 5334 struct resource *res; 5335 struct pci_map *pm; 5336 uint16_t cmd; 5337 pci_addr_t map, testval; 5338 int mapsize; 5339 5340 res = NULL; 5341 5342 /* If rid is managed by EA, ignore it */ 5343 if (pci_ea_is_enabled(child, *rid)) 5344 goto out; 5345 5346 pm = pci_find_bar(child, *rid); 5347 if (pm != NULL) { 5348 /* This is a BAR that we failed to allocate earlier. */ 5349 mapsize = pm->pm_size; 5350 map = pm->pm_value; 5351 } else { 5352 /* 5353 * Weed out the bogons, and figure out how large the 5354 * BAR/map is. BARs that read back 0 here are bogus 5355 * and unimplemented. Note: atapci in legacy mode are 5356 * special and handled elsewhere in the code. If you 5357 * have a atapci device in legacy mode and it fails 5358 * here, that other code is broken. 5359 */ 5360 pci_read_bar(child, *rid, &map, &testval, NULL); 5361 5362 /* 5363 * Determine the size of the BAR and ignore BARs with a size 5364 * of 0. Device ROM BARs use a different mask value. 5365 */ 5366 if (PCIR_IS_BIOS(&dinfo->cfg, *rid)) 5367 mapsize = pci_romsize(testval); 5368 else 5369 mapsize = pci_mapsize(testval); 5370 if (mapsize == 0) 5371 goto out; 5372 pm = pci_add_bar(child, *rid, map, mapsize); 5373 } 5374 5375 if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) { 5376 if (type != SYS_RES_MEMORY) { 5377 if (bootverbose) 5378 device_printf(dev, 5379 "child %s requested type %d for rid %#x," 5380 " but the BAR says it is an memio\n", 5381 device_get_nameunit(child), type, *rid); 5382 goto out; 5383 } 5384 } else { 5385 if (type != SYS_RES_IOPORT) { 5386 if (bootverbose) 5387 device_printf(dev, 5388 "child %s requested type %d for rid %#x," 5389 " but the BAR says it is an ioport\n", 5390 device_get_nameunit(child), type, *rid); 5391 goto out; 5392 } 5393 } 5394 5395 /* 5396 * For real BARs, we need to override the size that 5397 * the driver requests, because that's what the BAR 5398 * actually uses and we would otherwise have a 5399 * situation where we might allocate the excess to 5400 * another driver, which won't work. 5401 */ 5402 count = ((pci_addr_t)1 << mapsize) * num; 5403 if (RF_ALIGNMENT(flags) < mapsize) 5404 flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize); 5405 if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH)) 5406 flags |= RF_PREFETCHABLE; 5407 5408 /* 5409 * Allocate enough resource, and then write back the 5410 * appropriate BAR for that resource. 5411 */ 5412 resource_list_add(rl, type, *rid, start, end, count); 5413 res = resource_list_reserve(rl, dev, child, type, rid, start, end, 5414 count, flags & ~RF_ACTIVE); 5415 if (res == NULL) { 5416 resource_list_delete(rl, type, *rid); 5417 device_printf(child, 5418 "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n", 5419 count, *rid, type, start, end); 5420 goto out; 5421 } 5422 if (bootverbose) 5423 device_printf(child, 5424 "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n", 5425 count, *rid, type, rman_get_start(res)); 5426 5427 /* Disable decoding via the CMD register before updating the BAR */ 5428 cmd = pci_read_config(child, PCIR_COMMAND, 2); 5429 pci_write_config(child, PCIR_COMMAND, 5430 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 5431 5432 map = rman_get_start(res); 5433 pci_write_bar(child, pm, map); 5434 5435 /* Restore the original value of the CMD register */ 5436 pci_write_config(child, PCIR_COMMAND, cmd, 2); 5437 out: 5438 return (res); 5439 } 5440 5441 struct resource * 5442 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid, 5443 rman_res_t start, rman_res_t end, rman_res_t count, u_long num, 5444 u_int flags) 5445 { 5446 struct pci_devinfo *dinfo; 5447 struct resource_list *rl; 5448 struct resource_list_entry *rle; 5449 struct resource *res; 5450 pcicfgregs *cfg; 5451 5452 /* 5453 * Perform lazy resource allocation 5454 */ 5455 dinfo = device_get_ivars(child); 5456 rl = &dinfo->resources; 5457 cfg = &dinfo->cfg; 5458 switch (type) { 5459 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 5460 case PCI_RES_BUS: 5461 return (pci_alloc_secbus(dev, child, rid, start, end, count, 5462 flags)); 5463 #endif 5464 case SYS_RES_IRQ: 5465 /* 5466 * Can't alloc legacy interrupt once MSI messages have 5467 * been allocated. 5468 */ 5469 if (*rid == 0 && (cfg->msi.msi_alloc > 0 || 5470 cfg->msix.msix_alloc > 0)) 5471 return (NULL); 5472 5473 /* 5474 * If the child device doesn't have an interrupt 5475 * routed and is deserving of an interrupt, try to 5476 * assign it one. 5477 */ 5478 if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) && 5479 (cfg->intpin != 0)) 5480 pci_assign_interrupt(dev, child, 0); 5481 break; 5482 case SYS_RES_IOPORT: 5483 case SYS_RES_MEMORY: 5484 #ifdef NEW_PCIB 5485 /* 5486 * PCI-PCI bridge I/O window resources are not BARs. 5487 * For those allocations just pass the request up the 5488 * tree. 5489 */ 5490 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) { 5491 switch (*rid) { 5492 case PCIR_IOBASEL_1: 5493 case PCIR_MEMBASE_1: 5494 case PCIR_PMBASEL_1: 5495 /* 5496 * XXX: Should we bother creating a resource 5497 * list entry? 