xref: /freebsd/sys/dev/pci/pci.c (revision 0caf9bf62de0dda2ae80086492a38c6ee3eeff9d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6  * Copyright (c) 2000, BSDi
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_bus.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/limits.h>
41 #include <sys/linker.h>
42 #include <sys/fcntl.h>
43 #include <sys/conf.h>
44 #include <sys/kernel.h>
45 #include <sys/queue.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_extern.h>
52 
53 #include <sys/bus.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <machine/resource.h>
57 #include <machine/stdarg.h>
58 
59 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
60 #include <machine/intr_machdep.h>
61 #endif
62 
63 #include <sys/pciio.h>
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 #include <dev/pci/pci_private.h>
67 
68 #ifdef PCI_IOV
69 #include <sys/nv.h>
70 #include <dev/pci/pci_iov_private.h>
71 #endif
72 
73 #include <dev/usb/controller/xhcireg.h>
74 #include <dev/usb/controller/ehcireg.h>
75 #include <dev/usb/controller/ohcireg.h>
76 #include <dev/usb/controller/uhcireg.h>
77 
78 #include "pcib_if.h"
79 #include "pci_if.h"
80 
81 #define	PCIR_IS_BIOS(cfg, reg)						\
82 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
83 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
84 
85 static int		pci_has_quirk(uint32_t devid, int quirk);
86 static pci_addr_t	pci_mapbase(uint64_t mapreg);
87 static const char	*pci_maptype(uint64_t mapreg);
88 static int		pci_maprange(uint64_t mapreg);
89 static pci_addr_t	pci_rombase(uint64_t mapreg);
90 static int		pci_romsize(uint64_t testval);
91 static void		pci_fixancient(pcicfgregs *cfg);
92 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
93 
94 static int		pci_porten(device_t dev);
95 static int		pci_memen(device_t dev);
96 static void		pci_assign_interrupt(device_t bus, device_t dev,
97 			    int force_route);
98 static int		pci_add_map(device_t bus, device_t dev, int reg,
99 			    struct resource_list *rl, int force, int prefetch);
100 static int		pci_probe(device_t dev);
101 static int		pci_attach(device_t dev);
102 static int		pci_detach(device_t dev);
103 static void		pci_load_vendor_data(void);
104 static int		pci_describe_parse_line(char **ptr, int *vendor,
105 			    int *device, char **desc);
106 static char		*pci_describe_device(device_t dev);
107 static int		pci_modevent(module_t mod, int what, void *arg);
108 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
109 			    pcicfgregs *cfg);
110 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
111 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
112 			    int reg, uint32_t *data);
113 #if 0
114 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
115 			    int reg, uint32_t data);
116 #endif
117 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
118 static void		pci_mask_msix(device_t dev, u_int index);
119 static void		pci_unmask_msix(device_t dev, u_int index);
120 static int		pci_msi_blacklisted(void);
121 static int		pci_msix_blacklisted(void);
122 static void		pci_resume_msi(device_t dev);
123 static void		pci_resume_msix(device_t dev);
124 static int		pci_remap_intr_method(device_t bus, device_t dev,
125 			    u_int irq);
126 static void		pci_hint_device_unit(device_t acdev, device_t child,
127 			    const char *name, int *unitp);
128 
129 static int		pci_get_id_method(device_t dev, device_t child,
130 			    enum pci_id_type type, uintptr_t *rid);
131 
132 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
133     int b, int s, int f, uint16_t vid, uint16_t did);
134 
135 static device_method_t pci_methods[] = {
136 	/* Device interface */
137 	DEVMETHOD(device_probe,		pci_probe),
138 	DEVMETHOD(device_attach,	pci_attach),
139 	DEVMETHOD(device_detach,	pci_detach),
140 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
141 	DEVMETHOD(device_suspend,	bus_generic_suspend),
142 	DEVMETHOD(device_resume,	pci_resume),
143 
144 	/* Bus interface */
145 	DEVMETHOD(bus_print_child,	pci_print_child),
146 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
147 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
148 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
149 	DEVMETHOD(bus_driver_added,	pci_driver_added),
150 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
151 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
152 
153 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
154 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
155 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
156 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
157 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
158 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
159 	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
160 	DEVMETHOD(bus_release_resource,	pci_release_resource),
161 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
162 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
163 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
164 	DEVMETHOD(bus_child_detached,	pci_child_detached),
165 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
166 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
167 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
168 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
169 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
170 	DEVMETHOD(bus_resume_child,	pci_resume_child),
171 	DEVMETHOD(bus_rescan,		pci_rescan_method),
172 
173 	/* PCI interface */
174 	DEVMETHOD(pci_read_config,	pci_read_config_method),
175 	DEVMETHOD(pci_write_config,	pci_write_config_method),
176 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
177 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
178 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
179 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
180 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
181 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
182 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
183 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
184 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
185 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
186 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
187 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
188 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
189 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
190 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
191 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
192 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
193 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
194 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
195 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
196 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
197 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
198 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
199 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
200 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
201 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
202 	DEVMETHOD(pci_get_id,		pci_get_id_method),
203 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
204 	DEVMETHOD(pci_child_added,	pci_child_added_method),
205 #ifdef PCI_IOV
206 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
207 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
208 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
209 #endif
210 
211 	DEVMETHOD_END
212 };
213 
214 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
215 
216 static devclass_t pci_devclass;
217 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL,
218     BUS_PASS_BUS);
219 MODULE_VERSION(pci, 1);
220 
221 static char	*pci_vendordata;
222 static size_t	pci_vendordata_size;
223 
224 struct pci_quirk {
225 	uint32_t devid;	/* Vendor/device of the card */
226 	int	type;
227 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
228 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
229 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
230 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
231 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
232 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
233 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
234 	int	arg1;
235 	int	arg2;
236 };
237 
238 static const struct pci_quirk pci_quirks[] = {
239 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
240 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
241 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
242 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
243 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
244 
245 	/*
246 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
247 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
248 	 */
249 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
250 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
251 
252 	/*
253 	 * MSI doesn't work on earlier Intel chipsets including
254 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
255 	 */
256 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
257 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
258 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
259 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
260 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
261 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
262 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
263 
264 	/*
265 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
266 	 * bridge.
267 	 */
268 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
269 
270 	/*
271 	 * MSI-X allocation doesn't work properly for devices passed through
272 	 * by VMware up to at least ESXi 5.1.
273 	 */
274 	{ 0x079015ad, PCI_QUIRK_DISABLE_MSIX,	0,	0 }, /* PCI/PCI-X */
275 	{ 0x07a015ad, PCI_QUIRK_DISABLE_MSIX,	0,	0 }, /* PCIe */
276 
277 	/*
278 	 * Some virtualization environments emulate an older chipset
279 	 * but support MSI just fine.  QEMU uses the Intel 82440.
280 	 */
281 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
282 
283 	/*
284 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
285 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
286 	 * It prevents us from attaching hpet(4) when the bit is unset.
287 	 * Note this quirk only affects SB600 revision A13 and earlier.
288 	 * For SB600 A21 and later, firmware must set the bit to hide it.
289 	 * For SB700 and later, it is unused and hardcoded to zero.
290 	 */
291 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
292 
293 	/*
294 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
295 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
296 	 * of the command register is set.
297 	 */
298 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
299 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
300 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
301 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
302 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
303 
304 	/*
305 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
306 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
307 	 */
308 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
309 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
310 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
311 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
312 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
313 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
314 
315 	/*
316 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
317 	 * expected place.
318 	 */
319 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
320 
321 	{ 0 }
322 };
323 
324 /* map register information */
325 #define	PCI_MAPMEM	0x01	/* memory map */
326 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
327 #define	PCI_MAPPORT	0x04	/* port map */
328 
329 struct devlist pci_devq;
330 uint32_t pci_generation;
331 uint32_t pci_numdevs = 0;
332 static int pcie_chipset, pcix_chipset;
333 
334 /* sysctl vars */
335 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters");
336 
337 static int pci_enable_io_modes = 1;
338 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
339     &pci_enable_io_modes, 1,
340     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
341     " enable these bits correctly.  We'd like to do this all the time, but"
342     " there are some peripherals that this causes problems with.");
343 
344 static int pci_do_realloc_bars = 1;
345 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
346     &pci_do_realloc_bars, 0,
347     "Attempt to allocate a new range for any BARs whose original "
348     "firmware-assigned ranges fail to allocate during the initial device scan.");
349 
350 static int pci_do_power_nodriver = 0;
351 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
352     &pci_do_power_nodriver, 0,
353     "Place a function into D3 state when no driver attaches to it.  0 means"
354     " disable.  1 means conservatively place devices into D3 state.  2 means"
355     " aggressively place devices into D3 state.  3 means put absolutely"
356     " everything in D3 state.");
357 
358 int pci_do_power_resume = 1;
359 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
360     &pci_do_power_resume, 1,
361   "Transition from D3 -> D0 on resume.");
362 
363 int pci_do_power_suspend = 1;
364 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
365     &pci_do_power_suspend, 1,
366   "Transition from D0 -> D3 on suspend.");
367 
368 static int pci_do_msi = 1;
369 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
370     "Enable support for MSI interrupts");
371 
372 static int pci_do_msix = 1;
373 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
374     "Enable support for MSI-X interrupts");
375 
376 static int pci_msix_rewrite_table = 0;
377 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
378     &pci_msix_rewrite_table, 0,
379     "Rewrite entire MSI-X table when updating MSI-X entries");
380 
381 static int pci_honor_msi_blacklist = 1;
382 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
383     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
384 
385 #if defined(__i386__) || defined(__amd64__)
386 static int pci_usb_takeover = 1;
387 #else
388 static int pci_usb_takeover = 0;
389 #endif
390 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
391     &pci_usb_takeover, 1,
392     "Enable early takeover of USB controllers. Disable this if you depend on"
393     " BIOS emulation of USB devices, that is you use USB devices (like"
394     " keyboard or mouse) but do not load USB drivers");
395 
396 static int pci_clear_bars;
397 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
398     "Ignore firmware-assigned resources for BARs.");
399 
400 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
401 static int pci_clear_buses;
402 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
403     "Ignore firmware-assigned bus numbers.");
404 #endif
405 
406 static int pci_enable_ari = 1;
407 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
408     0, "Enable support for PCIe Alternative RID Interpretation");
409 
410 static int pci_clear_aer_on_attach = 0;
411 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
412     &pci_clear_aer_on_attach, 0,
413     "Clear port and device AER state on driver attach");
414 
415 static int
416 pci_has_quirk(uint32_t devid, int quirk)
417 {
418 	const struct pci_quirk *q;
419 
420 	for (q = &pci_quirks[0]; q->devid; q++) {
421 		if (q->devid == devid && q->type == quirk)
422 			return (1);
423 	}
424 	return (0);
425 }
426 
427 /* Find a device_t by bus/slot/function in domain 0 */
428 
429 device_t
430 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
431 {
432 
433 	return (pci_find_dbsf(0, bus, slot, func));
434 }
435 
436 /* Find a device_t by domain/bus/slot/function */
437 
438 device_t
439 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
440 {
441 	struct pci_devinfo *dinfo;
442 
443 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
444 		if ((dinfo->cfg.domain == domain) &&
445 		    (dinfo->cfg.bus == bus) &&
446 		    (dinfo->cfg.slot == slot) &&
447 		    (dinfo->cfg.func == func)) {
448 			return (dinfo->cfg.dev);
449 		}
450 	}
451 
452 	return (NULL);
453 }
454 
455 /* Find a device_t by vendor/device ID */
456 
457 device_t
458 pci_find_device(uint16_t vendor, uint16_t device)
459 {
460 	struct pci_devinfo *dinfo;
461 
462 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
463 		if ((dinfo->cfg.vendor == vendor) &&
464 		    (dinfo->cfg.device == device)) {
465 			return (dinfo->cfg.dev);
466 		}
467 	}
468 
469 	return (NULL);
470 }
471 
472 device_t
473 pci_find_class(uint8_t class, uint8_t subclass)
474 {
475 	struct pci_devinfo *dinfo;
476 
477 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
478 		if (dinfo->cfg.baseclass == class &&
479 		    dinfo->cfg.subclass == subclass) {
480 			return (dinfo->cfg.dev);
481 		}
482 	}
483 
484 	return (NULL);
485 }
486 
487 static int
488 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
489 {
490 	va_list ap;
491 	int retval;
492 
493 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
494 	    cfg->func);
495 	va_start(ap, fmt);
496 	retval += vprintf(fmt, ap);
497 	va_end(ap);
498 	return (retval);
499 }
500 
501 /* return base address of memory or port map */
502 
503 static pci_addr_t
504 pci_mapbase(uint64_t mapreg)
505 {
506 
507 	if (PCI_BAR_MEM(mapreg))
508 		return (mapreg & PCIM_BAR_MEM_BASE);
509 	else
510 		return (mapreg & PCIM_BAR_IO_BASE);
511 }
512 
513 /* return map type of memory or port map */
514 
515 static const char *
516 pci_maptype(uint64_t mapreg)
517 {
518 
519 	if (PCI_BAR_IO(mapreg))
520 		return ("I/O Port");
521 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
522 		return ("Prefetchable Memory");
523 	return ("Memory");
524 }
525 
526 /* return log2 of map size decoded for memory or port map */
527 
528 int
529 pci_mapsize(uint64_t testval)
530 {
531 	int ln2size;
532 
533 	testval = pci_mapbase(testval);
534 	ln2size = 0;
535 	if (testval != 0) {
536 		while ((testval & 1) == 0)
537 		{
538 			ln2size++;
539 			testval >>= 1;
540 		}
541 	}
542 	return (ln2size);
543 }
544 
545 /* return base address of device ROM */
546 
547 static pci_addr_t
548 pci_rombase(uint64_t mapreg)
549 {
550 
551 	return (mapreg & PCIM_BIOS_ADDR_MASK);
552 }
553 
554 /* return log2 of map size decided for device ROM */
555 
556 static int
557 pci_romsize(uint64_t testval)
558 {
559 	int ln2size;
560 
561 	testval = pci_rombase(testval);
562 	ln2size = 0;
563 	if (testval != 0) {
564 		while ((testval & 1) == 0)
565 		{
566 			ln2size++;
567 			testval >>= 1;
568 		}
569 	}
570 	return (ln2size);
571 }
572 
573 /* return log2 of address range supported by map register */
574 
575 static int
576 pci_maprange(uint64_t mapreg)
577 {
578 	int ln2range = 0;
579 
580 	if (PCI_BAR_IO(mapreg))
581 		ln2range = 32;
582 	else
583 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
584 		case PCIM_BAR_MEM_32:
585 			ln2range = 32;
586 			break;
587 		case PCIM_BAR_MEM_1MB:
588 			ln2range = 20;
589 			break;
590 		case PCIM_BAR_MEM_64:
591 			ln2range = 64;
592 			break;
593 		}
594 	return (ln2range);
595 }
596 
597 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
598 
599 static void
600 pci_fixancient(pcicfgregs *cfg)
601 {
602 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
603 		return;
604 
605 	/* PCI to PCI bridges use header type 1 */
606 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
607 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
608 }
609 
610 /* extract header type specific config data */
611 
612 static void
613 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
614 {
615 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
616 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
617 	case PCIM_HDRTYPE_NORMAL:
618 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
619 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
620 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
621 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
622 		cfg->nummaps	    = PCI_MAXMAPS_0;
623 		break;
624 	case PCIM_HDRTYPE_BRIDGE:
625 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
626 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
627 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
628 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
629 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
630 		cfg->nummaps	    = PCI_MAXMAPS_1;
631 		break;
632 	case PCIM_HDRTYPE_CARDBUS:
633 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
634 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
635 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
636 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
637 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
638 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
639 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
640 		cfg->nummaps	    = PCI_MAXMAPS_2;
641 		break;
642 	}
643 #undef REG
644 }
645 
646 /* read configuration header into pcicfgregs structure */
647 struct pci_devinfo *
648 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
649 {
650 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
651 	uint16_t vid, did;
652 
653 	vid = REG(PCIR_VENDOR, 2);
654 	did = REG(PCIR_DEVICE, 2);
655 	if (vid != 0xffff)
656 		return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
657 
658 	return (NULL);
659 }
660 
661 struct pci_devinfo *
662 pci_alloc_devinfo_method(device_t dev)
663 {
664 
665 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
666 	    M_WAITOK | M_ZERO));
667 }
668 
669 static struct pci_devinfo *
670 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
671     uint16_t vid, uint16_t did)
672 {
673 	struct pci_devinfo *devlist_entry;
674 	pcicfgregs *cfg;
675 
676 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
677 
678 	cfg = &devlist_entry->cfg;
679 
680 	cfg->domain		= d;
681 	cfg->bus		= b;
682 	cfg->slot		= s;
683 	cfg->func		= f;
684 	cfg->vendor		= vid;
685 	cfg->device		= did;
686 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
687 	cfg->statreg		= REG(PCIR_STATUS, 2);
688 	cfg->baseclass		= REG(PCIR_CLASS, 1);
689 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
690 	cfg->progif		= REG(PCIR_PROGIF, 1);
691 	cfg->revid		= REG(PCIR_REVID, 1);
692 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
693 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
694 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
695 	cfg->intpin		= REG(PCIR_INTPIN, 1);
696 	cfg->intline		= REG(PCIR_INTLINE, 1);
697 
698 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
699 	cfg->hdrtype		&= ~PCIM_MFDEV;
700 	STAILQ_INIT(&cfg->maps);
701 
702 	cfg->iov		= NULL;
703 
704 	pci_fixancient(cfg);
705 	pci_hdrtypedata(pcib, b, s, f, cfg);
706 
707 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
708 		pci_read_cap(pcib, cfg);
709 
710 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
711 
712 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
713 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
714 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
715 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
716 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
717 
718 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
719 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
720 	devlist_entry->conf.pc_vendor = cfg->vendor;
721 	devlist_entry->conf.pc_device = cfg->device;
722 
723 	devlist_entry->conf.pc_class = cfg->baseclass;
724 	devlist_entry->conf.pc_subclass = cfg->subclass;
725 	devlist_entry->conf.pc_progif = cfg->progif;
726 	devlist_entry->conf.pc_revid = cfg->revid;
727 
728 	pci_numdevs++;
729 	pci_generation++;
730 
731 	return (devlist_entry);
732 }
733 #undef REG
734 
735 static void
736 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
737 {
738 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
739     cfg->ea.ea_location + (n), w)
740 	int num_ent;
741 	int ptr;
742 	int a, b;
743 	uint32_t val;
744 	int ent_size;
745 	uint32_t dw[4];
746 	uint64_t base, max_offset;
747 	struct pci_ea_entry *eae;
748 
749 	if (cfg->ea.ea_location == 0)
750 		return;
751 
752 	STAILQ_INIT(&cfg->ea.ea_entries);
753 
754 	/* Determine the number of entries */
755 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
756 	num_ent &= PCIM_EA_NUM_ENT_MASK;
757 
758 	/* Find the first entry to care of */
759 	ptr = PCIR_EA_FIRST_ENT;
760 
761 	/* Skip DWORD 2 for type 1 functions */
762 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
763 		ptr += 4;
764 
765 	for (a = 0; a < num_ent; a++) {
766 
767 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
768 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
769 
770 		/* Read a number of dwords in the entry */
771 		val = REG(ptr, 4);
772 		ptr += 4;
773 		ent_size = (val & PCIM_EA_ES);
774 
775 		for (b = 0; b < ent_size; b++) {
776 			dw[b] = REG(ptr, 4);
777 			ptr += 4;
778 		}
779 
780 		eae->eae_flags = val;
781 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
782 
783 		base = dw[0] & PCIM_EA_FIELD_MASK;
784 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
785 		b = 2;
786 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
787 			base |= (uint64_t)dw[b] << 32UL;
788 			b++;
789 		}
790 		if (((dw[1] & PCIM_EA_IS_64) != 0)
791 		    && (b < ent_size)) {
792 			max_offset |= (uint64_t)dw[b] << 32UL;
793 			b++;
794 		}
795 
796 		eae->eae_base = base;
797 		eae->eae_max_offset = max_offset;
798 
799 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
800 
801 		if (bootverbose) {
802 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
803 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
804 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
805 		}
806 	}
807 }
808 #undef REG
809 
810 static void
811 pci_read_cap(device_t pcib, pcicfgregs *cfg)
812 {
813 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
814 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
815 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
816 	uint64_t addr;
817 #endif
818 	uint32_t val;
819 	int	ptr, nextptr, ptrptr;
820 
821 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
822 	case PCIM_HDRTYPE_NORMAL:
823 	case PCIM_HDRTYPE_BRIDGE:
824 		ptrptr = PCIR_CAP_PTR;
825 		break;
826 	case PCIM_HDRTYPE_CARDBUS:
827 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
828 		break;
829 	default:
830 		return;		/* no extended capabilities support */
831 	}
832 	nextptr = REG(ptrptr, 1);	/* sanity check? */
833 
834 	/*
835 	 * Read capability entries.
836 	 */
837 	while (nextptr != 0) {
838 		/* Sanity check */
839 		if (nextptr > 255) {
840 			printf("illegal PCI extended capability offset %d\n",
841 			    nextptr);
842 			return;
843 		}
844 		/* Find the next entry */
845 		ptr = nextptr;
846 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
847 
848 		/* Process this entry */
849 		switch (REG(ptr + PCICAP_ID, 1)) {
850 		case PCIY_PMG:		/* PCI power management */
851 			if (cfg->pp.pp_cap == 0) {
852 				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
853 				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
854 				cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
855 				if ((nextptr - ptr) > PCIR_POWER_DATA)
856 					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
857 			}
858 			break;
859 		case PCIY_HT:		/* HyperTransport */
860 			/* Determine HT-specific capability type. */
861 			val = REG(ptr + PCIR_HT_COMMAND, 2);
862 
863 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
864 				cfg->ht.ht_slave = ptr;
865 
866 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
867 			switch (val & PCIM_HTCMD_CAP_MASK) {
868 			case PCIM_HTCAP_MSI_MAPPING:
869 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
870 					/* Sanity check the mapping window. */
871 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
872 					    4);
873 					addr <<= 32;
874 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
875 					    4);
876 					if (addr != MSI_INTEL_ADDR_BASE)
877 						device_printf(pcib,
878 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
879 						    cfg->domain, cfg->bus,
880 						    cfg->slot, cfg->func,
881 						    (long long)addr);
882 				} else
883 					addr = MSI_INTEL_ADDR_BASE;
884 
885 				cfg->ht.ht_msimap = ptr;
886 				cfg->ht.ht_msictrl = val;
887 				cfg->ht.ht_msiaddr = addr;
888 				break;
889 			}
890 #endif
891 			break;
892 		case PCIY_MSI:		/* PCI MSI */
893 			cfg->msi.msi_location = ptr;
894 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
895 			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
896 						     PCIM_MSICTRL_MMC_MASK)>>1);
897 			break;
898 		case PCIY_MSIX:		/* PCI MSI-X */
899 			cfg->msix.msix_location = ptr;
900 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
901 			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
902 			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
903 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
904 			cfg->msix.msix_table_bar = PCIR_BAR(val &
905 			    PCIM_MSIX_BIR_MASK);
906 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
907 			val = REG(ptr + PCIR_MSIX_PBA, 4);
908 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
909 			    PCIM_MSIX_BIR_MASK);
910 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
911 			break;
912 		case PCIY_VPD:		/* PCI Vital Product Data */
913 			cfg->vpd.vpd_reg = ptr;
914 			break;
915 		case PCIY_SUBVENDOR:
916 			/* Should always be true. */
917 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
918 			    PCIM_HDRTYPE_BRIDGE) {
919 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
920 				cfg->subvendor = val & 0xffff;
921 				cfg->subdevice = val >> 16;
922 			}
923 			break;
924 		case PCIY_PCIX:		/* PCI-X */
925 			/*
926 			 * Assume we have a PCI-X chipset if we have
927 			 * at least one PCI-PCI bridge with a PCI-X
928 			 * capability.  Note that some systems with
929 			 * PCI-express or HT chipsets might match on
930 			 * this check as well.
931 			 */
932 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
933 			    PCIM_HDRTYPE_BRIDGE)
934 				pcix_chipset = 1;
935 			cfg->pcix.pcix_location = ptr;
936 			break;
937 		case PCIY_EXPRESS:	/* PCI-express */
938 			/*
939 			 * Assume we have a PCI-express chipset if we have
940 			 * at least one PCI-express device.
