xref: /freebsd/sys/dev/pci/pci.c (revision 3110d4ebd6c0848cf5e25890d01791bb407e2a9b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6  * Copyright (c) 2000, BSDi
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_acpi.h"
35 #include "opt_iommu.h"
36 #include "opt_bus.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/endian.h>
41 #include <sys/eventhandler.h>
42 #include <sys/fcntl.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/linker.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/taskqueue.h>
52 #include <sys/tree.h>
53 
54 #include <vm/vm.h>
55 #include <vm/pmap.h>
56 #include <vm/vm_extern.h>
57 
58 #include <sys/bus.h>
59 #include <machine/bus.h>
60 #include <sys/rman.h>
61 #include <machine/resource.h>
62 #include <machine/stdarg.h>
63 
64 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
65 #include <machine/intr_machdep.h>
66 #endif
67 
68 #include <sys/pciio.h>
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pci_private.h>
72 
73 #ifdef PCI_IOV
74 #include <sys/nv.h>
75 #include <dev/pci/pci_iov_private.h>
76 #endif
77 
78 #include <dev/usb/controller/xhcireg.h>
79 #include <dev/usb/controller/ehcireg.h>
80 #include <dev/usb/controller/ohcireg.h>
81 #include <dev/usb/controller/uhcireg.h>
82 
83 #include <dev/iommu/iommu.h>
84 
85 #include "pcib_if.h"
86 #include "pci_if.h"
87 
88 #define	PCIR_IS_BIOS(cfg, reg)						\
89 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
90 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
91 
92 static int		pci_has_quirk(uint32_t devid, int quirk);
93 static pci_addr_t	pci_mapbase(uint64_t mapreg);
94 static const char	*pci_maptype(uint64_t mapreg);
95 static int		pci_maprange(uint64_t mapreg);
96 static pci_addr_t	pci_rombase(uint64_t mapreg);
97 static int		pci_romsize(uint64_t testval);
98 static void		pci_fixancient(pcicfgregs *cfg);
99 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
100 
101 static int		pci_porten(device_t dev);
102 static int		pci_memen(device_t dev);
103 static void		pci_assign_interrupt(device_t bus, device_t dev,
104 			    int force_route);
105 static int		pci_add_map(device_t bus, device_t dev, int reg,
106 			    struct resource_list *rl, int force, int prefetch);
107 static int		pci_probe(device_t dev);
108 static void		pci_load_vendor_data(void);
109 static int		pci_describe_parse_line(char **ptr, int *vendor,
110 			    int *device, char **desc);
111 static char		*pci_describe_device(device_t dev);
112 static int		pci_modevent(module_t mod, int what, void *arg);
113 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
114 			    pcicfgregs *cfg);
115 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
116 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
117 			    int reg, uint32_t *data);
118 #if 0
119 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
120 			    int reg, uint32_t data);
121 #endif
122 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
123 static void		pci_mask_msix(device_t dev, u_int index);
124 static void		pci_unmask_msix(device_t dev, u_int index);
125 static int		pci_msi_blacklisted(void);
126 static int		pci_msix_blacklisted(void);
127 static void		pci_resume_msi(device_t dev);
128 static void		pci_resume_msix(device_t dev);
129 static int		pci_remap_intr_method(device_t bus, device_t dev,
130 			    u_int irq);
131 static void		pci_hint_device_unit(device_t acdev, device_t child,
132 			    const char *name, int *unitp);
133 static int		pci_reset_post(device_t dev, device_t child);
134 static int		pci_reset_prepare(device_t dev, device_t child);
135 static int		pci_reset_child(device_t dev, device_t child,
136 			    int flags);
137 
138 static int		pci_get_id_method(device_t dev, device_t child,
139 			    enum pci_id_type type, uintptr_t *rid);
140 
141 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
142     int b, int s, int f, uint16_t vid, uint16_t did);
143 
144 static device_method_t pci_methods[] = {
145 	/* Device interface */
146 	DEVMETHOD(device_probe,		pci_probe),
147 	DEVMETHOD(device_attach,	pci_attach),
148 	DEVMETHOD(device_detach,	pci_detach),
149 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
150 	DEVMETHOD(device_suspend,	bus_generic_suspend),
151 	DEVMETHOD(device_resume,	pci_resume),
152 
153 	/* Bus interface */
154 	DEVMETHOD(bus_print_child,	pci_print_child),
155 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
156 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
157 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
158 	DEVMETHOD(bus_driver_added,	pci_driver_added),
159 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
160 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
161 	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
162 	DEVMETHOD(bus_reset_post,	pci_reset_post),
163 	DEVMETHOD(bus_reset_child,	pci_reset_child),
164 
165 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
166 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
167 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
168 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
169 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
170 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
171 	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
172 	DEVMETHOD(bus_release_resource,	pci_release_resource),
173 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
174 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
175 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
176 	DEVMETHOD(bus_child_detached,	pci_child_detached),
177 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
178 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
179 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
180 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
181 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
182 	DEVMETHOD(bus_resume_child,	pci_resume_child),
183 	DEVMETHOD(bus_rescan,		pci_rescan_method),
184 
185 	/* PCI interface */
186 	DEVMETHOD(pci_read_config,	pci_read_config_method),
187 	DEVMETHOD(pci_write_config,	pci_write_config_method),
188 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
189 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
190 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
191 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
192 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
193 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
194 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
195 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
196 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
197 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
198 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
199 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
200 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
201 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
202 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
203 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
204 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
205 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
206 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
207 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
208 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
209 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
210 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
211 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
212 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
213 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
214 	DEVMETHOD(pci_get_id,		pci_get_id_method),
215 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
216 	DEVMETHOD(pci_child_added,	pci_child_added_method),
217 #ifdef PCI_IOV
218 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
219 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
220 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
221 #endif
222 
223 	DEVMETHOD_END
224 };
225 
226 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
227 
228 static devclass_t pci_devclass;
229 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL,
230     BUS_PASS_BUS);
231 MODULE_VERSION(pci, 1);
232 
233 static char	*pci_vendordata;
234 static size_t	pci_vendordata_size;
235 
236 struct pci_quirk {
237 	uint32_t devid;	/* Vendor/device of the card */
238 	int	type;
239 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
240 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
241 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
242 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
243 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
244 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
245 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
246 	int	arg1;
247 	int	arg2;
248 };
249 
250 static const struct pci_quirk pci_quirks[] = {
251 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
252 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
253 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
254 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
255 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
256 
257 	/*
258 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
259 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
260 	 */
261 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
262 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
263 
264 	/*
265 	 * MSI doesn't work on earlier Intel chipsets including
266 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
267 	 */
268 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
269 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
270 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
271 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
272 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
273 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
274 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
275 
276 	/*
277 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
278 	 * bridge.
279 	 */
280 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
281 
282 	/*
283 	 * Some virtualization environments emulate an older chipset
284 	 * but support MSI just fine.  QEMU uses the Intel 82440.
285 	 */
286 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
287 
288 	/*
289 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
290 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
291 	 * It prevents us from attaching hpet(4) when the bit is unset.
292 	 * Note this quirk only affects SB600 revision A13 and earlier.
293 	 * For SB600 A21 and later, firmware must set the bit to hide it.
294 	 * For SB700 and later, it is unused and hardcoded to zero.
295 	 */
296 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
297 
298 	/*
299 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
300 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
301 	 * of the command register is set.
302 	 */
303 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
304 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
305 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
306 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
307 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
308 
309 	/*
310 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
311 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
312 	 */
313 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
314 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
315 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
316 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
317 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
318 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
319 
320 	/*
321 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
322 	 * expected place.
323 	 */
324 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
325 	{ 0 }
326 };
327 
328 /* map register information */
329 #define	PCI_MAPMEM	0x01	/* memory map */
330 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
331 #define	PCI_MAPPORT	0x04	/* port map */
332 
333 struct devlist pci_devq;
334 uint32_t pci_generation;
335 uint32_t pci_numdevs = 0;
336 static int pcie_chipset, pcix_chipset;
337 
338 /* sysctl vars */
339 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
340     "PCI bus tuning parameters");
341 
342 static int pci_enable_io_modes = 1;
343 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
344     &pci_enable_io_modes, 1,
345     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
346     " enable these bits correctly.  We'd like to do this all the time, but"
347     " there are some peripherals that this causes problems with.");
348 
349 static int pci_do_realloc_bars = 1;
350 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
351     &pci_do_realloc_bars, 0,
352     "Attempt to allocate a new range for any BARs whose original "
353     "firmware-assigned ranges fail to allocate during the initial device scan.");
354 
355 static int pci_do_power_nodriver = 0;
356 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
357     &pci_do_power_nodriver, 0,
358     "Place a function into D3 state when no driver attaches to it.  0 means"
359     " disable.  1 means conservatively place devices into D3 state.  2 means"
360     " aggressively place devices into D3 state.  3 means put absolutely"
361     " everything in D3 state.");
362 
363 int pci_do_power_resume = 1;
364 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
365     &pci_do_power_resume, 1,
366   "Transition from D3 -> D0 on resume.");
367 
368 int pci_do_power_suspend = 1;
369 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
370     &pci_do_power_suspend, 1,
371   "Transition from D0 -> D3 on suspend.");
372 
373 static int pci_do_msi = 1;
374 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
375     "Enable support for MSI interrupts");
376 
377 static int pci_do_msix = 1;
378 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
379     "Enable support for MSI-X interrupts");
380 
381 static int pci_msix_rewrite_table = 0;
382 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
383     &pci_msix_rewrite_table, 0,
384     "Rewrite entire MSI-X table when updating MSI-X entries");
385 
386 static int pci_honor_msi_blacklist = 1;
387 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
388     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
389 
390 #if defined(__i386__) || defined(__amd64__)
391 static int pci_usb_takeover = 1;
392 #else
393 static int pci_usb_takeover = 0;
394 #endif
395 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
396     &pci_usb_takeover, 1,
397     "Enable early takeover of USB controllers. Disable this if you depend on"
398     " BIOS emulation of USB devices, that is you use USB devices (like"
399     " keyboard or mouse) but do not load USB drivers");
400 
401 static int pci_clear_bars;
402 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
403     "Ignore firmware-assigned resources for BARs.");
404 
405 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
406 static int pci_clear_buses;
407 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
408     "Ignore firmware-assigned bus numbers.");
409 #endif
410 
411 static int pci_enable_ari = 1;
412 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
413     0, "Enable support for PCIe Alternative RID Interpretation");
414 
415 int pci_enable_aspm = 1;
416 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
417     0, "Enable support for PCIe Active State Power Management");
418 
419 static int pci_clear_aer_on_attach = 0;
420 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
421     &pci_clear_aer_on_attach, 0,
422     "Clear port and device AER state on driver attach");
423 
424 static int
425 pci_has_quirk(uint32_t devid, int quirk)
426 {
427 	const struct pci_quirk *q;
428 
429 	for (q = &pci_quirks[0]; q->devid; q++) {
430 		if (q->devid == devid && q->type == quirk)
431 			return (1);
432 	}
433 	return (0);
434 }
435 
436 /* Find a device_t by bus/slot/function in domain 0 */
437 
438 device_t
439 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
440 {
441 
442 	return (pci_find_dbsf(0, bus, slot, func));
443 }
444 
445 /* Find a device_t by domain/bus/slot/function */
446 
447 device_t
448 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
449 {
450 	struct pci_devinfo *dinfo = NULL;
451 
452 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
453 		if ((dinfo->cfg.domain == domain) &&
454 		    (dinfo->cfg.bus == bus) &&
455 		    (dinfo->cfg.slot == slot) &&
456 		    (dinfo->cfg.func == func)) {
457 			break;
458 		}
459 	}
460 
461 	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
462 }
463 
464 /* Find a device_t by vendor/device ID */
465 
466 device_t
467 pci_find_device(uint16_t vendor, uint16_t device)
468 {
469 	struct pci_devinfo *dinfo;
470 
471 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
472 		if ((dinfo->cfg.vendor == vendor) &&
473 		    (dinfo->cfg.device == device)) {
474 			return (dinfo->cfg.dev);
475 		}
476 	}
477 
478 	return (NULL);
479 }
480 
481 device_t
482 pci_find_class(uint8_t class, uint8_t subclass)
483 {
484 	struct pci_devinfo *dinfo;
485 
486 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
487 		if (dinfo->cfg.baseclass == class &&
488 		    dinfo->cfg.subclass == subclass) {
489 			return (dinfo->cfg.dev);
490 		}
491 	}
492 
493 	return (NULL);
494 }
495 
496 device_t
497 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
498 {
499 	struct pci_devinfo *dinfo;
500 	bool found = false;
501 
502 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
503 		if (from != NULL && found == false) {
504 			if (from != dinfo->cfg.dev)
505 				continue;
506 			found = true;
507 			continue;
508 		}
509 		if (dinfo->cfg.baseclass == class &&
510 		    dinfo->cfg.subclass == subclass) {
511 			return (dinfo->cfg.dev);
512 		}
513 	}
514 
515 	return (NULL);
516 }
517 
518 static int
519 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
520 {
521 	va_list ap;
522 	int retval;
523 
524 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
525 	    cfg->func);
526 	va_start(ap, fmt);
527 	retval += vprintf(fmt, ap);
528 	va_end(ap);
529 	return (retval);
530 }
531 
532 /* return base address of memory or port map */
533 
534 static pci_addr_t
535 pci_mapbase(uint64_t mapreg)
536 {
537 
538 	if (PCI_BAR_MEM(mapreg))
539 		return (mapreg & PCIM_BAR_MEM_BASE);
540 	else
541 		return (mapreg & PCIM_BAR_IO_BASE);
542 }
543 
544 /* return map type of memory or port map */
545 
546 static const char *
547 pci_maptype(uint64_t mapreg)
548 {
549 
550 	if (PCI_BAR_IO(mapreg))
551 		return ("I/O Port");
552 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
553 		return ("Prefetchable Memory");
554 	return ("Memory");
555 }
556 
557 /* return log2 of map size decoded for memory or port map */
558 
559 int
560 pci_mapsize(uint64_t testval)
561 {
562 	int ln2size;
563 
564 	testval = pci_mapbase(testval);
565 	ln2size = 0;
566 	if (testval != 0) {
567 		while ((testval & 1) == 0)
568 		{
569 			ln2size++;
570 			testval >>= 1;
571 		}
572 	}
573 	return (ln2size);
574 }
575 
576 /* return base address of device ROM */
577 
578 static pci_addr_t
579 pci_rombase(uint64_t mapreg)
580 {
581 
582 	return (mapreg & PCIM_BIOS_ADDR_MASK);
583 }
584 
585 /* return log2 of map size decided for device ROM */
586 
587 static int
588 pci_romsize(uint64_t testval)
589 {
590 	int ln2size;
591 
592 	testval = pci_rombase(testval);
593 	ln2size = 0;
594 	if (testval != 0) {
595 		while ((testval & 1) == 0)
596 		{
597 			ln2size++;
598 			testval >>= 1;
599 		}
600 	}
601 	return (ln2size);
602 }
603 
604 /* return log2 of address range supported by map register */
605 
606 static int
607 pci_maprange(uint64_t mapreg)
608 {
609 	int ln2range = 0;
610 
611 	if (PCI_BAR_IO(mapreg))
612 		ln2range = 32;
613 	else
614 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
615 		case PCIM_BAR_MEM_32:
616 			ln2range = 32;
617 			break;
618 		case PCIM_BAR_MEM_1MB:
619 			ln2range = 20;
620 			break;
621 		case PCIM_BAR_MEM_64:
622 			ln2range = 64;
623 			break;
624 		}
625 	return (ln2range);
626 }
627 
628 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
629 
630 static void
631 pci_fixancient(pcicfgregs *cfg)
632 {
633 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
634 		return;
635 
636 	/* PCI to PCI bridges use header type 1 */
637 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
638 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
639 }
640 
641 /* extract header type specific config data */
642 
643 static void
644 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
645 {
646 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
647 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
648 	case PCIM_HDRTYPE_NORMAL:
649 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
650 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
651 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
652 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
653 		cfg->nummaps	    = PCI_MAXMAPS_0;
654 		break;
655 	case PCIM_HDRTYPE_BRIDGE:
656 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
657 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
658 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
659 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
660 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
661 		cfg->nummaps	    = PCI_MAXMAPS_1;
662 		break;
663 	case PCIM_HDRTYPE_CARDBUS:
664 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
665 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
666 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
667 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
668 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
669 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
670 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
671 		cfg->nummaps	    = PCI_MAXMAPS_2;
672 		break;
673 	}
674 #undef REG
675 }
676 
677 /* read configuration header into pcicfgregs structure */
678 struct pci_devinfo *
679 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
680 {
681 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
682 	uint16_t vid, did;
683 
684 	vid = REG(PCIR_VENDOR, 2);
685 	did = REG(PCIR_DEVICE, 2);
686 	if (vid != 0xffff)
687 		return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
688 
689 	return (NULL);
690 }
691 
692 struct pci_devinfo *
693 pci_alloc_devinfo_method(device_t dev)
694 {
695 
696 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
697 	    M_WAITOK | M_ZERO));
698 }
699 
700 static struct pci_devinfo *
701 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
702     uint16_t vid, uint16_t did)
703 {
704 	struct pci_devinfo *devlist_entry;
705 	pcicfgregs *cfg;
706 
707 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
708 
709 	cfg = &devlist_entry->cfg;
710 
711 	cfg->domain		= d;
712 	cfg->bus		= b;
713 	cfg->slot		= s;
714 	cfg->func		= f;
715 	cfg->vendor		= vid;
716 	cfg->device		= did;
717 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
718 	cfg->statreg		= REG(PCIR_STATUS, 2);
719 	cfg->baseclass		= REG(PCIR_CLASS, 1);
720 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
721 	cfg->progif		= REG(PCIR_PROGIF, 1);
722 	cfg->revid		= REG(PCIR_REVID, 1);
723 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
724 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
725 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
726 	cfg->intpin		= REG(PCIR_INTPIN, 1);
727 	cfg->intline		= REG(PCIR_INTLINE, 1);
728 
729 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
730 	cfg->hdrtype		&= ~PCIM_MFDEV;
731 	STAILQ_INIT(&cfg->maps);
732 
733 	cfg->iov		= NULL;
734 
735 	pci_fixancient(cfg);
736 	pci_hdrtypedata(pcib, b, s, f, cfg);
737 
738 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
739 		pci_read_cap(pcib, cfg);
740 
741 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
742 
743 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
744 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
745 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
746 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
747 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
748 
749 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
750 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
751 	devlist_entry->conf.pc_vendor = cfg->vendor;
752 	devlist_entry->conf.pc_device = cfg->device;
753 
754 	devlist_entry->conf.pc_class = cfg->baseclass;
755 	devlist_entry->conf.pc_subclass = cfg->subclass;
756 	devlist_entry->conf.pc_progif = cfg->progif;
757 	devlist_entry->conf.pc_revid = cfg->revid;
758 
759 	pci_numdevs++;
760 	pci_generation++;
761 
762 	return (devlist_entry);
763 }
764 #undef REG
765 
766 static void
767 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
768 {
769 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
770     cfg->ea.ea_location + (n), w)
771 	int num_ent;
772 	int ptr;
773 	int a, b;
774 	uint32_t val;
775 	int ent_size;
776 	uint32_t dw[4];
777 	uint64_t base, max_offset;
778 	struct pci_ea_entry *eae;
779 
780 	if (cfg->ea.ea_location == 0)
781 		return;
782 
783 	STAILQ_INIT(&cfg->ea.ea_entries);
784 
785 	/* Determine the number of entries */
786 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
787 	num_ent &= PCIM_EA_NUM_ENT_MASK;
788 
789 	/* Find the first entry to care of */
790 	ptr = PCIR_EA_FIRST_ENT;
791 
792 	/* Skip DWORD 2 for type 1 functions */
793 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
794 		ptr += 4;
795 
796 	for (a = 0; a < num_ent; a++) {
797 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
798 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
799 
800 		/* Read a number of dwords in the entry */
801 		val = REG(ptr, 4);
802 		ptr += 4;
803 		ent_size = (val & PCIM_EA_ES);
804 
805 		for (b = 0; b < ent_size; b++) {
806 			dw[b] = REG(ptr, 4);
807 			ptr += 4;
808 		}
809 
810 		eae->eae_flags = val;
811 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
812 
813 		base = dw[0] & PCIM_EA_FIELD_MASK;
814 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
815 		b = 2;
816 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
817 			base |= (uint64_t)dw[b] << 32UL;
818 			b++;
819 		}
820 		if (((dw[1] & PCIM_EA_IS_64) != 0)
821 		    && (b < ent_size)) {
822 			max_offset |= (uint64_t)dw[b] << 32UL;
823 			b++;
824 		}
825 
826 		eae->eae_base = base;
827 		eae->eae_max_offset = max_offset;
828 
829 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
830 
831 		if (bootverbose) {
832 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
833 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
834 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
835 		}
836 	}
837 }
838 #undef REG
839 
840 static void
841 pci_read_cap(device_t pcib, pcicfgregs *cfg)
842 {
843 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
844 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
845 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
846 	uint64_t addr;
847 #endif
848 	uint32_t val;
849 	int	ptr, nextptr, ptrptr;
850 
851 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
852 	case PCIM_HDRTYPE_NORMAL:
853 	case PCIM_HDRTYPE_BRIDGE:
854 		ptrptr = PCIR_CAP_PTR;
855 		break;
856 	case PCIM_HDRTYPE_CARDBUS:
857 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
858 		break;
859 	default:
860 		return;		/* no extended capabilities support */
861 	}
862 	nextptr = REG(ptrptr, 1);	/* sanity check? */
863 
864 	/*
865 	 * Read capability entries.
866 	 */
867 	while (nextptr != 0) {
868 		/* Sanity check */
869 		if (nextptr > 255) {
870 			printf("illegal PCI extended capability offset %d\n",
871 			    nextptr);
872 			return;
873 		}
874 		/* Find the next entry */
875 		ptr = nextptr;
876 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
877 
878 		/* Process this entry */
879 		switch (REG(ptr + PCICAP_ID, 1)) {
880 		case PCIY_PMG:		/* PCI power management */
881 			if (cfg->pp.pp_cap == 0) {
882 				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
883 				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
884 				cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
885 				if ((nextptr - ptr) > PCIR_POWER_DATA)
886 					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
887 			}
888 			break;
889 		case PCIY_HT:		/* HyperTransport */
890 			/* Determine HT-specific capability type. */
891 			val = REG(ptr + PCIR_HT_COMMAND, 2);
892 
893 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
894 				cfg->ht.ht_slave = ptr;
895 
896 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
897 			switch (val & PCIM_HTCMD_CAP_MASK) {
898 			case PCIM_HTCAP_MSI_MAPPING:
899 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
900 					/* Sanity check the mapping window. */
901 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
902 					    4);
903 					addr <<= 32;
904 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
905 					    4);
906 					if (addr != MSI_INTEL_ADDR_BASE)
907 						device_printf(pcib,
908 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
909 						    cfg->domain, cfg->bus,
910 						    cfg->slot, cfg->func,
911 						    (long long)addr);
912 				} else
913 					addr = MSI_INTEL_ADDR_BASE;
914 
915 				cfg->ht.ht_msimap = ptr;
916 				cfg->ht.ht_msictrl = val;
917 				cfg->ht.ht_msiaddr = addr;
918 				break;
919 			}
920 #endif
921 			break;
922 		case PCIY_MSI:		/* PCI MSI */
923 			cfg->msi.msi_location = ptr;
924 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
925 			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
926 						     PCIM_MSICTRL_MMC_MASK)>>1);
927 			break;
928 		case PCIY_MSIX:		/* PCI MSI-X */
929 			cfg->msix.msix_location = ptr;
930 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
931 			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
932 			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
933 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
934 			cfg->msix.msix_table_bar = PCIR_BAR(val &
935 			    PCIM_MSIX_BIR_MASK);
936 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
937 			val = REG(ptr + PCIR_MSIX_PBA, 4);
938 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
939 			    PCIM_MSIX_BIR_MASK);
940 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
941 			break;
942 		case PCIY_VPD:		/* PCI Vital Product Data */
943 			cfg->vpd.vpd_reg = ptr;
944 			break;
945 		case PCIY_SUBVENDOR:
946 			/* Should always be true. */
947 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
948 			    PCIM_HDRTYPE_BRIDGE) {
949 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
950 				cfg->subvendor = val & 0xffff;
951 				cfg->subdevice = val >> 16;
952 			}
953 			break;
954 		case PCIY_PCIX:		/* PCI-X */
955 			/*
956 			 * Assume we have a PCI-X chipset if we have
957 			 * at least one PCI-PCI bridge with a PCI-X
958 			 * capability.  Note that some systems with
959 			 * PCI-express or HT chipsets might match on
960 			 * this check as well.
961 			 */
962 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
963 			    PCIM_HDRTYPE_BRIDGE)
964 				pcix_chipset = 1;
965 			cfg->pcix.pcix_location = ptr;
966 			break;
967 		case PCIY_EXPRESS:	/* PCI-express */
968 			/*
969 			 * Assume we have a PCI-express chipset if we have
970 			 * at least one PCI-express device.
