1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 5 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org> 6 * Copyright (c) 2000, BSDi 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_acpi.h" 35 #include "opt_iommu.h" 36 #include "opt_bus.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/endian.h> 41 #include <sys/eventhandler.h> 42 #include <sys/fcntl.h> 43 #include <sys/kernel.h> 44 #include <sys/limits.h> 45 #include <sys/linker.h> 46 #include <sys/malloc.h> 47 #include <sys/module.h> 48 #include <sys/queue.h> 49 #include <sys/sbuf.h> 50 #include <sys/sysctl.h> 51 #include <sys/systm.h> 52 #include <sys/taskqueue.h> 53 #include <sys/tree.h> 54 55 #include <vm/vm.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_extern.h> 58 59 #include <sys/bus.h> 60 #include <machine/bus.h> 61 #include <sys/rman.h> 62 #include <machine/resource.h> 63 #include <machine/stdarg.h> 64 65 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 66 #include <machine/intr_machdep.h> 67 #endif 68 69 #include <sys/pciio.h> 70 #include <dev/pci/pcireg.h> 71 #include <dev/pci/pcivar.h> 72 #include <dev/pci/pci_private.h> 73 74 #ifdef PCI_IOV 75 #include <sys/nv.h> 76 #include <dev/pci/pci_iov_private.h> 77 #endif 78 79 #include <dev/usb/controller/xhcireg.h> 80 #include <dev/usb/controller/ehcireg.h> 81 #include <dev/usb/controller/ohcireg.h> 82 #include <dev/usb/controller/uhcireg.h> 83 84 #include <dev/iommu/iommu.h> 85 86 #include "pcib_if.h" 87 #include "pci_if.h" 88 89 #define PCIR_IS_BIOS(cfg, reg) \ 90 (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \ 91 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1)) 92 93 static int pci_has_quirk(uint32_t devid, int quirk); 94 static pci_addr_t pci_mapbase(uint64_t mapreg); 95 static const char *pci_maptype(uint64_t mapreg); 96 static int pci_maprange(uint64_t mapreg); 97 static pci_addr_t pci_rombase(uint64_t mapreg); 98 static int pci_romsize(uint64_t testval); 99 static void pci_fixancient(pcicfgregs *cfg); 100 static int pci_printf(pcicfgregs *cfg, const char *fmt, ...); 101 102 static int pci_porten(device_t dev); 103 static int pci_memen(device_t dev); 104 static void pci_assign_interrupt(device_t bus, device_t dev, 105 int force_route); 106 static int pci_add_map(device_t bus, device_t dev, int reg, 107 struct resource_list *rl, int force, int prefetch); 108 static int pci_probe(device_t dev); 109 static void pci_load_vendor_data(void); 110 static int pci_describe_parse_line(char **ptr, int *vendor, 111 int *device, char **desc); 112 static char *pci_describe_device(device_t dev); 113 static int pci_modevent(module_t mod, int what, void *arg); 114 static void pci_hdrtypedata(device_t pcib, int b, int s, int f, 115 pcicfgregs *cfg); 116 static void pci_read_cap(device_t pcib, pcicfgregs *cfg); 117 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, 118 int reg, uint32_t *data); 119 #if 0 120 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, 121 int reg, uint32_t data); 122 #endif 123 static void pci_read_vpd(device_t pcib, pcicfgregs *cfg); 124 static void pci_mask_msix(device_t dev, u_int index); 125 static void pci_unmask_msix(device_t dev, u_int index); 126 static int pci_msi_blacklisted(void); 127 static int pci_msix_blacklisted(void); 128 static void pci_resume_msi(device_t dev); 129 static void pci_resume_msix(device_t dev); 130 static int pci_remap_intr_method(device_t bus, device_t dev, 131 u_int irq); 132 static void pci_hint_device_unit(device_t acdev, device_t child, 133 const char *name, int *unitp); 134 static int pci_reset_post(device_t dev, device_t child); 135 static int pci_reset_prepare(device_t dev, device_t child); 136 static int pci_reset_child(device_t dev, device_t child, 137 int flags); 138 139 static int pci_get_id_method(device_t dev, device_t child, 140 enum pci_id_type type, uintptr_t *rid); 141 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d, 142 int b, int s, int f, uint16_t vid, uint16_t did); 143 144 static device_method_t pci_methods[] = { 145 /* Device interface */ 146 DEVMETHOD(device_probe, pci_probe), 147 DEVMETHOD(device_attach, pci_attach), 148 DEVMETHOD(device_detach, pci_detach), 149 DEVMETHOD(device_shutdown, bus_generic_shutdown), 150 DEVMETHOD(device_suspend, bus_generic_suspend), 151 DEVMETHOD(device_resume, pci_resume), 152 153 /* Bus interface */ 154 DEVMETHOD(bus_print_child, pci_print_child), 155 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch), 156 DEVMETHOD(bus_read_ivar, pci_read_ivar), 157 DEVMETHOD(bus_write_ivar, pci_write_ivar), 158 DEVMETHOD(bus_driver_added, pci_driver_added), 159 DEVMETHOD(bus_setup_intr, pci_setup_intr), 160 DEVMETHOD(bus_teardown_intr, pci_teardown_intr), 161 DEVMETHOD(bus_reset_prepare, pci_reset_prepare), 162 DEVMETHOD(bus_reset_post, pci_reset_post), 163 DEVMETHOD(bus_reset_child, pci_reset_child), 164 165 DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag), 166 DEVMETHOD(bus_get_resource_list,pci_get_resource_list), 167 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), 168 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), 169 DEVMETHOD(bus_delete_resource, pci_delete_resource), 170 DEVMETHOD(bus_alloc_resource, pci_alloc_resource), 171 DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), 172 DEVMETHOD(bus_release_resource, pci_release_resource), 173 DEVMETHOD(bus_activate_resource, pci_activate_resource), 174 DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), 175 DEVMETHOD(bus_child_deleted, pci_child_deleted), 176 DEVMETHOD(bus_child_detached, pci_child_detached), 177 DEVMETHOD(bus_child_pnpinfo, pci_child_pnpinfo_method), 178 DEVMETHOD(bus_child_location, pci_child_location_method), 179 DEVMETHOD(bus_get_device_path, pci_get_device_path_method), 180 DEVMETHOD(bus_hint_device_unit, pci_hint_device_unit), 181 DEVMETHOD(bus_remap_intr, pci_remap_intr_method), 182 DEVMETHOD(bus_suspend_child, pci_suspend_child), 183 DEVMETHOD(bus_resume_child, pci_resume_child), 184 DEVMETHOD(bus_rescan, pci_rescan_method), 185 186 /* PCI interface */ 187 DEVMETHOD(pci_read_config, pci_read_config_method), 188 DEVMETHOD(pci_write_config, pci_write_config_method), 189 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method), 190 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method), 191 DEVMETHOD(pci_enable_io, pci_enable_io_method), 192 DEVMETHOD(pci_disable_io, pci_disable_io_method), 193 DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method), 194 DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method), 195 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method), 196 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method), 197 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method), 198 DEVMETHOD(pci_find_cap, pci_find_cap_method), 199 DEVMETHOD(pci_find_next_cap, pci_find_next_cap_method), 200 DEVMETHOD(pci_find_extcap, pci_find_extcap_method), 201 DEVMETHOD(pci_find_next_extcap, pci_find_next_extcap_method), 202 DEVMETHOD(pci_find_htcap, pci_find_htcap_method), 203 DEVMETHOD(pci_find_next_htcap, pci_find_next_htcap_method), 204 DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method), 205 DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method), 206 DEVMETHOD(pci_enable_msi, pci_enable_msi_method), 207 DEVMETHOD(pci_enable_msix, pci_enable_msix_method), 208 DEVMETHOD(pci_disable_msi, pci_disable_msi_method), 209 DEVMETHOD(pci_remap_msix, pci_remap_msix_method), 210 DEVMETHOD(pci_release_msi, pci_release_msi_method), 211 DEVMETHOD(pci_msi_count, pci_msi_count_method), 212 DEVMETHOD(pci_msix_count, pci_msix_count_method), 213 DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method), 214 DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method), 215 DEVMETHOD(pci_get_id, pci_get_id_method), 216 DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method), 217 DEVMETHOD(pci_child_added, pci_child_added_method), 218 #ifdef PCI_IOV 219 DEVMETHOD(pci_iov_attach, pci_iov_attach_method), 220 DEVMETHOD(pci_iov_detach, pci_iov_detach_method), 221 DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method), 222 #endif 223 224 DEVMETHOD_END 225 }; 226 227 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc)); 228 229 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS); 230 MODULE_VERSION(pci, 1); 231 232 static char *pci_vendordata; 233 static size_t pci_vendordata_size; 234 235 struct pci_quirk { 236 uint32_t devid; /* Vendor/device of the card */ 237 int type; 238 #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */ 239 #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */ 240 #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */ 241 #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */ 242 #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */ 243 #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */ 244 #define PCI_QUIRK_REALLOC_BAR 7 /* Can't allocate memory at the default address */ 245 int arg1; 246 int arg2; 247 }; 248 249 static const struct pci_quirk pci_quirks[] = { 250 /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */ 251 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 252 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 }, 253 /* As does the Serverworks OSB4 (the SMBus mapping register) */ 254 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 }, 255 256 /* 257 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge 258 * or the CMIC-SL (AKA ServerWorks GC_LE). 259 */ 260 { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 261 { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 262 263 /* 264 * MSI doesn't work on earlier Intel chipsets including 265 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855. 266 */ 267 { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 268 { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 269 { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 270 { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 271 { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 272 { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 273 { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 274 275 /* 276 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX 277 * bridge. 278 */ 279 { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 }, 280 281 /* 282 * Some virtualization environments emulate an older chipset 283 * but support MSI just fine. QEMU uses the Intel 82440. 284 */ 285 { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 }, 286 287 /* 288 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus 289 * controller depending on SoftPciRst register (PM_IO 0x55 [7]). 290 * It prevents us from attaching hpet(4) when the bit is unset. 291 * Note this quirk only affects SB600 revision A13 and earlier. 292 * For SB600 A21 and later, firmware must set the bit to hide it. 293 * For SB700 and later, it is unused and hardcoded to zero. 294 */ 295 { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 }, 296 297 /* 298 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have 299 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit 300 * of the command register is set. 301 */ 302 { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 303 { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 304 { 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 305 { 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 306 { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, 307 308 /* 309 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't 310 * issue MSI interrupts with PCIM_CMD_INTxDIS set either. 311 */ 312 { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */ 313 { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */ 314 { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */ 315 { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */ 316 { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */ 317 { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */ 318 319 /* 320 * HPE Gen 10 VGA has a memory range that can't be allocated in the 321 * expected place. 322 */ 323 { 0x98741002, PCI_QUIRK_REALLOC_BAR, 0, 0 }, 324 { 0 } 325 }; 326 327 /* map register information */ 328 #define PCI_MAPMEM 0x01 /* memory map */ 329 #define PCI_MAPMEMP 0x02 /* prefetchable memory map */ 330 #define PCI_MAPPORT 0x04 /* port map */ 331 332 struct devlist pci_devq; 333 uint32_t pci_generation; 334 uint32_t pci_numdevs = 0; 335 static int pcie_chipset, pcix_chipset; 336 337 /* sysctl vars */ 338 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 339 "PCI bus tuning parameters"); 340 341 static int pci_enable_io_modes = 1; 342 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN, 343 &pci_enable_io_modes, 1, 344 "Enable I/O and memory bits in the config register. Some BIOSes do not" 345 " enable these bits correctly. We'd like to do this all the time, but" 346 " there are some peripherals that this causes problems with."); 347 348 static int pci_do_realloc_bars = 1; 349 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN, 350 &pci_do_realloc_bars, 0, 351 "Attempt to allocate a new range for any BARs whose original " 352 "firmware-assigned ranges fail to allocate during the initial device scan."); 353 354 static int pci_do_power_nodriver = 0; 355 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN, 356 &pci_do_power_nodriver, 0, 357 "Place a function into D3 state when no driver attaches to it. 0 means" 358 " disable. 1 means conservatively place devices into D3 state. 2 means" 359 " aggressively place devices into D3 state. 3 means put absolutely" 360 " everything in D3 state."); 361 362 int pci_do_power_resume = 1; 363 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN, 364 &pci_do_power_resume, 1, 365 "Transition from D3 -> D0 on resume."); 366 367 int pci_do_power_suspend = 1; 368 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN, 369 &pci_do_power_suspend, 1, 370 "Transition from D0 -> D3 on suspend."); 371 372 static int pci_do_msi = 1; 373 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1, 374 "Enable support for MSI interrupts"); 375 376 static int pci_do_msix = 1; 377 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1, 378 "Enable support for MSI-X interrupts"); 379 380 static int pci_msix_rewrite_table = 0; 381 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN, 382 &pci_msix_rewrite_table, 0, 383 "Rewrite entire MSI-X table when updating MSI-X entries"); 384 385 static int pci_honor_msi_blacklist = 1; 386 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN, 387 &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X"); 388 389 #if defined(__i386__) || defined(__amd64__) 390 static int pci_usb_takeover = 1; 391 #else 392 static int pci_usb_takeover = 0; 393 #endif 394 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN, 395 &pci_usb_takeover, 1, 396 "Enable early takeover of USB controllers. Disable this if you depend on" 397 " BIOS emulation of USB devices, that is you use USB devices (like" 398 " keyboard or mouse) but do not load USB drivers"); 399 400 static int pci_clear_bars; 401 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0, 402 "Ignore firmware-assigned resources for BARs."); 403 404 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 405 static int pci_clear_buses; 406 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0, 407 "Ignore firmware-assigned bus numbers."); 408 #endif 409 410 static int pci_enable_ari = 1; 411 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari, 412 0, "Enable support for PCIe Alternative RID Interpretation"); 413 414 int pci_enable_aspm = 1; 415 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm, 416 0, "Enable support for PCIe Active State Power Management"); 417 418 static int pci_clear_aer_on_attach = 0; 419 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN, 420 &pci_clear_aer_on_attach, 0, 421 "Clear port and device AER state on driver attach"); 422 423 static int 424 pci_has_quirk(uint32_t devid, int quirk) 425 { 426 const struct pci_quirk *q; 427 428 for (q = &pci_quirks[0]; q->devid; q++) { 429 if (q->devid == devid && q->type == quirk) 430 return (1); 431 } 432 return (0); 433 } 434 435 /* Find a device_t by bus/slot/function in domain 0 */ 436 437 device_t 438 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func) 439 { 440 441 return (pci_find_dbsf(0, bus, slot, func)); 442 } 443 444 /* Find a device_t by domain/bus/slot/function */ 445 446 device_t 447 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func) 448 { 449 struct pci_devinfo *dinfo = NULL; 450 451 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 452 if ((dinfo->cfg.domain == domain) && 453 (dinfo->cfg.bus == bus) && 454 (dinfo->cfg.slot == slot) && 455 (dinfo->cfg.func == func)) { 456 break; 457 } 458 } 459 460 return (dinfo != NULL ? dinfo->cfg.dev : NULL); 461 } 462 463 /* Find a device_t by vendor/device ID */ 464 465 device_t 466 pci_find_device(uint16_t vendor, uint16_t device) 467 { 468 struct pci_devinfo *dinfo; 469 470 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 471 if ((dinfo->cfg.vendor == vendor) && 472 (dinfo->cfg.device == device)) { 473 return (dinfo->cfg.dev); 474 } 475 } 476 477 return (NULL); 478 } 479 480 device_t 481 pci_find_class(uint8_t class, uint8_t subclass) 482 { 483 struct pci_devinfo *dinfo; 484 485 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 486 if (dinfo->cfg.baseclass == class && 487 dinfo->cfg.subclass == subclass) { 488 return (dinfo->cfg.dev); 489 } 490 } 491 492 return (NULL); 493 } 494 495 device_t 496 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from) 497 { 498 struct pci_devinfo *dinfo; 499 bool found = false; 500 501 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 502 if (from != NULL && found == false) { 503 if (from != dinfo->cfg.dev) 504 continue; 505 found = true; 506 continue; 507 } 508 if (dinfo->cfg.baseclass == class && 509 dinfo->cfg.subclass == subclass) { 510 return (dinfo->cfg.dev); 511 } 512 } 513 514 return (NULL); 515 } 516 517 static int 518 pci_printf(pcicfgregs *cfg, const char *fmt, ...) 519 { 520 va_list ap; 521 int retval; 522 523 retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot, 524 cfg->func); 525 va_start(ap, fmt); 526 retval += vprintf(fmt, ap); 527 va_end(ap); 528 return (retval); 529 } 530 531 /* return base address of memory or port map */ 532 533 static pci_addr_t 534 pci_mapbase(uint64_t mapreg) 535 { 536 537 if (PCI_BAR_MEM(mapreg)) 538 return (mapreg & PCIM_BAR_MEM_BASE); 539 else 540 return (mapreg & PCIM_BAR_IO_BASE); 541 } 542 543 /* return map type of memory or port map */ 544 545 static const char * 546 pci_maptype(uint64_t mapreg) 547 { 548 549 if (PCI_BAR_IO(mapreg)) 550 return ("I/O Port"); 551 if (mapreg & PCIM_BAR_MEM_PREFETCH) 552 return ("Prefetchable Memory"); 553 return ("Memory"); 554 } 555 556 /* return log2 of map size decoded for memory or port map */ 557 558 int 559 pci_mapsize(uint64_t testval) 560 { 561 int ln2size; 562 563 testval = pci_mapbase(testval); 564 ln2size = 0; 565 if (testval != 0) { 566 while ((testval & 1) == 0) 567 { 568 ln2size++; 569 testval >>= 1; 570 } 571 } 572 return (ln2size); 573 } 574 575 /* return base address of device ROM */ 576 577 static pci_addr_t 578 pci_rombase(uint64_t mapreg) 579 { 580 581 return (mapreg & PCIM_BIOS_ADDR_MASK); 582 } 583 584 /* return log2 of map size decided for device ROM */ 585 586 static int 587 pci_romsize(uint64_t testval) 588 { 589 int ln2size; 590 591 testval = pci_rombase(testval); 592 ln2size = 0; 593 if (testval != 0) { 594 while ((testval & 1) == 0) 595 { 596 ln2size++; 597 testval >>= 1; 598 } 599 } 600 return (ln2size); 601 } 602 603 /* return log2 of address range supported by map register */ 604 605 static int 606 pci_maprange(uint64_t mapreg) 607 { 608 int ln2range = 0; 609 610 if (PCI_BAR_IO(mapreg)) 611 ln2range = 32; 612 else 613 switch (mapreg & PCIM_BAR_MEM_TYPE) { 614 case PCIM_BAR_MEM_32: 615 ln2range = 32; 616 break; 617 case PCIM_BAR_MEM_1MB: 618 ln2range = 20; 619 break; 620 case PCIM_BAR_MEM_64: 621 ln2range = 64; 622 break; 623 } 624 return (ln2range); 625 } 626 627 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */ 628 629 static void 630 pci_fixancient(pcicfgregs *cfg) 631 { 632 if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) 633 return; 634 635 /* PCI to PCI bridges use header type 1 */ 636 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI) 637 cfg->hdrtype = PCIM_HDRTYPE_BRIDGE; 638 } 639 640 /* extract header type specific config data */ 641 642 static void 643 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg) 644 { 645 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 646 switch (cfg->hdrtype & PCIM_HDRTYPE) { 647 case PCIM_HDRTYPE_NORMAL: 648 cfg->subvendor = REG(PCIR_SUBVEND_0, 2); 649 cfg->subdevice = REG(PCIR_SUBDEV_0, 2); 650 cfg->mingnt = REG(PCIR_MINGNT, 1); 651 cfg->maxlat = REG(PCIR_MAXLAT, 1); 652 cfg->nummaps = PCI_MAXMAPS_0; 653 break; 654 case PCIM_HDRTYPE_BRIDGE: 655 cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1); 656 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1); 657 cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1); 658 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1); 659 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2); 660 cfg->nummaps = PCI_MAXMAPS_1; 661 break; 662 case PCIM_HDRTYPE_CARDBUS: 663 cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1); 664 cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1); 665 cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1); 666 cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1); 667 cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2); 668 cfg->subvendor = REG(PCIR_SUBVEND_2, 2); 669 cfg->subdevice = REG(PCIR_SUBDEV_2, 2); 670 cfg->nummaps = PCI_MAXMAPS_2; 671 break; 672 } 673 #undef REG 674 } 675 676 /* read configuration header into pcicfgregs structure */ 677 struct pci_devinfo * 678 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f) 679 { 680 #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) 681 uint16_t vid, did; 682 683 vid = REG(PCIR_VENDOR, 2); 684 if (vid == PCIV_INVALID) 685 return (NULL); 686 687 did = REG(PCIR_DEVICE, 2); 688 689 return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did)); 690 } 691 692 struct pci_devinfo * 693 pci_alloc_devinfo_method(device_t dev) 694 { 695 696 return (malloc(sizeof(struct pci_devinfo), M_DEVBUF, 697 M_WAITOK | M_ZERO)); 698 } 699 700 static struct pci_devinfo * 701 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f, 702 uint16_t vid, uint16_t did) 703 { 704 struct pci_devinfo *devlist_entry; 705 pcicfgregs *cfg; 706 707 devlist_entry = PCI_ALLOC_DEVINFO(bus); 708 709 cfg = &devlist_entry->cfg; 710 711 cfg->domain = d; 712 cfg->bus = b; 713 cfg->slot = s; 714 cfg->func = f; 715 cfg->vendor = vid; 716 cfg->device = did; 717 cfg->cmdreg = REG(PCIR_COMMAND, 2); 718 cfg->statreg = REG(PCIR_STATUS, 2); 719 cfg->baseclass = REG(PCIR_CLASS, 1); 720 cfg->subclass = REG(PCIR_SUBCLASS, 1); 721 cfg->progif = REG(PCIR_PROGIF, 1); 722 cfg->revid = REG(PCIR_REVID, 1); 723 cfg->hdrtype = REG(PCIR_HDRTYPE, 1); 724 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1); 725 cfg->lattimer = REG(PCIR_LATTIMER, 1); 726 cfg->intpin = REG(PCIR_INTPIN, 1); 727 cfg->intline = REG(PCIR_INTLINE, 1); 728 729 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0; 730 cfg->hdrtype &= ~PCIM_MFDEV; 731 STAILQ_INIT(&cfg->maps); 732 733 cfg->iov = NULL; 734 735 pci_fixancient(cfg); 736 pci_hdrtypedata(pcib, b, s, f, cfg); 737 738 if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) 739 pci_read_cap(pcib, cfg); 740 741 STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links); 742 743 devlist_entry->conf.pc_sel.pc_domain = cfg->domain; 744 devlist_entry->conf.pc_sel.pc_bus = cfg->bus; 745 devlist_entry->conf.pc_sel.pc_dev = cfg->slot; 746 devlist_entry->conf.pc_sel.pc_func = cfg->func; 747 devlist_entry->conf.pc_hdr = cfg->hdrtype; 748 749 devlist_entry->conf.pc_subvendor = cfg->subvendor; 750 devlist_entry->conf.pc_subdevice = cfg->subdevice; 751 devlist_entry->conf.pc_vendor = cfg->vendor; 752 devlist_entry->conf.pc_device = cfg->device; 753 754 devlist_entry->conf.pc_class = cfg->baseclass; 755 devlist_entry->conf.pc_subclass = cfg->subclass; 756 devlist_entry->conf.pc_progif = cfg->progif; 757 devlist_entry->conf.pc_revid = cfg->revid; 758 759 pci_numdevs++; 760 pci_generation++; 761 762 return (devlist_entry); 763 } 764 #undef REG 765 766 static void 767 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg) 768 { 769 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \ 770 cfg->ea.ea_location + (n), w) 771 int num_ent; 772 int ptr; 773 int a, b; 774 uint32_t val; 775 int ent_size; 776 uint32_t dw[4]; 777 uint64_t base, max_offset; 778 struct pci_ea_entry *eae; 779 780 if (cfg->ea.ea_location == 0) 781 return; 782 783 STAILQ_INIT(&cfg->ea.ea_entries); 784 785 /* Determine the number of entries */ 786 num_ent = REG(PCIR_EA_NUM_ENT, 2); 787 num_ent &= PCIM_EA_NUM_ENT_MASK; 788 789 /* Find the first entry to care of */ 790 ptr = PCIR_EA_FIRST_ENT; 791 792 /* Skip DWORD 2 for type 1 functions */ 793 if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) 794 ptr += 4; 795 796 for (a = 0; a < num_ent; a++) { 797 eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO); 798 eae->eae_cfg_offset = cfg->ea.ea_location + ptr; 799 800 /* Read a number of dwords in the entry */ 801 val = REG(ptr, 4); 802 ptr += 4; 803 ent_size = (val & PCIM_EA_ES); 804 805 for (b = 0; b < ent_size; b++) { 806 dw[b] = REG(ptr, 4); 807 ptr += 4; 808 } 809 810 eae->eae_flags = val; 811 eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET; 812 813 base = dw[0] & PCIM_EA_FIELD_MASK; 814 max_offset = dw[1] | ~PCIM_EA_FIELD_MASK; 815 b = 2; 816 if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { 817 base |= (uint64_t)dw[b] << 32UL; 818 b++; 819 } 820 if (((dw[1] & PCIM_EA_IS_64) != 0) 821 && (b < ent_size)) { 822 max_offset |= (uint64_t)dw[b] << 32UL; 823 b++; 824 } 825 826 eae->eae_base = base; 827 eae->eae_max_offset = max_offset; 828 829 STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link); 830 831 if (bootverbose) { 832 printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n", 833 cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags, 834 (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset); 835 } 836 } 837 } 838 #undef REG 839 840 static void 841 pci_read_cap(device_t pcib, pcicfgregs *cfg) 842 { 843 #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w) 844 #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w) 845 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 846 uint64_t addr; 847 #endif 848 uint32_t val; 849 int ptr, nextptr, ptrptr; 850 851 switch (cfg->hdrtype & PCIM_HDRTYPE) { 852 case PCIM_HDRTYPE_NORMAL: 853 case PCIM_HDRTYPE_BRIDGE: 854 ptrptr = PCIR_CAP_PTR; 855 break; 856 case PCIM_HDRTYPE_CARDBUS: 857 ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */ 858 break; 859 default: 860 return; /* no extended capabilities support */ 861 } 862 nextptr = REG(ptrptr, 1); /* sanity check? */ 863 864 /* 865 * Read capability entries. 