5498 */ 5499 return (bus_generic_alloc_resource(dev, child, 5500 type, rid, start, end, count, flags)); 5501 } 5502 } 5503 #endif 5504 /* Reserve resources for this BAR if needed. */ 5505 rle = resource_list_find(rl, type, *rid); 5506 if (rle == NULL) { 5507 res = pci_reserve_map(dev, child, type, rid, start, end, 5508 count, num, flags); 5509 if (res == NULL) 5510 return (NULL); 5511 } 5512 } 5513 return (resource_list_alloc(rl, dev, child, type, rid, 5514 start, end, count, flags)); 5515 } 5516 5517 struct resource * 5518 pci_alloc_resource(device_t dev, device_t child, int type, int *rid, 5519 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 5520 { 5521 #ifdef PCI_IOV 5522 struct pci_devinfo *dinfo; 5523 #endif 5524 5525 if (device_get_parent(child) != dev) 5526 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 5527 type, rid, start, end, count, flags)); 5528 5529 #ifdef PCI_IOV 5530 dinfo = device_get_ivars(child); 5531 if (dinfo->cfg.flags & PCICFG_VF) { 5532 switch (type) { 5533 /* VFs can't have I/O BARs. */ 5534 case SYS_RES_IOPORT: 5535 return (NULL); 5536 case SYS_RES_MEMORY: 5537 return (pci_vf_alloc_mem_resource(dev, child, rid, 5538 start, end, count, flags)); 5539 } 5540 5541 /* Fall through for other types of resource allocations. */ 5542 } 5543 #endif 5544 5545 return (pci_alloc_multi_resource(dev, child, type, rid, start, end, 5546 count, 1, flags)); 5547 } 5548 5549 int 5550 pci_release_resource(device_t dev, device_t child, int type, int rid, 5551 struct resource *r) 5552 { 5553 struct pci_devinfo *dinfo; 5554 struct resource_list *rl; 5555 pcicfgregs *cfg; 5556 5557 if (device_get_parent(child) != dev) 5558 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 5559 type, rid, r)); 5560 5561 dinfo = device_get_ivars(child); 5562 cfg = &dinfo->cfg; 5563 5564 #ifdef PCI_IOV 5565 if (dinfo->cfg.flags & PCICFG_VF) { 5566 switch (type) { 5567 /* VFs can't have I/O BARs. */ 5568 case SYS_RES_IOPORT: 5569 return (EDOOFUS); 5570 case SYS_RES_MEMORY: 5571 return (pci_vf_release_mem_resource(dev, child, rid, 5572 r)); 5573 } 5574 5575 /* Fall through for other types of resource allocations. */ 5576 } 5577 #endif 5578 5579 #ifdef NEW_PCIB 5580 /* 5581 * PCI-PCI bridge I/O window resources are not BARs. For 5582 * those allocations just pass the request up the tree. 5583 */ 5584 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE && 5585 (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) { 5586 switch (rid) { 5587 case PCIR_IOBASEL_1: 5588 case PCIR_MEMBASE_1: 5589 case PCIR_PMBASEL_1: 5590 return (bus_generic_release_resource(dev, child, type, 5591 rid, r)); 5592 } 5593 } 5594 #endif 5595 5596 rl = &dinfo->resources; 5597 return (resource_list_release(rl, dev, child, type, rid, r)); 5598 } 5599 5600 int 5601 pci_activate_resource(device_t dev, device_t child, int type, int rid, 5602 struct resource *r) 5603 { 5604 struct pci_devinfo *dinfo; 5605 int error; 5606 5607 error = bus_generic_activate_resource(dev, child, type, rid, r); 5608 if (error) 5609 return (error); 5610 5611 /* Enable decoding in the command register when activating BARs. */ 5612 if (device_get_parent(child) == dev) { 5613 /* Device ROMs need their decoding explicitly enabled. */ 5614 dinfo = device_get_ivars(child); 5615 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5616 pci_write_bar(child, pci_find_bar(child, rid), 5617 rman_get_start(r) | PCIM_BIOS_ENABLE); 5618 switch (type) { 5619 case SYS_RES_IOPORT: 5620 case SYS_RES_MEMORY: 5621 error = PCI_ENABLE_IO(dev, child, type); 5622 break; 5623 } 5624 } 5625 return (error); 5626 } 5627 5628 int 5629 pci_deactivate_resource(device_t dev, device_t child, int type, 5630 int rid, struct resource *r) 5631 { 5632 struct pci_devinfo *dinfo; 5633 int error; 5634 5635 error = bus_generic_deactivate_resource(dev, child, type, rid, r); 5636 if (error) 5637 return (error); 5638 5639 /* Disable decoding for device ROMs. */ 5640 if (device_get_parent(child) == dev) { 5641 dinfo = device_get_ivars(child); 5642 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5643 pci_write_bar(child, pci_find_bar(child, rid), 5644 rman_get_start(r)); 5645 } 5646 return (0); 5647 } 5648 5649 void 5650 pci_child_deleted(device_t dev, device_t child) 5651 { 5652 struct resource_list_entry *rle; 5653 struct resource_list *rl; 5654 struct pci_devinfo *dinfo; 5655 5656 dinfo = device_get_ivars(child); 5657 rl = &dinfo->resources; 5658 5659 EVENTHANDLER_INVOKE(pci_delete_device, child); 5660 5661 /* Turn off access to resources we're about to free */ 5662 if (bus_child_present(child) != 0) { 5663 pci_write_config(child, PCIR_COMMAND, pci_read_config(child, 5664 PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2); 5665 5666 pci_disable_busmaster(child); 5667 } 5668 5669 /* Free all allocated resources */ 5670 STAILQ_FOREACH(rle, rl, link) { 5671 if (rle->res) { 5672 if (rman_get_flags(rle->res) & RF_ACTIVE || 5673 resource_list_busy(rl, rle->type, rle->rid)) { 5674 pci_printf(&dinfo->cfg, 5675 "Resource still owned, oops. " 5676 "(type=%d, rid=%d, addr=%lx)\n", 5677 rle->type, rle->rid, 5678 rman_get_start(rle->res)); 5679 bus_release_resource(child, rle->type, rle->rid, 5680 rle->res); 5681 } 5682 resource_list_unreserve(rl, dev, child, rle->type, 5683 rle->rid); 5684 } 5685 } 5686 resource_list_free(rl); 5687 5688 pci_freecfg(dinfo); 5689 } 5690 5691 void 5692 pci_delete_resource(device_t dev, device_t child, int type, int rid) 5693 { 5694 struct pci_devinfo *dinfo; 5695 struct resource_list *rl; 5696 struct resource_list_entry *rle; 5697 5698 if (device_get_parent(child) != dev) 5699 return; 5700 5701 dinfo = device_get_ivars(child); 5702 rl = &dinfo->resources; 5703 rle = resource_list_find(rl, type, rid); 5704 if (rle == NULL) 5705 return; 5706 5707 if (rle->res) { 5708 if (rman_get_flags(rle->res) & RF_ACTIVE || 5709 resource_list_busy(rl, type, rid)) { 5710 device_printf(dev, "delete_resource: " 5711 "Resource still owned by child, oops. " 5712 "(type=%d, rid=%d, addr=%jx)\n", 5713 type, rid, rman_get_start(rle->res)); 5714 return; 5715 } 5716 resource_list_unreserve(rl, dev, child, type, rid); 5717 } 5718 resource_list_delete(rl, type, rid); 5719 } 5720 5721 struct resource_list * 5722 pci_get_resource_list (device_t dev, device_t child) 5723 { 5724 struct pci_devinfo *dinfo = device_get_ivars(child); 5725 5726 return (&dinfo->resources); 5727 } 5728 5729 #ifdef IOMMU 5730 bus_dma_tag_t 5731 pci_get_dma_tag(device_t bus, device_t dev) 5732 { 5733 bus_dma_tag_t tag; 5734 struct pci_softc *sc; 5735 5736 if (device_get_parent(dev) == bus) { 5737 /* try iommu and return if it works */ 5738 tag = iommu_get_dma_tag(bus, dev); 5739 } else 5740 tag = NULL; 5741 if (tag == NULL) { 5742 sc = device_get_softc(bus); 5743 tag = sc->sc_dma_tag; 5744 } 5745 return (tag); 5746 } 5747 #else 5748 bus_dma_tag_t 5749 pci_get_dma_tag(device_t bus, device_t dev) 5750 { 5751 struct pci_softc *sc = device_get_softc(bus); 5752 5753 return (sc->sc_dma_tag); 5754 } 5755 #endif 5756 5757 uint32_t 5758 pci_read_config_method(device_t dev, device_t child, int reg, int width) 5759 { 5760 struct pci_devinfo *dinfo = device_get_ivars(child); 5761 pcicfgregs *cfg = &dinfo->cfg; 5762 5763 #ifdef PCI_IOV 5764 /* 5765 * SR-IOV VFs don't implement the VID or DID registers, so we have to 5766 * emulate them here. 5767 */ 5768 if (cfg->flags & PCICFG_VF) { 5769 if (reg == PCIR_VENDOR) { 5770 switch (width) { 5771 case 4: 5772 return (cfg->device << 16 | cfg->vendor); 5773 case 2: 5774 return (cfg->vendor); 5775 case 1: 5776 return (cfg->vendor & 0xff); 5777 default: 5778 return (0xffffffff); 5779 } 5780 } else if (reg == PCIR_DEVICE) { 5781 switch (width) { 5782 /* Note that an unaligned 4-byte read is an error. */ 5783 case 2: 5784 return (cfg->device); 5785 case 1: 5786 return (cfg->device & 0xff); 5787 default: 5788 return (0xffffffff); 5789 } 5790 } 5791 } 5792 #endif 5793 5794 return (PCIB_READ_CONFIG(device_get_parent(dev), 5795 cfg->bus, cfg->slot, cfg->func, reg, width)); 5796 } 5797 5798 void 5799 pci_write_config_method(device_t dev, device_t child, int reg, 5800 uint32_t val, int width) 5801 { 5802 struct pci_devinfo *dinfo = device_get_ivars(child); 5803 pcicfgregs *cfg = &dinfo->cfg; 5804 5805 PCIB_WRITE_CONFIG(device_get_parent(dev), 5806 cfg->bus, cfg->slot, cfg->func, reg, val, width); 5807 } 5808 5809 int 5810 pci_child_location_str_method(device_t dev, device_t child, char *buf, 5811 size_t buflen) 5812 { 5813 5814 snprintf(buf, buflen, "slot=%d function=%d dbsf=pci%d:%d:%d:%d", 5815 pci_get_slot(child), pci_get_function(child), pci_get_domain(child), 5816 pci_get_bus(child), pci_get_slot(child), pci_get_function(child)); 5817 return (0); 5818 } 5819 5820 int 5821 pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf, 5822 size_t buflen) 5823 { 5824 struct pci_devinfo *dinfo; 5825 pcicfgregs *cfg; 5826 5827 dinfo = device_get_ivars(child); 5828 cfg = &dinfo->cfg; 5829 snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x " 5830 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device, 5831 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass, 5832 cfg->progif); 5833 return (0); 5834 } 5835 5836 int 5837 pci_assign_interrupt_method(device_t dev, device_t child) 5838 { 5839 struct pci_devinfo *dinfo = device_get_ivars(child); 5840 pcicfgregs *cfg = &dinfo->cfg; 5841 5842 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, 5843 cfg->intpin)); 5844 } 5845 5846 static void 5847 pci_lookup(void *arg, const char *name, device_t *dev) 5848 { 5849 long val; 5850 char *end; 5851 int domain, bus, slot, func; 5852 5853 if (*dev != NULL) 5854 return; 5855 5856 /* 5857 * Accept pciconf-style selectors of either pciD:B:S:F or 5858 * pciB:S:F. In the latter case, the domain is assumed to 5859 * be zero. 5860 */ 5861 if (strncmp(name, "pci", 3) != 0) 5862 return; 5863 val = strtol(name + 3, &end, 10); 5864 if (val < 0 || val > INT_MAX || *end != ':') 5865 return; 5866 domain = val; 5867 val = strtol(end + 1, &end, 10); 5868 if (val < 0 || val > INT_MAX || *end != ':') 5869 return; 5870 bus = val; 5871 val = strtol(end + 1, &end, 10); 5872 if (val < 0 || val > INT_MAX) 5873 return; 5874 slot = val; 5875 if (*end == ':') { 5876 val = strtol(end + 1, &end, 10); 5877 if (val < 0 || val > INT_MAX || *end != '\0') 5878 return; 5879 func = val; 5880 } else if (*end == '\0') { 5881 func = slot; 5882 slot = bus; 5883 bus = domain; 5884 domain = 0; 5885 } else 5886 return; 5887 5888 if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX || 5889 func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX)) 5890 return; 5891 5892 *dev = pci_find_dbsf(domain, bus, slot, func); 5893 } 5894 5895 static int 5896 pci_modevent(module_t mod, int what, void *arg) 5897 { 5898 static struct cdev *pci_cdev; 5899 static eventhandler_tag tag; 5900 5901 switch (what) { 5902 case MOD_LOAD: 5903 STAILQ_INIT(&pci_devq); 5904 pci_generation = 0; 5905 pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644, 5906 "pci"); 5907 pci_load_vendor_data(); 5908 tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL, 