971 			 */
972 			pcie_chipset = 1;
973 			cfg->pcie.pcie_location = ptr;
974 			val = REG(ptr + PCIER_FLAGS, 2);
975 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
976 			break;
977 		case PCIY_EA:		/* Enhanced Allocation */
978 			cfg->ea.ea_location = ptr;
979 			pci_ea_fill_info(pcib, cfg);
980 			break;
981 		default:
982 			break;
983 		}
984 	}
985 
986 #if defined(__powerpc__)
987 	/*
988 	 * Enable the MSI mapping window for all HyperTransport
989 	 * slaves.  PCI-PCI bridges have their windows enabled via
990 	 * PCIB_MAP_MSI().
991 	 */
992 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
993 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
994 		device_printf(pcib,
995 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
996 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
997 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
998 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
999 		     2);
1000 	}
1001 #endif
1002 /* REG and WREG use carry through to next functions */
1003 }
1004 
1005 /*
1006  * PCI Vital Product Data
1007  */
1008 
1009 #define	PCI_VPD_TIMEOUT		1000000
1010 
1011 static int
1012 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1013 {
1014 	int count = PCI_VPD_TIMEOUT;
1015 
1016 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1017 
1018 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1019 
1020 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1021 		if (--count < 0)
1022 			return (ENXIO);
1023 		DELAY(1);	/* limit looping */
1024 	}
1025 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1026 
1027 	return (0);
1028 }
1029 
1030 #if 0
1031 static int
1032 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1033 {
1034 	int count = PCI_VPD_TIMEOUT;
1035 
1036 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1037 
1038 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1039 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1040 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1041 		if (--count < 0)
1042 			return (ENXIO);
1043 		DELAY(1);	/* limit looping */
1044 	}
1045 
1046 	return (0);
1047 }
1048 #endif
1049 
1050 #undef PCI_VPD_TIMEOUT
1051 
1052 struct vpd_readstate {
1053 	device_t	pcib;
1054 	pcicfgregs	*cfg;
1055 	uint32_t	val;
1056 	int		bytesinval;
1057 	int		off;
1058 	uint8_t		cksum;
1059 };
1060 
1061 static int
1062 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1063 {
1064 	uint32_t reg;
1065 	uint8_t byte;
1066 
1067 	if (vrs->bytesinval == 0) {
1068 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1069 			return (ENXIO);
1070 		vrs->val = le32toh(reg);
1071 		vrs->off += 4;
1072 		byte = vrs->val & 0xff;
1073 		vrs->bytesinval = 3;
1074 	} else {
1075 		vrs->val = vrs->val >> 8;
1076 		byte = vrs->val & 0xff;
1077 		vrs->bytesinval--;
1078 	}
1079 
1080 	vrs->cksum += byte;
1081 	*data = byte;
1082 	return (0);
1083 }
1084 
1085 static void
1086 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1087 {
1088 	struct vpd_readstate vrs;
1089 	int state;
1090 	int name;
1091 	int remain;
1092 	int i;
1093 	int alloc, off;		/* alloc/off for RO/W arrays */
1094 	int cksumvalid;
1095 	int dflen;
1096 	uint8_t byte;
1097 	uint8_t byte2;
1098 
1099 	/* init vpd reader */
1100 	vrs.bytesinval = 0;
1101 	vrs.off = 0;
1102 	vrs.pcib = pcib;
1103 	vrs.cfg = cfg;
1104 	vrs.cksum = 0;
1105 
1106 	state = 0;
1107 	name = remain = i = 0;	/* shut up stupid gcc */
1108 	alloc = off = 0;	/* shut up stupid gcc */
1109 	dflen = 0;		/* shut up stupid gcc */
1110 	cksumvalid = -1;
1111 	while (state >= 0) {
1112 		if (vpd_nextbyte(&vrs, &byte)) {
1113 			state = -2;
1114 			break;
1115 		}
1116 #if 0
1117 		printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
1118 		    "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
1119 		    vrs.off, vrs.bytesinval, byte, state, remain, name, i);
1120 #endif
1121 		switch (state) {
1122 		case 0:		/* item name */
1123 			if (byte & 0x80) {
1124 				if (vpd_nextbyte(&vrs, &byte2)) {
1125 					state = -2;
1126 					break;
1127 				}
1128 				remain = byte2;
1129 				if (vpd_nextbyte(&vrs, &byte2)) {
1130 					state = -2;
1131 					break;
1132 				}
1133 				remain |= byte2 << 8;
1134 				name = byte & 0x7f;
1135 			} else {
1136 				remain = byte & 0x7;
1137 				name = (byte >> 3) & 0xf;
1138 			}
1139 			if (vrs.off + remain - vrs.bytesinval > 0x8000) {
1140 				pci_printf(cfg,
1141 				    "VPD data overflow, remain %#x\n", remain);
1142 				state = -1;
1143 				break;
1144 			}
1145 			switch (name) {
1146 			case 0x2:	/* String */
1147 				cfg->vpd.vpd_ident = malloc(remain + 1,
1148 				    M_DEVBUF, M_WAITOK);
1149 				i = 0;
1150 				state = 1;
1151 				break;
1152 			case 0xf:	/* End */
1153 				state = -1;
1154 				break;
1155 			case 0x10:	/* VPD-R */
1156 				alloc = 8;
1157 				off = 0;
1158 				cfg->vpd.vpd_ros = malloc(alloc *
1159 				    sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
1160 				    M_WAITOK | M_ZERO);
1161 				state = 2;
1162 				break;
1163 			case 0x11:	/* VPD-W */
1164 				alloc = 8;
1165 				off = 0;
1166 				cfg->vpd.vpd_w = malloc(alloc *
1167 				    sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
1168 				    M_WAITOK | M_ZERO);
1169 				state = 5;
1170 				break;
1171 			default:	/* Invalid data, abort */
1172 				state = -1;
1173 				break;
1174 			}
1175 			break;
1176 
1177 		case 1:	/* Identifier String */
1178 			cfg->vpd.vpd_ident[i++] = byte;
1179 			remain--;
1180 			if (remain == 0)  {
1181 				cfg->vpd.vpd_ident[i] = '\0';
1182 				state = 0;
1183 			}
1184 			break;
1185 
1186 		case 2:	/* VPD-R Keyword Header */
1187 			if (off == alloc) {
1188 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1189 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
1190 				    M_DEVBUF, M_WAITOK | M_ZERO);
1191 			}
1192 			cfg->vpd.vpd_ros[off].keyword[0] = byte;
1193 			if (vpd_nextbyte(&vrs, &byte2)) {
1194 				state = -2;
1195 				break;
1196 			}
1197 			cfg->vpd.vpd_ros[off].keyword[1] = byte2;
1198 			if (vpd_nextbyte(&vrs, &byte2)) {
1199 				state = -2;
1200 				break;
1201 			}
1202 			cfg->vpd.vpd_ros[off].len = dflen = byte2;
1203 			if (dflen == 0 &&
1204 			    strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
1205 			    2) == 0) {
1206 				/*
1207 				 * if this happens, we can't trust the rest
1208 				 * of the VPD.
1209 				 */
1210 				pci_printf(cfg, "bad keyword length: %d\n",
1211 				    dflen);
1212 				cksumvalid = 0;
1213 				state = -1;
1214 				break;
1215 			} else if (dflen == 0) {
1216 				cfg->vpd.vpd_ros[off].value = malloc(1 *
1217 				    sizeof(*cfg->vpd.vpd_ros[off].value),
1218 				    M_DEVBUF, M_WAITOK);
1219 				cfg->vpd.vpd_ros[off].value[0] = '\x00';
1220 			} else
1221 				cfg->vpd.vpd_ros[off].value = malloc(
1222 				    (dflen + 1) *
1223 				    sizeof(*cfg->vpd.vpd_ros[off].value),
1224 				    M_DEVBUF, M_WAITOK);
1225 			remain -= 3;
1226 			i = 0;
1227 			/* keep in sync w/ state 3's transistions */
1228 			if (dflen == 0 && remain == 0)
1229 				state = 0;
1230 			else if (dflen == 0)
1231 				state = 2;
1232 			else
1233 				state = 3;
1234 			break;
1235 
1236 		case 3:	/* VPD-R Keyword Value */
1237 			cfg->vpd.vpd_ros[off].value[i++] = byte;
1238 			if (strncmp(cfg->vpd.vpd_ros[off].keyword,
1239 			    "RV", 2) == 0 && cksumvalid == -1) {
1240 				if (vrs.cksum == 0)
1241 					cksumvalid = 1;
1242 				else {
1243 					if (bootverbose)
1244 						pci_printf(cfg,
1245 					    "bad VPD cksum, remain %hhu\n",
1246 						    vrs.cksum);
1247 					cksumvalid = 0;
1248 					state = -1;
1249 					break;
1250 				}
1251 			}
1252 			dflen--;
1253 			remain--;
1254 			/* keep in sync w/ state 2's transistions */
1255 			if (dflen == 0)
1256 				cfg->vpd.vpd_ros[off++].value[i++] = '\0';
1257 			if (dflen == 0 && remain == 0) {
1258 				cfg->vpd.vpd_rocnt = off;
1259 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1260 				    off * sizeof(*cfg->vpd.vpd_ros),
1261 				    M_DEVBUF, M_WAITOK | M_ZERO);
1262 				state = 0;
1263 			} else if (dflen == 0)
1264 				state = 2;
1265 			break;
1266 
1267 		case 4:
1268 			remain--;
1269 			if (remain == 0)
1270 				state = 0;
1271 			break;
1272 
1273 		case 5:	/* VPD-W Keyword Header */
1274 			if (off == alloc) {
1275 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1276 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
1277 				    M_DEVBUF, M_WAITOK | M_ZERO);
1278 			}
1279 			cfg->vpd.vpd_w[off].keyword[0] = byte;
1280 			if (vpd_nextbyte(&vrs, &byte2)) {
1281 				state = -2;
1282 				break;
1283 			}
1284 			cfg->vpd.vpd_w[off].keyword[1] = byte2;
1285 			if (vpd_nextbyte(&vrs, &byte2)) {
1286 				state = -2;
1287 				break;
1288 			}
1289 			cfg->vpd.vpd_w[off].len = dflen = byte2;
1290 			cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
1291 			cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
1292 			    sizeof(*cfg->vpd.vpd_w[off].value),
1293 			    M_DEVBUF, M_WAITOK);
1294 			remain -= 3;
1295 			i = 0;
1296 			/* keep in sync w/ state 6's transistions */
1297 			if (dflen == 0 && remain == 0)
1298 				state = 0;
1299 			else if (dflen == 0)
1300 				state = 5;
1301 			else
1302 				state = 6;
1303 			break;
1304 
1305 		case 6:	/* VPD-W Keyword Value */
1306 			cfg->vpd.vpd_w[off].value[i++] = byte;
1307 			dflen--;
1308 			remain--;
1309 			/* keep in sync w/ state 5's transistions */
1310 			if (dflen == 0)
1311 				cfg->vpd.vpd_w[off++].value[i++] = '\0';
1312 			if (dflen == 0 && remain == 0) {
1313 				cfg->vpd.vpd_wcnt = off;
1314 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1315 				    off * sizeof(*cfg->vpd.vpd_w),
1316 				    M_DEVBUF, M_WAITOK | M_ZERO);
1317 				state = 0;
1318 			} else if (dflen == 0)
1319 				state = 5;
1320 			break;
1321 
1322 		default:
1323 			pci_printf(cfg, "invalid state: %d\n", state);
1324 			state = -1;
1325 			break;
1326 		}
1327 	}
1328 
1329 	if (cksumvalid == 0 || state < -1) {
1330 		/* read-only data bad, clean up */
1331 		if (cfg->vpd.vpd_ros != NULL) {
1332 			for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
1333 				free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
1334 			free(cfg->vpd.vpd_ros, M_DEVBUF);
1335 			cfg->vpd.vpd_ros = NULL;
1336 		}
1337 	}
1338 	if (state < -1) {
1339 		/* I/O error, clean up */
1340 		pci_printf(cfg, "failed to read VPD data.\n");
1341 		if (cfg->vpd.vpd_ident != NULL) {
1342 			free(cfg->vpd.vpd_ident, M_DEVBUF);
1343 			cfg->vpd.vpd_ident = NULL;
1344 		}
1345 		if (cfg->vpd.vpd_w != NULL) {
1346 			for (off = 0; cfg->vpd.vpd_w[off].value; off++)
1347 				free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
1348 			free(cfg->vpd.vpd_w, M_DEVBUF);
1349 			cfg->vpd.vpd_w = NULL;
1350 		}
1351 	}
1352 	cfg->vpd.vpd_cached = 1;
1353 #undef REG
1354 #undef WREG
1355 }
1356 
1357 int
1358 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1359 {
1360 	struct pci_devinfo *dinfo = device_get_ivars(child);
1361 	pcicfgregs *cfg = &dinfo->cfg;
1362 
1363 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1364 		pci_read_vpd(device_get_parent(dev), cfg);
1365 
1366 	*identptr = cfg->vpd.vpd_ident;
1367 
1368 	if (*identptr == NULL)
1369 		return (ENXIO);
1370 
1371 	return (0);
1372 }
1373 
1374 int
1375 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1376 	const char **vptr)
1377 {
1378 	struct pci_devinfo *dinfo = device_get_ivars(child);
1379 	pcicfgregs *cfg = &dinfo->cfg;
1380 	int i;
1381 
1382 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1383 		pci_read_vpd(device_get_parent(dev), cfg);
1384 
1385 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1386 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1387 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1388 			*vptr = cfg->vpd.vpd_ros[i].value;
1389 			return (0);
1390 		}
1391 
1392 	*vptr = NULL;
1393 	return (ENXIO);
1394 }
1395 
1396 struct pcicfg_vpd *
1397 pci_fetch_vpd_list(device_t dev)
1398 {
1399 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1400 	pcicfgregs *cfg = &dinfo->cfg;
1401 
1402 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1403 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1404 	return (&cfg->vpd);
1405 }
1406 
1407 /*
1408  * Find the requested HyperTransport capability and return the offset
1409  * in configuration space via the pointer provided.  The function
1410  * returns 0 on success and an error code otherwise.
1411  */
1412 int
1413 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1414 {
1415 	int ptr, error;
1416 	uint16_t val;
1417 
1418 	error = pci_find_cap(child, PCIY_HT, &ptr);
1419 	if (error)
1420 		return (error);
1421 
1422 	/*
1423 	 * Traverse the capabilities list checking each HT capability
1424 	 * to see if it matches the requested HT capability.
1425 	 */
1426 	for (;;) {
1427 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1428 		if (capability == PCIM_HTCAP_SLAVE ||
1429 		    capability == PCIM_HTCAP_HOST)
1430 			val &= 0xe000;
1431 		else
1432 			val &= PCIM_HTCMD_CAP_MASK;
1433 		if (val == capability) {
1434 			if (capreg != NULL)
1435 				*capreg = ptr;
1436 			return (0);
1437 		}
1438 
1439 		/* Skip to the next HT capability. */
1440 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1441 			break;
1442 	}
1443 
1444 	return (ENOENT);
1445 }
1446 
1447 /*
1448  * Find the next requested HyperTransport capability after start and return
1449  * the offset in configuration space via the pointer provided.  The function
1450  * returns 0 on success and an error code otherwise.
1451  */
1452 int
1453 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1454     int start, int *capreg)
1455 {
1456 	int ptr;
1457 	uint16_t val;
1458 
1459 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1460 	    ("start capability is not HyperTransport capability"));
1461 	ptr = start;
1462 
1463 	/*
1464 	 * Traverse the capabilities list checking each HT capability
1465 	 * to see if it matches the requested HT capability.
1466 	 */
1467 	for (;;) {
1468 		/* Skip to the next HT capability. */
1469 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1470 			break;
1471 
1472 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1473 		if (capability == PCIM_HTCAP_SLAVE ||
1474 		    capability == PCIM_HTCAP_HOST)
1475 			val &= 0xe000;
1476 		else
1477 			val &= PCIM_HTCMD_CAP_MASK;
1478 		if (val == capability) {
1479 			if (capreg != NULL)
1480 				*capreg = ptr;
1481 			return (0);
1482 		}
1483 	}
1484 
1485 	return (ENOENT);
1486 }
1487 
1488 /*
1489  * Find the requested capability and return the offset in
1490  * configuration space via the pointer provided.  The function returns
1491  * 0 on success and an error code otherwise.
1492  */
1493 int
1494 pci_find_cap_method(device_t dev, device_t child, int capability,
1495     int *capreg)
1496 {
1497 	struct pci_devinfo *dinfo = device_get_ivars(child);
1498 	pcicfgregs *cfg = &dinfo->cfg;
1499 	uint32_t status;
1500 	uint8_t ptr;
1501 
1502 	/*
1503 	 * Check the CAP_LIST bit of the PCI status register first.
1504 	 */
1505 	status = pci_read_config(child, PCIR_STATUS, 2);
1506 	if (!(status & PCIM_STATUS_CAPPRESENT))
1507 		return (ENXIO);
1508 
1509 	/*
1510 	 * Determine the start pointer of the capabilities list.
1511 	 */
1512 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1513 	case PCIM_HDRTYPE_NORMAL:
1514 	case PCIM_HDRTYPE_BRIDGE:
1515 		ptr = PCIR_CAP_PTR;
1516 		break;
1517 	case PCIM_HDRTYPE_CARDBUS:
1518 		ptr = PCIR_CAP_PTR_2;
1519 		break;
1520 	default:
1521 		/* XXX: panic? */
1522 		return (ENXIO);		/* no extended capabilities support */
1523 	}
1524 	ptr = pci_read_config(child, ptr, 1);
1525 
1526 	/*
1527 	 * Traverse the capabilities list.
1528 	 */
1529 	while (ptr != 0) {
1530 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1531 			if (capreg != NULL)
1532 				*capreg = ptr;
1533 			return (0);
1534 		}
1535 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1536 	}
1537 
1538 	return (ENOENT);
1539 }
1540 
1541 /*
1542  * Find the next requested capability after start and return the offset in
1543  * configuration space via the pointer provided.  The function returns
1544  * 0 on success and an error code otherwise.
1545  */
1546 int
1547 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1548     int start, int *capreg)
1549 {
1550 	uint8_t ptr;
1551 
1552 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1553 	    ("start capability is not expected capability"));
1554 
1555 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1556 	while (ptr != 0) {
1557 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1558 			if (capreg != NULL)
1559 				*capreg = ptr;
1560 			return (0);
1561 		}
1562 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1563 	}
1564 
1565 	return (ENOENT);
1566 }
1567 
1568 /*
1569  * Find the requested extended capability and return the offset in
1570  * configuration space via the pointer provided.  The function returns
1571  * 0 on success and an error code otherwise.
1572  */
1573 int
1574 pci_find_extcap_method(device_t dev, device_t child, int capability,
1575     int *capreg)
1576 {
1577 	struct pci_devinfo *dinfo = device_get_ivars(child);
1578 	pcicfgregs *cfg = &dinfo->cfg;
1579 	uint32_t ecap;
1580 	uint16_t ptr;
1581 
1582 	/* Only supported for PCI-express devices. */
1583 	if (cfg->pcie.pcie_location == 0)
1584 		return (ENXIO);
1585 
1586 	ptr = PCIR_EXTCAP;
1587 	ecap = pci_read_config(child, ptr, 4);
1588 	if (ecap == 0xffffffff || ecap == 0)
1589 		return (ENOENT);
1590 	for (;;) {
1591 		if (PCI_EXTCAP_ID(ecap) == capability) {
1592 			if (capreg != NULL)
1593 				*capreg = ptr;
1594 			return (0);
1595 		}
1596 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1597 		if (ptr == 0)
1598 			break;
1599 		ecap = pci_read_config(child, ptr, 4);
1600 	}
1601 
1602 	return (ENOENT);
1603 }
1604 
1605 /*
1606  * Find the next requested extended capability after start and return the
1607  * offset in configuration space via the pointer provided.  The function
1608  * returns 0 on success and an error code otherwise.
1609  */
1610 int
1611 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1612     int start, int *capreg)
1613 {
1614 	struct pci_devinfo *dinfo = device_get_ivars(child);
1615 	pcicfgregs *cfg = &dinfo->cfg;
1616 	uint32_t ecap;
1617 	uint16_t ptr;
1618 
1619 	/* Only supported for PCI-express devices. */
1620 	if (cfg->pcie.pcie_location == 0)
1621 		return (ENXIO);
1622 
1623 	ecap = pci_read_config(child, start, 4);
1624 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1625 	    ("start extended capability is not expected capability"));
1626 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1627 	while (ptr != 0) {
1628 		ecap = pci_read_config(child, ptr, 4);
1629 		if (PCI_EXTCAP_ID(ecap) == capability) {
1630 			if (capreg != NULL)
1631 				*capreg = ptr;
1632 			return (0);
1633 		}
1634 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1635 	}
1636 
1637 	return (ENOENT);
1638 }
1639 
1640 /*
1641  * Support for MSI-X message interrupts.
1642  */
1643 static void
1644 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1645 {
1646 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1647 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1648 	uint32_t offset;
1649 
1650 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1651 	offset = msix->msix_table_offset + index * 16;
1652 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1653 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1654 	bus_write_4(msix->msix_table_res, offset + 8, data);
1655 }
1656 
1657 void
1658 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1659     uint64_t address, uint32_t data)
1660 {
1661 
1662 	if (pci_msix_rewrite_table) {
1663 		struct pci_devinfo *dinfo = device_get_ivars(child);
1664 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1665 
1666 		/*
1667 		 * Some VM hosts require MSIX to be disabled in the
1668 		 * control register before updating the MSIX table
1669 		 * entries are allowed. It is not enough to only
1670 		 * disable MSIX while updating a single entry. MSIX
1671 		 * must be disabled while updating all entries in the
1672 		 * table.
1673 		 */
1674 		pci_write_config(child,
1675 		    msix->msix_location + PCIR_MSIX_CTRL,
1676 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1677 		pci_resume_msix(child);
1678 	} else
1679 		pci_write_msix_entry(child, index, address, data);
1680 
1681 	/* Enable MSI -> HT mapping. */
1682 	pci_ht_map_msi(child, address);
1683 }
1684 
1685 void
1686 pci_mask_msix(device_t dev, u_int index)
1687 {
1688 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1689 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1690 	uint32_t offset, val;
1691 
1692 	KASSERT(msix->msix_msgnum > index, ("bogus index"));
1693 	offset = msix->msix_table_offset + index * 16 + 12;
1694 	val = bus_read_4(msix->msix_table_res, offset);
1695 	val |= PCIM_MSIX_VCTRL_MASK;
1696 
1697 	/*
1698 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1699 	 * register, so always write the new value.
1700 	 */
1701 	bus_write_4(msix->msix_table_res, offset, val);
1702 }
1703 
1704 void
1705 pci_unmask_msix(device_t dev, u_int index)
1706 {
1707 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1708 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1709 	uint32_t offset, val;
1710 
1711 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1712 	offset = msix->msix_table_offset + index * 16 + 12;
1713 	val = bus_read_4(msix->msix_table_res, offset);
1714 	val &= ~PCIM_MSIX_VCTRL_MASK;
1715 
1716 	/*
1717 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1718 	 * register, so always write the new value.
1719 	 */
1720 	bus_write_4(msix->msix_table_res, offset, val);
1721 }
1722 
1723 int
1724 pci_pending_msix(device_t dev, u_int index)
1725 {
1726 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1727 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1728 	uint32_t offset, bit;
1729 
1730 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1731 	offset = msix->msix_pba_offset + (index / 32) * 4;
1732 	bit = 1 << index % 32;
1733 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1734 }
1735 
1736 /*
1737  * Restore MSI-X registers and table during resume.  If MSI-X is
1738  * enabled then walk the virtual table to restore the actual MSI-X
1739  * table.