866 */ 867 while (nextptr != 0) { 868 /* Sanity check */ 869 if (nextptr > 255) { 870 printf("illegal PCI extended capability offset %d\n", 871 nextptr); 872 return; 873 } 874 /* Find the next entry */ 875 ptr = nextptr; 876 nextptr = REG(ptr + PCICAP_NEXTPTR, 1); 877 878 /* Process this entry */ 879 switch (REG(ptr + PCICAP_ID, 1)) { 880 case PCIY_PMG: /* PCI power management */ 881 if (cfg->pp.pp_cap == 0) { 882 cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2); 883 cfg->pp.pp_status = ptr + PCIR_POWER_STATUS; 884 cfg->pp.pp_bse = ptr + PCIR_POWER_BSE; 885 if ((nextptr - ptr) > PCIR_POWER_DATA) 886 cfg->pp.pp_data = ptr + PCIR_POWER_DATA; 887 } 888 break; 889 case PCIY_HT: /* HyperTransport */ 890 /* Determine HT-specific capability type. */ 891 val = REG(ptr + PCIR_HT_COMMAND, 2); 892 893 if ((val & 0xe000) == PCIM_HTCAP_SLAVE) 894 cfg->ht.ht_slave = ptr; 895 896 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) 897 switch (val & PCIM_HTCMD_CAP_MASK) { 898 case PCIM_HTCAP_MSI_MAPPING: 899 if (!(val & PCIM_HTCMD_MSI_FIXED)) { 900 /* Sanity check the mapping window. */ 901 addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 902 4); 903 addr <<= 32; 904 addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 905 4); 906 if (addr != MSI_INTEL_ADDR_BASE) 907 device_printf(pcib, 908 "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n", 909 cfg->domain, cfg->bus, 910 cfg->slot, cfg->func, 911 (long long)addr); 912 } else 913 addr = MSI_INTEL_ADDR_BASE; 914 915 cfg->ht.ht_msimap = ptr; 916 cfg->ht.ht_msictrl = val; 917 cfg->ht.ht_msiaddr = addr; 918 break; 919 } 920 #endif 921 break; 922 case PCIY_MSI: /* PCI MSI */ 923 cfg->msi.msi_location = ptr; 924 cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2); 925 cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl & 926 PCIM_MSICTRL_MMC_MASK)>>1); 927 break; 928 case PCIY_MSIX: /* PCI MSI-X */ 929 cfg->msix.msix_location = ptr; 930 cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2); 931 cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl & 932 PCIM_MSIXCTRL_TABLE_SIZE) + 1; 933 val = REG(ptr + PCIR_MSIX_TABLE, 4); 934 cfg->msix.msix_table_bar = PCIR_BAR(val & 935 PCIM_MSIX_BIR_MASK); 936 cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK; 937 val = REG(ptr + PCIR_MSIX_PBA, 4); 938 cfg->msix.msix_pba_bar = PCIR_BAR(val & 939 PCIM_MSIX_BIR_MASK); 940 cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK; 941 break; 942 case PCIY_VPD: /* PCI Vital Product Data */ 943 cfg->vpd.vpd_reg = ptr; 944 break; 945 case PCIY_SUBVENDOR: 946 /* Should always be true. */ 947 if ((cfg->hdrtype & PCIM_HDRTYPE) == 948 PCIM_HDRTYPE_BRIDGE) { 949 val = REG(ptr + PCIR_SUBVENDCAP_ID, 4); 950 cfg->subvendor = val & 0xffff; 951 cfg->subdevice = val >> 16; 952 } 953 break; 954 case PCIY_PCIX: /* PCI-X */ 955 /* 956 * Assume we have a PCI-X chipset if we have 957 * at least one PCI-PCI bridge with a PCI-X 958 * capability. Note that some systems with 959 * PCI-express or HT chipsets might match on 960 * this check as well. 961 */ 962 if ((cfg->hdrtype & PCIM_HDRTYPE) == 963 PCIM_HDRTYPE_BRIDGE) 964 pcix_chipset = 1; 965 cfg->pcix.pcix_location = ptr; 966 break; 967 case PCIY_EXPRESS: /* PCI-express */ 968 /* 969 * Assume we have a PCI-express chipset if we have 970 * at least one PCI-express device. 971 */ 972 pcie_chipset = 1; 973 cfg->pcie.pcie_location = ptr; 974 val = REG(ptr + PCIER_FLAGS, 2); 975 cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE; 976 break; 977 case PCIY_EA: /* Enhanced Allocation */ 978 cfg->ea.ea_location = ptr; 979 pci_ea_fill_info(pcib, cfg); 980 break; 981 default: 982 break; 983 } 984 } 985 986 #if defined(__powerpc__) 987 /* 988 * Enable the MSI mapping window for all HyperTransport 989 * slaves. PCI-PCI bridges have their windows enabled via 990 * PCIB_MAP_MSI(). 991 */ 992 if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 && 993 !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) { 994 device_printf(pcib, 995 "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n", 996 cfg->domain, cfg->bus, cfg->slot, cfg->func); 997 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 998 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl, 999 2); 1000 } 1001 #endif 1002 /* REG and WREG use carry through to next functions */ 1003 } 1004 1005 /* 1006 * PCI Vital Product Data 1007 */ 1008 1009 #define PCI_VPD_TIMEOUT 1000000 1010 1011 static int 1012 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data) 1013 { 1014 int count = PCI_VPD_TIMEOUT; 1015 1016 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1017 1018 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2); 1019 1020 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) { 1021 if (--count < 0) 1022 return (ENXIO); 1023 DELAY(1); /* limit looping */ 1024 } 1025 *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4)); 1026 1027 return (0); 1028 } 1029 1030 #if 0 1031 static int 1032 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data) 1033 { 1034 int count = PCI_VPD_TIMEOUT; 1035 1036 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); 1037 1038 WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4); 1039 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2); 1040 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) { 1041 if (--count < 0) 1042 return (ENXIO); 1043 DELAY(1); /* limit looping */ 1044 } 1045 1046 return (0); 1047 } 1048 #endif 1049 1050 #undef PCI_VPD_TIMEOUT 1051 1052 struct vpd_readstate { 1053 device_t pcib; 1054 pcicfgregs *cfg; 1055 uint32_t val; 1056 int bytesinval; 1057 int off; 1058 uint8_t cksum; 1059 }; 1060 1061 static int 1062 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data) 1063 { 1064 uint32_t reg; 1065 uint8_t byte; 1066 1067 if (vrs->bytesinval == 0) { 1068 if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®)) 1069 return (ENXIO); 1070 vrs->val = le32toh(reg); 1071 vrs->off += 4; 1072 byte = vrs->val & 0xff; 1073 vrs->bytesinval = 3; 1074 } else { 1075 vrs->val = vrs->val >> 8; 1076 byte = vrs->val & 0xff; 1077 vrs->bytesinval--; 1078 } 1079 1080 vrs->cksum += byte; 1081 *data = byte; 1082 return (0); 1083 } 1084 1085 static void 1086 pci_read_vpd(device_t pcib, pcicfgregs *cfg) 1087 { 1088 struct vpd_readstate vrs; 1089 int state; 1090 int name; 1091 int remain; 1092 int i; 1093 int alloc, off; /* alloc/off for RO/W arrays */ 1094 int cksumvalid; 1095 int dflen; 1096 int firstrecord; 1097 uint8_t byte; 1098 uint8_t byte2; 1099 1100 /* init vpd reader */ 1101 vrs.bytesinval = 0; 1102 vrs.off = 0; 1103 vrs.pcib = pcib; 1104 vrs.cfg = cfg; 1105 vrs.cksum = 0; 1106 1107 state = 0; 1108 name = remain = i = 0; /* shut up stupid gcc */ 1109 alloc = off = 0; /* shut up stupid gcc */ 1110 dflen = 0; /* shut up stupid gcc */ 1111 cksumvalid = -1; 1112 firstrecord = 1; 1113 while (state >= 0) { 1114 if (vpd_nextbyte(&vrs, &byte)) { 1115 pci_printf(cfg, "VPD read timed out\n"); 1116 state = -2; 1117 break; 1118 } 1119 #if 0 1120 pci_printf(cfg, "vpd: val: %#x, off: %d, bytesinval: %d, byte: " 1121 "%#hhx, state: %d, remain: %d, name: %#x, i: %d\n", vrs.val, 1122 vrs.off, vrs.bytesinval, byte, state, remain, name, i); 1123 #endif 1124 switch (state) { 1125 case 0: /* item name */ 1126 if (byte & 0x80) { 1127 if (vpd_nextbyte(&vrs, &byte2)) { 1128 state = -2; 1129 break; 1130 } 1131 remain = byte2; 1132 if (vpd_nextbyte(&vrs, &byte2)) { 1133 state = -2; 1134 break; 1135 } 1136 remain |= byte2 << 8; 1137 name = byte & 0x7f; 1138 } else { 1139 remain = byte & 0x7; 1140 name = (byte >> 3) & 0xf; 1141 } 1142 if (firstrecord) { 1143 if (name != 0x2) { 1144 pci_printf(cfg, "VPD data does not " \ 1145 "start with ident (%#x)\n", name); 1146 state = -2; 1147 break; 1148 } 1149 firstrecord = 0; 1150 } 1151 if (vrs.off + remain - vrs.bytesinval > 0x8000) { 1152 pci_printf(cfg, 1153 "VPD data overflow, remain %#x\n", remain); 1154 state = -1; 1155 break; 1156 } 1157 switch (name) { 1158 case 0x2: /* String */ 1159 if (cfg->vpd.vpd_ident != NULL) { 1160 pci_printf(cfg, 1161 "duplicate VPD ident record\n"); 1162 state = -2; 1163 break; 1164 } 1165 if (remain > 255) { 1166 pci_printf(cfg, 1167 "VPD ident length %d exceeds 255\n", 1168 remain); 1169 state = -2; 1170 break; 1171 } 1172 cfg->vpd.vpd_ident = malloc(remain + 1, 1173 M_DEVBUF, M_WAITOK); 1174 i = 0; 1175 state = 1; 1176 break; 1177 case 0xf: /* End */ 1178 state = -1; 1179 break; 1180 case 0x10: /* VPD-R */ 1181 alloc = 8; 1182 off = 0; 1183 cfg->vpd.vpd_ros = malloc(alloc * 1184 sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, 1185 M_WAITOK | M_ZERO); 1186 state = 2; 1187 break; 1188 case 0x11: /* VPD-W */ 1189 alloc = 8; 1190 off = 0; 1191 cfg->vpd.vpd_w = malloc(alloc * 1192 sizeof(*cfg->vpd.vpd_w), M_DEVBUF, 1193 M_WAITOK | M_ZERO); 1194 state = 5; 1195 break; 1196 default: /* Invalid data, abort */ 1197 pci_printf(cfg, "invalid VPD name: %#x\n", name); 1198 state = -2; 1199 break; 1200 } 1201 break; 1202 1203 case 1: /* Identifier String */ 1204 cfg->vpd.vpd_ident[i++] = byte; 1205 remain--; 1206 if (remain == 0) { 1207 cfg->vpd.vpd_ident[i] = '\0'; 1208 state = 0; 1209 } 1210 break; 1211 1212 case 2: /* VPD-R Keyword Header */ 1213 if (off == alloc) { 1214 cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, 1215 (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros), 1216 M_DEVBUF, M_WAITOK | M_ZERO); 1217 } 1218 cfg->vpd.vpd_ros[off].keyword[0] = byte; 1219 if (vpd_nextbyte(&vrs, &byte2)) { 1220 state = -2; 1221 break; 1222 } 1223 cfg->vpd.vpd_ros[off].keyword[1] = byte2; 1224 if (vpd_nextbyte(&vrs, &byte2)) { 1225 state = -2; 1226 break; 1227 } 1228 cfg->vpd.vpd_ros[off].len = dflen = byte2; 1229 if (dflen == 0 && 1230 strncmp(cfg->vpd.vpd_ros[off].keyword, "RV", 1231 2) == 0) { 1232 /* 1233 * if this happens, we can't trust the rest 1234 * of the VPD. 1235 */ 1236 pci_printf(cfg, "invalid VPD RV record"); 1237 cksumvalid = 0; 1238 state = -1; 1239 break; 1240 } else if (dflen == 0) { 1241 cfg->vpd.vpd_ros[off].value = malloc(1 * 1242 sizeof(*cfg->vpd.vpd_ros[off].value), 1243 M_DEVBUF, M_WAITOK); 1244 cfg->vpd.vpd_ros[off].value[0] = '\x00'; 1245 } else 1246 cfg->vpd.vpd_ros[off].value = malloc( 1247 (dflen + 1) * 1248 sizeof(*cfg->vpd.vpd_ros[off].value), 1249 M_DEVBUF, M_WAITOK); 1250 remain -= 3; 1251 i = 0; 1252 /* keep in sync w/ state 3's transistions */ 1253 if (dflen == 0 && remain == 0) 1254 state = 0; 1255 else if (dflen == 0) 1256 state = 2; 1257 else 1258 state = 3; 1259 break; 1260 1261 case 3: /* VPD-R Keyword Value */ 1262 cfg->vpd.vpd_ros[off].value[i++] = byte; 1263 if (strncmp(cfg->vpd.vpd_ros[off].keyword, 1264 "RV", 2) == 0 && cksumvalid == -1) { 1265 if (vrs.cksum == 0) 1266 cksumvalid = 1; 1267 else { 1268 if (bootverbose) 1269 pci_printf(cfg, 1270 "bad VPD cksum, remain %hhu\n", 1271 vrs.cksum); 1272 cksumvalid = 0; 1273 state = -1; 1274 break; 1275 } 1276 } 1277 dflen--; 1278 remain--; 1279 /* keep in sync w/ state 2's transistions */ 1280 if (dflen == 0) 1281 cfg->vpd.vpd_ros[off++].value[i++] = '\0'; 1282 if (dflen == 0 && remain == 0) { 1283 cfg->vpd.vpd_rocnt = off; 1284 cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, 1285 off * sizeof(*cfg->vpd.vpd_ros), 1286 M_DEVBUF, M_WAITOK | M_ZERO); 1287 state = 0; 1288 } else if (dflen == 0) 1289 state = 2; 1290 break; 1291 1292 case 4: 1293 remain--; 1294 if (remain == 0) 1295 state = 0; 1296 break; 1297 1298 case 5: /* VPD-W Keyword Header */ 1299 if (off == alloc) { 1300 cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, 1301 (alloc *= 2) * sizeof(*cfg->vpd.vpd_w), 1302 M_DEVBUF, M_WAITOK | M_ZERO); 1303 } 1304 cfg->vpd.vpd_w[off].keyword[0] = byte; 1305 if (vpd_nextbyte(&vrs, &byte2)) { 1306 state = -2; 1307 break; 1308 } 1309 cfg->vpd.vpd_w[off].keyword[1] = byte2; 1310 if (vpd_nextbyte(&vrs, &byte2)) { 1311 state = -2; 1312 break; 1313 } 1314 cfg->vpd.vpd_w[off].len = dflen = byte2; 1315 cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval; 1316 cfg->vpd.vpd_w[off].value = malloc((dflen + 1) * 1317 sizeof(*cfg->vpd.vpd_w[off].value), 1318 M_DEVBUF, M_WAITOK); 1319 remain -= 3; 1320 i = 0; 1321 /* keep in sync w/ state 6's transistions */ 1322 if (dflen == 0 && remain == 0) 1323 state = 0; 1324 else if (dflen == 0) 1325 state = 5; 1326 else 1327 state = 6; 1328 break; 1329 1330 case 6: /* VPD-W Keyword Value */ 1331 cfg->vpd.vpd_w[off].value[i++] = byte; 1332 dflen--; 1333 remain--; 1334 /* keep in sync w/ state 5's transistions */ 1335 if (dflen == 0) 1336 cfg->vpd.vpd_w[off++].value[i++] = '\0'; 1337 if (dflen == 0 && remain == 0) { 1338 cfg->vpd.vpd_wcnt = off; 1339 cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, 1340 off * sizeof(*cfg->vpd.vpd_w), 1341 M_DEVBUF, M_WAITOK | M_ZERO); 1342 state = 0; 1343 } else if (dflen == 0) 1344 state = 5; 1345 break; 1346 1347 default: 1348 pci_printf(cfg, "invalid state: %d\n", state); 1349 state = -1; 1350 break; 1351 } 1352 1353 if (cfg->vpd.vpd_ident == NULL || cfg->vpd.vpd_ident[0] == '\0') { 1354 pci_printf(cfg, "no valid vpd ident found\n"); 1355 state = -2; 1356 } 1357 } 1358 1359 if (cksumvalid <= 0 || state < -1) { 1360 /* read-only data bad, clean up */ 1361 if (cfg->vpd.vpd_ros != NULL) { 1362 for (off = 0; cfg->vpd.vpd_ros[off].value; off++) 1363 free(cfg->vpd.vpd_ros[off].value, M_DEVBUF); 1364 free(cfg->vpd.vpd_ros, M_DEVBUF); 1365 cfg->vpd.vpd_ros = NULL; 1366 } 1367 } 1368 if (state < -1) { 1369 /* I/O error, clean up */ 1370 pci_printf(cfg, "failed to read VPD data.\n"); 1371 if (cfg->vpd.vpd_ident != NULL) { 1372 free(cfg->vpd.vpd_ident, M_DEVBUF); 1373 cfg->vpd.vpd_ident = NULL; 1374 } 1375 if (cfg->vpd.vpd_w != NULL) { 1376 for (off = 0; cfg->vpd.vpd_w[off].value; off++) 1377 free(cfg->vpd.vpd_w[off].value, M_DEVBUF); 1378 free(cfg->vpd.vpd_w, M_DEVBUF); 1379 cfg->vpd.vpd_w = NULL; 1380 } 1381 } 1382 cfg->vpd.vpd_cached = 1; 1383 #undef REG 1384 #undef WREG 1385 } 1386 1387 int 1388 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr) 1389 { 1390 struct pci_devinfo *dinfo = device_get_ivars(child); 1391 pcicfgregs *cfg = &dinfo->cfg; 1392 1393 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1394 pci_read_vpd(device_get_parent(dev), cfg); 1395 1396 *identptr = cfg->vpd.vpd_ident; 1397 1398 if (*identptr == NULL) 1399 return (ENXIO); 1400 1401 return (0); 1402 } 1403 1404 int 1405 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw, 1406 const char **vptr) 1407 { 1408 struct pci_devinfo *dinfo = device_get_ivars(child); 1409 pcicfgregs *cfg = &dinfo->cfg; 1410 int i; 1411 1412 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1413 pci_read_vpd(device_get_parent(dev), cfg); 1414 1415 for (i = 0; i < cfg->vpd.vpd_rocnt; i++) 1416 if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword, 1417 sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) { 1418 *vptr = cfg->vpd.vpd_ros[i].value; 1419 return (0); 1420 } 1421 1422 *vptr = NULL; 1423 return (ENXIO); 1424 } 1425 1426 struct pcicfg_vpd * 1427 pci_fetch_vpd_list(device_t dev) 1428 { 1429 struct pci_devinfo *dinfo = device_get_ivars(dev); 1430 pcicfgregs *cfg = &dinfo->cfg; 1431 1432 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) 1433 pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg); 1434 return (&cfg->vpd); 1435 } 1436 1437 /* 1438 * Find the requested HyperTransport capability and return the offset 1439 * in configuration space via the pointer provided. The function 1440 * returns 0 on success and an error code otherwise. 1441 */ 1442 int 1443 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg) 1444 { 1445 int ptr, error; 1446 uint16_t val; 1447 1448 error = pci_find_cap(child, PCIY_HT, &ptr); 1449 if (error) 1450 return (error); 1451 1452 /* 1453 * Traverse the capabilities list checking each HT capability 1454 * to see if it matches the requested HT capability. 1455 */ 1456 for (;;) { 1457 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1458 if (capability == PCIM_HTCAP_SLAVE || 1459 capability == PCIM_HTCAP_HOST) 1460 val &= 0xe000; 1461 else 1462 val &= PCIM_HTCMD_CAP_MASK; 1463 if (val == capability) { 1464 if (capreg != NULL) 1465 *capreg = ptr; 1466 return (0); 1467 } 1468 1469 /* Skip to the next HT capability. */ 1470 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1471 break; 1472 } 1473 1474 return (ENOENT); 1475 } 1476 1477 /* 1478 * Find the next requested HyperTransport capability after start and return 1479 * the offset in configuration space via the pointer provided. The function 1480 * returns 0 on success and an error code otherwise. 1481 */ 1482 int 1483 pci_find_next_htcap_method(device_t dev, device_t child, int capability, 1484 int start, int *capreg) 1485 { 1486 int ptr; 1487 uint16_t val; 1488 1489 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT, 1490 ("start capability is not HyperTransport capability")); 1491 ptr = start; 1492 1493 /* 1494 * Traverse the capabilities list checking each HT capability 1495 * to see if it matches the requested HT capability. 1496 */ 1497 for (;;) { 1498 /* Skip to the next HT capability. */ 1499 if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) 1500 break; 1501 1502 val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); 1503 if (capability == PCIM_HTCAP_SLAVE || 1504 capability == PCIM_HTCAP_HOST) 1505 val &= 0xe000; 1506 else 1507 val &= PCIM_HTCMD_CAP_MASK; 1508 if (val == capability) { 1509 if (capreg != NULL) 1510 *capreg = ptr; 1511 return (0); 1512 } 1513 } 1514 1515 return (ENOENT); 1516 } 1517 1518 /* 1519 * Find the requested capability and return the offset in 1520 * configuration space via the pointer provided. The function returns 1521 * 0 on success and an error code otherwise. 1522 */ 1523 int 1524 pci_find_cap_method(device_t dev, device_t child, int capability, 1525 int *capreg) 1526 { 1527 struct pci_devinfo *dinfo = device_get_ivars(child); 1528 pcicfgregs *cfg = &dinfo->cfg; 1529 uint32_t status; 1530 uint8_t ptr; 1531 1532 /* 1533 * Check the CAP_LIST bit of the PCI status register first. 1534 */ 1535 status = pci_read_config(child, PCIR_STATUS, 2); 1536 if (!(status & PCIM_STATUS_CAPPRESENT)) 1537 return (ENXIO); 1538 1539 /* 1540 * Determine the start pointer of the capabilities list. 1541 */ 1542 switch (cfg->hdrtype & PCIM_HDRTYPE) { 1543 case PCIM_HDRTYPE_NORMAL: 1544 case PCIM_HDRTYPE_BRIDGE: 1545 ptr = PCIR_CAP_PTR; 1546 break; 1547 case PCIM_HDRTYPE_CARDBUS: 1548 ptr = PCIR_CAP_PTR_2; 1549 break; 1550 default: 1551 /* XXX: panic? */ 1552 return (ENXIO); /* no extended capabilities support */ 1553 } 1554 ptr = pci_read_config(child, ptr, 1); 1555 1556 /* 1557 * Traverse the capabilities list. 1558 */ 1559 while (ptr != 0) { 1560 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1561 if (capreg != NULL) 1562 *capreg = ptr; 1563 return (0); 1564 } 1565 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1566 } 1567 1568 return (ENOENT); 1569 } 1570 1571 /* 1572 * Find the next requested capability after start and return the offset in 1573 * configuration space via the pointer provided. The function returns 1574 * 0 on success and an error code otherwise. 1575 */ 1576 int 1577 pci_find_next_cap_method(device_t dev, device_t child, int capability, 1578 int start, int *capreg) 1579 { 1580 uint8_t ptr; 1581 1582 KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability, 1583 ("start capability is not expected capability")); 1584 1585 ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1); 1586 while (ptr != 0) { 1587 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { 1588 if (capreg != NULL) 1589 *capreg = ptr; 1590 return (0); 1591 } 1592 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); 1593 } 1594 1595 return (ENOENT); 1596 } 1597 1598 /* 1599 * Find the requested extended capability and return the offset in 1600 * configuration space via the pointer provided. The function returns 1601 * 0 on success and an error code otherwise. 1602 */ 1603 int 1604 pci_find_extcap_method(device_t dev, device_t child, int capability, 1605 int *capreg) 1606 { 1607 struct pci_devinfo *dinfo = device_get_ivars(child); 1608 pcicfgregs *cfg = &dinfo->cfg; 1609 uint32_t ecap; 1610 uint16_t ptr; 1611 1612 /* Only supported for PCI-express devices. */ 1613 if (cfg->pcie.pcie_location == 0) 1614 return (ENXIO); 1615 1616 ptr = PCIR_EXTCAP; 1617 ecap = pci_read_config(child, ptr, 4); 1618 if (ecap == 0xffffffff || ecap == 0) 1619 return (ENOENT); 1620 for (;;) { 1621 if (PCI_EXTCAP_ID(ecap) == capability) { 1622 if (capreg != NULL) 1623 *capreg = ptr; 1624 return (0); 1625 } 1626 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1627 if (ptr == 0) 1628 break; 1629 ecap = pci_read_config(child, ptr, 4); 1630 } 1631 1632 return (ENOENT); 1633 } 1634 1635 /* 1636 * Find the next requested extended capability after start and return the 1637 * offset in configuration space via the pointer provided. The function 1638 * returns 0 on success and an error code otherwise. 1639 */ 1640 int 1641 pci_find_next_extcap_method(device_t dev, device_t child, int capability, 1642 int start, int *capreg) 1643 { 1644 struct pci_devinfo *dinfo = device_get_ivars(child); 1645 pcicfgregs *cfg = &dinfo->cfg; 1646 uint32_t ecap; 1647 uint16_t ptr; 1648 1649 /* Only supported for PCI-express devices. */ 1650 if (cfg->pcie.pcie_location == 0) 1651 return (ENXIO); 1652 1653 ecap = pci_read_config(child, start, 4); 1654 KASSERT(PCI_EXTCAP_ID(ecap) == capability, 1655 ("start extended capability is not expected capability")); 1656 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1657 while (ptr != 0) { 1658 ecap = pci_read_config(child, ptr, 4); 1659 if (PCI_EXTCAP_ID(ecap) == capability) { 1660 if (capreg != NULL) 1661 *capreg = ptr; 1662 return (0); 1663 } 1664 ptr = PCI_EXTCAP_NEXTPTR(ecap); 1665 } 1666 1667 return (ENOENT); 1668 } 1669 1670 /* 1671 * Support for MSI-X message interrupts. 1672 */ 1673 static void 1674 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data) 1675 { 1676 struct pci_devinfo *dinfo = device_get_ivars(dev); 1677 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1678 uint32_t offset; 1679 1680 KASSERT(msix->msix_table_len > index, ("bogus index")); 1681 offset = msix->msix_table_offset + index * 16; 1682 bus_write_4(msix->msix_table_res, offset, address & 0xffffffff); 1683 bus_write_4(msix->msix_table_res, offset + 4, address >> 32); 1684 bus_write_4(msix->msix_table_res, offset + 8, data); 1685 } 1686 1687 void 1688 pci_enable_msix_method(device_t dev, device_t child, u_int index, 1689 uint64_t address, uint32_t data) 1690 { 1691 1692 if (pci_msix_rewrite_table) { 1693 struct pci_devinfo *dinfo = device_get_ivars(child); 1694 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1695 1696 /* 1697 * Some VM hosts require MSIX to be disabled in the 1698 * control register before updating the MSIX table 1699 * entries are allowed. It is not enough to only 1700 * disable MSIX while updating a single entry. MSIX 1701 * must be disabled while updating all entries in the 1702 * table. 1703 */ 1704 pci_write_config(child, 1705 msix->msix_location + PCIR_MSIX_CTRL, 1706 msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2); 1707 pci_resume_msix(child); 1708 } else 1709 pci_write_msix_entry(child, index, address, data); 1710 1711 /* Enable MSI -> HT mapping. */ 1712 pci_ht_map_msi(child, address); 1713 } 1714 1715 void 1716 pci_mask_msix(device_t dev, u_int index) 1717 { 1718 struct pci_devinfo *dinfo = device_get_ivars(dev); 1719 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1720 uint32_t offset, val; 1721 1722 KASSERT(msix->msix_msgnum > index, ("bogus index")); 1723 offset = msix->msix_table_offset + index * 16 + 12; 1724 val = bus_read_4(msix->msix_table_res, offset); 1725 val |= PCIM_MSIX_VCTRL_MASK; 1726 1727 /* 1728 * Some devices (e.g. Samsung PM961) do not support reads of this 1729 * register, so always write the new value. 1730 */ 1731 bus_write_4(msix->msix_table_res, offset, val); 1732 } 1733 1734 void 1735 pci_unmask_msix(device_t dev, u_int index) 1736 { 1737 struct pci_devinfo *dinfo = device_get_ivars(dev); 1738 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1739 uint32_t offset, val; 1740 1741 KASSERT(msix->msix_table_len > index, ("bogus index")); 1742 offset = msix->msix_table_offset + index * 16 + 12; 1743 val = bus_read_4(msix->msix_table_res, offset); 1744 val &= ~PCIM_MSIX_VCTRL_MASK; 1745 1746 /* 1747 * Some devices (e.g. Samsung PM961) do not support reads of this 1748 * register, so always write the new value. 