941 			 */
942 			pcie_chipset = 1;
943 			cfg->pcie.pcie_location = ptr;
944 			val = REG(ptr + PCIER_FLAGS, 2);
945 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
946 			break;
947 		case PCIY_EA:		/* Enhanced Allocation */
948 			cfg->ea.ea_location = ptr;
949 			pci_ea_fill_info(pcib, cfg);
950 			break;
951 		default:
952 			break;
953 		}
954 	}
955 
956 #if defined(__powerpc__)
957 	/*
958 	 * Enable the MSI mapping window for all HyperTransport
959 	 * slaves.  PCI-PCI bridges have their windows enabled via
960 	 * PCIB_MAP_MSI().
961 	 */
962 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
963 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
964 		device_printf(pcib,
965 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
966 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
967 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
968 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
969 		     2);
970 	}
971 #endif
972 /* REG and WREG use carry through to next functions */
973 }
974 
975 /*
976  * PCI Vital Product Data
977  */
978 
979 #define	PCI_VPD_TIMEOUT		1000000
980 
981 static int
982 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
983 {
984 	int count = PCI_VPD_TIMEOUT;
985 
986 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
987 
988 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
989 
990 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
991 		if (--count < 0)
992 			return (ENXIO);
993 		DELAY(1);	/* limit looping */
994 	}
995 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
996 
997 	return (0);
998 }
999 
1000 #if 0
1001 static int
1002 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1003 {
1004 	int count = PCI_VPD_TIMEOUT;
1005 
1006 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1007 
1008 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1009 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1010 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1011 		if (--count < 0)
1012 			return (ENXIO);
1013 		DELAY(1);	/* limit looping */
1014 	}
1015 
1016 	return (0);
1017 }
1018 #endif
1019 
1020 #undef PCI_VPD_TIMEOUT
1021 
1022 struct vpd_readstate {
1023 	device_t	pcib;
1024 	pcicfgregs	*cfg;
1025 	uint32_t	val;
1026 	int		bytesinval;
1027 	int		off;
1028 	uint8_t		cksum;
1029 };
1030 
1031 static int
1032 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1033 {
1034 	uint32_t reg;
1035 	uint8_t byte;
1036 
1037 	if (vrs->bytesinval == 0) {
1038 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1039 			return (ENXIO);
1040 		vrs->val = le32toh(reg);
1041 		vrs->off += 4;
1042 		byte = vrs->val & 0xff;
1043 		vrs->bytesinval = 3;
1044 	} else {
1045 		vrs->val = vrs->val >> 8;
1046 		byte = vrs->val & 0xff;
1047 		vrs->bytesinval--;
1048 	}
1049 
1050 	vrs->cksum += byte;
1051 	*data = byte;
1052 	return (0);
1053 }
1054 
1055 static void
1056 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1057 {
1058 	struct vpd_readstate vrs;
1059 	int state;
1060 	int name;
1061 	int remain;
1062 	int i;
1063 	int alloc, off;		/* alloc/off for RO/W arrays */
1064 	int cksumvalid;
1065 	int dflen;
1066 	uint8_t byte;
1067 	uint8_t byte2;
1068 
1069 	/* init vpd reader */
1070 	vrs.bytesinval = 0;
1071 	vrs.off = 0;
1072 	vrs.pcib = pcib;
1073 	vrs.cfg = cfg;
1074 	vrs.cksum = 0;
1075 
1076 	state = 0;
1077 	name = remain = i = 0;	/* shut up stupid gcc */
1078 	alloc = off = 0;	/* shut up stupid gcc */
1079 	dflen = 0;		/* shut up stupid gcc */
1080 	cksumvalid = -1;
1081 	while (state >= 0) {
1082 		if (vpd_nextbyte(&vrs, &byte)) {
1083 			state = -2;
1084 			break;
1085 		}
1086 #if 0
1087 		printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
1088 		    "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
1089 		    vrs.off, vrs.bytesinval, byte, state, remain, name, i);
1090 #endif
1091 		switch (state) {
1092 		case 0:		/* item name */
1093 			if (byte & 0x80) {
1094 				if (vpd_nextbyte(&vrs, &byte2)) {
1095 					state = -2;
1096 					break;
1097 				}
1098 				remain = byte2;
1099 				if (vpd_nextbyte(&vrs, &byte2)) {
1100 					state = -2;
1101 					break;
1102 				}
1103 				remain |= byte2 << 8;
1104 				if (remain > (0x7f*4 - vrs.off)) {
1105 					state = -1;
1106 					pci_printf(cfg,
1107 					    "invalid VPD data, remain %#x\n",
1108 					    remain);
1109 				}
1110 				name = byte & 0x7f;
1111 			} else {
1112 				remain = byte & 0x7;
1113 				name = (byte >> 3) & 0xf;
1114 			}
1115 			switch (name) {
1116 			case 0x2:	/* String */
1117 				cfg->vpd.vpd_ident = malloc(remain + 1,
1118 				    M_DEVBUF, M_WAITOK);
1119 				i = 0;
1120 				state = 1;
1121 				break;
1122 			case 0xf:	/* End */
1123 				state = -1;
1124 				break;
1125 			case 0x10:	/* VPD-R */
1126 				alloc = 8;
1127 				off = 0;
1128 				cfg->vpd.vpd_ros = malloc(alloc *
1129 				    sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
1130 				    M_WAITOK | M_ZERO);
1131 				state = 2;
1132 				break;
1133 			case 0x11:	/* VPD-W */
1134 				alloc = 8;
1135 				off = 0;
1136 				cfg->vpd.vpd_w = malloc(alloc *
1137 				    sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
1138 				    M_WAITOK | M_ZERO);
1139 				state = 5;
1140 				break;
1141 			default:	/* Invalid data, abort */
1142 				state = -1;
1143 				break;
1144 			}
1145 			break;
1146 
1147 		case 1:	/* Identifier String */
1148 			cfg->vpd.vpd_ident[i++] = byte;
1149 			remain--;
1150 			if (remain == 0)  {
1151 				cfg->vpd.vpd_ident[i] = '\0';
1152 				state = 0;
1153 			}
1154 			break;
1155 
1156 		case 2:	/* VPD-R Keyword Header */
1157 			if (off == alloc) {
1158 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1159 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
1160 				    M_DEVBUF, M_WAITOK | M_ZERO);
1161 			}
1162 			cfg->vpd.vpd_ros[off].keyword[0] = byte;
1163 			if (vpd_nextbyte(&vrs, &byte2)) {
1164 				state = -2;
1165 				break;
1166 			}
1167 			cfg->vpd.vpd_ros[off].keyword[1] = byte2;
1168 			if (vpd_nextbyte(&vrs, &byte2)) {
1169 				state = -2;
1170 				break;
1171 			}
1172 			cfg->vpd.vpd_ros[off].len = dflen = byte2;
1173 			if (dflen == 0 &&
1174 			    strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
1175 			    2) == 0) {
1176 				/*
1177 				 * if this happens, we can't trust the rest
1178 				 * of the VPD.
1179 				 */
1180 				pci_printf(cfg, "bad keyword length: %d\n",
1181 				    dflen);
1182 				cksumvalid = 0;
1183 				state = -1;
1184 				break;
1185 			} else if (dflen == 0) {
1186 				cfg->vpd.vpd_ros[off].value = malloc(1 *
1187 				    sizeof(*cfg->vpd.vpd_ros[off].value),
1188 				    M_DEVBUF, M_WAITOK);
1189 				cfg->vpd.vpd_ros[off].value[0] = '\x00';
1190 			} else
1191 				cfg->vpd.vpd_ros[off].value = malloc(
1192 				    (dflen + 1) *
1193 				    sizeof(*cfg->vpd.vpd_ros[off].value),
1194 				    M_DEVBUF, M_WAITOK);
1195 			remain -= 3;
1196 			i = 0;
1197 			/* keep in sync w/ state 3's transistions */
1198 			if (dflen == 0 && remain == 0)
1199 				state = 0;
1200 			else if (dflen == 0)
1201 				state = 2;
1202 			else
1203 				state = 3;
1204 			break;
1205 
1206 		case 3:	/* VPD-R Keyword Value */
1207 			cfg->vpd.vpd_ros[off].value[i++] = byte;
1208 			if (strncmp(cfg->vpd.vpd_ros[off].keyword,
1209 			    "RV", 2) == 0 && cksumvalid == -1) {
1210 				if (vrs.cksum == 0)
1211 					cksumvalid = 1;
1212 				else {
1213 					if (bootverbose)
1214 						pci_printf(cfg,
1215 					    "bad VPD cksum, remain %hhu\n",
1216 						    vrs.cksum);
1217 					cksumvalid = 0;
1218 					state = -1;
1219 					break;
1220 				}
1221 			}
1222 			dflen--;
1223 			remain--;
1224 			/* keep in sync w/ state 2's transistions */
1225 			if (dflen == 0)
1226 				cfg->vpd.vpd_ros[off++].value[i++] = '\0';
1227 			if (dflen == 0 && remain == 0) {
1228 				cfg->vpd.vpd_rocnt = off;
1229 				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1230 				    off * sizeof(*cfg->vpd.vpd_ros),
1231 				    M_DEVBUF, M_WAITOK | M_ZERO);
1232 				state = 0;
1233 			} else if (dflen == 0)
1234 				state = 2;
1235 			break;
1236 
1237 		case 4:
1238 			remain--;
1239 			if (remain == 0)
1240 				state = 0;
1241 			break;
1242 
1243 		case 5:	/* VPD-W Keyword Header */
1244 			if (off == alloc) {
1245 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1246 				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
1247 				    M_DEVBUF, M_WAITOK | M_ZERO);
1248 			}
1249 			cfg->vpd.vpd_w[off].keyword[0] = byte;
1250 			if (vpd_nextbyte(&vrs, &byte2)) {
1251 				state = -2;
1252 				break;
1253 			}
1254 			cfg->vpd.vpd_w[off].keyword[1] = byte2;
1255 			if (vpd_nextbyte(&vrs, &byte2)) {
1256 				state = -2;
1257 				break;
1258 			}
1259 			cfg->vpd.vpd_w[off].len = dflen = byte2;
1260 			cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
1261 			cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
1262 			    sizeof(*cfg->vpd.vpd_w[off].value),
1263 			    M_DEVBUF, M_WAITOK);
1264 			remain -= 3;
1265 			i = 0;
1266 			/* keep in sync w/ state 6's transistions */
1267 			if (dflen == 0 && remain == 0)
1268 				state = 0;
1269 			else if (dflen == 0)
1270 				state = 5;
1271 			else
1272 				state = 6;
1273 			break;
1274 
1275 		case 6:	/* VPD-W Keyword Value */
1276 			cfg->vpd.vpd_w[off].value[i++] = byte;
1277 			dflen--;
1278 			remain--;
1279 			/* keep in sync w/ state 5's transistions */
1280 			if (dflen == 0)
1281 				cfg->vpd.vpd_w[off++].value[i++] = '\0';
1282 			if (dflen == 0 && remain == 0) {
1283 				cfg->vpd.vpd_wcnt = off;
1284 				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1285 				    off * sizeof(*cfg->vpd.vpd_w),
1286 				    M_DEVBUF, M_WAITOK | M_ZERO);
1287 				state = 0;
1288 			} else if (dflen == 0)
1289 				state = 5;
1290 			break;
1291 
1292 		default:
1293 			pci_printf(cfg, "invalid state: %d\n", state);
1294 			state = -1;
1295 			break;
1296 		}
1297 	}
1298 
1299 	if (cksumvalid == 0 || state < -1) {
1300 		/* read-only data bad, clean up */
1301 		if (cfg->vpd.vpd_ros != NULL) {
1302 			for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
1303 				free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
1304 			free(cfg->vpd.vpd_ros, M_DEVBUF);
1305 			cfg->vpd.vpd_ros = NULL;
1306 		}
1307 	}
1308 	if (state < -1) {
1309 		/* I/O error, clean up */
1310 		pci_printf(cfg, "failed to read VPD data.\n");
1311 		if (cfg->vpd.vpd_ident != NULL) {
1312 			free(cfg->vpd.vpd_ident, M_DEVBUF);
1313 			cfg->vpd.vpd_ident = NULL;
1314 		}
1315 		if (cfg->vpd.vpd_w != NULL) {
1316 			for (off = 0; cfg->vpd.vpd_w[off].value; off++)
1317 				free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
1318 			free(cfg->vpd.vpd_w, M_DEVBUF);
1319 			cfg->vpd.vpd_w = NULL;
1320 		}
1321 	}
1322 	cfg->vpd.vpd_cached = 1;
1323 #undef REG
1324 #undef WREG
1325 }
1326 
1327 int
1328 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1329 {
1330 	struct pci_devinfo *dinfo = device_get_ivars(child);
1331 	pcicfgregs *cfg = &dinfo->cfg;
1332 
1333 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1334 		pci_read_vpd(device_get_parent(dev), cfg);
1335 
1336 	*identptr = cfg->vpd.vpd_ident;
1337 
1338 	if (*identptr == NULL)
1339 		return (ENXIO);
1340 
1341 	return (0);
1342 }
1343 
1344 int
1345 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1346 	const char **vptr)
1347 {
1348 	struct pci_devinfo *dinfo = device_get_ivars(child);
1349 	pcicfgregs *cfg = &dinfo->cfg;
1350 	int i;
1351 
1352 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1353 		pci_read_vpd(device_get_parent(dev), cfg);
1354 
1355 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1356 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1357 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1358 			*vptr = cfg->vpd.vpd_ros[i].value;
1359 			return (0);
1360 		}
1361 
1362 	*vptr = NULL;
1363 	return (ENXIO);
1364 }
1365 
1366 struct pcicfg_vpd *
1367 pci_fetch_vpd_list(device_t dev)
1368 {
1369 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1370 	pcicfgregs *cfg = &dinfo->cfg;
1371 
1372 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1373 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1374 	return (&cfg->vpd);
1375 }
1376 
1377 /*
1378  * Find the requested HyperTransport capability and return the offset
1379  * in configuration space via the pointer provided.  The function
1380  * returns 0 on success and an error code otherwise.
1381  */
1382 int
1383 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1384 {
1385 	int ptr, error;
1386 	uint16_t val;
1387 
1388 	error = pci_find_cap(child, PCIY_HT, &ptr);
1389 	if (error)
1390 		return (error);
1391 
1392 	/*
1393 	 * Traverse the capabilities list checking each HT capability
1394 	 * to see if it matches the requested HT capability.
1395 	 */
1396 	for (;;) {
1397 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1398 		if (capability == PCIM_HTCAP_SLAVE ||
1399 		    capability == PCIM_HTCAP_HOST)
1400 			val &= 0xe000;
1401 		else
1402 			val &= PCIM_HTCMD_CAP_MASK;
1403 		if (val == capability) {
1404 			if (capreg != NULL)
1405 				*capreg = ptr;
1406 			return (0);
1407 		}
1408 
1409 		/* Skip to the next HT capability. */
1410 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1411 			break;
1412 	}
1413 
1414 	return (ENOENT);
1415 }
1416 
1417 /*
1418  * Find the next requested HyperTransport capability after start and return
1419  * the offset in configuration space via the pointer provided.  The function
1420  * returns 0 on success and an error code otherwise.
1421  */
1422 int
1423 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1424     int start, int *capreg)
1425 {
1426 	int ptr;
1427 	uint16_t val;
1428 
1429 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1430 	    ("start capability is not HyperTransport capability"));
1431 	ptr = start;
1432 
1433 	/*
1434 	 * Traverse the capabilities list checking each HT capability
1435 	 * to see if it matches the requested HT capability.
1436 	 */
1437 	for (;;) {
1438 		/* Skip to the next HT capability. */
1439 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1440 			break;
1441 
1442 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1443 		if (capability == PCIM_HTCAP_SLAVE ||
1444 		    capability == PCIM_HTCAP_HOST)
1445 			val &= 0xe000;
1446 		else
1447 			val &= PCIM_HTCMD_CAP_MASK;
1448 		if (val == capability) {
1449 			if (capreg != NULL)
1450 				*capreg = ptr;
1451 			return (0);
1452 		}
1453 	}
1454 
1455 	return (ENOENT);
1456 }
1457 
1458 /*
1459  * Find the requested capability and return the offset in
1460  * configuration space via the pointer provided.  The function returns
1461  * 0 on success and an error code otherwise.
1462  */
1463 int
1464 pci_find_cap_method(device_t dev, device_t child, int capability,
1465     int *capreg)
1466 {
1467 	struct pci_devinfo *dinfo = device_get_ivars(child);
1468 	pcicfgregs *cfg = &dinfo->cfg;
1469 	uint32_t status;
1470 	uint8_t ptr;
1471 
1472 	/*
1473 	 * Check the CAP_LIST bit of the PCI status register first.
1474 	 */
1475 	status = pci_read_config(child, PCIR_STATUS, 2);
1476 	if (!(status & PCIM_STATUS_CAPPRESENT))
1477 		return (ENXIO);
1478 
1479 	/*
1480 	 * Determine the start pointer of the capabilities list.
1481 	 */
1482 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1483 	case PCIM_HDRTYPE_NORMAL:
1484 	case PCIM_HDRTYPE_BRIDGE:
1485 		ptr = PCIR_CAP_PTR;
1486 		break;
1487 	case PCIM_HDRTYPE_CARDBUS:
1488 		ptr = PCIR_CAP_PTR_2;
1489 		break;
1490 	default:
1491 		/* XXX: panic? */
1492 		return (ENXIO);		/* no extended capabilities support */
1493 	}
1494 	ptr = pci_read_config(child, ptr, 1);
1495 
1496 	/*
1497 	 * Traverse the capabilities list.
1498 	 */
1499 	while (ptr != 0) {
1500 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1501 			if (capreg != NULL)
1502 				*capreg = ptr;
1503 			return (0);
1504 		}
1505 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1506 	}
1507 
1508 	return (ENOENT);
1509 }
1510 
1511 /*
1512  * Find the next requested capability after start and return the offset in
1513  * configuration space via the pointer provided.  The function returns
1514  * 0 on success and an error code otherwise.
1515  */
1516 int
1517 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1518     int start, int *capreg)
1519 {
1520 	uint8_t ptr;
1521 
1522 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1523 	    ("start capability is not expected capability"));
1524 
1525 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1526 	while (ptr != 0) {
1527 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1528 			if (capreg != NULL)
1529 				*capreg = ptr;
1530 			return (0);
1531 		}
1532 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1533 	}
1534 
1535 	return (ENOENT);
1536 }
1537 
1538 /*
1539  * Find the requested extended capability and return the offset in
1540  * configuration space via the pointer provided.  The function returns
1541  * 0 on success and an error code otherwise.
1542  */
1543 int
1544 pci_find_extcap_method(device_t dev, device_t child, int capability,
1545     int *capreg)
1546 {
1547 	struct pci_devinfo *dinfo = device_get_ivars(child);
1548 	pcicfgregs *cfg = &dinfo->cfg;
1549 	uint32_t ecap;
1550 	uint16_t ptr;
1551 
1552 	/* Only supported for PCI-express devices. */
1553 	if (cfg->pcie.pcie_location == 0)
1554 		return (ENXIO);
1555 
1556 	ptr = PCIR_EXTCAP;
1557 	ecap = pci_read_config(child, ptr, 4);
1558 	if (ecap == 0xffffffff || ecap == 0)
1559 		return (ENOENT);
1560 	for (;;) {
1561 		if (PCI_EXTCAP_ID(ecap) == capability) {
1562 			if (capreg != NULL)
1563 				*capreg = ptr;
1564 			return (0);
1565 		}
1566 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1567 		if (ptr == 0)
1568 			break;
1569 		ecap = pci_read_config(child, ptr, 4);
1570 	}
1571 
1572 	return (ENOENT);
1573 }
1574 
1575 /*
1576  * Find the next requested extended capability after start and return the
1577  * offset in configuration space via the pointer provided.  The function
1578  * returns 0 on success and an error code otherwise.
1579  */
1580 int
1581 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1582     int start, int *capreg)
1583 {
1584 	struct pci_devinfo *dinfo = device_get_ivars(child);
1585 	pcicfgregs *cfg = &dinfo->cfg;
1586 	uint32_t ecap;
1587 	uint16_t ptr;
1588 
1589 	/* Only supported for PCI-express devices. */
1590 	if (cfg->pcie.pcie_location == 0)
1591 		return (ENXIO);
1592 
1593 	ecap = pci_read_config(child, start, 4);
1594 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1595 	    ("start extended capability is not expected capability"));
1596 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1597 	while (ptr != 0) {
1598 		ecap = pci_read_config(child, ptr, 4);
1599 		if (PCI_EXTCAP_ID(ecap) == capability) {
1600 			if (capreg != NULL)
1601 				*capreg = ptr;
1602 			return (0);
1603 		}
1604 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1605 	}
1606 
1607 	return (ENOENT);
1608 }
1609 
1610 /*
1611  * Support for MSI-X message interrupts.
1612  */
1613 static void
1614 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1615 {
1616 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1617 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1618 	uint32_t offset;
1619 
1620 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1621 	offset = msix->msix_table_offset + index * 16;
1622 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1623 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1624 	bus_write_4(msix->msix_table_res, offset + 8, data);
1625 }
1626 
1627 void
1628 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1629     uint64_t address, uint32_t data)
1630 {
1631 
1632 	if (pci_msix_rewrite_table) {
1633 		struct pci_devinfo *dinfo = device_get_ivars(child);
1634 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1635 
1636 		/*
1637 		 * Some VM hosts require MSIX to be disabled in the
1638 		 * control register before updating the MSIX table
1639 		 * entries are allowed. It is not enough to only
1640 		 * disable MSIX while updating a single entry. MSIX
1641 		 * must be disabled while updating all entries in the
1642 		 * table.
1643 		 */
1644 		pci_write_config(child,
1645 		    msix->msix_location + PCIR_MSIX_CTRL,
1646 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1647 		pci_resume_msix(child);
1648 	} else
1649 		pci_write_msix_entry(child, index, address, data);
1650 
1651 	/* Enable MSI -> HT mapping. */
1652 	pci_ht_map_msi(child, address);
1653 }
1654 
1655 void
1656 pci_mask_msix(device_t dev, u_int index)
1657 {
1658 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1659 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1660 	uint32_t offset, val;
1661 
1662 	KASSERT(msix->msix_msgnum > index, ("bogus index"));
1663 	offset = msix->msix_table_offset + index * 16 + 12;
1664 	val = bus_read_4(msix->msix_table_res, offset);
1665 	if (!(val & PCIM_MSIX_VCTRL_MASK)) {
1666 		val |= PCIM_MSIX_VCTRL_MASK;
1667 		bus_write_4(msix->msix_table_res, offset, val);
1668 	}
1669 }
1670 
1671 void
1672 pci_unmask_msix(device_t dev, u_int index)
1673 {
1674 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1675 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1676 	uint32_t offset, val;
1677 
1678 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1679 	offset = msix->msix_table_offset + index * 16 + 12;
1680 	val = bus_read_4(msix->msix_table_res, offset);
1681 	if (val & PCIM_MSIX_VCTRL_MASK) {
1682 		val &= ~PCIM_MSIX_VCTRL_MASK;
1683 		bus_write_4(msix->msix_table_res, offset, val);
1684 	}
1685 }
1686 
1687 int
1688 pci_pending_msix(device_t dev, u_int index)
1689 {
1690 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1691 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1692 	uint32_t offset, bit;
1693 
1694 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1695 	offset = msix->msix_pba_offset + (index / 32) * 4;
1696 	bit = 1 << index % 32;
1697 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1698 }
1699 
1700 /*
1701  * Restore MSI-X registers and table during resume.  If MSI-X is
1702  * enabled then walk the virtual table to restore the actual MSI-X
1703  * table.