5909 1000); 5910 break; 5911 5912 case MOD_UNLOAD: 5913 if (tag != NULL) 5914 EVENTHANDLER_DEREGISTER(dev_lookup, tag); 5915 destroy_dev(pci_cdev); 5916 break; 5917 } 5918 5919 return (0); 5920 } 5921 5922 static void 5923 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo) 5924 { 5925 #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2) 5926 struct pcicfg_pcie *cfg; 5927 int version, pos; 5928 5929 cfg = &dinfo->cfg.pcie; 5930 pos = cfg->pcie_location; 5931 5932 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 5933 5934 WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl); 5935 5936 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5937 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 5938 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 5939 WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl); 5940 5941 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5942 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 5943 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 5944 WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl); 5945 5946 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 5947 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 5948 WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl); 5949 5950 if (version > 1) { 5951 WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2); 5952 WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2); 5953 WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2); 5954 } 5955 #undef WREG 5956 } 5957 5958 static void 5959 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo) 5960 { 5961 pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 5962 dinfo->cfg.pcix.pcix_command, 2); 5963 } 5964 5965 void 5966 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo) 5967 { 5968 5969 /* 5970 * Restore the device to full power mode. We must do this 5971 * before we restore the registers because moving from D3 to 5972 * D0 will cause the chip's BARs and some other registers to 5973 * be reset to some unknown power on reset values. Cut down 5974 * the noise on boot by doing nothing if we are already in 5975 * state D0. 5976 */ 5977 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) 5978 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 5979 pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1); 5980 pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1); 5981 pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1); 5982 pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1); 5983 pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1); 5984 pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1); 5985 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 5986 case PCIM_HDRTYPE_NORMAL: 5987 pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); 5988 pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); 5989 break; 5990 case PCIM_HDRTYPE_BRIDGE: 5991 pci_write_config(dev, PCIR_SECLAT_1, 5992 dinfo->cfg.bridge.br_seclat, 1); 5993 pci_write_config(dev, PCIR_SUBBUS_1, 5994 dinfo->cfg.bridge.br_subbus, 1); 5995 pci_write_config(dev, PCIR_SECBUS_1, 5996 dinfo->cfg.bridge.br_secbus, 1); 5997 pci_write_config(dev, PCIR_PRIBUS_1, 5998 dinfo->cfg.bridge.br_pribus, 1); 5999 pci_write_config(dev, PCIR_BRIDGECTL_1, 6000 dinfo->cfg.bridge.br_control, 2); 6001 break; 6002 case PCIM_HDRTYPE_CARDBUS: 6003 pci_write_config(dev, PCIR_SECLAT_2, 6004 dinfo->cfg.bridge.br_seclat, 1); 6005 pci_write_config(dev, PCIR_SUBBUS_2, 6006 dinfo->cfg.bridge.br_subbus, 1); 6007 pci_write_config(dev, PCIR_SECBUS_2, 6008 dinfo->cfg.bridge.br_secbus, 1); 6009 pci_write_config(dev, PCIR_PRIBUS_2, 6010 dinfo->cfg.bridge.br_pribus, 1); 6011 pci_write_config(dev, PCIR_BRIDGECTL_2, 6012 dinfo->cfg.bridge.br_control, 2); 6013 break; 6014 } 6015 pci_restore_bars(dev); 6016 6017 if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE) 6018 pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2); 6019 6020 /* 6021 * Restore extended capabilities for PCI-Express and PCI-X 6022 */ 6023 if (dinfo->cfg.pcie.pcie_location != 0) 6024 pci_cfg_restore_pcie(dev, dinfo); 6025 if (dinfo->cfg.pcix.pcix_location != 0) 6026 pci_cfg_restore_pcix(dev, dinfo); 6027 6028 /* Restore MSI and MSI-X configurations if they are present. */ 6029 if (dinfo->cfg.msi.msi_location != 0) 6030 pci_resume_msi(dev); 6031 if (dinfo->cfg.msix.msix_location != 0) 6032 pci_resume_msix(dev); 6033 6034 #ifdef PCI_IOV 6035 if (dinfo->cfg.iov != NULL) 6036 pci_iov_cfg_restore(dev, dinfo); 6037 #endif 6038 } 6039 6040 static void 6041 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo) 6042 { 6043 #define RREG(n) pci_read_config(dev, pos + (n), 2) 6044 struct pcicfg_pcie *cfg; 6045 int version, pos; 6046 6047 cfg = &dinfo->cfg.pcie; 6048 pos = cfg->pcie_location; 6049 6050 cfg->pcie_flags = RREG(PCIER_FLAGS); 6051 6052 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 6053 6054 cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL); 6055 6056 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6057 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 6058 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 6059 cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL); 6060 6061 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6062 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 6063 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 