1749 */ 1750 bus_write_4(msix->msix_table_res, offset, val); 1751 } 1752 1753 int 1754 pci_pending_msix(device_t dev, u_int index) 1755 { 1756 struct pci_devinfo *dinfo = device_get_ivars(dev); 1757 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1758 uint32_t offset, bit; 1759 1760 KASSERT(msix->msix_table_len > index, ("bogus index")); 1761 offset = msix->msix_pba_offset + (index / 32) * 4; 1762 bit = 1 << index % 32; 1763 return (bus_read_4(msix->msix_pba_res, offset) & bit); 1764 } 1765 1766 /* 1767 * Restore MSI-X registers and table during resume. If MSI-X is 1768 * enabled then walk the virtual table to restore the actual MSI-X 1769 * table. 1770 */ 1771 static void 1772 pci_resume_msix(device_t dev) 1773 { 1774 struct pci_devinfo *dinfo = device_get_ivars(dev); 1775 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1776 struct msix_table_entry *mte; 1777 struct msix_vector *mv; 1778 int i; 1779 1780 if (msix->msix_alloc > 0) { 1781 /* First, mask all vectors. */ 1782 for (i = 0; i < msix->msix_msgnum; i++) 1783 pci_mask_msix(dev, i); 1784 1785 /* Second, program any messages with at least one handler. */ 1786 for (i = 0; i < msix->msix_table_len; i++) { 1787 mte = &msix->msix_table[i]; 1788 if (mte->mte_vector == 0 || mte->mte_handlers == 0) 1789 continue; 1790 mv = &msix->msix_vectors[mte->mte_vector - 1]; 1791 pci_write_msix_entry(dev, i, mv->mv_address, 1792 mv->mv_data); 1793 pci_unmask_msix(dev, i); 1794 } 1795 } 1796 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL, 1797 msix->msix_ctrl, 2); 1798 } 1799 1800 /* 1801 * Attempt to allocate *count MSI-X messages. The actual number allocated is 1802 * returned in *count. After this function returns, each message will be 1803 * available to the driver as SYS_RES_IRQ resources starting at rid 1. 1804 */ 1805 int 1806 pci_alloc_msix_method(device_t dev, device_t child, int *count) 1807 { 1808 struct pci_devinfo *dinfo = device_get_ivars(child); 1809 pcicfgregs *cfg = &dinfo->cfg; 1810 struct resource_list_entry *rle; 1811 int actual, error, i, irq, max; 1812 1813 /* Don't let count == 0 get us into trouble. */ 1814 if (*count == 0) 1815 return (EINVAL); 1816 1817 /* If rid 0 is allocated, then fail. */ 1818 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 1819 if (rle != NULL && rle->res != NULL) 1820 return (ENXIO); 1821 1822 /* Already have allocated messages? */ 1823 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 1824 return (ENXIO); 1825 1826 /* If MSI-X is blacklisted for this system, fail. */ 1827 if (pci_msix_blacklisted()) 1828 return (ENXIO); 1829 1830 /* MSI-X capability present? */ 1831 if (cfg->msix.msix_location == 0 || !pci_do_msix) 1832 return (ENODEV); 1833 1834 /* Make sure the appropriate BARs are mapped. */ 1835 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1836 cfg->msix.msix_table_bar); 1837 if (rle == NULL || rle->res == NULL || 1838 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1839 return (ENXIO); 1840 cfg->msix.msix_table_res = rle->res; 1841 if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) { 1842 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, 1843 cfg->msix.msix_pba_bar); 1844 if (rle == NULL || rle->res == NULL || 1845 !(rman_get_flags(rle->res) & RF_ACTIVE)) 1846 return (ENXIO); 1847 } 1848 cfg->msix.msix_pba_res = rle->res; 1849 1850 if (bootverbose) 1851 device_printf(child, 1852 "attempting to allocate %d MSI-X vectors (%d supported)\n", 1853 *count, cfg->msix.msix_msgnum); 1854 max = min(*count, cfg->msix.msix_msgnum); 1855 for (i = 0; i < max; i++) { 1856 /* Allocate a message. */ 1857 error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq); 1858 if (error) { 1859 if (i == 0) 1860 return (error); 1861 break; 1862 } 1863 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 1864 irq, 1); 1865 } 1866 actual = i; 1867 1868 if (bootverbose) { 1869 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1); 1870 if (actual == 1) 1871 device_printf(child, "using IRQ %ju for MSI-X\n", 1872 rle->start); 1873 else { 1874 int run; 1875 1876 /* 1877 * Be fancy and try to print contiguous runs of 1878 * IRQ values as ranges. 'irq' is the previous IRQ. 1879 * 'run' is true if we are in a range. 1880 */ 1881 device_printf(child, "using IRQs %ju", rle->start); 1882 irq = rle->start; 1883 run = 0; 1884 for (i = 1; i < actual; i++) { 1885 rle = resource_list_find(&dinfo->resources, 1886 SYS_RES_IRQ, i + 1); 1887 1888 /* Still in a run? */ 1889 if (rle->start == irq + 1) { 1890 run = 1; 1891 irq++; 1892 continue; 1893 } 1894 1895 /* Finish previous range. */ 1896 if (run) { 1897 printf("-%d", irq); 1898 run = 0; 1899 } 1900 1901 /* Start new range. */ 1902 printf(",%ju", rle->start); 1903 irq = rle->start; 1904 } 1905 1906 /* Unfinished range? */ 1907 if (run) 1908 printf("-%d", irq); 1909 printf(" for MSI-X\n"); 1910 } 1911 } 1912 1913 /* Mask all vectors. */ 1914 for (i = 0; i < cfg->msix.msix_msgnum; i++) 1915 pci_mask_msix(child, i); 1916 1917 /* Allocate and initialize vector data and virtual table. */ 1918 cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual, 1919 M_DEVBUF, M_WAITOK | M_ZERO); 1920 cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual, 1921 M_DEVBUF, M_WAITOK | M_ZERO); 1922 for (i = 0; i < actual; i++) { 1923 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 1924 cfg->msix.msix_vectors[i].mv_irq = rle->start; 1925 cfg->msix.msix_table[i].mte_vector = i + 1; 1926 } 1927 1928 /* Update control register to enable MSI-X. */ 1929 cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE; 1930 pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL, 1931 cfg->msix.msix_ctrl, 2); 1932 1933 /* Update counts of alloc'd messages. */ 1934 cfg->msix.msix_alloc = actual; 1935 cfg->msix.msix_table_len = actual; 1936 *count = actual; 1937 return (0); 1938 } 1939 1940 /* 1941 * By default, pci_alloc_msix() will assign the allocated IRQ 1942 * resources consecutively to the first N messages in the MSI-X table. 1943 * However, device drivers may want to use different layouts if they 1944 * either receive fewer messages than they asked for, or they wish to 1945 * populate the MSI-X table sparsely. This method allows the driver 1946 * to specify what layout it wants. It must be called after a 1947 * successful pci_alloc_msix() but before any of the associated 1948 * SYS_RES_IRQ resources are allocated via bus_alloc_resource(). 1949 * 1950 * The 'vectors' array contains 'count' message vectors. The array 1951 * maps directly to the MSI-X table in that index 0 in the array 1952 * specifies the vector for the first message in the MSI-X table, etc. 1953 * The vector value in each array index can either be 0 to indicate 1954 * that no vector should be assigned to a message slot, or it can be a 1955 * number from 1 to N (where N is the count returned from a 1956 * succcessful call to pci_alloc_msix()) to indicate which message 1957 * vector (IRQ) to be used for the corresponding message. 1958 * 1959 * On successful return, each message with a non-zero vector will have 1960 * an associated SYS_RES_IRQ whose rid is equal to the array index + 1961 * 1. Additionally, if any of the IRQs allocated via the previous 1962 * call to pci_alloc_msix() are not used in the mapping, those IRQs 1963 * will be freed back to the system automatically. 1964 * 1965 * For example, suppose a driver has a MSI-X table with 6 messages and 1966 * asks for 6 messages, but pci_alloc_msix() only returns a count of 1967 * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and 1968 * C. After the call to pci_alloc_msix(), the device will be setup to 1969 * have an MSI-X table of ABC--- (where - means no vector assigned). 1970 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 }, 1971 * then the MSI-X table will look like A-AB-B, and the 'C' vector will 1972 * be freed back to the system. This device will also have valid 1973 * SYS_RES_IRQ rids of 1, 3, 4, and 6. 1974 * 1975 * In any case, the SYS_RES_IRQ rid X will always map to the message 1976 * at MSI-X table index X - 1 and will only be valid if a vector is 1977 * assigned to that table entry. 1978 */ 1979 int 1980 pci_remap_msix_method(device_t dev, device_t child, int count, 1981 const u_int *vectors) 1982 { 1983 struct pci_devinfo *dinfo = device_get_ivars(child); 1984 struct pcicfg_msix *msix = &dinfo->cfg.msix; 1985 struct resource_list_entry *rle; 1986 int i, irq, j, *used; 1987 1988 /* 1989 * Have to have at least one message in the table but the 1990 * table can't be bigger than the actual MSI-X table in the 1991 * device. 1992 */ 1993 if (count == 0 || count > msix->msix_msgnum) 1994 return (EINVAL); 1995 1996 /* Sanity check the vectors. */ 1997 for (i = 0; i < count; i++) 1998 if (vectors[i] > msix->msix_alloc) 1999 return (EINVAL); 2000 2001 /* 2002 * Make sure there aren't any holes in the vectors to be used. 2003 * It's a big pain to support it, and it doesn't really make 2004 * sense anyway. Also, at least one vector must be used. 2005 */ 2006 used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK | 2007 M_ZERO); 2008 for (i = 0; i < count; i++) 2009 if (vectors[i] != 0) 2010 used[vectors[i] - 1] = 1; 2011 for (i = 0; i < msix->msix_alloc - 1; i++) 2012 if (used[i] == 0 && used[i + 1] == 1) { 2013 free(used, M_DEVBUF); 2014 return (EINVAL); 2015 } 2016 if (used[0] != 1) { 2017 free(used, M_DEVBUF); 2018 return (EINVAL); 2019 } 2020 2021 /* Make sure none of the resources are allocated. */ 2022 for (i = 0; i < msix->msix_table_len; i++) { 2023 if (msix->msix_table[i].mte_vector == 0) 2024 continue; 2025 if (msix->msix_table[i].mte_handlers > 0) { 2026 free(used, M_DEVBUF); 2027 return (EBUSY); 2028 } 2029 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2030 KASSERT(rle != NULL, ("missing resource")); 2031 if (rle->res != NULL) { 2032 free(used, M_DEVBUF); 2033 return (EBUSY); 2034 } 2035 } 2036 2037 /* Free the existing resource list entries. */ 2038 for (i = 0; i < msix->msix_table_len; i++) { 2039 if (msix->msix_table[i].mte_vector == 0) 2040 continue; 2041 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2042 } 2043 2044 /* 2045 * Build the new virtual table keeping track of which vectors are 2046 * used. 2047 */ 2048 free(msix->msix_table, M_DEVBUF); 2049 msix->msix_table = malloc(sizeof(struct msix_table_entry) * count, 2050 M_DEVBUF, M_WAITOK | M_ZERO); 2051 for (i = 0; i < count; i++) 2052 msix->msix_table[i].mte_vector = vectors[i]; 2053 msix->msix_table_len = count; 2054 2055 /* Free any unused IRQs and resize the vectors array if necessary. */ 2056 j = msix->msix_alloc - 1; 2057 if (used[j] == 0) { 2058 struct msix_vector *vec; 2059 2060 while (used[j] == 0) { 2061 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2062 msix->msix_vectors[j].mv_irq); 2063 j--; 2064 } 2065 vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF, 2066 M_WAITOK); 2067 bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) * 2068 (j + 1)); 2069 free(msix->msix_vectors, M_DEVBUF); 2070 msix->msix_vectors = vec; 2071 msix->msix_alloc = j + 1; 2072 } 2073 free(used, M_DEVBUF); 2074 2075 /* Map the IRQs onto the rids. */ 2076 for (i = 0; i < count; i++) { 2077 if (vectors[i] == 0) 2078 continue; 2079 irq = msix->msix_vectors[vectors[i] - 1].mv_irq; 2080 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, 2081 irq, 1); 2082 } 2083 2084 if (bootverbose) { 2085 device_printf(child, "Remapped MSI-X IRQs as: "); 2086 for (i = 0; i < count; i++) { 2087 if (i != 0) 2088 printf(", "); 2089 if (vectors[i] == 0) 2090 printf("---"); 2091 else 2092 printf("%d", 2093 msix->msix_vectors[vectors[i] - 1].mv_irq); 2094 } 2095 printf("\n"); 2096 } 2097 2098 return (0); 2099 } 2100 2101 static int 2102 pci_release_msix(device_t dev, device_t child) 2103 { 2104 struct pci_devinfo *dinfo = device_get_ivars(child); 2105 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2106 struct resource_list_entry *rle; 2107 int i; 2108 2109 /* Do we have any messages to release? */ 2110 if (msix->msix_alloc == 0) 2111 return (ENODEV); 2112 2113 /* Make sure none of the resources are allocated. */ 2114 for (i = 0; i < msix->msix_table_len; i++) { 2115 if (msix->msix_table[i].mte_vector == 0) 2116 continue; 2117 if (msix->msix_table[i].mte_handlers > 0) 2118 return (EBUSY); 2119 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2120 KASSERT(rle != NULL, ("missing resource")); 2121 if (rle->res != NULL) 2122 return (EBUSY); 2123 } 2124 2125 /* Update control register to disable MSI-X. */ 2126 msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE; 2127 pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, 2128 msix->msix_ctrl, 2); 2129 2130 /* Free the resource list entries. */ 2131 for (i = 0; i < msix->msix_table_len; i++) { 2132 if (msix->msix_table[i].mte_vector == 0) 2133 continue; 2134 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2135 } 2136 free(msix->msix_table, M_DEVBUF); 2137 msix->msix_table_len = 0; 2138 2139 /* Release the IRQs. */ 2140 for (i = 0; i < msix->msix_alloc; i++) 2141 PCIB_RELEASE_MSIX(device_get_parent(dev), child, 2142 msix->msix_vectors[i].mv_irq); 2143 free(msix->msix_vectors, M_DEVBUF); 2144 msix->msix_alloc = 0; 2145 return (0); 2146 } 2147 2148 /* 2149 * Return the max supported MSI-X messages this device supports. 2150 * Basically, assuming the MD code can alloc messages, this function 2151 * should return the maximum value that pci_alloc_msix() can return. 2152 * Thus, it is subject to the tunables, etc. 2153 */ 2154 int 2155 pci_msix_count_method(device_t dev, device_t child) 2156 { 2157 struct pci_devinfo *dinfo = device_get_ivars(child); 2158 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2159 2160 if (pci_do_msix && msix->msix_location != 0) 2161 return (msix->msix_msgnum); 2162 return (0); 2163 } 2164 2165 int 2166 pci_msix_pba_bar_method(device_t dev, device_t child) 2167 { 2168 struct pci_devinfo *dinfo = device_get_ivars(child); 2169 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2170 2171 if (pci_do_msix && msix->msix_location != 0) 2172 return (msix->msix_pba_bar); 2173 return (-1); 2174 } 2175 2176 int 2177 pci_msix_table_bar_method(device_t dev, device_t child) 2178 { 2179 struct pci_devinfo *dinfo = device_get_ivars(child); 2180 struct pcicfg_msix *msix = &dinfo->cfg.msix; 2181 2182 if (pci_do_msix && msix->msix_location != 0) 2183 return (msix->msix_table_bar); 2184 return (-1); 2185 } 2186 2187 /* 2188 * HyperTransport MSI mapping control 2189 */ 2190 void 2191 pci_ht_map_msi(device_t dev, uint64_t addr) 2192 { 2193 struct pci_devinfo *dinfo = device_get_ivars(dev); 2194 struct pcicfg_ht *ht = &dinfo->cfg.ht; 2195 2196 if (!ht->ht_msimap) 2197 return; 2198 2199 if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) && 2200 ht->ht_msiaddr >> 20 == addr >> 20) { 2201 /* Enable MSI -> HT mapping. */ 2202 ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; 2203 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2204 ht->ht_msictrl, 2); 2205 } 2206 2207 if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) { 2208 /* Disable MSI -> HT mapping. */ 2209 ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE; 2210 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, 2211 ht->ht_msictrl, 2); 2212 } 2213 } 2214 2215 int 2216 pci_get_relaxed_ordering_enabled(device_t dev) 2217 { 2218 struct pci_devinfo *dinfo = device_get_ivars(dev); 2219 int cap; 2220 uint16_t val; 2221 2222 cap = dinfo->cfg.pcie.pcie_location; 2223 if (cap == 0) 2224 return (0); 2225 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2226 val &= PCIEM_CTL_RELAXED_ORD_ENABLE; 2227 return (val != 0); 2228 } 2229 2230 int 2231 pci_get_max_payload(device_t dev) 2232 { 2233 struct pci_devinfo *dinfo = device_get_ivars(dev); 2234 int cap; 2235 uint16_t val; 2236 2237 cap = dinfo->cfg.pcie.pcie_location; 2238 if (cap == 0) 2239 return (0); 2240 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2241 val &= PCIEM_CTL_MAX_PAYLOAD; 2242 val >>= 5; 2243 return (1 << (val + 7)); 2244 } 2245 2246 int 2247 pci_get_max_read_req(device_t dev) 2248 { 2249 struct pci_devinfo *dinfo = device_get_ivars(dev); 2250 int cap; 2251 uint16_t val; 2252 2253 cap = dinfo->cfg.pcie.pcie_location; 2254 if (cap == 0) 2255 return (0); 2256 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2257 val &= PCIEM_CTL_MAX_READ_REQUEST; 2258 val >>= 12; 2259 return (1 << (val + 7)); 2260 } 2261 2262 int 2263 pci_set_max_read_req(device_t dev, int size) 2264 { 2265 struct pci_devinfo *dinfo = device_get_ivars(dev); 2266 int cap; 2267 uint16_t val; 2268 2269 cap = dinfo->cfg.pcie.pcie_location; 2270 if (cap == 0) 2271 return (0); 2272 if (size < 128) 2273 size = 128; 2274 if (size > 4096) 2275 size = 4096; 2276 size = (1 << (fls(size) - 1)); 2277 val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 2278 val &= ~PCIEM_CTL_MAX_READ_REQUEST; 2279 val |= (fls(size) - 8) << 12; 2280 pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2); 2281 return (size); 2282 } 2283 2284 uint32_t 2285 pcie_read_config(device_t dev, int reg, int width) 2286 { 2287 struct pci_devinfo *dinfo = device_get_ivars(dev); 2288 int cap; 2289 2290 cap = dinfo->cfg.pcie.pcie_location; 2291 if (cap == 0) { 2292 if (width == 2) 2293 return (0xffff); 2294 return (0xffffffff); 2295 } 2296 2297 return (pci_read_config(dev, cap + reg, width)); 2298 } 2299 2300 void 2301 pcie_write_config(device_t dev, int reg, uint32_t value, int width) 2302 { 2303 struct pci_devinfo *dinfo = device_get_ivars(dev); 2304 int cap; 2305 2306 cap = dinfo->cfg.pcie.pcie_location; 2307 if (cap == 0) 2308 return; 2309 pci_write_config(dev, cap + reg, value, width); 2310 } 2311 2312 /* 2313 * Adjusts a PCI-e capability register by clearing the bits in mask 2314 * and setting the bits in (value & mask). Bits not set in mask are 2315 * not adjusted. 2316 * 2317 * Returns the old value on success or all ones on failure. 2318 */ 2319 uint32_t 2320 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value, 2321 int width) 2322 { 2323 struct pci_devinfo *dinfo = device_get_ivars(dev); 2324 uint32_t old, new; 2325 int cap; 2326 2327 cap = dinfo->cfg.pcie.pcie_location; 2328 if (cap == 0) { 2329 if (width == 2) 2330 return (0xffff); 2331 return (0xffffffff); 2332 } 2333 2334 old = pci_read_config(dev, cap + reg, width); 2335 new = old & ~mask; 2336 new |= (value & mask); 2337 pci_write_config(dev, cap + reg, new, width); 2338 return (old); 2339 } 2340 2341 /* 2342 * Support for MSI message signalled interrupts. 2343 */ 2344 void 2345 pci_enable_msi_method(device_t dev, device_t child, uint64_t address, 2346 uint16_t data) 2347 { 2348 struct pci_devinfo *dinfo = device_get_ivars(child); 2349 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2350 2351 /* Write data and address values. */ 2352 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR, 2353 address & 0xffffffff, 4); 2354 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2355 pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH, 2356 address >> 32, 4); 2357 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT, 2358 data, 2); 2359 } else 2360 pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data, 2361 2); 2362 2363 /* Enable MSI in the control register. */ 2364 msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE; 2365 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2366 msi->msi_ctrl, 2); 2367 2368 /* Enable MSI -> HT mapping. */ 2369 pci_ht_map_msi(child, address); 2370 } 2371 2372 void 2373 pci_disable_msi_method(device_t dev, device_t child) 2374 { 2375 struct pci_devinfo *dinfo = device_get_ivars(child); 2376 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2377 2378 /* Disable MSI -> HT mapping. */ 2379 pci_ht_map_msi(child, 0); 2380 2381 /* Disable MSI in the control register. */ 2382 msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE; 2383 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2384 msi->msi_ctrl, 2); 2385 } 2386 2387 /* 2388 * Restore MSI registers during resume. If MSI is enabled then 2389 * restore the data and address registers in addition to the control 2390 * register. 2391 */ 2392 static void 2393 pci_resume_msi(device_t dev) 2394 { 2395 struct pci_devinfo *dinfo = device_get_ivars(dev); 2396 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2397 uint64_t address; 2398 uint16_t data; 2399 2400 if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) { 2401 address = msi->msi_addr; 2402 data = msi->msi_data; 2403 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR, 2404 address & 0xffffffff, 4); 2405 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { 2406 pci_write_config(dev, msi->msi_location + 2407 PCIR_MSI_ADDR_HIGH, address >> 32, 4); 2408 pci_write_config(dev, msi->msi_location + 2409 PCIR_MSI_DATA_64BIT, data, 2); 2410 } else 2411 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, 2412 data, 2); 2413 } 2414 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2415 2); 2416 } 2417 2418 static int 2419 pci_remap_intr_method(device_t bus, device_t dev, u_int irq) 2420 { 2421 struct pci_devinfo *dinfo = device_get_ivars(dev); 2422 pcicfgregs *cfg = &dinfo->cfg; 2423 struct resource_list_entry *rle; 2424 struct msix_table_entry *mte; 2425 struct msix_vector *mv; 2426 uint64_t addr; 2427 uint32_t data; 2428 int error, i, j; 2429 2430 /* 2431 * Handle MSI first. We try to find this IRQ among our list 2432 * of MSI IRQs. If we find it, we request updated address and 2433 * data registers and apply the results. 2434 */ 2435 if (cfg->msi.msi_alloc > 0) { 2436 /* If we don't have any active handlers, nothing to do. */ 2437 if (cfg->msi.msi_handlers == 0) 2438 return (0); 2439 for (i = 0; i < cfg->msi.msi_alloc; i++) { 2440 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 2441 i + 1); 2442 if (rle->start == irq) { 2443 error = PCIB_MAP_MSI(device_get_parent(bus), 2444 dev, irq, &addr, &data); 2445 if (error) 2446 return (error); 2447 pci_disable_msi(dev); 2448 dinfo->cfg.msi.msi_addr = addr; 2449 dinfo->cfg.msi.msi_data = data; 2450 pci_enable_msi(dev, addr, data); 2451 return (0); 2452 } 2453 } 2454 return (ENOENT); 2455 } 2456 2457 /* 2458 * For MSI-X, we check to see if we have this IRQ. If we do, 2459 * we request the updated mapping info. If that works, we go 2460 * through all the slots that use this IRQ and update them. 2461 */ 2462 if (cfg->msix.msix_alloc > 0) { 2463 for (i = 0; i < cfg->msix.msix_alloc; i++) { 2464 mv = &cfg->msix.msix_vectors[i]; 2465 if (mv->mv_irq == irq) { 2466 error = PCIB_MAP_MSI(device_get_parent(bus), 2467 dev, irq, &addr, &data); 2468 if (error) 2469 return (error); 2470 mv->mv_address = addr; 2471 mv->mv_data = data; 2472 for (j = 0; j < cfg->msix.msix_table_len; j++) { 2473 mte = &cfg->msix.msix_table[j]; 2474 if (mte->mte_vector != i + 1) 2475 continue; 2476 if (mte->mte_handlers == 0) 2477 continue; 2478 pci_mask_msix(dev, j); 2479 pci_enable_msix(dev, j, addr, data); 2480 pci_unmask_msix(dev, j); 2481 } 2482 } 2483 } 2484 return (ENOENT); 2485 } 2486 2487 return (ENOENT); 2488 } 2489 2490 /* 2491 * Returns true if the specified device is blacklisted because MSI 2492 * doesn't work. 2493 */ 2494 int 2495 pci_msi_device_blacklisted(device_t dev) 2496 { 2497 2498 if (!pci_honor_msi_blacklist) 2499 return (0); 2500 2501 return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI)); 2502 } 2503 2504 /* 2505 * Determine if MSI is blacklisted globally on this system. Currently, 2506 * we just check for blacklisted chipsets as represented by the 2507 * host-PCI bridge at device 0:0:0. In the future, it may become 2508 * necessary to check other system attributes, such as the kenv values 2509 * that give the motherboard manufacturer and model number. 2510 */ 2511 static int 2512 pci_msi_blacklisted(void) 2513 { 2514 device_t dev; 2515 2516 if (!pci_honor_msi_blacklist) 2517 return (0); 2518 2519 /* Blacklist all non-PCI-express and non-PCI-X chipsets. */ 2520 if (!(pcie_chipset || pcix_chipset)) { 2521 if (vm_guest != VM_GUEST_NO) { 2522 /* 2523 * Whitelist older chipsets in virtual 2524 * machines known to support MSI. 2525 */ 2526 dev = pci_find_bsf(0, 0, 0); 2527 if (dev != NULL) 2528 return (!pci_has_quirk(pci_get_devid(dev), 2529 PCI_QUIRK_ENABLE_MSI_VM)); 2530 } 2531 return (1); 2532 } 2533 2534 dev = pci_find_bsf(0, 0, 0); 2535 if (dev != NULL) 2536 return (pci_msi_device_blacklisted(dev)); 2537 return (0); 2538 } 2539 2540 /* 2541 * Returns true if the specified device is blacklisted because MSI-X 2542 * doesn't work. Note that this assumes that if MSI doesn't work, 2543 * MSI-X doesn't either. 2544 */ 2545 int 2546 pci_msix_device_blacklisted(device_t dev) 2547 { 2548 2549 if (!pci_honor_msi_blacklist) 2550 return (0); 2551 2552 if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) 2553 return (1); 2554 2555 return (pci_msi_device_blacklisted(dev)); 2556 } 2557 2558 /* 2559 * Determine if MSI-X is blacklisted globally on this system. If MSI 2560 * is blacklisted, assume that MSI-X is as well. Check for additional 2561 * chipsets where MSI works but MSI-X does not. 2562 */ 2563 static int 2564 pci_msix_blacklisted(void) 2565 { 2566 device_t dev; 2567 2568 if (!pci_honor_msi_blacklist) 2569 return (0); 2570 2571 dev = pci_find_bsf(0, 0, 0); 2572 if (dev != NULL && pci_has_quirk(pci_get_devid(dev), 2573 PCI_QUIRK_DISABLE_MSIX)) 2574 return (1); 2575 2576 return (pci_msi_blacklisted()); 2577 } 2578 2579 /* 2580 * Attempt to allocate *count MSI messages. The actual number allocated is 2581 * returned in *count. After this function returns, each message will be 2582 * available to the driver as SYS_RES_IRQ resources starting at a rid 1. 