1704  */
1705 static void
1706 pci_resume_msix(device_t dev)
1707 {
1708 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1709 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1710 	struct msix_table_entry *mte;
1711 	struct msix_vector *mv;
1712 	int i;
1713 
1714 	if (msix->msix_alloc > 0) {
1715 		/* First, mask all vectors. */
1716 		for (i = 0; i < msix->msix_msgnum; i++)
1717 			pci_mask_msix(dev, i);
1718 
1719 		/* Second, program any messages with at least one handler. */
1720 		for (i = 0; i < msix->msix_table_len; i++) {
1721 			mte = &msix->msix_table[i];
1722 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1723 				continue;
1724 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1725 			pci_write_msix_entry(dev, i, mv->mv_address,
1726 			    mv->mv_data);
1727 			pci_unmask_msix(dev, i);
1728 		}
1729 	}
1730 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1731 	    msix->msix_ctrl, 2);
1732 }
1733 
1734 /*
1735  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1736  * returned in *count.  After this function returns, each message will be
1737  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1738  */
1739 int
1740 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1741 {
1742 	struct pci_devinfo *dinfo = device_get_ivars(child);
1743 	pcicfgregs *cfg = &dinfo->cfg;
1744 	struct resource_list_entry *rle;
1745 	int actual, error, i, irq, max;
1746 
1747 	/* Don't let count == 0 get us into trouble. */
1748 	if (*count == 0)
1749 		return (EINVAL);
1750 
1751 	/* If rid 0 is allocated, then fail. */
1752 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1753 	if (rle != NULL && rle->res != NULL)
1754 		return (ENXIO);
1755 
1756 	/* Already have allocated messages? */
1757 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1758 		return (ENXIO);
1759 
1760 	/* If MSI-X is blacklisted for this system, fail. */
1761 	if (pci_msix_blacklisted())
1762 		return (ENXIO);
1763 
1764 	/* MSI-X capability present? */
1765 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1766 		return (ENODEV);
1767 
1768 	/* Make sure the appropriate BARs are mapped. */
1769 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1770 	    cfg->msix.msix_table_bar);
1771 	if (rle == NULL || rle->res == NULL ||
1772 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1773 		return (ENXIO);
1774 	cfg->msix.msix_table_res = rle->res;
1775 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1776 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1777 		    cfg->msix.msix_pba_bar);
1778 		if (rle == NULL || rle->res == NULL ||
1779 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1780 			return (ENXIO);
1781 	}
1782 	cfg->msix.msix_pba_res = rle->res;
1783 
1784 	if (bootverbose)
1785 		device_printf(child,
1786 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1787 		    *count, cfg->msix.msix_msgnum);
1788 	max = min(*count, cfg->msix.msix_msgnum);
1789 	for (i = 0; i < max; i++) {
1790 		/* Allocate a message. */
1791 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1792 		if (error) {
1793 			if (i == 0)
1794 				return (error);
1795 			break;
1796 		}
1797 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1798 		    irq, 1);
1799 	}
1800 	actual = i;
1801 
1802 	if (bootverbose) {
1803 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1804 		if (actual == 1)
1805 			device_printf(child, "using IRQ %ju for MSI-X\n",
1806 			    rle->start);
1807 		else {
1808 			int run;
1809 
1810 			/*
1811 			 * Be fancy and try to print contiguous runs of
1812 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1813 			 * 'run' is true if we are in a range.
1814 			 */
1815 			device_printf(child, "using IRQs %ju", rle->start);
1816 			irq = rle->start;
1817 			run = 0;
1818 			for (i = 1; i < actual; i++) {
1819 				rle = resource_list_find(&dinfo->resources,
1820 				    SYS_RES_IRQ, i + 1);
1821 
1822 				/* Still in a run? */
1823 				if (rle->start == irq + 1) {
1824 					run = 1;
1825 					irq++;
1826 					continue;
1827 				}
1828 
1829 				/* Finish previous range. */
1830 				if (run) {
1831 					printf("-%d", irq);
1832 					run = 0;
1833 				}
1834 
1835 				/* Start new range. */
1836 				printf(",%ju", rle->start);
1837 				irq = rle->start;
1838 			}
1839 
1840 			/* Unfinished range? */
1841 			if (run)
1842 				printf("-%d", irq);
1843 			printf(" for MSI-X\n");
1844 		}
1845 	}
1846 
1847 	/* Mask all vectors. */
1848 	for (i = 0; i < cfg->msix.msix_msgnum; i++)
1849 		pci_mask_msix(child, i);
1850 
1851 	/* Allocate and initialize vector data and virtual table. */
1852 	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1853 	    M_DEVBUF, M_WAITOK | M_ZERO);
1854 	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1855 	    M_DEVBUF, M_WAITOK | M_ZERO);
1856 	for (i = 0; i < actual; i++) {
1857 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1858 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1859 		cfg->msix.msix_table[i].mte_vector = i + 1;
1860 	}
1861 
1862 	/* Update control register to enable MSI-X. */
1863 	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1864 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1865 	    cfg->msix.msix_ctrl, 2);
1866 
1867 	/* Update counts of alloc'd messages. */
1868 	cfg->msix.msix_alloc = actual;
1869 	cfg->msix.msix_table_len = actual;
1870 	*count = actual;
1871 	return (0);
1872 }
1873 
1874 /*
1875  * By default, pci_alloc_msix() will assign the allocated IRQ
1876  * resources consecutively to the first N messages in the MSI-X table.
1877  * However, device drivers may want to use different layouts if they
1878  * either receive fewer messages than they asked for, or they wish to
1879  * populate the MSI-X table sparsely.  This method allows the driver
1880  * to specify what layout it wants.  It must be called after a
1881  * successful pci_alloc_msix() but before any of the associated
1882  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1883  *
1884  * The 'vectors' array contains 'count' message vectors.  The array
1885  * maps directly to the MSI-X table in that index 0 in the array
1886  * specifies the vector for the first message in the MSI-X table, etc.
1887  * The vector value in each array index can either be 0 to indicate
1888  * that no vector should be assigned to a message slot, or it can be a
1889  * number from 1 to N (where N is the count returned from a
1890  * succcessful call to pci_alloc_msix()) to indicate which message
1891  * vector (IRQ) to be used for the corresponding message.
1892  *
1893  * On successful return, each message with a non-zero vector will have
1894  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1895  * 1.  Additionally, if any of the IRQs allocated via the previous
1896  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1897  * will be freed back to the system automatically.
1898  *
1899  * For example, suppose a driver has a MSI-X table with 6 messages and
1900  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1901  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1902  * C.  After the call to pci_alloc_msix(), the device will be setup to
1903  * have an MSI-X table of ABC--- (where - means no vector assigned).
1904  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1905  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1906  * be freed back to the system.  This device will also have valid
1907  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1908  *
1909  * In any case, the SYS_RES_IRQ rid X will always map to the message
1910  * at MSI-X table index X - 1 and will only be valid if a vector is
1911  * assigned to that table entry.
1912  */
1913 int
1914 pci_remap_msix_method(device_t dev, device_t child, int count,
1915     const u_int *vectors)
1916 {
1917 	struct pci_devinfo *dinfo = device_get_ivars(child);
1918 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1919 	struct resource_list_entry *rle;
1920 	int i, irq, j, *used;
1921 
1922 	/*
1923 	 * Have to have at least one message in the table but the
1924 	 * table can't be bigger than the actual MSI-X table in the
1925 	 * device.
1926 	 */
1927 	if (count == 0 || count > msix->msix_msgnum)
1928 		return (EINVAL);
1929 
1930 	/* Sanity check the vectors. */
1931 	for (i = 0; i < count; i++)
1932 		if (vectors[i] > msix->msix_alloc)
1933 			return (EINVAL);
1934 
1935 	/*
1936 	 * Make sure there aren't any holes in the vectors to be used.
1937 	 * It's a big pain to support it, and it doesn't really make
1938 	 * sense anyway.  Also, at least one vector must be used.
1939 	 */
1940 	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
1941 	    M_ZERO);
1942 	for (i = 0; i < count; i++)
1943 		if (vectors[i] != 0)
1944 			used[vectors[i] - 1] = 1;
1945 	for (i = 0; i < msix->msix_alloc - 1; i++)
1946 		if (used[i] == 0 && used[i + 1] == 1) {
1947 			free(used, M_DEVBUF);
1948 			return (EINVAL);
1949 		}
1950 	if (used[0] != 1) {
1951 		free(used, M_DEVBUF);
1952 		return (EINVAL);
1953 	}
1954 
1955 	/* Make sure none of the resources are allocated. */
1956 	for (i = 0; i < msix->msix_table_len; i++) {
1957 		if (msix->msix_table[i].mte_vector == 0)
1958 			continue;
1959 		if (msix->msix_table[i].mte_handlers > 0) {
1960 			free(used, M_DEVBUF);
1961 			return (EBUSY);
1962 		}
1963 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1964 		KASSERT(rle != NULL, ("missing resource"));
1965 		if (rle->res != NULL) {
1966 			free(used, M_DEVBUF);
1967 			return (EBUSY);
1968 		}
1969 	}
1970 
1971 	/* Free the existing resource list entries. */
1972 	for (i = 0; i < msix->msix_table_len; i++) {
1973 		if (msix->msix_table[i].mte_vector == 0)
1974 			continue;
1975 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
1976 	}
1977 
1978 	/*
1979 	 * Build the new virtual table keeping track of which vectors are
1980 	 * used.
1981 	 */
1982 	free(msix->msix_table, M_DEVBUF);
1983 	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
1984 	    M_DEVBUF, M_WAITOK | M_ZERO);
1985 	for (i = 0; i < count; i++)
1986 		msix->msix_table[i].mte_vector = vectors[i];
1987 	msix->msix_table_len = count;
1988 
1989 	/* Free any unused IRQs and resize the vectors array if necessary. */
1990 	j = msix->msix_alloc - 1;
1991 	if (used[j] == 0) {
1992 		struct msix_vector *vec;
1993 
1994 		while (used[j] == 0) {
1995 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
1996 			    msix->msix_vectors[j].mv_irq);
1997 			j--;
1998 		}
1999 		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
2000 		    M_WAITOK);
2001 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2002 		    (j + 1));
2003 		free(msix->msix_vectors, M_DEVBUF);
2004 		msix->msix_vectors = vec;
2005 		msix->msix_alloc = j + 1;
2006 	}
2007 	free(used, M_DEVBUF);
2008 
2009 	/* Map the IRQs onto the rids. */
2010 	for (i = 0; i < count; i++) {
2011 		if (vectors[i] == 0)
2012 			continue;
2013 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2014 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2015 		    irq, 1);
2016 	}
2017 
2018 	if (bootverbose) {
2019 		device_printf(child, "Remapped MSI-X IRQs as: ");
2020 		for (i = 0; i < count; i++) {
2021 			if (i != 0)
2022 				printf(", ");
2023 			if (vectors[i] == 0)
2024 				printf("---");
2025 			else
2026 				printf("%d",
2027 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2028 		}
2029 		printf("\n");
2030 	}
2031 
2032 	return (0);
2033 }
2034 
2035 static int
2036 pci_release_msix(device_t dev, device_t child)
2037 {
2038 	struct pci_devinfo *dinfo = device_get_ivars(child);
2039 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2040 	struct resource_list_entry *rle;
2041 	int i;
2042 
2043 	/* Do we have any messages to release? */
2044 	if (msix->msix_alloc == 0)
2045 		return (ENODEV);
2046 
2047 	/* Make sure none of the resources are allocated. */
2048 	for (i = 0; i < msix->msix_table_len; i++) {
2049 		if (msix->msix_table[i].mte_vector == 0)
2050 			continue;
2051 		if (msix->msix_table[i].mte_handlers > 0)
2052 			return (EBUSY);
2053 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2054 		KASSERT(rle != NULL, ("missing resource"));
2055 		if (rle->res != NULL)
2056 			return (EBUSY);
2057 	}
2058 
2059 	/* Update control register to disable MSI-X. */
2060 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2061 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2062 	    msix->msix_ctrl, 2);
2063 
2064 	/* Free the resource list entries. */
2065 	for (i = 0; i < msix->msix_table_len; i++) {
2066 		if (msix->msix_table[i].mte_vector == 0)
2067 			continue;
2068 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2069 	}
2070 	free(msix->msix_table, M_DEVBUF);
2071 	msix->msix_table_len = 0;
2072 
2073 	/* Release the IRQs. */
2074 	for (i = 0; i < msix->msix_alloc; i++)
2075 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2076 		    msix->msix_vectors[i].mv_irq);
2077 	free(msix->msix_vectors, M_DEVBUF);
2078 	msix->msix_alloc = 0;
2079 	return (0);
2080 }
2081 
2082 /*
2083  * Return the max supported MSI-X messages this device supports.
2084  * Basically, assuming the MD code can alloc messages, this function
2085  * should return the maximum value that pci_alloc_msix() can return.
2086  * Thus, it is subject to the tunables, etc.
2087  */
2088 int
2089 pci_msix_count_method(device_t dev, device_t child)
2090 {
2091 	struct pci_devinfo *dinfo = device_get_ivars(child);
2092 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2093 
2094 	if (pci_do_msix && msix->msix_location != 0)
2095 		return (msix->msix_msgnum);
2096 	return (0);
2097 }
2098 
2099 int
2100 pci_msix_pba_bar_method(device_t dev, device_t child)
2101 {
2102 	struct pci_devinfo *dinfo = device_get_ivars(child);
2103 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2104 
2105 	if (pci_do_msix && msix->msix_location != 0)
2106 		return (msix->msix_pba_bar);
2107 	return (-1);
2108 }
2109 
2110 int
2111 pci_msix_table_bar_method(device_t dev, device_t child)
2112 {
2113 	struct pci_devinfo *dinfo = device_get_ivars(child);
2114 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2115 
2116 	if (pci_do_msix && msix->msix_location != 0)
2117 		return (msix->msix_table_bar);
2118 	return (-1);
2119 }
2120 
2121 /*
2122  * HyperTransport MSI mapping control
2123  */
2124 void
2125 pci_ht_map_msi(device_t dev, uint64_t addr)
2126 {
2127 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2128 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2129 
2130 	if (!ht->ht_msimap)
2131 		return;
2132 
2133 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2134 	    ht->ht_msiaddr >> 20 == addr >> 20) {
2135 		/* Enable MSI -> HT mapping. */
2136 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2137 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2138 		    ht->ht_msictrl, 2);
2139 	}
2140 
2141 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2142 		/* Disable MSI -> HT mapping. */
2143 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2144 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2145 		    ht->ht_msictrl, 2);
2146 	}
2147 }
2148 
2149 int
2150 pci_get_max_payload(device_t dev)
2151 {
2152 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2153 	int cap;
2154 	uint16_t val;
2155 
2156 	cap = dinfo->cfg.pcie.pcie_location;
2157 	if (cap == 0)
2158 		return (0);
2159 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2160 	val &= PCIEM_CTL_MAX_PAYLOAD;
2161 	val >>= 5;
2162 	return (1 << (val + 7));
2163 }
2164 
2165 int
2166 pci_get_max_read_req(device_t dev)
2167 {
2168 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2169 	int cap;
2170 	uint16_t val;
2171 
2172 	cap = dinfo->cfg.pcie.pcie_location;
2173 	if (cap == 0)
2174 		return (0);
2175 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2176 	val &= PCIEM_CTL_MAX_READ_REQUEST;
2177 	val >>= 12;
2178 	return (1 << (val + 7));
2179 }
2180 
2181 int
2182 pci_set_max_read_req(device_t dev, int size)
2183 {
2184 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2185 	int cap;
2186 	uint16_t val;
2187 
2188 	cap = dinfo->cfg.pcie.pcie_location;
2189 	if (cap == 0)
2190 		return (0);
2191 	if (size < 128)
2192 		size = 128;
2193 	if (size > 4096)
2194 		size = 4096;
2195 	size = (1 << (fls(size) - 1));
2196 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2197 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2198 	val |= (fls(size) - 8) << 12;
2199 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2200 	return (size);
2201 }
2202 
2203 uint32_t
2204 pcie_read_config(device_t dev, int reg, int width)
2205 {
2206 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2207 	int cap;
2208 
2209 	cap = dinfo->cfg.pcie.pcie_location;
2210 	if (cap == 0) {
2211 		if (width == 2)
2212 			return (0xffff);
2213 		return (0xffffffff);
2214 	}
2215 
2216 	return (pci_read_config(dev, cap + reg, width));
2217 }
2218 
2219 void
2220 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2221 {
2222 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2223 	int cap;
2224 
2225 	cap = dinfo->cfg.pcie.pcie_location;
2226 	if (cap == 0)
2227 		return;
2228 	pci_write_config(dev, cap + reg, value, width);
2229 }
2230 
2231 /*
2232  * Adjusts a PCI-e capability register by clearing the bits in mask
2233  * and setting the bits in (value & mask).  Bits not set in mask are
2234  * not adjusted.
2235  *
2236  * Returns the old value on success or all ones on failure.
2237  */
2238 uint32_t
2239 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2240     int width)
2241 {
2242 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2243 	uint32_t old, new;
2244 	int cap;
2245 
2246 	cap = dinfo->cfg.pcie.pcie_location;
2247 	if (cap == 0) {
2248 		if (width == 2)
2249 			return (0xffff);
2250 		return (0xffffffff);
2251 	}
2252 
2253 	old = pci_read_config(dev, cap + reg, width);
2254 	new = old & ~mask;
2255 	new |= (value & mask);
2256 	pci_write_config(dev, cap + reg, new, width);
2257 	return (old);
2258 }
2259 
2260 /*
2261  * Support for MSI message signalled interrupts.
2262  */
2263 void
2264 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2265     uint16_t data)
2266 {
2267 	struct pci_devinfo *dinfo = device_get_ivars(child);
2268 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2269 
2270 	/* Write data and address values. */
2271 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2272 	    address & 0xffffffff, 4);
2273 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2274 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2275 		    address >> 32, 4);
2276 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2277 		    data, 2);
2278 	} else
2279 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2280 		    2);
2281 
2282 	/* Enable MSI in the control register. */
2283 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2284 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2285 	    msi->msi_ctrl, 2);
2286 
2287 	/* Enable MSI -> HT mapping. */
2288 	pci_ht_map_msi(child, address);
2289 }
2290 
2291 void
2292 pci_disable_msi_method(device_t dev, device_t child)
2293 {
2294 	struct pci_devinfo *dinfo = device_get_ivars(child);
2295 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2296 
2297 	/* Disable MSI -> HT mapping. */
2298 	pci_ht_map_msi(child, 0);
2299 
2300 	/* Disable MSI in the control register. */
2301 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2302 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2303 	    msi->msi_ctrl, 2);
2304 }
2305 
2306 /*
2307  * Restore MSI registers during resume.  If MSI is enabled then
2308  * restore the data and address registers in addition to the control
2309  * register.
2310  */
2311 static void
2312 pci_resume_msi(device_t dev)
2313 {
2314 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2315 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2316 	uint64_t address;
2317 	uint16_t data;
2318 
2319 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2320 		address = msi->msi_addr;
2321 		data = msi->msi_data;
2322 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2323 		    address & 0xffffffff, 4);
2324 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2325 			pci_write_config(dev, msi->msi_location +
2326 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2327 			pci_write_config(dev, msi->msi_location +
2328 			    PCIR_MSI_DATA_64BIT, data, 2);
2329 		} else
2330 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2331 			    data, 2);
2332 	}
2333 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2334 	    2);
2335 }
2336 
2337 static int
2338 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2339 {
2340 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2341 	pcicfgregs *cfg = &dinfo->cfg;
2342 	struct resource_list_entry *rle;
2343 	struct msix_table_entry *mte;
2344 	struct msix_vector *mv;
2345 	uint64_t addr;
2346 	uint32_t data;
2347 	int error, i, j;
2348 
2349 	/*
2350 	 * Handle MSI first.  We try to find this IRQ among our list
2351 	 * of MSI IRQs.  If we find it, we request updated address and
2352 	 * data registers and apply the results.
2353 	 */
2354 	if (cfg->msi.msi_alloc > 0) {
2355 
2356 		/* If we don't have any active handlers, nothing to do. */
2357 		if (cfg->msi.msi_handlers == 0)
2358 			return (0);
2359 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2360 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2361 			    i + 1);
2362 			if (rle->start == irq) {
2363 				error = PCIB_MAP_MSI(device_get_parent(bus),
2364 				    dev, irq, &addr, &data);
2365 				if (error)
2366 					return (error);
2367 				pci_disable_msi(dev);
2368 				dinfo->cfg.msi.msi_addr = addr;
2369 				dinfo->cfg.msi.msi_data = data;
2370 				pci_enable_msi(dev, addr, data);
2371 				return (0);
2372 			}
2373 		}
2374 		return (ENOENT);
2375 	}
2376 
2377 	/*
2378 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2379 	 * we request the updated mapping info.  If that works, we go
2380 	 * through all the slots that use this IRQ and update them.
2381 	 */
2382 	if (cfg->msix.msix_alloc > 0) {
2383 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2384 			mv = &cfg->msix.msix_vectors[i];
2385 			if (mv->mv_irq == irq) {
2386 				error = PCIB_MAP_MSI(device_get_parent(bus),
2387 				    dev, irq, &addr, &data);
2388 				if (error)
2389 					return (error);
2390 				mv->mv_address = addr;
2391 				mv->mv_data = data;
2392 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2393 					mte = &cfg->msix.msix_table[j];
2394 					if (mte->mte_vector != i + 1)
2395 						continue;
2396 					if (mte->mte_handlers == 0)
2397 						continue;
2398 					pci_mask_msix(dev, j);
2399 					pci_enable_msix(dev, j, addr, data);
2400 					pci_unmask_msix(dev, j);
2401 				}
2402 			}
2403 		}
2404 		return (ENOENT);
2405 	}
2406 
2407 	return (ENOENT);
2408 }
2409 
2410 /*
2411  * Returns true if the specified device is blacklisted because MSI
2412  * doesn't work.
2413  */
2414 int
2415 pci_msi_device_blacklisted(device_t dev)
2416 {
2417 
2418 	if (!pci_honor_msi_blacklist)
2419 		return (0);
2420 
2421 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2422 }
2423 
2424 /*
2425  * Determine if MSI is blacklisted globally on this system.  Currently,
2426  * we just check for blacklisted chipsets as represented by the
2427  * host-PCI bridge at device 0:0:0.  In the future, it may become
2428  * necessary to check other system attributes, such as the kenv values
2429  * that give the motherboard manufacturer and model number.
2430  */
2431 static int
2432 pci_msi_blacklisted(void)
2433 {
2434 	device_t dev;
2435 
2436 	if (!pci_honor_msi_blacklist)
2437 		return (0);
2438 
2439 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2440 	if (!(pcie_chipset || pcix_chipset)) {
2441 		if (vm_guest != VM_GUEST_NO) {
2442 			/*
2443 			 * Whitelist older chipsets in virtual
2444 			 * machines known to support MSI.
2445 			 */
2446 			dev = pci_find_bsf(0, 0, 0);
2447 			if (dev != NULL)
2448 				return (!pci_has_quirk(pci_get_devid(dev),
2449 					PCI_QUIRK_ENABLE_MSI_VM));
2450 		}
2451 		return (1);
2452 	}
2453 
2454 	dev = pci_find_bsf(0, 0, 0);
2455 	if (dev != NULL)
2456 		return (pci_msi_device_blacklisted(dev));
2457 	return (0);
2458 }
2459 
2460 /*
2461  * Returns true if the specified device is blacklisted because MSI-X
2462  * doesn't work.  Note that this assumes that if MSI doesn't work,
2463  * MSI-X doesn't either.
2464  */
2465 int
2466 pci_msix_device_blacklisted(device_t dev)
2467 {
2468 
2469 	if (!pci_honor_msi_blacklist)
2470 		return (0);
2471 
2472 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2473 		return (1);
2474 
2475 	return (pci_msi_device_blacklisted(dev));
2476 }
2477 
2478 /*
2479  * Determine if MSI-X is blacklisted globally on this system.  If MSI
2480  * is blacklisted, assume that MSI-X is as well.  Check for additional
2481  * chipsets where MSI works but MSI-X does not.
