1 /* $OpenBSD: if_otus.c,v 1.49 2015/11/24 13:33:18 mpi Exp $ */ 2 3 /*- 4 * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Atheros AR9001U chipset. 22 */ 23 24 #include <sys/cdefs.h> 25 __FBSDID("$FreeBSD$"); 26 27 #include "opt_wlan.h" 28 29 #include <sys/param.h> 30 #include <sys/endian.h> 31 #include <sys/sockio.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/conf.h> 38 #include <sys/bus.h> 39 #include <sys/rman.h> 40 #include <sys/firmware.h> 41 #include <sys/module.h> 42 #include <sys/taskqueue.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_media.h> 53 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/in_var.h> 57 #include <netinet/if_ether.h> 58 #include <netinet/ip.h> 59 60 #include <net80211/ieee80211_var.h> 61 #include <net80211/ieee80211_regdomain.h> 62 #include <net80211/ieee80211_radiotap.h> 63 #include <net80211/ieee80211_ratectl.h> 64 #ifdef IEEE80211_SUPPORT_SUPERG 65 #include <net80211/ieee80211_superg.h> 66 #endif 67 68 #include <dev/usb/usb.h> 69 #include <dev/usb/usbdi.h> 70 #include "usbdevs.h" 71 72 #define USB_DEBUG_VAR otus_debug 73 #include <dev/usb/usb_debug.h> 74 75 #include "if_otusreg.h" 76 77 static int otus_debug = 0; 78 static SYSCTL_NODE(_hw_usb, OID_AUTO, otus, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 79 "USB otus"); 80 SYSCTL_INT(_hw_usb_otus, OID_AUTO, debug, CTLFLAG_RWTUN, &otus_debug, 0, 81 "Debug level"); 82 #define OTUS_DEBUG_XMIT 0x00000001 83 #define OTUS_DEBUG_RECV 0x00000002 84 #define OTUS_DEBUG_TXDONE 0x00000004 85 #define OTUS_DEBUG_RXDONE 0x00000008 86 #define OTUS_DEBUG_CMD 0x00000010 87 #define OTUS_DEBUG_CMDDONE 0x00000020 88 #define OTUS_DEBUG_RESET 0x00000040 89 #define OTUS_DEBUG_STATE 0x00000080 90 #define OTUS_DEBUG_CMDNOTIFY 0x00000100 91 #define OTUS_DEBUG_REGIO 0x00000200 92 #define OTUS_DEBUG_IRQ 0x00000400 93 #define OTUS_DEBUG_TXCOMP 0x00000800 94 #define OTUS_DEBUG_RX_BUFFER 0x00001000 95 #define OTUS_DEBUG_ANY 0xffffffff 96 97 #define OTUS_DPRINTF(sc, dm, ...) \ 98 do { \ 99 if ((dm == OTUS_DEBUG_ANY) || (dm & otus_debug)) \ 100 device_printf(sc->sc_dev, __VA_ARGS__); \ 101 } while (0) 102 #define OTUS_DEV(v, p) { USB_VPI(v, p, 0) } 103 static const STRUCT_USB_HOST_ID otus_devs[] = { 104 OTUS_DEV(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_WN7512), 105 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_3CRUSBN275), 106 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_TG121N), 107 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_AR9170), 108 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN612), 109 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN821NV2), 110 OTUS_DEV(USB_VENDOR_AVM, USB_PRODUCT_AVM_FRITZWLAN), 111 OTUS_DEV(USB_VENDOR_CACE, USB_PRODUCT_CACE_AIRPCAPNX), 112 OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130D1), 113 OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A1), 114 OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A2), 115 OTUS_DEV(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_WNGDNUS2), 116 OTUS_DEV(USB_VENDOR_NEC, USB_PRODUCT_NEC_WL300NUG), 117 OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WN111V2), 118 OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000), 119 OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNDA3100), 120 OTUS_DEV(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US300), 121 OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_O8494), 122 OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_WNC0600), 123 OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB81), 124 OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB82), 125 OTUS_DEV(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1221), 126 OTUS_DEV(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_NWD271N), 127 }; 128 129 static device_probe_t otus_match; 130 static device_attach_t otus_attach; 131 static device_detach_t otus_detach; 132 133 static int otus_attachhook(struct otus_softc *); 134 static void otus_getradiocaps(struct ieee80211com *, int, int *, 135 struct ieee80211_channel[]); 136 int otus_load_firmware(struct otus_softc *, const char *, 137 uint32_t); 138 int otus_open_pipes(struct otus_softc *); 139 void otus_close_pipes(struct otus_softc *); 140 141 static int otus_alloc_tx_cmd_list(struct otus_softc *); 142 static void otus_free_tx_cmd_list(struct otus_softc *); 143 144 static int otus_alloc_rx_list(struct otus_softc *); 145 static void otus_free_rx_list(struct otus_softc *); 146 static int otus_alloc_tx_list(struct otus_softc *); 147 static void otus_free_tx_list(struct otus_softc *); 148 static void otus_free_list(struct otus_softc *, struct otus_data [], int); 149 static struct otus_data *_otus_getbuf(struct otus_softc *); 150 static struct otus_data *otus_getbuf(struct otus_softc *); 151 static void otus_freebuf(struct otus_softc *, struct otus_data *); 152 153 static struct otus_tx_cmd *_otus_get_txcmd(struct otus_softc *); 154 static struct otus_tx_cmd *otus_get_txcmd(struct otus_softc *); 155 static void otus_free_txcmd(struct otus_softc *, struct otus_tx_cmd *); 156 157 void otus_next_scan(void *, int); 158 static void otus_tx_task(void *, int pending); 159 void otus_do_async(struct otus_softc *, 160 void (*)(struct otus_softc *, void *), void *, int); 161 int otus_newstate(struct ieee80211vap *, enum ieee80211_state, 162 int); 163 int otus_cmd(struct otus_softc *, uint8_t, const void *, int, 164 void *, int); 165 void otus_write(struct otus_softc *, uint32_t, uint32_t); 166 int otus_write_barrier(struct otus_softc *); 167 static struct ieee80211_node *otus_node_alloc(struct ieee80211vap *vap, 168 const uint8_t mac[IEEE80211_ADDR_LEN]); 169 int otus_read_eeprom(struct otus_softc *); 170 void otus_newassoc(struct ieee80211_node *, int); 171 void otus_cmd_rxeof(struct otus_softc *, uint8_t *, int); 172 void otus_sub_rxeof(struct otus_softc *, uint8_t *, int, 173 struct mbufq *); 174 static int otus_tx(struct otus_softc *, struct ieee80211_node *, 175 struct mbuf *, struct otus_data *, 176 const struct ieee80211_bpf_params *); 177 int otus_ioctl(if_t, u_long, caddr_t); 178 int otus_set_multi(struct otus_softc *); 179 static int otus_updateedca(struct ieee80211com *); 180 static void otus_updateedca_locked(struct otus_softc *); 181 static void otus_updateslot(struct otus_softc *); 182 static void otus_set_operating_mode(struct otus_softc *sc); 183 static void otus_set_rx_filter(struct otus_softc *sc); 184 int otus_init_mac(struct otus_softc *); 185 uint32_t otus_phy_get_def(struct otus_softc *, uint32_t); 186 int otus_set_board_values(struct otus_softc *, 187 struct ieee80211_channel *); 188 int otus_program_phy(struct otus_softc *, 189 struct ieee80211_channel *); 190 int otus_set_rf_bank4(struct otus_softc *, 191 struct ieee80211_channel *); 192 void otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *); 193 static int otus_set_chan(struct otus_softc *, struct ieee80211_channel *, 194 int); 195 int otus_set_key(struct ieee80211com *, struct ieee80211_node *, 196 struct ieee80211_key *); 197 void otus_set_key_cb(struct otus_softc *, void *); 198 void otus_delete_key(struct ieee80211com *, struct ieee80211_node *, 199 struct ieee80211_key *); 200 void otus_delete_key_cb(struct otus_softc *, void *); 201 void otus_calibrate_to(void *, int); 202 int otus_set_bssid(struct otus_softc *, const uint8_t *); 203 int otus_set_macaddr(struct otus_softc *, const uint8_t *); 204 void otus_led_newstate_type1(struct otus_softc *); 205 void otus_led_newstate_type2(struct otus_softc *); 206 void otus_led_newstate_type3(struct otus_softc *); 207 int otus_init(struct otus_softc *sc); 208 void otus_stop(struct otus_softc *sc); 209 210 static device_method_t otus_methods[] = { 211 DEVMETHOD(device_probe, otus_match), 212 DEVMETHOD(device_attach, otus_attach), 213 DEVMETHOD(device_detach, otus_detach), 214 215 DEVMETHOD_END 216 }; 217 218 static driver_t otus_driver = { 219 .name = "otus", 220 .methods = otus_methods, 221 .size = sizeof(struct otus_softc) 222 }; 223 224 DRIVER_MODULE(otus, uhub, otus_driver, NULL, NULL); 225 MODULE_DEPEND(otus, wlan, 1, 1, 1); 226 MODULE_DEPEND(otus, usb, 1, 1, 1); 227 MODULE_DEPEND(otus, firmware, 