2583 */ 2584 int 2585 pci_alloc_msi_method(device_t dev, device_t child, int *count) 2586 { 2587 struct pci_devinfo *dinfo = device_get_ivars(child); 2588 pcicfgregs *cfg = &dinfo->cfg; 2589 struct resource_list_entry *rle; 2590 int actual, error, i, irqs[32]; 2591 uint16_t ctrl; 2592 2593 /* Don't let count == 0 get us into trouble. */ 2594 if (*count == 0) 2595 return (EINVAL); 2596 2597 /* If rid 0 is allocated, then fail. */ 2598 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 2599 if (rle != NULL && rle->res != NULL) 2600 return (ENXIO); 2601 2602 /* Already have allocated messages? */ 2603 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) 2604 return (ENXIO); 2605 2606 /* If MSI is blacklisted for this system, fail. */ 2607 if (pci_msi_blacklisted()) 2608 return (ENXIO); 2609 2610 /* MSI capability present? */ 2611 if (cfg->msi.msi_location == 0 || !pci_do_msi) 2612 return (ENODEV); 2613 2614 if (bootverbose) 2615 device_printf(child, 2616 "attempting to allocate %d MSI vectors (%d supported)\n", 2617 *count, cfg->msi.msi_msgnum); 2618 2619 /* Don't ask for more than the device supports. */ 2620 actual = min(*count, cfg->msi.msi_msgnum); 2621 2622 /* Don't ask for more than 32 messages. */ 2623 actual = min(actual, 32); 2624 2625 /* MSI requires power of 2 number of messages. */ 2626 if (!powerof2(actual)) 2627 return (EINVAL); 2628 2629 for (;;) { 2630 /* Try to allocate N messages. */ 2631 error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual, 2632 actual, irqs); 2633 if (error == 0) 2634 break; 2635 if (actual == 1) 2636 return (error); 2637 2638 /* Try N / 2. */ 2639 actual >>= 1; 2640 } 2641 2642 /* 2643 * We now have N actual messages mapped onto SYS_RES_IRQ 2644 * resources in the irqs[] array, so add new resources 2645 * starting at rid 1. 2646 */ 2647 for (i = 0; i < actual; i++) 2648 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, 2649 irqs[i], irqs[i], 1); 2650 2651 if (bootverbose) { 2652 if (actual == 1) 2653 device_printf(child, "using IRQ %d for MSI\n", irqs[0]); 2654 else { 2655 int run; 2656 2657 /* 2658 * Be fancy and try to print contiguous runs 2659 * of IRQ values as ranges. 'run' is true if 2660 * we are in a range. 2661 */ 2662 device_printf(child, "using IRQs %d", irqs[0]); 2663 run = 0; 2664 for (i = 1; i < actual; i++) { 2665 /* Still in a run? */ 2666 if (irqs[i] == irqs[i - 1] + 1) { 2667 run = 1; 2668 continue; 2669 } 2670 2671 /* Finish previous range. */ 2672 if (run) { 2673 printf("-%d", irqs[i - 1]); 2674 run = 0; 2675 } 2676 2677 /* Start new range. */ 2678 printf(",%d", irqs[i]); 2679 } 2680 2681 /* Unfinished range? */ 2682 if (run) 2683 printf("-%d", irqs[actual - 1]); 2684 printf(" for MSI\n"); 2685 } 2686 } 2687 2688 /* Update control register with actual count. */ 2689 ctrl = cfg->msi.msi_ctrl; 2690 ctrl &= ~PCIM_MSICTRL_MME_MASK; 2691 ctrl |= (ffs(actual) - 1) << 4; 2692 cfg->msi.msi_ctrl = ctrl; 2693 pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2); 2694 2695 /* Update counts of alloc'd messages. */ 2696 cfg->msi.msi_alloc = actual; 2697 cfg->msi.msi_handlers = 0; 2698 *count = actual; 2699 return (0); 2700 } 2701 2702 /* Release the MSI messages associated with this device. */ 2703 int 2704 pci_release_msi_method(device_t dev, device_t child) 2705 { 2706 struct pci_devinfo *dinfo = device_get_ivars(child); 2707 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2708 struct resource_list_entry *rle; 2709 int error, i, irqs[32]; 2710 2711 /* Try MSI-X first. */ 2712 error = pci_release_msix(dev, child); 2713 if (error != ENODEV) 2714 return (error); 2715 2716 /* Do we have any messages to release? */ 2717 if (msi->msi_alloc == 0) 2718 return (ENODEV); 2719 KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages")); 2720 2721 /* Make sure none of the resources are allocated. */ 2722 if (msi->msi_handlers > 0) 2723 return (EBUSY); 2724 for (i = 0; i < msi->msi_alloc; i++) { 2725 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); 2726 KASSERT(rle != NULL, ("missing MSI resource")); 2727 if (rle->res != NULL) 2728 return (EBUSY); 2729 irqs[i] = rle->start; 2730 } 2731 2732 /* Update control register with 0 count. */ 2733 KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE), 2734 ("%s: MSI still enabled", __func__)); 2735 msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK; 2736 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, 2737 msi->msi_ctrl, 2); 2738 2739 /* Release the messages. */ 2740 PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs); 2741 for (i = 0; i < msi->msi_alloc; i++) 2742 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); 2743 2744 /* Update alloc count. */ 2745 msi->msi_alloc = 0; 2746 msi->msi_addr = 0; 2747 msi->msi_data = 0; 2748 return (0); 2749 } 2750 2751 /* 2752 * Return the max supported MSI messages this device supports. 2753 * Basically, assuming the MD code can alloc messages, this function 2754 * should return the maximum value that pci_alloc_msi() can return. 2755 * Thus, it is subject to the tunables, etc. 2756 */ 2757 int 2758 pci_msi_count_method(device_t dev, device_t child) 2759 { 2760 struct pci_devinfo *dinfo = device_get_ivars(child); 2761 struct pcicfg_msi *msi = &dinfo->cfg.msi; 2762 2763 if (pci_do_msi && msi->msi_location != 0) 2764 return (msi->msi_msgnum); 2765 return (0); 2766 } 2767 2768 /* free pcicfgregs structure and all depending data structures */ 2769 2770 int 2771 pci_freecfg(struct pci_devinfo *dinfo) 2772 { 2773 struct devlist *devlist_head; 2774 struct pci_map *pm, *next; 2775 int i; 2776 2777 devlist_head = &pci_devq; 2778 2779 if (dinfo->cfg.vpd.vpd_reg) { 2780 free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF); 2781 for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++) 2782 free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF); 2783 free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF); 2784 for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++) 2785 free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF); 2786 free(dinfo->cfg.vpd.vpd_w, M_DEVBUF); 2787 } 2788 STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) { 2789 free(pm, M_DEVBUF); 2790 } 2791 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links); 2792 free(dinfo, M_DEVBUF); 2793 2794 /* increment the generation count */ 2795 pci_generation++; 2796 2797 /* we're losing one device */ 2798 pci_numdevs--; 2799 return (0); 2800 } 2801 2802 /* 2803 * PCI power manangement 2804 */ 2805 int 2806 pci_set_powerstate_method(device_t dev, device_t child, int state) 2807 { 2808 struct pci_devinfo *dinfo = device_get_ivars(child); 2809 pcicfgregs *cfg = &dinfo->cfg; 2810 uint16_t status; 2811 int oldstate, highest, delay; 2812 2813 if (cfg->pp.pp_cap == 0) 2814 return (EOPNOTSUPP); 2815 2816 /* 2817 * Optimize a no state change request away. While it would be OK to 2818 * write to the hardware in theory, some devices have shown odd 2819 * behavior when going from D3 -> D3. 2820 */ 2821 oldstate = pci_get_powerstate(child); 2822 if (oldstate == state) 2823 return (0); 2824 2825 /* 2826 * The PCI power management specification states that after a state 2827 * transition between PCI power states, system software must 2828 * guarantee a minimal delay before the function accesses the device. 2829 * Compute the worst case delay that we need to guarantee before we 2830 * access the device. Many devices will be responsive much more 2831 * quickly than this delay, but there are some that don't respond 2832 * instantly to state changes. Transitions to/from D3 state require 2833 * 10ms, while D2 requires 200us, and D0/1 require none. The delay 2834 * is done below with DELAY rather than a sleeper function because 2835 * this function can be called from contexts where we cannot sleep. 2836 */ 2837 highest = (oldstate > state) ? oldstate : state; 2838 if (highest == PCI_POWERSTATE_D3) 2839 delay = 10000; 2840 else if (highest == PCI_POWERSTATE_D2) 2841 delay = 200; 2842 else 2843 delay = 0; 2844 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2) 2845 & ~PCIM_PSTAT_DMASK; 2846 switch (state) { 2847 case PCI_POWERSTATE_D0: 2848 status |= PCIM_PSTAT_D0; 2849 break; 2850 case PCI_POWERSTATE_D1: 2851 if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0) 2852 return (EOPNOTSUPP); 2853 status |= PCIM_PSTAT_D1; 2854 break; 2855 case PCI_POWERSTATE_D2: 2856 if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0) 2857 return (EOPNOTSUPP); 2858 status |= PCIM_PSTAT_D2; 2859 break; 2860 case PCI_POWERSTATE_D3: 2861 status |= PCIM_PSTAT_D3; 2862 break; 2863 default: 2864 return (EINVAL); 2865 } 2866 2867 if (bootverbose) 2868 pci_printf(cfg, "Transition from D%d to D%d\n", oldstate, 2869 state); 2870 2871 PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2); 2872 if (delay) 2873 DELAY(delay); 2874 return (0); 2875 } 2876 2877 int 2878 pci_get_powerstate_method(device_t dev, device_t child) 2879 { 2880 struct pci_devinfo *dinfo = device_get_ivars(child); 2881 pcicfgregs *cfg = &dinfo->cfg; 2882 uint16_t status; 2883 int result; 2884 2885 if (cfg->pp.pp_cap != 0) { 2886 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2); 2887 switch (status & PCIM_PSTAT_DMASK) { 2888 case PCIM_PSTAT_D0: 2889 result = PCI_POWERSTATE_D0; 2890 break; 2891 case PCIM_PSTAT_D1: 2892 result = PCI_POWERSTATE_D1; 2893 break; 2894 case PCIM_PSTAT_D2: 2895 result = PCI_POWERSTATE_D2; 2896 break; 2897 case PCIM_PSTAT_D3: 2898 result = PCI_POWERSTATE_D3; 2899 break; 2900 default: 2901 result = PCI_POWERSTATE_UNKNOWN; 2902 break; 2903 } 2904 } else { 2905 /* No support, device is always at D0 */ 2906 result = PCI_POWERSTATE_D0; 2907 } 2908 return (result); 2909 } 2910 2911 /* 2912 * Some convenience functions for PCI device drivers. 2913 */ 2914 2915 static __inline void 2916 pci_set_command_bit(device_t dev, device_t child, uint16_t bit) 2917 { 2918 uint16_t command; 2919 2920 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2921 command |= bit; 2922 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2923 } 2924 2925 static __inline void 2926 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit) 2927 { 2928 uint16_t command; 2929 2930 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); 2931 command &= ~bit; 2932 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); 2933 } 2934 2935 int 2936 pci_enable_busmaster_method(device_t dev, device_t child) 2937 { 2938 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2939 return (0); 2940 } 2941 2942 int 2943 pci_disable_busmaster_method(device_t dev, device_t child) 2944 { 2945 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); 2946 return (0); 2947 } 2948 2949 int 2950 pci_enable_io_method(device_t dev, device_t child, int space) 2951 { 2952 uint16_t bit; 2953 2954 switch(space) { 2955 case SYS_RES_IOPORT: 2956 bit = PCIM_CMD_PORTEN; 2957 break; 2958 case SYS_RES_MEMORY: 2959 bit = PCIM_CMD_MEMEN; 2960 break; 2961 default: 2962 return (EINVAL); 2963 } 2964 pci_set_command_bit(dev, child, bit); 2965 return (0); 2966 } 2967 2968 int 2969 pci_disable_io_method(device_t dev, device_t child, int space) 2970 { 2971 uint16_t bit; 2972 2973 switch(space) { 2974 case SYS_RES_IOPORT: 2975 bit = PCIM_CMD_PORTEN; 2976 break; 2977 case SYS_RES_MEMORY: 2978 bit = PCIM_CMD_MEMEN; 2979 break; 2980 default: 2981 return (EINVAL); 2982 } 2983 pci_clear_command_bit(dev, child, bit); 2984 return (0); 2985 } 2986 2987 /* 2988 * New style pci driver. Parent device is either a pci-host-bridge or a 2989 * pci-pci-bridge. Both kinds are represented by instances of pcib. 2990 */ 2991 2992 void 2993 pci_print_verbose(struct pci_devinfo *dinfo) 2994 { 2995 2996 if (bootverbose) { 2997 pcicfgregs *cfg = &dinfo->cfg; 2998 2999 printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n", 3000 cfg->vendor, cfg->device, cfg->revid); 3001 printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n", 3002 cfg->domain, cfg->bus, cfg->slot, cfg->func); 3003 printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n", 3004 cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype, 3005 cfg->mfdev); 3006 printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n", 3007 cfg->cmdreg, cfg->statreg, cfg->cachelnsz); 3008 printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n", 3009 cfg->lattimer, cfg->lattimer * 30, cfg->mingnt, 3010 cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250); 3011 if (cfg->intpin > 0) 3012 printf("\tintpin=%c, irq=%d\n", 3013 cfg->intpin +'a' -1, cfg->intline); 3014 if (cfg->pp.pp_cap) { 3015 uint16_t status; 3016 3017 status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2); 3018 printf("\tpowerspec %d supports D0%s%s D3 current D%d\n", 3019 cfg->pp.pp_cap & PCIM_PCAP_SPEC, 3020 cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "", 3021 cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "", 3022 status & PCIM_PSTAT_DMASK); 3023 } 3024 if (cfg->msi.msi_location) { 3025 int ctrl; 3026 3027 ctrl = cfg->msi.msi_ctrl; 3028 printf("\tMSI supports %d message%s%s%s\n", 3029 cfg->msi.msi_msgnum, 3030 (cfg->msi.msi_msgnum == 1) ? "" : "s", 3031 (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", 3032 (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":""); 3033 } 3034 if (cfg->msix.msix_location) { 3035 printf("\tMSI-X supports %d message%s ", 3036 cfg->msix.msix_msgnum, 3037 (cfg->msix.msix_msgnum == 1) ? "" : "s"); 3038 if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar) 3039 printf("in map 0x%x\n", 3040 cfg->msix.msix_table_bar); 3041 else 3042 printf("in maps 0x%x and 0x%x\n", 3043 cfg->msix.msix_table_bar, 3044 cfg->msix.msix_pba_bar); 3045 } 3046 } 3047 } 3048 3049 static int 3050 pci_porten(device_t dev) 3051 { 3052 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0; 3053 } 3054 3055 static int 3056 pci_memen(device_t dev) 3057 { 3058 return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0; 3059 } 3060 3061 void 3062 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp, 3063 int *bar64) 3064 { 3065 struct pci_devinfo *dinfo; 3066 pci_addr_t map, testval; 3067 int ln2range; 3068 uint16_t cmd; 3069 3070 /* 3071 * The device ROM BAR is special. It is always a 32-bit 3072 * memory BAR. Bit 0 is special and should not be set when 3073 * sizing the BAR. 3074 */ 3075 dinfo = device_get_ivars(dev); 3076 if (PCIR_IS_BIOS(&dinfo->cfg, reg)) { 3077 map = pci_read_config(dev, reg, 4); 3078 pci_write_config(dev, reg, 0xfffffffe, 4); 3079 testval = pci_read_config(dev, reg, 4); 3080 pci_write_config(dev, reg, map, 4); 3081 *mapp = map; 3082 *testvalp = testval; 3083 if (bar64 != NULL) 3084 *bar64 = 0; 3085 return; 3086 } 3087 3088 map = pci_read_config(dev, reg, 4); 3089 ln2range = pci_maprange(map); 3090 if (ln2range == 64) 3091 map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3092 3093 /* 3094 * Disable decoding via the command register before 3095 * determining the BAR's length since we will be placing it in 3096 * a weird state. 3097 */ 3098 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3099 pci_write_config(dev, PCIR_COMMAND, 3100 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 3101 3102 /* 3103 * Determine the BAR's length by writing all 1's. The bottom 3104 * log_2(size) bits of the BAR will stick as 0 when we read 3105 * the value back. 3106 * 3107 * NB: according to the PCI Local Bus Specification, rev. 3.0: 3108 * "Software writes 0FFFFFFFFh to both registers, reads them back, 3109 * and combines the result into a 64-bit value." (section 6.2.5.1) 3110 * 3111 * Writes to both registers must be performed before attempting to 3112 * read back the size value. 3113 */ 3114 testval = 0; 3115 pci_write_config(dev, reg, 0xffffffff, 4); 3116 if (ln2range == 64) { 3117 pci_write_config(dev, reg + 4, 0xffffffff, 4); 3118 testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; 3119 } 3120 testval |= pci_read_config(dev, reg, 4); 3121 3122 /* 3123 * Restore the original value of the BAR. We may have reprogrammed 3124 * the BAR of the low-level console device and when booting verbose, 3125 * we need the console device addressable. 3126 */ 3127 pci_write_config(dev, reg, map, 4); 3128 if (ln2range == 64) 3129 pci_write_config(dev, reg + 4, map >> 32, 4); 3130 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3131 3132 *mapp = map; 3133 *testvalp = testval; 3134 if (bar64 != NULL) 3135 *bar64 = (ln2range == 64); 3136 } 3137 3138 static void 3139 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base) 3140 { 3141 struct pci_devinfo *dinfo; 3142 int ln2range; 3143 3144 /* The device ROM BAR is always a 32-bit memory BAR. */ 3145 dinfo = device_get_ivars(dev); 3146 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3147 ln2range = 32; 3148 else 3149 ln2range = pci_maprange(pm->pm_value); 3150 pci_write_config(dev, pm->pm_reg, base, 4); 3151 if (ln2range == 64) 3152 pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4); 3153 pm->pm_value = pci_read_config(dev, pm->pm_reg, 4); 3154 if (ln2range == 64) 3155 pm->pm_value |= (pci_addr_t)pci_read_config(dev, 3156 pm->pm_reg + 4, 4) << 32; 3157 } 3158 3159 struct pci_map * 3160 pci_find_bar(device_t dev, int reg) 3161 { 3162 struct pci_devinfo *dinfo; 3163 struct pci_map *pm; 3164 3165 dinfo = device_get_ivars(dev); 3166 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3167 if (pm->pm_reg == reg) 3168 return (pm); 3169 } 3170 return (NULL); 3171 } 3172 3173 int 3174 pci_bar_enabled(device_t dev, struct pci_map *pm) 3175 { 3176 struct pci_devinfo *dinfo; 3177 uint16_t cmd; 3178 3179 dinfo = device_get_ivars(dev); 3180 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) && 3181 !(pm->pm_value & PCIM_BIOS_ENABLE)) 3182 return (0); 3183 #ifdef PCI_IOV 3184 if ((dinfo->cfg.flags & PCICFG_VF) != 0) { 3185 struct pcicfg_iov *iov; 3186 3187 iov = dinfo->cfg.iov; 3188 cmd = pci_read_config(iov->iov_pf, 3189 iov->iov_pos + PCIR_SRIOV_CTL, 2); 3190 return ((cmd & PCIM_SRIOV_VF_MSE) != 0); 3191 } 3192 #endif 3193 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3194 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value)) 3195 return ((cmd & PCIM_CMD_MEMEN) != 0); 3196 else 3197 return ((cmd & PCIM_CMD_PORTEN) != 0); 3198 } 3199 3200 struct pci_map * 3201 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size) 3202 { 3203 struct pci_devinfo *dinfo; 3204 struct pci_map *pm, *prev; 3205 3206 dinfo = device_get_ivars(dev); 3207 pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO); 3208 pm->pm_reg = reg; 3209 pm->pm_value = value; 3210 pm->pm_size = size; 3211 STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) { 3212 KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x", 3213 reg)); 3214 if (STAILQ_NEXT(prev, pm_link) == NULL || 3215 STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg) 3216 break; 3217 } 3218 if (prev != NULL) 3219 STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link); 3220 else 3221 STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link); 3222 return (pm); 3223 } 3224 3225 static void 3226 pci_restore_bars(device_t dev) 3227 { 3228 struct pci_devinfo *dinfo; 3229 struct pci_map *pm; 3230 int ln2range; 3231 3232 dinfo = device_get_ivars(dev); 3233 STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { 3234 if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) 3235 ln2range = 32; 3236 else 3237 ln2range = pci_maprange(pm->pm_value); 3238 pci_write_config(dev, pm->pm_reg, pm->pm_value, 4); 3239 if (ln2range == 64) 3240 pci_write_config(dev, pm->pm_reg + 4, 3241 pm->pm_value >> 32, 4); 3242 } 3243 } 3244 3245 /* 3246 * Add a resource based on a pci map register. Return 1 if the map 3247 * register is a 32bit map register or 2 if it is a 64bit register. 3248 */ 3249 static int 3250 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, 3251 int force, int prefetch) 3252 { 3253 struct pci_map *pm; 3254 pci_addr_t base, map, testval; 3255 pci_addr_t start, end, count; 3256 int barlen, basezero, flags, maprange, mapsize, type; 3257 uint16_t cmd; 3258 struct resource *res; 3259 3260 /* 3261 * The BAR may already exist if the device is a CardBus card 3262 * whose CIS is stored in this BAR. 3263 */ 3264 pm = pci_find_bar(dev, reg); 3265 if (pm != NULL) { 3266 maprange = pci_maprange(pm->pm_value); 3267 barlen = maprange == 64 ? 2 : 1; 3268 return (barlen); 3269 } 3270 3271 pci_read_bar(dev, reg, &map, &testval, NULL); 3272 if (PCI_BAR_MEM(map)) { 3273 type = SYS_RES_MEMORY; 3274 if (map & PCIM_BAR_MEM_PREFETCH) 3275 prefetch = 1; 3276 } else 3277 type = SYS_RES_IOPORT; 3278 mapsize = pci_mapsize(testval); 3279 base = pci_mapbase(map); 3280 #ifdef __PCI_BAR_ZERO_VALID 3281 basezero = 0; 3282 #else 3283 basezero = base == 0; 3284 #endif 3285 maprange = pci_maprange(map); 3286 barlen = maprange == 64 ? 2 : 1; 3287 3288 /* 3289 * For I/O registers, if bottom bit is set, and the next bit up 3290 * isn't clear, we know we have a BAR that doesn't conform to the 3291 * spec, so ignore it. Also, sanity check the size of the data 3292 * areas to the type of memory involved. Memory must be at least 3293 * 16 bytes in size, while I/O ranges must be at least 4. 3294 */ 3295 if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0) 3296 return (barlen); 3297 if ((type == SYS_RES_MEMORY && mapsize < 4) || 3298 (type == SYS_RES_IOPORT && mapsize < 2)) 3299 return (barlen); 3300 3301 /* Save a record of this BAR. */ 3302 pm = pci_add_bar(dev, reg, map, mapsize); 3303 if (bootverbose) { 3304 printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d", 3305 reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize); 3306 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3307 printf(", port disabled\n"); 3308 else if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3309 printf(", memory disabled\n"); 3310 else 3311 printf(", enabled\n"); 3312 } 3313 3314 /* 3315 * If base is 0, then we have problems if this architecture does 3316 * not allow that. It is best to ignore such entries for the 3317 * moment. These will be allocated later if the driver specifically 3318 * requests them. However, some removable buses look better when 3319 * all resources are allocated, so allow '0' to be overriden. 3320 * 3321 * Similarly treat maps whose values is the same as the test value 3322 * read back. These maps have had all f's written to them by the 3323 * BIOS in an attempt to disable the resources. 3324 */ 3325 if (!force && (basezero || map == testval)) 3326 return (barlen); 3327 if ((u_long)base != base) { 3328 device_printf(bus, 3329 "pci%d:%d:%d:%d bar %#x too many address bits", 3330 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), 3331 pci_get_function(dev), reg); 3332 return (barlen); 3333 } 3334 3335 /* 3336 * This code theoretically does the right thing, but has 3337 * undesirable side effects in some cases where peripherals 3338 * respond oddly to having these bits enabled. Let the user 3339 * be able to turn them off (since pci_enable_io_modes is 1 by 3340 * default). 3341 */ 3342 if (pci_enable_io_modes) { 3343 /* Turn on resources that have been left off by a lazy BIOS */ 3344 if (type == SYS_RES_IOPORT && !pci_porten(dev)) { 3345 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3346 cmd |= PCIM_CMD_PORTEN; 3347 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3348 } 3349 if (type == SYS_RES_MEMORY && !pci_memen(dev)) { 3350 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 3351 cmd |= PCIM_CMD_MEMEN; 3352 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 3353 } 3354 } else { 3355 if (type == SYS_RES_IOPORT && !pci_porten(dev)) 3356 return (barlen); 3357 if (type == SYS_RES_MEMORY && !pci_memen(dev)) 3358 return (barlen); 3359 } 3360 3361 count = (pci_addr_t)1 << mapsize; 3362 flags = RF_ALIGNMENT_LOG2(mapsize); 3363 if (prefetch) 3364 flags |= RF_PREFETCHABLE; 3365 if (basezero || base == pci_mapbase(testval) || pci_clear_bars) { 3366 start = 0; /* Let the parent decide. */ 3367 end = ~0; 3368 } else { 3369 start = base; 3370 end = base + count - 1; 3371 } 3372 resource_list_add(rl, type, reg, start, end, count); 3373 3374 /* 3375 * Try to allocate the resource for this BAR from our parent 3376 * so that this resource range is already reserved. The 3377 * driver for this device will later inherit this resource in 3378 * pci_alloc_resource(). 3379 */ 3380 res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count, 3381 flags); 3382 if ((pci_do_realloc_bars 3383 || pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR)) 3384 && res == NULL && (start != 0 || end != ~0)) { 3385 /* 3386 * If the allocation fails, try to allocate a resource for 3387 * this BAR using any available range. The firmware felt 3388 * it was important enough to assign a resource, so don't 3389 * disable decoding if we can help it. 3390 */ 3391 resource_list_delete(rl, type, reg); 3392 resource_list_add(rl, type, reg, 0, ~0, count); 3393 res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0, 3394 count, flags); 3395 } 3396 if (res == NULL) { 3397 /* 3398 * If the allocation fails, delete the resource list entry 3399 * and disable decoding for this device. 3400 * 3401 * If the driver requests this resource in the future, 3402 * pci_reserve_map() will try to allocate a fresh 3403 * resource range. 