2482  */
2483 static int
2484 pci_msix_blacklisted(void)
2485 {
2486 	device_t dev;
2487 
2488 	if (!pci_honor_msi_blacklist)
2489 		return (0);
2490 
2491 	dev = pci_find_bsf(0, 0, 0);
2492 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2493 	    PCI_QUIRK_DISABLE_MSIX))
2494 		return (1);
2495 
2496 	return (pci_msi_blacklisted());
2497 }
2498 
2499 /*
2500  * Attempt to allocate *count MSI messages.  The actual number allocated is
2501  * returned in *count.  After this function returns, each message will be
2502  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2503  */
2504 int
2505 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2506 {
2507 	struct pci_devinfo *dinfo = device_get_ivars(child);
2508 	pcicfgregs *cfg = &dinfo->cfg;
2509 	struct resource_list_entry *rle;
2510 	int actual, error, i, irqs[32];
2511 	uint16_t ctrl;
2512 
2513 	/* Don't let count == 0 get us into trouble. */
2514 	if (*count == 0)
2515 		return (EINVAL);
2516 
2517 	/* If rid 0 is allocated, then fail. */
2518 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2519 	if (rle != NULL && rle->res != NULL)
2520 		return (ENXIO);
2521 
2522 	/* Already have allocated messages? */
2523 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2524 		return (ENXIO);
2525 
2526 	/* If MSI is blacklisted for this system, fail. */
2527 	if (pci_msi_blacklisted())
2528 		return (ENXIO);
2529 
2530 	/* MSI capability present? */
2531 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2532 		return (ENODEV);
2533 
2534 	if (bootverbose)
2535 		device_printf(child,
2536 		    "attempting to allocate %d MSI vectors (%d supported)\n",
2537 		    *count, cfg->msi.msi_msgnum);
2538 
2539 	/* Don't ask for more than the device supports. */
2540 	actual = min(*count, cfg->msi.msi_msgnum);
2541 
2542 	/* Don't ask for more than 32 messages. */
2543 	actual = min(actual, 32);
2544 
2545 	/* MSI requires power of 2 number of messages. */
2546 	if (!powerof2(actual))
2547 		return (EINVAL);
2548 
2549 	for (;;) {
2550 		/* Try to allocate N messages. */
2551 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2552 		    actual, irqs);
2553 		if (error == 0)
2554 			break;
2555 		if (actual == 1)
2556 			return (error);
2557 
2558 		/* Try N / 2. */
2559 		actual >>= 1;
2560 	}
2561 
2562 	/*
2563 	 * We now have N actual messages mapped onto SYS_RES_IRQ
2564 	 * resources in the irqs[] array, so add new resources
2565 	 * starting at rid 1.
2566 	 */
2567 	for (i = 0; i < actual; i++)
2568 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2569 		    irqs[i], irqs[i], 1);
2570 
2571 	if (bootverbose) {
2572 		if (actual == 1)
2573 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2574 		else {
2575 			int run;
2576 
2577 			/*
2578 			 * Be fancy and try to print contiguous runs
2579 			 * of IRQ values as ranges.  'run' is true if
2580 			 * we are in a range.
2581 			 */
2582 			device_printf(child, "using IRQs %d", irqs[0]);
2583 			run = 0;
2584 			for (i = 1; i < actual; i++) {
2585 
2586 				/* Still in a run? */
2587 				if (irqs[i] == irqs[i - 1] + 1) {
2588 					run = 1;
2589 					continue;
2590 				}
2591 
2592 				/* Finish previous range. */
2593 				if (run) {
2594 					printf("-%d", irqs[i - 1]);
2595 					run = 0;
2596 				}
2597 
2598 				/* Start new range. */
2599 				printf(",%d", irqs[i]);
2600 			}
2601 
2602 			/* Unfinished range? */
2603 			if (run)
2604 				printf("-%d", irqs[actual - 1]);
2605 			printf(" for MSI\n");
2606 		}
2607 	}
2608 
2609 	/* Update control register with actual count. */
2610 	ctrl = cfg->msi.msi_ctrl;
2611 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2612 	ctrl |= (ffs(actual) - 1) << 4;
2613 	cfg->msi.msi_ctrl = ctrl;
2614 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2615 
2616 	/* Update counts of alloc'd messages. */
2617 	cfg->msi.msi_alloc = actual;
2618 	cfg->msi.msi_handlers = 0;
2619 	*count = actual;
2620 	return (0);
2621 }
2622 
2623 /* Release the MSI messages associated with this device. */
2624 int
2625 pci_release_msi_method(device_t dev, device_t child)
2626 {
2627 	struct pci_devinfo *dinfo = device_get_ivars(child);
2628 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2629 	struct resource_list_entry *rle;
2630 	int error, i, irqs[32];
2631 
2632 	/* Try MSI-X first. */
2633 	error = pci_release_msix(dev, child);
2634 	if (error != ENODEV)
2635 		return (error);
2636 
2637 	/* Do we have any messages to release? */
2638 	if (msi->msi_alloc == 0)
2639 		return (ENODEV);
2640 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2641 
2642 	/* Make sure none of the resources are allocated. */
2643 	if (msi->msi_handlers > 0)
2644 		return (EBUSY);
2645 	for (i = 0; i < msi->msi_alloc; i++) {
2646 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2647 		KASSERT(rle != NULL, ("missing MSI resource"));
2648 		if (rle->res != NULL)
2649 			return (EBUSY);
2650 		irqs[i] = rle->start;
2651 	}
2652 
2653 	/* Update control register with 0 count. */
2654 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2655 	    ("%s: MSI still enabled", __func__));
2656 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2657 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2658 	    msi->msi_ctrl, 2);
2659 
2660 	/* Release the messages. */
2661 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2662 	for (i = 0; i < msi->msi_alloc; i++)
2663 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2664 
2665 	/* Update alloc count. */
2666 	msi->msi_alloc = 0;
2667 	msi->msi_addr = 0;
2668 	msi->msi_data = 0;
2669 	return (0);
2670 }
2671 
2672 /*
2673  * Return the max supported MSI messages this device supports.
2674  * Basically, assuming the MD code can alloc messages, this function
2675  * should return the maximum value that pci_alloc_msi() can return.
2676  * Thus, it is subject to the tunables, etc.
2677  */
2678 int
2679 pci_msi_count_method(device_t dev, device_t child)
2680 {
2681 	struct pci_devinfo *dinfo = device_get_ivars(child);
2682 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2683 
2684 	if (pci_do_msi && msi->msi_location != 0)
2685 		return (msi->msi_msgnum);
2686 	return (0);
2687 }
2688 
2689 /* free pcicfgregs structure and all depending data structures */
2690 
2691 int
2692 pci_freecfg(struct pci_devinfo *dinfo)
2693 {
2694 	struct devlist *devlist_head;
2695 	struct pci_map *pm, *next;
2696 	int i;
2697 
2698 	devlist_head = &pci_devq;
2699 
2700 	if (dinfo->cfg.vpd.vpd_reg) {
2701 		free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
2702 		for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
2703 			free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
2704 		free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
2705 		for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
2706 			free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
2707 		free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
2708 	}
2709 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2710 		free(pm, M_DEVBUF);
2711 	}
2712 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2713 	free(dinfo, M_DEVBUF);
2714 
2715 	/* increment the generation count */
2716 	pci_generation++;
2717 
2718 	/* we're losing one device */
2719 	pci_numdevs--;
2720 	return (0);
2721 }
2722 
2723 /*
2724  * PCI power manangement
2725  */
2726 int
2727 pci_set_powerstate_method(device_t dev, device_t child, int state)
2728 {
2729 	struct pci_devinfo *dinfo = device_get_ivars(child);
2730 	pcicfgregs *cfg = &dinfo->cfg;
2731 	uint16_t status;
2732 	int oldstate, highest, delay;
2733 
2734 	if (cfg->pp.pp_cap == 0)
2735 		return (EOPNOTSUPP);
2736 
2737 	/*
2738 	 * Optimize a no state change request away.  While it would be OK to
2739 	 * write to the hardware in theory, some devices have shown odd
2740 	 * behavior when going from D3 -> D3.
2741 	 */
2742 	oldstate = pci_get_powerstate(child);
2743 	if (oldstate == state)
2744 		return (0);
2745 
2746 	/*
2747 	 * The PCI power management specification states that after a state
2748 	 * transition between PCI power states, system software must
2749 	 * guarantee a minimal delay before the function accesses the device.
2750 	 * Compute the worst case delay that we need to guarantee before we
2751 	 * access the device.  Many devices will be responsive much more
2752 	 * quickly than this delay, but there are some that don't respond
2753 	 * instantly to state changes.  Transitions to/from D3 state require
2754 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2755 	 * is done below with DELAY rather than a sleeper function because
2756 	 * this function can be called from contexts where we cannot sleep.
2757 	 */
2758 	highest = (oldstate > state) ? oldstate : state;
2759 	if (highest == PCI_POWERSTATE_D3)
2760 	    delay = 10000;
2761 	else if (highest == PCI_POWERSTATE_D2)
2762 	    delay = 200;
2763 	else
2764 	    delay = 0;
2765 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2766 	    & ~PCIM_PSTAT_DMASK;
2767 	switch (state) {
2768 	case PCI_POWERSTATE_D0:
2769 		status |= PCIM_PSTAT_D0;
2770 		break;
2771 	case PCI_POWERSTATE_D1:
2772 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2773 			return (EOPNOTSUPP);
2774 		status |= PCIM_PSTAT_D1;
2775 		break;
2776 	case PCI_POWERSTATE_D2:
2777 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2778 			return (EOPNOTSUPP);
2779 		status |= PCIM_PSTAT_D2;
2780 		break;
2781 	case PCI_POWERSTATE_D3:
2782 		status |= PCIM_PSTAT_D3;
2783 		break;
2784 	default:
2785 		return (EINVAL);
2786 	}
2787 
2788 	if (bootverbose)
2789 		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2790 		    state);
2791 
2792 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2793 	if (delay)
2794 		DELAY(delay);
2795 	return (0);
2796 }
2797 
2798 int
2799 pci_get_powerstate_method(device_t dev, device_t child)
2800 {
2801 	struct pci_devinfo *dinfo = device_get_ivars(child);
2802 	pcicfgregs *cfg = &dinfo->cfg;
2803 	uint16_t status;
2804 	int result;
2805 
2806 	if (cfg->pp.pp_cap != 0) {
2807 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2808 		switch (status & PCIM_PSTAT_DMASK) {
2809 		case PCIM_PSTAT_D0:
2810 			result = PCI_POWERSTATE_D0;
2811 			break;
2812 		case PCIM_PSTAT_D1:
2813 			result = PCI_POWERSTATE_D1;
2814 			break;
2815 		case PCIM_PSTAT_D2:
2816 			result = PCI_POWERSTATE_D2;
2817 			break;
2818 		case PCIM_PSTAT_D3:
2819 			result = PCI_POWERSTATE_D3;
2820 			break;
2821 		default:
2822 			result = PCI_POWERSTATE_UNKNOWN;
2823 			break;
2824 		}
2825 	} else {
2826 		/* No support, device is always at D0 */
2827 		result = PCI_POWERSTATE_D0;
2828 	}
2829 	return (result);
2830 }
2831 
2832 /*
2833  * Some convenience functions for PCI device drivers.
2834  */
2835 
2836 static __inline void
2837 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2838 {
2839 	uint16_t	command;
2840 
2841 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2842 	command |= bit;
2843 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2844 }
2845 
2846 static __inline void
2847 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2848 {
2849 	uint16_t	command;
2850 
2851 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2852 	command &= ~bit;
2853 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2854 }
2855 
2856 int
2857 pci_enable_busmaster_method(device_t dev, device_t child)
2858 {
2859 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2860 	return (0);
2861 }
2862 
2863 int
2864 pci_disable_busmaster_method(device_t dev, device_t child)
2865 {
2866 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2867 	return (0);
2868 }
2869 
2870 int
2871 pci_enable_io_method(device_t dev, device_t child, int space)
2872 {
2873 	uint16_t bit;
2874 
2875 	switch(space) {
2876 	case SYS_RES_IOPORT:
2877 		bit = PCIM_CMD_PORTEN;
2878 		break;
2879 	case SYS_RES_MEMORY:
2880 		bit = PCIM_CMD_MEMEN;
2881 		break;
2882 	default:
2883 		return (EINVAL);
2884 	}
2885 	pci_set_command_bit(dev, child, bit);
2886 	return (0);
2887 }
2888 
2889 int
2890 pci_disable_io_method(device_t dev, device_t child, int space)
2891 {
2892 	uint16_t bit;
2893 
2894 	switch(space) {
2895 	case SYS_RES_IOPORT:
2896 		bit = PCIM_CMD_PORTEN;
2897 		break;
2898 	case SYS_RES_MEMORY:
2899 		bit = PCIM_CMD_MEMEN;
2900 		break;
2901 	default:
2902 		return (EINVAL);
2903 	}
2904 	pci_clear_command_bit(dev, child, bit);
2905 	return (0);
2906 }
2907 
2908 /*
2909  * New style pci driver.  Parent device is either a pci-host-bridge or a
2910  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
2911  */
2912 
2913 void
2914 pci_print_verbose(struct pci_devinfo *dinfo)
2915 {
2916 
2917 	if (bootverbose) {
2918 		pcicfgregs *cfg = &dinfo->cfg;
2919 
2920 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2921 		    cfg->vendor, cfg->device, cfg->revid);
2922 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2923 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
2924 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2925 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2926 		    cfg->mfdev);
2927 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2928 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2929 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2930 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2931 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2932 		if (cfg->intpin > 0)
2933 			printf("\tintpin=%c, irq=%d\n",
2934 			    cfg->intpin +'a' -1, cfg->intline);
2935 		if (cfg->pp.pp_cap) {
2936 			uint16_t status;
2937 
2938 			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
2939 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
2940 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
2941 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
2942 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
2943 			    status & PCIM_PSTAT_DMASK);
2944 		}
2945 		if (cfg->msi.msi_location) {
2946 			int ctrl;
2947 
2948 			ctrl = cfg->msi.msi_ctrl;
2949 			printf("\tMSI supports %d message%s%s%s\n",
2950 			    cfg->msi.msi_msgnum,
2951 			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
2952 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
2953 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
2954 		}
2955 		if (cfg->msix.msix_location) {
2956 			printf("\tMSI-X supports %d message%s ",
2957 			    cfg->msix.msix_msgnum,
2958 			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
2959 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
2960 				printf("in map 0x%x\n",
2961 				    cfg->msix.msix_table_bar);
2962 			else
2963 				printf("in maps 0x%x and 0x%x\n",
2964 				    cfg->msix.msix_table_bar,
2965 				    cfg->msix.msix_pba_bar);
2966 		}
2967 	}
2968 }
2969 
2970 static int
2971 pci_porten(device_t dev)
2972 {
2973 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
2974 }
2975 
2976 static int
2977 pci_memen(device_t dev)
2978 {
2979 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
2980 }
2981 
2982 void
2983 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
2984     int *bar64)
2985 {
2986 	struct pci_devinfo *dinfo;
2987 	pci_addr_t map, testval;
2988 	int ln2range;
2989 	uint16_t cmd;
2990 
2991 	/*
2992 	 * The device ROM BAR is special.  It is always a 32-bit
2993 	 * memory BAR.  Bit 0 is special and should not be set when
2994 	 * sizing the BAR.
2995 	 */
2996 	dinfo = device_get_ivars(dev);
2997 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
2998 		map = pci_read_config(dev, reg, 4);
2999 		pci_write_config(dev, reg, 0xfffffffe, 4);
3000 		testval = pci_read_config(dev, reg, 4);
3001 		pci_write_config(dev, reg, map, 4);
3002 		*mapp = map;
3003 		*testvalp = testval;
3004 		if (bar64 != NULL)
3005 			*bar64 = 0;
3006 		return;
3007 	}
3008 
3009 	map = pci_read_config(dev, reg, 4);
3010 	ln2range = pci_maprange(map);
3011 	if (ln2range == 64)
3012 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3013 
3014 	/*
3015 	 * Disable decoding via the command register before
3016 	 * determining the BAR's length since we will be placing it in
3017 	 * a weird state.
3018 	 */
3019 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3020 	pci_write_config(dev, PCIR_COMMAND,
3021 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3022 
3023 	/*
3024 	 * Determine the BAR's length by writing all 1's.  The bottom
3025 	 * log_2(size) bits of the BAR will stick as 0 when we read
3026 	 * the value back.
3027 	 *
3028 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3029 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3030 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3031 	 *
3032 	 * Writes to both registers must be performed before attempting to
3033 	 * read back the size value.
3034 	 */
3035 	testval = 0;
3036 	pci_write_config(dev, reg, 0xffffffff, 4);
3037 	if (ln2range == 64) {
3038 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3039 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3040 	}
3041 	testval |= pci_read_config(dev, reg, 4);
3042 
3043 	/*
3044 	 * Restore the original value of the BAR.  We may have reprogrammed
3045 	 * the BAR of the low-level console device and when booting verbose,
3046 	 * we need the console device addressable.
3047 	 */
3048 	pci_write_config(dev, reg, map, 4);
3049 	if (ln2range == 64)
3050 		pci_write_config(dev, reg + 4, map >> 32, 4);
3051 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3052 
3053 	*mapp = map;
3054 	*testvalp = testval;
3055 	if (bar64 != NULL)
3056 		*bar64 = (ln2range == 64);
3057 }
3058 
3059 static void
3060 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3061 {
3062 	struct pci_devinfo *dinfo;
3063 	int ln2range;
3064 
3065 	/* The device ROM BAR is always a 32-bit memory BAR. */
3066 	dinfo = device_get_ivars(dev);
3067 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3068 		ln2range = 32;
3069 	else
3070 		ln2range = pci_maprange(pm->pm_value);
3071 	pci_write_config(dev, pm->pm_reg, base, 4);
3072 	if (ln2range == 64)
3073 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3074 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3075 	if (ln2range == 64)
3076 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3077 		    pm->pm_reg + 4, 4) << 32;
3078 }
3079 
3080 struct pci_map *
3081 pci_find_bar(device_t dev, int reg)
3082 {
3083 	struct pci_devinfo *dinfo;
3084 	struct pci_map *pm;
3085 
3086 	dinfo = device_get_ivars(dev);
3087 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3088 		if (pm->pm_reg == reg)
3089 			return (pm);
3090 	}
3091 	return (NULL);
3092 }
3093 
3094 int
3095 pci_bar_enabled(device_t dev, struct pci_map *pm)
3096 {
3097 	struct pci_devinfo *dinfo;
3098 	uint16_t cmd;
3099 
3100 	dinfo = device_get_ivars(dev);
3101 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3102 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3103 		return (0);
3104 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3105 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3106 		return ((cmd & PCIM_CMD_MEMEN) != 0);
3107 	else
3108 		return ((cmd & PCIM_CMD_PORTEN) != 0);
3109 }
3110 
3111 struct pci_map *
3112 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3113 {
3114 	struct pci_devinfo *dinfo;
3115 	struct pci_map *pm, *prev;
3116 
3117 	dinfo = device_get_ivars(dev);
3118 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3119 	pm->pm_reg = reg;
3120 	pm->pm_value = value;
3121 	pm->pm_size = size;
3122 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3123 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3124 		    reg));
3125 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3126 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3127 			break;
3128 	}
3129 	if (prev != NULL)
3130 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3131 	else
3132 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3133 	return (pm);
3134 }
3135 
3136 static void
3137 pci_restore_bars(device_t dev)
3138 {
3139 	struct pci_devinfo *dinfo;
3140 	struct pci_map *pm;
3141 	int ln2range;
3142 
3143 	dinfo = device_get_ivars(dev);
3144 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3145 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3146 			ln2range = 32;
3147 		else
3148 			ln2range = pci_maprange(pm->pm_value);
3149 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3150 		if (ln2range == 64)
3151 			pci_write_config(dev, pm->pm_reg + 4,
3152 			    pm->pm_value >> 32, 4);
3153 	}
3154 }
3155 
3156 /*
3157  * Add a resource based on a pci map register. Return 1 if the map
3158  * register is a 32bit map register or 2 if it is a 64bit register.
3159  */
3160 static int
3161 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3162     int force, int prefetch)
3163 {
3164 	struct pci_map *pm;
3165 	pci_addr_t base, map, testval;
3166 	pci_addr_t start, end, count;
3167 	int barlen, basezero, flags, maprange, mapsize, type;
3168 	uint16_t cmd;
3169 	struct resource *res;
3170 
3171 	/*
3172 	 * The BAR may already exist if the device is a CardBus card
3173 	 * whose CIS is stored in this BAR.
3174 	 */
3175 	pm = pci_find_bar(dev, reg);
3176 	if (pm != NULL) {
3177 		maprange = pci_maprange(pm->pm_value);
3178 		barlen = maprange == 64 ? 2 : 1;
3179 		return (barlen);
3180 	}
3181 
3182 	pci_read_bar(dev, reg, &map, &testval, NULL);
3183 	if (PCI_BAR_MEM(map)) {
3184 		type = SYS_RES_MEMORY;
3185 		if (map & PCIM_BAR_MEM_PREFETCH)
3186 			prefetch = 1;
3187 	} else
3188 		type = SYS_RES_IOPORT;
3189 	mapsize = pci_mapsize(testval);
3190 	base = pci_mapbase(map);
3191 #ifdef __PCI_BAR_ZERO_VALID
3192 	basezero = 0;
3193 #else
3194 	basezero = base == 0;
3195 #endif
3196 	maprange = pci_maprange(map);
3197 	barlen = maprange == 64 ? 2 : 1;
3198 
3199 	/*
3200 	 * For I/O registers, if bottom bit is set, and the next bit up
3201 	 * isn't clear, we know we have a BAR that doesn't conform to the
3202 	 * spec, so ignore it.  Also, sanity check the size of the data
3203 	 * areas to the type of memory involved.  Memory must be at least
3204 	 * 16 bytes in size, while I/O ranges must be at least 4.
3205 	 */
3206 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3207 		return (barlen);
3208 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3209 	    (type == SYS_RES_IOPORT && mapsize < 2))
3210 		return (barlen);
3211 
3212 	/* Save a record of this BAR. */
3213 	pm = pci_add_bar(dev, reg, map, mapsize);
3214 	if (bootverbose) {
3215 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3216 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3217 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3218 			printf(", port disabled\n");
3219 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3220 			printf(", memory disabled\n");
3221 		else
3222 			printf(", enabled\n");
3223 	}
3224 
3225 	/*
3226 	 * If base is 0, then we have problems if this architecture does
3227 	 * not allow that.  It is best to ignore such entries for the
3228 	 * moment.  These will be allocated later if the driver specifically
3229 	 * requests them.  However, some removable buses look better when
3230 	 * all resources are allocated, so allow '0' to be overriden.
3231 	 *
3232 	 * Similarly treat maps whose values is the same as the test value
3233 	 * read back.  These maps have had all f's written to them by the
3234 	 * BIOS in an attempt to disable the resources.
3235 	 */
3236 	if (!force && (basezero || map == testval))
3237 		return (barlen);
3238 	if ((u_long)base != base) {
3239 		device_printf(bus,
3240 		    "pci%d:%d:%d:%d bar %#x too many address bits",
3241 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3242 		    pci_get_function(dev), reg);
3243 		return (barlen);
3244 	}
3245 
3246 	/*
3247 	 * This code theoretically does the right thing, but has
3248 	 * undesirable side effects in some cases where peripherals
3249 	 * respond oddly to having these bits enabled.  Let the user
3250 	 * be able to turn them off (since pci_enable_io_modes is 1 by
3251 	 * default).
3252 	 */
3253 	if (pci_enable_io_modes) {
3254 		/* Turn on resources that have been left off by a lazy BIOS */
3255 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3256 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3257 			cmd |= PCIM_CMD_PORTEN;
3258 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3259 		}
3260 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3261 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3262 			cmd |= PCIM_CMD_MEMEN;
3263 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3264 		}
3265 	} else {
3266 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3267 			return (barlen);
3268 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3269 			return (barlen);
3270 	}
3271 
3272 	count = (pci_addr_t)1 << mapsize;
3273 	flags = RF_ALIGNMENT_LOG2(mapsize);
3274 	if (prefetch)
3275 		flags |= RF_PREFETCHABLE;
3276 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3277 		start = 0;	/* Let the parent decide. */
3278 		end = ~0;
3279 	} else {
3280 		start = base;
3281 		end = base + count - 1;
3282 	}
3283 	resource_list_add(rl, type, reg, start, end, count);
3284 
3285 	/*
3286 	 * Try to allocate the resource for this BAR from our parent
3287 	 * so that this resource range is already reserved.  The
3288 	 * driver for this device will later inherit this resource in
3289 	 * pci_alloc_resource().
3290 	 */
3291 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3292 	    flags);
3293 	if ((pci_do_realloc_bars
3294 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3295 	    && res == NULL && (start != 0 || end != ~0)) {
3296 		/*
3297 		 * If the allocation fails, try to allocate a resource for
3298 		 * this BAR using any available range.  The firmware felt
3299 		 * it was important enough to assign a resource, so don't
3300 		 * disable decoding if we can help it.
3301 		 */
3302 		resource_list_delete(rl, type, reg);
3303 		resource_list_add(rl, type, reg, 0, ~0, count);
3304 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3305 		    count, flags);
3306 	}
3307 	if (res == NULL) {
3308 		/*
3309 		 * If the allocation fails, delete the resource list entry
3310 		 * and disable decoding for this device.