1, 1, 1); 228 MODULE_VERSION(otus, 1); 229 230 static usb_callback_t otus_bulk_tx_callback; 231 static usb_callback_t otus_bulk_rx_callback; 232 static usb_callback_t otus_bulk_irq_callback; 233 static usb_callback_t otus_bulk_cmd_callback; 234 235 static const struct usb_config otus_config[OTUS_N_XFER] = { 236 [OTUS_BULK_TX] = { 237 .type = UE_BULK, 238 .endpoint = UE_ADDR_ANY, 239 .direction = UE_DIR_OUT, 240 .bufsize = 0x200, 241 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 242 .callback = otus_bulk_tx_callback, 243 .timeout = 5000, /* ms */ 244 }, 245 [OTUS_BULK_RX] = { 246 .type = UE_BULK, 247 .endpoint = UE_ADDR_ANY, 248 .direction = UE_DIR_IN, 249 .bufsize = OTUS_RXBUFSZ, 250 .flags = { .ext_buffer = 1, .pipe_bof = 1,.short_xfer_ok = 1,}, 251 .callback = otus_bulk_rx_callback, 252 }, 253 [OTUS_BULK_IRQ] = { 254 .type = UE_INTERRUPT, 255 .endpoint = UE_ADDR_ANY, 256 .direction = UE_DIR_IN, 257 .bufsize = OTUS_MAX_CTRLSZ, 258 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 259 .callback = otus_bulk_irq_callback, 260 }, 261 [OTUS_BULK_CMD] = { 262 .type = UE_INTERRUPT, 263 .endpoint = UE_ADDR_ANY, 264 .direction = UE_DIR_OUT, 265 .bufsize = OTUS_MAX_CTRLSZ, 266 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 267 .callback = otus_bulk_cmd_callback, 268 .timeout = 5000, /* ms */ 269 }, 270 }; 271 272 static int 273 otus_match(device_t self) 274 { 275 struct usb_attach_arg *uaa = device_get_ivars(self); 276 277 if (uaa->usb_mode != USB_MODE_HOST || 278 uaa->info.bIfaceIndex != 0 || 279 uaa->info.bConfigIndex != 0) 280 return (ENXIO); 281 282 return (usbd_lookup_id_by_uaa(otus_devs, sizeof(otus_devs), uaa)); 283 } 284 285 static int 286 otus_attach(device_t self) 287 { 288 struct usb_attach_arg *uaa = device_get_ivars(self); 289 struct otus_softc *sc = device_get_softc(self); 290 int error; 291 uint8_t iface_index; 292 293 device_set_usb_desc(self); 294 sc->sc_udev = uaa->device; 295 sc->sc_dev = self; 296 297 mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, 298 MTX_DEF); 299 300 TIMEOUT_TASK_INIT(taskqueue_thread, &sc->scan_to, 0, otus_next_scan, sc); 301 TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_to, 0, otus_calibrate_to, sc); 302 TASK_INIT(&sc->tx_task, 0, otus_tx_task, sc); 303 mbufq_init(&sc->sc_snd, ifqmaxlen); 304 305 iface_index = 0; 306 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 307 otus_config, OTUS_N_XFER, sc, &sc->sc_mtx); 308 if (error) { 309 device_printf(sc->sc_dev, 310 "could not allocate USB transfers, err=%s\n", 311 usbd_errstr(error)); 312 goto fail_usb; 313 } 314 315 if ((error = otus_open_pipes(sc)) != 0) { 316 device_printf(sc->sc_dev, "%s: could not open pipes\n", 317 __func__); 318 goto fail; 319 } 320 321 /* XXX check return status; fail out if appropriate */ 322 if (otus_attachhook(sc) != 0) 323 goto fail; 324 325 return (0); 326 327 fail: 328 otus_close_pipes(sc); 329 fail_usb: 330 mtx_destroy(&sc->sc_mtx); 331 return (ENXIO); 332 } 333 334 static int 335 otus_detach(device_t self) 336 { 337 struct otus_softc *sc = device_get_softc(self); 338 struct ieee80211com *ic = &sc->sc_ic; 339 340 otus_stop(sc); 341 342 usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER); 343 344 taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to); 345 taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to); 346 taskqueue_drain(taskqueue_thread, &sc->tx_task); 347 348 otus_close_pipes(sc); 349 #if 0 350 /* Wait for all queued asynchronous commands to complete. */ 351 usb_rem_wait_task(sc->sc_udev, &sc->sc_task); 352 353 usbd_ref_wait(sc->sc_udev); 354 #endif 355 356 ieee80211_ifdetach(ic); 357 mtx_destroy(&sc->sc_mtx); 358 return 0; 359 } 360 361 static void 362 otus_delay_ms(struct otus_softc *sc, int ms) 363 { 364 365 DELAY(1000 * ms); 366 } 367 368 static struct ieee80211vap * 369 otus_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 370 enum ieee80211_opmode opmode, int flags, 371 const uint8_t bssid[IEEE80211_ADDR_LEN], 372 const uint8_t mac[IEEE80211_ADDR_LEN]) 373 { 374 struct otus_vap *uvp; 375 struct ieee80211vap *vap; 376 377 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 378 return (NULL); 379 380 uvp = malloc(sizeof(struct otus_vap), M_80211_VAP, M_WAITOK | M_ZERO); 381 vap = &uvp->vap; 382 383 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 384 flags, bssid) != 0) { 385 /* out of memory */ 386 free(uvp, M_80211_VAP); 387 return (NULL); 388 } 389 390 /* override state transition machine */ 391 uvp->newstate = vap->iv_newstate; 392 vap->iv_newstate = otus_newstate; 393 394 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 395 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 396 397 ieee80211_ratectl_init(vap); 398 399 /* complete setup */ 400 ieee80211_vap_attach(vap, ieee80211_media_change, 401 ieee80211_media_status, mac); 402 ic->ic_opmode = opmode; 403 404 return (vap); 405 } 406 407 static void 408 otus_vap_delete(struct ieee80211vap *vap) 409 { 410 struct otus_vap *uvp = OTUS_VAP(vap); 411 412 ieee80211_ratectl_deinit(vap); 413 ieee80211_vap_detach(vap); 414 free(uvp, M_80211_VAP); 415 } 416 417 static void 418 otus_parent(struct ieee80211com *ic) 419 { 420 struct otus_softc *sc = ic->ic_softc; 421 int startall = 0; 422 423 if (ic->ic_nrunning > 0) { 424 if (!sc->sc_running) { 425 otus_init(sc); 426 startall = 1; 427 } else { 428 (void) otus_set_multi(sc); 429 } 430 } else if (sc->sc_running) 431 otus_stop(sc); 432 433 if (startall) 434 ieee80211_start_all(ic); 435 } 436 437 static void 438 otus_drain_mbufq(struct otus_softc *sc) 439 { 440 struct mbuf *m; 441 struct ieee80211_node *ni; 442 443 OTUS_LOCK_ASSERT(sc); 444 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 445 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 446 m->m_pkthdr.rcvif = NULL; 447 ieee80211_free_node(ni); 448 m_freem(m); 449 } 450 } 451 452 static void 453 otus_tx_start(struct otus_softc *sc) 454 { 455 456 taskqueue_enqueue(taskqueue_thread, &sc->tx_task); 457 } 458 459 static int 460 otus_transmit(struct ieee80211com *ic, struct mbuf *m) 461 { 462 struct otus_softc *sc = ic->ic_softc; 463 int error; 464 465 OTUS_LOCK(sc); 466 if (! sc->sc_running) { 467 OTUS_UNLOCK(sc); 468 return (ENXIO); 469 } 470 471 /* XXX TODO: handle fragments */ 472 error = mbufq_enqueue(&sc->sc_snd, m); 473 if (error) { 474 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 475 "%s: mbufq_enqueue failed: %d\n", 476 __func__, 477 error); 478 OTUS_UNLOCK(sc); 479 return (error); 480 } 481 OTUS_UNLOCK(sc); 482 483 /* Kick TX */ 484 otus_tx_start(sc); 485 486 return (0); 487 } 488 489 static void 490 _otus_start(struct otus_softc *sc) 491 { 492 struct ieee80211_node *ni; 493 struct otus_data *bf; 494 struct mbuf *m; 495 496 OTUS_LOCK_ASSERT(sc); 497 498 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 499 bf = otus_getbuf(sc); 500 if (bf == NULL) { 501 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 502 "%s: failed to get buffer\n", __func__); 503 mbufq_prepend(&sc->sc_snd, m); 504 break; 505 } 506 507 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 508 m->m_pkthdr.rcvif = NULL; 509 510 if (otus_tx(sc, ni, m, bf, NULL) != 0) { 511 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 512 "%s: failed to transmit\n", __func__); 513 if_inc_counter(ni->ni_vap->iv_ifp, 514 IFCOUNTER_OERRORS, 1); 515 otus_freebuf(sc, bf); 516 ieee80211_free_node(ni); 517 m_freem(m); 518 break; 519 } 520 } 521 } 522 523 static void 524 otus_tx_task(void *arg, int pending) 525 { 526 struct otus_softc *sc = arg; 527 528 OTUS_LOCK(sc); 529 _otus_start(sc); 530 OTUS_UNLOCK(sc); 531 } 532 533 static int 534 otus_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 535 const struct ieee80211_bpf_params *params) 536 { 537 struct ieee80211com *ic= ni->ni_ic; 538 struct otus_softc *sc = ic->ic_softc; 539 struct otus_data *bf = NULL; 540 int error = 0; 541 542 /* Don't transmit if we're not running */ 543 OTUS_LOCK(sc); 544 if (! sc->sc_running) { 545 error = ENETDOWN; 546 goto error; 547 } 548 549 bf = otus_getbuf(sc); 550 if (bf == NULL) { 551 error = ENOBUFS; 552 goto error; 553 } 554 555 if (otus_tx(sc, ni, m, bf, params) != 0) { 556 error = EIO; 557 goto error; 558 } 