3404 */ 3405 resource_list_delete(rl, type, reg); 3406 pci_disable_io(dev, type); 3407 if (bootverbose) 3408 device_printf(bus, 3409 "pci%d:%d:%d:%d bar %#x failed to allocate\n", 3410 pci_get_domain(dev), pci_get_bus(dev), 3411 pci_get_slot(dev), pci_get_function(dev), reg); 3412 } else { 3413 start = rman_get_start(res); 3414 pci_write_bar(dev, pm, start); 3415 } 3416 return (barlen); 3417 } 3418 3419 /* 3420 * For ATA devices we need to decide early what addressing mode to use. 3421 * Legacy demands that the primary and secondary ATA ports sits on the 3422 * same addresses that old ISA hardware did. This dictates that we use 3423 * those addresses and ignore the BAR's if we cannot set PCI native 3424 * addressing mode. 3425 */ 3426 static void 3427 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force, 3428 uint32_t prefetchmask) 3429 { 3430 int rid, type, progif; 3431 #if 0 3432 /* if this device supports PCI native addressing use it */ 3433 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3434 if ((progif & 0x8a) == 0x8a) { 3435 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) && 3436 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) { 3437 printf("Trying ATA native PCI addressing mode\n"); 3438 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1); 3439 } 3440 } 3441 #endif 3442 progif = pci_read_config(dev, PCIR_PROGIF, 1); 3443 type = SYS_RES_IOPORT; 3444 if (progif & PCIP_STORAGE_IDE_MODEPRIM) { 3445 pci_add_map(bus, dev, PCIR_BAR(0), rl, force, 3446 prefetchmask & (1 << 0)); 3447 pci_add_map(bus, dev, PCIR_BAR(1), rl, force, 3448 prefetchmask & (1 << 1)); 3449 } else { 3450 rid = PCIR_BAR(0); 3451 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8); 3452 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0, 3453 0x1f7, 8, 0); 3454 rid = PCIR_BAR(1); 3455 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1); 3456 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6, 3457 0x3f6, 1, 0); 3458 } 3459 if (progif & PCIP_STORAGE_IDE_MODESEC) { 3460 pci_add_map(bus, dev, PCIR_BAR(2), rl, force, 3461 prefetchmask & (1 << 2)); 3462 pci_add_map(bus, dev, PCIR_BAR(3), rl, force, 3463 prefetchmask & (1 << 3)); 3464 } else { 3465 rid = PCIR_BAR(2); 3466 resource_list_add(rl, type, rid, 0x170, 0x177, 8); 3467 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170, 3468 0x177, 8, 0); 3469 rid = PCIR_BAR(3); 3470 resource_list_add(rl, type, rid, 0x376, 0x376, 1); 3471 (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376, 3472 0x376, 1, 0); 3473 } 3474 pci_add_map(bus, dev, PCIR_BAR(4), rl, force, 3475 prefetchmask & (1 << 4)); 3476 pci_add_map(bus, dev, PCIR_BAR(5), rl, force, 3477 prefetchmask & (1 << 5)); 3478 } 3479 3480 static void 3481 pci_assign_interrupt(device_t bus, device_t dev, int force_route) 3482 { 3483 struct pci_devinfo *dinfo = device_get_ivars(dev); 3484 pcicfgregs *cfg = &dinfo->cfg; 3485 char tunable_name[64]; 3486 int irq; 3487 3488 /* Has to have an intpin to have an interrupt. */ 3489 if (cfg->intpin == 0) 3490 return; 3491 3492 /* Let the user override the IRQ with a tunable. */ 3493 irq = PCI_INVALID_IRQ; 3494 snprintf(tunable_name, sizeof(tunable_name), 3495 "hw.pci%d.%d.%d.INT%c.irq", 3496 cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1); 3497 if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0)) 3498 irq = PCI_INVALID_IRQ; 3499 3500 /* 3501 * If we didn't get an IRQ via the tunable, then we either use the 3502 * IRQ value in the intline register or we ask the bus to route an 3503 * interrupt for us. If force_route is true, then we only use the 3504 * value in the intline register if the bus was unable to assign an 3505 * IRQ. 3506 */ 3507 if (!PCI_INTERRUPT_VALID(irq)) { 3508 if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route) 3509 irq = PCI_ASSIGN_INTERRUPT(bus, dev); 3510 if (!PCI_INTERRUPT_VALID(irq)) 3511 irq = cfg->intline; 3512 } 3513 3514 /* If after all that we don't have an IRQ, just bail. */ 3515 if (!PCI_INTERRUPT_VALID(irq)) 3516 return; 3517 3518 /* Update the config register if it changed. */ 3519 if (irq != cfg->intline) { 3520 cfg->intline = irq; 3521 pci_write_config(dev, PCIR_INTLINE, irq, 1); 3522 } 3523 3524 /* Add this IRQ as rid 0 interrupt resource. */ 3525 resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1); 3526 } 3527 3528 /* Perform early OHCI takeover from SMM. */ 3529 static void 3530 ohci_early_takeover(device_t self) 3531 { 3532 struct resource *res; 3533 uint32_t ctl; 3534 int rid; 3535 int i; 3536 3537 rid = PCIR_BAR(0); 3538 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3539 if (res == NULL) 3540 return; 3541 3542 ctl = bus_read_4(res, OHCI_CONTROL); 3543 if (ctl & OHCI_IR) { 3544 if (bootverbose) 3545 printf("ohci early: " 3546 "SMM active, request owner change\n"); 3547 bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR); 3548 for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) { 3549 DELAY(1000); 3550 ctl = bus_read_4(res, OHCI_CONTROL); 3551 } 3552 if (ctl & OHCI_IR) { 3553 if (bootverbose) 3554 printf("ohci early: " 3555 "SMM does not respond, resetting\n"); 3556 bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET); 3557 } 3558 /* Disable interrupts */ 3559 bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); 3560 } 3561 3562 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3563 } 3564 3565 /* Perform early UHCI takeover from SMM. */ 3566 static void 3567 uhci_early_takeover(device_t self) 3568 { 3569 struct resource *res; 3570 int rid; 3571 3572 /* 3573 * Set the PIRQD enable bit and switch off all the others. We don't 3574 * want legacy support to interfere with us XXX Does this also mean 3575 * that the BIOS won't touch the keyboard anymore if it is connected 3576 * to the ports of the root hub? 3577 */ 3578 pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2); 3579 3580 /* Disable interrupts */ 3581 rid = PCI_UHCI_BASE_REG; 3582 res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE); 3583 if (res != NULL) { 3584 bus_write_2(res, UHCI_INTR, 0); 3585 bus_release_resource(self, SYS_RES_IOPORT, rid, res); 3586 } 3587 } 3588 3589 /* Perform early EHCI takeover from SMM. */ 3590 static void 3591 ehci_early_takeover(device_t self) 3592 { 3593 struct resource *res; 3594 uint32_t cparams; 3595 uint32_t eec; 3596 uint8_t eecp; 3597 uint8_t bios_sem; 3598 uint8_t offs; 3599 int rid; 3600 int i; 3601 3602 rid = PCIR_BAR(0); 3603 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3604 if (res == NULL) 3605 return; 3606 3607 cparams = bus_read_4(res, EHCI_HCCPARAMS); 3608 3609 /* Synchronise with the BIOS if it owns the controller. */ 3610 for (eecp = EHCI_HCC_EECP(cparams); eecp != 0; 3611 eecp = EHCI_EECP_NEXT(eec)) { 3612 eec = pci_read_config(self, eecp, 4); 3613 if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) { 3614 continue; 3615 } 3616 bios_sem = pci_read_config(self, eecp + 3617 EHCI_LEGSUP_BIOS_SEM, 1); 3618 if (bios_sem == 0) { 3619 continue; 3620 } 3621 if (bootverbose) 3622 printf("ehci early: " 3623 "SMM active, request owner change\n"); 3624 3625 pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1); 3626 3627 for (i = 0; (i < 100) && (bios_sem != 0); i++) { 3628 DELAY(1000); 3629 bios_sem = pci_read_config(self, eecp + 3630 EHCI_LEGSUP_BIOS_SEM, 1); 3631 } 3632 3633 if (bios_sem != 0) { 3634 if (bootverbose) 3635 printf("ehci early: " 3636 "SMM does not respond\n"); 3637 } 3638 /* Disable interrupts */ 3639 offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION)); 3640 bus_write_4(res, offs + EHCI_USBINTR, 0); 3641 } 3642 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3643 } 3644 3645 /* Perform early XHCI takeover from SMM. */ 3646 static void 3647 xhci_early_takeover(device_t self) 3648 { 3649 struct resource *res; 3650 uint32_t cparams; 3651 uint32_t eec; 3652 uint8_t eecp; 3653 uint8_t bios_sem; 3654 uint8_t offs; 3655 int rid; 3656 int i; 3657 3658 rid = PCIR_BAR(0); 3659 res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); 3660 if (res == NULL) 3661 return; 3662 3663 cparams = bus_read_4(res, XHCI_HCSPARAMS0); 3664 3665 eec = -1; 3666 3667 /* Synchronise with the BIOS if it owns the controller. */ 3668 for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec); 3669 eecp += XHCI_XECP_NEXT(eec) << 2) { 3670 eec = bus_read_4(res, eecp); 3671 3672 if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY) 3673 continue; 3674 3675 bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); 3676 if (bios_sem == 0) 3677 continue; 3678 3679 if (bootverbose) 3680 printf("xhci early: " 3681 "SMM active, request owner change\n"); 3682 3683 bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1); 3684 3685 /* wait a maximum of 5 second */ 3686 3687 for (i = 0; (i < 5000) && (bios_sem != 0); i++) { 3688 DELAY(1000); 3689 bios_sem = bus_read_1(res, eecp + 3690 XHCI_XECP_BIOS_SEM); 3691 } 3692 3693 if (bios_sem != 0) { 3694 if (bootverbose) 3695 printf("xhci early: " 3696 "SMM does not respond\n"); 3697 } 3698 3699 /* Disable interrupts */ 3700 offs = bus_read_1(res, XHCI_CAPLENGTH); 3701 bus_write_4(res, offs + XHCI_USBCMD, 0); 3702 bus_read_4(res, offs + XHCI_USBSTS); 3703 } 3704 bus_release_resource(self, SYS_RES_MEMORY, rid, res); 3705 } 3706 3707 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 3708 static void 3709 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg, 3710 struct resource_list *rl) 3711 { 3712 struct resource *res; 3713 char *cp; 3714 rman_res_t start, end, count; 3715 int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus; 3716 3717 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3718 case PCIM_HDRTYPE_BRIDGE: 3719 sec_reg = PCIR_SECBUS_1; 3720 sub_reg = PCIR_SUBBUS_1; 3721 break; 3722 case PCIM_HDRTYPE_CARDBUS: 3723 sec_reg = PCIR_SECBUS_2; 3724 sub_reg = PCIR_SUBBUS_2; 3725 break; 3726 default: 3727 return; 3728 } 3729 3730 /* 3731 * If the existing bus range is valid, attempt to reserve it 3732 * from our parent. If this fails for any reason, clear the 3733 * secbus and subbus registers. 3734 * 3735 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus? 3736 * This would at least preserve the existing sec_bus if it is 3737 * valid. 3738 */ 3739 sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1); 3740 sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1); 3741 3742 /* Quirk handling. */ 3743 switch (pci_get_devid(dev)) { 3744 case 0x12258086: /* Intel 82454KX/GX (Orion) */ 3745 sup_bus = pci_read_config(dev, 0x41, 1); 3746 if (sup_bus != 0xff) { 3747 sec_bus = sup_bus + 1; 3748 sub_bus = sup_bus + 1; 3749 PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1); 3750 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3751 } 3752 break; 3753 3754 case 0x00dd10de: 3755 /* Compaq R3000 BIOS sets wrong subordinate bus number. */ 3756 if ((cp = kern_getenv("smbios.planar.maker")) == NULL) 3757 break; 3758 if (strncmp(cp, "Compal", 6) != 0) { 3759 freeenv(cp); 3760 break; 3761 } 3762 freeenv(cp); 3763 if ((cp = kern_getenv("smbios.planar.product")) == NULL) 3764 break; 3765 if (strncmp(cp, "08A0", 4) != 0) { 3766 freeenv(cp); 3767 break; 3768 } 3769 freeenv(cp); 3770 if (sub_bus < 0xa) { 3771 sub_bus = 0xa; 3772 PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); 3773 } 3774 break; 3775 } 3776 3777 if (bootverbose) 3778 printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus); 3779 if (sec_bus > 0 && sub_bus >= sec_bus) { 3780 start = sec_bus; 3781 end = sub_bus; 3782 count = end - start + 1; 3783 3784 resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count); 3785 3786 /* 3787 * If requested, clear secondary bus registers in 3788 * bridge devices to force a complete renumbering 3789 * rather than reserving the existing range. However, 3790 * preserve the existing size. 3791 */ 3792 if (pci_clear_buses) 3793 goto clear; 3794 3795 rid = 0; 3796 res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid, 3797 start, end, count, 0); 3798 if (res != NULL) 3799 return; 3800 3801 if (bootverbose) 3802 device_printf(bus, 3803 "pci%d:%d:%d:%d secbus failed to allocate\n", 3804 pci_get_domain(dev), pci_get_bus(dev), 3805 pci_get_slot(dev), pci_get_function(dev)); 3806 } 3807 3808 clear: 3809 PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1); 3810 PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1); 3811 } 3812 3813 static struct resource * 3814 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start, 3815 rman_res_t end, rman_res_t count, u_int flags) 3816 { 3817 struct pci_devinfo *dinfo; 3818 pcicfgregs *cfg; 3819 struct resource_list *rl; 3820 struct resource *res; 3821 int sec_reg, sub_reg; 3822 3823 dinfo = device_get_ivars(child); 3824 cfg = &dinfo->cfg; 3825 rl = &dinfo->resources; 3826 switch (cfg->hdrtype & PCIM_HDRTYPE) { 3827 case PCIM_HDRTYPE_BRIDGE: 3828 sec_reg = PCIR_SECBUS_1; 3829 sub_reg = PCIR_SUBBUS_1; 3830 break; 3831 case PCIM_HDRTYPE_CARDBUS: 3832 sec_reg = PCIR_SECBUS_2; 3833 sub_reg = PCIR_SUBBUS_2; 3834 break; 3835 default: 3836 return (NULL); 3837 } 3838 3839 if (*rid != 0) 3840 return (NULL); 3841 3842 if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL) 3843 resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count); 3844 if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) { 3845 res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid, 3846 start, end, count, flags & ~RF_ACTIVE); 3847 if (res == NULL) { 3848 resource_list_delete(rl, PCI_RES_BUS, *rid); 3849 device_printf(child, "allocating %ju bus%s failed\n", 3850 count, count == 1 ? "" : "es"); 3851 return (NULL); 3852 } 3853 if (bootverbose) 3854 device_printf(child, 3855 "Lazy allocation of %ju bus%s at %ju\n", count, 3856 count == 1 ? "" : "es", rman_get_start(res)); 3857 PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1); 3858 PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1); 3859 } 3860 return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start, 3861 end, count, flags)); 3862 } 3863 #endif 3864 3865 static int 3866 pci_ea_bei_to_rid(device_t dev, int bei) 3867 { 3868 #ifdef PCI_IOV 3869 struct pci_devinfo *dinfo; 3870 int iov_pos; 3871 struct pcicfg_iov *iov; 3872 3873 dinfo = device_get_ivars(dev); 3874 iov = dinfo->cfg.iov; 3875 if (iov != NULL) 3876 iov_pos = iov->iov_pos; 3877 else 3878 iov_pos = 0; 3879 #endif 3880 3881 /* Check if matches BAR */ 3882 if ((bei >= PCIM_EA_BEI_BAR_0) && 3883 (bei <= PCIM_EA_BEI_BAR_5)) 3884 return (PCIR_BAR(bei)); 3885 3886 /* Check ROM */ 3887 if (bei == PCIM_EA_BEI_ROM) 3888 return (PCIR_BIOS); 3889 3890 #ifdef PCI_IOV 3891 /* Check if matches VF_BAR */ 3892 if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) && 3893 (bei <= PCIM_EA_BEI_VF_BAR_5)) 3894 return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) + 3895 iov_pos); 3896 #endif 3897 3898 return (-1); 3899 } 3900 3901 int 3902 pci_ea_is_enabled(device_t dev, int rid) 3903 { 3904 struct pci_ea_entry *ea; 3905 struct pci_devinfo *dinfo; 3906 3907 dinfo = device_get_ivars(dev); 3908 3909 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3910 if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid) 3911 return ((ea->eae_flags & PCIM_EA_ENABLE) > 0); 3912 } 3913 3914 return (0); 3915 } 3916 3917 void 3918 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov) 3919 { 3920 struct pci_ea_entry *ea; 3921 struct pci_devinfo *dinfo; 3922 pci_addr_t start, end, count; 3923 struct resource_list *rl; 3924 int type, flags, rid; 3925 struct resource *res; 3926 uint32_t tmp; 3927 #ifdef PCI_IOV 3928 struct pcicfg_iov *iov; 3929 #endif 3930 3931 dinfo = device_get_ivars(dev); 3932 rl = &dinfo->resources; 3933 flags = 0; 3934 3935 #ifdef PCI_IOV 3936 iov = dinfo->cfg.iov; 3937 #endif 3938 3939 if (dinfo->cfg.ea.ea_location == 0) 3940 return; 3941 3942 STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { 3943 /* 3944 * TODO: Ignore EA-BAR if is not enabled. 3945 * Currently the EA implementation supports 3946 * only situation, where EA structure contains 3947 * predefined entries. In case they are not enabled 3948 * leave them unallocated and proceed with 3949 * a legacy-BAR mechanism. 3950 */ 3951 if ((ea->eae_flags & PCIM_EA_ENABLE) == 0) 3952 continue; 3953 3954 switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) { 3955 case PCIM_EA_P_MEM_PREFETCH: 3956 case PCIM_EA_P_VF_MEM_PREFETCH: 3957 flags = RF_PREFETCHABLE; 3958 /* FALLTHROUGH */ 3959 case PCIM_EA_P_VF_MEM: 3960 case PCIM_EA_P_MEM: 3961 type = SYS_RES_MEMORY; 3962 break; 3963 case PCIM_EA_P_IO: 3964 type = SYS_RES_IOPORT; 3965 break; 3966 default: 3967 continue; 3968 } 3969 3970 if (alloc_iov != 0) { 3971 #ifdef PCI_IOV 3972 /* Allocating IOV, confirm BEI matches */ 3973 if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) || 3974 (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5)) 3975 continue; 3976 #else 3977 continue; 3978 #endif 3979 } else { 3980 /* Allocating BAR, confirm BEI matches */ 3981 if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) || 3982 (ea->eae_bei > PCIM_EA_BEI_BAR_5)) && 3983 (ea->eae_bei != PCIM_EA_BEI_ROM)) 3984 continue; 3985 } 3986 3987 rid = pci_ea_bei_to_rid(dev, ea->eae_bei); 3988 if (rid < 0) 3989 continue; 3990 3991 /* Skip resources already allocated by EA */ 3992 if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) || 3993 (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL)) 3994 continue; 3995 3996 start = ea->eae_base; 3997 count = ea->eae_max_offset + 1; 3998 #ifdef PCI_IOV 3999 if (iov != NULL) 4000 count = count * iov->iov_num_vfs; 4001 #endif 4002 end = start + count - 1; 4003 if (count == 0) 4004 continue; 4005 4006 resource_list_add(rl, type, rid, start, end, count); 4007 res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count, 4008 flags); 4009 if (res == NULL) { 4010 resource_list_delete(rl, type, rid); 4011 4012 /* 4013 * Failed to allocate using EA, disable entry. 4014 * Another attempt to allocation will be performed 4015 * further, but this time using legacy BAR registers 4016 */ 4017 tmp = pci_read_config(dev, ea->eae_cfg_offset, 4); 4018 tmp &= ~PCIM_EA_ENABLE; 4019 pci_write_config(dev, ea->eae_cfg_offset, tmp, 4); 4020 4021 /* 4022 * Disabling entry might fail in case it is hardwired. 4023 * Read flags again to match current status. 4024 */ 4025 ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4); 4026 4027 continue; 4028 } 4029 4030 /* As per specification, fill BAR with zeros */ 4031 pci_write_config(dev, rid, 0, 4); 4032 } 4033 } 4034 4035 void 4036 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask) 4037 { 4038 struct pci_devinfo *dinfo; 4039 pcicfgregs *cfg; 4040 struct resource_list *rl; 4041 const struct pci_quirk *q; 4042 uint32_t devid; 4043 int i; 4044 4045 dinfo = device_get_ivars(dev); 4046 cfg = &dinfo->cfg; 4047 rl = &dinfo->resources; 4048 devid = (cfg->device << 16) | cfg->vendor; 4049 4050 /* Allocate resources using Enhanced Allocation */ 4051 pci_add_resources_ea(bus, dev, 0); 4052 4053 /* ATA devices needs special map treatment */ 4054 if ((pci_get_class(dev) == PCIC_STORAGE) && 4055 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) && 4056 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) || 4057 (!pci_read_config(dev, PCIR_BAR(0), 4) && 4058 !pci_read_config(dev, PCIR_BAR(2), 4))) ) 4059 pci_ata_maps(bus, dev, rl, force, prefetchmask); 4060 else 4061 for (i = 0; i < cfg->nummaps;) { 4062 /* Skip resources already managed by EA */ 4063 if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) || 4064 (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) || 4065 pci_ea_is_enabled(dev, PCIR_BAR(i))) { 4066 i++; 4067 continue; 4068 } 4069 4070 /* 4071 * Skip quirked resources. 4072 */ 4073 for (q = &pci_quirks[0]; q->devid != 0; q++) 4074 if (q->devid == devid && 4075 q->type == PCI_QUIRK_UNMAP_REG && 4076 q->arg1 == PCIR_BAR(i)) 4077 break; 4078 if (q->devid != 0) { 4079 i++; 4080 continue; 4081 } 4082 i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force, 4083 prefetchmask & (1 << i)); 4084 } 4085 4086 /* 4087 * Add additional, quirked resources. 4088 */ 4089 for (q = &pci_quirks[0]; q->devid != 0; q++) 4090 if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG) 4091 pci_add_map(bus, dev, q->arg1, rl, force, 0); 4092 4093 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) { 4094 #ifdef __PCI_REROUTE_INTERRUPT 4095 /* 4096 * Try to re-route interrupts. Sometimes the BIOS or 4097 * firmware may leave bogus values in these registers. 4098 * If the re-route fails, then just stick with what we 4099 * have. 4100 */ 4101 pci_assign_interrupt(bus, dev, 1); 4102 #else 4103 pci_assign_interrupt(bus, dev, 0); 4104 #endif 4105 } 4106 4107 if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS && 4108 pci_get_subclass(dev) == PCIS_SERIALBUS_USB) { 4109 if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI) 4110 xhci_early_takeover(dev); 4111 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI) 4112 ehci_early_takeover(dev); 4113 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI) 4114 ohci_early_takeover(dev); 4115 else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI) 4116 uhci_early_takeover(dev); 4117 } 4118 4119 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 4120 /* 4121 * Reserve resources for secondary bus ranges behind bridge 4122 * devices. 4123 */ 4124 pci_reserve_secbus(bus, dev, cfg, rl); 4125 #endif 4126 } 4127 4128 static struct pci_devinfo * 4129 pci_identify_function(device_t pcib, device_t dev, int domain, int busno, 4130 int slot, int func) 4131 { 4132 struct pci_devinfo *dinfo; 4133 4134 dinfo = pci_read_device(pcib, dev, domain, busno, slot, func); 4135 if (dinfo != NULL) 4136 pci_add_child(dev, dinfo); 4137 4138 return (dinfo); 4139 } 4140 4141 void 4142 pci_add_children(device_t dev, int domain, int busno) 4143 { 4144 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4145 device_t pcib = device_get_parent(dev); 4146 struct pci_devinfo *dinfo; 4147 int maxslots; 4148 int s, f, pcifunchigh; 4149 uint8_t hdrtype; 4150 int first_func; 4151 4152 /* 4153 * Try to detect a device at slot 0, function 0. If it exists, try to 4154 * enable ARI. We must enable ARI before detecting the rest of the 4155 * functions on this bus as ARI changes the set of slots and functions 4156 * that are legal on this bus. 4157 */ 4158 dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0); 4159 if (dinfo != NULL && pci_enable_ari) 4160 PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev); 4161 4162 /* 4163 * Start looking for new devices on slot 0 at function 1 because we 4164 * just identified the device at slot 0, function 0. 4165 */ 4166 first_func = 1; 4167 4168 maxslots = PCIB_MAXSLOTS(pcib); 4169 for (s = 0; s <= maxslots; s++, first_func = 0) { 4170 pcifunchigh = 0; 4171 f = 0; 4172 DELAY(1); 4173 4174 /* If function 0 is not present, skip to the next slot. */ 4175 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4176 continue; 4177 hdrtype = REG(PCIR_HDRTYPE, 1); 4178 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4179 continue; 4180 if (hdrtype & PCIM_MFDEV) 4181 pcifunchigh = PCIB_MAXFUNCS(pcib); 4182 for (f = first_func; f <= pcifunchigh; f++) 4183 pci_identify_function(pcib, dev, domain, busno, s, f); 4184 } 4185 #undef REG 4186 } 4187 4188 int 4189 pci_rescan_method(device_t dev) 4190 { 4191 #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) 4192 device_t pcib = device_get_parent(dev); 4193 device_t child, *devlist, *unchanged; 4194 int devcount, error, i, j, maxslots, oldcount; 4195 int busno, domain, s, f, pcifunchigh; 4196 uint8_t hdrtype; 4197 4198 /* No need to check for ARI on a rescan. */ 4199 error = device_get_children(dev, &devlist, &devcount); 4200 if (error) 4201 return (error); 4202 if (devcount != 0) { 4203 unchanged = malloc(devcount * sizeof(device_t), M_TEMP, 4204 M_NOWAIT | M_ZERO); 4205 if (unchanged == NULL) { 4206 free(devlist, M_TEMP); 4207 return (ENOMEM); 4208 } 4209 } else 4210 unchanged = NULL; 4211 4212 domain = pcib_get_domain(dev); 4213 busno = pcib_get_bus(dev); 4214 maxslots = PCIB_MAXSLOTS(pcib); 4215 for (s = 0; s <= maxslots; s++) { 4216 /* If function 0 is not present, skip to the next slot. */ 4217 f = 0; 4218 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4219 continue; 4220 pcifunchigh = 0; 4221 hdrtype = REG(PCIR_HDRTYPE, 1); 4222 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) 4223 continue; 4224 if (hdrtype & PCIM_MFDEV) 4225 pcifunchigh = PCIB_MAXFUNCS(pcib); 4226 for (f = 0; f <= pcifunchigh; f++) { 4227 if (REG(PCIR_VENDOR, 2) == PCIV_INVALID) 4228 continue; 4229 4230 /* 4231 * Found a valid function. Check if a 4232 * device_t for this device already exists. 4233 */ 4234 for (i = 0; i < devcount; i++) { 4235 child = devlist[i]; 4236 if (child == NULL) 4237 continue; 4238 if (pci_get_slot(child) == s && 4239 pci_get_function(child) == f) { 4240 unchanged[i] = child; 4241 goto next_func; 4242 } 4243 } 4244 4245 pci_identify_function(pcib, dev, domain, busno, s, f); 4246 next_func:; 4247 } 4248 } 4249 4250 /* Remove devices that are no longer present. */ 4251 for (i = 0; i < devcount; i++) { 4252 if (unchanged[i] != NULL) 4253 continue; 4254 device_delete_child(dev, devlist[i]); 4255 } 4256 4257 free(devlist, M_TEMP); 4258 oldcount = devcount; 4259 4260 /* Try to attach the devices just added. */ 4261 error = device_get_children(dev, &devlist, &devcount); 4262 if (error) { 4263 free(unchanged, M_TEMP); 4264 return (error); 4265 } 4266 4267 for (i = 0; i < devcount; i++) { 4268 for (j = 0; j < oldcount; j++) { 4269 if (devlist[i] == unchanged[j]) 4270 goto next_device; 4271 } 4272 4273 device_probe_and_attach(devlist[i]); 4274 next_device:; 4275 } 4276 4277 free(unchanged, M_TEMP); 4278 free(devlist, M_TEMP); 4279 return (0); 4280 #undef REG 4281 } 4282 4283 #ifdef PCI_IOV 4284 device_t 4285 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid, 4286 uint16_t did) 4287 { 4288 struct pci_devinfo *vf_dinfo; 4289 device_t pcib; 4290 int busno, slot, func; 4291 4292 pcib = device_get_parent(bus); 4293 4294 PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func); 4295 4296 vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno, 4297 slot, func, vid, did); 4298 4299 vf_dinfo->cfg.flags |= PCICFG_VF; 4300 pci_add_child(bus, vf_dinfo); 4301 4302 return (vf_dinfo->cfg.dev); 4303 } 4304 4305 device_t 4306 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid, 4307 uint16_t vid, uint16_t did) 4308 { 4309 4310 return (pci_add_iov_child(bus, pf, rid, vid, did)); 4311 } 4312 #endif 4313 4314 /* 4315 * For PCIe device set Max_Payload_Size to match PCIe root's. 4316 */ 4317 static void 4318 pcie_setup_mps(device_t dev) 4319 { 4320 struct pci_devinfo *dinfo = device_get_ivars(dev); 4321 device_t root; 4322 uint16_t rmps, mmps, mps; 4323 4324 if (dinfo->cfg.pcie.pcie_location == 0) 4325 return; 4326 root = pci_find_pcie_root_port(dev); 4327 if (root == NULL) 4328 return; 4329 /* Check whether the MPS is already configured. */ 4330 rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) & 4331 PCIEM_CTL_MAX_PAYLOAD; 4332 mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) & 4333 PCIEM_CTL_MAX_PAYLOAD; 4334 if (mps == rmps) 4335 return; 4336 /* Check whether the device is capable of the root's MPS. */ 4337 mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) & 4338 PCIEM_CAP_MAX_PAYLOAD) << 5; 4339 if (rmps > mmps) { 4340 /* 4341 * The device is unable to handle root's MPS. Limit root. 4342 * XXX: We should traverse through all the tree, applying 4343 * it to all the devices. 