3311 		 *
3312 		 * If the driver requests this resource in the future,
3313 		 * pci_reserve_map() will try to allocate a fresh
3314 		 * resource range.
3315 		 */
3316 		resource_list_delete(rl, type, reg);
3317 		pci_disable_io(dev, type);
3318 		if (bootverbose)
3319 			device_printf(bus,
3320 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3321 			    pci_get_domain(dev), pci_get_bus(dev),
3322 			    pci_get_slot(dev), pci_get_function(dev), reg);
3323 	} else {
3324 		start = rman_get_start(res);
3325 		pci_write_bar(dev, pm, start);
3326 	}
3327 	return (barlen);
3328 }
3329 
3330 /*
3331  * For ATA devices we need to decide early what addressing mode to use.
3332  * Legacy demands that the primary and secondary ATA ports sits on the
3333  * same addresses that old ISA hardware did. This dictates that we use
3334  * those addresses and ignore the BAR's if we cannot set PCI native
3335  * addressing mode.
3336  */
3337 static void
3338 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3339     uint32_t prefetchmask)
3340 {
3341 	int rid, type, progif;
3342 #if 0
3343 	/* if this device supports PCI native addressing use it */
3344 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3345 	if ((progif & 0x8a) == 0x8a) {
3346 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3347 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3348 			printf("Trying ATA native PCI addressing mode\n");
3349 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3350 		}
3351 	}
3352 #endif
3353 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3354 	type = SYS_RES_IOPORT;
3355 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3356 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3357 		    prefetchmask & (1 << 0));
3358 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3359 		    prefetchmask & (1 << 1));
3360 	} else {
3361 		rid = PCIR_BAR(0);
3362 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3363 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3364 		    0x1f7, 8, 0);
3365 		rid = PCIR_BAR(1);
3366 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3367 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3368 		    0x3f6, 1, 0);
3369 	}
3370 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3371 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3372 		    prefetchmask & (1 << 2));
3373 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3374 		    prefetchmask & (1 << 3));
3375 	} else {
3376 		rid = PCIR_BAR(2);
3377 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3378 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3379 		    0x177, 8, 0);
3380 		rid = PCIR_BAR(3);
3381 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3382 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3383 		    0x376, 1, 0);
3384 	}
3385 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3386 	    prefetchmask & (1 << 4));
3387 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3388 	    prefetchmask & (1 << 5));
3389 }
3390 
3391 static void
3392 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3393 {
3394 	struct pci_devinfo *dinfo = device_get_ivars(dev);
3395 	pcicfgregs *cfg = &dinfo->cfg;
3396 	char tunable_name[64];
3397 	int irq;
3398 
3399 	/* Has to have an intpin to have an interrupt. */
3400 	if (cfg->intpin == 0)
3401 		return;
3402 
3403 	/* Let the user override the IRQ with a tunable. */
3404 	irq = PCI_INVALID_IRQ;
3405 	snprintf(tunable_name, sizeof(tunable_name),
3406 	    "hw.pci%d.%d.%d.INT%c.irq",
3407 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3408 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3409 		irq = PCI_INVALID_IRQ;
3410 
3411 	/*
3412 	 * If we didn't get an IRQ via the tunable, then we either use the
3413 	 * IRQ value in the intline register or we ask the bus to route an
3414 	 * interrupt for us.  If force_route is true, then we only use the
3415 	 * value in the intline register if the bus was unable to assign an
3416 	 * IRQ.
3417 	 */
3418 	if (!PCI_INTERRUPT_VALID(irq)) {
3419 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3420 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3421 		if (!PCI_INTERRUPT_VALID(irq))
3422 			irq = cfg->intline;
3423 	}
3424 
3425 	/* If after all that we don't have an IRQ, just bail. */
3426 	if (!PCI_INTERRUPT_VALID(irq))
3427 		return;
3428 
3429 	/* Update the config register if it changed. */
3430 	if (irq != cfg->intline) {
3431 		cfg->intline = irq;
3432 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3433 	}
3434 
3435 	/* Add this IRQ as rid 0 interrupt resource. */
3436 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3437 }
3438 
3439 /* Perform early OHCI takeover from SMM. */
3440 static void
3441 ohci_early_takeover(device_t self)
3442 {
3443 	struct resource *res;
3444 	uint32_t ctl;
3445 	int rid;
3446 	int i;
3447 
3448 	rid = PCIR_BAR(0);
3449 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3450 	if (res == NULL)
3451 		return;
3452 
3453 	ctl = bus_read_4(res, OHCI_CONTROL);
3454 	if (ctl & OHCI_IR) {
3455 		if (bootverbose)
3456 			printf("ohci early: "
3457 			    "SMM active, request owner change\n");
3458 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3459 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3460 			DELAY(1000);
3461 			ctl = bus_read_4(res, OHCI_CONTROL);
3462 		}
3463 		if (ctl & OHCI_IR) {
3464 			if (bootverbose)
3465 				printf("ohci early: "
3466 				    "SMM does not respond, resetting\n");
3467 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3468 		}
3469 		/* Disable interrupts */
3470 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3471 	}
3472 
3473 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3474 }
3475 
3476 /* Perform early UHCI takeover from SMM. */
3477 static void
3478 uhci_early_takeover(device_t self)
3479 {
3480 	struct resource *res;
3481 	int rid;
3482 
3483 	/*
3484 	 * Set the PIRQD enable bit and switch off all the others. We don't
3485 	 * want legacy support to interfere with us XXX Does this also mean
3486 	 * that the BIOS won't touch the keyboard anymore if it is connected
3487 	 * to the ports of the root hub?
3488 	 */
3489 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3490 
3491 	/* Disable interrupts */
3492 	rid = PCI_UHCI_BASE_REG;
3493 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3494 	if (res != NULL) {
3495 		bus_write_2(res, UHCI_INTR, 0);
3496 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3497 	}
3498 }
3499 
3500 /* Perform early EHCI takeover from SMM. */
3501 static void
3502 ehci_early_takeover(device_t self)
3503 {
3504 	struct resource *res;
3505 	uint32_t cparams;
3506 	uint32_t eec;
3507 	uint8_t eecp;
3508 	uint8_t bios_sem;
3509 	uint8_t offs;
3510 	int rid;
3511 	int i;
3512 
3513 	rid = PCIR_BAR(0);
3514 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3515 	if (res == NULL)
3516 		return;
3517 
3518 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3519 
3520 	/* Synchronise with the BIOS if it owns the controller. */
3521 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3522 	    eecp = EHCI_EECP_NEXT(eec)) {
3523 		eec = pci_read_config(self, eecp, 4);
3524 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3525 			continue;
3526 		}
3527 		bios_sem = pci_read_config(self, eecp +
3528 		    EHCI_LEGSUP_BIOS_SEM, 1);
3529 		if (bios_sem == 0) {
3530 			continue;
3531 		}
3532 		if (bootverbose)
3533 			printf("ehci early: "
3534 			    "SMM active, request owner change\n");
3535 
3536 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3537 
3538 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3539 			DELAY(1000);
3540 			bios_sem = pci_read_config(self, eecp +
3541 			    EHCI_LEGSUP_BIOS_SEM, 1);
3542 		}
3543 
3544 		if (bios_sem != 0) {
3545 			if (bootverbose)
3546 				printf("ehci early: "
3547 				    "SMM does not respond\n");
3548 		}
3549 		/* Disable interrupts */
3550 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3551 		bus_write_4(res, offs + EHCI_USBINTR, 0);
3552 	}
3553 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3554 }
3555 
3556 /* Perform early XHCI takeover from SMM. */
3557 static void
3558 xhci_early_takeover(device_t self)
3559 {
3560 	struct resource *res;
3561 	uint32_t cparams;
3562 	uint32_t eec;
3563 	uint8_t eecp;
3564 	uint8_t bios_sem;
3565 	uint8_t offs;
3566 	int rid;
3567 	int i;
3568 
3569 	rid = PCIR_BAR(0);
3570 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3571 	if (res == NULL)
3572 		return;
3573 
3574 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3575 
3576 	eec = -1;
3577 
3578 	/* Synchronise with the BIOS if it owns the controller. */
3579 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3580 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3581 		eec = bus_read_4(res, eecp);
3582 
3583 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3584 			continue;
3585 
3586 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3587 		if (bios_sem == 0)
3588 			continue;
3589 
3590 		if (bootverbose)
3591 			printf("xhci early: "
3592 			    "SMM active, request owner change\n");
3593 
3594 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3595 
3596 		/* wait a maximum of 5 second */
3597 
3598 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3599 			DELAY(1000);
3600 			bios_sem = bus_read_1(res, eecp +
3601 			    XHCI_XECP_BIOS_SEM);
3602 		}
3603 
3604 		if (bios_sem != 0) {
3605 			if (bootverbose)
3606 				printf("xhci early: "
3607 				    "SMM does not respond\n");
3608 		}
3609 
3610 		/* Disable interrupts */
3611 		offs = bus_read_1(res, XHCI_CAPLENGTH);
3612 		bus_write_4(res, offs + XHCI_USBCMD, 0);
3613 		bus_read_4(res, offs + XHCI_USBSTS);
3614 	}
3615 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3616 }
3617 
3618 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
3619 static void
3620 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3621     struct resource_list *rl)
3622 {
3623 	struct resource *res;
3624 	char *cp;
3625 	rman_res_t start, end, count;
3626 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3627 
3628 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3629 	case PCIM_HDRTYPE_BRIDGE:
3630 		sec_reg = PCIR_SECBUS_1;
3631 		sub_reg = PCIR_SUBBUS_1;
3632 		break;
3633 	case PCIM_HDRTYPE_CARDBUS:
3634 		sec_reg = PCIR_SECBUS_2;
3635 		sub_reg = PCIR_SUBBUS_2;
3636 		break;
3637 	default:
3638 		return;
3639 	}
3640 
3641 	/*
3642 	 * If the existing bus range is valid, attempt to reserve it
3643 	 * from our parent.  If this fails for any reason, clear the
3644 	 * secbus and subbus registers.
3645 	 *
3646 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3647 	 * This would at least preserve the existing sec_bus if it is
3648 	 * valid.
3649 	 */
3650 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3651 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3652 
3653 	/* Quirk handling. */
3654 	switch (pci_get_devid(dev)) {
3655 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3656 		sup_bus = pci_read_config(dev, 0x41, 1);
3657 		if (sup_bus != 0xff) {
3658 			sec_bus = sup_bus + 1;
3659 			sub_bus = sup_bus + 1;
3660 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3661 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3662 		}
3663 		break;
3664 
3665 	case 0x00dd10de:
3666 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3667 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3668 			break;
3669 		if (strncmp(cp, "Compal", 6) != 0) {
3670 			freeenv(cp);
3671 			break;
3672 		}
3673 		freeenv(cp);
3674 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3675 			break;
3676 		if (strncmp(cp, "08A0", 4) != 0) {
3677 			freeenv(cp);
3678 			break;
3679 		}
3680 		freeenv(cp);
3681 		if (sub_bus < 0xa) {
3682 			sub_bus = 0xa;
3683 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3684 		}
3685 		break;
3686 	}
3687 
3688 	if (bootverbose)
3689 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3690 	if (sec_bus > 0 && sub_bus >= sec_bus) {
3691 		start = sec_bus;
3692 		end = sub_bus;
3693 		count = end - start + 1;
3694 
3695 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3696 
3697 		/*
3698 		 * If requested, clear secondary bus registers in
3699 		 * bridge devices to force a complete renumbering
3700 		 * rather than reserving the existing range.  However,
3701 		 * preserve the existing size.
3702 		 */
3703 		if (pci_clear_buses)
3704 			goto clear;
3705 
3706 		rid = 0;
3707 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3708 		    start, end, count, 0);
3709 		if (res != NULL)
3710 			return;
3711 
3712 		if (bootverbose)
3713 			device_printf(bus,
3714 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3715 			    pci_get_domain(dev), pci_get_bus(dev),
3716 			    pci_get_slot(dev), pci_get_function(dev));
3717 	}
3718 
3719 clear:
3720 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3721 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3722 }
3723 
3724 static struct resource *
3725 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3726     rman_res_t end, rman_res_t count, u_int flags)
3727 {
3728 	struct pci_devinfo *dinfo;
3729 	pcicfgregs *cfg;
3730 	struct resource_list *rl;
3731 	struct resource *res;
3732 	int sec_reg, sub_reg;
3733 
3734 	dinfo = device_get_ivars(child);
3735 	cfg = &dinfo->cfg;
3736 	rl = &dinfo->resources;
3737 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3738 	case PCIM_HDRTYPE_BRIDGE:
3739 		sec_reg = PCIR_SECBUS_1;
3740 		sub_reg = PCIR_SUBBUS_1;
3741 		break;
3742 	case PCIM_HDRTYPE_CARDBUS:
3743 		sec_reg = PCIR_SECBUS_2;
3744 		sub_reg = PCIR_SUBBUS_2;
3745 		break;
3746 	default:
3747 		return (NULL);
3748 	}
3749 
3750 	if (*rid != 0)
3751 		return (NULL);
3752 
3753 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3754 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3755 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3756 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3757 		    start, end, count, flags & ~RF_ACTIVE);
3758 		if (res == NULL) {
3759 			resource_list_delete(rl, PCI_RES_BUS, *rid);
3760 			device_printf(child, "allocating %ju bus%s failed\n",
3761 			    count, count == 1 ? "" : "es");
3762 			return (NULL);
3763 		}
3764 		if (bootverbose)
3765 			device_printf(child,
3766 			    "Lazy allocation of %ju bus%s at %ju\n", count,
3767 			    count == 1 ? "" : "es", rman_get_start(res));
3768 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3769 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3770 	}
3771 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3772 	    end, count, flags));
3773 }
3774 #endif
3775 
3776 static int
3777 pci_ea_bei_to_rid(device_t dev, int bei)
3778 {
3779 #ifdef PCI_IOV
3780 	struct pci_devinfo *dinfo;
3781 	int iov_pos;
3782 	struct pcicfg_iov *iov;
3783 
3784 	dinfo = device_get_ivars(dev);
3785 	iov = dinfo->cfg.iov;
3786 	if (iov != NULL)
3787 		iov_pos = iov->iov_pos;
3788 	else
3789 		iov_pos = 0;
3790 #endif
3791 
3792 	/* Check if matches BAR */
3793 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3794 	    (bei <= PCIM_EA_BEI_BAR_5))
3795 		return (PCIR_BAR(bei));
3796 
3797 	/* Check ROM */
3798 	if (bei == PCIM_EA_BEI_ROM)
3799 		return (PCIR_BIOS);
3800 
3801 #ifdef PCI_IOV
3802 	/* Check if matches VF_BAR */
3803 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3804 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3805 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3806 		    iov_pos);
3807 #endif
3808 
3809 	return (-1);
3810 }
3811 
3812 int
3813 pci_ea_is_enabled(device_t dev, int rid)
3814 {
3815 	struct pci_ea_entry *ea;
3816 	struct pci_devinfo *dinfo;
3817 
3818 	dinfo = device_get_ivars(dev);
3819 
3820 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3821 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3822 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3823 	}
3824 
3825 	return (0);
3826 }
3827 
3828 void
3829 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
3830 {
3831 	struct pci_ea_entry *ea;
3832 	struct pci_devinfo *dinfo;
3833 	pci_addr_t start, end, count;
3834 	struct resource_list *rl;
3835 	int type, flags, rid;
3836 	struct resource *res;
3837 	uint32_t tmp;
3838 #ifdef PCI_IOV
3839 	struct pcicfg_iov *iov;
3840 #endif
3841 
3842 	dinfo = device_get_ivars(dev);
3843 	rl = &dinfo->resources;
3844 	flags = 0;
3845 
3846 #ifdef PCI_IOV
3847 	iov = dinfo->cfg.iov;
3848 #endif
3849 
3850 	if (dinfo->cfg.ea.ea_location == 0)
3851 		return;
3852 
3853 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3854 
3855 		/*
3856 		 * TODO: Ignore EA-BAR if is not enabled.
3857 		 *   Currently the EA implementation supports
3858 		 *   only situation, where EA structure contains
3859 		 *   predefined entries. In case they are not enabled
3860 		 *   leave them unallocated and proceed with
3861 		 *   a legacy-BAR mechanism.
3862 		 */
3863 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
3864 			continue;
3865 
3866 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
3867 		case PCIM_EA_P_MEM_PREFETCH:
3868 		case PCIM_EA_P_VF_MEM_PREFETCH:
3869 			flags = RF_PREFETCHABLE;
3870 			/* FALLTHROUGH */
3871 		case PCIM_EA_P_VF_MEM:
3872 		case PCIM_EA_P_MEM:
3873 			type = SYS_RES_MEMORY;
3874 			break;
3875 		case PCIM_EA_P_IO:
3876 			type = SYS_RES_IOPORT;
3877 			break;
3878 		default:
3879 			continue;
3880 		}
3881 
3882 		if (alloc_iov != 0) {
3883 #ifdef PCI_IOV
3884 			/* Allocating IOV, confirm BEI matches */
3885 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
3886 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
3887 				continue;
3888 #else
3889 			continue;
3890 #endif
3891 		} else {
3892 			/* Allocating BAR, confirm BEI matches */
3893 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
3894 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
3895 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
3896 				continue;
3897 		}
3898 
3899 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
3900 		if (rid < 0)
3901 			continue;
3902 
3903 		/* Skip resources already allocated by EA */
3904 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
3905 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
3906 			continue;
3907 
3908 		start = ea->eae_base;
3909 		count = ea->eae_max_offset + 1;
3910 #ifdef PCI_IOV
3911 		if (iov != NULL)
3912 			count = count * iov->iov_num_vfs;
3913 #endif
3914 		end = start + count - 1;
3915 		if (count == 0)
3916 			continue;
3917 
3918 		resource_list_add(rl, type, rid, start, end, count);
3919 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
3920 		    flags);
3921 		if (res == NULL) {
3922 			resource_list_delete(rl, type, rid);
3923 
3924 			/*
3925 			 * Failed to allocate using EA, disable entry.
3926 			 * Another attempt to allocation will be performed
3927 			 * further, but this time using legacy BAR registers
3928 			 */
3929 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
3930 			tmp &= ~PCIM_EA_ENABLE;
3931 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
3932 
3933 			/*
3934 			 * Disabling entry might fail in case it is hardwired.
3935 			 * Read flags again to match current status.
3936 			 */
3937 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
3938 
3939 			continue;
3940 		}
3941 
3942 		/* As per specification, fill BAR with zeros */
3943 		pci_write_config(dev, rid, 0, 4);
3944 	}
3945 }
3946 
3947 void
3948 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
3949 {
3950 	struct pci_devinfo *dinfo;
3951 	pcicfgregs *cfg;
3952 	struct resource_list *rl;
3953 	const struct pci_quirk *q;
3954 	uint32_t devid;
3955 	int i;
3956 
3957 	dinfo = device_get_ivars(dev);
3958 	cfg = &dinfo->cfg;
3959 	rl = &dinfo->resources;
3960 	devid = (cfg->device << 16) | cfg->vendor;
3961 
3962 	/* Allocate resources using Enhanced Allocation */
3963 	pci_add_resources_ea(bus, dev, 0);
3964 
3965 	/* ATA devices needs special map treatment */
3966 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
3967 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
3968 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
3969 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
3970 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
3971 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
3972 	else
3973 		for (i = 0; i < cfg->nummaps;) {
3974 			/* Skip resources already managed by EA */
3975 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
3976 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
3977 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
3978 				i++;
3979 				continue;
3980 			}
3981 
3982 			/*
3983 			 * Skip quirked resources.
3984 			 */
3985 			for (q = &pci_quirks[0]; q->devid != 0; q++)
3986 				if (q->devid == devid &&
3987 				    q->type == PCI_QUIRK_UNMAP_REG &&
3988 				    q->arg1 == PCIR_BAR(i))
3989 					break;
3990 			if (q->devid != 0) {
3991 				i++;
3992 				continue;
3993 			}
3994 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
3995 			    prefetchmask & (1 << i));
3996 		}
3997 
3998 	/*
3999 	 * Add additional, quirked resources.
4000 	 */
4001 	for (q = &pci_quirks[0]; q->devid != 0; q++)
4002 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4003 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4004 
4005 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4006 #ifdef __PCI_REROUTE_INTERRUPT
4007 		/*
4008 		 * Try to re-route interrupts. Sometimes the BIOS or
4009 		 * firmware may leave bogus values in these registers.
4010 		 * If the re-route fails, then just stick with what we
4011 		 * have.
4012 		 */
4013 		pci_assign_interrupt(bus, dev, 1);
4014 #else
4015 		pci_assign_interrupt(bus, dev, 0);
4016 #endif
4017 	}
4018 
4019 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4020 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4021 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4022 			xhci_early_takeover(dev);
4023 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4024 			ehci_early_takeover(dev);
4025 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4026 			ohci_early_takeover(dev);
4027 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4028 			uhci_early_takeover(dev);
4029 	}
4030 
4031 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
4032 	/*
4033 	 * Reserve resources for secondary bus ranges behind bridge
4034 	 * devices.
4035 	 */
4036 	pci_reserve_secbus(bus, dev, cfg, rl);
4037 #endif
4038 }
4039 
4040 static struct pci_devinfo *
4041 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4042     int slot, int func)
4043 {
4044 	struct pci_devinfo *dinfo;
4045 
4046 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4047 	if (dinfo != NULL)
4048 		pci_add_child(dev, dinfo);
4049 
4050 	return (dinfo);
4051 }
4052 
4053 void
4054 pci_add_children(device_t dev, int domain, int busno)
4055 {
4056 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4057 	device_t pcib = device_get_parent(dev);
4058 	struct pci_devinfo *dinfo;
4059 	int maxslots;
4060 	int s, f, pcifunchigh;
4061 	uint8_t hdrtype;
4062 	int first_func;
4063 
4064 	/*
4065 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4066 	 * enable ARI.  We must enable ARI before detecting the rest of the
4067 	 * functions on this bus as ARI changes the set of slots and functions
4068 	 * that are legal on this bus.
4069 	 */
4070 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4071 	if (dinfo != NULL && pci_enable_ari)
4072 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4073 
4074 	/*
4075 	 * Start looking for new devices on slot 0 at function 1 because we
4076 	 * just identified the device at slot 0, function 0.
4077 	 */
4078 	first_func = 1;
4079 
4080 	maxslots = PCIB_MAXSLOTS(pcib);
4081 	for (s = 0; s <= maxslots; s++, first_func = 0) {
4082 		pcifunchigh = 0;
4083 		f = 0;
4084 		DELAY(1);
4085 		hdrtype = REG(PCIR_HDRTYPE, 1);
4086 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4087 			continue;
4088 		if (hdrtype & PCIM_MFDEV)
4089 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4090 		for (f = first_func; f <= pcifunchigh; f++)
4091 			pci_identify_function(pcib, dev, domain, busno, s, f);
4092 	}
4093 #undef REG
4094 }
4095 
4096 int
4097 pci_rescan_method(device_t dev)
4098 {
4099 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4100 	device_t pcib = device_get_parent(dev);
4101 	device_t child, *devlist, *unchanged;
4102 	int devcount, error, i, j, maxslots, oldcount;
4103 	int busno, domain, s, f, pcifunchigh;
4104 	uint8_t hdrtype;
4105 
4106 	/* No need to check for ARI on a rescan. */
4107 	error = device_get_children(dev, &devlist, &devcount);
4108 	if (error)
4109 		return (error);
4110 	if (devcount != 0) {
4111 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4112 		    M_NOWAIT | M_ZERO);
4113 		if (unchanged == NULL) {
4114 			free(devlist, M_TEMP);
4115 			return (ENOMEM);
4116 		}
4117 	} else
4118 		unchanged = NULL;
4119 
4120 	domain = pcib_get_domain(dev);
4121 	busno = pcib_get_bus(dev);
4122 	maxslots = PCIB_MAXSLOTS(pcib);
4123 	for (s = 0; s <= maxslots; s++) {
4124 		/* If function 0 is not present, skip to the next slot. */
4125 		f = 0;
4126 		if (REG(PCIR_VENDOR, 2) == 0xffff)
4127 			continue;
4128 		pcifunchigh = 0;
4129 		hdrtype = REG(PCIR_HDRTYPE, 1);
4130 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4131 			continue;
4132 		if (hdrtype & PCIM_MFDEV)
4133 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4134 		for (f = 0; f <= pcifunchigh; f++) {
4135 			if (REG(PCIR_VENDOR, 2) == 0xffff)
4136 				continue;
4137 
4138 			/*
4139 			 * Found a valid function.  Check if a
4140 			 * device_t for this device already exists.