1740  */
1741 static void
1742 pci_resume_msix(device_t dev)
1743 {
1744 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1745 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1746 	struct msix_table_entry *mte;
1747 	struct msix_vector *mv;
1748 	int i;
1749 
1750 	if (msix->msix_alloc > 0) {
1751 		/* First, mask all vectors. */
1752 		for (i = 0; i < msix->msix_msgnum; i++)
1753 			pci_mask_msix(dev, i);
1754 
1755 		/* Second, program any messages with at least one handler. */
1756 		for (i = 0; i < msix->msix_table_len; i++) {
1757 			mte = &msix->msix_table[i];
1758 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1759 				continue;
1760 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1761 			pci_write_msix_entry(dev, i, mv->mv_address,
1762 			    mv->mv_data);
1763 			pci_unmask_msix(dev, i);
1764 		}
1765 	}
1766 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1767 	    msix->msix_ctrl, 2);
1768 }
1769 
1770 /*
1771  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1772  * returned in *count.  After this function returns, each message will be
1773  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1774  */
1775 int
1776 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1777 {
1778 	struct pci_devinfo *dinfo = device_get_ivars(child);
1779 	pcicfgregs *cfg = &dinfo->cfg;
1780 	struct resource_list_entry *rle;
1781 	int actual, error, i, irq, max;
1782 
1783 	/* Don't let count == 0 get us into trouble. */
1784 	if (*count == 0)
1785 		return (EINVAL);
1786 
1787 	/* If rid 0 is allocated, then fail. */
1788 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1789 	if (rle != NULL && rle->res != NULL)
1790 		return (ENXIO);
1791 
1792 	/* Already have allocated messages? */
1793 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1794 		return (ENXIO);
1795 
1796 	/* If MSI-X is blacklisted for this system, fail. */
1797 	if (pci_msix_blacklisted())
1798 		return (ENXIO);
1799 
1800 	/* MSI-X capability present? */
1801 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1802 		return (ENODEV);
1803 
1804 	/* Make sure the appropriate BARs are mapped. */
1805 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1806 	    cfg->msix.msix_table_bar);
1807 	if (rle == NULL || rle->res == NULL ||
1808 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1809 		return (ENXIO);
1810 	cfg->msix.msix_table_res = rle->res;
1811 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1812 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1813 		    cfg->msix.msix_pba_bar);
1814 		if (rle == NULL || rle->res == NULL ||
1815 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1816 			return (ENXIO);
1817 	}
1818 	cfg->msix.msix_pba_res = rle->res;
1819 
1820 	if (bootverbose)
1821 		device_printf(child,
1822 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1823 		    *count, cfg->msix.msix_msgnum);
1824 	max = min(*count, cfg->msix.msix_msgnum);
1825 	for (i = 0; i < max; i++) {
1826 		/* Allocate a message. */
1827 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1828 		if (error) {
1829 			if (i == 0)
1830 				return (error);
1831 			break;
1832 		}
1833 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1834 		    irq, 1);
1835 	}
1836 	actual = i;
1837 
1838 	if (bootverbose) {
1839 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1840 		if (actual == 1)
1841 			device_printf(child, "using IRQ %ju for MSI-X\n",
1842 			    rle->start);
1843 		else {
1844 			int run;
1845 
1846 			/*
1847 			 * Be fancy and try to print contiguous runs of
1848 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1849 			 * 'run' is true if we are in a range.
1850 			 */
1851 			device_printf(child, "using IRQs %ju", rle->start);
1852 			irq = rle->start;
1853 			run = 0;
1854 			for (i = 1; i < actual; i++) {
1855 				rle = resource_list_find(&dinfo->resources,
1856 				    SYS_RES_IRQ, i + 1);
1857 
1858 				/* Still in a run? */
1859 				if (rle->start == irq + 1) {
1860 					run = 1;
1861 					irq++;
1862 					continue;
1863 				}
1864 
1865 				/* Finish previous range. */
1866 				if (run) {
1867 					printf("-%d", irq);
1868 					run = 0;
1869 				}
1870 
1871 				/* Start new range. */
1872 				printf(",%ju", rle->start);
1873 				irq = rle->start;
1874 			}
1875 
1876 			/* Unfinished range? */
1877 			if (run)
1878 				printf("-%d", irq);
1879 			printf(" for MSI-X\n");
1880 		}
1881 	}
1882 
1883 	/* Mask all vectors. */
1884 	for (i = 0; i < cfg->msix.msix_msgnum; i++)
1885 		pci_mask_msix(child, i);
1886 
1887 	/* Allocate and initialize vector data and virtual table. */
1888 	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1889 	    M_DEVBUF, M_WAITOK | M_ZERO);
1890 	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1891 	    M_DEVBUF, M_WAITOK | M_ZERO);
1892 	for (i = 0; i < actual; i++) {
1893 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1894 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1895 		cfg->msix.msix_table[i].mte_vector = i + 1;
1896 	}
1897 
1898 	/* Update control register to enable MSI-X. */
1899 	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1900 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1901 	    cfg->msix.msix_ctrl, 2);
1902 
1903 	/* Update counts of alloc'd messages. */
1904 	cfg->msix.msix_alloc = actual;
1905 	cfg->msix.msix_table_len = actual;
1906 	*count = actual;
1907 	return (0);
1908 }
1909 
1910 /*
1911  * By default, pci_alloc_msix() will assign the allocated IRQ
1912  * resources consecutively to the first N messages in the MSI-X table.
1913  * However, device drivers may want to use different layouts if they
1914  * either receive fewer messages than they asked for, or they wish to
1915  * populate the MSI-X table sparsely.  This method allows the driver
1916  * to specify what layout it wants.  It must be called after a
1917  * successful pci_alloc_msix() but before any of the associated
1918  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1919  *
1920  * The 'vectors' array contains 'count' message vectors.  The array
1921  * maps directly to the MSI-X table in that index 0 in the array
1922  * specifies the vector for the first message in the MSI-X table, etc.
1923  * The vector value in each array index can either be 0 to indicate
1924  * that no vector should be assigned to a message slot, or it can be a
1925  * number from 1 to N (where N is the count returned from a
1926  * succcessful call to pci_alloc_msix()) to indicate which message
1927  * vector (IRQ) to be used for the corresponding message.
1928  *
1929  * On successful return, each message with a non-zero vector will have
1930  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1931  * 1.  Additionally, if any of the IRQs allocated via the previous
1932  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1933  * will be freed back to the system automatically.
1934  *
1935  * For example, suppose a driver has a MSI-X table with 6 messages and
1936  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1937  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1938  * C.  After the call to pci_alloc_msix(), the device will be setup to
1939  * have an MSI-X table of ABC--- (where - means no vector assigned).
1940  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1941  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1942  * be freed back to the system.  This device will also have valid
1943  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1944  *
1945  * In any case, the SYS_RES_IRQ rid X will always map to the message
1946  * at MSI-X table index X - 1 and will only be valid if a vector is
1947  * assigned to that table entry.
1948  */
1949 int
1950 pci_remap_msix_method(device_t dev, device_t child, int count,
1951     const u_int *vectors)
1952 {
1953 	struct pci_devinfo *dinfo = device_get_ivars(child);
1954 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1955 	struct resource_list_entry *rle;
1956 	int i, irq, j, *used;
1957 
1958 	/*
1959 	 * Have to have at least one message in the table but the
1960 	 * table can't be bigger than the actual MSI-X table in the
1961 	 * device.
1962 	 */
1963 	if (count == 0 || count > msix->msix_msgnum)
1964 		return (EINVAL);
1965 
1966 	/* Sanity check the vectors. */
1967 	for (i = 0; i < count; i++)
1968 		if (vectors[i] > msix->msix_alloc)
1969 			return (EINVAL);
1970 
1971 	/*
1972 	 * Make sure there aren't any holes in the vectors to be used.
1973 	 * It's a big pain to support it, and it doesn't really make
1974 	 * sense anyway.  Also, at least one vector must be used.
1975 	 */
1976 	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
1977 	    M_ZERO);
1978 	for (i = 0; i < count; i++)
1979 		if (vectors[i] != 0)
1980 			used[vectors[i] - 1] = 1;
1981 	for (i = 0; i < msix->msix_alloc - 1; i++)
1982 		if (used[i] == 0 && used[i + 1] == 1) {
1983 			free(used, M_DEVBUF);
1984 			return (EINVAL);
1985 		}
1986 	if (used[0] != 1) {
1987 		free(used, M_DEVBUF);
1988 		return (EINVAL);
1989 	}
1990 
1991 	/* Make sure none of the resources are allocated. */
1992 	for (i = 0; i < msix->msix_table_len; i++) {
1993 		if (msix->msix_table[i].mte_vector == 0)
1994 			continue;
1995 		if (msix->msix_table[i].mte_handlers > 0) {
1996 			free(used, M_DEVBUF);
1997 			return (EBUSY);
1998 		}
1999 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2000 		KASSERT(rle != NULL, ("missing resource"));
2001 		if (rle->res != NULL) {
2002 			free(used, M_DEVBUF);
2003 			return (EBUSY);
2004 		}
2005 	}
2006 
2007 	/* Free the existing resource list entries. */
2008 	for (i = 0; i < msix->msix_table_len; i++) {
2009 		if (msix->msix_table[i].mte_vector == 0)
2010 			continue;
2011 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2012 	}
2013 
2014 	/*
2015 	 * Build the new virtual table keeping track of which vectors are
2016 	 * used.
2017 	 */
2018 	free(msix->msix_table, M_DEVBUF);
2019 	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
2020 	    M_DEVBUF, M_WAITOK | M_ZERO);
2021 	for (i = 0; i < count; i++)
2022 		msix->msix_table[i].mte_vector = vectors[i];
2023 	msix->msix_table_len = count;
2024 
2025 	/* Free any unused IRQs and resize the vectors array if necessary. */
2026 	j = msix->msix_alloc - 1;
2027 	if (used[j] == 0) {
2028 		struct msix_vector *vec;
2029 
2030 		while (used[j] == 0) {
2031 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2032 			    msix->msix_vectors[j].mv_irq);
2033 			j--;
2034 		}
2035 		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
2036 		    M_WAITOK);
2037 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2038 		    (j + 1));
2039 		free(msix->msix_vectors, M_DEVBUF);
2040 		msix->msix_vectors = vec;
2041 		msix->msix_alloc = j + 1;
2042 	}
2043 	free(used, M_DEVBUF);
2044 
2045 	/* Map the IRQs onto the rids. */
2046 	for (i = 0; i < count; i++) {
2047 		if (vectors[i] == 0)
2048 			continue;
2049 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2050 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2051 		    irq, 1);
2052 	}
2053 
2054 	if (bootverbose) {
2055 		device_printf(child, "Remapped MSI-X IRQs as: ");
2056 		for (i = 0; i < count; i++) {
2057 			if (i != 0)
2058 				printf(", ");
2059 			if (vectors[i] == 0)
2060 				printf("---");
2061 			else
2062 				printf("%d",
2063 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2064 		}
2065 		printf("\n");
2066 	}
2067 
2068 	return (0);
2069 }
2070 
2071 static int
2072 pci_release_msix(device_t dev, device_t child)
2073 {
2074 	struct pci_devinfo *dinfo = device_get_ivars(child);
2075 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2076 	struct resource_list_entry *rle;
2077 	int i;
2078 
2079 	/* Do we have any messages to release? */
2080 	if (msix->msix_alloc == 0)
2081 		return (ENODEV);
2082 
2083 	/* Make sure none of the resources are allocated. */
2084 	for (i = 0; i < msix->msix_table_len; i++) {
2085 		if (msix->msix_table[i].mte_vector == 0)
2086 			continue;
2087 		if (msix->msix_table[i].mte_handlers > 0)
2088 			return (EBUSY);
2089 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2090 		KASSERT(rle != NULL, ("missing resource"));
2091 		if (rle->res != NULL)
2092 			return (EBUSY);
2093 	}
2094 
2095 	/* Update control register to disable MSI-X. */
2096 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2097 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2098 	    msix->msix_ctrl, 2);
2099 
2100 	/* Free the resource list entries. */
2101 	for (i = 0; i < msix->msix_table_len; i++) {
2102 		if (msix->msix_table[i].mte_vector == 0)
2103 			continue;
2104 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2105 	}
2106 	free(msix->msix_table, M_DEVBUF);
2107 	msix->msix_table_len = 0;
2108 
2109 	/* Release the IRQs. */
2110 	for (i = 0; i < msix->msix_alloc; i++)
2111 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2112 		    msix->msix_vectors[i].mv_irq);
2113 	free(msix->msix_vectors, M_DEVBUF);
2114 	msix->msix_alloc = 0;
2115 	return (0);
2116 }
2117 
2118 /*
2119  * Return the max supported MSI-X messages this device supports.
2120  * Basically, assuming the MD code can alloc messages, this function
2121  * should return the maximum value that pci_alloc_msix() can return.
2122  * Thus, it is subject to the tunables, etc.
2123  */
2124 int
2125 pci_msix_count_method(device_t dev, device_t child)
2126 {
2127 	struct pci_devinfo *dinfo = device_get_ivars(child);
2128 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2129 
2130 	if (pci_do_msix && msix->msix_location != 0)
2131 		return (msix->msix_msgnum);
2132 	return (0);
2133 }
2134 
2135 int
2136 pci_msix_pba_bar_method(device_t dev, device_t child)
2137 {
2138 	struct pci_devinfo *dinfo = device_get_ivars(child);
2139 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2140 
2141 	if (pci_do_msix && msix->msix_location != 0)
2142 		return (msix->msix_pba_bar);
2143 	return (-1);
2144 }
2145 
2146 int
2147 pci_msix_table_bar_method(device_t dev, device_t child)
2148 {
2149 	struct pci_devinfo *dinfo = device_get_ivars(child);
2150 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2151 
2152 	if (pci_do_msix && msix->msix_location != 0)
2153 		return (msix->msix_table_bar);
2154 	return (-1);
2155 }
2156 
2157 /*
2158  * HyperTransport MSI mapping control
2159  */
2160 void
2161 pci_ht_map_msi(device_t dev, uint64_t addr)
2162 {
2163 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2164 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2165 
2166 	if (!ht->ht_msimap)
2167 		return;
2168 
2169 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2170 	    ht->ht_msiaddr >> 20 == addr >> 20) {
2171 		/* Enable MSI -> HT mapping. */
2172 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2173 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2174 		    ht->ht_msictrl, 2);
2175 	}
2176 
2177 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2178 		/* Disable MSI -> HT mapping. */
2179 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2180 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2181 		    ht->ht_msictrl, 2);
2182 	}
2183 }
2184 
2185 int
2186 pci_get_max_payload(device_t dev)
2187 {
2188 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2189 	int cap;
2190 	uint16_t val;
2191 
2192 	cap = dinfo->cfg.pcie.pcie_location;
2193 	if (cap == 0)
2194 		return (0);
2195 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2196 	val &= PCIEM_CTL_MAX_PAYLOAD;
2197 	val >>= 5;
2198 	return (1 << (val + 7));
2199 }
2200 
2201 int
2202 pci_get_max_read_req(device_t dev)
2203 {
2204 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2205 	int cap;
2206 	uint16_t val;
2207 
2208 	cap = dinfo->cfg.pcie.pcie_location;
2209 	if (cap == 0)
2210 		return (0);
2211 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2212 	val &= PCIEM_CTL_MAX_READ_REQUEST;
2213 	val >>= 12;
2214 	return (1 << (val + 7));
2215 }
2216 
2217 int
2218 pci_set_max_read_req(device_t dev, int size)
2219 {
2220 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2221 	int cap;
2222 	uint16_t val;
2223 
2224 	cap = dinfo->cfg.pcie.pcie_location;
2225 	if (cap == 0)
2226 		return (0);
2227 	if (size < 128)
2228 		size = 128;
2229 	if (size > 4096)
2230 		size = 4096;
2231 	size = (1 << (fls(size) - 1));
2232 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2233 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2234 	val |= (fls(size) - 8) << 12;
2235 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2236 	return (size);
2237 }
2238 
2239 uint32_t
2240 pcie_read_config(device_t dev, int reg, int width)
2241 {
2242 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2243 	int cap;
2244 
2245 	cap = dinfo->cfg.pcie.pcie_location;
2246 	if (cap == 0) {
2247 		if (width == 2)
2248 			return (0xffff);
2249 		return (0xffffffff);
2250 	}
2251 
2252 	return (pci_read_config(dev, cap + reg, width));
2253 }
2254 
2255 void
2256 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2257 {
2258 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2259 	int cap;
2260 
2261 	cap = dinfo->cfg.pcie.pcie_location;
2262 	if (cap == 0)
2263 		return;
2264 	pci_write_config(dev, cap + reg, value, width);
2265 }
2266 
2267 /*
2268  * Adjusts a PCI-e capability register by clearing the bits in mask
2269  * and setting the bits in (value & mask).  Bits not set in mask are
2270  * not adjusted.
2271  *
2272  * Returns the old value on success or all ones on failure.
2273  */
2274 uint32_t
2275 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2276     int width)
2277 {
2278 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2279 	uint32_t old, new;
2280 	int cap;
2281 
2282 	cap = dinfo->cfg.pcie.pcie_location;
2283 	if (cap == 0) {
2284 		if (width == 2)
2285 			return (0xffff);
2286 		return (0xffffffff);
2287 	}
2288 
2289 	old = pci_read_config(dev, cap + reg, width);
2290 	new = old & ~mask;
2291 	new |= (value & mask);
2292 	pci_write_config(dev, cap + reg, new, width);
2293 	return (old);
2294 }
2295 
2296 /*
2297  * Support for MSI message signalled interrupts.
2298  */
2299 void
2300 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2301     uint16_t data)
2302 {
2303 	struct pci_devinfo *dinfo = device_get_ivars(child);
2304 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2305 
2306 	/* Write data and address values. */
2307 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2308 	    address & 0xffffffff, 4);
2309 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2310 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2311 		    address >> 32, 4);
2312 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2313 		    data, 2);
2314 	} else
2315 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2316 		    2);
2317 
2318 	/* Enable MSI in the control register. */
2319 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2320 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2321 	    msi->msi_ctrl, 2);
2322 
2323 	/* Enable MSI -> HT mapping. */
2324 	pci_ht_map_msi(child, address);
2325 }
2326 
2327 void
2328 pci_disable_msi_method(device_t dev, device_t child)
2329 {
2330 	struct pci_devinfo *dinfo = device_get_ivars(child);
2331 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2332 
2333 	/* Disable MSI -> HT mapping. */
2334 	pci_ht_map_msi(child, 0);
2335 
2336 	/* Disable MSI in the control register. */
2337 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2338 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2339 	    msi->msi_ctrl, 2);
2340 }
2341 
2342 /*
2343  * Restore MSI registers during resume.  If MSI is enabled then
2344  * restore the data and address registers in addition to the control
2345  * register.
2346  */
2347 static void
2348 pci_resume_msi(device_t dev)
2349 {
2350 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2351 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2352 	uint64_t address;
2353 	uint16_t data;
2354 
2355 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2356 		address = msi->msi_addr;
2357 		data = msi->msi_data;
2358 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2359 		    address & 0xffffffff, 4);
2360 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2361 			pci_write_config(dev, msi->msi_location +
2362 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2363 			pci_write_config(dev, msi->msi_location +
2364 			    PCIR_MSI_DATA_64BIT, data, 2);
2365 		} else
2366 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2367 			    data, 2);
2368 	}
2369 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2370 	    2);
2371 }
2372 
2373 static int
2374 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2375 {
2376 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2377 	pcicfgregs *cfg = &dinfo->cfg;
2378 	struct resource_list_entry *rle;
2379 	struct msix_table_entry *mte;
2380 	struct msix_vector *mv;
2381 	uint64_t addr;
2382 	uint32_t data;
2383 	int error, i, j;
2384 
2385 	/*
2386 	 * Handle MSI first.  We try to find this IRQ among our list
2387 	 * of MSI IRQs.  If we find it, we request updated address and
2388 	 * data registers and apply the results.
2389 	 */
2390 	if (cfg->msi.msi_alloc > 0) {
2391 		/* If we don't have any active handlers, nothing to do. */
2392 		if (cfg->msi.msi_handlers == 0)
2393 			return (0);
2394 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2395 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2396 			    i + 1);
2397 			if (rle->start == irq) {
2398 				error = PCIB_MAP_MSI(device_get_parent(bus),
2399 				    dev, irq, &addr, &data);
2400 				if (error)
2401 					return (error);
2402 				pci_disable_msi(dev);
2403 				dinfo->cfg.msi.msi_addr = addr;
2404 				dinfo->cfg.msi.msi_data = data;
2405 				pci_enable_msi(dev, addr, data);
2406 				return (0);
2407 			}
2408 		}
2409 		return (ENOENT);
2410 	}
2411 
2412 	/*
2413 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2414 	 * we request the updated mapping info.  If that works, we go
2415 	 * through all the slots that use this IRQ and update them.
2416 	 */
2417 	if (cfg->msix.msix_alloc > 0) {
2418 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2419 			mv = &cfg->msix.msix_vectors[i];
2420 			if (mv->mv_irq == irq) {
2421 				error = PCIB_MAP_MSI(device_get_parent(bus),
2422 				    dev, irq, &addr, &data);
2423 				if (error)
2424 					return (error);
2425 				mv->mv_address = addr;
2426 				mv->mv_data = data;
2427 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2428 					mte = &cfg->msix.msix_table[j];
2429 					if (mte->mte_vector != i + 1)
2430 						continue;
2431 					if (mte->mte_handlers == 0)
2432 						continue;
2433 					pci_mask_msix(dev, j);
2434 					pci_enable_msix(dev, j, addr, data);
2435 					pci_unmask_msix(dev, j);
2436 				}
2437 			}
2438 		}
2439 		return (ENOENT);
2440 	}
2441 
2442 	return (ENOENT);
2443 }
2444 
2445 /*
2446  * Returns true if the specified device is blacklisted because MSI
2447  * doesn't work.
2448  */
2449 int
2450 pci_msi_device_blacklisted(device_t dev)
2451 {
2452 
2453 	if (!pci_honor_msi_blacklist)
2454 		return (0);
2455 
2456 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2457 }
2458 
2459 /*
2460  * Determine if MSI is blacklisted globally on this system.  Currently,
2461  * we just check for blacklisted chipsets as represented by the
2462  * host-PCI bridge at device 0:0:0.  In the future, it may become
2463  * necessary to check other system attributes, such as the kenv values
2464  * that give the motherboard manufacturer and model number.
2465  */
2466 static int
2467 pci_msi_blacklisted(void)
2468 {
2469 	device_t dev;
2470 
2471 	if (!pci_honor_msi_blacklist)
2472 		return (0);
2473 
2474 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2475 	if (!(pcie_chipset || pcix_chipset)) {
2476 		if (vm_guest != VM_GUEST_NO) {
2477 			/*
2478 			 * Whitelist older chipsets in virtual
2479 			 * machines known to support MSI.
2480 			 */
2481 			dev = pci_find_bsf(0, 0, 0);
2482 			if (dev != NULL)
2483 				return (!pci_has_quirk(pci_get_devid(dev),
2484 					PCI_QUIRK_ENABLE_MSI_VM));
2485 		}
2486 		return (1);
2487 	}
2488 
2489 	dev = pci_find_bsf(0, 0, 0);
2490 	if (dev != NULL)
2491 		return (pci_msi_device_blacklisted(dev));
2492 	return (0);
2493 }
2494 
2495 /*
2496  * Returns true if the specified device is blacklisted because MSI-X
2497  * doesn't work.  Note that this assumes that if MSI doesn't work,
2498  * MSI-X doesn't either.
2499  */
2500 int
2501 pci_msix_device_blacklisted(device_t dev)
2502 {
2503 
2504 	if (!pci_honor_msi_blacklist)
2505 		return (0);
2506 
2507 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2508 		return (1);
2509 
2510 	return (pci_msi_device_blacklisted(dev));
2511 }
2512 
2513 /*
2514  * Determine if MSI-X is blacklisted globally on this system.  If MSI
2515  * is blacklisted, assume that MSI-X is as well.  Check for additional
2516  * chipsets where MSI works but MSI-X does not.
2517  */
2518 static int
2519 pci_msix_blacklisted(void)
2520 {
2521 	device_t dev;
2522 
2523 	if (!pci_honor_msi_blacklist)
2524 		return (0);
2525 
2526 	dev = pci_find_bsf(0, 0, 0);
2527 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2528 	    PCI_QUIRK_DISABLE_MSIX))
2529 		return (1);
2530 
2531 	return (pci_msi_blacklisted());
2532 }
2533 
2534 /*
2535  * Attempt to allocate *count MSI messages.  The actual number allocated is
2536  * returned in *count.  After this function returns, each message will be
2537  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2538  */
2539 int
2540 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2541 {
2542 	struct pci_devinfo *dinfo = device_get_ivars(child);
2543 	pcicfgregs *cfg = &dinfo->cfg;
2544 	struct resource_list_entry *rle;
2545 	int actual, error, i, irqs[32];
2546 	uint16_t ctrl;
2547 
2548 	/* Don't let count == 0 get us into trouble. */
2549 	if (*count == 0)
2550 		return (EINVAL);
2551 
2552 	/* If rid 0 is allocated, then fail. */
2553 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2554 	if (rle != NULL && rle->res != NULL)
2555 		return (ENXIO);
2556 
2557 	/* Already have allocated messages? */
2558 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2559 		return (ENXIO);
2560 
2561 	/* If MSI is blacklisted for this system, fail. */
2562 	if (pci_msi_blacklisted())
2563 		return (ENXIO);
2564 
2565 	/* MSI capability present? */
2566 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2567 		return (ENODEV);
2568 
2569 	if (bootverbose)
2570 		device_printf(child,
2571 		    "attempting to allocate %d MSI vectors (%d supported)\n",
2572 		    *count, cfg->msi.msi_msgnum);
2573 
2574 	/* Don't ask for more than the device supports. */
2575 	actual = min(*count, cfg->msi.msi_msgnum);
2576 
2577 	/* Don't ask for more than 32 messages. */
2578 	actual = min(actual, 32);
2579 
2580 	/* MSI requires power of 2 number of messages. */
2581 	if (!powerof2(actual))
2582 		return (EINVAL);
2583 
2584 	for (;;) {
2585 		/* Try to allocate N messages. */
2586 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2587 		    actual, irqs);
2588 		if (error == 0)
2589 			break;
2590 		if (actual == 1)
2591 			return (error);
2592 
2593 		/* Try N / 2. */
2594 		actual >>= 1;
2595 	}
2596 
2597 	/*
2598 	 * We now have N actual messages mapped onto SYS_RES_IRQ
2599 	 * resources in the irqs[] array, so add new resources
2600 	 * starting at rid 1.