6064 cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL); 6065 6066 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6067 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 6068 cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL); 6069 6070 if (version > 1) { 6071 cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2); 6072 cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2); 6073 cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2); 6074 } 6075 #undef RREG 6076 } 6077 6078 static void 6079 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo) 6080 { 6081 dinfo->cfg.pcix.pcix_command = pci_read_config(dev, 6082 dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2); 6083 } 6084 6085 void 6086 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate) 6087 { 6088 uint32_t cls; 6089 int ps; 6090 6091 /* 6092 * Some drivers apparently write to these registers w/o updating our 6093 * cached copy. No harm happens if we update the copy, so do so here 6094 * so we can restore them. The COMMAND register is modified by the 6095 * bus w/o updating the cache. This should represent the normally 6096 * writable portion of the 'defined' part of type 0/1/2 headers. 6097 */ 6098 dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2); 6099 dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2); 6100 dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2); 6101 dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1); 6102 dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1); 6103 dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 6104 dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 6105 dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1); 6106 dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1); 6107 dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1); 6108 dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1); 6109 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 6110 case PCIM_HDRTYPE_NORMAL: 6111 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); 6112 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); 6113 dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); 6114 dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); 6115 break; 6116 case PCIM_HDRTYPE_BRIDGE: 6117 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6118 PCIR_SECLAT_1, 1); 6119 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6120 PCIR_SUBBUS_1, 1); 6121 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6122 PCIR_SECBUS_1, 1); 6123 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6124 PCIR_PRIBUS_1, 1); 6125 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6126 PCIR_BRIDGECTL_1, 2); 6127 break; 6128 case PCIM_HDRTYPE_CARDBUS: 6129 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6130 PCIR_SECLAT_2, 1); 6131 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6132 PCIR_SUBBUS_2, 1); 6133 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6134 PCIR_SECBUS_2, 1); 6135 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6136 PCIR_PRIBUS_2, 1); 6137 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6138 PCIR_BRIDGECTL_2, 2); 6139 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2); 6140 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2); 6141 break; 6142 } 6143 6144 if (dinfo->cfg.pcie.pcie_location != 0) 6145 pci_cfg_save_pcie(dev, dinfo); 6146 6147 if (dinfo->cfg.pcix.pcix_location != 0) 6148 pci_cfg_save_pcix(dev, dinfo); 6149 6150 #ifdef PCI_IOV 6151 if (dinfo->cfg.iov != NULL) 6152 pci_iov_cfg_save(dev, dinfo); 6153 #endif 6154 6155 /* 6156 * don't set the state for display devices, base peripherals and 6157 * memory devices since bad things happen when they are powered down. 6158 * We should (a) have drivers that can easily detach and (b) use 6159 * generic drivers for these devices so that some device actually 6160 * attaches. We need to make sure that when we implement (a) we don't 6161 * power the device down on a reattach. 6162 */ 6163 cls = pci_get_class(dev); 6164 if (!setstate) 6165 return; 6166 switch (pci_do_power_nodriver) 6167 { 6168 case 0: /* NO powerdown at all */ 6169 return; 6170 case 1: /* Conservative about what to power down */ 6171 if (cls == PCIC_STORAGE) 6172 return; 6173 /*FALLTHROUGH*/ 6174 case 2: /* Aggressive about what to power down */ 6175 if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY || 6176 cls == PCIC_BASEPERIPH) 6177 return; 6178 /*FALLTHROUGH*/ 6179 case 3: /* Power down everything */ 6180 break; 6181 } 6182 /* 6183 * PCI spec says we can only go into D3 state from D0 state. 6184 * Transition from D[12] into D0 before going to D3 state. 6185 */ 6186 ps = pci_get_powerstate(dev); 6187 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6188 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6189 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3) 6190 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6191 } 6192 6193 /* Wrapper APIs suitable for device driver use. */ 6194 void 6195 pci_save_state(device_t dev) 6196 { 6197 struct pci_devinfo *dinfo; 6198 6199 dinfo = device_get_ivars(dev); 6200 pci_cfg_save(dev, dinfo, 0); 6201 } 6202 6203 void 6204 pci_restore_state(device_t dev) 6205 { 6206 struct pci_devinfo *dinfo; 6207 6208 dinfo = device_get_ivars(dev); 6209 pci_cfg_restore(dev, dinfo); 6210 } 6211 6212 static int 6213 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type, 6214 uintptr_t *id) 6215 { 6216 6217 return (PCIB_GET_ID(device_get_parent(dev), child, type, id)); 6218 } 6219 6220 /* Find the upstream port of a given PCI device in a root complex. */ 6221 device_t 6222 pci_find_pcie_root_port(device_t dev) 6223 { 6224 struct pci_devinfo *dinfo; 6225 devclass_t pci_class; 6226 device_t pcib, bus; 6227 6228 pci_class = devclass_find("pci"); 6229 KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class, 6230 ("%s: non-pci device %s", __func__, device_get_nameunit(dev))); 6231 6232 /* 6233 * Walk the bridge hierarchy until we find a PCI-e root 6234 * port or a non-PCI device. 