4344 */ 4345 pcie_adjust_config(root, PCIER_DEVICE_CTL, 4346 PCIEM_CTL_MAX_PAYLOAD, mmps, 2); 4347 } else { 4348 pcie_adjust_config(dev, PCIER_DEVICE_CTL, 4349 PCIEM_CTL_MAX_PAYLOAD, rmps, 2); 4350 } 4351 } 4352 4353 static void 4354 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo) 4355 { 4356 int aer; 4357 uint32_t r; 4358 uint16_t r2; 4359 4360 if (dinfo->cfg.pcie.pcie_location != 0 && 4361 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) { 4362 r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4363 PCIER_ROOT_CTL, 2); 4364 r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR | 4365 PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL); 4366 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4367 PCIER_ROOT_CTL, r2, 2); 4368 } 4369 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 4370 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 4371 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 4372 if (r != 0 && bootverbose) { 4373 pci_printf(&dinfo->cfg, 4374 "clearing AER UC 0x%08x -> 0x%08x\n", 4375 r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4376 4)); 4377 } 4378 4379 r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4); 4380 r &= ~(PCIM_AER_UC_TRAINING_ERROR | 4381 PCIM_AER_UC_DL_PROTOCOL_ERROR | 4382 PCIM_AER_UC_SURPRISE_LINK_DOWN | 4383 PCIM_AER_UC_POISONED_TLP | 4384 PCIM_AER_UC_FC_PROTOCOL_ERROR | 4385 PCIM_AER_UC_COMPLETION_TIMEOUT | 4386 PCIM_AER_UC_COMPLETER_ABORT | 4387 PCIM_AER_UC_UNEXPECTED_COMPLETION | 4388 PCIM_AER_UC_RECEIVER_OVERFLOW | 4389 PCIM_AER_UC_MALFORMED_TLP | 4390 PCIM_AER_UC_ECRC_ERROR | 4391 PCIM_AER_UC_UNSUPPORTED_REQUEST | 4392 PCIM_AER_UC_ACS_VIOLATION | 4393 PCIM_AER_UC_INTERNAL_ERROR | 4394 PCIM_AER_UC_MC_BLOCKED_TLP | 4395 PCIM_AER_UC_ATOMIC_EGRESS_BLK | 4396 PCIM_AER_UC_TLP_PREFIX_BLOCKED); 4397 pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4); 4398 4399 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 4400 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 4401 if (r != 0 && bootverbose) { 4402 pci_printf(&dinfo->cfg, 4403 "clearing AER COR 0x%08x -> 0x%08x\n", 4404 r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4405 4)); 4406 } 4407 4408 r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4); 4409 r &= ~(PCIM_AER_COR_RECEIVER_ERROR | 4410 PCIM_AER_COR_BAD_TLP | 4411 PCIM_AER_COR_BAD_DLLP | 4412 PCIM_AER_COR_REPLAY_ROLLOVER | 4413 PCIM_AER_COR_REPLAY_TIMEOUT | 4414 PCIM_AER_COR_ADVISORY_NF_ERROR | 4415 PCIM_AER_COR_INTERNAL_ERROR | 4416 PCIM_AER_COR_HEADER_LOG_OVFLOW); 4417 pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4); 4418 4419 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 4420 PCIER_DEVICE_CTL, 2); 4421 r |= PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE | 4422 PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE; 4423 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 4424 PCIER_DEVICE_CTL, r, 2); 4425 } 4426 } 4427 4428 void 4429 pci_add_child(device_t bus, struct pci_devinfo *dinfo) 4430 { 4431 device_t dev; 4432 4433 dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1); 4434 device_set_ivars(dev, dinfo); 4435 resource_list_init(&dinfo->resources); 4436 pci_cfg_save(dev, dinfo, 0); 4437 pci_cfg_restore(dev, dinfo); 4438 pci_print_verbose(dinfo); 4439 pci_add_resources(bus, dev, 0, 0); 4440 pcie_setup_mps(dev); 4441 pci_child_added(dinfo->cfg.dev); 4442 4443 if (pci_clear_aer_on_attach) 4444 pci_add_child_clear_aer(dev, dinfo); 4445 4446 EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev); 4447 } 4448 4449 void 4450 pci_child_added_method(device_t dev, device_t child) 4451 { 4452 4453 } 4454 4455 static int 4456 pci_probe(device_t dev) 4457 { 4458 4459 device_set_desc(dev, "PCI bus"); 4460 4461 /* Allow other subclasses to override this driver. */ 4462 return (BUS_PROBE_GENERIC); 4463 } 4464 4465 int 4466 pci_attach_common(device_t dev) 4467 { 4468 struct pci_softc *sc; 4469 int busno, domain; 4470 #ifdef PCI_RES_BUS 4471 int rid; 4472 #endif 4473 4474 sc = device_get_softc(dev); 4475 domain = pcib_get_domain(dev); 4476 busno = pcib_get_bus(dev); 4477 #ifdef PCI_RES_BUS 4478 rid = 0; 4479 sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno, 4480 1, 0); 4481 if (sc->sc_bus == NULL) { 4482 device_printf(dev, "failed to allocate bus number\n"); 4483 return (ENXIO); 4484 } 4485 #endif 4486 if (bootverbose) 4487 device_printf(dev, "domain=%d, physical bus=%d\n", 4488 domain, busno); 4489 sc->sc_dma_tag = bus_get_dma_tag(dev); 4490 return (0); 4491 } 4492 4493 int 4494 pci_attach(device_t dev) 4495 { 4496 int busno, domain, error; 4497 4498 error = pci_attach_common(dev); 4499 if (error) 4500 return (error); 4501 4502 /* 4503 * Since there can be multiple independently numbered PCI 4504 * buses on systems with multiple PCI domains, we can't use 4505 * the unit number to decide which bus we are probing. We ask 4506 * the parent pcib what our domain and bus numbers are. 4507 */ 4508 domain = pcib_get_domain(dev); 4509 busno = pcib_get_bus(dev); 4510 pci_add_children(dev, domain, busno); 4511 return (bus_generic_attach(dev)); 4512 } 4513 4514 int 4515 pci_detach(device_t dev) 4516 { 4517 #ifdef PCI_RES_BUS 4518 struct pci_softc *sc; 4519 #endif 4520 int error; 4521 4522 error = bus_generic_detach(dev); 4523 if (error) 4524 return (error); 4525 #ifdef PCI_RES_BUS 4526 sc = device_get_softc(dev); 4527 error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus); 4528 if (error) 4529 return (error); 4530 #endif 4531 return (device_delete_children(dev)); 4532 } 4533 4534 static void 4535 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp) 4536 { 4537 int line, unit; 4538 const char *at; 4539 char me1[24], me2[32]; 4540 uint8_t b, s, f; 4541 uint32_t d; 4542 device_location_cache_t *cache; 4543 4544 d = pci_get_domain(child); 4545 b = pci_get_bus(child); 4546 s = pci_get_slot(child); 4547 f = pci_get_function(child); 4548 snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f); 4549 snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f); 4550 line = 0; 4551 cache = dev_wired_cache_init(); 4552 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { 4553 resource_string_value(name, unit, "at", &at); 4554 if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) { 4555 *unitp = unit; 4556 break; 4557 } 4558 if (dev_wired_cache_match(cache, child, at)) { 4559 *unitp = unit; 4560 break; 4561 } 4562 } 4563 dev_wired_cache_fini(cache); 4564 } 4565 4566 static void 4567 pci_set_power_child(device_t dev, device_t child, int state) 4568 { 4569 device_t pcib; 4570 int dstate; 4571 4572 /* 4573 * Set the device to the given state. If the firmware suggests 4574 * a different power state, use it instead. If power management 4575 * is not present, the firmware is responsible for managing 4576 * device power. Skip children who aren't attached since they 4577 * are handled separately. 4578 */ 4579 pcib = device_get_parent(dev); 4580 dstate = state; 4581 if (device_is_attached(child) && 4582 PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0) 4583 pci_set_powerstate(child, dstate); 4584 } 4585 4586 int 4587 pci_suspend_child(device_t dev, device_t child) 4588 { 4589 struct pci_devinfo *dinfo; 4590 struct resource_list_entry *rle; 4591 int error; 4592 4593 dinfo = device_get_ivars(child); 4594 4595 /* 4596 * Save the PCI configuration space for the child and set the 4597 * device in the appropriate power state for this sleep state. 4598 */ 4599 pci_cfg_save(child, dinfo, 0); 4600 4601 /* Suspend devices before potentially powering them down. */ 4602 error = bus_generic_suspend_child(dev, child); 4603 4604 if (error) 4605 return (error); 4606 4607 if (pci_do_power_suspend) { 4608 /* 4609 * Make sure this device's interrupt handler is not invoked 4610 * in the case the device uses a shared interrupt that can 4611 * be raised by some other device. 4612 * This is applicable only to regular (legacy) PCI interrupts 4613 * as MSI/MSI-X interrupts are never shared. 4614 */ 4615 rle = resource_list_find(&dinfo->resources, 4616 SYS_RES_IRQ, 0); 4617 if (rle != NULL && rle->res != NULL) 4618 (void)bus_suspend_intr(child, rle->res); 4619 pci_set_power_child(dev, child, PCI_POWERSTATE_D3); 4620 } 4621 4622 return (0); 4623 } 4624 4625 int 4626 pci_resume_child(device_t dev, device_t child) 4627 { 4628 struct pci_devinfo *dinfo; 4629 struct resource_list_entry *rle; 4630 4631 if (pci_do_power_resume) 4632 pci_set_power_child(dev, child, PCI_POWERSTATE_D0); 4633 4634 dinfo = device_get_ivars(child); 4635 pci_cfg_restore(child, dinfo); 4636 if (!device_is_attached(child)) 4637 pci_cfg_save(child, dinfo, 1); 4638 4639 bus_generic_resume_child(dev, child); 4640 4641 /* 4642 * Allow interrupts only after fully resuming the driver and hardware. 4643 */ 4644 if (pci_do_power_suspend) { 4645 /* See pci_suspend_child for details. */ 4646 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); 4647 if (rle != NULL && rle->res != NULL) 4648 (void)bus_resume_intr(child, rle->res); 4649 } 4650 4651 return (0); 4652 } 4653 4654 int 4655 pci_resume(device_t dev) 4656 { 4657 device_t child, *devlist; 4658 int error, i, numdevs; 4659 4660 if ((error = device_get_children(dev, &devlist, &numdevs)) != 0) 4661 return (error); 4662 4663 /* 4664 * Resume critical devices first, then everything else later. 4665 */ 4666 for (i = 0; i < numdevs; i++) { 4667 child = devlist[i]; 4668 switch (pci_get_class(child)) { 4669 case PCIC_DISPLAY: 4670 case PCIC_MEMORY: 4671 case PCIC_BRIDGE: 4672 case PCIC_BASEPERIPH: 4673 BUS_RESUME_CHILD(dev, child); 4674 break; 4675 } 4676 } 4677 for (i = 0; i < numdevs; i++) { 4678 child = devlist[i]; 4679 switch (pci_get_class(child)) { 4680 case PCIC_DISPLAY: 4681 case PCIC_MEMORY: 4682 case PCIC_BRIDGE: 4683 case PCIC_BASEPERIPH: 4684 break; 4685 default: 4686 BUS_RESUME_CHILD(dev, child); 4687 } 4688 } 4689 free(devlist, M_TEMP); 4690 return (0); 4691 } 4692 4693 static void 4694 pci_load_vendor_data(void) 4695 { 4696 caddr_t data; 4697 void *ptr; 4698 size_t sz; 4699 4700 data = preload_search_by_type("pci_vendor_data"); 4701 if (data != NULL) { 4702 ptr = preload_fetch_addr(data); 4703 sz = preload_fetch_size(data); 4704 if (ptr != NULL && sz != 0) { 4705 pci_vendordata = ptr; 4706 pci_vendordata_size = sz; 4707 /* terminate the database */ 4708 pci_vendordata[pci_vendordata_size] = '\n'; 4709 } 4710 } 4711 } 4712 4713 void 4714 pci_driver_added(device_t dev, driver_t *driver) 4715 { 4716 int numdevs; 4717 device_t *devlist; 4718 device_t child; 4719 struct pci_devinfo *dinfo; 4720 int i; 4721 4722 if (bootverbose) 4723 device_printf(dev, "driver added\n"); 4724 DEVICE_IDENTIFY(driver, dev); 4725 if (device_get_children(dev, &devlist, &numdevs) != 0) 4726 return; 4727 for (i = 0; i < numdevs; i++) { 4728 child = devlist[i]; 4729 if (device_get_state(child) != DS_NOTPRESENT) 4730 continue; 4731 dinfo = device_get_ivars(child); 4732 pci_print_verbose(dinfo); 4733 if (bootverbose) 4734 pci_printf(&dinfo->cfg, "reprobing on driver added\n"); 4735 pci_cfg_restore(child, dinfo); 4736 if (device_probe_and_attach(child) != 0) 4737 pci_child_detached(dev, child); 4738 } 4739 free(devlist, M_TEMP); 4740 } 4741 4742 int 4743 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, 4744 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) 4745 { 4746 struct pci_devinfo *dinfo; 4747 struct msix_table_entry *mte; 4748 struct msix_vector *mv; 4749 uint64_t addr; 4750 uint32_t data; 4751 void *cookie; 4752 int error, rid; 4753 4754 error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr, 4755 arg, &cookie); 4756 if (error) 4757 return (error); 4758 4759 /* If this is not a direct child, just bail out. */ 4760 if (device_get_parent(child) != dev) { 4761 *cookiep = cookie; 4762 return(0); 4763 } 4764 4765 rid = rman_get_rid(irq); 4766 if (rid == 0) { 4767 /* Make sure that INTx is enabled */ 4768 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4769 } else { 4770 /* 4771 * Check to see if the interrupt is MSI or MSI-X. 4772 * Ask our parent to map the MSI and give 4773 * us the address and data register values. 4774 * If we fail for some reason, teardown the 4775 * interrupt handler. 4776 */ 4777 dinfo = device_get_ivars(child); 4778 if (dinfo->cfg.msi.msi_alloc > 0) { 4779 if (dinfo->cfg.msi.msi_addr == 0) { 4780 KASSERT(dinfo->cfg.msi.msi_handlers == 0, 4781 ("MSI has handlers, but vectors not mapped")); 4782 error = PCIB_MAP_MSI(device_get_parent(dev), 4783 child, rman_get_start(irq), &addr, &data); 4784 if (error) 4785 goto bad; 4786 dinfo->cfg.msi.msi_addr = addr; 4787 dinfo->cfg.msi.msi_data = data; 4788 } 4789 if (dinfo->cfg.msi.msi_handlers == 0) 4790 pci_enable_msi(child, dinfo->cfg.msi.msi_addr, 4791 dinfo->cfg.msi.msi_data); 4792 dinfo->cfg.msi.msi_handlers++; 4793 } else { 4794 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4795 ("No MSI or MSI-X interrupts allocated")); 4796 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4797 ("MSI-X index too high")); 4798 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4799 KASSERT(mte->mte_vector != 0, ("no message vector")); 4800 mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1]; 4801 KASSERT(mv->mv_irq == rman_get_start(irq), 4802 ("IRQ mismatch")); 4803 if (mv->mv_address == 0) { 4804 KASSERT(mte->mte_handlers == 0, 4805 ("MSI-X table entry has handlers, but vector not mapped")); 4806 error = PCIB_MAP_MSI(device_get_parent(dev), 4807 child, rman_get_start(irq), &addr, &data); 4808 if (error) 4809 goto bad; 4810 mv->mv_address = addr; 4811 mv->mv_data = data; 4812 } 4813 4814 /* 4815 * The MSIX table entry must be made valid by 4816 * incrementing the mte_handlers before 4817 * calling pci_enable_msix() and 4818 * pci_resume_msix(). Else the MSIX rewrite 4819 * table quirk will not work as expected. 4820 */ 4821 mte->mte_handlers++; 4822 if (mte->mte_handlers == 1) { 4823 pci_enable_msix(child, rid - 1, mv->mv_address, 4824 mv->mv_data); 4825 pci_unmask_msix(child, rid - 1); 4826 } 4827 } 4828 4829 /* 4830 * Make sure that INTx is disabled if we are using MSI/MSI-X, 4831 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG, 4832 * in which case we "enable" INTx so MSI/MSI-X actually works. 4833 */ 4834 if (!pci_has_quirk(pci_get_devid(child), 4835 PCI_QUIRK_MSI_INTX_BUG)) 4836 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4837 else 4838 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); 4839 bad: 4840 if (error) { 4841 (void)bus_generic_teardown_intr(dev, child, irq, 4842 cookie); 4843 return (error); 4844 } 4845 } 4846 *cookiep = cookie; 4847 return (0); 4848 } 4849 4850 int 4851 pci_teardown_intr(device_t dev, device_t child, struct resource *irq, 4852 void *cookie) 4853 { 4854 struct msix_table_entry *mte; 4855 struct resource_list_entry *rle; 4856 struct pci_devinfo *dinfo; 4857 int error, rid; 4858 4859 if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE)) 4860 return (EINVAL); 4861 4862 /* If this isn't a direct child, just bail out */ 4863 if (device_get_parent(child) != dev) 4864 return(bus_generic_teardown_intr(dev, child, irq, cookie)); 4865 4866 rid = rman_get_rid(irq); 4867 if (rid == 0) { 4868 /* Mask INTx */ 4869 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); 4870 } else { 4871 /* 4872 * Check to see if the interrupt is MSI or MSI-X. If so, 4873 * decrement the appropriate handlers count and mask the 4874 * MSI-X message, or disable MSI messages if the count 4875 * drops to 0. 4876 */ 4877 dinfo = device_get_ivars(child); 4878 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid); 4879 if (rle->res != irq) 4880 return (EINVAL); 4881 if (dinfo->cfg.msi.msi_alloc > 0) { 4882 KASSERT(rid <= dinfo->cfg.msi.msi_alloc, 4883 ("MSI-X index too high")); 4884 if (dinfo->cfg.msi.msi_handlers == 0) 4885 return (EINVAL); 4886 dinfo->cfg.msi.msi_handlers--; 4887 if (dinfo->cfg.msi.msi_handlers == 0) 4888 pci_disable_msi(child); 4889 } else { 4890 KASSERT(dinfo->cfg.msix.msix_alloc > 0, 4891 ("No MSI or MSI-X interrupts allocated")); 4892 KASSERT(rid <= dinfo->cfg.msix.msix_table_len, 4893 ("MSI-X index too high")); 4894 mte = &dinfo->cfg.msix.msix_table[rid - 1]; 4895 if (mte->mte_handlers == 0) 4896 return (EINVAL); 4897 mte->mte_handlers--; 4898 if (mte->mte_handlers == 0) 4899 pci_mask_msix(child, rid - 1); 4900 } 4901 } 4902 error = bus_generic_teardown_intr(dev, child, irq, cookie); 4903 if (rid > 0) 4904 KASSERT(error == 0, 4905 ("%s: generic teardown failed for MSI/MSI-X", __func__)); 4906 return (error); 4907 } 4908 4909 int 4910 pci_print_child(device_t dev, device_t child) 4911 { 4912 struct pci_devinfo *dinfo; 4913 struct resource_list *rl; 4914 int retval = 0; 4915 4916 dinfo = device_get_ivars(child); 4917 rl = &dinfo->resources; 4918 4919 retval += bus_print_child_header(dev, child); 4920 4921 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); 4922 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); 4923 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); 4924 if (device_get_flags(dev)) 4925 retval += printf(" flags %#x", device_get_flags(dev)); 4926 4927 retval += printf(" at device %d.%d", pci_get_slot(child), 4928 pci_get_function(child)); 4929 4930 retval += bus_print_child_domain(dev, child); 4931 retval += bus_print_child_footer(dev, child); 4932 4933 return (retval); 4934 } 4935 4936 static const struct 4937 { 4938 int class; 4939 int subclass; 4940 int report; /* 0 = bootverbose, 1 = always */ 4941 const char *desc; 4942 } pci_nomatch_tab[] = { 4943 {PCIC_OLD, -1, 1, "old"}, 4944 {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"}, 4945 {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"}, 4946 {PCIC_STORAGE, -1, 1, "mass storage"}, 4947 {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"}, 4948 {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"}, 4949 {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"}, 4950 {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"}, 4951 {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"}, 4952 {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"}, 4953 {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"}, 4954 {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"}, 4955 {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"}, 4956 {PCIC_NETWORK, -1, 1, "network"}, 4957 {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"}, 4958 {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"}, 4959 {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"}, 4960 {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"}, 4961 {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"}, 4962 {PCIC_DISPLAY, -1, 1, "display"}, 4963 {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"}, 4964 {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"}, 4965 {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"}, 4966 {PCIC_MULTIMEDIA, -1, 1, "multimedia"}, 4967 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"}, 4968 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"}, 4969 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"}, 4970 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"}, 4971 {PCIC_MEMORY, -1, 1, "memory"}, 4972 {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"}, 4973 {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"}, 4974 {PCIC_BRIDGE, -1, 1, "bridge"}, 4975 {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"}, 4976 {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"}, 4977 {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"}, 4978 {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"}, 4979 {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"}, 4980 {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"}, 4981 {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"}, 4982 {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"}, 4983 {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"}, 4984 {PCIC_SIMPLECOMM, -1, 1, "simple comms"}, 4985 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */ 4986 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"}, 4987 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"}, 4988 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"}, 4989 {PCIC_BASEPERIPH, -1, 0, "base peripheral"}, 4990 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"}, 4991 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"}, 4992 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"}, 4993 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"}, 4994 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"}, 4995 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"}, 4996 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"}, 4997 {PCIC_INPUTDEV, -1, 1, "input device"}, 4998 {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"}, 4999 {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"}, 5000 {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"}, 5001 {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"}, 5002 {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"}, 5003 {PCIC_DOCKING, -1, 1, "docking station"}, 5004 {PCIC_PROCESSOR, -1, 1, "processor"}, 5005 {PCIC_SERIALBUS, -1, 1, "serial bus"}, 5006 {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"}, 5007 {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"}, 5008 {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"}, 5009 {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"}, 5010 {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"}, 5011 {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"}, 5012 {PCIC_WIRELESS, -1, 1, "wireless controller"}, 5013 {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"}, 5014 {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"}, 5015 {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"}, 5016 {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"}, 5017 {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"}, 5018 {PCIC_SATCOM, -1, 1, "satellite communication"}, 5019 {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"}, 5020 {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"}, 5021 {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"}, 5022 {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"}, 5023 {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"}, 5024 {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"}, 5025 {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"}, 5026 {PCIC_DASP, -1, 0, "dasp"}, 5027 {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"}, 5028 {PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"}, 5029 {PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"}, 5030 {PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"}, 5031 {PCIC_INSTRUMENT, -1, 0, "non-essential instrumentation"}, 5032 {0, 0, 0, NULL} 5033 }; 5034 5035 void 5036 pci_probe_nomatch(device_t dev, device_t child) 5037 { 5038 int i, report; 5039 const char *cp, *scp; 5040 char *device; 5041 5042 /* 5043 * Look for a listing for this device in a loaded device database. 5044 */ 5045 report = 1; 5046 if ((device = pci_describe_device(child)) != NULL) { 5047 device_printf(dev, "<%s>", device); 5048 free(device, M_DEVBUF); 5049 } else { 5050 /* 5051 * Scan the class/subclass descriptions for a general 5052 * description. 5053 */ 5054 cp = "unknown"; 5055 scp = NULL; 5056 for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { 5057 if (pci_nomatch_tab[i].class == pci_get_class(child)) { 5058 if (pci_nomatch_tab[i].subclass == -1) { 5059 cp = pci_nomatch_tab[i].desc; 5060 report = pci_nomatch_tab[i].report; 5061 } else if (pci_nomatch_tab[i].subclass == 5062 pci_get_subclass(child)) { 5063 scp = pci_nomatch_tab[i].desc; 5064 report = pci_nomatch_tab[i].report; 5065 } 5066 } 5067 } 5068 if (report || bootverbose) { 5069 device_printf(dev, "<%s%s%s>", 5070 cp ? cp : "", 5071 ((cp != NULL) && (scp != NULL)) ? ", " : "", 5072 scp ? scp : ""); 5073 } 5074 } 5075 if (report || bootverbose) { 5076 printf(" at device %d.%d (no driver attached)\n", 5077 pci_get_slot(child), pci_get_function(child)); 5078 } 5079 pci_cfg_save(child, device_get_ivars(child), 1); 5080 } 5081 5082 void 5083 pci_child_detached(device_t dev, device_t child) 5084 { 5085 struct pci_devinfo *dinfo; 5086 struct resource_list *rl; 5087 5088 dinfo = device_get_ivars(child); 5089 rl = &dinfo->resources; 5090 5091 /* 5092 * Have to deallocate IRQs before releasing any MSI messages and 5093 * have to release MSI messages before deallocating any memory 5094 * BARs. 5095 */ 5096 if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0) 5097 pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n"); 5098 if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) { 5099 if (dinfo->cfg.msi.msi_alloc != 0) 5100 pci_printf(&dinfo->cfg, "Device leaked %d MSI " 5101 "vectors\n", dinfo->cfg.msi.msi_alloc); 5102 else 5103 pci_printf(&dinfo->cfg, "Device leaked %d MSI-X " 5104 "vectors\n", dinfo->cfg.msix.msix_alloc); 5105 (void)pci_release_msi(child); 5106 } 5107 if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0) 5108 pci_printf(&dinfo->cfg, "Device leaked memory resources\n"); 5109 if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0) 5110 pci_printf(&dinfo->cfg, "Device leaked I/O resources\n"); 5111 #ifdef PCI_RES_BUS 5112 if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0) 5113 pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n"); 5114 #endif 5115 5116 pci_cfg_save(child, dinfo, 1); 5117 } 5118 5119 /* 5120 * Parse the PCI device database, if loaded, and return a pointer to a 5121 * description of the device. 