2601 	 */
2602 	for (i = 0; i < actual; i++)
2603 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2604 		    irqs[i], irqs[i], 1);
2605 
2606 	if (bootverbose) {
2607 		if (actual == 1)
2608 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2609 		else {
2610 			int run;
2611 
2612 			/*
2613 			 * Be fancy and try to print contiguous runs
2614 			 * of IRQ values as ranges.  'run' is true if
2615 			 * we are in a range.
2616 			 */
2617 			device_printf(child, "using IRQs %d", irqs[0]);
2618 			run = 0;
2619 			for (i = 1; i < actual; i++) {
2620 				/* Still in a run? */
2621 				if (irqs[i] == irqs[i - 1] + 1) {
2622 					run = 1;
2623 					continue;
2624 				}
2625 
2626 				/* Finish previous range. */
2627 				if (run) {
2628 					printf("-%d", irqs[i - 1]);
2629 					run = 0;
2630 				}
2631 
2632 				/* Start new range. */
2633 				printf(",%d", irqs[i]);
2634 			}
2635 
2636 			/* Unfinished range? */
2637 			if (run)
2638 				printf("-%d", irqs[actual - 1]);
2639 			printf(" for MSI\n");
2640 		}
2641 	}
2642 
2643 	/* Update control register with actual count. */
2644 	ctrl = cfg->msi.msi_ctrl;
2645 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2646 	ctrl |= (ffs(actual) - 1) << 4;
2647 	cfg->msi.msi_ctrl = ctrl;
2648 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2649 
2650 	/* Update counts of alloc'd messages. */
2651 	cfg->msi.msi_alloc = actual;
2652 	cfg->msi.msi_handlers = 0;
2653 	*count = actual;
2654 	return (0);
2655 }
2656 
2657 /* Release the MSI messages associated with this device. */
2658 int
2659 pci_release_msi_method(device_t dev, device_t child)
2660 {
2661 	struct pci_devinfo *dinfo = device_get_ivars(child);
2662 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2663 	struct resource_list_entry *rle;
2664 	int error, i, irqs[32];
2665 
2666 	/* Try MSI-X first. */
2667 	error = pci_release_msix(dev, child);
2668 	if (error != ENODEV)
2669 		return (error);
2670 
2671 	/* Do we have any messages to release? */
2672 	if (msi->msi_alloc == 0)
2673 		return (ENODEV);
2674 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2675 
2676 	/* Make sure none of the resources are allocated. */
2677 	if (msi->msi_handlers > 0)
2678 		return (EBUSY);
2679 	for (i = 0; i < msi->msi_alloc; i++) {
2680 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2681 		KASSERT(rle != NULL, ("missing MSI resource"));
2682 		if (rle->res != NULL)
2683 			return (EBUSY);
2684 		irqs[i] = rle->start;
2685 	}
2686 
2687 	/* Update control register with 0 count. */
2688 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2689 	    ("%s: MSI still enabled", __func__));
2690 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2691 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2692 	    msi->msi_ctrl, 2);
2693 
2694 	/* Release the messages. */
2695 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2696 	for (i = 0; i < msi->msi_alloc; i++)
2697 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2698 
2699 	/* Update alloc count. */
2700 	msi->msi_alloc = 0;
2701 	msi->msi_addr = 0;
2702 	msi->msi_data = 0;
2703 	return (0);
2704 }
2705 
2706 /*
2707  * Return the max supported MSI messages this device supports.
2708  * Basically, assuming the MD code can alloc messages, this function
2709  * should return the maximum value that pci_alloc_msi() can return.
2710  * Thus, it is subject to the tunables, etc.
2711  */
2712 int
2713 pci_msi_count_method(device_t dev, device_t child)
2714 {
2715 	struct pci_devinfo *dinfo = device_get_ivars(child);
2716 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2717 
2718 	if (pci_do_msi && msi->msi_location != 0)
2719 		return (msi->msi_msgnum);
2720 	return (0);
2721 }
2722 
2723 /* free pcicfgregs structure and all depending data structures */
2724 
2725 int
2726 pci_freecfg(struct pci_devinfo *dinfo)
2727 {
2728 	struct devlist *devlist_head;
2729 	struct pci_map *pm, *next;
2730 	int i;
2731 
2732 	devlist_head = &pci_devq;
2733 
2734 	if (dinfo->cfg.vpd.vpd_reg) {
2735 		free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
2736 		for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
2737 			free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
2738 		free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
2739 		for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
2740 			free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
2741 		free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
2742 	}
2743 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2744 		free(pm, M_DEVBUF);
2745 	}
2746 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2747 	free(dinfo, M_DEVBUF);
2748 
2749 	/* increment the generation count */
2750 	pci_generation++;
2751 
2752 	/* we're losing one device */
2753 	pci_numdevs--;
2754 	return (0);
2755 }
2756 
2757 /*
2758  * PCI power manangement
2759  */
2760 int
2761 pci_set_powerstate_method(device_t dev, device_t child, int state)
2762 {
2763 	struct pci_devinfo *dinfo = device_get_ivars(child);
2764 	pcicfgregs *cfg = &dinfo->cfg;
2765 	uint16_t status;
2766 	int oldstate, highest, delay;
2767 
2768 	if (cfg->pp.pp_cap == 0)
2769 		return (EOPNOTSUPP);
2770 
2771 	/*
2772 	 * Optimize a no state change request away.  While it would be OK to
2773 	 * write to the hardware in theory, some devices have shown odd
2774 	 * behavior when going from D3 -> D3.
2775 	 */
2776 	oldstate = pci_get_powerstate(child);
2777 	if (oldstate == state)
2778 		return (0);
2779 
2780 	/*
2781 	 * The PCI power management specification states that after a state
2782 	 * transition between PCI power states, system software must
2783 	 * guarantee a minimal delay before the function accesses the device.
2784 	 * Compute the worst case delay that we need to guarantee before we
2785 	 * access the device.  Many devices will be responsive much more
2786 	 * quickly than this delay, but there are some that don't respond
2787 	 * instantly to state changes.  Transitions to/from D3 state require
2788 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2789 	 * is done below with DELAY rather than a sleeper function because
2790 	 * this function can be called from contexts where we cannot sleep.
2791 	 */
2792 	highest = (oldstate > state) ? oldstate : state;
2793 	if (highest == PCI_POWERSTATE_D3)
2794 	    delay = 10000;
2795 	else if (highest == PCI_POWERSTATE_D2)
2796 	    delay = 200;
2797 	else
2798 	    delay = 0;
2799 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2800 	    & ~PCIM_PSTAT_DMASK;
2801 	switch (state) {
2802 	case PCI_POWERSTATE_D0:
2803 		status |= PCIM_PSTAT_D0;
2804 		break;
2805 	case PCI_POWERSTATE_D1:
2806 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2807 			return (EOPNOTSUPP);
2808 		status |= PCIM_PSTAT_D1;
2809 		break;
2810 	case PCI_POWERSTATE_D2:
2811 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2812 			return (EOPNOTSUPP);
2813 		status |= PCIM_PSTAT_D2;
2814 		break;
2815 	case PCI_POWERSTATE_D3:
2816 		status |= PCIM_PSTAT_D3;
2817 		break;
2818 	default:
2819 		return (EINVAL);
2820 	}
2821 
2822 	if (bootverbose)
2823 		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2824 		    state);
2825 
2826 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2827 	if (delay)
2828 		DELAY(delay);
2829 	return (0);
2830 }
2831 
2832 int
2833 pci_get_powerstate_method(device_t dev, device_t child)
2834 {
2835 	struct pci_devinfo *dinfo = device_get_ivars(child);
2836 	pcicfgregs *cfg = &dinfo->cfg;
2837 	uint16_t status;
2838 	int result;
2839 
2840 	if (cfg->pp.pp_cap != 0) {
2841 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2842 		switch (status & PCIM_PSTAT_DMASK) {
2843 		case PCIM_PSTAT_D0:
2844 			result = PCI_POWERSTATE_D0;
2845 			break;
2846 		case PCIM_PSTAT_D1:
2847 			result = PCI_POWERSTATE_D1;
2848 			break;
2849 		case PCIM_PSTAT_D2:
2850 			result = PCI_POWERSTATE_D2;
2851 			break;
2852 		case PCIM_PSTAT_D3:
2853 			result = PCI_POWERSTATE_D3;
2854 			break;
2855 		default:
2856 			result = PCI_POWERSTATE_UNKNOWN;
2857 			break;
2858 		}
2859 	} else {
2860 		/* No support, device is always at D0 */
2861 		result = PCI_POWERSTATE_D0;
2862 	}
2863 	return (result);
2864 }
2865 
2866 /*
2867  * Some convenience functions for PCI device drivers.
2868  */
2869 
2870 static __inline void
2871 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2872 {
2873 	uint16_t	command;
2874 
2875 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2876 	command |= bit;
2877 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2878 }
2879 
2880 static __inline void
2881 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2882 {
2883 	uint16_t	command;
2884 
2885 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2886 	command &= ~bit;
2887 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2888 }
2889 
2890 int
2891 pci_enable_busmaster_method(device_t dev, device_t child)
2892 {
2893 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2894 	return (0);
2895 }
2896 
2897 int
2898 pci_disable_busmaster_method(device_t dev, device_t child)
2899 {
2900 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2901 	return (0);
2902 }
2903 
2904 int
2905 pci_enable_io_method(device_t dev, device_t child, int space)
2906 {
2907 	uint16_t bit;
2908 
2909 	switch(space) {
2910 	case SYS_RES_IOPORT:
2911 		bit = PCIM_CMD_PORTEN;
2912 		break;
2913 	case SYS_RES_MEMORY:
2914 		bit = PCIM_CMD_MEMEN;
2915 		break;
2916 	default:
2917 		return (EINVAL);
2918 	}
2919 	pci_set_command_bit(dev, child, bit);
2920 	return (0);
2921 }
2922 
2923 int
2924 pci_disable_io_method(device_t dev, device_t child, int space)
2925 {
2926 	uint16_t bit;
2927 
2928 	switch(space) {
2929 	case SYS_RES_IOPORT:
2930 		bit = PCIM_CMD_PORTEN;
2931 		break;
2932 	case SYS_RES_MEMORY:
2933 		bit = PCIM_CMD_MEMEN;
2934 		break;
2935 	default:
2936 		return (EINVAL);
2937 	}
2938 	pci_clear_command_bit(dev, child, bit);
2939 	return (0);
2940 }
2941 
2942 /*
2943  * New style pci driver.  Parent device is either a pci-host-bridge or a
2944  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
2945  */
2946 
2947 void
2948 pci_print_verbose(struct pci_devinfo *dinfo)
2949 {
2950 
2951 	if (bootverbose) {
2952 		pcicfgregs *cfg = &dinfo->cfg;
2953 
2954 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2955 		    cfg->vendor, cfg->device, cfg->revid);
2956 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2957 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
2958 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2959 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2960 		    cfg->mfdev);
2961 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2962 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2963 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2964 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2965 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2966 		if (cfg->intpin > 0)
2967 			printf("\tintpin=%c, irq=%d\n",
2968 			    cfg->intpin +'a' -1, cfg->intline);
2969 		if (cfg->pp.pp_cap) {
2970 			uint16_t status;
2971 
2972 			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
2973 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
2974 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
2975 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
2976 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
2977 			    status & PCIM_PSTAT_DMASK);
2978 		}
2979 		if (cfg->msi.msi_location) {
2980 			int ctrl;
2981 
2982 			ctrl = cfg->msi.msi_ctrl;
2983 			printf("\tMSI supports %d message%s%s%s\n",
2984 			    cfg->msi.msi_msgnum,
2985 			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
2986 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
2987 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
2988 		}
2989 		if (cfg->msix.msix_location) {
2990 			printf("\tMSI-X supports %d message%s ",
2991 			    cfg->msix.msix_msgnum,
2992 			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
2993 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
2994 				printf("in map 0x%x\n",
2995 				    cfg->msix.msix_table_bar);
2996 			else
2997 				printf("in maps 0x%x and 0x%x\n",
2998 				    cfg->msix.msix_table_bar,
2999 				    cfg->msix.msix_pba_bar);
3000 		}
3001 	}
3002 }
3003 
3004 static int
3005 pci_porten(device_t dev)
3006 {
3007 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3008 }
3009 
3010 static int
3011 pci_memen(device_t dev)
3012 {
3013 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3014 }
3015 
3016 void
3017 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3018     int *bar64)
3019 {
3020 	struct pci_devinfo *dinfo;
3021 	pci_addr_t map, testval;
3022 	int ln2range;
3023 	uint16_t cmd;
3024 
3025 	/*
3026 	 * The device ROM BAR is special.  It is always a 32-bit
3027 	 * memory BAR.  Bit 0 is special and should not be set when
3028 	 * sizing the BAR.
3029 	 */
3030 	dinfo = device_get_ivars(dev);
3031 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3032 		map = pci_read_config(dev, reg, 4);
3033 		pci_write_config(dev, reg, 0xfffffffe, 4);
3034 		testval = pci_read_config(dev, reg, 4);
3035 		pci_write_config(dev, reg, map, 4);
3036 		*mapp = map;
3037 		*testvalp = testval;
3038 		if (bar64 != NULL)
3039 			*bar64 = 0;
3040 		return;
3041 	}
3042 
3043 	map = pci_read_config(dev, reg, 4);
3044 	ln2range = pci_maprange(map);
3045 	if (ln2range == 64)
3046 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3047 
3048 	/*
3049 	 * Disable decoding via the command register before
3050 	 * determining the BAR's length since we will be placing it in
3051 	 * a weird state.
3052 	 */
3053 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3054 	pci_write_config(dev, PCIR_COMMAND,
3055 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3056 
3057 	/*
3058 	 * Determine the BAR's length by writing all 1's.  The bottom
3059 	 * log_2(size) bits of the BAR will stick as 0 when we read
3060 	 * the value back.
3061 	 *
3062 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3063 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3064 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3065 	 *
3066 	 * Writes to both registers must be performed before attempting to
3067 	 * read back the size value.
3068 	 */
3069 	testval = 0;
3070 	pci_write_config(dev, reg, 0xffffffff, 4);
3071 	if (ln2range == 64) {
3072 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3073 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3074 	}
3075 	testval |= pci_read_config(dev, reg, 4);
3076 
3077 	/*
3078 	 * Restore the original value of the BAR.  We may have reprogrammed
3079 	 * the BAR of the low-level console device and when booting verbose,
3080 	 * we need the console device addressable.
3081 	 */
3082 	pci_write_config(dev, reg, map, 4);
3083 	if (ln2range == 64)
3084 		pci_write_config(dev, reg + 4, map >> 32, 4);
3085 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3086 
3087 	*mapp = map;
3088 	*testvalp = testval;
3089 	if (bar64 != NULL)
3090 		*bar64 = (ln2range == 64);
3091 }
3092 
3093 static void
3094 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3095 {
3096 	struct pci_devinfo *dinfo;
3097 	int ln2range;
3098 
3099 	/* The device ROM BAR is always a 32-bit memory BAR. */
3100 	dinfo = device_get_ivars(dev);
3101 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3102 		ln2range = 32;
3103 	else
3104 		ln2range = pci_maprange(pm->pm_value);
3105 	pci_write_config(dev, pm->pm_reg, base, 4);
3106 	if (ln2range == 64)
3107 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3108 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3109 	if (ln2range == 64)
3110 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3111 		    pm->pm_reg + 4, 4) << 32;
3112 }
3113 
3114 struct pci_map *
3115 pci_find_bar(device_t dev, int reg)
3116 {
3117 	struct pci_devinfo *dinfo;
3118 	struct pci_map *pm;
3119 
3120 	dinfo = device_get_ivars(dev);
3121 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3122 		if (pm->pm_reg == reg)
3123 			return (pm);
3124 	}
3125 	return (NULL);
3126 }
3127 
3128 int
3129 pci_bar_enabled(device_t dev, struct pci_map *pm)
3130 {
3131 	struct pci_devinfo *dinfo;
3132 	uint16_t cmd;
3133 
3134 	dinfo = device_get_ivars(dev);
3135 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3136 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3137 		return (0);
3138 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3139 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3140 		return ((cmd & PCIM_CMD_MEMEN) != 0);
3141 	else
3142 		return ((cmd & PCIM_CMD_PORTEN) != 0);
3143 }
3144 
3145 struct pci_map *
3146 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3147 {
3148 	struct pci_devinfo *dinfo;
3149 	struct pci_map *pm, *prev;
3150 
3151 	dinfo = device_get_ivars(dev);
3152 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3153 	pm->pm_reg = reg;
3154 	pm->pm_value = value;
3155 	pm->pm_size = size;
3156 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3157 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3158 		    reg));
3159 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3160 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3161 			break;
3162 	}
3163 	if (prev != NULL)
3164 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3165 	else
3166 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3167 	return (pm);
3168 }
3169 
3170 static void
3171 pci_restore_bars(device_t dev)
3172 {
3173 	struct pci_devinfo *dinfo;
3174 	struct pci_map *pm;
3175 	int ln2range;
3176 
3177 	dinfo = device_get_ivars(dev);
3178 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3179 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3180 			ln2range = 32;
3181 		else
3182 			ln2range = pci_maprange(pm->pm_value);
3183 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3184 		if (ln2range == 64)
3185 			pci_write_config(dev, pm->pm_reg + 4,
3186 			    pm->pm_value >> 32, 4);
3187 	}
3188 }
3189 
3190 /*
3191  * Add a resource based on a pci map register. Return 1 if the map
3192  * register is a 32bit map register or 2 if it is a 64bit register.
3193  */
3194 static int
3195 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3196     int force, int prefetch)
3197 {
3198 	struct pci_map *pm;
3199 	pci_addr_t base, map, testval;
3200 	pci_addr_t start, end, count;
3201 	int barlen, basezero, flags, maprange, mapsize, type;
3202 	uint16_t cmd;
3203 	struct resource *res;
3204 
3205 	/*
3206 	 * The BAR may already exist if the device is a CardBus card
3207 	 * whose CIS is stored in this BAR.
3208 	 */
3209 	pm = pci_find_bar(dev, reg);
3210 	if (pm != NULL) {
3211 		maprange = pci_maprange(pm->pm_value);
3212 		barlen = maprange == 64 ? 2 : 1;
3213 		return (barlen);
3214 	}
3215 
3216 	pci_read_bar(dev, reg, &map, &testval, NULL);
3217 	if (PCI_BAR_MEM(map)) {
3218 		type = SYS_RES_MEMORY;
3219 		if (map & PCIM_BAR_MEM_PREFETCH)
3220 			prefetch = 1;
3221 	} else
3222 		type = SYS_RES_IOPORT;
3223 	mapsize = pci_mapsize(testval);
3224 	base = pci_mapbase(map);
3225 #ifdef __PCI_BAR_ZERO_VALID
3226 	basezero = 0;
3227 #else
3228 	basezero = base == 0;
3229 #endif
3230 	maprange = pci_maprange(map);
3231 	barlen = maprange == 64 ? 2 : 1;
3232 
3233 	/*
3234 	 * For I/O registers, if bottom bit is set, and the next bit up
3235 	 * isn't clear, we know we have a BAR that doesn't conform to the
3236 	 * spec, so ignore it.  Also, sanity check the size of the data
3237 	 * areas to the type of memory involved.  Memory must be at least
3238 	 * 16 bytes in size, while I/O ranges must be at least 4.
3239 	 */
3240 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3241 		return (barlen);
3242 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3243 	    (type == SYS_RES_IOPORT && mapsize < 2))
3244 		return (barlen);
3245 
3246 	/* Save a record of this BAR. */
3247 	pm = pci_add_bar(dev, reg, map, mapsize);
3248 	if (bootverbose) {
3249 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3250 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3251 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3252 			printf(", port disabled\n");
3253 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3254 			printf(", memory disabled\n");
3255 		else
3256 			printf(", enabled\n");
3257 	}
3258 
3259 	/*
3260 	 * If base is 0, then we have problems if this architecture does
3261 	 * not allow that.  It is best to ignore such entries for the
3262 	 * moment.  These will be allocated later if the driver specifically
3263 	 * requests them.  However, some removable buses look better when
3264 	 * all resources are allocated, so allow '0' to be overriden.
3265 	 *
3266 	 * Similarly treat maps whose values is the same as the test value
3267 	 * read back.  These maps have had all f's written to them by the
3268 	 * BIOS in an attempt to disable the resources.
3269 	 */
3270 	if (!force && (basezero || map == testval))
3271 		return (barlen);
3272 	if ((u_long)base != base) {
3273 		device_printf(bus,
3274 		    "pci%d:%d:%d:%d bar %#x too many address bits",
3275 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3276 		    pci_get_function(dev), reg);
3277 		return (barlen);
3278 	}
3279 
3280 	/*
3281 	 * This code theoretically does the right thing, but has
3282 	 * undesirable side effects in some cases where peripherals
3283 	 * respond oddly to having these bits enabled.  Let the user
3284 	 * be able to turn them off (since pci_enable_io_modes is 1 by
3285 	 * default).
3286 	 */
3287 	if (pci_enable_io_modes) {
3288 		/* Turn on resources that have been left off by a lazy BIOS */
3289 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3290 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3291 			cmd |= PCIM_CMD_PORTEN;
3292 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3293 		}
3294 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3295 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3296 			cmd |= PCIM_CMD_MEMEN;
3297 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3298 		}
3299 	} else {
3300 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3301 			return (barlen);
3302 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3303 			return (barlen);
3304 	}
3305 
3306 	count = (pci_addr_t)1 << mapsize;
3307 	flags = RF_ALIGNMENT_LOG2(mapsize);
3308 	if (prefetch)
3309 		flags |= RF_PREFETCHABLE;
3310 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3311 		start = 0;	/* Let the parent decide. */
3312 		end = ~0;
3313 	} else {
3314 		start = base;
3315 		end = base + count - 1;
3316 	}
3317 	resource_list_add(rl, type, reg, start, end, count);
3318 
3319 	/*
3320 	 * Try to allocate the resource for this BAR from our parent
3321 	 * so that this resource range is already reserved.  The
3322 	 * driver for this device will later inherit this resource in
3323 	 * pci_alloc_resource().
3324 	 */
3325 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3326 	    flags);
3327 	if ((pci_do_realloc_bars
3328 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3329 	    && res == NULL && (start != 0 || end != ~0)) {
3330 		/*
3331 		 * If the allocation fails, try to allocate a resource for
3332 		 * this BAR using any available range.  The firmware felt
3333 		 * it was important enough to assign a resource, so don't
3334 		 * disable decoding if we can help it.
3335 		 */
3336 		resource_list_delete(rl, type, reg);
3337 		resource_list_add(rl, type, reg, 0, ~0, count);
3338 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3339 		    count, flags);
3340 	}
3341 	if (res == NULL) {
3342 		/*
3343 		 * If the allocation fails, delete the resource list entry
3344 		 * and disable decoding for this device.
3345 		 *
3346 		 * If the driver requests this resource in the future,
3347 		 * pci_reserve_map() will try to allocate a fresh
3348 		 * resource range.
3349 		 */
3350 		resource_list_delete(rl, type, reg);
3351 		pci_disable_io(dev, type);
3352 		if (bootverbose)
3353 			device_printf(bus,
3354 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3355 			    pci_get_domain(dev), pci_get_bus(dev),
3356 			    pci_get_slot(dev), pci_get_function(dev), reg);
3357 	} else {
3358 		start = rman_get_start(res);
3359 		pci_write_bar(dev, pm, start);
3360 	}
3361 	return (barlen);
3362 }
3363 
3364 /*
3365  * For ATA devices we need to decide early what addressing mode to use.
3366  * Legacy demands that the primary and secondary ATA ports sits on the
3367  * same addresses that old ISA hardware did. This dictates that we use
3368  * those addresses and ignore the BAR's if we cannot set PCI native
3369  * addressing mode.