6235 */ 6236 for (;;) { 6237 bus = device_get_parent(dev); 6238 KASSERT(bus != NULL, ("%s: null parent of %s", __func__, 6239 device_get_nameunit(dev))); 6240 6241 pcib = device_get_parent(bus); 6242 KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__, 6243 device_get_nameunit(bus))); 6244 6245 /* 6246 * pcib's parent must be a PCI bus for this to be a 6247 * PCI-PCI bridge. 6248 */ 6249 if (device_get_devclass(device_get_parent(pcib)) != pci_class) 6250 return (NULL); 6251 6252 dinfo = device_get_ivars(pcib); 6253 if (dinfo->cfg.pcie.pcie_location != 0 && 6254 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) 6255 return (pcib); 6256 6257 dev = pcib; 6258 } 6259 } 6260 6261 /* 6262 * Wait for pending transactions to complete on a PCI-express function. 6263 * 6264 * The maximum delay is specified in milliseconds in max_delay. Note 6265 * that this function may sleep. 6266 * 6267 * Returns true if the function is idle and false if the timeout is 6268 * exceeded. If dev is not a PCI-express function, this returns true. 6269 */ 6270 bool 6271 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay) 6272 { 6273 struct pci_devinfo *dinfo = device_get_ivars(dev); 6274 uint16_t sta; 6275 int cap; 6276 6277 cap = dinfo->cfg.pcie.pcie_location; 6278 if (cap == 0) 6279 return (true); 6280 6281 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6282 while (sta & PCIEM_STA_TRANSACTION_PND) { 6283 if (max_delay == 0) 6284 return (false); 6285 6286 /* Poll once every 100 milliseconds up to the timeout. */ 6287 if (max_delay > 100) { 6288 pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK); 6289 max_delay -= 100; 6290 } else { 6291 pause_sbt("pcietp", max_delay * SBT_1MS, 0, 6292 C_HARDCLOCK); 6293 max_delay = 0; 6294 } 6295 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6296 } 6297 6298 return (true); 6299 } 6300 6301 /* 6302 * Determine the maximum Completion Timeout in microseconds. 6303 * 6304 * For non-PCI-express functions this returns 0. 6305 */ 6306 int 6307 pcie_get_max_completion_timeout(device_t dev) 6308 { 6309 struct pci_devinfo *dinfo = device_get_ivars(dev); 6310 int cap; 6311 6312 cap = dinfo->cfg.pcie.pcie_location; 6313 if (cap == 0) 6314 return (0); 6315 6316 /* 6317 * Functions using the 1.x spec use the default timeout range of 6318 * 50 microseconds to 50 milliseconds. Functions that do not 6319 * support programmable timeouts also use this range. 6320 */ 6321 if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 || 6322 (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) & 6323 PCIEM_CAP2_COMP_TIMO_RANGES) == 0) 6324 return (50 * 1000); 6325 6326 switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) & 6327 PCIEM_CTL2_COMP_TIMO_VAL) { 6328 case PCIEM_CTL2_COMP_TIMO_100US: 6329 return (100); 6330 case PCIEM_CTL2_COMP_TIMO_10MS: 6331 return (10 * 1000); 6332 case PCIEM_CTL2_COMP_TIMO_55MS: 6333 return (55 * 1000); 6334 case PCIEM_CTL2_COMP_TIMO_210MS: 6335 return (210 * 1000); 6336 case PCIEM_CTL2_COMP_TIMO_900MS: 6337 return (900 * 1000); 6338 case PCIEM_CTL2_COMP_TIMO_3500MS: 6339 return (3500 * 1000); 6340 case PCIEM_CTL2_COMP_TIMO_13S: 6341 return (13 * 1000 * 1000); 6342 case PCIEM_CTL2_COMP_TIMO_64S: 6343 return (64 * 1000 * 1000); 6344 default: 6345 return (50 * 1000); 6346 } 6347 } 6348 6349 void 6350 pcie_apei_error(device_t dev, int sev, uint8_t *aerp) 6351 { 6352 struct pci_devinfo *dinfo = device_get_ivars(dev); 6353 const char *s; 6354 int aer; 6355 uint32_t r, r1; 6356 uint16_t rs; 6357 6358 if (sev == PCIEM_STA_CORRECTABLE_ERROR) 6359 s = "Correctable"; 6360 else if (sev == PCIEM_STA_NON_FATAL_ERROR) 6361 s = "Uncorrectable (Non-Fatal)"; 6362 else 6363 s = "Uncorrectable (Fatal)"; 6364 device_printf(dev, "%s PCIe error reported by APEI\n", s); 6365 if (aerp) { 6366 if (sev == PCIEM_STA_CORRECTABLE_ERROR) { 6367 r = le32dec(aerp + PCIR_AER_COR_STATUS); 6368 r1 = le32dec(aerp + PCIR_AER_COR_MASK); 6369 } else { 6370 r = le32dec(aerp + PCIR_AER_UC_STATUS); 6371 r1 = le32dec(aerp + PCIR_AER_UC_MASK); 6372 } 6373 device_printf(dev, "status 0x%08x mask 0x%08x", r, r1); 6374 if (sev != PCIEM_STA_CORRECTABLE_ERROR) { 6375 r = le32dec(aerp + PCIR_AER_UC_SEVERITY); 6376 rs = le16dec(aerp + PCIR_AER_CAP_CONTROL); 6377 printf(" severity 0x%08x first %d\n", 6378 r, rs & 0x1f); 6379 } else 6380 printf("\n"); 6381 } 6382 6383 /* As kind of recovery just report and clear the error statuses. */ 6384 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6385 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6386 if (r != 0) { 6387 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6388 device_printf(dev, "Clearing UC AER errors 0x%08x\n", r); 6389 } 6390 6391 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6392 if (r != 0) { 6393 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6394 device_printf(dev, "Clearing COR AER errors 0x%08x\n", r); 6395 } 6396 } 6397 if (dinfo->cfg.pcie.pcie_location != 0) { 6398 rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6399 PCIER_DEVICE_STA, 2); 6400 if ((rs & (PCIEM_STA_CORRECTABLE_ERROR | 6401 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6402 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6403 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6404 PCIER_DEVICE_STA, rs, 2); 6405 device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs); 6406 } 6407 } 6408 } 6409 6410 /* 6411 * Perform a Function Level Reset (FLR) on a device. 