4141 			 */
4142 			for (i = 0; i < devcount; i++) {
4143 				child = devlist[i];
4144 				if (child == NULL)
4145 					continue;
4146 				if (pci_get_slot(child) == s &&
4147 				    pci_get_function(child) == f) {
4148 					unchanged[i] = child;
4149 					goto next_func;
4150 				}
4151 			}
4152 
4153 			pci_identify_function(pcib, dev, domain, busno, s, f);
4154 		next_func:;
4155 		}
4156 	}
4157 
4158 	/* Remove devices that are no longer present. */
4159 	for (i = 0; i < devcount; i++) {
4160 		if (unchanged[i] != NULL)
4161 			continue;
4162 		device_delete_child(dev, devlist[i]);
4163 	}
4164 
4165 	free(devlist, M_TEMP);
4166 	oldcount = devcount;
4167 
4168 	/* Try to attach the devices just added. */
4169 	error = device_get_children(dev, &devlist, &devcount);
4170 	if (error) {
4171 		free(unchanged, M_TEMP);
4172 		return (error);
4173 	}
4174 
4175 	for (i = 0; i < devcount; i++) {
4176 		for (j = 0; j < oldcount; j++) {
4177 			if (devlist[i] == unchanged[j])
4178 				goto next_device;
4179 		}
4180 
4181 		device_probe_and_attach(devlist[i]);
4182 	next_device:;
4183 	}
4184 
4185 	free(unchanged, M_TEMP);
4186 	free(devlist, M_TEMP);
4187 	return (0);
4188 #undef REG
4189 }
4190 
4191 #ifdef PCI_IOV
4192 device_t
4193 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4194     uint16_t did)
4195 {
4196 	struct pci_devinfo *vf_dinfo;
4197 	device_t pcib;
4198 	int busno, slot, func;
4199 
4200 	pcib = device_get_parent(bus);
4201 
4202 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4203 
4204 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4205 	    slot, func, vid, did);
4206 
4207 	vf_dinfo->cfg.flags |= PCICFG_VF;
4208 	pci_add_child(bus, vf_dinfo);
4209 
4210 	return (vf_dinfo->cfg.dev);
4211 }
4212 
4213 device_t
4214 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4215     uint16_t vid, uint16_t did)
4216 {
4217 
4218 	return (pci_add_iov_child(bus, pf, rid, vid, did));
4219 }
4220 #endif
4221 
4222 static void
4223 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4224 {
4225 	int aer;
4226 	uint32_t r;
4227 	uint16_t r2;
4228 
4229 	if (dinfo->cfg.pcie.pcie_location != 0 &&
4230 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4231 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4232 		    PCIER_ROOT_CTL, 2);
4233 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4234 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4235 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4236 		    PCIER_ROOT_CTL, r2, 2);
4237 	}
4238 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4239 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4240 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4241 		if (r != 0 && bootverbose) {
4242 			pci_printf(&dinfo->cfg,
4243 			    "clearing AER UC 0x%08x -> 0x%08x\n",
4244 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4245 			    4));
4246 		}
4247 
4248 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4249 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4250 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4251 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4252 		    PCIM_AER_UC_POISONED_TLP |
4253 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4254 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4255 		    PCIM_AER_UC_COMPLETER_ABORT |
4256 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4257 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4258 		    PCIM_AER_UC_MALFORMED_TLP |
4259 		    PCIM_AER_UC_ECRC_ERROR |
4260 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4261 		    PCIM_AER_UC_ACS_VIOLATION |
4262 		    PCIM_AER_UC_INTERNAL_ERROR |
4263 		    PCIM_AER_UC_MC_BLOCKED_TLP |
4264 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4265 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4266 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4267 
4268 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4269 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4270 		if (r != 0 && bootverbose) {
4271 			pci_printf(&dinfo->cfg,
4272 			    "clearing AER COR 0x%08x -> 0x%08x\n",
4273 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4274 			    4));
4275 		}
4276 
4277 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4278 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4279 		    PCIM_AER_COR_BAD_TLP |
4280 		    PCIM_AER_COR_BAD_DLLP |
4281 		    PCIM_AER_COR_REPLAY_ROLLOVER |
4282 		    PCIM_AER_COR_REPLAY_TIMEOUT |
4283 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4284 		    PCIM_AER_COR_INTERNAL_ERROR |
4285 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4286 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4287 
4288 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4289 		    PCIER_DEVICE_CTL, 2);
4290 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4291 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4292 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4293 		    PCIER_DEVICE_CTL, r, 2);
4294 	}
4295 }
4296 
4297 void
4298 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4299 {
4300 	device_t dev;
4301 
4302 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1);
4303 	device_set_ivars(dev, dinfo);
4304 	resource_list_init(&dinfo->resources);
4305 	pci_cfg_save(dev, dinfo, 0);
4306 	pci_cfg_restore(dev, dinfo);
4307 	pci_print_verbose(dinfo);
4308 	pci_add_resources(bus, dev, 0, 0);
4309 	pci_child_added(dinfo->cfg.dev);
4310 
4311 	if (pci_clear_aer_on_attach)
4312 		pci_add_child_clear_aer(dev, dinfo);
4313 
4314 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4315 }
4316 
4317 void
4318 pci_child_added_method(device_t dev, device_t child)
4319 {
4320 
4321 }
4322 
4323 static int
4324 pci_probe(device_t dev)
4325 {
4326 
4327 	device_set_desc(dev, "PCI bus");
4328 
4329 	/* Allow other subclasses to override this driver. */
4330 	return (BUS_PROBE_GENERIC);
4331 }
4332 
4333 int
4334 pci_attach_common(device_t dev)
4335 {
4336 	struct pci_softc *sc;
4337 	int busno, domain;
4338 #ifdef PCI_DMA_BOUNDARY
4339 	int error, tag_valid;
4340 #endif
4341 #ifdef PCI_RES_BUS
4342 	int rid;
4343 #endif
4344 
4345 	sc = device_get_softc(dev);
4346 	domain = pcib_get_domain(dev);
4347 	busno = pcib_get_bus(dev);
4348 #ifdef PCI_RES_BUS
4349 	rid = 0;
4350 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4351 	    1, 0);
4352 	if (sc->sc_bus == NULL) {
4353 		device_printf(dev, "failed to allocate bus number\n");
4354 		return (ENXIO);
4355 	}
4356 #endif
4357 	if (bootverbose)
4358 		device_printf(dev, "domain=%d, physical bus=%d\n",
4359 		    domain, busno);
4360 #ifdef PCI_DMA_BOUNDARY
4361 	tag_valid = 0;
4362 	if (device_get_devclass(device_get_parent(device_get_parent(dev))) !=
4363 	    devclass_find("pci")) {
4364 		error = bus_dma_tag_create(bus_get_dma_tag(dev), 1,
4365 		    PCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4366 		    NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED,
4367 		    BUS_SPACE_MAXSIZE, 0, NULL, NULL, &sc->sc_dma_tag);
4368 		if (error)
4369 			device_printf(dev, "Failed to create DMA tag: %d\n",
4370 			    error);
4371 		else
4372 			tag_valid = 1;
4373 	}
4374 	if (!tag_valid)
4375 #endif
4376 		sc->sc_dma_tag = bus_get_dma_tag(dev);
4377 	return (0);
4378 }
4379 
4380 static int
4381 pci_attach(device_t dev)
4382 {
4383 	int busno, domain, error;
4384 
4385 	error = pci_attach_common(dev);
4386 	if (error)
4387 		return (error);
4388 
4389 	/*
4390 	 * Since there can be multiple independently numbered PCI
4391 	 * buses on systems with multiple PCI domains, we can't use
4392 	 * the unit number to decide which bus we are probing. We ask
4393 	 * the parent pcib what our domain and bus numbers are.
4394 	 */
4395 	domain = pcib_get_domain(dev);
4396 	busno = pcib_get_bus(dev);
4397 	pci_add_children(dev, domain, busno);
4398 	return (bus_generic_attach(dev));
4399 }
4400 
4401 static int
4402 pci_detach(device_t dev)
4403 {
4404 #ifdef PCI_RES_BUS
4405 	struct pci_softc *sc;
4406 #endif
4407 	int error;
4408 
4409 	error = bus_generic_detach(dev);
4410 	if (error)
4411 		return (error);
4412 #ifdef PCI_RES_BUS
4413 	sc = device_get_softc(dev);
4414 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4415 	if (error)
4416 		return (error);
4417 #endif
4418 	return (device_delete_children(dev));
4419 }
4420 
4421 static void
4422 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4423 {
4424 	int line, unit;
4425 	const char *at;
4426 	char me1[24], me2[32];
4427 	uint8_t b, s, f;
4428 	uint32_t d;
4429 
4430 	d = pci_get_domain(child);
4431 	b = pci_get_bus(child);
4432 	s = pci_get_slot(child);
4433 	f = pci_get_function(child);
4434 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4435 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4436 	line = 0;
4437 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4438 		resource_string_value(name, unit, "at", &at);
4439 		if (strcmp(at, me1) != 0 && strcmp(at, me2) != 0)
4440 			continue; /* No match, try next candidate */
4441 		*unitp = unit;
4442 		return;
4443 	}
4444 }
4445 
4446 static void
4447 pci_set_power_child(device_t dev, device_t child, int state)
4448 {
4449 	device_t pcib;
4450 	int dstate;
4451 
4452 	/*
4453 	 * Set the device to the given state.  If the firmware suggests
4454 	 * a different power state, use it instead.  If power management
4455 	 * is not present, the firmware is responsible for managing
4456 	 * device power.  Skip children who aren't attached since they
4457 	 * are handled separately.
4458 	 */
4459 	pcib = device_get_parent(dev);
4460 	dstate = state;
4461 	if (device_is_attached(child) &&
4462 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4463 		pci_set_powerstate(child, dstate);
4464 }
4465 
4466 int
4467 pci_suspend_child(device_t dev, device_t child)
4468 {
4469 	struct pci_devinfo *dinfo;
4470 	struct resource_list_entry *rle;
4471 	int error;
4472 
4473 	dinfo = device_get_ivars(child);
4474 
4475 	/*
4476 	 * Save the PCI configuration space for the child and set the
4477 	 * device in the appropriate power state for this sleep state.
4478 	 */
4479 	pci_cfg_save(child, dinfo, 0);
4480 
4481 	/* Suspend devices before potentially powering them down. */
4482 	error = bus_generic_suspend_child(dev, child);
4483 
4484 	if (error)
4485 		return (error);
4486 
4487 	if (pci_do_power_suspend) {
4488 		/*
4489 		 * Make sure this device's interrupt handler is not invoked
4490 		 * in the case the device uses a shared interrupt that can
4491 		 * be raised by some other device.
4492 		 * This is applicable only to regular (legacy) PCI interrupts
4493 		 * as MSI/MSI-X interrupts are never shared.
4494 		 */
4495 		rle = resource_list_find(&dinfo->resources,
4496 		    SYS_RES_IRQ, 0);
4497 		if (rle != NULL && rle->res != NULL)
4498 			(void)bus_suspend_intr(child, rle->res);
4499 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4500 	}
4501 
4502 	return (0);
4503 }
4504 
4505 int
4506 pci_resume_child(device_t dev, device_t child)
4507 {
4508 	struct pci_devinfo *dinfo;
4509 	struct resource_list_entry *rle;
4510 
4511 	if (pci_do_power_resume)
4512 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4513 
4514 	dinfo = device_get_ivars(child);
4515 	pci_cfg_restore(child, dinfo);
4516 	if (!device_is_attached(child))
4517 		pci_cfg_save(child, dinfo, 1);
4518 
4519 	bus_generic_resume_child(dev, child);
4520 
4521 	/*
4522 	 * Allow interrupts only after fully resuming the driver and hardware.
4523 	 */
4524 	if (pci_do_power_suspend) {
4525 		/* See pci_suspend_child for details. */
4526 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4527 		if (rle != NULL && rle->res != NULL)
4528 			(void)bus_resume_intr(child, rle->res);
4529 	}
4530 
4531 	return (0);
4532 }
4533 
4534 int
4535 pci_resume(device_t dev)
4536 {
4537 	device_t child, *devlist;
4538 	int error, i, numdevs;
4539 
4540 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4541 		return (error);
4542 
4543 	/*
4544 	 * Resume critical devices first, then everything else later.
4545 	 */
4546 	for (i = 0; i < numdevs; i++) {
4547 		child = devlist[i];
4548 		switch (pci_get_class(child)) {
4549 		case PCIC_DISPLAY:
4550 		case PCIC_MEMORY:
4551 		case PCIC_BRIDGE:
4552 		case PCIC_BASEPERIPH:
4553 			BUS_RESUME_CHILD(dev, child);
4554 			break;
4555 		}
4556 	}
4557 	for (i = 0; i < numdevs; i++) {
4558 		child = devlist[i];
4559 		switch (pci_get_class(child)) {
4560 		case PCIC_DISPLAY:
4561 		case PCIC_MEMORY:
4562 		case PCIC_BRIDGE:
4563 		case PCIC_BASEPERIPH:
4564 			break;
4565 		default:
4566 			BUS_RESUME_CHILD(dev, child);
4567 		}
4568 	}
4569 	free(devlist, M_TEMP);
4570 	return (0);
4571 }
4572 
4573 static void
4574 pci_load_vendor_data(void)
4575 {
4576 	caddr_t data;
4577 	void *ptr;
4578 	size_t sz;
4579 
4580 	data = preload_search_by_type("pci_vendor_data");
4581 	if (data != NULL) {
4582 		ptr = preload_fetch_addr(data);
4583 		sz = preload_fetch_size(data);
4584 		if (ptr != NULL && sz != 0) {
4585 			pci_vendordata = ptr;
4586 			pci_vendordata_size = sz;
4587 			/* terminate the database */
4588 			pci_vendordata[pci_vendordata_size] = '\n';
4589 		}
4590 	}
4591 }
4592 
4593 void
4594 pci_driver_added(device_t dev, driver_t *driver)
4595 {
4596 	int numdevs;
4597 	device_t *devlist;
4598 	device_t child;
4599 	struct pci_devinfo *dinfo;
4600 	int i;
4601 
4602 	if (bootverbose)
4603 		device_printf(dev, "driver added\n");
4604 	DEVICE_IDENTIFY(driver, dev);
4605 	if (device_get_children(dev, &devlist, &numdevs) != 0)
4606 		return;
4607 	for (i = 0; i < numdevs; i++) {
4608 		child = devlist[i];
4609 		if (device_get_state(child) != DS_NOTPRESENT)
4610 			continue;
4611 		dinfo = device_get_ivars(child);
4612 		pci_print_verbose(dinfo);
4613 		if (bootverbose)
4614 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4615 		pci_cfg_restore(child, dinfo);
4616 		if (device_probe_and_attach(child) != 0)
4617 			pci_child_detached(dev, child);
4618 	}
4619 	free(devlist, M_TEMP);
4620 }
4621 
4622 int
4623 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4624     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4625 {
4626 	struct pci_devinfo *dinfo;
4627 	struct msix_table_entry *mte;
4628 	struct msix_vector *mv;
4629 	uint64_t addr;
4630 	uint32_t data;
4631 	void *cookie;
4632 	int error, rid;
4633 
4634 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4635 	    arg, &cookie);
4636 	if (error)
4637 		return (error);
4638 
4639 	/* If this is not a direct child, just bail out. */
4640 	if (device_get_parent(child) != dev) {
4641 		*cookiep = cookie;
4642 		return(0);
4643 	}
4644 
4645 	rid = rman_get_rid(irq);
4646 	if (rid == 0) {
4647 		/* Make sure that INTx is enabled */
4648 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4649 	} else {
4650 		/*
4651 		 * Check to see if the interrupt is MSI or MSI-X.
4652 		 * Ask our parent to map the MSI and give
4653 		 * us the address and data register values.
4654 		 * If we fail for some reason, teardown the
4655 		 * interrupt handler.
4656 		 */
4657 		dinfo = device_get_ivars(child);
4658 		if (dinfo->cfg.msi.msi_alloc > 0) {
4659 			if (dinfo->cfg.msi.msi_addr == 0) {
4660 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4661 			    ("MSI has handlers, but vectors not mapped"));
4662 				error = PCIB_MAP_MSI(device_get_parent(dev),
4663 				    child, rman_get_start(irq), &addr, &data);
4664 				if (error)
4665 					goto bad;
4666 				dinfo->cfg.msi.msi_addr = addr;
4667 				dinfo->cfg.msi.msi_data = data;
4668 			}
4669 			if (dinfo->cfg.msi.msi_handlers == 0)
4670 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4671 				    dinfo->cfg.msi.msi_data);
4672 			dinfo->cfg.msi.msi_handlers++;
4673 		} else {
4674 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4675 			    ("No MSI or MSI-X interrupts allocated"));
4676 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4677 			    ("MSI-X index too high"));
4678 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4679 			KASSERT(mte->mte_vector != 0, ("no message vector"));
4680 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4681 			KASSERT(mv->mv_irq == rman_get_start(irq),
4682 			    ("IRQ mismatch"));
4683 			if (mv->mv_address == 0) {
4684 				KASSERT(mte->mte_handlers == 0,
4685 		    ("MSI-X table entry has handlers, but vector not mapped"));
4686 				error = PCIB_MAP_MSI(device_get_parent(dev),
4687 				    child, rman_get_start(irq), &addr, &data);
4688 				if (error)
4689 					goto bad;
4690 				mv->mv_address = addr;
4691 				mv->mv_data = data;
4692 			}
4693 
4694 			/*
4695 			 * The MSIX table entry must be made valid by
4696 			 * incrementing the mte_handlers before
4697 			 * calling pci_enable_msix() and
4698 			 * pci_resume_msix(). Else the MSIX rewrite
4699 			 * table quirk will not work as expected.
4700 			 */
4701 			mte->mte_handlers++;
4702 			if (mte->mte_handlers == 1) {
4703 				pci_enable_msix(child, rid - 1, mv->mv_address,
4704 				    mv->mv_data);
4705 				pci_unmask_msix(child, rid - 1);
4706 			}
4707 		}
4708 
4709 		/*
4710 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4711 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4712 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4713 		 */
4714 		if (!pci_has_quirk(pci_get_devid(child),
4715 		    PCI_QUIRK_MSI_INTX_BUG))
4716 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4717 		else
4718 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4719 	bad:
4720 		if (error) {
4721 			(void)bus_generic_teardown_intr(dev, child, irq,
4722 			    cookie);
4723 			return (error);
4724 		}
4725 	}
4726 	*cookiep = cookie;
4727 	return (0);
4728 }
4729 
4730 int
4731 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4732     void *cookie)
4733 {
4734 	struct msix_table_entry *mte;
4735 	struct resource_list_entry *rle;
4736 	struct pci_devinfo *dinfo;
4737 	int error, rid;
4738 
4739 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4740 		return (EINVAL);
4741 
4742 	/* If this isn't a direct child, just bail out */
4743 	if (device_get_parent(child) != dev)
4744 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4745 
4746 	rid = rman_get_rid(irq);
4747 	if (rid == 0) {
4748 		/* Mask INTx */
4749 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4750 	} else {
4751 		/*
4752 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4753 		 * decrement the appropriate handlers count and mask the
4754 		 * MSI-X message, or disable MSI messages if the count
4755 		 * drops to 0.
4756 		 */
4757 		dinfo = device_get_ivars(child);
4758 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4759 		if (rle->res != irq)
4760 			return (EINVAL);
4761 		if (dinfo->cfg.msi.msi_alloc > 0) {
4762 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4763 			    ("MSI-X index too high"));
4764 			if (dinfo->cfg.msi.msi_handlers == 0)
4765 				return (EINVAL);
4766 			dinfo->cfg.msi.msi_handlers--;
4767 			if (dinfo->cfg.msi.msi_handlers == 0)
4768 				pci_disable_msi(child);
4769 		} else {
4770 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4771 			    ("No MSI or MSI-X interrupts allocated"));
4772 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4773 			    ("MSI-X index too high"));
4774 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4775 			if (mte->mte_handlers == 0)
4776 				return (EINVAL);
4777 			mte->mte_handlers--;
4778 			if (mte->mte_handlers == 0)
4779 				pci_mask_msix(child, rid - 1);
4780 		}
4781 	}
4782 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4783 	if (rid > 0)
4784 		KASSERT(error == 0,
4785 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4786 	return (error);
4787 }
4788 
4789 int
4790 pci_print_child(device_t dev, device_t child)
4791 {
4792 	struct pci_devinfo *dinfo;
4793 	struct resource_list *rl;
4794 	int retval = 0;
4795 
4796 	dinfo = device_get_ivars(child);
4797 	rl = &dinfo->resources;
4798 
4799 	retval += bus_print_child_header(dev, child);
4800 
4801 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4802 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4803 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4804 	if (device_get_flags(dev))
4805 		retval += printf(" flags %#x", device_get_flags(dev));
4806 
4807 	retval += printf(" at device %d.%d", pci_get_slot(child),
4808 	    pci_get_function(child));
4809 
4810 	retval += bus_print_child_domain(dev, child);
4811 	retval += bus_print_child_footer(dev, child);
4812 
4813 	return (retval);
4814 }
4815 
4816 static const struct
4817 {
4818 	int		class;
4819 	int		subclass;
4820 	int		report; /* 0 = bootverbose, 1 = always */
4821 	const char	*desc;
4822 } pci_nomatch_tab[] = {
4823 	{PCIC_OLD,		-1,			1, "old"},
4824 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
4825 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
4826 	{PCIC_STORAGE,		-1,			1, "mass storage"},
4827 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
4828 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
4829 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
4830 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
4831 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
4832 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
4833 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
4834 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
4835 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
4836 	{PCIC_NETWORK,		-1,			1, "network"},
4837 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
4838 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
4839 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
4840 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
4841 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
4842 	{PCIC_DISPLAY,		-1,			1, "display"},
4843 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
4844 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
4845 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
4846 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
4847 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
4848 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
4849 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
4850 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
4851 	{PCIC_MEMORY,		-1,			1, "memory"},
4852 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
4853 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
4854 	{PCIC_BRIDGE,		-1,			1, "bridge"},
4855 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
4856 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
4857 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
4858 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
4859 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
4860 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
4861 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
4862 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
4863 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
4864 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
4865 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
4866 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
4867 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
4868 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
4869 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
4870 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
4871 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
4872 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
4873 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
4874 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
4875 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
4876 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
4877 	{PCIC_INPUTDEV,		-1,			1, "input device"},
4878 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
4879 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
4880 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
4881 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
4882 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
4883 	{PCIC_DOCKING,		-1,			1, "docking station"},
4884 	{PCIC_PROCESSOR,	-1,			1, "processor"},
4885 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
4886 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
4887 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
4888 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
4889 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
4890 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
4891 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
4892 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
4893 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
4894 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
4895 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
4896 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
4897 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
4898 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
4899 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
4900 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
4901 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
4902 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
4903 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
4904 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
4905 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
4906 	{PCIC_DASP,		-1,			0, "dasp"},
4907 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
4908 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
4909 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
4910 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
4911 	{0, 0, 0,		NULL}
4912 };
4913 
4914 void
4915 pci_probe_nomatch(device_t dev, device_t child)
4916 {
4917 	int i, report;
4918 	const char *cp, *scp;
4919 	char *device;
4920 
4921 	/*
4922 	 * Look for a listing for this device in a loaded device database.
4923 	 */
4924 	report = 1;
4925 	if ((device = pci_describe_device(child)) != NULL) {
4926 		device_printf(dev, "<%s>", device);
4927 		free(device, M_DEVBUF);
4928 	} else {
4929 		/*
4930 		 * Scan the class/subclass descriptions for a general
4931 		 * description.