3370  */
3371 static void
3372 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3373     uint32_t prefetchmask)
3374 {
3375 	int rid, type, progif;
3376 #if 0
3377 	/* if this device supports PCI native addressing use it */
3378 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3379 	if ((progif & 0x8a) == 0x8a) {
3380 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3381 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3382 			printf("Trying ATA native PCI addressing mode\n");
3383 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3384 		}
3385 	}
3386 #endif
3387 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3388 	type = SYS_RES_IOPORT;
3389 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3390 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3391 		    prefetchmask & (1 << 0));
3392 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3393 		    prefetchmask & (1 << 1));
3394 	} else {
3395 		rid = PCIR_BAR(0);
3396 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3397 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3398 		    0x1f7, 8, 0);
3399 		rid = PCIR_BAR(1);
3400 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3401 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3402 		    0x3f6, 1, 0);
3403 	}
3404 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3405 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3406 		    prefetchmask & (1 << 2));
3407 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3408 		    prefetchmask & (1 << 3));
3409 	} else {
3410 		rid = PCIR_BAR(2);
3411 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3412 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3413 		    0x177, 8, 0);
3414 		rid = PCIR_BAR(3);
3415 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3416 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3417 		    0x376, 1, 0);
3418 	}
3419 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3420 	    prefetchmask & (1 << 4));
3421 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3422 	    prefetchmask & (1 << 5));
3423 }
3424 
3425 static void
3426 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3427 {
3428 	struct pci_devinfo *dinfo = device_get_ivars(dev);
3429 	pcicfgregs *cfg = &dinfo->cfg;
3430 	char tunable_name[64];
3431 	int irq;
3432 
3433 	/* Has to have an intpin to have an interrupt. */
3434 	if (cfg->intpin == 0)
3435 		return;
3436 
3437 	/* Let the user override the IRQ with a tunable. */
3438 	irq = PCI_INVALID_IRQ;
3439 	snprintf(tunable_name, sizeof(tunable_name),
3440 	    "hw.pci%d.%d.%d.INT%c.irq",
3441 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3442 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3443 		irq = PCI_INVALID_IRQ;
3444 
3445 	/*
3446 	 * If we didn't get an IRQ via the tunable, then we either use the
3447 	 * IRQ value in the intline register or we ask the bus to route an
3448 	 * interrupt for us.  If force_route is true, then we only use the
3449 	 * value in the intline register if the bus was unable to assign an
3450 	 * IRQ.
3451 	 */
3452 	if (!PCI_INTERRUPT_VALID(irq)) {
3453 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3454 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3455 		if (!PCI_INTERRUPT_VALID(irq))
3456 			irq = cfg->intline;
3457 	}
3458 
3459 	/* If after all that we don't have an IRQ, just bail. */
3460 	if (!PCI_INTERRUPT_VALID(irq))
3461 		return;
3462 
3463 	/* Update the config register if it changed. */
3464 	if (irq != cfg->intline) {
3465 		cfg->intline = irq;
3466 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3467 	}
3468 
3469 	/* Add this IRQ as rid 0 interrupt resource. */
3470 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3471 }
3472 
3473 /* Perform early OHCI takeover from SMM. */
3474 static void
3475 ohci_early_takeover(device_t self)
3476 {
3477 	struct resource *res;
3478 	uint32_t ctl;
3479 	int rid;
3480 	int i;
3481 
3482 	rid = PCIR_BAR(0);
3483 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3484 	if (res == NULL)
3485 		return;
3486 
3487 	ctl = bus_read_4(res, OHCI_CONTROL);
3488 	if (ctl & OHCI_IR) {
3489 		if (bootverbose)
3490 			printf("ohci early: "
3491 			    "SMM active, request owner change\n");
3492 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3493 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3494 			DELAY(1000);
3495 			ctl = bus_read_4(res, OHCI_CONTROL);
3496 		}
3497 		if (ctl & OHCI_IR) {
3498 			if (bootverbose)
3499 				printf("ohci early: "
3500 				    "SMM does not respond, resetting\n");
3501 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3502 		}
3503 		/* Disable interrupts */
3504 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3505 	}
3506 
3507 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3508 }
3509 
3510 /* Perform early UHCI takeover from SMM. */
3511 static void
3512 uhci_early_takeover(device_t self)
3513 {
3514 	struct resource *res;
3515 	int rid;
3516 
3517 	/*
3518 	 * Set the PIRQD enable bit and switch off all the others. We don't
3519 	 * want legacy support to interfere with us XXX Does this also mean
3520 	 * that the BIOS won't touch the keyboard anymore if it is connected
3521 	 * to the ports of the root hub?
3522 	 */
3523 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3524 
3525 	/* Disable interrupts */
3526 	rid = PCI_UHCI_BASE_REG;
3527 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3528 	if (res != NULL) {
3529 		bus_write_2(res, UHCI_INTR, 0);
3530 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3531 	}
3532 }
3533 
3534 /* Perform early EHCI takeover from SMM. */
3535 static void
3536 ehci_early_takeover(device_t self)
3537 {
3538 	struct resource *res;
3539 	uint32_t cparams;
3540 	uint32_t eec;
3541 	uint8_t eecp;
3542 	uint8_t bios_sem;
3543 	uint8_t offs;
3544 	int rid;
3545 	int i;
3546 
3547 	rid = PCIR_BAR(0);
3548 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3549 	if (res == NULL)
3550 		return;
3551 
3552 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3553 
3554 	/* Synchronise with the BIOS if it owns the controller. */
3555 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3556 	    eecp = EHCI_EECP_NEXT(eec)) {
3557 		eec = pci_read_config(self, eecp, 4);
3558 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3559 			continue;
3560 		}
3561 		bios_sem = pci_read_config(self, eecp +
3562 		    EHCI_LEGSUP_BIOS_SEM, 1);
3563 		if (bios_sem == 0) {
3564 			continue;
3565 		}
3566 		if (bootverbose)
3567 			printf("ehci early: "
3568 			    "SMM active, request owner change\n");
3569 
3570 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3571 
3572 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3573 			DELAY(1000);
3574 			bios_sem = pci_read_config(self, eecp +
3575 			    EHCI_LEGSUP_BIOS_SEM, 1);
3576 		}
3577 
3578 		if (bios_sem != 0) {
3579 			if (bootverbose)
3580 				printf("ehci early: "
3581 				    "SMM does not respond\n");
3582 		}
3583 		/* Disable interrupts */
3584 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3585 		bus_write_4(res, offs + EHCI_USBINTR, 0);
3586 	}
3587 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3588 }
3589 
3590 /* Perform early XHCI takeover from SMM. */
3591 static void
3592 xhci_early_takeover(device_t self)
3593 {
3594 	struct resource *res;
3595 	uint32_t cparams;
3596 	uint32_t eec;
3597 	uint8_t eecp;
3598 	uint8_t bios_sem;
3599 	uint8_t offs;
3600 	int rid;
3601 	int i;
3602 
3603 	rid = PCIR_BAR(0);
3604 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3605 	if (res == NULL)
3606 		return;
3607 
3608 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3609 
3610 	eec = -1;
3611 
3612 	/* Synchronise with the BIOS if it owns the controller. */
3613 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3614 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3615 		eec = bus_read_4(res, eecp);
3616 
3617 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3618 			continue;
3619 
3620 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3621 		if (bios_sem == 0)
3622 			continue;
3623 
3624 		if (bootverbose)
3625 			printf("xhci early: "
3626 			    "SMM active, request owner change\n");
3627 
3628 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3629 
3630 		/* wait a maximum of 5 second */
3631 
3632 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3633 			DELAY(1000);
3634 			bios_sem = bus_read_1(res, eecp +
3635 			    XHCI_XECP_BIOS_SEM);
3636 		}
3637 
3638 		if (bios_sem != 0) {
3639 			if (bootverbose)
3640 				printf("xhci early: "
3641 				    "SMM does not respond\n");
3642 		}
3643 
3644 		/* Disable interrupts */
3645 		offs = bus_read_1(res, XHCI_CAPLENGTH);
3646 		bus_write_4(res, offs + XHCI_USBCMD, 0);
3647 		bus_read_4(res, offs + XHCI_USBSTS);
3648 	}
3649 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3650 }
3651 
3652 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
3653 static void
3654 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3655     struct resource_list *rl)
3656 {
3657 	struct resource *res;
3658 	char *cp;
3659 	rman_res_t start, end, count;
3660 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3661 
3662 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3663 	case PCIM_HDRTYPE_BRIDGE:
3664 		sec_reg = PCIR_SECBUS_1;
3665 		sub_reg = PCIR_SUBBUS_1;
3666 		break;
3667 	case PCIM_HDRTYPE_CARDBUS:
3668 		sec_reg = PCIR_SECBUS_2;
3669 		sub_reg = PCIR_SUBBUS_2;
3670 		break;
3671 	default:
3672 		return;
3673 	}
3674 
3675 	/*
3676 	 * If the existing bus range is valid, attempt to reserve it
3677 	 * from our parent.  If this fails for any reason, clear the
3678 	 * secbus and subbus registers.
3679 	 *
3680 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3681 	 * This would at least preserve the existing sec_bus if it is
3682 	 * valid.
3683 	 */
3684 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3685 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3686 
3687 	/* Quirk handling. */
3688 	switch (pci_get_devid(dev)) {
3689 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3690 		sup_bus = pci_read_config(dev, 0x41, 1);
3691 		if (sup_bus != 0xff) {
3692 			sec_bus = sup_bus + 1;
3693 			sub_bus = sup_bus + 1;
3694 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3695 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3696 		}
3697 		break;
3698 
3699 	case 0x00dd10de:
3700 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3701 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3702 			break;
3703 		if (strncmp(cp, "Compal", 6) != 0) {
3704 			freeenv(cp);
3705 			break;
3706 		}
3707 		freeenv(cp);
3708 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3709 			break;
3710 		if (strncmp(cp, "08A0", 4) != 0) {
3711 			freeenv(cp);
3712 			break;
3713 		}
3714 		freeenv(cp);
3715 		if (sub_bus < 0xa) {
3716 			sub_bus = 0xa;
3717 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3718 		}
3719 		break;
3720 	}
3721 
3722 	if (bootverbose)
3723 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3724 	if (sec_bus > 0 && sub_bus >= sec_bus) {
3725 		start = sec_bus;
3726 		end = sub_bus;
3727 		count = end - start + 1;
3728 
3729 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3730 
3731 		/*
3732 		 * If requested, clear secondary bus registers in
3733 		 * bridge devices to force a complete renumbering
3734 		 * rather than reserving the existing range.  However,
3735 		 * preserve the existing size.
3736 		 */
3737 		if (pci_clear_buses)
3738 			goto clear;
3739 
3740 		rid = 0;
3741 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3742 		    start, end, count, 0);
3743 		if (res != NULL)
3744 			return;
3745 
3746 		if (bootverbose)
3747 			device_printf(bus,
3748 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3749 			    pci_get_domain(dev), pci_get_bus(dev),
3750 			    pci_get_slot(dev), pci_get_function(dev));
3751 	}
3752 
3753 clear:
3754 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3755 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3756 }
3757 
3758 static struct resource *
3759 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3760     rman_res_t end, rman_res_t count, u_int flags)
3761 {
3762 	struct pci_devinfo *dinfo;
3763 	pcicfgregs *cfg;
3764 	struct resource_list *rl;
3765 	struct resource *res;
3766 	int sec_reg, sub_reg;
3767 
3768 	dinfo = device_get_ivars(child);
3769 	cfg = &dinfo->cfg;
3770 	rl = &dinfo->resources;
3771 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3772 	case PCIM_HDRTYPE_BRIDGE:
3773 		sec_reg = PCIR_SECBUS_1;
3774 		sub_reg = PCIR_SUBBUS_1;
3775 		break;
3776 	case PCIM_HDRTYPE_CARDBUS:
3777 		sec_reg = PCIR_SECBUS_2;
3778 		sub_reg = PCIR_SUBBUS_2;
3779 		break;
3780 	default:
3781 		return (NULL);
3782 	}
3783 
3784 	if (*rid != 0)
3785 		return (NULL);
3786 
3787 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3788 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3789 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3790 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3791 		    start, end, count, flags & ~RF_ACTIVE);
3792 		if (res == NULL) {
3793 			resource_list_delete(rl, PCI_RES_BUS, *rid);
3794 			device_printf(child, "allocating %ju bus%s failed\n",
3795 			    count, count == 1 ? "" : "es");
3796 			return (NULL);
3797 		}
3798 		if (bootverbose)
3799 			device_printf(child,
3800 			    "Lazy allocation of %ju bus%s at %ju\n", count,
3801 			    count == 1 ? "" : "es", rman_get_start(res));
3802 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3803 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3804 	}
3805 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3806 	    end, count, flags));
3807 }
3808 #endif
3809 
3810 static int
3811 pci_ea_bei_to_rid(device_t dev, int bei)
3812 {
3813 #ifdef PCI_IOV
3814 	struct pci_devinfo *dinfo;
3815 	int iov_pos;
3816 	struct pcicfg_iov *iov;
3817 
3818 	dinfo = device_get_ivars(dev);
3819 	iov = dinfo->cfg.iov;
3820 	if (iov != NULL)
3821 		iov_pos = iov->iov_pos;
3822 	else
3823 		iov_pos = 0;
3824 #endif
3825 
3826 	/* Check if matches BAR */
3827 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3828 	    (bei <= PCIM_EA_BEI_BAR_5))
3829 		return (PCIR_BAR(bei));
3830 
3831 	/* Check ROM */
3832 	if (bei == PCIM_EA_BEI_ROM)
3833 		return (PCIR_BIOS);
3834 
3835 #ifdef PCI_IOV
3836 	/* Check if matches VF_BAR */
3837 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3838 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3839 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3840 		    iov_pos);
3841 #endif
3842 
3843 	return (-1);
3844 }
3845 
3846 int
3847 pci_ea_is_enabled(device_t dev, int rid)
3848 {
3849 	struct pci_ea_entry *ea;
3850 	struct pci_devinfo *dinfo;
3851 
3852 	dinfo = device_get_ivars(dev);
3853 
3854 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3855 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3856 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3857 	}
3858 
3859 	return (0);
3860 }
3861 
3862 void
3863 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
3864 {
3865 	struct pci_ea_entry *ea;
3866 	struct pci_devinfo *dinfo;
3867 	pci_addr_t start, end, count;
3868 	struct resource_list *rl;
3869 	int type, flags, rid;
3870 	struct resource *res;
3871 	uint32_t tmp;
3872 #ifdef PCI_IOV
3873 	struct pcicfg_iov *iov;
3874 #endif
3875 
3876 	dinfo = device_get_ivars(dev);
3877 	rl = &dinfo->resources;
3878 	flags = 0;
3879 
3880 #ifdef PCI_IOV
3881 	iov = dinfo->cfg.iov;
3882 #endif
3883 
3884 	if (dinfo->cfg.ea.ea_location == 0)
3885 		return;
3886 
3887 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3888 		/*
3889 		 * TODO: Ignore EA-BAR if is not enabled.
3890 		 *   Currently the EA implementation supports
3891 		 *   only situation, where EA structure contains
3892 		 *   predefined entries. In case they are not enabled
3893 		 *   leave them unallocated and proceed with
3894 		 *   a legacy-BAR mechanism.
3895 		 */
3896 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
3897 			continue;
3898 
3899 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
3900 		case PCIM_EA_P_MEM_PREFETCH:
3901 		case PCIM_EA_P_VF_MEM_PREFETCH:
3902 			flags = RF_PREFETCHABLE;
3903 			/* FALLTHROUGH */
3904 		case PCIM_EA_P_VF_MEM:
3905 		case PCIM_EA_P_MEM:
3906 			type = SYS_RES_MEMORY;
3907 			break;
3908 		case PCIM_EA_P_IO:
3909 			type = SYS_RES_IOPORT;
3910 			break;
3911 		default:
3912 			continue;
3913 		}
3914 
3915 		if (alloc_iov != 0) {
3916 #ifdef PCI_IOV
3917 			/* Allocating IOV, confirm BEI matches */
3918 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
3919 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
3920 				continue;
3921 #else
3922 			continue;
3923 #endif
3924 		} else {
3925 			/* Allocating BAR, confirm BEI matches */
3926 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
3927 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
3928 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
3929 				continue;
3930 		}
3931 
3932 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
3933 		if (rid < 0)
3934 			continue;
3935 
3936 		/* Skip resources already allocated by EA */
3937 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
3938 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
3939 			continue;
3940 
3941 		start = ea->eae_base;
3942 		count = ea->eae_max_offset + 1;
3943 #ifdef PCI_IOV
3944 		if (iov != NULL)
3945 			count = count * iov->iov_num_vfs;
3946 #endif
3947 		end = start + count - 1;
3948 		if (count == 0)
3949 			continue;
3950 
3951 		resource_list_add(rl, type, rid, start, end, count);
3952 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
3953 		    flags);
3954 		if (res == NULL) {
3955 			resource_list_delete(rl, type, rid);
3956 
3957 			/*
3958 			 * Failed to allocate using EA, disable entry.
3959 			 * Another attempt to allocation will be performed
3960 			 * further, but this time using legacy BAR registers
3961 			 */
3962 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
3963 			tmp &= ~PCIM_EA_ENABLE;
3964 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
3965 
3966 			/*
3967 			 * Disabling entry might fail in case it is hardwired.
3968 			 * Read flags again to match current status.
3969 			 */
3970 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
3971 
3972 			continue;
3973 		}
3974 
3975 		/* As per specification, fill BAR with zeros */
3976 		pci_write_config(dev, rid, 0, 4);
3977 	}
3978 }
3979 
3980 void
3981 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
3982 {
3983 	struct pci_devinfo *dinfo;
3984 	pcicfgregs *cfg;
3985 	struct resource_list *rl;
3986 	const struct pci_quirk *q;
3987 	uint32_t devid;
3988 	int i;
3989 
3990 	dinfo = device_get_ivars(dev);
3991 	cfg = &dinfo->cfg;
3992 	rl = &dinfo->resources;
3993 	devid = (cfg->device << 16) | cfg->vendor;
3994 
3995 	/* Allocate resources using Enhanced Allocation */
3996 	pci_add_resources_ea(bus, dev, 0);
3997 
3998 	/* ATA devices needs special map treatment */
3999 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
4000 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4001 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4002 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4003 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
4004 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
4005 	else
4006 		for (i = 0; i < cfg->nummaps;) {
4007 			/* Skip resources already managed by EA */
4008 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4009 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4010 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4011 				i++;
4012 				continue;
4013 			}
4014 
4015 			/*
4016 			 * Skip quirked resources.
4017 			 */
4018 			for (q = &pci_quirks[0]; q->devid != 0; q++)
4019 				if (q->devid == devid &&
4020 				    q->type == PCI_QUIRK_UNMAP_REG &&
4021 				    q->arg1 == PCIR_BAR(i))
4022 					break;
4023 			if (q->devid != 0) {
4024 				i++;
4025 				continue;
4026 			}
4027 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4028 			    prefetchmask & (1 << i));
4029 		}
4030 
4031 	/*
4032 	 * Add additional, quirked resources.
4033 	 */
4034 	for (q = &pci_quirks[0]; q->devid != 0; q++)
4035 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4036 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4037 
4038 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4039 #ifdef __PCI_REROUTE_INTERRUPT
4040 		/*
4041 		 * Try to re-route interrupts. Sometimes the BIOS or
4042 		 * firmware may leave bogus values in these registers.
4043 		 * If the re-route fails, then just stick with what we
4044 		 * have.
4045 		 */
4046 		pci_assign_interrupt(bus, dev, 1);
4047 #else
4048 		pci_assign_interrupt(bus, dev, 0);
4049 #endif
4050 	}
4051 
4052 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4053 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4054 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4055 			xhci_early_takeover(dev);
4056 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4057 			ehci_early_takeover(dev);
4058 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4059 			ohci_early_takeover(dev);
4060 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4061 			uhci_early_takeover(dev);
4062 	}
4063 
4064 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
4065 	/*
4066 	 * Reserve resources for secondary bus ranges behind bridge
4067 	 * devices.
4068 	 */
4069 	pci_reserve_secbus(bus, dev, cfg, rl);
4070 #endif
4071 }
4072 
4073 static struct pci_devinfo *
4074 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4075     int slot, int func)
4076 {
4077 	struct pci_devinfo *dinfo;
4078 
4079 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4080 	if (dinfo != NULL)
4081 		pci_add_child(dev, dinfo);
4082 
4083 	return (dinfo);
4084 }
4085 
4086 void
4087 pci_add_children(device_t dev, int domain, int busno)
4088 {
4089 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4090 	device_t pcib = device_get_parent(dev);
4091 	struct pci_devinfo *dinfo;
4092 	int maxslots;
4093 	int s, f, pcifunchigh;
4094 	uint8_t hdrtype;
4095 	int first_func;
4096 
4097 	/*
4098 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4099 	 * enable ARI.  We must enable ARI before detecting the rest of the
4100 	 * functions on this bus as ARI changes the set of slots and functions
4101 	 * that are legal on this bus.
4102 	 */
4103 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4104 	if (dinfo != NULL && pci_enable_ari)
4105 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4106 
4107 	/*
4108 	 * Start looking for new devices on slot 0 at function 1 because we
4109 	 * just identified the device at slot 0, function 0.
4110 	 */
4111 	first_func = 1;
4112 
4113 	maxslots = PCIB_MAXSLOTS(pcib);
4114 	for (s = 0; s <= maxslots; s++, first_func = 0) {
4115 		pcifunchigh = 0;
4116 		f = 0;
4117 		DELAY(1);
4118 		hdrtype = REG(PCIR_HDRTYPE, 1);
4119 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4120 			continue;
4121 		if (hdrtype & PCIM_MFDEV)
4122 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4123 		for (f = first_func; f <= pcifunchigh; f++)
4124 			pci_identify_function(pcib, dev, domain, busno, s, f);
4125 	}
4126 #undef REG
4127 }
4128 
4129 int
4130 pci_rescan_method(device_t dev)
4131 {
4132 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4133 	device_t pcib = device_get_parent(dev);
4134 	device_t child, *devlist, *unchanged;
4135 	int devcount, error, i, j, maxslots, oldcount;
4136 	int busno, domain, s, f, pcifunchigh;
4137 	uint8_t hdrtype;
4138 
4139 	/* No need to check for ARI on a rescan. */
4140 	error = device_get_children(dev, &devlist, &devcount);
4141 	if (error)
4142 		return (error);
4143 	if (devcount != 0) {
4144 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4145 		    M_NOWAIT | M_ZERO);
4146 		if (unchanged == NULL) {
4147 			free(devlist, M_TEMP);
4148 			return (ENOMEM);
4149 		}
4150 	} else
4151 		unchanged = NULL;
4152 
4153 	domain = pcib_get_domain(dev);
4154 	busno = pcib_get_bus(dev);
4155 	maxslots = PCIB_MAXSLOTS(pcib);
4156 	for (s = 0; s <= maxslots; s++) {
4157 		/* If function 0 is not present, skip to the next slot. */
4158 		f = 0;
4159 		if (REG(PCIR_VENDOR, 2) == 0xffff)
4160 			continue;
4161 		pcifunchigh = 0;
4162 		hdrtype = REG(PCIR_HDRTYPE, 1);
4163 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4164 			continue;
4165 		if (hdrtype & PCIM_MFDEV)
4166 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4167 		for (f = 0; f <= pcifunchigh; f++) {
4168 			if (REG(PCIR_VENDOR, 2) == 0xffff)
4169 				continue;
4170 
4171 			/*
4172 			 * Found a valid function.  Check if a
4173 			 * device_t for this device already exists.