559 560 OTUS_UNLOCK(sc); 561 return (0); 562 error: 563 if (bf) 564 otus_freebuf(sc, bf); 565 OTUS_UNLOCK(sc); 566 m_freem(m); 567 return (error); 568 } 569 570 static void 571 otus_update_chw(struct ieee80211com *ic) 572 { 573 574 printf("%s: TODO\n", __func__); 575 } 576 577 static void 578 otus_set_channel(struct ieee80211com *ic) 579 { 580 struct otus_softc *sc = ic->ic_softc; 581 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "%s: set channel: %d\n", 582 __func__, 583 ic->ic_curchan->ic_freq); 584 585 OTUS_LOCK(sc); 586 (void) otus_set_chan(sc, ic->ic_curchan, 0); 587 OTUS_UNLOCK(sc); 588 } 589 590 static int 591 otus_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 592 { 593 594 /* For now, no A-MPDU TX support in the driver */ 595 return (0); 596 } 597 598 static void 599 otus_scan_start(struct ieee80211com *ic) 600 { 601 602 // printf("%s: TODO\n", __func__); 603 } 604 605 static void 606 otus_scan_end(struct ieee80211com *ic) 607 { 608 609 // printf("%s: TODO\n", __func__); 610 } 611 612 static void 613 otus_update_mcast(struct ieee80211com *ic) 614 { 615 struct otus_softc *sc = ic->ic_softc; 616 617 (void) otus_set_multi(sc); 618 } 619 620 static int 621 otus_attachhook(struct otus_softc *sc) 622 { 623 struct ieee80211com *ic = &sc->sc_ic; 624 usb_device_request_t req; 625 uint32_t in, out; 626 int error; 627 628 /* Not locked */ 629 error = otus_load_firmware(sc, "otusfw_init", AR_FW_INIT_ADDR); 630 if (error != 0) { 631 device_printf(sc->sc_dev, "%s: could not load %s firmware\n", 632 __func__, "init"); 633 return (ENXIO); 634 } 635 636 /* XXX not locked? */ 637 otus_delay_ms(sc, 1000); 638 639 /* Not locked */ 640 error = otus_load_firmware(sc, "otusfw_main", AR_FW_MAIN_ADDR); 641 if (error != 0) { 642 device_printf(sc->sc_dev, "%s: could not load %s firmware\n", 643 __func__, "main"); 644 return (ENXIO); 645 } 646 647 OTUS_LOCK(sc); 648 649 /* Tell device that firmware transfer is complete. */ 650 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 651 req.bRequest = AR_FW_DOWNLOAD_COMPLETE; 652 USETW(req.wValue, 0); 653 USETW(req.wIndex, 0); 654 USETW(req.wLength, 0); 655 if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req, NULL, 656 0, NULL, 250) != 0) { 657 OTUS_UNLOCK(sc); 658 device_printf(sc->sc_dev, 659 "%s: firmware initialization failed\n", 660 __func__); 661 return (ENXIO); 662 } 663 664 /* Send an ECHO command to check that everything is settled. */ 665 in = 0xbadc0ffe; 666 if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out, sizeof(out)) != 0) { 667 OTUS_UNLOCK(sc); 668 device_printf(sc->sc_dev, 669 "%s: echo command failed\n", __func__); 670 return (ENXIO); 671 } 672 if (in != out) { 673 OTUS_UNLOCK(sc); 674 device_printf(sc->sc_dev, 675 "%s: echo reply mismatch: 0x%08x!=0x%08x\n", 676 __func__, in, out); 677 return (ENXIO); 678 } 679 680 /* Read entire EEPROM. */ 681 if (otus_read_eeprom(sc) != 0) { 682 OTUS_UNLOCK(sc); 683 device_printf(sc->sc_dev, 684 "%s: could not read EEPROM\n", 685 __func__); 686 return (ENXIO); 687 } 688 689 OTUS_UNLOCK(sc); 690 691 sc->txmask = sc->eeprom.baseEepHeader.txMask; 692 sc->rxmask = sc->eeprom.baseEepHeader.rxMask; 693 sc->capflags = sc->eeprom.baseEepHeader.opCapFlags; 694 IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->eeprom.baseEepHeader.macAddr); 695 sc->sc_led_newstate = otus_led_newstate_type3; /* XXX */ 696 697 if (sc->txmask == 0x5) 698 ic->ic_txstream = 2; 699 else 700 ic->ic_txstream = 1; 701 702 if (sc->rxmask == 0x5) 703 ic->ic_rxstream = 2; 704 else 705 ic->ic_rxstream = 1; 706 707 device_printf(sc->sc_dev, 708 "MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n", 709 (sc->capflags & AR5416_OPFLAGS_11A) ? 710 0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101), 711 (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1, 712 ether_sprintf(ic->ic_macaddr)); 713 714 ic->ic_softc = sc; 715 ic->ic_name = device_get_nameunit(sc->sc_dev); 716 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 717 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 718 719 /* Set device capabilities. */ 720 ic->ic_caps = 721 IEEE80211_C_STA | /* station mode */ 722 #if 0 723 IEEE80211_C_BGSCAN | /* Background scan. */ 724 #endif 725 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ 726 IEEE80211_C_WME | /* WME/QoS */ 727 IEEE80211_C_SHSLOT | /* Short slot time supported. */ 728 IEEE80211_C_FF | /* Atheros fast-frames supported. */ 729 IEEE80211_C_MONITOR | /* Enable monitor mode */ 730 IEEE80211_C_SWAMSDUTX | /* Do software A-MSDU TX */ 731 IEEE80211_C_WPA; /* WPA/RSN. */ 732 733 ic->ic_htcaps = 734 IEEE80211_HTC_HT | 735 #if 0 736 IEEE80211_HTC_AMPDU | 737 #endif 738 IEEE80211_HTC_AMSDU | 739 IEEE80211_HTCAP_MAXAMSDU_3839 | 740 IEEE80211_HTCAP_SMPS_OFF; 741 742 otus_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 743 ic->ic_channels); 744 745 ieee80211_ifattach(ic); 746 ic->ic_raw_xmit = otus_raw_xmit; 747 ic->ic_scan_start = otus_scan_start; 748 ic->ic_scan_end = otus_scan_end; 749 ic->ic_set_channel = otus_set_channel; 750 ic->ic_getradiocaps = otus_getradiocaps; 751 ic->ic_vap_create = otus_vap_create; 752 ic->ic_vap_delete = otus_vap_delete; 753 ic->ic_update_mcast = otus_update_mcast; 754 ic->ic_update_promisc = otus_update_mcast; 755 ic->ic_parent = otus_parent; 756 ic->ic_transmit = otus_transmit; 757 ic->ic_update_chw = otus_update_chw; 758 ic->ic_ampdu_enable = otus_ampdu_enable; 759 ic->ic_wme.wme_update = otus_updateedca; 760 ic->ic_newassoc = otus_newassoc; 761 ic->ic_node_alloc = otus_node_alloc; 762 763 #ifdef notyet 764 ic->ic_set_key = otus_set_key; 765 ic->ic_delete_key = otus_delete_key; 766 #endif 767 768 ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, 769 sizeof(sc->sc_txtap), OTUS_TX_RADIOTAP_PRESENT, 770 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 771 OTUS_RX_RADIOTAP_PRESENT); 772 773 return (0); 774 } 775 776 static void 777 otus_getradiocaps(struct ieee80211com *ic, 778 int maxchans, int *nchans, struct ieee80211_channel chans[]) 779 { 780 struct otus_softc *sc = ic->ic_softc; 781 uint8_t bands[IEEE80211_MODE_BYTES]; 782 783 /* Set supported .11b and .11g rates. */ 784 memset(bands, 0, sizeof(bands)); 785 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { 786 setbit(bands, IEEE80211_MODE_11B); 787 setbit(bands, IEEE80211_MODE_11G); 788 setbit(bands, IEEE80211_MODE_11NG); 789 ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 790 ar_chans, 14, bands, 0); 791 } 792 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { 793 setbit(bands, IEEE80211_MODE_11A); 794 setbit(bands, IEEE80211_MODE_11NA); 795 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 796 &ar_chans[14], nitems(ar_chans) - 14, bands, 0); 797 } 798 } 799 800 int 801 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr) 802 { 803 usb_device_request_t req; 804 char *ptr; 805 const struct firmware *fw; 806 int mlen, error, size; 807 808 error = 0; 809 810 /* Read firmware image from the filesystem. */ 811 if ((fw = firmware_get(name)) == NULL) { 812 device_printf(sc->sc_dev, 813 "%s: failed loadfirmware of file %s\n", __func__, name); 814 return (ENXIO); 815 } 816 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 817 req.bRequest = AR_FW_DOWNLOAD; 818 USETW(req.wIndex, 0); 819 820 OTUS_LOCK(sc); 821 822 /* XXX const */ 823 ptr = __DECONST(char *, fw->data); 824 size = fw->datasize; 825 addr >>= 8; 826 while (size > 0) { 827 mlen = MIN(size, 4096); 828 829 USETW(req.wValue, addr); 830 USETW(req.wLength, mlen); 831 if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 832 &req, ptr, 0, NULL, 250) != 0) { 833 error = EIO; 834 break; 835 } 836 addr += mlen >> 8; 837 ptr += mlen; 838 size -= mlen; 839 } 840 841 OTUS_UNLOCK(sc); 842 843 firmware_put(fw, FIRMWARE_UNLOAD); 844 if (error != 0) 845 device_printf(sc->sc_dev, 846 "%s: %s: error=%d\n", __func__, name, error); 847 return error; 848 } 849 850 int 851 otus_open_pipes(struct otus_softc *sc) 852 { 853 #if 0 854 int isize, error; 855 int i; 856 #endif 857 int error; 858 859 OTUS_UNLOCK_ASSERT(sc); 860 861 if ((error = otus_alloc_tx_cmd_list(sc)) != 0) { 862 device_printf(sc->sc_dev, 863 "%s: could not allocate command xfer\n", 864 __func__); 