5122 * 5123 * The database is flat text formatted as follows: 5124 * 5125 * Any line not in a valid format is ignored. 5126 * Lines are terminated with newline '\n' characters. 5127 * 5128 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then 5129 * the vendor name. 5130 * 5131 * A DEVICE line is entered immediately below the corresponding VENDOR ID. 5132 * - devices cannot be listed without a corresponding VENDOR line. 5133 * A DEVICE line consists of a TAB, the 4 digit (hex) device code, 5134 * another TAB, then the device name. 5135 */ 5136 5137 /* 5138 * Assuming (ptr) points to the beginning of a line in the database, 5139 * return the vendor or device and description of the next entry. 5140 * The value of (vendor) or (device) inappropriate for the entry type 5141 * is set to -1. Returns nonzero at the end of the database. 5142 * 5143 * Note that this is slightly unrobust in the face of corrupt data; 5144 * we attempt to safeguard against this by spamming the end of the 5145 * database with a newline when we initialise. 5146 */ 5147 static int 5148 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc) 5149 { 5150 char *cp = *ptr; 5151 int left; 5152 5153 *device = -1; 5154 *vendor = -1; 5155 **desc = '\0'; 5156 for (;;) { 5157 left = pci_vendordata_size - (cp - pci_vendordata); 5158 if (left <= 0) { 5159 *ptr = cp; 5160 return(1); 5161 } 5162 5163 /* vendor entry? */ 5164 if (*cp != '\t' && 5165 sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2) 5166 break; 5167 /* device entry? */ 5168 if (*cp == '\t' && 5169 sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2) 5170 break; 5171 5172 /* skip to next line */ 5173 while (*cp != '\n' && left > 0) { 5174 cp++; 5175 left--; 5176 } 5177 if (*cp == '\n') { 5178 cp++; 5179 left--; 5180 } 5181 } 5182 /* skip to next line */ 5183 while (*cp != '\n' && left > 0) { 5184 cp++; 5185 left--; 5186 } 5187 if (*cp == '\n' && left > 0) 5188 cp++; 5189 *ptr = cp; 5190 return(0); 5191 } 5192 5193 static char * 5194 pci_describe_device(device_t dev) 5195 { 5196 int vendor, device; 5197 char *desc, *vp, *dp, *line; 5198 5199 desc = vp = dp = NULL; 5200 5201 /* 5202 * If we have no vendor data, we can't do anything. 5203 */ 5204 if (pci_vendordata == NULL) 5205 goto out; 5206 5207 /* 5208 * Scan the vendor data looking for this device 5209 */ 5210 line = pci_vendordata; 5211 if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5212 goto out; 5213 for (;;) { 5214 if (pci_describe_parse_line(&line, &vendor, &device, &vp)) 5215 goto out; 5216 if (vendor == pci_get_vendor(dev)) 5217 break; 5218 } 5219 if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) 5220 goto out; 5221 for (;;) { 5222 if (pci_describe_parse_line(&line, &vendor, &device, &dp)) { 5223 *dp = 0; 5224 break; 5225 } 5226 if (vendor != -1) { 5227 *dp = 0; 5228 break; 5229 } 5230 if (device == pci_get_device(dev)) 5231 break; 5232 } 5233 if (dp[0] == '\0') 5234 snprintf(dp, 80, "0x%x", pci_get_device(dev)); 5235 if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) != 5236 NULL) 5237 sprintf(desc, "%s, %s", vp, dp); 5238 out: 5239 if (vp != NULL) 5240 free(vp, M_DEVBUF); 5241 if (dp != NULL) 5242 free(dp, M_DEVBUF); 5243 return(desc); 5244 } 5245 5246 int 5247 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 5248 { 5249 struct pci_devinfo *dinfo; 5250 pcicfgregs *cfg; 5251 5252 dinfo = device_get_ivars(child); 5253 cfg = &dinfo->cfg; 5254 5255 switch (which) { 5256 case PCI_IVAR_ETHADDR: 5257 /* 5258 * The generic accessor doesn't deal with failure, so 5259 * we set the return value, then return an error. 5260 */ 5261 *((uint8_t **) result) = NULL; 5262 return (EINVAL); 5263 case PCI_IVAR_SUBVENDOR: 5264 *result = cfg->subvendor; 5265 break; 5266 case PCI_IVAR_SUBDEVICE: 5267 *result = cfg->subdevice; 5268 break; 5269 case PCI_IVAR_VENDOR: 5270 *result = cfg->vendor; 5271 break; 5272 case PCI_IVAR_DEVICE: 5273 *result = cfg->device; 5274 break; 5275 case PCI_IVAR_DEVID: 5276 *result = (cfg->device << 16) | cfg->vendor; 5277 break; 5278 case PCI_IVAR_CLASS: 5279 *result = cfg->baseclass; 5280 break; 5281 case PCI_IVAR_SUBCLASS: 5282 *result = cfg->subclass; 5283 break; 5284 case PCI_IVAR_PROGIF: 5285 *result = cfg->progif; 5286 break; 5287 case PCI_IVAR_REVID: 5288 *result = cfg->revid; 5289 break; 5290 case PCI_IVAR_INTPIN: 5291 *result = cfg->intpin; 5292 break; 5293 case PCI_IVAR_IRQ: 5294 *result = cfg->intline; 5295 break; 5296 case PCI_IVAR_DOMAIN: 5297 *result = cfg->domain; 5298 break; 5299 case PCI_IVAR_BUS: 5300 *result = cfg->bus; 5301 break; 5302 case PCI_IVAR_SLOT: 5303 *result = cfg->slot; 5304 break; 5305 case PCI_IVAR_FUNCTION: 5306 *result = cfg->func; 5307 break; 5308 case PCI_IVAR_CMDREG: 5309 *result = cfg->cmdreg; 5310 break; 5311 case PCI_IVAR_CACHELNSZ: 5312 *result = cfg->cachelnsz; 5313 break; 5314 case PCI_IVAR_MINGNT: 5315 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5316 *result = -1; 5317 return (EINVAL); 5318 } 5319 *result = cfg->mingnt; 5320 break; 5321 case PCI_IVAR_MAXLAT: 5322 if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { 5323 *result = -1; 5324 return (EINVAL); 5325 } 5326 *result = cfg->maxlat; 5327 break; 5328 case PCI_IVAR_LATTIMER: 5329 *result = cfg->lattimer; 5330 break; 5331 default: 5332 return (ENOENT); 5333 } 5334 return (0); 5335 } 5336 5337 int 5338 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 5339 { 5340 struct pci_devinfo *dinfo; 5341 5342 dinfo = device_get_ivars(child); 5343 5344 switch (which) { 5345 case PCI_IVAR_INTPIN: 5346 dinfo->cfg.intpin = value; 5347 return (0); 5348 case PCI_IVAR_ETHADDR: 5349 case PCI_IVAR_SUBVENDOR: 5350 case PCI_IVAR_SUBDEVICE: 5351 case PCI_IVAR_VENDOR: 5352 case PCI_IVAR_DEVICE: 5353 case PCI_IVAR_DEVID: 5354 case PCI_IVAR_CLASS: 5355 case PCI_IVAR_SUBCLASS: 5356 case PCI_IVAR_PROGIF: 5357 case PCI_IVAR_REVID: 5358 case PCI_IVAR_IRQ: 5359 case PCI_IVAR_DOMAIN: 5360 case PCI_IVAR_BUS: 5361 case PCI_IVAR_SLOT: 5362 case PCI_IVAR_FUNCTION: 5363 return (EINVAL); /* disallow for now */ 5364 5365 default: 5366 return (ENOENT); 5367 } 5368 } 5369 5370 #include "opt_ddb.h" 5371 #ifdef DDB 5372 #include <ddb/ddb.h> 5373 #include <sys/cons.h> 5374 5375 /* 5376 * List resources based on pci map registers, used for within ddb 5377 */ 5378 5379 DB_SHOW_COMMAND(pciregs, db_pci_dump) 5380 { 5381 struct pci_devinfo *dinfo; 5382 struct devlist *devlist_head; 5383 struct pci_conf *p; 5384 const char *name; 5385 int i, error, none_count; 5386 5387 none_count = 0; 5388 /* get the head of the device queue */ 5389 devlist_head = &pci_devq; 5390 5391 /* 5392 * Go through the list of devices and print out devices 5393 */ 5394 for (error = 0, i = 0, 5395 dinfo = STAILQ_FIRST(devlist_head); 5396 (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit; 5397 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) { 5398 /* Populate pd_name and pd_unit */ 5399 name = NULL; 5400 if (dinfo->cfg.dev) 5401 name = device_get_name(dinfo->cfg.dev); 5402 5403 p = &dinfo->conf; 5404 db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x " 5405 "chip=0x%08x rev=0x%02x hdr=0x%02x\n", 5406 (name && *name) ? name : "none", 5407 (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) : 5408 none_count++, 5409 p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, 5410 p->pc_sel.pc_func, (p->pc_class << 16) | 5411 (p->pc_subclass << 8) | p->pc_progif, 5412 (p->pc_subdevice << 16) | p->pc_subvendor, 5413 (p->pc_device << 16) | p->pc_vendor, 5414 p->pc_revid, p->pc_hdr); 5415 } 5416 } 5417 #endif /* DDB */ 5418 5419 struct resource * 5420 pci_reserve_map(device_t dev, device_t child, int type, int *rid, 5421 rman_res_t start, rman_res_t end, rman_res_t count, u_int num, 5422 u_int flags) 5423 { 5424 struct pci_devinfo *dinfo = device_get_ivars(child); 5425 struct resource_list *rl = &dinfo->resources; 5426 struct resource *res; 5427 struct pci_map *pm; 5428 uint16_t cmd; 5429 pci_addr_t map, testval; 5430 int mapsize; 5431 5432 res = NULL; 5433 5434 /* If rid is managed by EA, ignore it */ 5435 if (pci_ea_is_enabled(child, *rid)) 5436 goto out; 5437 5438 pm = pci_find_bar(child, *rid); 5439 if (pm != NULL) { 5440 /* This is a BAR that we failed to allocate earlier. */ 5441 mapsize = pm->pm_size; 5442 map = pm->pm_value; 5443 } else { 5444 /* 5445 * Weed out the bogons, and figure out how large the 5446 * BAR/map is. BARs that read back 0 here are bogus 5447 * and unimplemented. Note: atapci in legacy mode are 5448 * special and handled elsewhere in the code. If you 5449 * have a atapci device in legacy mode and it fails 5450 * here, that other code is broken. 5451 */ 5452 pci_read_bar(child, *rid, &map, &testval, NULL); 5453 5454 /* 5455 * Determine the size of the BAR and ignore BARs with a size 5456 * of 0. Device ROM BARs use a different mask value. 5457 */ 5458 if (PCIR_IS_BIOS(&dinfo->cfg, *rid)) 5459 mapsize = pci_romsize(testval); 5460 else 5461 mapsize = pci_mapsize(testval); 5462 if (mapsize == 0) 5463 goto out; 5464 pm = pci_add_bar(child, *rid, map, mapsize); 5465 } 5466 5467 if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) { 5468 if (type != SYS_RES_MEMORY) { 5469 if (bootverbose) 5470 device_printf(dev, 5471 "child %s requested type %d for rid %#x," 5472 " but the BAR says it is an memio\n", 5473 device_get_nameunit(child), type, *rid); 5474 goto out; 5475 } 5476 } else { 5477 if (type != SYS_RES_IOPORT) { 5478 if (bootverbose) 5479 device_printf(dev, 5480 "child %s requested type %d for rid %#x," 5481 " but the BAR says it is an ioport\n", 5482 device_get_nameunit(child), type, *rid); 5483 goto out; 5484 } 5485 } 5486 5487 /* 5488 * For real BARs, we need to override the size that 5489 * the driver requests, because that's what the BAR 5490 * actually uses and we would otherwise have a 5491 * situation where we might allocate the excess to 5492 * another driver, which won't work. 5493 */ 5494 count = ((pci_addr_t)1 << mapsize) * num; 5495 if (RF_ALIGNMENT(flags) < mapsize) 5496 flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize); 5497 if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH)) 5498 flags |= RF_PREFETCHABLE; 5499 5500 /* 5501 * Allocate enough resource, and then write back the 5502 * appropriate BAR for that resource. 5503 */ 5504 resource_list_add(rl, type, *rid, start, end, count); 5505 res = resource_list_reserve(rl, dev, child, type, rid, start, end, 5506 count, flags & ~RF_ACTIVE); 5507 if (res == NULL) { 5508 resource_list_delete(rl, type, *rid); 5509 device_printf(child, 5510 "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n", 5511 count, *rid, type, start, end); 5512 goto out; 5513 } 5514 if (bootverbose) 5515 device_printf(child, 5516 "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n", 5517 count, *rid, type, rman_get_start(res)); 5518 5519 /* Disable decoding via the CMD register before updating the BAR */ 5520 cmd = pci_read_config(child, PCIR_COMMAND, 2); 5521 pci_write_config(child, PCIR_COMMAND, 5522 cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); 5523 5524 map = rman_get_start(res); 5525 pci_write_bar(child, pm, map); 5526 5527 /* Restore the original value of the CMD register */ 5528 pci_write_config(child, PCIR_COMMAND, cmd, 2); 5529 out: 5530 return (res); 5531 } 5532 5533 struct resource * 5534 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid, 5535 rman_res_t start, rman_res_t end, rman_res_t count, u_long num, 5536 u_int flags) 5537 { 5538 struct pci_devinfo *dinfo; 5539 struct resource_list *rl; 5540 struct resource_list_entry *rle; 5541 struct resource *res; 5542 pcicfgregs *cfg; 5543 5544 /* 5545 * Perform lazy resource allocation 5546 */ 5547 dinfo = device_get_ivars(child); 5548 rl = &dinfo->resources; 5549 cfg = &dinfo->cfg; 5550 switch (type) { 5551 #if defined(NEW_PCIB) && defined(PCI_RES_BUS) 5552 case PCI_RES_BUS: 5553 return (pci_alloc_secbus(dev, child, rid, start, end, count, 5554 flags)); 5555 #endif 5556 case SYS_RES_IRQ: 5557 /* 5558 * Can't alloc legacy interrupt once MSI messages have 5559 * been allocated. 5560 */ 5561 if (*rid == 0 && (cfg->msi.msi_alloc > 0 || 5562 cfg->msix.msix_alloc > 0)) 5563 return (NULL); 5564 5565 /* 5566 * If the child device doesn't have an interrupt 5567 * routed and is deserving of an interrupt, try to 5568 * assign it one. 5569 */ 5570 if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) && 5571 (cfg->intpin != 0)) 5572 pci_assign_interrupt(dev, child, 0); 5573 break; 5574 case SYS_RES_IOPORT: 5575 case SYS_RES_MEMORY: 5576 #ifdef NEW_PCIB 5577 /* 5578 * PCI-PCI bridge I/O window resources are not BARs. 5579 * For those allocations just pass the request up the 5580 * tree. 5581 */ 5582 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) { 5583 switch (*rid) { 5584 case PCIR_IOBASEL_1: 5585 case PCIR_MEMBASE_1: 5586 case PCIR_PMBASEL_1: 5587 /* 5588 * XXX: Should we bother creating a resource 5589 * list entry? 5590 */ 5591 return (bus_generic_alloc_resource(dev, child, 5592 type, rid, start, end, count, flags)); 5593 } 5594 } 5595 #endif 5596 /* Reserve resources for this BAR if needed. */ 5597 rle = resource_list_find(rl, type, *rid); 5598 if (rle == NULL) { 5599 res = pci_reserve_map(dev, child, type, rid, start, end, 5600 count, num, flags); 5601 if (res == NULL) 5602 return (NULL); 5603 } 5604 } 5605 return (resource_list_alloc(rl, dev, child, type, rid, 5606 start, end, count, flags)); 5607 } 5608 5609 struct resource * 5610 pci_alloc_resource(device_t dev, device_t child, int type, int *rid, 5611 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 5612 { 5613 #ifdef PCI_IOV 5614 struct pci_devinfo *dinfo; 5615 #endif 5616 5617 if (device_get_parent(child) != dev) 5618 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, 5619 type, rid, start, end, count, flags)); 5620 5621 #ifdef PCI_IOV 5622 dinfo = device_get_ivars(child); 5623 if (dinfo->cfg.flags & PCICFG_VF) { 5624 switch (type) { 5625 /* VFs can't have I/O BARs. */ 5626 case SYS_RES_IOPORT: 5627 return (NULL); 5628 case SYS_RES_MEMORY: 5629 return (pci_vf_alloc_mem_resource(dev, child, rid, 5630 start, end, count, flags)); 5631 } 5632 5633 /* Fall through for other types of resource allocations. */ 5634 } 5635 #endif 5636 5637 return (pci_alloc_multi_resource(dev, child, type, rid, start, end, 5638 count, 1, flags)); 5639 } 5640 5641 int 5642 pci_release_resource(device_t dev, device_t child, int type, int rid, 5643 struct resource *r) 5644 { 5645 struct pci_devinfo *dinfo; 5646 struct resource_list *rl; 5647 pcicfgregs *cfg __unused; 5648 5649 if (device_get_parent(child) != dev) 5650 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, 5651 type, rid, r)); 5652 5653 dinfo = device_get_ivars(child); 5654 cfg = &dinfo->cfg; 5655 5656 #ifdef PCI_IOV 5657 if (cfg->flags & PCICFG_VF) { 5658 switch (type) { 5659 /* VFs can't have I/O BARs. */ 5660 case SYS_RES_IOPORT: 5661 return (EDOOFUS); 5662 case SYS_RES_MEMORY: 5663 return (pci_vf_release_mem_resource(dev, child, rid, 5664 r)); 5665 } 5666 5667 /* Fall through for other types of resource allocations. */ 5668 } 5669 #endif 5670 5671 #ifdef NEW_PCIB 5672 /* 5673 * PCI-PCI bridge I/O window resources are not BARs. For 5674 * those allocations just pass the request up the tree. 5675 */ 5676 if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE && 5677 (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) { 5678 switch (rid) { 5679 case PCIR_IOBASEL_1: 5680 case PCIR_MEMBASE_1: 5681 case PCIR_PMBASEL_1: 5682 return (bus_generic_release_resource(dev, child, type, 5683 rid, r)); 5684 } 5685 } 5686 #endif 5687 5688 rl = &dinfo->resources; 5689 return (resource_list_release(rl, dev, child, type, rid, r)); 5690 } 5691 5692 int 5693 pci_activate_resource(device_t dev, device_t child, int type, int rid, 5694 struct resource *r) 5695 { 5696 struct pci_devinfo *dinfo; 5697 int error; 5698 5699 error = bus_generic_activate_resource(dev, child, type, rid, r); 5700 if (error) 5701 return (error); 5702 5703 /* Enable decoding in the command register when activating BARs. */ 5704 if (device_get_parent(child) == dev) { 5705 /* Device ROMs need their decoding explicitly enabled. */ 5706 dinfo = device_get_ivars(child); 5707 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5708 pci_write_bar(child, pci_find_bar(child, rid), 5709 rman_get_start(r) | PCIM_BIOS_ENABLE); 5710 switch (type) { 5711 case SYS_RES_IOPORT: 5712 case SYS_RES_MEMORY: 5713 error = PCI_ENABLE_IO(dev, child, type); 5714 break; 5715 } 5716 } 5717 return (error); 5718 } 5719 5720 int 5721 pci_deactivate_resource(device_t dev, device_t child, int type, 5722 int rid, struct resource *r) 5723 { 5724 struct pci_devinfo *dinfo; 5725 int error; 5726 5727 error = bus_generic_deactivate_resource(dev, child, type, rid, r); 5728 if (error) 5729 return (error); 5730 5731 /* Disable decoding for device ROMs. */ 5732 if (device_get_parent(child) == dev) { 5733 dinfo = device_get_ivars(child); 5734 if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) 5735 pci_write_bar(child, pci_find_bar(child, rid), 5736 rman_get_start(r)); 5737 } 5738 return (0); 5739 } 5740 5741 void 5742 pci_child_deleted(device_t dev, device_t child) 5743 { 5744 struct resource_list_entry *rle; 5745 struct resource_list *rl; 5746 struct pci_devinfo *dinfo; 5747 5748 dinfo = device_get_ivars(child); 5749 rl = &dinfo->resources; 5750 5751 EVENTHANDLER_INVOKE(pci_delete_device, child); 5752 5753 /* Turn off access to resources we're about to free */ 5754 if (bus_child_present(child) != 0) { 5755 pci_write_config(child, PCIR_COMMAND, pci_read_config(child, 5756 PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2); 5757 5758 pci_disable_busmaster(child); 5759 } 5760 5761 /* Free all allocated resources */ 5762 STAILQ_FOREACH(rle, rl, link) { 5763 if (rle->res) { 5764 if (rman_get_flags(rle->res) & RF_ACTIVE || 5765 resource_list_busy(rl, rle->type, rle->rid)) { 5766 pci_printf(&dinfo->cfg, 5767 "Resource still owned, oops. " 5768 "(type=%d, rid=%d, addr=%lx)\n", 5769 rle->type, rle->rid, 5770 rman_get_start(rle->res)); 5771 bus_release_resource(child, rle->type, rle->rid, 5772 rle->res); 5773 } 5774 resource_list_unreserve(rl, dev, child, rle->type, 5775 rle->rid); 5776 } 5777 } 5778 resource_list_free(rl); 5779 5780 pci_freecfg(dinfo); 5781 } 5782 5783 void 5784 pci_delete_resource(device_t dev, device_t child, int type, int rid) 5785 { 5786 struct pci_devinfo *dinfo; 5787 struct resource_list *rl; 5788 struct resource_list_entry *rle; 5789 5790 if (device_get_parent(child) != dev) 5791 return; 5792 5793 dinfo = device_get_ivars(child); 5794 rl = &dinfo->resources; 5795 rle = resource_list_find(rl, type, rid); 5796 if (rle == NULL) 5797 return; 5798 5799 if (rle->res) { 5800 if (rman_get_flags(rle->res) & RF_ACTIVE || 5801 resource_list_busy(rl, type, rid)) { 5802 device_printf(dev, "delete_resource: " 5803 "Resource still owned by child, oops. " 5804 "(type=%d, rid=%d, addr=%jx)\n", 5805 type, rid, rman_get_start(rle->res)); 5806 return; 5807 } 5808 resource_list_unreserve(rl, dev, child, type, rid); 5809 } 5810 resource_list_delete(rl, type, rid); 5811 } 5812 5813 struct resource_list * 5814 pci_get_resource_list (device_t dev, device_t child) 5815 { 5816 struct pci_devinfo *dinfo = device_get_ivars(child); 5817 5818 return (&dinfo->resources); 5819 } 5820 5821 #ifdef IOMMU 5822 bus_dma_tag_t 5823 pci_get_dma_tag(device_t bus, device_t dev) 5824 { 5825 bus_dma_tag_t tag; 5826 struct pci_softc *sc; 5827 5828 if (device_get_parent(dev) == bus) { 5829 /* try iommu and return if it works */ 5830 tag = iommu_get_dma_tag(bus, dev); 5831 } else 5832 tag = NULL; 5833 if (tag == NULL) { 5834 sc = device_get_softc(bus); 5835 tag = sc->sc_dma_tag; 5836 } 5837 return (tag); 5838 } 5839 #else 5840 bus_dma_tag_t 5841 pci_get_dma_tag(device_t bus, device_t dev) 5842 { 5843 struct pci_softc *sc = device_get_softc(bus); 5844 5845 return (sc->sc_dma_tag); 5846 } 5847 #endif 5848 5849 uint32_t 5850 pci_read_config_method(device_t dev, device_t child, int reg, int width) 5851 { 5852 struct pci_devinfo *dinfo = device_get_ivars(child); 5853 pcicfgregs *cfg = &dinfo->cfg; 5854 5855 #ifdef PCI_IOV 5856 /* 5857 * SR-IOV VFs don't implement the VID or DID registers, so we have to 5858 * emulate them here. 5859 */ 5860 if (cfg->flags & PCICFG_VF) { 5861 if (reg == PCIR_VENDOR) { 5862 switch (width) { 5863 case 4: 5864 return (cfg->device << 16 | cfg->vendor); 5865 case 2: 5866 return (cfg->vendor); 5867 case 1: 5868 return (cfg->vendor & 0xff); 5869 default: 5870 return (0xffffffff); 5871 } 5872 } else if (reg == PCIR_DEVICE) { 5873 switch (width) { 5874 /* Note that an unaligned 4-byte read is an error. */ 5875 case 2: 5876 return (cfg->device); 5877 case 1: 5878 return (cfg->device & 0xff); 5879 default: 5880 return (0xffffffff); 5881 } 5882 } 5883 } 5884 #endif 5885 5886 return (PCIB_READ_CONFIG(device_get_parent(dev), 5887 cfg->bus, cfg->slot, cfg->func, reg, width)); 5888 } 5889 5890 void 5891 pci_write_config_method(device_t dev, device_t child, int reg, 5892 uint32_t val, int width) 5893 { 5894 struct pci_devinfo *dinfo = device_get_ivars(child); 5895 pcicfgregs *cfg = &dinfo->cfg; 5896 5897 PCIB_WRITE_CONFIG(device_get_parent(dev), 5898 cfg->bus, cfg->slot, cfg->func, reg, val, width); 5899 } 5900 5901 int 5902 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb) 5903 { 5904 5905 sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d", 5906 pci_get_slot(child), pci_get_function(child), pci_get_domain(child), 5907 pci_get_bus(child), pci_get_slot(child), pci_get_function(child)); 5908 return (0); 5909 } 5910 5911 int 5912 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb) 5913 { 5914 struct pci_devinfo *dinfo; 5915 pcicfgregs *cfg; 5916 5917 dinfo = device_get_ivars(child); 5918 cfg = &dinfo->cfg; 5919 sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x " 5920 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device, 5921 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass, 5922 cfg->progif); 5923 return (0); 5924 } 5925 5926 int 5927 pci_get_device_path_method(device_t bus, device_t child, const char *locator, 5928 struct sbuf *sb) 5929 { 5930 device_t parent = device_get_parent(bus); 5931 int rv; 5932 5933 if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) { 5934 rv = bus_generic_get_device_path(parent, bus, locator, sb); 5935 if (rv == 0) { 5936 sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child), 5937 pci_get_function(child)); 5938 } 5939 return (0); 5940 } 5941 return (bus_generic_get_device_path(bus, child, locator, sb)); 5942 } 5943 5944 int 5945 pci_assign_interrupt_method(device_t dev, device_t child) 5946 { 5947 struct pci_devinfo *dinfo = device_get_ivars(child); 5948 pcicfgregs *cfg = &dinfo->cfg; 5949 5950 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, 5951 cfg->intpin)); 5952 } 5953 5954 static void 5955 pci_lookup(void *arg, const char *name, device_t *dev) 5956 { 5957 long val; 5958 char *end; 5959 int domain, bus, slot, func; 5960 5961 if (*dev != NULL) 5962 return; 5963 5964 /* 5965 * Accept pciconf-style selectors of either pciD:B:S:F or 5966 * pciB:S:F. In the latter case, the domain is assumed to 5967 * be zero. 5968 */ 5969 if (strncmp(name, "pci", 3) != 0) 5970 return; 5971 val = strtol(name + 3, &end, 10); 5972 if (val < 0 || val > INT_MAX || *end != ':') 5973 return; 5974 domain = val; 5975 val = strtol(end + 1, &end, 10); 5976 if (val < 0 || val > INT_MAX || *end != ':') 5977 return; 5978 bus = val; 5979 val = strtol(end + 1, &end, 10); 5980 if (val < 0 || val > INT_MAX) 5981 return; 5982 slot = val; 5983 if (*end == ':') { 5984 val = strtol(end + 1, &end, 10); 5985 if (val < 0 || val > INT_MAX || *end != '\0') 5986 return; 5987 func = val; 5988 } else if (*end == '\0') { 5989 func = slot; 5990 slot = bus; 5991 bus = domain; 5992 domain = 0; 5993 } else 5994 return; 5995 5996 if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX || 5997 func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX)) 5998 return; 5999 6000 *dev = pci_find_dbsf(domain, bus, slot, func); 6001 } 6002 6003 static int 6004 pci_modevent(module_t mod, int what, void *arg) 6005 { 6006 static struct cdev *pci_cdev; 6007 static eventhandler_tag tag; 6008 6009 switch (what) { 6010 case MOD_LOAD: 6011 STAILQ_INIT(&pci_devq); 6012 pci_generation = 0; 6013 pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644, 6014 "pci"); 6015 pci_load_vendor_data(); 6016 tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL, 6017 1000); 6018 break; 6019 6020 case MOD_UNLOAD: 6021 if (tag != NULL) 6022 EVENTHANDLER_DEREGISTER(dev_lookup, tag); 6023 destroy_dev(pci_cdev); 6024 break; 6025 } 6026 6027 return (0); 6028 } 6029 6030 static void 6031 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo) 6032 { 6033 #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2) 6034 struct pcicfg_pcie *cfg; 6035 int version, pos; 6036 6037 cfg = &dinfo->cfg.pcie; 6038 pos = cfg->pcie_location; 6039 6040 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 6041 6042 WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl); 6043 6044 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6045 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 6046 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 6047 WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl); 6048 6049 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6050 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 6051 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 6052 WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl); 6053 6054 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6055 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 6056 WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl); 6057 6058 if (version > 1) { 6059 WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2); 6060 WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2); 6061 WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2); 6062 } 6063 #undef WREG 6064 } 6065 6066 static void 6067 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo) 6068 { 6069 pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 6070 dinfo->cfg.pcix.pcix_command, 2); 6071 } 6072 6073 void 6074 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo) 6075 { 6076 6077 /* 6078 * Restore the device to full power mode. We must do this 6079 * before we restore the registers because moving from D3 to 6080 * D0 will cause the chip's BARs and some other registers to 6081 * be reset to some unknown power on reset values. Cut down 6082 * the noise on boot by doing nothing if we are already in 6083 * state D0. 