4174 			 */
4175 			for (i = 0; i < devcount; i++) {
4176 				child = devlist[i];
4177 				if (child == NULL)
4178 					continue;
4179 				if (pci_get_slot(child) == s &&
4180 				    pci_get_function(child) == f) {
4181 					unchanged[i] = child;
4182 					goto next_func;
4183 				}
4184 			}
4185 
4186 			pci_identify_function(pcib, dev, domain, busno, s, f);
4187 		next_func:;
4188 		}
4189 	}
4190 
4191 	/* Remove devices that are no longer present. */
4192 	for (i = 0; i < devcount; i++) {
4193 		if (unchanged[i] != NULL)
4194 			continue;
4195 		device_delete_child(dev, devlist[i]);
4196 	}
4197 
4198 	free(devlist, M_TEMP);
4199 	oldcount = devcount;
4200 
4201 	/* Try to attach the devices just added. */
4202 	error = device_get_children(dev, &devlist, &devcount);
4203 	if (error) {
4204 		free(unchanged, M_TEMP);
4205 		return (error);
4206 	}
4207 
4208 	for (i = 0; i < devcount; i++) {
4209 		for (j = 0; j < oldcount; j++) {
4210 			if (devlist[i] == unchanged[j])
4211 				goto next_device;
4212 		}
4213 
4214 		device_probe_and_attach(devlist[i]);
4215 	next_device:;
4216 	}
4217 
4218 	free(unchanged, M_TEMP);
4219 	free(devlist, M_TEMP);
4220 	return (0);
4221 #undef REG
4222 }
4223 
4224 #ifdef PCI_IOV
4225 device_t
4226 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4227     uint16_t did)
4228 {
4229 	struct pci_devinfo *vf_dinfo;
4230 	device_t pcib;
4231 	int busno, slot, func;
4232 
4233 	pcib = device_get_parent(bus);
4234 
4235 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4236 
4237 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4238 	    slot, func, vid, did);
4239 
4240 	vf_dinfo->cfg.flags |= PCICFG_VF;
4241 	pci_add_child(bus, vf_dinfo);
4242 
4243 	return (vf_dinfo->cfg.dev);
4244 }
4245 
4246 device_t
4247 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4248     uint16_t vid, uint16_t did)
4249 {
4250 
4251 	return (pci_add_iov_child(bus, pf, rid, vid, did));
4252 }
4253 #endif
4254 
4255 static void
4256 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4257 {
4258 	int aer;
4259 	uint32_t r;
4260 	uint16_t r2;
4261 
4262 	if (dinfo->cfg.pcie.pcie_location != 0 &&
4263 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4264 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4265 		    PCIER_ROOT_CTL, 2);
4266 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4267 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4268 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4269 		    PCIER_ROOT_CTL, r2, 2);
4270 	}
4271 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4272 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4273 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4274 		if (r != 0 && bootverbose) {
4275 			pci_printf(&dinfo->cfg,
4276 			    "clearing AER UC 0x%08x -> 0x%08x\n",
4277 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4278 			    4));
4279 		}
4280 
4281 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4282 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4283 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4284 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4285 		    PCIM_AER_UC_POISONED_TLP |
4286 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4287 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4288 		    PCIM_AER_UC_COMPLETER_ABORT |
4289 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4290 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4291 		    PCIM_AER_UC_MALFORMED_TLP |
4292 		    PCIM_AER_UC_ECRC_ERROR |
4293 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4294 		    PCIM_AER_UC_ACS_VIOLATION |
4295 		    PCIM_AER_UC_INTERNAL_ERROR |
4296 		    PCIM_AER_UC_MC_BLOCKED_TLP |
4297 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4298 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4299 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4300 
4301 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4302 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4303 		if (r != 0 && bootverbose) {
4304 			pci_printf(&dinfo->cfg,
4305 			    "clearing AER COR 0x%08x -> 0x%08x\n",
4306 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4307 			    4));
4308 		}
4309 
4310 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4311 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4312 		    PCIM_AER_COR_BAD_TLP |
4313 		    PCIM_AER_COR_BAD_DLLP |
4314 		    PCIM_AER_COR_REPLAY_ROLLOVER |
4315 		    PCIM_AER_COR_REPLAY_TIMEOUT |
4316 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4317 		    PCIM_AER_COR_INTERNAL_ERROR |
4318 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4319 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4320 
4321 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4322 		    PCIER_DEVICE_CTL, 2);
4323 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4324 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4325 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4326 		    PCIER_DEVICE_CTL, r, 2);
4327 	}
4328 }
4329 
4330 void
4331 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4332 {
4333 	device_t dev;
4334 
4335 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1);
4336 	device_set_ivars(dev, dinfo);
4337 	resource_list_init(&dinfo->resources);
4338 	pci_cfg_save(dev, dinfo, 0);
4339 	pci_cfg_restore(dev, dinfo);
4340 	pci_print_verbose(dinfo);
4341 	pci_add_resources(bus, dev, 0, 0);
4342 	pci_child_added(dinfo->cfg.dev);
4343 
4344 	if (pci_clear_aer_on_attach)
4345 		pci_add_child_clear_aer(dev, dinfo);
4346 
4347 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4348 }
4349 
4350 void
4351 pci_child_added_method(device_t dev, device_t child)
4352 {
4353 
4354 }
4355 
4356 static int
4357 pci_probe(device_t dev)
4358 {
4359 
4360 	device_set_desc(dev, "PCI bus");
4361 
4362 	/* Allow other subclasses to override this driver. */
4363 	return (BUS_PROBE_GENERIC);
4364 }
4365 
4366 int
4367 pci_attach_common(device_t dev)
4368 {
4369 	struct pci_softc *sc;
4370 	int busno, domain;
4371 #ifdef PCI_RES_BUS
4372 	int rid;
4373 #endif
4374 
4375 	sc = device_get_softc(dev);
4376 	domain = pcib_get_domain(dev);
4377 	busno = pcib_get_bus(dev);
4378 #ifdef PCI_RES_BUS
4379 	rid = 0;
4380 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4381 	    1, 0);
4382 	if (sc->sc_bus == NULL) {
4383 		device_printf(dev, "failed to allocate bus number\n");
4384 		return (ENXIO);
4385 	}
4386 #endif
4387 	if (bootverbose)
4388 		device_printf(dev, "domain=%d, physical bus=%d\n",
4389 		    domain, busno);
4390 	sc->sc_dma_tag = bus_get_dma_tag(dev);
4391 	return (0);
4392 }
4393 
4394 int
4395 pci_attach(device_t dev)
4396 {
4397 	int busno, domain, error;
4398 
4399 	error = pci_attach_common(dev);
4400 	if (error)
4401 		return (error);
4402 
4403 	/*
4404 	 * Since there can be multiple independently numbered PCI
4405 	 * buses on systems with multiple PCI domains, we can't use
4406 	 * the unit number to decide which bus we are probing. We ask
4407 	 * the parent pcib what our domain and bus numbers are.
4408 	 */
4409 	domain = pcib_get_domain(dev);
4410 	busno = pcib_get_bus(dev);
4411 	pci_add_children(dev, domain, busno);
4412 	return (bus_generic_attach(dev));
4413 }
4414 
4415 int
4416 pci_detach(device_t dev)
4417 {
4418 #ifdef PCI_RES_BUS
4419 	struct pci_softc *sc;
4420 #endif
4421 	int error;
4422 
4423 	error = bus_generic_detach(dev);
4424 	if (error)
4425 		return (error);
4426 #ifdef PCI_RES_BUS
4427 	sc = device_get_softc(dev);
4428 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4429 	if (error)
4430 		return (error);
4431 #endif
4432 	return (device_delete_children(dev));
4433 }
4434 
4435 static void
4436 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4437 {
4438 	int line, unit;
4439 	const char *at;
4440 	char me1[24], me2[32];
4441 	uint8_t b, s, f;
4442 	uint32_t d;
4443 
4444 	d = pci_get_domain(child);
4445 	b = pci_get_bus(child);
4446 	s = pci_get_slot(child);
4447 	f = pci_get_function(child);
4448 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4449 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4450 	line = 0;
4451 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4452 		resource_string_value(name, unit, "at", &at);
4453 		if (strcmp(at, me1) != 0 && strcmp(at, me2) != 0)
4454 			continue; /* No match, try next candidate */
4455 		*unitp = unit;
4456 		return;
4457 	}
4458 }
4459 
4460 static void
4461 pci_set_power_child(device_t dev, device_t child, int state)
4462 {
4463 	device_t pcib;
4464 	int dstate;
4465 
4466 	/*
4467 	 * Set the device to the given state.  If the firmware suggests
4468 	 * a different power state, use it instead.  If power management
4469 	 * is not present, the firmware is responsible for managing
4470 	 * device power.  Skip children who aren't attached since they
4471 	 * are handled separately.
4472 	 */
4473 	pcib = device_get_parent(dev);
4474 	dstate = state;
4475 	if (device_is_attached(child) &&
4476 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4477 		pci_set_powerstate(child, dstate);
4478 }
4479 
4480 int
4481 pci_suspend_child(device_t dev, device_t child)
4482 {
4483 	struct pci_devinfo *dinfo;
4484 	struct resource_list_entry *rle;
4485 	int error;
4486 
4487 	dinfo = device_get_ivars(child);
4488 
4489 	/*
4490 	 * Save the PCI configuration space for the child and set the
4491 	 * device in the appropriate power state for this sleep state.
4492 	 */
4493 	pci_cfg_save(child, dinfo, 0);
4494 
4495 	/* Suspend devices before potentially powering them down. */
4496 	error = bus_generic_suspend_child(dev, child);
4497 
4498 	if (error)
4499 		return (error);
4500 
4501 	if (pci_do_power_suspend) {
4502 		/*
4503 		 * Make sure this device's interrupt handler is not invoked
4504 		 * in the case the device uses a shared interrupt that can
4505 		 * be raised by some other device.
4506 		 * This is applicable only to regular (legacy) PCI interrupts
4507 		 * as MSI/MSI-X interrupts are never shared.
4508 		 */
4509 		rle = resource_list_find(&dinfo->resources,
4510 		    SYS_RES_IRQ, 0);
4511 		if (rle != NULL && rle->res != NULL)
4512 			(void)bus_suspend_intr(child, rle->res);
4513 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4514 	}
4515 
4516 	return (0);
4517 }
4518 
4519 int
4520 pci_resume_child(device_t dev, device_t child)
4521 {
4522 	struct pci_devinfo *dinfo;
4523 	struct resource_list_entry *rle;
4524 
4525 	if (pci_do_power_resume)
4526 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4527 
4528 	dinfo = device_get_ivars(child);
4529 	pci_cfg_restore(child, dinfo);
4530 	if (!device_is_attached(child))
4531 		pci_cfg_save(child, dinfo, 1);
4532 
4533 	bus_generic_resume_child(dev, child);
4534 
4535 	/*
4536 	 * Allow interrupts only after fully resuming the driver and hardware.
4537 	 */
4538 	if (pci_do_power_suspend) {
4539 		/* See pci_suspend_child for details. */
4540 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4541 		if (rle != NULL && rle->res != NULL)
4542 			(void)bus_resume_intr(child, rle->res);
4543 	}
4544 
4545 	return (0);
4546 }
4547 
4548 int
4549 pci_resume(device_t dev)
4550 {
4551 	device_t child, *devlist;
4552 	int error, i, numdevs;
4553 
4554 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4555 		return (error);
4556 
4557 	/*
4558 	 * Resume critical devices first, then everything else later.
4559 	 */
4560 	for (i = 0; i < numdevs; i++) {
4561 		child = devlist[i];
4562 		switch (pci_get_class(child)) {
4563 		case PCIC_DISPLAY:
4564 		case PCIC_MEMORY:
4565 		case PCIC_BRIDGE:
4566 		case PCIC_BASEPERIPH:
4567 			BUS_RESUME_CHILD(dev, child);
4568 			break;
4569 		}
4570 	}
4571 	for (i = 0; i < numdevs; i++) {
4572 		child = devlist[i];
4573 		switch (pci_get_class(child)) {
4574 		case PCIC_DISPLAY:
4575 		case PCIC_MEMORY:
4576 		case PCIC_BRIDGE:
4577 		case PCIC_BASEPERIPH:
4578 			break;
4579 		default:
4580 			BUS_RESUME_CHILD(dev, child);
4581 		}
4582 	}
4583 	free(devlist, M_TEMP);
4584 	return (0);
4585 }
4586 
4587 static void
4588 pci_load_vendor_data(void)
4589 {
4590 	caddr_t data;
4591 	void *ptr;
4592 	size_t sz;
4593 
4594 	data = preload_search_by_type("pci_vendor_data");
4595 	if (data != NULL) {
4596 		ptr = preload_fetch_addr(data);
4597 		sz = preload_fetch_size(data);
4598 		if (ptr != NULL && sz != 0) {
4599 			pci_vendordata = ptr;
4600 			pci_vendordata_size = sz;
4601 			/* terminate the database */
4602 			pci_vendordata[pci_vendordata_size] = '\n';
4603 		}
4604 	}
4605 }
4606 
4607 void
4608 pci_driver_added(device_t dev, driver_t *driver)
4609 {
4610 	int numdevs;
4611 	device_t *devlist;
4612 	device_t child;
4613 	struct pci_devinfo *dinfo;
4614 	int i;
4615 
4616 	if (bootverbose)
4617 		device_printf(dev, "driver added\n");
4618 	DEVICE_IDENTIFY(driver, dev);
4619 	if (device_get_children(dev, &devlist, &numdevs) != 0)
4620 		return;
4621 	for (i = 0; i < numdevs; i++) {
4622 		child = devlist[i];
4623 		if (device_get_state(child) != DS_NOTPRESENT)
4624 			continue;
4625 		dinfo = device_get_ivars(child);
4626 		pci_print_verbose(dinfo);
4627 		if (bootverbose)
4628 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4629 		pci_cfg_restore(child, dinfo);
4630 		if (device_probe_and_attach(child) != 0)
4631 			pci_child_detached(dev, child);
4632 	}
4633 	free(devlist, M_TEMP);
4634 }
4635 
4636 int
4637 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4638     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4639 {
4640 	struct pci_devinfo *dinfo;
4641 	struct msix_table_entry *mte;
4642 	struct msix_vector *mv;
4643 	uint64_t addr;
4644 	uint32_t data;
4645 	void *cookie;
4646 	int error, rid;
4647 
4648 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4649 	    arg, &cookie);
4650 	if (error)
4651 		return (error);
4652 
4653 	/* If this is not a direct child, just bail out. */
4654 	if (device_get_parent(child) != dev) {
4655 		*cookiep = cookie;
4656 		return(0);
4657 	}
4658 
4659 	rid = rman_get_rid(irq);
4660 	if (rid == 0) {
4661 		/* Make sure that INTx is enabled */
4662 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4663 	} else {
4664 		/*
4665 		 * Check to see if the interrupt is MSI or MSI-X.
4666 		 * Ask our parent to map the MSI and give
4667 		 * us the address and data register values.
4668 		 * If we fail for some reason, teardown the
4669 		 * interrupt handler.
4670 		 */
4671 		dinfo = device_get_ivars(child);
4672 		if (dinfo->cfg.msi.msi_alloc > 0) {
4673 			if (dinfo->cfg.msi.msi_addr == 0) {
4674 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4675 			    ("MSI has handlers, but vectors not mapped"));
4676 				error = PCIB_MAP_MSI(device_get_parent(dev),
4677 				    child, rman_get_start(irq), &addr, &data);
4678 				if (error)
4679 					goto bad;
4680 				dinfo->cfg.msi.msi_addr = addr;
4681 				dinfo->cfg.msi.msi_data = data;
4682 			}
4683 			if (dinfo->cfg.msi.msi_handlers == 0)
4684 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4685 				    dinfo->cfg.msi.msi_data);
4686 			dinfo->cfg.msi.msi_handlers++;
4687 		} else {
4688 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4689 			    ("No MSI or MSI-X interrupts allocated"));
4690 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4691 			    ("MSI-X index too high"));
4692 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4693 			KASSERT(mte->mte_vector != 0, ("no message vector"));
4694 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4695 			KASSERT(mv->mv_irq == rman_get_start(irq),
4696 			    ("IRQ mismatch"));
4697 			if (mv->mv_address == 0) {
4698 				KASSERT(mte->mte_handlers == 0,
4699 		    ("MSI-X table entry has handlers, but vector not mapped"));
4700 				error = PCIB_MAP_MSI(device_get_parent(dev),
4701 				    child, rman_get_start(irq), &addr, &data);
4702 				if (error)
4703 					goto bad;
4704 				mv->mv_address = addr;
4705 				mv->mv_data = data;
4706 			}
4707 
4708 			/*
4709 			 * The MSIX table entry must be made valid by
4710 			 * incrementing the mte_handlers before
4711 			 * calling pci_enable_msix() and
4712 			 * pci_resume_msix(). Else the MSIX rewrite
4713 			 * table quirk will not work as expected.
4714 			 */
4715 			mte->mte_handlers++;
4716 			if (mte->mte_handlers == 1) {
4717 				pci_enable_msix(child, rid - 1, mv->mv_address,
4718 				    mv->mv_data);
4719 				pci_unmask_msix(child, rid - 1);
4720 			}
4721 		}
4722 
4723 		/*
4724 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4725 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4726 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4727 		 */
4728 		if (!pci_has_quirk(pci_get_devid(child),
4729 		    PCI_QUIRK_MSI_INTX_BUG))
4730 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4731 		else
4732 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4733 	bad:
4734 		if (error) {
4735 			(void)bus_generic_teardown_intr(dev, child, irq,
4736 			    cookie);
4737 			return (error);
4738 		}
4739 	}
4740 	*cookiep = cookie;
4741 	return (0);
4742 }
4743 
4744 int
4745 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4746     void *cookie)
4747 {
4748 	struct msix_table_entry *mte;
4749 	struct resource_list_entry *rle;
4750 	struct pci_devinfo *dinfo;
4751 	int error, rid;
4752 
4753 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4754 		return (EINVAL);
4755 
4756 	/* If this isn't a direct child, just bail out */
4757 	if (device_get_parent(child) != dev)
4758 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4759 
4760 	rid = rman_get_rid(irq);
4761 	if (rid == 0) {
4762 		/* Mask INTx */
4763 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4764 	} else {
4765 		/*
4766 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4767 		 * decrement the appropriate handlers count and mask the
4768 		 * MSI-X message, or disable MSI messages if the count
4769 		 * drops to 0.
4770 		 */
4771 		dinfo = device_get_ivars(child);
4772 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4773 		if (rle->res != irq)
4774 			return (EINVAL);
4775 		if (dinfo->cfg.msi.msi_alloc > 0) {
4776 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4777 			    ("MSI-X index too high"));
4778 			if (dinfo->cfg.msi.msi_handlers == 0)
4779 				return (EINVAL);
4780 			dinfo->cfg.msi.msi_handlers--;
4781 			if (dinfo->cfg.msi.msi_handlers == 0)
4782 				pci_disable_msi(child);
4783 		} else {
4784 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4785 			    ("No MSI or MSI-X interrupts allocated"));
4786 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4787 			    ("MSI-X index too high"));
4788 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4789 			if (mte->mte_handlers == 0)
4790 				return (EINVAL);
4791 			mte->mte_handlers--;
4792 			if (mte->mte_handlers == 0)
4793 				pci_mask_msix(child, rid - 1);
4794 		}
4795 	}
4796 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4797 	if (rid > 0)
4798 		KASSERT(error == 0,
4799 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4800 	return (error);
4801 }
4802 
4803 int
4804 pci_print_child(device_t dev, device_t child)
4805 {
4806 	struct pci_devinfo *dinfo;
4807 	struct resource_list *rl;
4808 	int retval = 0;
4809 
4810 	dinfo = device_get_ivars(child);
4811 	rl = &dinfo->resources;
4812 
4813 	retval += bus_print_child_header(dev, child);
4814 
4815 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4816 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4817 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4818 	if (device_get_flags(dev))
4819 		retval += printf(" flags %#x", device_get_flags(dev));
4820 
4821 	retval += printf(" at device %d.%d", pci_get_slot(child),
4822 	    pci_get_function(child));
4823 
4824 	retval += bus_print_child_domain(dev, child);
4825 	retval += bus_print_child_footer(dev, child);
4826 
4827 	return (retval);
4828 }
4829 
4830 static const struct
4831 {
4832 	int		class;
4833 	int		subclass;
4834 	int		report; /* 0 = bootverbose, 1 = always */
4835 	const char	*desc;
4836 } pci_nomatch_tab[] = {
4837 	{PCIC_OLD,		-1,			1, "old"},
4838 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
4839 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
4840 	{PCIC_STORAGE,		-1,			1, "mass storage"},
4841 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
4842 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
4843 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
4844 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
4845 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
4846 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
4847 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
4848 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
4849 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
4850 	{PCIC_NETWORK,		-1,			1, "network"},
4851 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
4852 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
4853 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
4854 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
4855 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
4856 	{PCIC_DISPLAY,		-1,			1, "display"},
4857 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
4858 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
4859 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
4860 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
4861 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
4862 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
4863 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
4864 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
4865 	{PCIC_MEMORY,		-1,			1, "memory"},
4866 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
4867 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
4868 	{PCIC_BRIDGE,		-1,			1, "bridge"},
4869 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
4870 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
4871 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
4872 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
4873 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
4874 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
4875 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
4876 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
4877 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
4878 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
4879 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
4880 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
4881 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
4882 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
4883 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
4884 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
4885 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
4886 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
4887 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
4888 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
4889 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
4890 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
4891 	{PCIC_INPUTDEV,		-1,			1, "input device"},
4892 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
4893 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
4894 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
4895 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
4896 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
4897 	{PCIC_DOCKING,		-1,			1, "docking station"},
4898 	{PCIC_PROCESSOR,	-1,			1, "processor"},
4899 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
4900 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
4901 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
4902 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
4903 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
4904 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
4905 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
4906 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
4907 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
4908 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
4909 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
4910 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
4911 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
4912 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
4913 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
4914 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
4915 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
4916 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
4917 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
4918 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
4919 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
4920 	{PCIC_DASP,		-1,			0, "dasp"},
4921 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
4922 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
4923 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
4924 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
4925 	{0, 0, 0,		NULL}
4926 };
4927 
4928 void
4929 pci_probe_nomatch(device_t dev, device_t child)
4930 {
4931 	int i, report;
4932 	const char *cp, *scp;
4933 	char *device;
4934 
4935 	/*
4936 	 * Look for a listing for this device in a loaded device database.
4937 	 */
4938 	report = 1;
4939 	if ((device = pci_describe_device(child)) != NULL) {
4940 		device_printf(dev, "<%s>", device);
4941 		free(device, M_DEVBUF);
4942 	} else {
4943 		/*
4944 		 * Scan the class/subclass descriptions for a general
4945 		 * description.
4946 		 */
4947 		cp = "unknown";
4948 		scp = NULL;
4949 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
4950 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
4951 				if (pci_nomatch_tab[i].subclass == -1) {
4952 					cp = pci_nomatch_tab[i].desc;
4953 					report = pci_nomatch_tab[i].report;
4954 				} else if (pci_nomatch_tab[i].subclass ==
4955 				    pci_get_subclass(child)) {
4956 					scp = pci_nomatch_tab[i].desc;
4957 					report = pci_nomatch_tab[i].report;
4958 				}
4959 			}
4960 		}
4961 		if (report || bootverbose) {
4962 			device_printf(dev, "<%s%s%s>",
4963 			    cp ? cp : "",
4964 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
4965 			    scp ? scp : "");
4966 		}
4967 	}
4968 	if (report || bootverbose) {
4969 		printf(" at device %d.%d (no driver attached)\n",
4970 		    pci_get_slot(child), pci_get_function(child));
4971 	}
4972 	pci_cfg_save(child, device_get_ivars(child), 1);
4973 }
4974 
4975 void
4976 pci_child_detached(device_t dev, device_t child)
4977 {
4978 	struct pci_devinfo *dinfo;
4979 	struct resource_list *rl;
4980 
4981 	dinfo = device_get_ivars(child);
4982 	rl = &dinfo->resources;
4983 
4984 	/*
4985 	 * Have to deallocate IRQs before releasing any MSI messages and
4986 	 * have to release MSI messages before deallocating any memory
4987 	 * BARs.
4988 	 */
4989 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
4990 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
4991 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
4992 		pci_printf(&dinfo->cfg, "Device leaked MSI vectors\n");
4993 		(void)pci_release_msi(child);
4994 	}
4995 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
4996 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
4997 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
4998 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
4999 #ifdef PCI_RES_BUS
5000 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5001 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5002 #endif
5003 
5004 	pci_cfg_save(child, dinfo, 1);
5005 }
5006 
5007 /*
5008  * Parse the PCI device database, if loaded, and return a pointer to a
5009  * description of the device.
5010  *
5011  * The database is flat text formatted as follows:
5012  *
5013  * Any line not in a valid format is ignored.
5014  * Lines are terminated with newline '\n' characters.
5015  *
5016  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5017  * the vendor name.
5018  *
5019  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5020  * - devices cannot be listed without a corresponding VENDOR line.
5021  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5022  * another TAB, then the device name.
5023  */
5024 
5025 /*
5026  * Assuming (ptr) points to the beginning of a line in the database,
5027  * return the vendor or device and description of the next entry.
5028  * The value of (vendor) or (device) inappropriate for the entry type
5029  * is set to -1.  Returns nonzero at the end of the database.
5030  *
5031  * Note that this is slightly unrobust in the face of corrupt data;
5032  * we attempt to safeguard against this by spamming the end of the
5033  * database with a newline when we initialise.
5034  */
5035 static int
5036 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5037 {
5038 	char	*cp = *ptr;
5039 	int	left;
5040 
5041 	*device = -1;
5042 	*vendor = -1;
5043 	**desc = '\0';
5044 	for (;;) {
5045 		left = pci_vendordata_size - (cp - pci_vendordata);
5046 		if (left <= 0) {
5047 			*ptr = cp;
5048 			return(1);
5049 		}
5050 
5051 		/* vendor entry? */
5052 		if (*cp != '\t' &&
5053 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5054 			break;
5055 		/* device entry? */
5056 		if (*cp == '\t' &&
5057 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5058 			break;
5059 
5060 		/* skip to next line */
5061 		while (*cp != '\n' && left > 0) {
5062 			cp++;
5063 			left--;
5064 		}
5065 		if (*cp == '\n') {
5066 			cp++;
5067 			left--;
5068 		}
5069 	}
5070 	/* skip to next line */
5071 	while (*cp != '\n' && left > 0) {
5072 		cp++;
5073 		left--;
5074 	}
5075 	if (*cp == '\n' && left > 0)
5076 		cp++;
5077 	*ptr = cp;
5078 	return(0);
5079 }
5080 
5081 static char *
5082 pci_describe_device(device_t dev)
5083 {
5084 	int	vendor, device;
5085 	char	*desc, *vp, *dp, *line;
5086 
5087 	desc = vp = dp = NULL;
5088 
5089 	/*
5090 	 * If we have no vendor data, we can't do anything.