6412 * 6413 * This function first waits for any pending transactions to complete 6414 * within the timeout specified by max_delay. If transactions are 6415 * still pending, the function will return false without attempting a 6416 * reset. 6417 * 6418 * If dev is not a PCI-express function or does not support FLR, this 6419 * function returns false. 6420 * 6421 * Note that no registers are saved or restored. The caller is 6422 * responsible for saving and restoring any registers including 6423 * PCI-standard registers via pci_save_state() and 6424 * pci_restore_state(). 6425 */ 6426 bool 6427 pcie_flr(device_t dev, u_int max_delay, bool force) 6428 { 6429 struct pci_devinfo *dinfo = device_get_ivars(dev); 6430 uint16_t cmd, ctl; 6431 int compl_delay; 6432 int cap; 6433 6434 cap = dinfo->cfg.pcie.pcie_location; 6435 if (cap == 0) 6436 return (false); 6437 6438 if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR)) 6439 return (false); 6440 6441 /* 6442 * Disable busmastering to prevent generation of new 6443 * transactions while waiting for the device to go idle. If 6444 * the idle timeout fails, the command register is restored 6445 * which will re-enable busmastering. 6446 */ 6447 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 6448 pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2); 6449 if (!pcie_wait_for_pending_transactions(dev, max_delay)) { 6450 if (!force) { 6451 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 6452 return (false); 6453 } 6454 pci_printf(&dinfo->cfg, 6455 "Resetting with transactions pending after %d ms\n", 6456 max_delay); 6457 6458 /* 6459 * Extend the post-FLR delay to cover the maximum 6460 * Completion Timeout delay of anything in flight 6461 * during the FLR delay. Enforce a minimum delay of 6462 * at least 10ms. 6463 */ 6464 compl_delay = pcie_get_max_completion_timeout(dev) / 1000; 6465 if (compl_delay < 10) 6466 compl_delay = 10; 6467 } else 6468 compl_delay = 0; 6469 6470 /* Initiate the reset. */ 6471 ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 6472 pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl | 6473 PCIEM_CTL_INITIATE_FLR, 2); 6474 6475 /* Wait for 100ms. */ 6476 pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK); 6477 6478 if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) & 6479 PCIEM_STA_TRANSACTION_PND) 6480 pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n"); 6481 return (true); 6482 } 6483 6484 /* 6485 * Attempt a power-management reset by cycling the device in/out of D3 6486 * state. PCI spec says we can only go into D3 state from D0 state. 6487 * Transition from D[12] into D0 before going to D3 state. 6488 */ 6489 int 6490 pci_power_reset(device_t dev) 6491 { 6492 int ps; 6493 6494 ps = pci_get_powerstate(dev); 6495 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6496 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6497 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6498 pci_set_powerstate(dev, ps); 6499 return (0); 6500 } 6501 6502 /* 6503 * Try link drop and retrain of the downstream port of upstream 6504 * switch, for PCIe. According to the PCIe 3.0 spec 6.6.1, this must 6505 * cause Conventional Hot reset of the device in the slot. 6506 * Alternative, for PCIe, could be the secondary bus reset initiatied 6507 * on the upstream switch PCIR_BRIDGECTL_1, bit 6. 6508 */ 6509 int 6510 pcie_link_reset(device_t port, int pcie_location) 6511 { 6512 uint16_t v; 6513 6514 v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2); 6515 v |= PCIEM_LINK_CTL_LINK_DIS; 6516 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6517 pause_sbt("pcier1", mstosbt(20), 0, 0); 6518 v &= ~PCIEM_LINK_CTL_LINK_DIS; 6519 v |= PCIEM_LINK_CTL_RETRAIN_LINK; 6520 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6521 pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */ 6522 v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2); 6523 return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0); 6524 } 6525 6526 static int 6527 pci_reset_post(device_t dev, device_t child) 6528 { 6529 6530 if (dev == device_get_parent(child)) 6531 pci_restore_state(child); 6532 return (0); 6533 } 6534 6535 static int 6536 pci_reset_prepare(device_t dev, device_t child) 6537 { 6538 6539 if (dev == device_get_parent(child)) 6540 pci_save_state(child); 6541 return (0); 6542 } 6543 6544 static int 6545 pci_reset_child(device_t dev, device_t child, int flags) 6546 { 6547 int error; 6548 6549 if (dev == NULL || device_get_parent(child) != dev) 6550 return (0); 6551 if ((flags & DEVF_RESET_DETACH) != 0) { 6552 error = device_get_state(child) == DS_ATTACHED ? 