865 goto fail; 866 } 867 868 if ((error = otus_alloc_tx_list(sc)) != 0) { 869 device_printf(sc->sc_dev, "%s: could not allocate Tx xfers\n", 870 __func__); 871 goto fail; 872 } 873 874 if ((error = otus_alloc_rx_list(sc)) != 0) { 875 device_printf(sc->sc_dev, "%s: could not allocate Rx xfers\n", 876 __func__); 877 goto fail; 878 } 879 880 /* Enable RX transfers; needed for initial firmware messages */ 881 OTUS_LOCK(sc); 882 usbd_transfer_start(sc->sc_xfer[OTUS_BULK_RX]); 883 usbd_transfer_start(sc->sc_xfer[OTUS_BULK_IRQ]); 884 OTUS_UNLOCK(sc); 885 return 0; 886 887 fail: otus_close_pipes(sc); 888 return error; 889 } 890 891 void 892 otus_close_pipes(struct otus_softc *sc) 893 { 894 895 OTUS_LOCK(sc); 896 otus_free_tx_cmd_list(sc); 897 otus_free_tx_list(sc); 898 otus_free_rx_list(sc); 899 OTUS_UNLOCK(sc); 900 901 usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER); 902 } 903 904 static void 905 otus_free_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], int ndata) 906 { 907 int i; 908 909 /* XXX TODO: someone has to have waken up waiters! */ 910 for (i = 0; i < ndata; i++) { 911 struct otus_tx_cmd *dp = &cmd[i]; 912 913 if (dp->buf != NULL) { 914 free(dp->buf, M_USBDEV); 915 dp->buf = NULL; 916 } 917 } 918 } 919 920 static int 921 otus_alloc_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], 922 int ndata, int maxsz) 923 { 924 int i, error; 925 926 for (i = 0; i < ndata; i++) { 927 struct otus_tx_cmd *dp = &cmd[i]; 928 dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT | M_ZERO); 929 dp->odata = NULL; 930 if (dp->buf == NULL) { 931 device_printf(sc->sc_dev, 932 "could not allocate buffer\n"); 933 error = ENOMEM; 934 goto fail; 935 } 936 } 937 938 return (0); 939 fail: 940 otus_free_cmd_list(sc, cmd, ndata); 941 return (error); 942 } 943 944 static int 945 otus_alloc_tx_cmd_list(struct otus_softc *sc) 946 { 947 int error, i; 948 949 error = otus_alloc_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT, 950 OTUS_MAX_TXCMDSZ); 951 if (error != 0) 952 return (error); 953 954 STAILQ_INIT(&sc->sc_cmd_active); 955 STAILQ_INIT(&sc->sc_cmd_inactive); 956 STAILQ_INIT(&sc->sc_cmd_pending); 957 STAILQ_INIT(&sc->sc_cmd_waiting); 958 959 for (i = 0; i < OTUS_CMD_LIST_COUNT; i++) 960 STAILQ_INSERT_HEAD(&sc->sc_cmd_inactive, &sc->sc_cmd[i], 961 next_cmd); 962 963 return (0); 964 } 965 966 static void 967 otus_free_tx_cmd_list(struct otus_softc *sc) 968 { 969 970 /* 971 * XXX TODO: something needs to wake up any pending/sleeping 972 * waiters! 973 */ 974 STAILQ_INIT(&sc->sc_cmd_active); 975 STAILQ_INIT(&sc->sc_cmd_inactive); 976 STAILQ_INIT(&sc->sc_cmd_pending); 977 STAILQ_INIT(&sc->sc_cmd_waiting); 978 979 otus_free_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT); 980 } 981 982 static int 983 otus_alloc_list(struct otus_softc *sc, struct otus_data data[], 984 int ndata, int maxsz) 985 { 986 int i, error; 987 988 for (i = 0; i < ndata; i++) { 989 struct otus_data *dp = &data[i]; 990 dp->sc = sc; 991 dp->m = NULL; 992 dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT | M_ZERO); 993 if (dp->buf == NULL) { 994 device_printf(sc->sc_dev, 995 "could not allocate buffer\n"); 996 error = ENOMEM; 997 goto fail; 998 } 999 dp->ni = NULL; 1000 } 1001 1002 return (0); 1003 fail: 1004 otus_free_list(sc, data, ndata); 1005 return (error); 1006 } 1007 1008 static int 1009 otus_alloc_rx_list(struct otus_softc *sc) 1010 { 1011 int error, i; 1012 1013 error = otus_alloc_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT, 1014 OTUS_RXBUFSZ); 1015 if (error != 0) 1016 return (error); 1017 1018 STAILQ_INIT(&sc->sc_rx_active); 1019 STAILQ_INIT(&sc->sc_rx_inactive); 1020 1021 for (i = 0; i < OTUS_RX_LIST_COUNT; i++) 1022 STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); 1023 1024 return (0); 1025 } 1026 1027 static int 1028 otus_alloc_tx_list(struct otus_softc *sc) 1029 { 1030 int error, i; 1031 1032 error = otus_alloc_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT, 1033 OTUS_TXBUFSZ); 1034 if (error != 0) 1035 return (error); 1036 1037 STAILQ_INIT(&sc->sc_tx_inactive); 1038 1039 for (i = 0; i != OTUS_N_XFER; i++) { 1040 STAILQ_INIT(&sc->sc_tx_active[i]); 1041 STAILQ_INIT(&sc->sc_tx_pending[i]); 1042 } 1043 1044 for (i = 0; i < OTUS_TX_LIST_COUNT; i++) { 1045 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); 1046 } 1047 1048 return (0); 1049 } 1050 1051 static void 1052 otus_free_tx_list(struct otus_softc *sc) 1053 { 1054 int i; 1055 1056 /* prevent further allocations from TX list(s) */ 1057 STAILQ_INIT(&sc->sc_tx_inactive); 1058 1059 for (i = 0; i != OTUS_N_XFER; i++) { 1060 STAILQ_INIT(&sc->sc_tx_active[i]); 1061 STAILQ_INIT(&sc->sc_tx_pending[i]); 1062 } 1063 1064 otus_free_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT); 1065 } 1066 1067 static void 1068 otus_free_rx_list(struct otus_softc *sc) 1069 { 1070 /* prevent further allocations from RX list(s) */ 1071 STAILQ_INIT(&sc->sc_rx_inactive); 1072 STAILQ_INIT(&sc->sc_rx_active); 1073 1074 otus_free_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT); 1075 } 1076 1077 static void 1078 otus_free_list(struct otus_softc *sc, struct otus_data data[], int ndata) 1079 { 1080 int i; 1081 1082 for (i = 0; i < ndata; i++) { 1083 struct otus_data *dp = &data[i]; 1084 1085 if (dp->buf != NULL) { 1086 free(dp->buf, M_USBDEV); 1087 dp->buf = NULL; 1088 } 1089 if (dp->ni != NULL) { 1090 ieee80211_free_node(dp->ni); 1091 dp->ni = NULL; 1092 } 1093 } 1094 } 1095 1096 static struct otus_data * 1097 _otus_getbuf(struct otus_softc *sc) 1098 { 1099 struct otus_data *bf; 1100 1101 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 1102 if (bf != NULL) 1103 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 1104 else 1105 bf = NULL; 1106 /* XXX bzero? */ 1107 return (bf); 1108 } 1109 1110 static struct otus_data * 1111 otus_getbuf(struct otus_softc *sc) 1112 { 1113 struct otus_data *bf; 1114 1115 OTUS_LOCK_ASSERT(sc); 1116 1117 bf = _otus_getbuf(sc); 1118 return (bf); 1119 } 1120 1121 static void 1122 otus_freebuf(struct otus_softc *sc, struct otus_data *bf) 1123 { 1124 1125 OTUS_LOCK_ASSERT(sc); 1126 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next); 1127 } 1128 1129 static struct otus_tx_cmd * 1130 _otus_get_txcmd(struct otus_softc *sc) 1131 { 1132 struct otus_tx_cmd *bf; 1133 1134 bf = STAILQ_FIRST(&sc->sc_cmd_inactive); 1135 if (bf != NULL) 1136 STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next_cmd); 1137 else 1138 bf = NULL; 1139 return (bf); 1140 } 1141 1142 static struct otus_tx_cmd * 1143 otus_get_txcmd(struct otus_softc *sc) 1144 { 1145 struct otus_tx_cmd *bf; 1146 1147 OTUS_LOCK_ASSERT(sc); 1148 1149 bf = _otus_get_txcmd(sc); 1150 if (bf == NULL) { 1151 device_printf(sc->sc_dev, "%s: no tx cmd buffers\n", 1152 __func__); 1153 } 1154 return (bf); 1155 } 1156 1157 static void 1158 otus_free_txcmd(struct otus_softc *sc, struct otus_tx_cmd *bf) 1159 { 1160 1161 OTUS_LOCK_ASSERT(sc); 1162 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, bf, next_cmd); 1163 } 1164 1165 void 1166 otus_next_scan(void *arg, int pending) 1167 { 1168 #if 0 1169 struct otus_softc *sc = arg; 1170 1171 if (usbd_is_dying(sc->sc_udev)) 1172 return; 1173 1174 usbd_ref_incr(sc->sc_udev); 1175 1176 if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) 1177 ieee80211_next_scan(&sc->sc_ic.ic_if); 1178 1179 usbd_ref_decr(sc->sc_udev); 1180 #endif 1181 } 1182 1183 int 1184 otus_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1185 { 1186 struct otus_vap *uvp = OTUS_VAP(vap); 1187 struct ieee80211com *ic = vap->iv_ic; 1188 struct otus_softc *sc = ic->ic_softc; 1189 enum ieee80211_state ostate; 1190 1191 ostate = vap->iv_state; 1192 OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "%s: %s -> %s\n", __func__, 1193 ieee80211_state_name[ostate], 1194 ieee80211_state_name[nstate]); 1195 1196 IEEE80211_UNLOCK(ic); 1197 1198 OTUS_LOCK(sc); 1199 1200 /* XXX TODO: more fleshing out! */ 1201 1202 switch (nstate) { 1203 case IEEE80211_S_INIT: 1204 otus_set_operating_mode(sc); 1205 otus_set_rx_filter(sc); 1206 break; 1207 case IEEE80211_S_RUN: 1208 if (ic->ic_opmode == IEEE80211_M_STA) { 1209 otus_updateslot(sc); 1210 otus_set_operating_mode(sc); 1211 