5091 	 */
5092 	if (pci_vendordata == NULL)
5093 		goto out;
5094 
5095 	/*
5096 	 * Scan the vendor data looking for this device
5097 	 */
5098 	line = pci_vendordata;
5099 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5100 		goto out;
5101 	for (;;) {
5102 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5103 			goto out;
5104 		if (vendor == pci_get_vendor(dev))
5105 			break;
5106 	}
5107 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5108 		goto out;
5109 	for (;;) {
5110 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5111 			*dp = 0;
5112 			break;
5113 		}
5114 		if (vendor != -1) {
5115 			*dp = 0;
5116 			break;
5117 		}
5118 		if (device == pci_get_device(dev))
5119 			break;
5120 	}
5121 	if (dp[0] == '\0')
5122 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5123 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5124 	    NULL)
5125 		sprintf(desc, "%s, %s", vp, dp);
5126 out:
5127 	if (vp != NULL)
5128 		free(vp, M_DEVBUF);
5129 	if (dp != NULL)
5130 		free(dp, M_DEVBUF);
5131 	return(desc);
5132 }
5133 
5134 int
5135 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5136 {
5137 	struct pci_devinfo *dinfo;
5138 	pcicfgregs *cfg;
5139 
5140 	dinfo = device_get_ivars(child);
5141 	cfg = &dinfo->cfg;
5142 
5143 	switch (which) {
5144 	case PCI_IVAR_ETHADDR:
5145 		/*
5146 		 * The generic accessor doesn't deal with failure, so
5147 		 * we set the return value, then return an error.
5148 		 */
5149 		*((uint8_t **) result) = NULL;
5150 		return (EINVAL);
5151 	case PCI_IVAR_SUBVENDOR:
5152 		*result = cfg->subvendor;
5153 		break;
5154 	case PCI_IVAR_SUBDEVICE:
5155 		*result = cfg->subdevice;
5156 		break;
5157 	case PCI_IVAR_VENDOR:
5158 		*result = cfg->vendor;
5159 		break;
5160 	case PCI_IVAR_DEVICE:
5161 		*result = cfg->device;
5162 		break;
5163 	case PCI_IVAR_DEVID:
5164 		*result = (cfg->device << 16) | cfg->vendor;
5165 		break;
5166 	case PCI_IVAR_CLASS:
5167 		*result = cfg->baseclass;
5168 		break;
5169 	case PCI_IVAR_SUBCLASS:
5170 		*result = cfg->subclass;
5171 		break;
5172 	case PCI_IVAR_PROGIF:
5173 		*result = cfg->progif;
5174 		break;
5175 	case PCI_IVAR_REVID:
5176 		*result = cfg->revid;
5177 		break;
5178 	case PCI_IVAR_INTPIN:
5179 		*result = cfg->intpin;
5180 		break;
5181 	case PCI_IVAR_IRQ:
5182 		*result = cfg->intline;
5183 		break;
5184 	case PCI_IVAR_DOMAIN:
5185 		*result = cfg->domain;
5186 		break;
5187 	case PCI_IVAR_BUS:
5188 		*result = cfg->bus;
5189 		break;
5190 	case PCI_IVAR_SLOT:
5191 		*result = cfg->slot;
5192 		break;
5193 	case PCI_IVAR_FUNCTION:
5194 		*result = cfg->func;
5195 		break;
5196 	case PCI_IVAR_CMDREG:
5197 		*result = cfg->cmdreg;
5198 		break;
5199 	case PCI_IVAR_CACHELNSZ:
5200 		*result = cfg->cachelnsz;
5201 		break;
5202 	case PCI_IVAR_MINGNT:
5203 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5204 			*result = -1;
5205 			return (EINVAL);
5206 		}
5207 		*result = cfg->mingnt;
5208 		break;
5209 	case PCI_IVAR_MAXLAT:
5210 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5211 			*result = -1;
5212 			return (EINVAL);
5213 		}
5214 		*result = cfg->maxlat;
5215 		break;
5216 	case PCI_IVAR_LATTIMER:
5217 		*result = cfg->lattimer;
5218 		break;
5219 	default:
5220 		return (ENOENT);
5221 	}
5222 	return (0);
5223 }
5224 
5225 int
5226 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5227 {
5228 	struct pci_devinfo *dinfo;
5229 
5230 	dinfo = device_get_ivars(child);
5231 
5232 	switch (which) {
5233 	case PCI_IVAR_INTPIN:
5234 		dinfo->cfg.intpin = value;
5235 		return (0);
5236 	case PCI_IVAR_ETHADDR:
5237 	case PCI_IVAR_SUBVENDOR:
5238 	case PCI_IVAR_SUBDEVICE:
5239 	case PCI_IVAR_VENDOR:
5240 	case PCI_IVAR_DEVICE:
5241 	case PCI_IVAR_DEVID:
5242 	case PCI_IVAR_CLASS:
5243 	case PCI_IVAR_SUBCLASS:
5244 	case PCI_IVAR_PROGIF:
5245 	case PCI_IVAR_REVID:
5246 	case PCI_IVAR_IRQ:
5247 	case PCI_IVAR_DOMAIN:
5248 	case PCI_IVAR_BUS:
5249 	case PCI_IVAR_SLOT:
5250 	case PCI_IVAR_FUNCTION:
5251 		return (EINVAL);	/* disallow for now */
5252 
5253 	default:
5254 		return (ENOENT);
5255 	}
5256 }
5257 
5258 #include "opt_ddb.h"
5259 #ifdef DDB
5260 #include <ddb/ddb.h>
5261 #include <sys/cons.h>
5262 
5263 /*
5264  * List resources based on pci map registers, used for within ddb
5265  */
5266 
5267 DB_SHOW_COMMAND(pciregs, db_pci_dump)
5268 {
5269 	struct pci_devinfo *dinfo;
5270 	struct devlist *devlist_head;
5271 	struct pci_conf *p;
5272 	const char *name;
5273 	int i, error, none_count;
5274 
5275 	none_count = 0;
5276 	/* get the head of the device queue */
5277 	devlist_head = &pci_devq;
5278 
5279 	/*
5280 	 * Go through the list of devices and print out devices
5281 	 */
5282 	for (error = 0, i = 0,
5283 	     dinfo = STAILQ_FIRST(devlist_head);
5284 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5285 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5286 		/* Populate pd_name and pd_unit */
5287 		name = NULL;
5288 		if (dinfo->cfg.dev)
5289 			name = device_get_name(dinfo->cfg.dev);
5290 
5291 		p = &dinfo->conf;
5292 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5293 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5294 			(name && *name) ? name : "none",
5295 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5296 			none_count++,
5297 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5298 			p->pc_sel.pc_func, (p->pc_class << 16) |
5299 			(p->pc_subclass << 8) | p->pc_progif,
5300 			(p->pc_subdevice << 16) | p->pc_subvendor,
5301 			(p->pc_device << 16) | p->pc_vendor,
5302 			p->pc_revid, p->pc_hdr);
5303 	}
5304 }
5305 #endif /* DDB */
5306 
5307 static struct resource *
5308 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5309     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5310     u_int flags)
5311 {
5312 	struct pci_devinfo *dinfo = device_get_ivars(child);
5313 	struct resource_list *rl = &dinfo->resources;
5314 	struct resource *res;
5315 	struct pci_map *pm;
5316 	uint16_t cmd;
5317 	pci_addr_t map, testval;
5318 	int mapsize;
5319 
5320 	res = NULL;
5321 
5322 	/* If rid is managed by EA, ignore it */
5323 	if (pci_ea_is_enabled(child, *rid))
5324 		goto out;
5325 
5326 	pm = pci_find_bar(child, *rid);
5327 	if (pm != NULL) {
5328 		/* This is a BAR that we failed to allocate earlier. */
5329 		mapsize = pm->pm_size;
5330 		map = pm->pm_value;
5331 	} else {
5332 		/*
5333 		 * Weed out the bogons, and figure out how large the
5334 		 * BAR/map is.  BARs that read back 0 here are bogus
5335 		 * and unimplemented.  Note: atapci in legacy mode are
5336 		 * special and handled elsewhere in the code.  If you
5337 		 * have a atapci device in legacy mode and it fails
5338 		 * here, that other code is broken.
5339 		 */
5340 		pci_read_bar(child, *rid, &map, &testval, NULL);
5341 
5342 		/*
5343 		 * Determine the size of the BAR and ignore BARs with a size
5344 		 * of 0.  Device ROM BARs use a different mask value.
5345 		 */
5346 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5347 			mapsize = pci_romsize(testval);
5348 		else
5349 			mapsize = pci_mapsize(testval);
5350 		if (mapsize == 0)
5351 			goto out;
5352 		pm = pci_add_bar(child, *rid, map, mapsize);
5353 	}
5354 
5355 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5356 		if (type != SYS_RES_MEMORY) {
5357 			if (bootverbose)
5358 				device_printf(dev,
5359 				    "child %s requested type %d for rid %#x,"
5360 				    " but the BAR says it is an memio\n",
5361 				    device_get_nameunit(child), type, *rid);
5362 			goto out;
5363 		}
5364 	} else {
5365 		if (type != SYS_RES_IOPORT) {
5366 			if (bootverbose)
5367 				device_printf(dev,
5368 				    "child %s requested type %d for rid %#x,"
5369 				    " but the BAR says it is an ioport\n",
5370 				    device_get_nameunit(child), type, *rid);
5371 			goto out;
5372 		}
5373 	}
5374 
5375 	/*
5376 	 * For real BARs, we need to override the size that
5377 	 * the driver requests, because that's what the BAR
5378 	 * actually uses and we would otherwise have a
5379 	 * situation where we might allocate the excess to
5380 	 * another driver, which won't work.
5381 	 */
5382 	count = ((pci_addr_t)1 << mapsize) * num;
5383 	if (RF_ALIGNMENT(flags) < mapsize)
5384 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5385 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5386 		flags |= RF_PREFETCHABLE;
5387 
5388 	/*
5389 	 * Allocate enough resource, and then write back the
5390 	 * appropriate BAR for that resource.
5391 	 */
5392 	resource_list_add(rl, type, *rid, start, end, count);
5393 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5394 	    count, flags & ~RF_ACTIVE);
5395 	if (res == NULL) {
5396 		resource_list_delete(rl, type, *rid);
5397 		device_printf(child,
5398 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5399 		    count, *rid, type, start, end);
5400 		goto out;
5401 	}
5402 	if (bootverbose)
5403 		device_printf(child,
5404 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5405 		    count, *rid, type, rman_get_start(res));
5406 
5407 	/* Disable decoding via the CMD register before updating the BAR */
5408 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5409 	pci_write_config(child, PCIR_COMMAND,
5410 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5411 
5412 	map = rman_get_start(res);
5413 	pci_write_bar(child, pm, map);
5414 
5415 	/* Restore the original value of the CMD register */
5416 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5417 out:
5418 	return (res);
5419 }
5420 
5421 struct resource *
5422 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5423     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5424     u_int flags)
5425 {
5426 	struct pci_devinfo *dinfo;
5427 	struct resource_list *rl;
5428 	struct resource_list_entry *rle;
5429 	struct resource *res;
5430 	pcicfgregs *cfg;
5431 
5432 	/*
5433 	 * Perform lazy resource allocation
5434 	 */
5435 	dinfo = device_get_ivars(child);
5436 	rl = &dinfo->resources;
5437 	cfg = &dinfo->cfg;
5438 	switch (type) {
5439 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
5440 	case PCI_RES_BUS:
5441 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5442 		    flags));
5443 #endif
5444 	case SYS_RES_IRQ:
5445 		/*
5446 		 * Can't alloc legacy interrupt once MSI messages have
5447 		 * been allocated.
5448 		 */
5449 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5450 		    cfg->msix.msix_alloc > 0))
5451 			return (NULL);
5452 
5453 		/*
5454 		 * If the child device doesn't have an interrupt
5455 		 * routed and is deserving of an interrupt, try to
5456 		 * assign it one.
5457 		 */
5458 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5459 		    (cfg->intpin != 0))
5460 			pci_assign_interrupt(dev, child, 0);
5461 		break;
5462 	case SYS_RES_IOPORT:
5463 	case SYS_RES_MEMORY:
5464 #ifdef NEW_PCIB
5465 		/*
5466 		 * PCI-PCI bridge I/O window resources are not BARs.
5467 		 * For those allocations just pass the request up the
5468 		 * tree.
5469 		 */
5470 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5471 			switch (*rid) {
5472 			case PCIR_IOBASEL_1:
5473 			case PCIR_MEMBASE_1:
5474 			case PCIR_PMBASEL_1:
5475 				/*
5476 				 * XXX: Should we bother creating a resource
5477 				 * list entry?
5478 				 */
5479 				return (bus_generic_alloc_resource(dev, child,
5480 				    type, rid, start, end, count, flags));
5481 			}
5482 		}
5483 #endif
5484 		/* Reserve resources for this BAR if needed. */
5485 		rle = resource_list_find(rl, type, *rid);
5486 		if (rle == NULL) {
5487 			res = pci_reserve_map(dev, child, type, rid, start, end,
5488 			    count, num, flags);
5489 			if (res == NULL)
5490 				return (NULL);
5491 		}
5492 	}
5493 	return (resource_list_alloc(rl, dev, child, type, rid,
5494 	    start, end, count, flags));
5495 }
5496 
5497 struct resource *
5498 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5499     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5500 {
5501 #ifdef PCI_IOV
5502 	struct pci_devinfo *dinfo;
5503 #endif
5504 
5505 	if (device_get_parent(child) != dev)
5506 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5507 		    type, rid, start, end, count, flags));
5508 
5509 #ifdef PCI_IOV
5510 	dinfo = device_get_ivars(child);
5511 	if (dinfo->cfg.flags & PCICFG_VF) {
5512 		switch (type) {
5513 		/* VFs can't have I/O BARs. */
5514 		case SYS_RES_IOPORT:
5515 			return (NULL);
5516 		case SYS_RES_MEMORY:
5517 			return (pci_vf_alloc_mem_resource(dev, child, rid,
5518 			    start, end, count, flags));
5519 		}
5520 
5521 		/* Fall through for other types of resource allocations. */
5522 	}
5523 #endif
5524 
5525 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5526 	    count, 1, flags));
5527 }
5528 
5529 int
5530 pci_release_resource(device_t dev, device_t child, int type, int rid,
5531     struct resource *r)
5532 {
5533 	struct pci_devinfo *dinfo;
5534 	struct resource_list *rl;
5535 	pcicfgregs *cfg;
5536 
5537 	if (device_get_parent(child) != dev)
5538 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
5539 		    type, rid, r));
5540 
5541 	dinfo = device_get_ivars(child);
5542 	cfg = &dinfo->cfg;
5543 
5544 #ifdef PCI_IOV
5545 	if (dinfo->cfg.flags & PCICFG_VF) {
5546 		switch (type) {
5547 		/* VFs can't have I/O BARs. */
5548 		case SYS_RES_IOPORT:
5549 			return (EDOOFUS);
5550 		case SYS_RES_MEMORY:
5551 			return (pci_vf_release_mem_resource(dev, child, rid,
5552 			    r));
5553 		}
5554 
5555 		/* Fall through for other types of resource allocations. */
5556 	}
5557 #endif
5558 
5559 #ifdef NEW_PCIB
5560 	/*
5561 	 * PCI-PCI bridge I/O window resources are not BARs.  For
5562 	 * those allocations just pass the request up the tree.
5563 	 */
5564 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5565 	    (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) {
5566 		switch (rid) {
5567 		case PCIR_IOBASEL_1:
5568 		case PCIR_MEMBASE_1:
5569 		case PCIR_PMBASEL_1:
5570 			return (bus_generic_release_resource(dev, child, type,
5571 			    rid, r));
5572 		}
5573 	}
5574 #endif
5575 
5576 	rl = &dinfo->resources;
5577 	return (resource_list_release(rl, dev, child, type, rid, r));
5578 }
5579 
5580 int
5581 pci_activate_resource(device_t dev, device_t child, int type, int rid,
5582     struct resource *r)
5583 {
5584 	struct pci_devinfo *dinfo;
5585 	int error;
5586 
5587 	error = bus_generic_activate_resource(dev, child, type, rid, r);
5588 	if (error)
5589 		return (error);
5590 
5591 	/* Enable decoding in the command register when activating BARs. */
5592 	if (device_get_parent(child) == dev) {
5593 		/* Device ROMs need their decoding explicitly enabled. */
5594 		dinfo = device_get_ivars(child);
5595 		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5596 			pci_write_bar(child, pci_find_bar(child, rid),
5597 			    rman_get_start(r) | PCIM_BIOS_ENABLE);
5598 		switch (type) {
5599 		case SYS_RES_IOPORT:
5600 		case SYS_RES_MEMORY:
5601 			error = PCI_ENABLE_IO(dev, child, type);
5602 			break;
5603 		}
5604 	}
5605 	return (error);
5606 }
5607 
5608 int
5609 pci_deactivate_resource(device_t dev, device_t child, int type,
5610     int rid, struct resource *r)
5611 {
5612 	struct pci_devinfo *dinfo;
5613 	int error;
5614 
5615 	error = bus_generic_deactivate_resource(dev, child, type, rid, r);
5616 	if (error)
5617 		return (error);
5618 
5619 	/* Disable decoding for device ROMs. */
5620 	if (device_get_parent(child) == dev) {
5621 		dinfo = device_get_ivars(child);
5622 		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5623 			pci_write_bar(child, pci_find_bar(child, rid),
5624 			    rman_get_start(r));
5625 	}
5626 	return (0);
5627 }
5628 
5629 void
5630 pci_child_deleted(device_t dev, device_t child)
5631 {
5632 	struct resource_list_entry *rle;
5633 	struct resource_list *rl;
5634 	struct pci_devinfo *dinfo;
5635 
5636 	dinfo = device_get_ivars(child);
5637 	rl = &dinfo->resources;
5638 
5639 	EVENTHANDLER_INVOKE(pci_delete_device, child);
5640 
5641 	/* Turn off access to resources we're about to free */
5642 	if (bus_child_present(child) != 0) {
5643 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5644 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5645 
5646 		pci_disable_busmaster(child);
5647 	}
5648 
5649 	/* Free all allocated resources */
5650 	STAILQ_FOREACH(rle, rl, link) {
5651 		if (rle->res) {
5652 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5653 			    resource_list_busy(rl, rle->type, rle->rid)) {
5654 				pci_printf(&dinfo->cfg,
5655 				    "Resource still owned, oops. "
5656 				    "(type=%d, rid=%d, addr=%lx)\n",
5657 				    rle->type, rle->rid,
5658 				    rman_get_start(rle->res));
5659 				bus_release_resource(child, rle->type, rle->rid,
5660 				    rle->res);
5661 			}
5662 			resource_list_unreserve(rl, dev, child, rle->type,
5663 			    rle->rid);
5664 		}
5665 	}
5666 	resource_list_free(rl);
5667 
5668 	pci_freecfg(dinfo);
5669 }
5670 
5671 void
5672 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5673 {
5674 	struct pci_devinfo *dinfo;
5675 	struct resource_list *rl;
5676 	struct resource_list_entry *rle;
5677 
5678 	if (device_get_parent(child) != dev)
5679 		return;
5680 
5681 	dinfo = device_get_ivars(child);
5682 	rl = &dinfo->resources;
5683 	rle = resource_list_find(rl, type, rid);
5684 	if (rle == NULL)
5685 		return;
5686 
5687 	if (rle->res) {
5688 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5689 		    resource_list_busy(rl, type, rid)) {
5690 			device_printf(dev, "delete_resource: "
5691 			    "Resource still owned by child, oops. "
5692 			    "(type=%d, rid=%d, addr=%jx)\n",
5693 			    type, rid, rman_get_start(rle->res));
5694 			return;
5695 		}
5696 		resource_list_unreserve(rl, dev, child, type, rid);
5697 	}
5698 	resource_list_delete(rl, type, rid);
5699 }
5700 
5701 struct resource_list *
5702 pci_get_resource_list (device_t dev, device_t child)
5703 {
5704 	struct pci_devinfo *dinfo = device_get_ivars(child);
5705 
5706 	return (&dinfo->resources);
5707 }
5708 
5709 #ifdef IOMMU
5710 bus_dma_tag_t
5711 pci_get_dma_tag(device_t bus, device_t dev)
5712 {
5713 	bus_dma_tag_t tag;
5714 	struct pci_softc *sc;
5715 
5716 	if (device_get_parent(dev) == bus) {
5717 		/* try iommu and return if it works */
5718 		tag = iommu_get_dma_tag(bus, dev);
5719 	} else
5720 		tag = NULL;
5721 	if (tag == NULL) {
5722 		sc = device_get_softc(bus);
5723 		tag = sc->sc_dma_tag;
5724 	}
5725 	return (tag);
5726 }
5727 #else
5728 bus_dma_tag_t
5729 pci_get_dma_tag(device_t bus, device_t dev)
5730 {
5731 	struct pci_softc *sc = device_get_softc(bus);
5732 
5733 	return (sc->sc_dma_tag);
5734 }
5735 #endif
5736 
5737 uint32_t
5738 pci_read_config_method(device_t dev, device_t child, int reg, int width)
5739 {
5740 	struct pci_devinfo *dinfo = device_get_ivars(child);
5741 	pcicfgregs *cfg = &dinfo->cfg;
5742 
5743 #ifdef PCI_IOV
5744 	/*
5745 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
5746 	 * emulate them here.
5747 	 */
5748 	if (cfg->flags & PCICFG_VF) {
5749 		if (reg == PCIR_VENDOR) {
5750 			switch (width) {
5751 			case 4:
5752 				return (cfg->device << 16 | cfg->vendor);
5753 			case 2:
5754 				return (cfg->vendor);
5755 			case 1:
5756 				return (cfg->vendor & 0xff);
5757 			default:
5758 				return (0xffffffff);
5759 			}
5760 		} else if (reg == PCIR_DEVICE) {
5761 			switch (width) {
5762 			/* Note that an unaligned 4-byte read is an error. */
5763 			case 2:
5764 				return (cfg->device);
5765 			case 1:
5766 				return (cfg->device & 0xff);
5767 			default:
5768 				return (0xffffffff);
5769 			}
5770 		}
5771 	}
5772 #endif
5773 
5774 	return (PCIB_READ_CONFIG(device_get_parent(dev),
5775 	    cfg->bus, cfg->slot, cfg->func, reg, width));
5776 }
5777 
5778 void
5779 pci_write_config_method(device_t dev, device_t child, int reg,
5780     uint32_t val, int width)
5781 {
5782 	struct pci_devinfo *dinfo = device_get_ivars(child);
5783 	pcicfgregs *cfg = &dinfo->cfg;
5784 
5785 	PCIB_WRITE_CONFIG(device_get_parent(dev),
5786 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
5787 }
5788 
5789 int
5790 pci_child_location_str_method(device_t dev, device_t child, char *buf,
5791     size_t buflen)
5792 {
5793 
5794 	snprintf(buf, buflen, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
5795 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
5796 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
5797 	return (0);
5798 }
5799 
5800 int
5801 pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
5802     size_t buflen)
5803 {
5804 	struct pci_devinfo *dinfo;
5805 	pcicfgregs *cfg;
5806 
5807 	dinfo = device_get_ivars(child);
5808 	cfg = &dinfo->cfg;
5809 	snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
5810 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
5811 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
5812 	    cfg->progif);
5813 	return (0);
5814 }
5815 
5816 int
5817 pci_assign_interrupt_method(device_t dev, device_t child)
5818 {
5819 	struct pci_devinfo *dinfo = device_get_ivars(child);
5820 	pcicfgregs *cfg = &dinfo->cfg;
5821 
5822 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
5823 	    cfg->intpin));
5824 }
5825 
5826 static void
5827 pci_lookup(void *arg, const char *name, device_t *dev)
5828 {
5829 	long val;
5830 	char *end;
5831 	int domain, bus, slot, func;
5832 
5833 	if (*dev != NULL)
5834 		return;
5835 
5836 	/*
5837 	 * Accept pciconf-style selectors of either pciD:B:S:F or
5838 	 * pciB:S:F.  In the latter case, the domain is assumed to
5839 	 * be zero.