6084 */ 6085 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) 6086 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6087 pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1); 6088 pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1); 6089 pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1); 6090 pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1); 6091 pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1); 6092 pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1); 6093 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 6094 case PCIM_HDRTYPE_NORMAL: 6095 pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); 6096 pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); 6097 break; 6098 case PCIM_HDRTYPE_BRIDGE: 6099 pci_write_config(dev, PCIR_SECLAT_1, 6100 dinfo->cfg.bridge.br_seclat, 1); 6101 pci_write_config(dev, PCIR_SUBBUS_1, 6102 dinfo->cfg.bridge.br_subbus, 1); 6103 pci_write_config(dev, PCIR_SECBUS_1, 6104 dinfo->cfg.bridge.br_secbus, 1); 6105 pci_write_config(dev, PCIR_PRIBUS_1, 6106 dinfo->cfg.bridge.br_pribus, 1); 6107 pci_write_config(dev, PCIR_BRIDGECTL_1, 6108 dinfo->cfg.bridge.br_control, 2); 6109 break; 6110 case PCIM_HDRTYPE_CARDBUS: 6111 pci_write_config(dev, PCIR_SECLAT_2, 6112 dinfo->cfg.bridge.br_seclat, 1); 6113 pci_write_config(dev, PCIR_SUBBUS_2, 6114 dinfo->cfg.bridge.br_subbus, 1); 6115 pci_write_config(dev, PCIR_SECBUS_2, 6116 dinfo->cfg.bridge.br_secbus, 1); 6117 pci_write_config(dev, PCIR_PRIBUS_2, 6118 dinfo->cfg.bridge.br_pribus, 1); 6119 pci_write_config(dev, PCIR_BRIDGECTL_2, 6120 dinfo->cfg.bridge.br_control, 2); 6121 break; 6122 } 6123 pci_restore_bars(dev); 6124 6125 if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE) 6126 pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2); 6127 6128 /* 6129 * Restore extended capabilities for PCI-Express and PCI-X 6130 */ 6131 if (dinfo->cfg.pcie.pcie_location != 0) 6132 pci_cfg_restore_pcie(dev, dinfo); 6133 if (dinfo->cfg.pcix.pcix_location != 0) 6134 pci_cfg_restore_pcix(dev, dinfo); 6135 6136 /* Restore MSI and MSI-X configurations if they are present. */ 6137 if (dinfo->cfg.msi.msi_location != 0) 6138 pci_resume_msi(dev); 6139 if (dinfo->cfg.msix.msix_location != 0) 6140 pci_resume_msix(dev); 6141 6142 #ifdef PCI_IOV 6143 if (dinfo->cfg.iov != NULL) 6144 pci_iov_cfg_restore(dev, dinfo); 6145 #endif 6146 } 6147 6148 static void 6149 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo) 6150 { 6151 #define RREG(n) pci_read_config(dev, pos + (n), 2) 6152 struct pcicfg_pcie *cfg; 6153 int version, pos; 6154 6155 cfg = &dinfo->cfg.pcie; 6156 pos = cfg->pcie_location; 6157 6158 cfg->pcie_flags = RREG(PCIER_FLAGS); 6159 6160 version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; 6161 6162 cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL); 6163 6164 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6165 cfg->pcie_type == PCIEM_TYPE_ENDPOINT || 6166 cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) 6167 cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL); 6168 6169 if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6170 (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && 6171 (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) 6172 cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL); 6173 6174 if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || 6175 cfg->pcie_type == PCIEM_TYPE_ROOT_EC) 6176 cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL); 6177 6178 if (version > 1) { 6179 cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2); 6180 cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2); 6181 cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2); 6182 } 6183 #undef RREG 6184 } 6185 6186 static void 6187 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo) 6188 { 6189 dinfo->cfg.pcix.pcix_command = pci_read_config(dev, 6190 dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2); 6191 } 6192 6193 void 6194 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate) 6195 { 6196 uint32_t cls; 6197 int ps; 6198 6199 /* 6200 * Some drivers apparently write to these registers w/o updating our 6201 * cached copy. No harm happens if we update the copy, so do so here 6202 * so we can restore them. The COMMAND register is modified by the 6203 * bus w/o updating the cache. This should represent the normally 6204 * writable portion of the 'defined' part of type 0/1/2 headers. 6205 */ 6206 dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2); 6207 dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2); 6208 dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2); 6209 dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1); 6210 dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1); 6211 dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); 6212 dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); 6213 dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1); 6214 dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1); 6215 dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1); 6216 dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1); 6217 switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { 6218 case PCIM_HDRTYPE_NORMAL: 6219 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); 6220 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); 6221 dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); 6222 dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); 6223 break; 6224 case PCIM_HDRTYPE_BRIDGE: 6225 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6226 PCIR_SECLAT_1, 1); 6227 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6228 PCIR_SUBBUS_1, 1); 6229 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6230 PCIR_SECBUS_1, 1); 6231 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6232 PCIR_PRIBUS_1, 1); 6233 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6234 PCIR_BRIDGECTL_1, 2); 6235 break; 6236 case PCIM_HDRTYPE_CARDBUS: 6237 dinfo->cfg.bridge.br_seclat = pci_read_config(dev, 6238 PCIR_SECLAT_2, 1); 6239 dinfo->cfg.bridge.br_subbus = pci_read_config(dev, 6240 PCIR_SUBBUS_2, 1); 6241 dinfo->cfg.bridge.br_secbus = pci_read_config(dev, 6242 PCIR_SECBUS_2, 1); 6243 dinfo->cfg.bridge.br_pribus = pci_read_config(dev, 6244 PCIR_PRIBUS_2, 1); 6245 dinfo->cfg.bridge.br_control = pci_read_config(dev, 6246 PCIR_BRIDGECTL_2, 2); 6247 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2); 6248 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2); 6249 break; 6250 } 6251 6252 if (dinfo->cfg.pcie.pcie_location != 0) 6253 pci_cfg_save_pcie(dev, dinfo); 6254 6255 if (dinfo->cfg.pcix.pcix_location != 0) 6256 pci_cfg_save_pcix(dev, dinfo); 6257 6258 #ifdef PCI_IOV 6259 if (dinfo->cfg.iov != NULL) 6260 pci_iov_cfg_save(dev, dinfo); 6261 #endif 6262 6263 /* 6264 * don't set the state for display devices, base peripherals and 6265 * memory devices since bad things happen when they are powered down. 6266 * We should (a) have drivers that can easily detach and (b) use 6267 * generic drivers for these devices so that some device actually 6268 * attaches. We need to make sure that when we implement (a) we don't 6269 * power the device down on a reattach. 6270 */ 6271 cls = pci_get_class(dev); 6272 if (!setstate) 6273 return; 6274 switch (pci_do_power_nodriver) 6275 { 6276 case 0: /* NO powerdown at all */ 6277 return; 6278 case 1: /* Conservative about what to power down */ 6279 if (cls == PCIC_STORAGE) 6280 return; 6281 /*FALLTHROUGH*/ 6282 case 2: /* Aggressive about what to power down */ 6283 if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY || 6284 cls == PCIC_BASEPERIPH) 6285 return; 6286 /*FALLTHROUGH*/ 6287 case 3: /* Power down everything */ 6288 break; 6289 } 6290 /* 6291 * PCI spec says we can only go into D3 state from D0 state. 6292 * Transition from D[12] into D0 before going to D3 state. 6293 */ 6294 ps = pci_get_powerstate(dev); 6295 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6296 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6297 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3) 6298 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6299 } 6300 6301 /* Wrapper APIs suitable for device driver use. */ 6302 void 6303 pci_save_state(device_t dev) 6304 { 6305 struct pci_devinfo *dinfo; 6306 6307 dinfo = device_get_ivars(dev); 6308 pci_cfg_save(dev, dinfo, 0); 6309 } 6310 6311 void 6312 pci_restore_state(device_t dev) 6313 { 6314 struct pci_devinfo *dinfo; 6315 6316 dinfo = device_get_ivars(dev); 6317 pci_cfg_restore(dev, dinfo); 6318 } 6319 6320 static int 6321 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type, 6322 uintptr_t *id) 6323 { 6324 6325 return (PCIB_GET_ID(device_get_parent(dev), child, type, id)); 6326 } 6327 6328 /* Find the upstream port of a given PCI device in a root complex. */ 6329 device_t 6330 pci_find_pcie_root_port(device_t dev) 6331 { 6332 struct pci_devinfo *dinfo; 6333 devclass_t pci_class; 6334 device_t pcib, bus; 6335 6336 pci_class = devclass_find("pci"); 6337 KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class, 6338 ("%s: non-pci device %s", __func__, device_get_nameunit(dev))); 6339 6340 /* 6341 * Walk the bridge hierarchy until we find a PCI-e root 6342 * port or a non-PCI device. 6343 */ 6344 for (;;) { 6345 bus = device_get_parent(dev); 6346 KASSERT(bus != NULL, ("%s: null parent of %s", __func__, 6347 device_get_nameunit(dev))); 6348 6349 pcib = device_get_parent(bus); 6350 KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__, 6351 device_get_nameunit(bus))); 6352 6353 /* 6354 * pcib's parent must be a PCI bus for this to be a 6355 * PCI-PCI bridge. 6356 */ 6357 if (device_get_devclass(device_get_parent(pcib)) != pci_class) 6358 return (NULL); 6359 6360 dinfo = device_get_ivars(pcib); 6361 if (dinfo->cfg.pcie.pcie_location != 0 && 6362 dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) 6363 return (pcib); 6364 6365 dev = pcib; 6366 } 6367 } 6368 6369 /* 6370 * Wait for pending transactions to complete on a PCI-express function. 6371 * 6372 * The maximum delay is specified in milliseconds in max_delay. Note 6373 * that this function may sleep. 6374 * 6375 * Returns true if the function is idle and false if the timeout is 6376 * exceeded. If dev is not a PCI-express function, this returns true. 6377 */ 6378 bool 6379 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay) 6380 { 6381 struct pci_devinfo *dinfo = device_get_ivars(dev); 6382 uint16_t sta; 6383 int cap; 6384 6385 cap = dinfo->cfg.pcie.pcie_location; 6386 if (cap == 0) 6387 return (true); 6388 6389 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6390 while (sta & PCIEM_STA_TRANSACTION_PND) { 6391 if (max_delay == 0) 6392 return (false); 6393 6394 /* Poll once every 100 milliseconds up to the timeout. */ 6395 if (max_delay > 100) { 6396 pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK); 6397 max_delay -= 100; 6398 } else { 6399 pause_sbt("pcietp", max_delay * SBT_1MS, 0, 6400 C_HARDCLOCK); 6401 max_delay = 0; 6402 } 6403 sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); 6404 } 6405 6406 return (true); 6407 } 6408 6409 /* 6410 * Determine the maximum Completion Timeout in microseconds. 6411 * 6412 * For non-PCI-express functions this returns 0. 6413 */ 6414 int 6415 pcie_get_max_completion_timeout(device_t dev) 6416 { 6417 struct pci_devinfo *dinfo = device_get_ivars(dev); 6418 int cap; 6419 6420 cap = dinfo->cfg.pcie.pcie_location; 6421 if (cap == 0) 6422 return (0); 6423 6424 /* 6425 * Functions using the 1.x spec use the default timeout range of 6426 * 50 microseconds to 50 milliseconds. Functions that do not 6427 * support programmable timeouts also use this range. 6428 */ 6429 if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 || 6430 (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) & 6431 PCIEM_CAP2_COMP_TIMO_RANGES) == 0) 6432 return (50 * 1000); 6433 6434 switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) & 6435 PCIEM_CTL2_COMP_TIMO_VAL) { 6436 case PCIEM_CTL2_COMP_TIMO_100US: 6437 return (100); 6438 case PCIEM_CTL2_COMP_TIMO_10MS: 6439 return (10 * 1000); 6440 case PCIEM_CTL2_COMP_TIMO_55MS: 6441 return (55 * 1000); 6442 case PCIEM_CTL2_COMP_TIMO_210MS: 6443 return (210 * 1000); 6444 case PCIEM_CTL2_COMP_TIMO_900MS: 6445 return (900 * 1000); 6446 case PCIEM_CTL2_COMP_TIMO_3500MS: 6447 return (3500 * 1000); 6448 case PCIEM_CTL2_COMP_TIMO_13S: 6449 return (13 * 1000 * 1000); 6450 case PCIEM_CTL2_COMP_TIMO_64S: 6451 return (64 * 1000 * 1000); 6452 default: 6453 return (50 * 1000); 6454 } 6455 } 6456 6457 void 6458 pcie_apei_error(device_t dev, int sev, uint8_t *aerp) 6459 { 6460 struct pci_devinfo *dinfo = device_get_ivars(dev); 6461 const char *s; 6462 int aer; 6463 uint32_t r, r1; 6464 uint16_t rs; 6465 6466 if (sev == PCIEM_STA_CORRECTABLE_ERROR) 6467 s = "Correctable"; 6468 else if (sev == PCIEM_STA_NON_FATAL_ERROR) 6469 s = "Uncorrectable (Non-Fatal)"; 6470 else 6471 s = "Uncorrectable (Fatal)"; 6472 device_printf(dev, "%s PCIe error reported by APEI\n", s); 6473 if (aerp) { 6474 if (sev == PCIEM_STA_CORRECTABLE_ERROR) { 6475 r = le32dec(aerp + PCIR_AER_COR_STATUS); 6476 r1 = le32dec(aerp + PCIR_AER_COR_MASK); 6477 } else { 6478 r = le32dec(aerp + PCIR_AER_UC_STATUS); 6479 r1 = le32dec(aerp + PCIR_AER_UC_MASK); 6480 } 6481 device_printf(dev, "status 0x%08x mask 0x%08x", r, r1); 6482 if (sev != PCIEM_STA_CORRECTABLE_ERROR) { 6483 r = le32dec(aerp + PCIR_AER_UC_SEVERITY); 6484 rs = le16dec(aerp + PCIR_AER_CAP_CONTROL); 6485 printf(" severity 0x%08x first %d\n", 6486 r, rs & 0x1f); 6487 } else 6488 printf("\n"); 6489 } 6490 6491 /* As kind of recovery just report and clear the error statuses. */ 6492 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6493 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6494 if (r != 0) { 6495 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6496 device_printf(dev, "Clearing UC AER errors 0x%08x\n", r); 6497 } 6498 6499 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6500 if (r != 0) { 6501 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6502 device_printf(dev, "Clearing COR AER errors 0x%08x\n", r); 6503 } 6504 } 6505 if (dinfo->cfg.pcie.pcie_location != 0) { 6506 rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6507 PCIER_DEVICE_STA, 2); 6508 if ((rs & (PCIEM_STA_CORRECTABLE_ERROR | 6509 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6510 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6511 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6512 PCIER_DEVICE_STA, rs, 2); 6513 device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs); 6514 } 6515 } 6516 } 6517 6518 /* 6519 * Perform a Function Level Reset (FLR) on a device. 6520 * 6521 * This function first waits for any pending transactions to complete 6522 * within the timeout specified by max_delay. If transactions are 6523 * still pending, the function will return false without attempting a 6524 * reset. 6525 * 6526 * If dev is not a PCI-express function or does not support FLR, this 6527 * function returns false. 6528 * 6529 * Note that no registers are saved or restored. The caller is 6530 * responsible for saving and restoring any registers including 6531 * PCI-standard registers via pci_save_state() and 6532 * pci_restore_state(). 6533 */ 6534 bool 6535 pcie_flr(device_t dev, u_int max_delay, bool force) 6536 { 6537 struct pci_devinfo *dinfo = device_get_ivars(dev); 6538 uint16_t cmd, ctl; 6539 int compl_delay; 6540 int cap; 6541 6542 cap = dinfo->cfg.pcie.pcie_location; 6543 if (cap == 0) 6544 return (false); 6545 6546 if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR)) 6547 return (false); 6548 6549 /* 6550 * Disable busmastering to prevent generation of new 6551 * transactions while waiting for the device to go idle. If 6552 * the idle timeout fails, the command register is restored 6553 * which will re-enable busmastering. 6554 */ 6555 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 6556 pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2); 6557 if (!pcie_wait_for_pending_transactions(dev, max_delay)) { 6558 if (!force) { 6559 pci_write_config(dev, PCIR_COMMAND, cmd, 2); 6560 return (false); 6561 } 6562 pci_printf(&dinfo->cfg, 6563 "Resetting with transactions pending after %d ms\n", 6564 max_delay); 6565 6566 /* 6567 * Extend the post-FLR delay to cover the maximum 6568 * Completion Timeout delay of anything in flight 6569 * during the FLR delay. Enforce a minimum delay of 6570 * at least 10ms. 6571 */ 6572 compl_delay = pcie_get_max_completion_timeout(dev) / 1000; 6573 if (compl_delay < 10) 6574 compl_delay = 10; 6575 } else 6576 compl_delay = 0; 6577 6578 /* Initiate the reset. */ 6579 ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); 6580 pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl | 6581 PCIEM_CTL_INITIATE_FLR, 2); 6582 6583 /* Wait for 100ms. */ 6584 pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK); 6585 6586 if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) & 6587 PCIEM_STA_TRANSACTION_PND) 6588 pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n"); 6589 return (true); 6590 } 6591 6592 /* 6593 * Attempt a power-management reset by cycling the device in/out of D3 6594 * state. PCI spec says we can only go into D3 state from D0 state. 6595 * Transition from D[12] into D0 before going to D3 state. 6596 */ 6597 int 6598 pci_power_reset(device_t dev) 6599 { 6600 int ps; 6601 6602 ps = pci_get_powerstate(dev); 6603 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) 6604 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 6605 pci_set_powerstate(dev, PCI_POWERSTATE_D3); 6606 pci_set_powerstate(dev, ps); 6607 return (0); 6608 } 6609 6610 /* 6611 * Try link drop and retrain of the downstream port of upstream 6612 * switch, for PCIe. According to the PCIe 3.0 spec 6.6.1, this must 6613 * cause Conventional Hot reset of the device in the slot. 6614 * Alternative, for PCIe, could be the secondary bus reset initiatied 6615 * on the upstream switch PCIR_BRIDGECTL_1, bit 6. 6616 */ 6617 int 6618 pcie_link_reset(device_t port, int pcie_location) 6619 { 6620 uint16_t v; 6621 6622 v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2); 6623 v |= PCIEM_LINK_CTL_LINK_DIS; 6624 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6625 pause_sbt("pcier1", mstosbt(20), 0, 0); 6626 v &= ~PCIEM_LINK_CTL_LINK_DIS; 6627 v |= PCIEM_LINK_CTL_RETRAIN_LINK; 6628 pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2); 6629 pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */ 6630 v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2); 6631 return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0); 6632 } 6633 6634 static int 6635 pci_reset_post(device_t dev, device_t child) 6636 { 6637 6638 if (dev == device_get_parent(child)) 6639 pci_restore_state(child); 6640 return (0); 6641 } 6642 6643 static int 6644 pci_reset_prepare(device_t dev, device_t child) 6645 { 6646 6647 if (dev == device_get_parent(child)) 6648 pci_save_state(child); 6649 return (0); 6650 } 6651 6652 static int 6653 pci_reset_child(device_t dev, device_t child, int flags) 6654 { 6655 int error; 6656 6657 if (dev == NULL || device_get_parent(child) != dev) 6658 return (0); 6659 if ((flags & DEVF_RESET_DETACH) != 0) { 6660 error = device_get_state(child) == DS_ATTACHED ? 6661 device_detach(child) : 0; 6662 } else { 6663 error = BUS_SUSPEND_CHILD(dev, child); 6664 } 6665 if (error == 0) { 6666 if (!pcie_flr(child, 1000, false)) { 6667 error = BUS_RESET_PREPARE(dev, child); 6668 if (error == 0) 6669 pci_power_reset(child); 6670 BUS_RESET_POST(dev, child); 6671 } 6672 if ((flags & DEVF_RESET_DETACH) != 0) 6673 device_probe_and_attach(child); 6674 else 6675 BUS_RESUME_CHILD(dev, child); 6676 } 6677 return (error); 6678 } 6679 6680 const struct pci_device_table * 6681 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt) 6682 { 6683 bool match; 6684 uint16_t vendor, device, subvendor, subdevice, class, subclass, revid; 6685 6686 vendor = pci_get_vendor(child); 6687 device = pci_get_device(child); 6688 subvendor = pci_get_subvendor(child); 6689 subdevice = pci_get_subdevice(child); 6690 class = pci_get_class(child); 6691 subclass = pci_get_subclass(child); 6692 revid = pci_get_revid(child); 6693 while (nelt-- > 0) { 6694 match = true; 6695 if (id->match_flag_vendor) 6696 match &= vendor == id->vendor; 6697 if (id->match_flag_device) 6698 match &= device == id->device; 6699 if (id->match_flag_subvendor) 6700 match &= subvendor == id->subvendor; 6701 if (id->match_flag_subdevice) 6702 match &= subdevice == id->subdevice; 6703 if (id->match_flag_class) 6704 match &= class == id->class_id; 6705 if (id->match_flag_subclass) 6706 match &= subclass == id->subclass; 6707 if (id->match_flag_revid) 6708 match &= revid == id->revid; 6709 if (match) 6710 return (id); 6711 id++; 6712 } 6713 return (NULL); 6714 } 6715 6716 static void 6717 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo) 6718 { 6719 const char *dev_name; 6720 device_t dev; 6721 6722 dev = dinfo->cfg.dev; 6723 printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus, 6724 dinfo->cfg.slot, dinfo->cfg.func); 6725 dev_name = device_get_name(dev); 6726 if (dev_name != NULL) 6727 printf(" (%s%d)", dev_name, device_get_unit(dev)); 6728 } 6729 6730 void 6731 pci_print_faulted_dev(void) 6732 { 6733 struct pci_devinfo *dinfo; 6734 device_t dev; 6735 int aer, i; 6736 uint32_t r1, r2; 6737 uint16_t status; 6738 6739 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6740 dev = dinfo->cfg.dev; 6741 status = pci_read_config(dev, PCIR_STATUS, 2); 6742 status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6743 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6744 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6745 if (status != 0) { 6746 pci_print_faulted_dev_name(dinfo); 6747 printf(" error 0x%04x\n", status); 6748 } 6749 if (dinfo->cfg.pcie.pcie_location != 0) { 6750 status = pci_read_config(dev, 6751 dinfo->cfg.pcie.pcie_location + 6752 PCIER_DEVICE_STA, 2); 6753 if ((status & (PCIEM_STA_CORRECTABLE_ERROR | 6754 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 6755 PCIEM_STA_UNSUPPORTED_REQ)) != 0) { 6756 pci_print_faulted_dev_name(dinfo); 6757 printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n", 6758 pci_read_config(dev, 6759 dinfo->cfg.pcie.pcie_location + 6760 PCIER_DEVICE_CTL, 2), 6761 status); 6762 } 6763 } 6764 if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) { 6765 r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6766 r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6767 if (r1 != 0 || r2 != 0) { 6768 pci_print_faulted_dev_name(dinfo); 6769 printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n" 6770 " COR 0x%08x Mask 0x%08x Ctl 0x%08x\n", 6771 r1, pci_read_config(dev, aer + 6772 PCIR_AER_UC_MASK, 4), 6773 pci_read_config(dev, aer + 6774 PCIR_AER_UC_SEVERITY, 4), 6775 r2, pci_read_config(dev, aer + 6776 PCIR_AER_COR_MASK, 4), 6777 pci_read_config(dev, aer + 6778 PCIR_AER_CAP_CONTROL, 4)); 6779 for (i = 0; i < 4; i++) { 6780 r1 = pci_read_config(dev, aer + 6781 PCIR_AER_HEADER_LOG + i * 4, 4); 6782 printf(" HL%d: 0x%08x\n", i, r1); 6783 } 6784 } 6785 } 6786 } 6787 } 6788 6789 #ifdef DDB 6790 DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db) 6791 { 6792 6793 pci_print_faulted_dev(); 6794 } 6795 6796 static void 6797 db_clear_pcie_errors(const struct pci_devinfo *dinfo) 6798 { 6799 device_t dev; 6800 int aer; 6801 uint32_t r; 6802 6803 dev = dinfo->cfg.dev; 6804 r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location + 6805 PCIER_DEVICE_STA, 2); 6806 pci_write_config(dev, dinfo->cfg.pcie.pcie_location + 6807 PCIER_DEVICE_STA, r, 2); 6808 6809 if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0) 6810 return; 6811 r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4); 6812 if (r != 0) 6813 pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4); 6814 r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4); 6815 if (r != 0) 6816 pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4); 6817 } 6818 6819 DB_COMMAND(pci_clearerr, db_pci_clearerr) 6820 { 6821 struct pci_devinfo *dinfo; 6822 device_t dev; 6823 uint16_t status, status1; 6824 6825 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { 6826 dev = dinfo->cfg.dev; 6827 status1 = status = pci_read_config(dev, PCIR_STATUS, 2); 6828 status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT | 6829 PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT | 6830 PCIM_STATUS_SERR | PCIM_STATUS_PERR; 6831 if (status1 != 0) { 6832 status &= ~status1; 6833 pci_write_config(dev, PCIR_STATUS, status, 2); 6834 } 6835 if (dinfo->cfg.pcie.pcie_location != 0) 6836 db_clear_pcie_errors(dinfo); 6837 } 6838 } 6839 #endif 6840