otus_set_rx_filter(sc); 1212 1213 /* Start calibration timer. */ 1214 taskqueue_enqueue_timeout(taskqueue_thread, 1215 &sc->calib_to, hz); 1216 } 1217 break; 1218 default: 1219 break; 1220 } 1221 1222 /* XXX TODO: calibration? */ 1223 1224 sc->sc_led_newstate(sc); 1225 1226 OTUS_UNLOCK(sc); 1227 IEEE80211_LOCK(ic); 1228 return (uvp->newstate(vap, nstate, arg)); 1229 } 1230 1231 int 1232 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen, 1233 void *odata, int odatalen) 1234 { 1235 struct otus_tx_cmd *cmd; 1236 struct ar_cmd_hdr *hdr; 1237 int xferlen, error; 1238 1239 OTUS_LOCK_ASSERT(sc); 1240 1241 /* Always bulk-out a multiple of 4 bytes. */ 1242 xferlen = (sizeof (*hdr) + ilen + 3) & ~3; 1243 if (xferlen > OTUS_MAX_TXCMDSZ) { 1244 device_printf(sc->sc_dev, "%s: command (0x%02x) size (%d) > %d\n", 1245 __func__, 1246 code, 1247 xferlen, 1248 OTUS_MAX_TXCMDSZ); 1249 return (EIO); 1250 } 1251 1252 cmd = otus_get_txcmd(sc); 1253 if (cmd == NULL) { 1254 device_printf(sc->sc_dev, "%s: failed to get buf\n", 1255 __func__); 1256 return (EIO); 1257 } 1258 1259 hdr = (struct ar_cmd_hdr *)cmd->buf; 1260 hdr->code = code; 1261 hdr->len = ilen; 1262 hdr->token = ++sc->token; /* Don't care about endianness. */ 1263 cmd->token = hdr->token; 1264 /* XXX TODO: check max cmd length? */ 1265 memcpy((uint8_t *)&hdr[1], idata, ilen); 1266 1267 OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, 1268 "%s: sending command code=0x%02x len=%d token=%d\n", 1269 __func__, code, ilen, hdr->token); 1270 1271 cmd->odata = odata; 1272 cmd->odatalen = odatalen; 1273 cmd->buflen = xferlen; 1274 1275 /* Queue the command to the endpoint */ 1276 STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next_cmd); 1277 usbd_transfer_start(sc->sc_xfer[OTUS_BULK_CMD]); 1278 1279 /* Sleep on the command; wait for it to complete */ 1280 error = msleep(cmd, &sc->sc_mtx, PCATCH, "otuscmd", hz); 1281 1282 /* 1283 * At this point we don't own cmd any longer; it'll be 1284 * freed by the cmd bulk path or the RX notification 1285 * path. If the data is made available then it'll be copied 1286 * to the caller. All that is left to do is communicate 1287 * status back to the caller. 1288 */ 1289 if (error != 0) { 1290 device_printf(sc->sc_dev, 1291 "%s: timeout waiting for command 0x%02x reply\n", 1292 __func__, code); 1293 } 1294 return error; 1295 } 1296 1297 void 1298 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val) 1299 { 1300 1301 OTUS_LOCK_ASSERT(sc); 1302 1303 sc->write_buf[sc->write_idx].reg = htole32(reg); 1304 sc->write_buf[sc->write_idx].val = htole32(val); 1305 1306 if (++sc->write_idx > (AR_MAX_WRITE_IDX-1)) 1307 (void)otus_write_barrier(sc); 1308 } 1309 1310 int 1311 otus_write_barrier(struct otus_softc *sc) 1312 { 1313 int error; 1314 1315 OTUS_LOCK_ASSERT(sc); 1316 1317 if (sc->write_idx == 0) 1318 return 0; /* Nothing to flush. */ 1319 1320 OTUS_DPRINTF(sc, OTUS_DEBUG_REGIO, "%s: called; %d updates\n", 1321 __func__, 1322 sc->write_idx); 1323 1324 error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf, 1325 sizeof (sc->write_buf[0]) * sc->write_idx, NULL, 0); 1326 sc->write_idx = 0; 1327 return error; 1328 } 1329 1330 static struct ieee80211_node * 1331 otus_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1332 { 1333 1334 return malloc(sizeof (struct otus_node), M_80211_NODE, 1335 M_NOWAIT | M_ZERO); 1336 } 1337 1338 int 1339 otus_read_eeprom(struct otus_softc *sc) 1340 { 1341 uint32_t regs[8], reg; 1342 uint8_t *eep; 1343 int i, j, error; 1344 1345 OTUS_LOCK_ASSERT(sc); 1346 1347 /* Read EEPROM by blocks of 32 bytes. */ 1348 eep = (uint8_t *)&sc->eeprom; 1349 reg = AR_EEPROM_OFFSET; 1350 for (i = 0; i < sizeof (sc->eeprom) / 32; i++) { 1351 for (j = 0; j < 8; j++, reg += 4) 1352 regs[j] = htole32(reg); 1353 error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep, 32); 1354 if (error != 0) 1355 break; 1356 eep += 32; 1357 } 1358 return error; 1359 } 1360 1361 void 1362 otus_newassoc(struct ieee80211_node *ni, int isnew) 1363 { 1364 struct ieee80211com *ic = ni->ni_ic; 1365 struct otus_softc *sc = ic->ic_softc; 1366 struct otus_node *on = OTUS_NODE(ni); 1367 1368 OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "new assoc isnew=%d addr=%s\n", 1369 isnew, ether_sprintf(ni->ni_macaddr)); 1370 1371 on->tx_done = 0; 1372 on->tx_err = 0; 1373 on->tx_retries = 0; 1374 } 1375 1376 static void 1377 otus_cmd_handle_response(struct otus_softc *sc, struct ar_cmd_hdr *hdr) 1378 { 1379 struct otus_tx_cmd *cmd; 1380 1381 OTUS_LOCK_ASSERT(sc); 1382 1383 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1384 "%s: received reply code=0x%02x len=%d token=%d\n", 1385 __func__, 1386 hdr->code, hdr->len, hdr->token); 1387 1388 /* 1389 * Walk the list, freeing items that aren't ours, 1390 * stopping when we hit our token. 1391 */ 1392 while ((cmd = STAILQ_FIRST(&sc->sc_cmd_waiting)) != NULL) { 1393 STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next_cmd); 1394 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1395 "%s: cmd=%p; hdr.token=%d, cmd.token=%d\n", 1396 __func__, 1397 cmd, 1398 (int) hdr->token, 1399 (int) cmd->token); 1400 if (hdr->token == cmd->token) { 1401 /* Copy answer into caller's supplied buffer. */ 1402 if (cmd->odata != NULL) { 1403 if (hdr->len != cmd->odatalen) { 1404 device_printf(sc->sc_dev, 1405 "%s: code 0x%02x, len=%d, olen=%d\n", 1406 __func__, 1407 (int) hdr->code, 1408 (int) hdr->len, 1409 (int) cmd->odatalen); 1410 } 1411 memcpy(cmd->odata, &hdr[1], 1412 MIN(cmd->odatalen, hdr->len)); 1413 } 1414 wakeup(cmd); 1415 } 1416 1417 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next_cmd); 1418 } 1419 } 1420 1421 void 1422 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len) 1423 { 1424 struct ieee80211com *ic = &sc->sc_ic; 1425 struct ar_cmd_hdr *hdr; 1426 1427 OTUS_LOCK_ASSERT(sc); 1428 1429 if (__predict_false(len < sizeof (*hdr))) { 1430 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1431 "cmd too small %d\n", len); 1432 return; 1433 } 1434 hdr = (struct ar_cmd_hdr *)buf; 1435 if (__predict_false(sizeof (*hdr) + hdr->len > len || 1436 sizeof (*hdr) + hdr->len > 64)) { 1437 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1438 "cmd too large %d\n", hdr->len); 1439 return; 1440 } 1441 1442 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1443 "%s: code=%.02x\n", 1444 __func__, 1445 hdr->code); 1446 1447 /* 1448 * This has to reach into the cmd queue "waiting for 1449 * an RX response" list, grab the head entry and check 1450 * if we need to wake anyone up. 1451 */ 1452 if ((hdr->code & 0xc0) != 0xc0) { 1453 otus_cmd_handle_response(sc, hdr); 1454 return; 1455 } 1456 1457 /* Received unsolicited notification. */ 1458 switch (hdr->code & 0x3f) { 1459 case AR_EVT_BEACON: 1460 break; 1461 case AR_EVT_TX_COMP: 1462 { 1463 struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1]; 1464 struct ieee80211_node *ni; 1465 1466 ni = ieee80211_find_node(&ic->ic_sta, tx->macaddr); 1467 if (ni == NULL) { 1468 device_printf(sc->sc_dev, 1469 "%s: txcomp on unknown node (%s)\n", 1470 __func__, 1471 ether_sprintf(tx->macaddr)); 1472 break; 1473 } 1474 1475 OTUS_DPRINTF(sc, OTUS_DEBUG_TXCOMP, 1476 "tx completed %s status=%d phy=0x%x\n", 1477 ether_sprintf(tx->macaddr), le16toh(tx->status), 1478 le32toh(tx->phy)); 1479 1480 switch (le16toh(tx->status)) { 1481 case AR_TX_STATUS_COMP: 1482 #if 0 1483 ackfailcnt = 0; 1484 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 1485 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 1486 #endif 1487 /* 1488 * We don't get the above; only error notifications. 1489 * Sigh. So, don't worry about this. 1490 */ 1491 break; 1492 case AR_TX_STATUS_RETRY_COMP: 1493 OTUS_NODE(ni)->tx_retries++; 1494 break; 1495 case AR_TX_STATUS_FAILED: 1496 OTUS_NODE(ni)->tx_err++; 1497 break; 1498 } 1499 ieee80211_free_node(ni); 1500 break; 1501 } 1502 case AR_EVT_TBTT: 1503 break; 1504 case AR_EVT_DO_BB_RESET: 1505 /* 1506 * This is "tell driver to reset baseband" from ar9170-fw. 1507 * 1508 * I'm not sure what we should do here, so I'm going to 1509 * fall through; it gets generated when RTSRetryCnt internally 1510 * reaches '5' - I guess the firmware authors thought that 1511 * meant that the BB may have gone deaf or something. 