4932 		 */
4933 		cp = "unknown";
4934 		scp = NULL;
4935 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
4936 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
4937 				if (pci_nomatch_tab[i].subclass == -1) {
4938 					cp = pci_nomatch_tab[i].desc;
4939 					report = pci_nomatch_tab[i].report;
4940 				} else if (pci_nomatch_tab[i].subclass ==
4941 				    pci_get_subclass(child)) {
4942 					scp = pci_nomatch_tab[i].desc;
4943 					report = pci_nomatch_tab[i].report;
4944 				}
4945 			}
4946 		}
4947 		if (report || bootverbose) {
4948 			device_printf(dev, "<%s%s%s>",
4949 			    cp ? cp : "",
4950 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
4951 			    scp ? scp : "");
4952 		}
4953 	}
4954 	if (report || bootverbose) {
4955 		printf(" at device %d.%d (no driver attached)\n",
4956 		    pci_get_slot(child), pci_get_function(child));
4957 	}
4958 	pci_cfg_save(child, device_get_ivars(child), 1);
4959 }
4960 
4961 void
4962 pci_child_detached(device_t dev, device_t child)
4963 {
4964 	struct pci_devinfo *dinfo;
4965 	struct resource_list *rl;
4966 
4967 	dinfo = device_get_ivars(child);
4968 	rl = &dinfo->resources;
4969 
4970 	/*
4971 	 * Have to deallocate IRQs before releasing any MSI messages and
4972 	 * have to release MSI messages before deallocating any memory
4973 	 * BARs.
4974 	 */
4975 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
4976 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
4977 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
4978 		pci_printf(&dinfo->cfg, "Device leaked MSI vectors\n");
4979 		(void)pci_release_msi(child);
4980 	}
4981 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
4982 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
4983 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
4984 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
4985 #ifdef PCI_RES_BUS
4986 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
4987 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
4988 #endif
4989 
4990 	pci_cfg_save(child, dinfo, 1);
4991 }
4992 
4993 /*
4994  * Parse the PCI device database, if loaded, and return a pointer to a
4995  * description of the device.
4996  *
4997  * The database is flat text formatted as follows:
4998  *
4999  * Any line not in a valid format is ignored.
5000  * Lines are terminated with newline '\n' characters.
5001  *
5002  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5003  * the vendor name.
5004  *
5005  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5006  * - devices cannot be listed without a corresponding VENDOR line.
5007  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5008  * another TAB, then the device name.
5009  */
5010 
5011 /*
5012  * Assuming (ptr) points to the beginning of a line in the database,
5013  * return the vendor or device and description of the next entry.
5014  * The value of (vendor) or (device) inappropriate for the entry type
5015  * is set to -1.  Returns nonzero at the end of the database.
5016  *
5017  * Note that this is slightly unrobust in the face of corrupt data;
5018  * we attempt to safeguard against this by spamming the end of the
5019  * database with a newline when we initialise.
5020  */
5021 static int
5022 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5023 {
5024 	char	*cp = *ptr;
5025 	int	left;
5026 
5027 	*device = -1;
5028 	*vendor = -1;
5029 	**desc = '\0';
5030 	for (;;) {
5031 		left = pci_vendordata_size - (cp - pci_vendordata);
5032 		if (left <= 0) {
5033 			*ptr = cp;
5034 			return(1);
5035 		}
5036 
5037 		/* vendor entry? */
5038 		if (*cp != '\t' &&
5039 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5040 			break;
5041 		/* device entry? */
5042 		if (*cp == '\t' &&
5043 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5044 			break;
5045 
5046 		/* skip to next line */
5047 		while (*cp != '\n' && left > 0) {
5048 			cp++;
5049 			left--;
5050 		}
5051 		if (*cp == '\n') {
5052 			cp++;
5053 			left--;
5054 		}
5055 	}
5056 	/* skip to next line */
5057 	while (*cp != '\n' && left > 0) {
5058 		cp++;
5059 		left--;
5060 	}
5061 	if (*cp == '\n' && left > 0)
5062 		cp++;
5063 	*ptr = cp;
5064 	return(0);
5065 }
5066 
5067 static char *
5068 pci_describe_device(device_t dev)
5069 {
5070 	int	vendor, device;
5071 	char	*desc, *vp, *dp, *line;
5072 
5073 	desc = vp = dp = NULL;
5074 
5075 	/*
5076 	 * If we have no vendor data, we can't do anything.
5077 	 */
5078 	if (pci_vendordata == NULL)
5079 		goto out;
5080 
5081 	/*
5082 	 * Scan the vendor data looking for this device
5083 	 */
5084 	line = pci_vendordata;
5085 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5086 		goto out;
5087 	for (;;) {
5088 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5089 			goto out;
5090 		if (vendor == pci_get_vendor(dev))
5091 			break;
5092 	}
5093 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5094 		goto out;
5095 	for (;;) {
5096 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5097 			*dp = 0;
5098 			break;
5099 		}
5100 		if (vendor != -1) {
5101 			*dp = 0;
5102 			break;
5103 		}
5104 		if (device == pci_get_device(dev))
5105 			break;
5106 	}
5107 	if (dp[0] == '\0')
5108 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5109 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5110 	    NULL)
5111 		sprintf(desc, "%s, %s", vp, dp);
5112 out:
5113 	if (vp != NULL)
5114 		free(vp, M_DEVBUF);
5115 	if (dp != NULL)
5116 		free(dp, M_DEVBUF);
5117 	return(desc);
5118 }
5119 
5120 int
5121 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5122 {
5123 	struct pci_devinfo *dinfo;
5124 	pcicfgregs *cfg;
5125 
5126 	dinfo = device_get_ivars(child);
5127 	cfg = &dinfo->cfg;
5128 
5129 	switch (which) {
5130 	case PCI_IVAR_ETHADDR:
5131 		/*
5132 		 * The generic accessor doesn't deal with failure, so
5133 		 * we set the return value, then return an error.
5134 		 */
5135 		*((uint8_t **) result) = NULL;
5136 		return (EINVAL);
5137 	case PCI_IVAR_SUBVENDOR:
5138 		*result = cfg->subvendor;
5139 		break;
5140 	case PCI_IVAR_SUBDEVICE:
5141 		*result = cfg->subdevice;
5142 		break;
5143 	case PCI_IVAR_VENDOR:
5144 		*result = cfg->vendor;
5145 		break;
5146 	case PCI_IVAR_DEVICE:
5147 		*result = cfg->device;
5148 		break;
5149 	case PCI_IVAR_DEVID:
5150 		*result = (cfg->device << 16) | cfg->vendor;
5151 		break;
5152 	case PCI_IVAR_CLASS:
5153 		*result = cfg->baseclass;
5154 		break;
5155 	case PCI_IVAR_SUBCLASS:
5156 		*result = cfg->subclass;
5157 		break;
5158 	case PCI_IVAR_PROGIF:
5159 		*result = cfg->progif;
5160 		break;
5161 	case PCI_IVAR_REVID:
5162 		*result = cfg->revid;
5163 		break;
5164 	case PCI_IVAR_INTPIN:
5165 		*result = cfg->intpin;
5166 		break;
5167 	case PCI_IVAR_IRQ:
5168 		*result = cfg->intline;
5169 		break;
5170 	case PCI_IVAR_DOMAIN:
5171 		*result = cfg->domain;
5172 		break;
5173 	case PCI_IVAR_BUS:
5174 		*result = cfg->bus;
5175 		break;
5176 	case PCI_IVAR_SLOT:
5177 		*result = cfg->slot;
5178 		break;
5179 	case PCI_IVAR_FUNCTION:
5180 		*result = cfg->func;
5181 		break;
5182 	case PCI_IVAR_CMDREG:
5183 		*result = cfg->cmdreg;
5184 		break;
5185 	case PCI_IVAR_CACHELNSZ:
5186 		*result = cfg->cachelnsz;
5187 		break;
5188 	case PCI_IVAR_MINGNT:
5189 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5190 			*result = -1;
5191 			return (EINVAL);
5192 		}
5193 		*result = cfg->mingnt;
5194 		break;
5195 	case PCI_IVAR_MAXLAT:
5196 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5197 			*result = -1;
5198 			return (EINVAL);
5199 		}
5200 		*result = cfg->maxlat;
5201 		break;
5202 	case PCI_IVAR_LATTIMER:
5203 		*result = cfg->lattimer;
5204 		break;
5205 	default:
5206 		return (ENOENT);
5207 	}
5208 	return (0);
5209 }
5210 
5211 int
5212 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5213 {
5214 	struct pci_devinfo *dinfo;
5215 
5216 	dinfo = device_get_ivars(child);
5217 
5218 	switch (which) {
5219 	case PCI_IVAR_INTPIN:
5220 		dinfo->cfg.intpin = value;
5221 		return (0);
5222 	case PCI_IVAR_ETHADDR:
5223 	case PCI_IVAR_SUBVENDOR:
5224 	case PCI_IVAR_SUBDEVICE:
5225 	case PCI_IVAR_VENDOR:
5226 	case PCI_IVAR_DEVICE:
5227 	case PCI_IVAR_DEVID:
5228 	case PCI_IVAR_CLASS:
5229 	case PCI_IVAR_SUBCLASS:
5230 	case PCI_IVAR_PROGIF:
5231 	case PCI_IVAR_REVID:
5232 	case PCI_IVAR_IRQ:
5233 	case PCI_IVAR_DOMAIN:
5234 	case PCI_IVAR_BUS:
5235 	case PCI_IVAR_SLOT:
5236 	case PCI_IVAR_FUNCTION:
5237 		return (EINVAL);	/* disallow for now */
5238 
5239 	default:
5240 		return (ENOENT);
5241 	}
5242 }
5243 
5244 #include "opt_ddb.h"
5245 #ifdef DDB
5246 #include <ddb/ddb.h>
5247 #include <sys/cons.h>
5248 
5249 /*
5250  * List resources based on pci map registers, used for within ddb
5251  */
5252 
5253 DB_SHOW_COMMAND(pciregs, db_pci_dump)
5254 {
5255 	struct pci_devinfo *dinfo;
5256 	struct devlist *devlist_head;
5257 	struct pci_conf *p;
5258 	const char *name;
5259 	int i, error, none_count;
5260 
5261 	none_count = 0;
5262 	/* get the head of the device queue */
5263 	devlist_head = &pci_devq;
5264 
5265 	/*
5266 	 * Go through the list of devices and print out devices
5267 	 */
5268 	for (error = 0, i = 0,
5269 	     dinfo = STAILQ_FIRST(devlist_head);
5270 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5271 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5272 
5273 		/* Populate pd_name and pd_unit */
5274 		name = NULL;
5275 		if (dinfo->cfg.dev)
5276 			name = device_get_name(dinfo->cfg.dev);
5277 
5278 		p = &dinfo->conf;
5279 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5280 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5281 			(name && *name) ? name : "none",
5282 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5283 			none_count++,
5284 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5285 			p->pc_sel.pc_func, (p->pc_class << 16) |
5286 			(p->pc_subclass << 8) | p->pc_progif,
5287 			(p->pc_subdevice << 16) | p->pc_subvendor,
5288 			(p->pc_device << 16) | p->pc_vendor,
5289 			p->pc_revid, p->pc_hdr);
5290 	}
5291 }
5292 #endif /* DDB */
5293 
5294 static struct resource *
5295 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5296     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5297     u_int flags)
5298 {
5299 	struct pci_devinfo *dinfo = device_get_ivars(child);
5300 	struct resource_list *rl = &dinfo->resources;
5301 	struct resource *res;
5302 	struct pci_map *pm;
5303 	uint16_t cmd;
5304 	pci_addr_t map, testval;
5305 	int mapsize;
5306 
5307 	res = NULL;
5308 
5309 	/* If rid is managed by EA, ignore it */
5310 	if (pci_ea_is_enabled(child, *rid))
5311 		goto out;
5312 
5313 	pm = pci_find_bar(child, *rid);
5314 	if (pm != NULL) {
5315 		/* This is a BAR that we failed to allocate earlier. */
5316 		mapsize = pm->pm_size;
5317 		map = pm->pm_value;
5318 	} else {
5319 		/*
5320 		 * Weed out the bogons, and figure out how large the
5321 		 * BAR/map is.  BARs that read back 0 here are bogus
5322 		 * and unimplemented.  Note: atapci in legacy mode are
5323 		 * special and handled elsewhere in the code.  If you
5324 		 * have a atapci device in legacy mode and it fails
5325 		 * here, that other code is broken.
5326 		 */
5327 		pci_read_bar(child, *rid, &map, &testval, NULL);
5328 
5329 		/*
5330 		 * Determine the size of the BAR and ignore BARs with a size
5331 		 * of 0.  Device ROM BARs use a different mask value.
5332 		 */
5333 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5334 			mapsize = pci_romsize(testval);
5335 		else
5336 			mapsize = pci_mapsize(testval);
5337 		if (mapsize == 0)
5338 			goto out;
5339 		pm = pci_add_bar(child, *rid, map, mapsize);
5340 	}
5341 
5342 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5343 		if (type != SYS_RES_MEMORY) {
5344 			if (bootverbose)
5345 				device_printf(dev,
5346 				    "child %s requested type %d for rid %#x,"
5347 				    " but the BAR says it is an memio\n",
5348 				    device_get_nameunit(child), type, *rid);
5349 			goto out;
5350 		}
5351 	} else {
5352 		if (type != SYS_RES_IOPORT) {
5353 			if (bootverbose)
5354 				device_printf(dev,
5355 				    "child %s requested type %d for rid %#x,"
5356 				    " but the BAR says it is an ioport\n",
5357 				    device_get_nameunit(child), type, *rid);
5358 			goto out;
5359 		}
5360 	}
5361 
5362 	/*
5363 	 * For real BARs, we need to override the size that
5364 	 * the driver requests, because that's what the BAR
5365 	 * actually uses and we would otherwise have a
5366 	 * situation where we might allocate the excess to
5367 	 * another driver, which won't work.
5368 	 */
5369 	count = ((pci_addr_t)1 << mapsize) * num;
5370 	if (RF_ALIGNMENT(flags) < mapsize)
5371 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5372 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5373 		flags |= RF_PREFETCHABLE;
5374 
5375 	/*
5376 	 * Allocate enough resource, and then write back the
5377 	 * appropriate BAR for that resource.
5378 	 */
5379 	resource_list_add(rl, type, *rid, start, end, count);
5380 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5381 	    count, flags & ~RF_ACTIVE);
5382 	if (res == NULL) {
5383 		resource_list_delete(rl, type, *rid);
5384 		device_printf(child,
5385 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5386 		    count, *rid, type, start, end);
5387 		goto out;
5388 	}
5389 	if (bootverbose)
5390 		device_printf(child,
5391 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5392 		    count, *rid, type, rman_get_start(res));
5393 
5394 	/* Disable decoding via the CMD register before updating the BAR */
5395 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5396 	pci_write_config(child, PCIR_COMMAND,
5397 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5398 
5399 	map = rman_get_start(res);
5400 	pci_write_bar(child, pm, map);
5401 
5402 	/* Restore the original value of the CMD register */
5403 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5404 out:
5405 	return (res);
5406 }
5407 
5408 struct resource *
5409 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5410     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5411     u_int flags)
5412 {
5413 	struct pci_devinfo *dinfo;
5414 	struct resource_list *rl;
5415 	struct resource_list_entry *rle;
5416 	struct resource *res;
5417 	pcicfgregs *cfg;
5418 
5419 	/*
5420 	 * Perform lazy resource allocation
5421 	 */
5422 	dinfo = device_get_ivars(child);
5423 	rl = &dinfo->resources;
5424 	cfg = &dinfo->cfg;
5425 	switch (type) {
5426 #if defined(NEW_PCIB) && defined(PCI_RES_BUS)
5427 	case PCI_RES_BUS:
5428 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5429 		    flags));
5430 #endif
5431 	case SYS_RES_IRQ:
5432 		/*
5433 		 * Can't alloc legacy interrupt once MSI messages have
5434 		 * been allocated.
5435 		 */
5436 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5437 		    cfg->msix.msix_alloc > 0))
5438 			return (NULL);
5439 
5440 		/*
5441 		 * If the child device doesn't have an interrupt
5442 		 * routed and is deserving of an interrupt, try to
5443 		 * assign it one.
5444 		 */
5445 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5446 		    (cfg->intpin != 0))
5447 			pci_assign_interrupt(dev, child, 0);
5448 		break;
5449 	case SYS_RES_IOPORT:
5450 	case SYS_RES_MEMORY:
5451 #ifdef NEW_PCIB
5452 		/*
5453 		 * PCI-PCI bridge I/O window resources are not BARs.
5454 		 * For those allocations just pass the request up the
5455 		 * tree.
5456 		 */
5457 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5458 			switch (*rid) {
5459 			case PCIR_IOBASEL_1:
5460 			case PCIR_MEMBASE_1:
5461 			case PCIR_PMBASEL_1:
5462 				/*
5463 				 * XXX: Should we bother creating a resource
5464 				 * list entry?
5465 				 */
5466 				return (bus_generic_alloc_resource(dev, child,
5467 				    type, rid, start, end, count, flags));
5468 			}
5469 		}
5470 #endif
5471 		/* Reserve resources for this BAR if needed. */
5472 		rle = resource_list_find(rl, type, *rid);
5473 		if (rle == NULL) {
5474 			res = pci_reserve_map(dev, child, type, rid, start, end,
5475 			    count, num, flags);
5476 			if (res == NULL)
5477 				return (NULL);
5478 		}
5479 	}
5480 	return (resource_list_alloc(rl, dev, child, type, rid,
5481 	    start, end, count, flags));
5482 }
5483 
5484 struct resource *
5485 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5486     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5487 {
5488 #ifdef PCI_IOV
5489 	struct pci_devinfo *dinfo;
5490 #endif
5491 
5492 	if (device_get_parent(child) != dev)
5493 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5494 		    type, rid, start, end, count, flags));
5495 
5496 #ifdef PCI_IOV
5497 	dinfo = device_get_ivars(child);
5498 	if (dinfo->cfg.flags & PCICFG_VF) {
5499 		switch (type) {
5500 		/* VFs can't have I/O BARs. */
5501 		case SYS_RES_IOPORT:
5502 			return (NULL);
5503 		case SYS_RES_MEMORY:
5504 			return (pci_vf_alloc_mem_resource(dev, child, rid,
5505 			    start, end, count, flags));
5506 		}
5507 
5508 		/* Fall through for other types of resource allocations. */
5509 	}
5510 #endif
5511 
5512 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5513 	    count, 1, flags));
5514 }
5515 
5516 int
5517 pci_release_resource(device_t dev, device_t child, int type, int rid,
5518     struct resource *r)
5519 {
5520 	struct pci_devinfo *dinfo;
5521 	struct resource_list *rl;
5522 	pcicfgregs *cfg;
5523 
5524 	if (device_get_parent(child) != dev)
5525 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
5526 		    type, rid, r));
5527 
5528 	dinfo = device_get_ivars(child);
5529 	cfg = &dinfo->cfg;
5530 
5531 #ifdef PCI_IOV
5532 	if (dinfo->cfg.flags & PCICFG_VF) {
5533 		switch (type) {
5534 		/* VFs can't have I/O BARs. */
5535 		case SYS_RES_IOPORT:
5536 			return (EDOOFUS);
5537 		case SYS_RES_MEMORY:
5538 			return (pci_vf_release_mem_resource(dev, child, rid,
5539 			    r));
5540 		}
5541 
5542 		/* Fall through for other types of resource allocations. */
5543 	}
5544 #endif
5545 
5546 #ifdef NEW_PCIB
5547 	/*
5548 	 * PCI-PCI bridge I/O window resources are not BARs.  For
5549 	 * those allocations just pass the request up the tree.
5550 	 */
5551 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5552 	    (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) {
5553 		switch (rid) {
5554 		case PCIR_IOBASEL_1:
5555 		case PCIR_MEMBASE_1:
5556 		case PCIR_PMBASEL_1:
5557 			return (bus_generic_release_resource(dev, child, type,
5558 			    rid, r));
5559 		}
5560 	}
5561 #endif
5562 
5563 	rl = &dinfo->resources;
5564 	return (resource_list_release(rl, dev, child, type, rid, r));
5565 }
5566 
5567 int
5568 pci_activate_resource(device_t dev, device_t child, int type, int rid,
5569     struct resource *r)
5570 {
5571 	struct pci_devinfo *dinfo;
5572 	int error;
5573 
5574 	error = bus_generic_activate_resource(dev, child, type, rid, r);
5575 	if (error)
5576 		return (error);
5577 
5578 	/* Enable decoding in the command register when activating BARs. */
5579 	if (device_get_parent(child) == dev) {
5580 		/* Device ROMs need their decoding explicitly enabled. */
5581 		dinfo = device_get_ivars(child);
5582 		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5583 			pci_write_bar(child, pci_find_bar(child, rid),
5584 			    rman_get_start(r) | PCIM_BIOS_ENABLE);
5585 		switch (type) {
5586 		case SYS_RES_IOPORT:
5587 		case SYS_RES_MEMORY:
5588 			error = PCI_ENABLE_IO(dev, child, type);
5589 			break;
5590 		}
5591 	}
5592 	return (error);
5593 }
5594 
5595 int
5596 pci_deactivate_resource(device_t dev, device_t child, int type,
5597     int rid, struct resource *r)
5598 {
5599 	struct pci_devinfo *dinfo;
5600 	int error;
5601 
5602 	error = bus_generic_deactivate_resource(dev, child, type, rid, r);
5603 	if (error)
5604 		return (error);
5605 
5606 	/* Disable decoding for device ROMs. */
5607 	if (device_get_parent(child) == dev) {
5608 		dinfo = device_get_ivars(child);
5609 		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5610 			pci_write_bar(child, pci_find_bar(child, rid),
5611 			    rman_get_start(r));
5612 	}
5613 	return (0);
5614 }
5615 
5616 void
5617 pci_child_deleted(device_t dev, device_t child)
5618 {
5619 	struct resource_list_entry *rle;
5620 	struct resource_list *rl;
5621 	struct pci_devinfo *dinfo;
5622 
5623 	dinfo = device_get_ivars(child);
5624 	rl = &dinfo->resources;
5625 
5626 	EVENTHANDLER_INVOKE(pci_delete_device, child);
5627 
5628 	/* Turn off access to resources we're about to free */
5629 	if (bus_child_present(child) != 0) {
5630 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5631 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5632 
5633 		pci_disable_busmaster(child);
5634 	}
5635 
5636 	/* Free all allocated resources */
5637 	STAILQ_FOREACH(rle, rl, link) {
5638 		if (rle->res) {
5639 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5640 			    resource_list_busy(rl, rle->type, rle->rid)) {
5641 				pci_printf(&dinfo->cfg,
5642 				    "Resource still owned, oops. "
5643 				    "(type=%d, rid=%d, addr=%lx)\n",
5644 				    rle->type, rle->rid,
5645 				    rman_get_start(rle->res));
5646 				bus_release_resource(child, rle->type, rle->rid,
5647 				    rle->res);
5648 			}
5649 			resource_list_unreserve(rl, dev, child, rle->type,
5650 			    rle->rid);
5651 		}
5652 	}
5653 	resource_list_free(rl);
5654 
5655 	pci_freecfg(dinfo);
5656 }
5657 
5658 void
5659 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5660 {
5661 	struct pci_devinfo *dinfo;
5662 	struct resource_list *rl;
5663 	struct resource_list_entry *rle;
5664 
5665 	if (device_get_parent(child) != dev)
5666 		return;
5667 
5668 	dinfo = device_get_ivars(child);
5669 	rl = &dinfo->resources;
5670 	rle = resource_list_find(rl, type, rid);
5671 	if (rle == NULL)
5672 		return;
5673 
5674 	if (rle->res) {
5675 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5676 		    resource_list_busy(rl, type, rid)) {
5677 			device_printf(dev, "delete_resource: "
5678 			    "Resource still owned by child, oops. "
5679 			    "(type=%d, rid=%d, addr=%jx)\n",
5680 			    type, rid, rman_get_start(rle->res));
5681 			return;
5682 		}
5683 		resource_list_unreserve(rl, dev, child, type, rid);
5684 	}
5685 	resource_list_delete(rl, type, rid);
5686 }
5687 
5688 struct resource_list *
5689 pci_get_resource_list (device_t dev, device_t child)
5690 {
5691 	struct pci_devinfo *dinfo = device_get_ivars(child);
5692 
5693 	return (&dinfo->resources);
5694 }
5695 
5696 bus_dma_tag_t
5697 pci_get_dma_tag(device_t bus, device_t dev)
5698 {
5699 	struct pci_softc *sc = device_get_softc(bus);
5700 
5701 	return (sc->sc_dma_tag);
5702 }
5703 
5704 uint32_t
5705 pci_read_config_method(device_t dev, device_t child, int reg, int width)
5706 {
5707 	struct pci_devinfo *dinfo = device_get_ivars(child);
5708 	pcicfgregs *cfg = &dinfo->cfg;
5709 
5710 #ifdef PCI_IOV
5711 	/*
5712 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
5713 	 * emulate them here.