6553 device_detach(child) : 0; 6554 } else { 6555 error = BUS_SUSPEND_CHILD(dev, child); 6556 } 6557 if (error == 0) { 6558 if (!pcie_flr(child, 1000, false)) { 6559 error = BUS_RESET_PREPARE(dev, child); 6560 if (error == 0) 6561 pci_power_reset(child); 6562 BUS_RESET_POST(dev, child); 6563 } 6564 if ((flags & DEVF_RESET_DETACH) != 0) 6565 device_probe_and_attach(child); 6566 else 6567 BUS_RESUME_CHILD(dev, child); 6568 } 6569 return (error); 6570 } 6571 6572 const struct pci_device_table * 6573 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt) 6574 { 6575 bool match; 6576 uint16_t vendor, device, subvendor, subdevice, class, subclass, revid; 6577 6578 vendor = pci_get_vendor(child); 6579 device = pci_get_device(child); 6580 subvendor = pci_get_subvendor(child); 6581 subdevice = pci_get_subdevice(child); 6582 class = pci_get_class(child); 6583 subclass = pci_get_subclass(child); 6584 revid = pci_get_revid(child); 6585 while (nelt-- > 0) { 6586 match = true; 6587 if (id->match_flag_vendor) 6588 match &= vendor == id->vendor; 6589 if (id->match_flag_device) 6590 match &= device == id->device; 6591 if (id->match_flag_subvendor) 6592 match &= subvendor == id->subvendor; 6593 if (id->match_flag_subdevice) 6594 match &= subdevice == id->subdevice; 6595 if (id->match_flag_class) 6596 match &= class == id->class_id; 6597 if (id->match_flag_subclass) 6598 match &= subclass == id->subclass; 6599 if (id->match_flag_revid) 6600 match &= revid == id->revid; 6601 if (match) 6602 return (id); 6603 id++; 6604 } 6605 return (NULL); 6606 } 6607 6608 static void 6609 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo) 6610 { 6611 const char *dev_name; 6612 device_t dev; 6613 6614 dev = dinfo->cfg.dev; 6615 printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus, 6616 dinfo->cfg.slot, dinfo->cfg.func); 6617 dev_name = device_get_name(dev); 6618 if (dev_name != NULL) 6619 printf(" (%s%d)", dev_name, device_get_unit(dev)); 6620 } 6621 6622 void 6623 pci_print_faulted_dev(void) 6624 { 6625 struct pci_devinfo *dinfo; 6626 device_t dev; 6627 int aer, i; 6628 uint32_t r1, r2; 6629 uint16_t status; 6630 6631 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6632 dev = dinfo->cfg.dev; 6633 status = pci_read_config(dev, PCIR_STATUS, 2); 6634 status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6635 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6636 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6637 if (status != 0) { 6638 pci_print_faulted_dev_name(dinfo); 6639 printf(" error 0x%04x\n", status); 6640 } 6641 if (dinfo->cfg.pcie.pcie_location != 0) { 6642 status = pci_read_config(dev, 6643 dinfo->cfg.pcie.pcie_location + 6644 PCIER_DEVICE_STA, 2); 6645 if ((status & (PCIEM_STA_CORRECTABLE_ERROR | 6646 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6647 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6648 pci_print_faulted_dev_name(dinfo); 6649 printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n", 6650 pci_read_config(dev, 6651 dinfo->cfg.pcie.pcie_location + 6652 PCIER_DEVICE_CTL, 2), 6653 status); 6654 } 6655 } 6656 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6657 r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6658 r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6659 if (r1 != 0 || r2 != 0) { 6660 pci_print_faulted_dev_name(dinfo); 6661 printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n" 6662 " COR 0x%08x Mask 0x%08x Ctl 0x%08x\n", 6663 r1, pci_read_config(dev, aer + 6664 PCIR_AER_UC_MASK, 4), 6665 pci_read_config(dev, aer + 6666 PCIR_AER_UC_SEVERITY, 4), 6667 r2, pci_read_config(dev, aer + 6668 PCIR_AER_COR_MASK, 4), 6669 pci_read_config(dev, aer + 6670 PCIR_AER_CAP_CONTROL, 4)); 6671 for (i = 0; i < 4; i++) { 6672 r1 = pci_read_config(dev, aer + 6673 PCIR_AER_HEADER_LOG + i * 4, 4); 6674 printf(" HL%d: 0x%08x\n", i, r1); 6675 } 6676 } 6677 } 6678 } 6679 } 6680 6681 #ifdef DDB 6682 DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db) 6683 { 6684 6685 pci_print_faulted_dev(); 6686 } 6687 6688 static void 6689 db_clear_pcie_errors(const struct pci_devinfo *dinfo) 6690 { 6691 device_t dev; 6692 int aer; 6693 uint32_t r; 6694 6695 dev = dinfo->cfg.dev; 6696 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6697 PCIER_DEVICE_STA, 2); 6698 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6699 PCIER_DEVICE_STA, r, 2); 6700 6701 if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0) 6702 return; 6703 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6704 if (r != 0) 6705 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6706 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6707 if (r != 0) 6708 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6709 } 6710 6711 DB_COMMAND(pci_clearerr, db_pci_clearerr) 6712 { 6713 struct pci_devinfo *dinfo; 6714 device_t dev; 6715 uint16_t status, status1; 6716 6717 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6718 dev = dinfo->cfg.dev; 6719 status1 = status = pci_read_config(dev, PCIR_STATUS, 2); 6720 status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6721 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6722 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6723 if (status1 != 0) { 6724 status &= ~status1; 6725 pci_write_config(dev, PCIR_STATUS, status, 2); 6726 } 6727 if (dinfo->cfg.pcie.pcie_location != 0) 6728 db_clear_pcie_errors(dinfo); 6729 } 6730 } 6731 #endif 6732