1512 */ 1513 default: 1514 device_printf(sc->sc_dev, 1515 "%s: received notification code=0x%02x len=%d\n", 1516 __func__, 1517 hdr->code, hdr->len); 1518 } 1519 } 1520 1521 /* 1522 * Handle a single MPDU. 1523 * 1524 * This may be a single MPDU, or it may be a sub-frame from an A-MPDU. 1525 * In the latter case some of the header details need to be adjusted. 1526 */ 1527 void 1528 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len, struct mbufq *rxq) 1529 { 1530 struct ieee80211com *ic = &sc->sc_ic; 1531 struct ieee80211_rx_stats rxs; 1532 #if 0 1533 struct ieee80211_node *ni; 1534 #endif 1535 struct ar_rx_macstatus *mac_status = NULL; 1536 struct ar_rx_phystatus *phy_status = NULL; 1537 struct ieee80211_frame *wh; 1538 struct mbuf *m; 1539 // int s; 1540 1541 if (otus_debug & OTUS_DEBUG_RX_BUFFER) { 1542 device_printf(sc->sc_dev, "%s: %*D\n", 1543 __func__, len, buf, "-"); 1544 } 1545 1546 /* 1547 * Before any data path stuff - check to see if this is a command 1548 * response. 1549 * 1550 * All bits in the PLCP header are set to 1 for non-MPDU. 1551 */ 1552 if ((len >= AR_PLCP_HDR_LEN) && 1553 memcmp(buf, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) { 1554 otus_cmd_rxeof(sc, buf + AR_PLCP_HDR_LEN, 1555 len - AR_PLCP_HDR_LEN); 1556 return; 1557 } 1558 1559 /* 1560 * First step - get the status for the given frame. 1561 * This will tell us whether it's a single MPDU or 1562 * an A-MPDU subframe. 1563 */ 1564 if (len < sizeof(*mac_status)) { 1565 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1566 "%s: sub-xfer too short (no mac_status) (len %d)\n", 1567 __func__, len); 1568 counter_u64_add(ic->ic_ierrors, 1); 1569 return; 1570 } 1571 /* 1572 * Remove the mac_status from the payload length. 1573 * 1574 * Note: cheating, don't reallocate the buffer! 1575 */ 1576 mac_status = (struct ar_rx_macstatus *)(buf + len - sizeof(*mac_status)); 1577 len -= sizeof(*mac_status); 1578 1579 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: mac status=0x%x\n", 1580 __func__, mac_status->status); 1581 1582 /* 1583 * Next - check the MAC status before doing anything else. 1584 * Extract out the PLCP header for single and first frames; 1585 * since there's a single RX path we can shove PLCP headers 1586 * from both into sc->ar_last_rx_plcp[] so it can be reused. 1587 */ 1588 if (((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_SINGLE) || 1589 ((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_FIRST)) { 1590 /* 1591 * Ok, we need to at least have a PLCP header at 1592 * this point. 1593 */ 1594 if (len < AR_PLCP_HDR_LEN) { 1595 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1596 "%s sub-xfer too short (no mac+plcp) (len %d\n)", 1597 __func__, len); 1598 counter_u64_add(ic->ic_ierrors, 1); 1599 return; 1600 } 1601 memcpy(sc->ar_last_rx_plcp, buf, AR_PLCP_HDR_LEN); 1602 1603 /* 1604 * At this point we can just consume the PLCP header. 1605 * The beginning of the frame should thus be data. 1606 */ 1607 buf += AR_PLCP_HDR_LEN; 1608 len -= AR_PLCP_HDR_LEN; 1609 } 1610 1611 /* 1612 * Next - see if we have a PHY status. 1613 * 1614 * The PHY status is at the end of the final A-MPDU subframe 1615 * or a single MPDU frame. 1616 * 1617 * We'll use this to tag frames with noise floor / RSSI 1618 * if they have valid information. 1619 */ 1620 if (((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_SINGLE) || 1621 ((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_LAST)) { 1622 if (len < sizeof(*phy_status)) { 1623 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1624 "%s sub-xfer too short (no phy status) (len %d\n)", 1625 __func__, len); 1626 counter_u64_add(ic->ic_ierrors, 1); 1627 return; 1628 } 1629 /* 1630 * Take a pointer to the phy status and remove the length 1631 * from the end of the buffer. 1632 * 1633 * Note: we're cheating here; don't reallocate the buffer! 1634 */ 1635 phy_status = (struct ar_rx_phystatus *) 1636 (buf + len - sizeof(*phy_status)); 1637 len -= sizeof(*phy_status); 1638 } 1639 1640 /* 1641 * Middle frames just have a MAC status (stripped above.) 1642 * No PHY status, and PLCP is from ar_last_rx_plcp. 1643 */ 1644 1645 /* 1646 * Discard error frames; don't discard BAD_RA (eg monitor mode); 1647 * let net80211 do that 1648 */ 1649 if (__predict_false((mac_status->error & ~AR_RX_ERROR_BAD_RA) != 0)) { 1650 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "error frame 0x%02x\n", mac_status->error); 1651 if (mac_status->error & AR_RX_ERROR_FCS) { 1652 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "bad FCS\n"); 1653 } else if (mac_status->error & AR_RX_ERROR_MMIC) { 1654 /* Report Michael MIC failures to net80211. */ 1655 #if 0 1656 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyidx); 1657 #endif 1658 device_printf(sc->sc_dev, "%s: MIC failure\n", __func__); 1659 } 1660 counter_u64_add(ic->ic_ierrors, 1); 1661 return; 1662 } 1663 1664 /* 1665 * Make sure there's room for an 802.11 header + FCS. 1666 * 1667 * Note: a CTS/ACK is 14 bytes (FC, DUR, RA, FCS). 1668 * Making it IEEE80211_MIN_LEN misses CTS/ACKs. 1669 * 1670 * This won't be tossed at this point; eventually once 1671 * rx radiotap is implemented this will allow for 1672 * CTS/ACK frames. Passing them up to net80211 will 1673 * currently make it angry (too short packets.) 1674 */ 1675 if (len < 2 + 2 + IEEE80211_ADDR_LEN + IEEE80211_CRC_LEN) { 1676 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1677 "%s: too short for 802.11 (len %d)\n", 1678 __func__, len); 1679 counter_u64_add(ic->ic_ierrors, 1); 1680 return; 1681 } 1682 1683 len -= IEEE80211_CRC_LEN; /* strip 802.11 FCS */ 1684 wh = (struct ieee80211_frame *) buf; 1685 1686 /* 1687 * The firmware does seem to spit out a bunch of frames 1688 * with invalid frame control values here. Just toss them 1689 * rather than letting net80211 get angry and log. 1690 */ 1691 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 1692 IEEE80211_FC0_VERSION_0) { 1693 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1694 "%s: invalid 802.11 fc version (firmware bug?)\n", 1695 __func__); 1696 counter_u64_add(ic->ic_ierrors, 1); 1697 return; 1698 } 1699 1700 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 1701 if (m == NULL) { 1702 device_printf(sc->sc_dev, "%s: failed m_get2() (len=%d)\n", 1703 __func__, len); 1704 counter_u64_add(ic->ic_ierrors, 1); 1705 return; 1706 } 1707 1708 /* Finalize mbuf. */ 1709 memcpy(mtod(m, uint8_t *), wh, len); 1710 m->m_pkthdr.len = m->m_len = len; 1711 1712 /* XXX TODO: add setting rx radiotap fields here */ 1713 1714 /* 1715 * Ok, check the frame length and toss if it's too short 1716 * for net80211. This will toss ACK/CTS. 1717 */ 1718 if (m->m_len < IEEE80211_MIN_LEN) { 1719 /* XXX TODO: add radiotap receive here */ 1720 m_free(m); m = NULL; 1721 return; 1722 } 1723 1724 /* Add RSSI to this mbuf if we have a PHY header */ 1725 bzero(&rxs, sizeof(rxs)); 1726 rxs.r_flags = IEEE80211_R_NF; 1727 rxs.c_nf = sc->sc_nf[0]; /* XXX chain 0 != combined rssi/nf */ 1728 if (phy_status != NULL) { 1729 rxs.r_flags |= IEEE80211_R_RSSI; 1730 rxs.c_rssi = phy_status->rssi; 1731 } 1732 /* XXX TODO: add MIMO RSSI/NF as well */ 1733 if (ieee80211_add_rx_params(m, &rxs) == 0) { 1734 counter_u64_add(ic->ic_ierrors, 1); 1735 return; 1736 } 1737 1738 /* XXX make a method */ 1739 STAILQ_INSERT_TAIL(&rxq->mq_head, m, m_stailqpkt); 1740 1741 #if 0 1742 OTUS_UNLOCK(sc); 1743 ni = ieee80211_find_rxnode(ic, wh); 1744 rxi.rxi_flags = 0; 1745 rxi.rxi_rssi = tail->rssi; 1746 rxi.rxi_tstamp = 0; /* unused */ 1747 ieee80211_input(ifp, m, ni, &rxi); 1748 1749 /* Node is no longer needed. */ 1750 ieee80211_release_node(ic, ni); 1751 OTUS_LOCK(sc); 1752 #endif 1753 } 1754 1755 static void 1756 otus_rxeof(struct usb_xfer *xfer, struct otus_data *data, struct mbufq *rxq) 1757 { 1758 struct otus_softc *sc = usbd_xfer_softc(xfer); 1759 caddr_t buf = data->buf; 1760 struct ar_rx_head *head; 1761 uint16_t hlen; 1762 int len, offset = 0; 1763 1764 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 1765 1766 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1767 "%s: transfer completed; len=%d\n", 1768 __func__, len); 1769 if (otus_debug & OTUS_DEBUG_RX_BUFFER) { 1770 device_printf(sc->sc_dev, "%s: %*D\n", 1771 __func__, len, buf, "-"); 1772 } 1773 1774 while (len >= sizeof (*head)) { 1775 head = (struct ar_rx_head *)buf; 1776 if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) { 1777 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1778 "tag not valid 0x%x\n", le16toh(head->tag)); 1779 break; 1780 } 1781 hlen = le16toh(head->len); 1782 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: hlen=%d\n", 1783 __func__, hlen); 1784 if (__predict_false(sizeof (*head) + hlen > len)) { 1785 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1786 "xfer too short %d/%d\n", len, hlen); 1787 break; 1788 } 1789 /* Process sub-xfer. */ 1790 otus_sub_rxeof(sc, (uint8_t *) (((uint8_t *) buf) + 4), hlen, rxq); 1791 1792 /* Next sub-xfer is aligned on a 32-bit boundary. */ 1793 hlen = (sizeof (*head) + hlen + 3) & ~3; 1794 offset += hlen; 1795 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1796 "%s: rounded size is %d, next packet starts at %d\n", 1797 __func__, hlen, offset); 1798 buf += hlen; 1799 len -= hlen; 1800 } 1801 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: done!