5714 	 */
5715 	if (cfg->flags & PCICFG_VF) {
5716 		if (reg == PCIR_VENDOR) {
5717 			switch (width) {
5718 			case 4:
5719 				return (cfg->device << 16 | cfg->vendor);
5720 			case 2:
5721 				return (cfg->vendor);
5722 			case 1:
5723 				return (cfg->vendor & 0xff);
5724 			default:
5725 				return (0xffffffff);
5726 			}
5727 		} else if (reg == PCIR_DEVICE) {
5728 			switch (width) {
5729 			/* Note that an unaligned 4-byte read is an error. */
5730 			case 2:
5731 				return (cfg->device);
5732 			case 1:
5733 				return (cfg->device & 0xff);
5734 			default:
5735 				return (0xffffffff);
5736 			}
5737 		}
5738 	}
5739 #endif
5740 
5741 	return (PCIB_READ_CONFIG(device_get_parent(dev),
5742 	    cfg->bus, cfg->slot, cfg->func, reg, width));
5743 }
5744 
5745 void
5746 pci_write_config_method(device_t dev, device_t child, int reg,
5747     uint32_t val, int width)
5748 {
5749 	struct pci_devinfo *dinfo = device_get_ivars(child);
5750 	pcicfgregs *cfg = &dinfo->cfg;
5751 
5752 	PCIB_WRITE_CONFIG(device_get_parent(dev),
5753 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
5754 }
5755 
5756 int
5757 pci_child_location_str_method(device_t dev, device_t child, char *buf,
5758     size_t buflen)
5759 {
5760 
5761 	snprintf(buf, buflen, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
5762 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
5763 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
5764 	return (0);
5765 }
5766 
5767 int
5768 pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
5769     size_t buflen)
5770 {
5771 	struct pci_devinfo *dinfo;
5772 	pcicfgregs *cfg;
5773 
5774 	dinfo = device_get_ivars(child);
5775 	cfg = &dinfo->cfg;
5776 	snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
5777 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
5778 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
5779 	    cfg->progif);
5780 	return (0);
5781 }
5782 
5783 int
5784 pci_assign_interrupt_method(device_t dev, device_t child)
5785 {
5786 	struct pci_devinfo *dinfo = device_get_ivars(child);
5787 	pcicfgregs *cfg = &dinfo->cfg;
5788 
5789 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
5790 	    cfg->intpin));
5791 }
5792 
5793 static void
5794 pci_lookup(void *arg, const char *name, device_t *dev)
5795 {
5796 	long val;
5797 	char *end;
5798 	int domain, bus, slot, func;
5799 
5800 	if (*dev != NULL)
5801 		return;
5802 
5803 	/*
5804 	 * Accept pciconf-style selectors of either pciD:B:S:F or
5805 	 * pciB:S:F.  In the latter case, the domain is assumed to
5806 	 * be zero.
5807 	 */
5808 	if (strncmp(name, "pci", 3) != 0)
5809 		return;
5810 	val = strtol(name + 3, &end, 10);
5811 	if (val < 0 || val > INT_MAX || *end != ':')
5812 		return;
5813 	domain = val;
5814 	val = strtol(end + 1, &end, 10);
5815 	if (val < 0 || val > INT_MAX || *end != ':')
5816 		return;
5817 	bus = val;
5818 	val = strtol(end + 1, &end, 10);
5819 	if (val < 0 || val > INT_MAX)
5820 		return;
5821 	slot = val;
5822 	if (*end == ':') {
5823 		val = strtol(end + 1, &end, 10);
5824 		if (val < 0 || val > INT_MAX || *end != '\0')
5825 			return;
5826 		func = val;
5827 	} else if (*end == '\0') {
5828 		func = slot;
5829 		slot = bus;
5830 		bus = domain;
5831 		domain = 0;
5832 	} else
5833 		return;
5834 
5835 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
5836 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
5837 		return;
5838 
5839 	*dev = pci_find_dbsf(domain, bus, slot, func);
5840 }
5841 
5842 static int
5843 pci_modevent(module_t mod, int what, void *arg)
5844 {
5845 	static struct cdev *pci_cdev;
5846 	static eventhandler_tag tag;
5847 
5848 	switch (what) {
5849 	case MOD_LOAD:
5850 		STAILQ_INIT(&pci_devq);
5851 		pci_generation = 0;
5852 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
5853 		    "pci");
5854 		pci_load_vendor_data();
5855 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
5856 		    1000);
5857 		break;
5858 
5859 	case MOD_UNLOAD:
5860 		if (tag != NULL)
5861 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
5862 		destroy_dev(pci_cdev);
5863 		break;
5864 	}
5865 
5866 	return (0);
5867 }
5868 
5869 static void
5870 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
5871 {
5872 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
5873 	struct pcicfg_pcie *cfg;
5874 	int version, pos;
5875 
5876 	cfg = &dinfo->cfg.pcie;
5877 	pos = cfg->pcie_location;
5878 
5879 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
5880 
5881 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
5882 
5883 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5884 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
5885 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
5886 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
5887 
5888 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5889 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
5890 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
5891 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
5892 
5893 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5894 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
5895 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
5896 
5897 	if (version > 1) {
5898 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
5899 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
5900 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
5901 	}
5902 #undef WREG
5903 }
5904 
5905 static void
5906 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
5907 {
5908 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
5909 	    dinfo->cfg.pcix.pcix_command,  2);
5910 }
5911 
5912 void
5913 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
5914 {
5915 
5916 	/*
5917 	 * Restore the device to full power mode.  We must do this
5918 	 * before we restore the registers because moving from D3 to
5919 	 * D0 will cause the chip's BARs and some other registers to
5920 	 * be reset to some unknown power on reset values.  Cut down
5921 	 * the noise on boot by doing nothing if we are already in
5922 	 * state D0.
5923 	 */
5924 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
5925 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
5926 	pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
5927 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
5928 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
5929 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
5930 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
5931 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
5932 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
5933 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
5934 	case PCIM_HDRTYPE_NORMAL:
5935 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
5936 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
5937 		break;
5938 	case PCIM_HDRTYPE_BRIDGE:
5939 		pci_write_config(dev, PCIR_SECLAT_1,
5940 		    dinfo->cfg.bridge.br_seclat, 1);
5941 		pci_write_config(dev, PCIR_SUBBUS_1,
5942 		    dinfo->cfg.bridge.br_subbus, 1);
5943 		pci_write_config(dev, PCIR_SECBUS_1,
5944 		    dinfo->cfg.bridge.br_secbus, 1);
5945 		pci_write_config(dev, PCIR_PRIBUS_1,
5946 		    dinfo->cfg.bridge.br_pribus, 1);
5947 		pci_write_config(dev, PCIR_BRIDGECTL_1,
5948 		    dinfo->cfg.bridge.br_control, 2);
5949 		break;
5950 	case PCIM_HDRTYPE_CARDBUS:
5951 		pci_write_config(dev, PCIR_SECLAT_2,
5952 		    dinfo->cfg.bridge.br_seclat, 1);
5953 		pci_write_config(dev, PCIR_SUBBUS_2,
5954 		    dinfo->cfg.bridge.br_subbus, 1);
5955 		pci_write_config(dev, PCIR_SECBUS_2,
5956 		    dinfo->cfg.bridge.br_secbus, 1);
5957 		pci_write_config(dev, PCIR_PRIBUS_2,
5958 		    dinfo->cfg.bridge.br_pribus, 1);
5959 		pci_write_config(dev, PCIR_BRIDGECTL_2,
5960 		    dinfo->cfg.bridge.br_control, 2);
5961 		break;
5962 	}
5963 	pci_restore_bars(dev);
5964 
5965 	/*
5966 	 * Restore extended capabilities for PCI-Express and PCI-X
5967 	 */
5968 	if (dinfo->cfg.pcie.pcie_location != 0)
5969 		pci_cfg_restore_pcie(dev, dinfo);
5970 	if (dinfo->cfg.pcix.pcix_location != 0)
5971 		pci_cfg_restore_pcix(dev, dinfo);
5972 
5973 	/* Restore MSI and MSI-X configurations if they are present. */
5974 	if (dinfo->cfg.msi.msi_location != 0)
5975 		pci_resume_msi(dev);
5976 	if (dinfo->cfg.msix.msix_location != 0)
5977 		pci_resume_msix(dev);
5978 
5979 #ifdef PCI_IOV
5980 	if (dinfo->cfg.iov != NULL)
5981 		pci_iov_cfg_restore(dev, dinfo);
5982 #endif
5983 }
5984 
5985 static void
5986 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
5987 {
5988 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
5989 	struct pcicfg_pcie *cfg;
5990 	int version, pos;
5991 
5992 	cfg = &dinfo->cfg.pcie;
5993 	pos = cfg->pcie_location;
5994 
5995 	cfg->pcie_flags = RREG(PCIER_FLAGS);
5996 
5997 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
5998 
5999 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6000 
6001 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6002 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6003 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6004 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6005 
6006 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6007 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6008 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6009 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6010 
6011 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6012 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6013 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6014 
6015 	if (version > 1) {
6016 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6017 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6018 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6019 	}
6020 #undef RREG
6021 }
6022 
6023 static void
6024 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6025 {
6026 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6027 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6028 }
6029 
6030 void
6031 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6032 {
6033 	uint32_t cls;
6034 	int ps;
6035 
6036 	/*
6037 	 * Some drivers apparently write to these registers w/o updating our
6038 	 * cached copy.  No harm happens if we update the copy, so do so here
6039 	 * so we can restore them.  The COMMAND register is modified by the
6040 	 * bus w/o updating the cache.  This should represent the normally
6041 	 * writable portion of the 'defined' part of type 0/1/2 headers.
6042 	 */
6043 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6044 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6045 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6046 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6047 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6048 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6049 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6050 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6051 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6052 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6053 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6054 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6055 	case PCIM_HDRTYPE_NORMAL:
6056 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6057 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6058 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6059 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6060 		break;
6061 	case PCIM_HDRTYPE_BRIDGE:
6062 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6063 		    PCIR_SECLAT_1, 1);
6064 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6065 		    PCIR_SUBBUS_1, 1);
6066 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6067 		    PCIR_SECBUS_1, 1);
6068 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6069 		    PCIR_PRIBUS_1, 1);
6070 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6071 		    PCIR_BRIDGECTL_1, 2);
6072 		break;
6073 	case PCIM_HDRTYPE_CARDBUS:
6074 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6075 		    PCIR_SECLAT_2, 1);
6076 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6077 		    PCIR_SUBBUS_2, 1);
6078 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6079 		    PCIR_SECBUS_2, 1);
6080 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6081 		    PCIR_PRIBUS_2, 1);
6082 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6083 		    PCIR_BRIDGECTL_2, 2);
6084 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6085 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6086 		break;
6087 	}
6088 
6089 	if (dinfo->cfg.pcie.pcie_location != 0)
6090 		pci_cfg_save_pcie(dev, dinfo);
6091 
6092 	if (dinfo->cfg.pcix.pcix_location != 0)
6093 		pci_cfg_save_pcix(dev, dinfo);
6094 
6095 #ifdef PCI_IOV
6096 	if (dinfo->cfg.iov != NULL)
6097 		pci_iov_cfg_save(dev, dinfo);
6098 #endif
6099 
6100 	/*
6101 	 * don't set the state for display devices, base peripherals and
6102 	 * memory devices since bad things happen when they are powered down.
6103 	 * We should (a) have drivers that can easily detach and (b) use
6104 	 * generic drivers for these devices so that some device actually
6105 	 * attaches.  We need to make sure that when we implement (a) we don't
6106 	 * power the device down on a reattach.
6107 	 */
6108 	cls = pci_get_class(dev);
6109 	if (!setstate)
6110 		return;
6111 	switch (pci_do_power_nodriver)
6112 	{
6113 		case 0:		/* NO powerdown at all */
6114 			return;
6115 		case 1:		/* Conservative about what to power down */
6116 			if (cls == PCIC_STORAGE)
6117 				return;
6118 			/*FALLTHROUGH*/
6119 		case 2:		/* Aggressive about what to power down */
6120 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6121 			    cls == PCIC_BASEPERIPH)
6122 				return;
6123 			/*FALLTHROUGH*/
6124 		case 3:		/* Power down everything */
6125 			break;
6126 	}
6127 	/*
6128 	 * PCI spec says we can only go into D3 state from D0 state.
6129 	 * Transition from D[12] into D0 before going to D3 state.
6130 	 */
6131 	ps = pci_get_powerstate(dev);
6132 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6133 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6134 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6135 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6136 }
6137 
6138 /* Wrapper APIs suitable for device driver use. */
6139 void
6140 pci_save_state(device_t dev)
6141 {
6142 	struct pci_devinfo *dinfo;
6143 
6144 	dinfo = device_get_ivars(dev);
6145 	pci_cfg_save(dev, dinfo, 0);
6146 }
6147 
6148 void
6149 pci_restore_state(device_t dev)
6150 {
6151 	struct pci_devinfo *dinfo;
6152 
6153 	dinfo = device_get_ivars(dev);
6154 	pci_cfg_restore(dev, dinfo);
6155 }
6156 
6157 static int
6158 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6159     uintptr_t *id)
6160 {
6161 
6162 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6163 }
6164 
6165 /* Find the upstream port of a given PCI device in a root complex. */
6166 device_t
6167 pci_find_pcie_root_port(device_t dev)
6168 {
6169 	struct pci_devinfo *dinfo;
6170 	devclass_t pci_class;
6171 	device_t pcib, bus;
6172 
6173 	pci_class = devclass_find("pci");
6174 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6175 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6176 
6177 	/*
6178 	 * Walk the bridge hierarchy until we find a PCI-e root
6179 	 * port or a non-PCI device.
6180 	 */
6181 	for (;;) {
6182 		bus = device_get_parent(dev);
6183 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6184 		    device_get_nameunit(dev)));
6185 
6186 		pcib = device_get_parent(bus);
6187 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6188 		    device_get_nameunit(bus)));
6189 
6190 		/*
6191 		 * pcib's parent must be a PCI bus for this to be a
6192 		 * PCI-PCI bridge.
6193 		 */
6194 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6195 			return (NULL);
6196 
6197 		dinfo = device_get_ivars(pcib);
6198 		if (dinfo->cfg.pcie.pcie_location != 0 &&
6199 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6200 			return (pcib);
6201 
6202 		dev = pcib;
6203 	}
6204 }
6205 
6206 /*
6207  * Wait for pending transactions to complete on a PCI-express function.
6208  *
6209  * The maximum delay is specified in milliseconds in max_delay.  Note
6210  * that this function may sleep.
6211  *
6212  * Returns true if the function is idle and false if the timeout is
6213  * exceeded.  If dev is not a PCI-express function, this returns true.
6214  */
6215 bool
6216 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6217 {
6218 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6219 	uint16_t sta;
6220 	int cap;
6221 
6222 	cap = dinfo->cfg.pcie.pcie_location;
6223 	if (cap == 0)
6224 		return (true);
6225 
6226 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6227 	while (sta & PCIEM_STA_TRANSACTION_PND) {
6228 		if (max_delay == 0)
6229 			return (false);
6230 
6231 		/* Poll once every 100 milliseconds up to the timeout. */
6232 		if (max_delay > 100) {
6233 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6234 			max_delay -= 100;
6235 		} else {
6236 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6237 			    C_HARDCLOCK);
6238 			max_delay = 0;
6239 		}
6240 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6241 	}
6242 
6243 	return (true);
6244 }
6245 
6246 /*
6247  * Determine the maximum Completion Timeout in microseconds.
6248  *
6249  * For non-PCI-express functions this returns 0.
6250  */
6251 int
6252 pcie_get_max_completion_timeout(device_t dev)
6253 {
6254 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6255 	int cap;
6256 
6257 	cap = dinfo->cfg.pcie.pcie_location;
6258 	if (cap == 0)
6259 		return (0);
6260 
6261 	/*
6262 	 * Functions using the 1.x spec use the default timeout range of
6263 	 * 50 microseconds to 50 milliseconds.  Functions that do not
6264 	 * support programmable timeouts also use this range.
6265 	 */
6266 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6267 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6268 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6269 		return (50 * 1000);
6270 
6271 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6272 	    PCIEM_CTL2_COMP_TIMO_VAL) {
6273 	case PCIEM_CTL2_COMP_TIMO_100US:
6274 		return (100);
6275 	case PCIEM_CTL2_COMP_TIMO_10MS:
6276 		return (10 * 1000);
6277 	case PCIEM_CTL2_COMP_TIMO_55MS:
6278 		return (55 * 1000);
6279 	case PCIEM_CTL2_COMP_TIMO_210MS:
6280 		return (210 * 1000);
6281 	case PCIEM_CTL2_COMP_TIMO_900MS:
6282 		return (900 * 1000);
6283 	case PCIEM_CTL2_COMP_TIMO_3500MS:
6284 		return (3500 * 1000);
6285 	case PCIEM_CTL2_COMP_TIMO_13S:
6286 		return (13 * 1000 * 1000);
6287 	case PCIEM_CTL2_COMP_TIMO_64S:
6288 		return (64 * 1000 * 1000);
6289 	default:
6290 		return (50 * 1000);
6291 	}
6292 }
6293 
6294 /*
6295  * Perform a Function Level Reset (FLR) on a device.
6296  *
6297  * This function first waits for any pending transactions to complete
6298  * within the timeout specified by max_delay.  If transactions are
6299  * still pending, the function will return false without attempting a
6300  * reset.
6301  *
6302  * If dev is not a PCI-express function or does not support FLR, this
6303  * function returns false.
6304  *
6305  * Note that no registers are saved or restored.  The caller is
6306  * responsible for saving and restoring any registers including
6307  * PCI-standard registers via pci_save_state() and
6308  * pci_restore_state().
6309  */
6310 bool
6311 pcie_flr(device_t dev, u_int max_delay, bool force)
6312 {
6313 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6314 	uint16_t cmd, ctl;
6315 	int compl_delay;
6316 	int cap;
6317 
6318 	cap = dinfo->cfg.pcie.pcie_location;
6319 	if (cap == 0)
6320 		return (false);
6321 
6322 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6323 		return (false);
6324 
6325 	/*
6326 	 * Disable busmastering to prevent generation of new
6327 	 * transactions while waiting for the device to go idle.  If
6328 	 * the idle timeout fails, the command register is restored
6329 	 * which will re-enable busmastering.
6330 	 */
6331 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6332 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6333 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6334 		if (!force) {
6335 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6336 			return (false);
6337 		}
6338 		pci_printf(&dinfo->cfg,
6339 		    "Resetting with transactions pending after %d ms\n",
6340 		    max_delay);
6341 
6342 		/*
6343 		 * Extend the post-FLR delay to cover the maximum
6344 		 * Completion Timeout delay of anything in flight
6345 		 * during the FLR delay.  Enforce a minimum delay of
6346 		 * at least 10ms.
6347 		 */
6348 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6349 		if (compl_delay < 10)
6350 			compl_delay = 10;
6351 	} else
6352 		compl_delay = 0;
6353 
6354 	/* Initiate the reset. */
6355 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6356 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6357 	    PCIEM_CTL_INITIATE_FLR, 2);
6358 
6359 	/* Wait for 100ms. */
6360 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6361 
6362 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6363 	    PCIEM_STA_TRANSACTION_PND)
6364 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6365 	return (true);
6366 }
6367 
6368 const struct pci_device_table *
6369 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6370 {
6371 	bool match;
6372 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6373 
6374 	vendor = pci_get_vendor(child);
6375 	device = pci_get_device(child);
6376 	subvendor = pci_get_subvendor(child);
6377 	subdevice = pci_get_subdevice(child);
6378 	class = pci_get_class(child);
6379 	subclass = pci_get_subclass(child);
6380 	revid = pci_get_revid(child);
6381 	while (nelt-- > 0) {
6382 		match = true;
6383 		if (id->match_flag_vendor)
6384 			match &= vendor == id->vendor;
6385 		if (id->match_flag_device)
6386 			match &= device == id->device;
6387 		if (id->match_flag_subvendor)
6388 			match &= subvendor == id->subvendor;
6389 		if (id->match_flag_subdevice)
6390 			match &= subdevice == id->subdevice;
6391 		if (id->match_flag_class)
6392 			match &= class == id->class_id;
6393 		if (id->match_flag_subclass)
6394 			match &= subclass == id->subclass;
6395 		if (id->match_flag_revid)
6396 			match &= revid == id->revid;
6397 		if (match)
6398 			return (id);
6399 		id++;
6400 	}
6401 	return (NULL);
6402 }
6403 
6404 static void
6405 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6406 {
6407 	const char *dev_name;
6408 	device_t dev;
6409 
6410 	dev = dinfo->cfg.dev;
6411 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6412 	    dinfo->cfg.slot, dinfo->cfg.func);
6413 	dev_name = device_get_name(dev);
6414 	if (dev_name != NULL)
6415 		printf(" (%s%d)", dev_name, device_get_unit(dev));
6416 }
6417 
6418 void
6419 pci_print_faulted_dev(void)
6420 {
6421 	struct pci_devinfo *dinfo;
6422 	device_t dev;
6423 	int aer, i;
6424 	uint32_t r1, r2;
6425 	uint16_t status;
6426 
6427 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6428 		dev = dinfo->cfg.dev;
6429 		status = pci_read_config(dev, PCIR_STATUS, 2);
6430 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6431 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6432 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6433 		if (status != 0) {
6434 			pci_print_faulted_dev_name(dinfo);
6435 			printf(" error 0x%04x\n", status);
6436 		}
6437 		if (dinfo->cfg.pcie.pcie_location != 0) {
6438 			status = pci_read_config(dev,
6439 			    dinfo->cfg.pcie.pcie_location +
6440 			    PCIER_DEVICE_STA, 2);
6441 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6442 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6443 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6444 				pci_print_faulted_dev_name(dinfo);
6445 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6446 				    pci_read_config(dev,
6447 				    dinfo->cfg.pcie.pcie_location +
6448 				    PCIER_DEVICE_CTL, 2),
6449 				    status);
6450 			}
6451 		}
6452 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6453 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6454 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6455 			if (r1 != 0 || r2 != 0) {
6456 				pci_print_faulted_dev_name(dinfo);
6457 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6458 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6459 				    r1, pci_read_config(dev, aer +
6460 				    PCIR_AER_UC_MASK, 4),
6461 				    pci_read_config(dev, aer +
6462 				    PCIR_AER_UC_SEVERITY, 4),
6463 				    r2, pci_read_config(dev, aer +
6464 				    PCIR_AER_COR_MASK, 4),
6465 				    pci_read_config(dev, aer +
6466 				    PCIR_AER_CAP_CONTROL, 4));
6467 				for (i = 0; i < 4; i++) {
6468 					r1 = pci_read_config(dev, aer +
6469 					    PCIR_AER_HEADER_LOG + i * 4, 4);
6470 					printf("    HL%d: 0x%08x\n", i, r1);
6471 				}
6472 			}
6473 		}
6474 	}
6475 }
6476 
6477 #ifdef DDB
6478 DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db)
6479 {
6480 
6481 	pci_print_faulted_dev();
6482 }
6483 
6484 static void
6485 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6486 {
6487 	device_t dev;
6488 	int aer;
6489 	uint32_t r;
6490 
6491 	dev = dinfo->cfg.dev;
6492 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6493 	    PCIER_DEVICE_STA, 2);
6494 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6495 	    PCIER_DEVICE_STA, r, 2);
6496 
6497 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6498 		return;
6499 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6500 	if (r != 0)
6501 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6502 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6503 	if (r != 0)
6504 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6505 }
6506 
6507 DB_COMMAND(pci_clearerr, db_pci_clearerr)
6508 {
6509 	struct pci_devinfo *dinfo;
6510 	device_t dev;
6511 	uint16_t status, status1;
6512 
6513 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6514 		dev = dinfo->cfg.dev;
6515 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
6516 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6517 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6518 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6519 		if (status1 != 0) {
6520 			status &= ~status1;
6521 			pci_write_config(dev, PCIR_STATUS, status, 2);
6522 		}
6523 		if (dinfo->cfg.pcie.pcie_location != 0)
6524 			db_clear_pcie_errors(dinfo);
6525 	}
6526 }
6527 #endif
6528