5840 	 */
5841 	if (strncmp(name, "pci", 3) != 0)
5842 		return;
5843 	val = strtol(name + 3, &end, 10);
5844 	if (val < 0 || val > INT_MAX || *end != ':')
5845 		return;
5846 	domain = val;
5847 	val = strtol(end + 1, &end, 10);
5848 	if (val < 0 || val > INT_MAX || *end != ':')
5849 		return;
5850 	bus = val;
5851 	val = strtol(end + 1, &end, 10);
5852 	if (val < 0 || val > INT_MAX)
5853 		return;
5854 	slot = val;
5855 	if (*end == ':') {
5856 		val = strtol(end + 1, &end, 10);
5857 		if (val < 0 || val > INT_MAX || *end != '\0')
5858 			return;
5859 		func = val;
5860 	} else if (*end == '\0') {
5861 		func = slot;
5862 		slot = bus;
5863 		bus = domain;
5864 		domain = 0;
5865 	} else
5866 		return;
5867 
5868 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
5869 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
5870 		return;
5871 
5872 	*dev = pci_find_dbsf(domain, bus, slot, func);
5873 }
5874 
5875 static int
5876 pci_modevent(module_t mod, int what, void *arg)
5877 {
5878 	static struct cdev *pci_cdev;
5879 	static eventhandler_tag tag;
5880 
5881 	switch (what) {
5882 	case MOD_LOAD:
5883 		STAILQ_INIT(&pci_devq);
5884 		pci_generation = 0;
5885 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
5886 		    "pci");
5887 		pci_load_vendor_data();
5888 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
5889 		    1000);
5890 		break;
5891 
5892 	case MOD_UNLOAD:
5893 		if (tag != NULL)
5894 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
5895 		destroy_dev(pci_cdev);
5896 		break;
5897 	}
5898 
5899 	return (0);
5900 }
5901 
5902 static void
5903 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
5904 {
5905 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
5906 	struct pcicfg_pcie *cfg;
5907 	int version, pos;
5908 
5909 	cfg = &dinfo->cfg.pcie;
5910 	pos = cfg->pcie_location;
5911 
5912 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
5913 
5914 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
5915 
5916 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5917 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
5918 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
5919 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
5920 
5921 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5922 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
5923 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
5924 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
5925 
5926 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5927 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
5928 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
5929 
5930 	if (version > 1) {
5931 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
5932 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
5933 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
5934 	}
5935 #undef WREG
5936 }
5937 
5938 static void
5939 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
5940 {
5941 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
5942 	    dinfo->cfg.pcix.pcix_command,  2);
5943 }
5944 
5945 void
5946 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
5947 {
5948 
5949 	/*
5950 	 * Restore the device to full power mode.  We must do this
5951 	 * before we restore the registers because moving from D3 to
5952 	 * D0 will cause the chip's BARs and some other registers to
5953 	 * be reset to some unknown power on reset values.  Cut down
5954 	 * the noise on boot by doing nothing if we are already in
5955 	 * state D0.
5956 	 */
5957 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
5958 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
5959 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
5960 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
5961 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
5962 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
5963 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
5964 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
5965 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
5966 	case PCIM_HDRTYPE_NORMAL:
5967 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
5968 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
5969 		break;
5970 	case PCIM_HDRTYPE_BRIDGE:
5971 		pci_write_config(dev, PCIR_SECLAT_1,
5972 		    dinfo->cfg.bridge.br_seclat, 1);
5973 		pci_write_config(dev, PCIR_SUBBUS_1,
5974 		    dinfo->cfg.bridge.br_subbus, 1);
5975 		pci_write_config(dev, PCIR_SECBUS_1,
5976 		    dinfo->cfg.bridge.br_secbus, 1);
5977 		pci_write_config(dev, PCIR_PRIBUS_1,
5978 		    dinfo->cfg.bridge.br_pribus, 1);
5979 		pci_write_config(dev, PCIR_BRIDGECTL_1,
5980 		    dinfo->cfg.bridge.br_control, 2);
5981 		break;
5982 	case PCIM_HDRTYPE_CARDBUS:
5983 		pci_write_config(dev, PCIR_SECLAT_2,
5984 		    dinfo->cfg.bridge.br_seclat, 1);
5985 		pci_write_config(dev, PCIR_SUBBUS_2,
5986 		    dinfo->cfg.bridge.br_subbus, 1);
5987 		pci_write_config(dev, PCIR_SECBUS_2,
5988 		    dinfo->cfg.bridge.br_secbus, 1);
5989 		pci_write_config(dev, PCIR_PRIBUS_2,
5990 		    dinfo->cfg.bridge.br_pribus, 1);
5991 		pci_write_config(dev, PCIR_BRIDGECTL_2,
5992 		    dinfo->cfg.bridge.br_control, 2);
5993 		break;
5994 	}
5995 	pci_restore_bars(dev);
5996 
5997 	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
5998 		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
5999 
6000 	/*
6001 	 * Restore extended capabilities for PCI-Express and PCI-X
6002 	 */
6003 	if (dinfo->cfg.pcie.pcie_location != 0)
6004 		pci_cfg_restore_pcie(dev, dinfo);
6005 	if (dinfo->cfg.pcix.pcix_location != 0)
6006 		pci_cfg_restore_pcix(dev, dinfo);
6007 
6008 	/* Restore MSI and MSI-X configurations if they are present. */
6009 	if (dinfo->cfg.msi.msi_location != 0)
6010 		pci_resume_msi(dev);
6011 	if (dinfo->cfg.msix.msix_location != 0)
6012 		pci_resume_msix(dev);
6013 
6014 #ifdef PCI_IOV
6015 	if (dinfo->cfg.iov != NULL)
6016 		pci_iov_cfg_restore(dev, dinfo);
6017 #endif
6018 }
6019 
6020 static void
6021 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6022 {
6023 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
6024 	struct pcicfg_pcie *cfg;
6025 	int version, pos;
6026 
6027 	cfg = &dinfo->cfg.pcie;
6028 	pos = cfg->pcie_location;
6029 
6030 	cfg->pcie_flags = RREG(PCIER_FLAGS);
6031 
6032 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6033 
6034 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6035 
6036 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6037 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6038 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6039 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6040 
6041 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6042 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6043 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6044 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6045 
6046 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6047 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6048 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6049 
6050 	if (version > 1) {
6051 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6052 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6053 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6054 	}
6055 #undef RREG
6056 }
6057 
6058 static void
6059 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6060 {
6061 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6062 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6063 }
6064 
6065 void
6066 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6067 {
6068 	uint32_t cls;
6069 	int ps;
6070 
6071 	/*
6072 	 * Some drivers apparently write to these registers w/o updating our
6073 	 * cached copy.  No harm happens if we update the copy, so do so here
6074 	 * so we can restore them.  The COMMAND register is modified by the
6075 	 * bus w/o updating the cache.  This should represent the normally
6076 	 * writable portion of the 'defined' part of type 0/1/2 headers.
6077 	 */
6078 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6079 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6080 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6081 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6082 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6083 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6084 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6085 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6086 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6087 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6088 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6089 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6090 	case PCIM_HDRTYPE_NORMAL:
6091 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6092 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6093 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6094 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6095 		break;
6096 	case PCIM_HDRTYPE_BRIDGE:
6097 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6098 		    PCIR_SECLAT_1, 1);
6099 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6100 		    PCIR_SUBBUS_1, 1);
6101 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6102 		    PCIR_SECBUS_1, 1);
6103 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6104 		    PCIR_PRIBUS_1, 1);
6105 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6106 		    PCIR_BRIDGECTL_1, 2);
6107 		break;
6108 	case PCIM_HDRTYPE_CARDBUS:
6109 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6110 		    PCIR_SECLAT_2, 1);
6111 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6112 		    PCIR_SUBBUS_2, 1);
6113 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6114 		    PCIR_SECBUS_2, 1);
6115 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6116 		    PCIR_PRIBUS_2, 1);
6117 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6118 		    PCIR_BRIDGECTL_2, 2);
6119 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6120 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6121 		break;
6122 	}
6123 
6124 	if (dinfo->cfg.pcie.pcie_location != 0)
6125 		pci_cfg_save_pcie(dev, dinfo);
6126 
6127 	if (dinfo->cfg.pcix.pcix_location != 0)
6128 		pci_cfg_save_pcix(dev, dinfo);
6129 
6130 #ifdef PCI_IOV
6131 	if (dinfo->cfg.iov != NULL)
6132 		pci_iov_cfg_save(dev, dinfo);
6133 #endif
6134 
6135 	/*
6136 	 * don't set the state for display devices, base peripherals and
6137 	 * memory devices since bad things happen when they are powered down.
6138 	 * We should (a) have drivers that can easily detach and (b) use
6139 	 * generic drivers for these devices so that some device actually
6140 	 * attaches.  We need to make sure that when we implement (a) we don't
6141 	 * power the device down on a reattach.
6142 	 */
6143 	cls = pci_get_class(dev);
6144 	if (!setstate)
6145 		return;
6146 	switch (pci_do_power_nodriver)
6147 	{
6148 		case 0:		/* NO powerdown at all */
6149 			return;
6150 		case 1:		/* Conservative about what to power down */
6151 			if (cls == PCIC_STORAGE)
6152 				return;
6153 			/*FALLTHROUGH*/
6154 		case 2:		/* Aggressive about what to power down */
6155 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6156 			    cls == PCIC_BASEPERIPH)
6157 				return;
6158 			/*FALLTHROUGH*/
6159 		case 3:		/* Power down everything */
6160 			break;
6161 	}
6162 	/*
6163 	 * PCI spec says we can only go into D3 state from D0 state.
6164 	 * Transition from D[12] into D0 before going to D3 state.
6165 	 */
6166 	ps = pci_get_powerstate(dev);
6167 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6168 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6169 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6170 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6171 }
6172 
6173 /* Wrapper APIs suitable for device driver use. */
6174 void
6175 pci_save_state(device_t dev)
6176 {
6177 	struct pci_devinfo *dinfo;
6178 
6179 	dinfo = device_get_ivars(dev);
6180 	pci_cfg_save(dev, dinfo, 0);
6181 }
6182 
6183 void
6184 pci_restore_state(device_t dev)
6185 {
6186 	struct pci_devinfo *dinfo;
6187 
6188 	dinfo = device_get_ivars(dev);
6189 	pci_cfg_restore(dev, dinfo);
6190 }
6191 
6192 static int
6193 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6194     uintptr_t *id)
6195 {
6196 
6197 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6198 }
6199 
6200 /* Find the upstream port of a given PCI device in a root complex. */
6201 device_t
6202 pci_find_pcie_root_port(device_t dev)
6203 {
6204 	struct pci_devinfo *dinfo;
6205 	devclass_t pci_class;
6206 	device_t pcib, bus;
6207 
6208 	pci_class = devclass_find("pci");
6209 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6210 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6211 
6212 	/*
6213 	 * Walk the bridge hierarchy until we find a PCI-e root
6214 	 * port or a non-PCI device.
6215 	 */
6216 	for (;;) {
6217 		bus = device_get_parent(dev);
6218 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6219 		    device_get_nameunit(dev)));
6220 
6221 		pcib = device_get_parent(bus);
6222 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6223 		    device_get_nameunit(bus)));
6224 
6225 		/*
6226 		 * pcib's parent must be a PCI bus for this to be a
6227 		 * PCI-PCI bridge.
6228 		 */
6229 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6230 			return (NULL);
6231 
6232 		dinfo = device_get_ivars(pcib);
6233 		if (dinfo->cfg.pcie.pcie_location != 0 &&
6234 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6235 			return (pcib);
6236 
6237 		dev = pcib;
6238 	}
6239 }
6240 
6241 /*
6242  * Wait for pending transactions to complete on a PCI-express function.
6243  *
6244  * The maximum delay is specified in milliseconds in max_delay.  Note
6245  * that this function may sleep.
6246  *
6247  * Returns true if the function is idle and false if the timeout is
6248  * exceeded.  If dev is not a PCI-express function, this returns true.
6249  */
6250 bool
6251 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6252 {
6253 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6254 	uint16_t sta;
6255 	int cap;
6256 
6257 	cap = dinfo->cfg.pcie.pcie_location;
6258 	if (cap == 0)
6259 		return (true);
6260 
6261 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6262 	while (sta & PCIEM_STA_TRANSACTION_PND) {
6263 		if (max_delay == 0)
6264 			return (false);
6265 
6266 		/* Poll once every 100 milliseconds up to the timeout. */
6267 		if (max_delay > 100) {
6268 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6269 			max_delay -= 100;
6270 		} else {
6271 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6272 			    C_HARDCLOCK);
6273 			max_delay = 0;
6274 		}
6275 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6276 	}
6277 
6278 	return (true);
6279 }
6280 
6281 /*
6282  * Determine the maximum Completion Timeout in microseconds.
6283  *
6284  * For non-PCI-express functions this returns 0.
6285  */
6286 int
6287 pcie_get_max_completion_timeout(device_t dev)
6288 {
6289 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6290 	int cap;
6291 
6292 	cap = dinfo->cfg.pcie.pcie_location;
6293 	if (cap == 0)
6294 		return (0);
6295 
6296 	/*
6297 	 * Functions using the 1.x spec use the default timeout range of
6298 	 * 50 microseconds to 50 milliseconds.  Functions that do not
6299 	 * support programmable timeouts also use this range.
6300 	 */
6301 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6302 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6303 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6304 		return (50 * 1000);
6305 
6306 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6307 	    PCIEM_CTL2_COMP_TIMO_VAL) {
6308 	case PCIEM_CTL2_COMP_TIMO_100US:
6309 		return (100);
6310 	case PCIEM_CTL2_COMP_TIMO_10MS:
6311 		return (10 * 1000);
6312 	case PCIEM_CTL2_COMP_TIMO_55MS:
6313 		return (55 * 1000);
6314 	case PCIEM_CTL2_COMP_TIMO_210MS:
6315 		return (210 * 1000);
6316 	case PCIEM_CTL2_COMP_TIMO_900MS:
6317 		return (900 * 1000);
6318 	case PCIEM_CTL2_COMP_TIMO_3500MS:
6319 		return (3500 * 1000);
6320 	case PCIEM_CTL2_COMP_TIMO_13S:
6321 		return (13 * 1000 * 1000);
6322 	case PCIEM_CTL2_COMP_TIMO_64S:
6323 		return (64 * 1000 * 1000);
6324 	default:
6325 		return (50 * 1000);
6326 	}
6327 }
6328 
6329 void
6330 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6331 {
6332 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6333 	const char *s;
6334 	int aer;
6335 	uint32_t r, r1;
6336 	uint16_t rs;
6337 
6338 	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6339 		s = "Correctable";
6340 	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6341 		s = "Uncorrectable (Non-Fatal)";
6342 	else
6343 		s = "Uncorrectable (Fatal)";
6344 	device_printf(dev, "%s PCIe error reported by APEI\n", s);
6345 	if (aerp) {
6346 		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6347 			r = le32dec(aerp + PCIR_AER_COR_STATUS);
6348 			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6349 		} else {
6350 			r = le32dec(aerp + PCIR_AER_UC_STATUS);
6351 			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6352 		}
6353 		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6354 		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6355 			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6356 			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6357 			printf(" severity 0x%08x first %d\n",
6358 			    r, rs & 0x1f);
6359 		} else
6360 			printf("\n");
6361 	}
6362 
6363 	/* As kind of recovery just report and clear the error statuses. */
6364 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6365 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6366 		if (r != 0) {
6367 			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6368 			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6369 		}
6370 
6371 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6372 		if (r != 0) {
6373 			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6374 			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6375 		}
6376 	}
6377 	if (dinfo->cfg.pcie.pcie_location != 0) {
6378 		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6379 		    PCIER_DEVICE_STA, 2);
6380 		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6381 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6382 		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6383 			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6384 			    PCIER_DEVICE_STA, rs, 2);
6385 			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6386 		}
6387 	}
6388 }
6389 
6390 /*
6391  * Perform a Function Level Reset (FLR) on a device.
6392  *
6393  * This function first waits for any pending transactions to complete
6394  * within the timeout specified by max_delay.  If transactions are
6395  * still pending, the function will return false without attempting a
6396  * reset.
6397  *
6398  * If dev is not a PCI-express function or does not support FLR, this
6399  * function returns false.
6400  *
6401  * Note that no registers are saved or restored.  The caller is
6402  * responsible for saving and restoring any registers including
6403  * PCI-standard registers via pci_save_state() and
6404  * pci_restore_state().
6405  */
6406 bool
6407 pcie_flr(device_t dev, u_int max_delay, bool force)
6408 {
6409 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6410 	uint16_t cmd, ctl;
6411 	int compl_delay;
6412 	int cap;
6413 
6414 	cap = dinfo->cfg.pcie.pcie_location;
6415 	if (cap == 0)
6416 		return (false);
6417 
6418 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6419 		return (false);
6420 
6421 	/*
6422 	 * Disable busmastering to prevent generation of new
6423 	 * transactions while waiting for the device to go idle.  If
6424 	 * the idle timeout fails, the command register is restored
6425 	 * which will re-enable busmastering.
6426 	 */
6427 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6428 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6429 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6430 		if (!force) {
6431 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6432 			return (false);
6433 		}
6434 		pci_printf(&dinfo->cfg,
6435 		    "Resetting with transactions pending after %d ms\n",
6436 		    max_delay);
6437 
6438 		/*
6439 		 * Extend the post-FLR delay to cover the maximum
6440 		 * Completion Timeout delay of anything in flight
6441 		 * during the FLR delay.  Enforce a minimum delay of
6442 		 * at least 10ms.
6443 		 */
6444 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6445 		if (compl_delay < 10)
6446 			compl_delay = 10;
6447 	} else
6448 		compl_delay = 0;
6449 
6450 	/* Initiate the reset. */
6451 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6452 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6453 	    PCIEM_CTL_INITIATE_FLR, 2);
6454 
6455 	/* Wait for 100ms. */
6456 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6457 
6458 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6459 	    PCIEM_STA_TRANSACTION_PND)
6460 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6461 	return (true);
6462 }
6463 
6464 /*
6465  * Attempt a power-management reset by cycling the device in/out of D3
6466  * state.  PCI spec says we can only go into D3 state from D0 state.
6467  * Transition from D[12] into D0 before going to D3 state.
6468  */
6469 int
6470 pci_power_reset(device_t dev)
6471 {
6472 	int ps;
6473 
6474 	ps = pci_get_powerstate(dev);
6475 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6476 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6477 	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6478 	pci_set_powerstate(dev, ps);
6479 	return (0);
6480 }
6481 
6482 /*
6483  * Try link drop and retrain of the downstream port of upstream
6484  * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6485  * cause Conventional Hot reset of the device in the slot.
6486  * Alternative, for PCIe, could be the secondary bus reset initiatied
6487  * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6488  */
6489 int
6490 pcie_link_reset(device_t port, int pcie_location)
6491 {
6492 	uint16_t v;
6493 
6494 	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6495 	v |= PCIEM_LINK_CTL_LINK_DIS;
6496 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6497 	pause_sbt("pcier1", mstosbt(20), 0, 0);
6498 	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6499 	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6500 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6501 	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6502 	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6503 	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6504 }
6505 
6506 static int
6507 pci_reset_post(device_t dev, device_t child)
6508 {
6509 
6510 	if (dev == device_get_parent(child))
6511 		pci_restore_state(child);
6512 	return (0);
6513 }
6514 
6515 static int
6516 pci_reset_prepare(device_t dev, device_t child)
6517 {
6518 
6519 	if (dev == device_get_parent(child))
6520 		pci_save_state(child);
6521 	return (0);
6522 }
6523 
6524 static int
6525 pci_reset_child(device_t dev, device_t child, int flags)
6526 {
6527 	int error;
6528 
6529 	if (dev == NULL || device_get_parent(child) != dev)
6530 		return (0);
6531 	if ((flags & DEVF_RESET_DETACH) != 0) {
6532 		error = device_get_state(child) == DS_ATTACHED ?
6533 		    device_detach(child) : 0;
6534 	} else {
6535 		error = BUS_SUSPEND_CHILD(dev, child);
6536 	}
6537 	if (error == 0) {
6538 		if (!pcie_flr(child, 1000, false)) {
6539 			error = BUS_RESET_PREPARE(dev, child);
6540 			if (error == 0)
6541 				pci_power_reset(child);
6542 			BUS_RESET_POST(dev, child);
6543 		}
6544 		if ((flags & DEVF_RESET_DETACH) != 0)
6545 			device_probe_and_attach(child);
6546 		else
6547 			BUS_RESUME_CHILD(dev, child);
6548 	}
6549 	return (error);
6550 }
6551 
6552 const struct pci_device_table *
6553 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6554 {
6555 	bool match;
6556 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6557 
6558 	vendor = pci_get_vendor(child);
6559 	device = pci_get_device(child);
6560 	subvendor = pci_get_subvendor(child);
6561 	subdevice = pci_get_subdevice(child);
6562 	class = pci_get_class(child);
6563 	subclass = pci_get_subclass(child);
6564 	revid = pci_get_revid(child);
6565 	while (nelt-- > 0) {
6566 		match = true;
6567 		if (id->match_flag_vendor)
6568 			match &= vendor == id->vendor;
6569 		if (id->match_flag_device)
6570 			match &= device == id->device;
6571 		if (id->match_flag_subvendor)
6572 			match &= subvendor == id->subvendor;
6573 		if (id->match_flag_subdevice)
6574 			match &= subdevice == id->subdevice;
6575 		if (id->match_flag_class)
6576 			match &= class == id->class_id;
6577 		if (id->match_flag_subclass)
6578 			match &= subclass == id->subclass;
6579 		if (id->match_flag_revid)
6580 			match &= revid == id->revid;
6581 		if (match)
6582 			return (id);
6583 		id++;
6584 	}
6585 	return (NULL);
6586 }
6587 
6588 static void
6589 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6590 {
6591 	const char *dev_name;
6592 	device_t dev;
6593 
6594 	dev = dinfo->cfg.dev;
6595 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6596 	    dinfo->cfg.slot, dinfo->cfg.func);
6597 	dev_name = device_get_name(dev);
6598 	if (dev_name != NULL)
6599 		printf(" (%s%d)", dev_name, device_get_unit(dev));
6600 }
6601 
6602 void
6603 pci_print_faulted_dev(void)
6604 {
6605 	struct pci_devinfo *dinfo;
6606 	device_t dev;
6607 	int aer, i;
6608 	uint32_t r1, r2;
6609 	uint16_t status;
6610 
6611 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6612 		dev = dinfo->cfg.dev;
6613 		status = pci_read_config(dev, PCIR_STATUS, 2);
6614 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6615 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6616 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6617 		if (status != 0) {
6618 			pci_print_faulted_dev_name(dinfo);
6619 			printf(" error 0x%04x\n", status);
6620 		}
6621 		if (dinfo->cfg.pcie.pcie_location != 0) {
6622 			status = pci_read_config(dev,
6623 			    dinfo->cfg.pcie.pcie_location +
6624 			    PCIER_DEVICE_STA, 2);
6625 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6626 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6627 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6628 				pci_print_faulted_dev_name(dinfo);
6629 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6630 				    pci_read_config(dev,
6631 				    dinfo->cfg.pcie.pcie_location +
6632 				    PCIER_DEVICE_CTL, 2),
6633 				    status);
6634 			}
6635 		}
6636 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6637 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6638 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6639 			if (r1 != 0 || r2 != 0) {
6640 				pci_print_faulted_dev_name(dinfo);
6641 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6642 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6643 				    r1, pci_read_config(dev, aer +
6644 				    PCIR_AER_UC_MASK, 4),
6645 				    pci_read_config(dev, aer +
6646 				    PCIR_AER_UC_SEVERITY, 4),
6647 				    r2, pci_read_config(dev, aer +
6648 				    PCIR_AER_COR_MASK, 4),
6649 				    pci_read_config(dev, aer +
6650 				    PCIR_AER_CAP_CONTROL, 4));
6651 				for (i = 0; i < 4; i++) {
6652 					r1 = pci_read_config(dev, aer +
6653 					    PCIR_AER_HEADER_LOG + i * 4, 4);
6654 					printf("    HL%d: 0x%08x\n", i, r1);
6655 				}
6656 			}
6657 		}
6658 	}
6659 }
6660 
6661 #ifdef DDB
6662 DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db)
6663 {
6664 
6665 	pci_print_faulted_dev();
6666 }
6667 
6668 static void
6669 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6670 {
6671 	device_t dev;
6672 	int aer;
6673 	uint32_t r;
6674 
6675 	dev = dinfo->cfg.dev;
6676 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6677 	    PCIER_DEVICE_STA, 2);
6678 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6679 	    PCIER_DEVICE_STA, r, 2);
6680 
6681 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6682 		return;
6683 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6684 	if (r != 0)
6685 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6686 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6687 	if (r != 0)
6688 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6689 }
6690 
6691 DB_COMMAND(pci_clearerr, db_pci_clearerr)
6692 {
6693 	struct pci_devinfo *dinfo;
6694 	device_t dev;
6695 	uint16_t status, status1;
6696 
6697 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6698 		dev = dinfo->cfg.dev;
6699 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
6700 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6701 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6702 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6703 		if (status1 != 0) {
6704 			status &= ~status1;
6705 			pci_write_config(dev, PCIR_STATUS, status, 2);
6706 		}
6707 		if (dinfo->cfg.pcie.pcie_location != 0)
6708 			db_clear_pcie_errors(dinfo);
6709 	}
6710 }
6711 #endif
6712