\n", __func__); 1802 } 1803 1804 static void 1805 otus_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 1806 { 1807 struct epoch_tracker et; 1808 struct otus_softc *sc = usbd_xfer_softc(xfer); 1809 struct ieee80211com *ic = &sc->sc_ic; 1810 struct ieee80211_frame *wh; 1811 struct ieee80211_node *ni; 1812 struct mbuf *m; 1813 struct mbufq scrx; 1814 struct otus_data *data; 1815 1816 OTUS_LOCK_ASSERT(sc); 1817 1818 mbufq_init(&scrx, 1024); 1819 1820 #if 0 1821 device_printf(sc->sc_dev, "%s: called; state=%d; error=%d\n", 1822 __func__, 1823 USB_GET_STATE(xfer), 1824 error); 1825 #endif 1826 1827 switch (USB_GET_STATE(xfer)) { 1828 case USB_ST_TRANSFERRED: 1829 data = STAILQ_FIRST(&sc->sc_rx_active); 1830 if (data == NULL) 1831 goto tr_setup; 1832 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 1833 otus_rxeof(xfer, data, &scrx); 1834 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 1835 /* FALLTHROUGH */ 1836 case USB_ST_SETUP: 1837 tr_setup: 1838 /* 1839 * XXX TODO: what if sc_rx isn't empty, but data 1840 * is empty? Then we leak mbufs. 1841 */ 1842 data = STAILQ_FIRST(&sc->sc_rx_inactive); 1843 if (data == NULL) { 1844 //KASSERT(m == NULL, ("mbuf isn't NULL")); 1845 return; 1846 } 1847 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 1848 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 1849 usbd_xfer_set_frame_data(xfer, 0, data->buf, 1850 usbd_xfer_max_len(xfer)); 1851 usbd_transfer_submit(xfer); 1852 /* 1853 * To avoid LOR we should unlock our private mutex here to call 1854 * ieee80211_input() because here is at the end of a USB 1855 * callback and safe to unlock. 1856 */ 1857 OTUS_UNLOCK(sc); 1858 NET_EPOCH_ENTER(et); 1859 while ((m = mbufq_dequeue(&scrx)) != NULL) { 1860 wh = mtod(m, struct ieee80211_frame *); 1861 ni = ieee80211_find_rxnode(ic, 1862 (struct ieee80211_frame_min *)wh); 1863 if (ni != NULL) { 1864 if (ni->ni_flags & IEEE80211_NODE_HT) 1865 m->m_flags |= M_AMPDU; 1866 (void)ieee80211_input_mimo(ni, m); 1867 ieee80211_free_node(ni); 1868 } else 1869 (void)ieee80211_input_mimo_all(ic, m); 1870 } 1871 NET_EPOCH_EXIT(et); 1872 #ifdef IEEE80211_SUPPORT_SUPERG 1873 ieee80211_ff_age_all(ic, 100); 1874 #endif 1875 OTUS_LOCK(sc); 1876 break; 1877 default: 1878 /* needs it to the inactive queue due to a error. */ 1879 data = STAILQ_FIRST(&sc->sc_rx_active); 1880 if (data != NULL) { 1881 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 1882 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 1883 } 1884 if (error != USB_ERR_CANCELLED) { 1885 usbd_xfer_set_stall(xfer); 1886 counter_u64_add(ic->ic_ierrors, 1); 1887 goto tr_setup; 1888 } 1889 break; 1890 } 1891 } 1892 1893 static void 1894 otus_txeof(struct usb_xfer *xfer, struct otus_data *data) 1895 { 1896 struct otus_softc *sc = usbd_xfer_softc(xfer); 1897 1898 OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE, 1899 "%s: called; data=%p\n", __func__, data); 1900 1901 OTUS_LOCK_ASSERT(sc); 1902 1903 if (sc->sc_tx_n_active == 0) { 1904 device_printf(sc->sc_dev, 1905 "%s: completed but tx_active=0\n", 1906 __func__); 1907 } else { 1908 sc->sc_tx_n_active--; 1909 } 1910 1911 if (data->m) { 1912 /* XXX status? */ 1913 /* XXX we get TX status via the RX path.. */ 1914 ieee80211_tx_complete(data->ni, data->m, 0); 1915 data->m = NULL; 1916 data->ni = NULL; 1917 } 1918 } 1919 1920 static void 1921 otus_txcmdeof(struct usb_xfer *xfer, struct otus_tx_cmd *cmd) 1922 { 1923 struct otus_softc *sc = usbd_xfer_softc(xfer); 1924 1925 OTUS_LOCK_ASSERT(sc); 1926 1927 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1928 "%s: called; data=%p; odata=%p\n", 1929 __func__, cmd, cmd->odata); 1930 1931 /* 1932 * Non-response commands still need wakeup so the caller 1933 * knows it was submitted and completed OK; response commands should 1934 * wait until they're ACKed by the firmware with a response. 1935 */ 1936 if (cmd->odata) { 1937 STAILQ_INSERT_TAIL(&sc->sc_cmd_waiting, cmd, next_cmd); 1938 } else { 1939 wakeup(cmd); 1940 otus_free_txcmd(sc, cmd); 1941 } 1942 } 1943 1944 static void 1945 otus_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 1946 { 1947 uint8_t which = OTUS_BULK_TX; 1948 struct otus_softc *sc = usbd_xfer_softc(xfer); 1949 struct ieee80211com *ic = &sc->sc_ic; 1950 struct otus_data *data; 1951 1952 OTUS_LOCK_ASSERT(sc); 1953 1954 switch (USB_GET_STATE(xfer)) { 1955 case USB_ST_TRANSFERRED: 1956 data = STAILQ_FIRST(&sc->sc_tx_active[which]); 1957 if (data == NULL) 1958 goto tr_setup; 1959 OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE, 1960 "%s: transfer done %p\n", __func__, data); 1961 STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); 1962 otus_txeof(xfer, data); 1963 otus_freebuf(sc, data); 1964 /* FALLTHROUGH */ 1965 case USB_ST_SETUP: 1966 tr_setup: 1967 data = STAILQ_FIRST(&sc->sc_tx_pending[which]); 1968 if (data == NULL) { 1969 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 1970 "%s: empty pending queue sc %p\n", __func__, sc); 1971 sc->sc_tx_n_active = 0; 1972 goto finish; 1973 } 1974 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next); 1975 STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next); 1976 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 1977 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 1978 "%s: submitting transfer %p\n", __func__, data); 1979 usbd_transfer_submit(xfer); 1980 sc->sc_tx_n_active++; 1981 break; 1982 default: 1983 data = STAILQ_FIRST(&sc->sc_tx_active[which]); 1984 if (data != NULL) { 1985 STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); 1986 otus_txeof(xfer, data); 1987 otus_freebuf(sc, data); 1988 } 1989 counter_u64_add(ic->ic_oerrors, 1); 1990 1991 if (error != USB_ERR_CANCELLED) { 1992 usbd_xfer_set_stall(xfer); 1993 goto tr_setup; 1994 } 1995 break; 1996 } 1997 1998 finish: 1999 #ifdef IEEE80211_SUPPORT_SUPERG 2000 /* 2001 * If the TX active queue drops below a certain 2002 * threshold, ensure we age fast-frames out so they're 2003 * transmitted. 2004 */ 2005 if (sc->sc_tx_n_active < 2) { 2006 /* XXX ew - net80211 should defer this for us! */ 2007 OTUS_UNLOCK(sc); 2008 ieee80211_ff_flush(ic, WME_AC_VO); 2009 ieee80211_ff_flush(ic, WME_AC_VI); 2010 ieee80211_ff_flush(ic, WME_AC_BE); 2011 ieee80211_ff_flush(ic, WME_AC_BK); 2012 OTUS_LOCK(sc); 2013 } 2014 #endif 2015 /* Kick TX */ 2016 otus_tx_start(sc); 2017 } 2018 2019 static void 2020 otus_bulk_cmd_callback(struct usb_xfer *xfer, usb_error_t error) 2021 { 2022 struct otus_softc *sc = usbd_xfer_softc(xfer); 2023 #if 0 2024 struct ieee80211com *ic = &sc->sc_ic; 2025 #endif 2026 struct otus_tx_cmd *cmd; 2027 2028 OTUS_LOCK_ASSERT(sc); 2029 2030 switch (USB_GET_STATE(xfer)) { 2031 case USB_ST_TRANSFERRED: 2032 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2033 if (cmd == NULL) 2034 goto tr_setup; 2035 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 2036 "%s: transfer done %p\n", __func__, cmd); 2037 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd); 2038 otus_txcmdeof(xfer, cmd); 2039 /* FALLTHROUGH */ 2040 case USB_ST_SETUP: 2041 tr_setup: 2042 cmd = STAILQ_FIRST(&sc->sc_cmd_pending); 2043 if (cmd == NULL) { 2044 OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, 2045 "%s: empty pending queue sc %p\n", __func__, sc); 2046 return; 2047 } 2048 STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next_cmd); 2049 STAILQ_INSERT_TAIL(&sc->sc_cmd_active, cmd, next_cmd); 2050 usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); 2051 OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, 2052 "%s: submitting transfer %p; buf=%p, buflen=%d\n", __func__, cmd, cmd->buf, cmd->buflen); 2053 usbd_transfer_submit(xfer); 2054 break; 2055 default: 2056 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2057 if (cmd != NULL) { 2058 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd); 2059 otus_txcmdeof(xfer, cmd); 2060 } 2061 2062 if (error != USB_ERR_CANCELLED) { 2063 usbd_xfer_set_stall(xfer); 2064 goto tr_setup; 2065 } 2066 break; 2067 } 2068 } 2069 2070 /* 2071 * This isn't used by carl9170; it however may be used by the 2072 * initial bootloader. 2073 */ 2074 static void 2075 otus_bulk_irq_callback(struct usb_xfer *xfer, usb_error_t error) 2076 { 2077 struct otus_softc *sc = usbd_xfer_softc(xfer); 2078 int actlen; 2079 int sumlen; 2080 2081 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 2082 OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, 2083 "%s: called; state=%d\n", __func__, USB_GET_STATE(xfer)); 2084 2085 switch (USB_GET_STATE(xfer)) { 2086 case USB_ST_TRANSFERRED: 2087 /* 2088 * Read usb frame data, if any. 2089 * "actlen" has the total length for all frames 2090 * transferred. 2091 */ 2092 OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, 2093 "%s: comp; %d bytes\n", 2094 __func__, 2095 actlen); 2096 #if 0 2097 pc = usbd_xfer_get_frame(xfer, 0); 2098 otus_dump_usb_rx_page(sc, pc, actlen); 2099 #endif 2100 /* XXX fallthrough */ 2101 case USB_ST_SETUP: 2102 /* 2103 * Setup xfer frame lengths/count and data 2104 */ 2105 OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: setup\n", __func__); 2106 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2107 usbd_transfer_submit(xfer); 2108 break; 2109 2110 default: /* Error */ 2111 /* 2112 * Print error message and clear stall 2113 * for example. 2114 */ 2115 OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: ERROR?\n", __func__); 2116 break; 2117 } 2118 } 2119 2120 /* 2121 * Map net80211 rate to hw rate for otus MAC/PHY. 2122 */ 2123 static uint8_t 2124 otus_rate_to_hw_rate(struct otus_softc *sc, uint8_t rate) 2125 { 2126 int is_2ghz; 2127 2128 is_2ghz = !! (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan)); 2129 2130 /* MCS check */ 2131 if (rate & 0x80) { 2132 return rate; 2133 } 2134 2135 switch (rate) { 2136 /* CCK */ 2137 case 2: 2138 return (0x0); 2139 case 4: 2140 return (0x1); 2141 case 11: 2142 return (0x2); 2143 case 22: 2144 return (0x3); 2145 /* OFDM */ 2146 case 12: 2147 return (0xb); 2148 case 18: 2149 return (0xf); 2150 case 24: 2151 return (0xa); 2152 case 36: 2153 return (0xe); 2154 case 48: 2155 return (0x9); 2156 case 72: 2157 return (0xd); 2158 case 96: 2159 return (0x8); 2160 case 108: 2161 return (0xc); 2162 default: 2163 device_printf(sc->sc_dev, "%s: unknown rate '%d'\n", 2164 __func__, (int) rate); 2165 case 0: 2166 if (is_2ghz) 2167 return (0x0); /* 1MB CCK */ 2168 else 2169 return (0xb); /* 6MB OFDM */ 2170 } 2171 } 2172 2173 static int 2174 otus_hw_rate_is_ht(struct otus_softc *sc, uint8_t hw_rate) 2175 { 2176 2177 return !! (hw_rate & 0x80); 2178 } 2179 2180 static int 2181 otus_hw_rate_is_ofdm(struct otus_softc *sc, uint8_t hw_rate) 2182 { 2183 2184 switch (hw_rate) { 2185 case 0x0: 2186 case 0x1: 2187 case 0x2: 2188 case 0x3: 2189 return (0); 2190 default: 2191 return (1); 2192 } 2193 } 2194 2195 static void 2196 otus_tx_update_ratectl(struct otus_softc *sc, struct ieee80211_node *ni) 2197 { 2198 struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs; 2199 struct otus_node *on = OTUS_NODE(ni); 2200 2201 txs->flags = IEEE80211_RATECTL_TX_STATS_NODE | 2202 IEEE80211_RATECTL_TX_STATS_RETRIES; 2203 txs->ni = ni; 2204 txs->nframes = on->tx_done; 2205 txs->nsuccess = on->tx_done - on->tx_err; 2206 txs->nretries = on->tx_retries; 2207 2208 ieee80211_ratectl_tx_update(ni->ni_vap, txs); 2209 on->tx_done = on->tx_err = on->tx_retries = 0; 2210 } 2211 2212 /* 2213 * XXX TODO: support tx bpf parameters for configuration! 2214 * 2215 * Relevant pieces: 2216 * 2217 * ac = params->ibp_pri & 3; 2218 * rate = params->ibp_rate0; 2219 * params->ibp_flags & IEEE80211_BPF_NOACK 2220 * params->ibp_flags & IEEE80211_BPF_RTS 2221 * params->ibp_flags & IEEE80211_BPF_CTS 2222 * tx->rts_ntries = params->ibp_try1; 2223 * tx->data_ntries = params->ibp_try0; 2224 */ 2225 static int 2226 otus_tx(struct otus_softc *sc, struct ieee80211_node *ni, struct mbuf *m, 2227 struct otus_data *data, const struct ieee80211_bpf_params *params) 2228 { 2229 const struct ieee80211_txparam *tp = ni->ni_txparms; 2230 struct ieee80211com *ic = &sc->sc_ic; 2231 struct ieee80211vap *vap = ni->ni_vap; 2232 struct ieee80211_frame *wh; 2233 struct ieee80211_key *k; 2234 struct ar_tx_head *head; 2235 uint32_t phyctl; 2236 uint16_t macctl, qos; 2237 uint8_t qid, rate; 2238 int hasqos, xferlen, type, ismcast; 2239 2240 wh = mtod(m, struct ieee80211_frame *); 2241 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2242 k = ieee80211_crypto_encap(ni, m); 2243 if (k == NULL) { 2244 device_printf(sc->sc_dev, 2245 "%s: m=%p: ieee80211_crypto_encap returns NULL\n", 2246 __func__, 2247 m); 2248 return (ENOBUFS); 2249 } 2250 wh = mtod(m, struct ieee80211_frame *); 2251 } 2252 2253 /* Calculate transfer length; ensure data buffer is large enough */ 2254 xferlen = sizeof (*head) + m->m_pkthdr.len; 2255 if (xferlen > OTUS_TXBUFSZ) { 2256 device_printf(sc->sc_dev, 2257 "%s: 802.11 TX frame is %d bytes, max %d bytes\n", 2258 __func__, 2259 xferlen, 2260 OTUS_TXBUFSZ); 2261 return (ENOBUFS); 2262 } 2263 2264 hasqos = !! IEEE80211_QOS_HAS_SEQ(wh); 2265 2266 if (hasqos) { 2267 uint8_t tid; 2268 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 2269 tid = qos & IEEE80211_QOS_TID; 2270 qid = TID_TO_WME_AC(tid); 2271 } else { 2272 qos = 0; 2273 qid = WME_AC_BE; 2274 } 2275 2276 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2277 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2278 2279 /* Pickup a rate index. */ 2280 if (params != NULL) 2281 rate = otus_rate_to_hw_rate(sc, params->ibp_rate0); 2282 else if (!!(m->m_flags & M_EAPOL) || type != IEEE80211_FC0_TYPE_DATA) 2283 rate = otus_rate_to_hw_rate(sc, tp->mgmtrate); 2284 else if (ismcast) 2285 rate = otus_rate_to_hw_rate(sc, tp->mcastrate); 2286 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2287 rate = otus_rate_to_hw_rate(sc, tp->ucastrate); 2288 else { 2289 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2290 rate = otus_rate_to_hw_rate(sc, ni->ni_txrate); 2291 } 2292 2293 phyctl = 0; 2294 macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid); 2295 2296 /* 2297 * XXX TODO: params for NOACK, ACK, RTS, CTS, etc 2298 */ 2299 if (ismcast || 2300 (hasqos && ((qos & IEEE80211_QOS_ACKPOLICY) == 2301 IEEE80211_QOS_ACKPOLICY_NOACK))) 2302 macctl |= AR_TX_MAC_NOACK; 2303 2304 if (!ismcast) { 2305 if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= vap->iv_rtsthreshold) 2306 macctl |= AR_TX_MAC_RTS; 2307 else if (otus_hw_rate_is_ht(sc, rate)) { 2308 if (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) 2309 macctl |= AR_TX_MAC_RTS; 2310 } else if (ic->ic_flags & IEEE80211_F_USEPROT) { 2311 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2312 macctl |= AR_TX_MAC_CTS; 2313 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2314 macctl |= AR_TX_MAC_RTS; 2315 } 2316 } 2317 2318 phyctl |= AR_TX_PHY_MCS(rate & 0x7f); /* Note: MCS rates are 0x80 and above */ 2319 if (otus_hw_rate_is_ht(sc, rate)) { 2320 phyctl |= AR_TX_PHY_MT_HT; 2321 /* Always use all tx antennas for now, just to be safe */ 2322 phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); 2323 2324 /* Heavy clip */ 2325 phyctl |= (rate & 0x7) << AR_TX_PHY_TX_HEAVY_CLIP_SHIFT; 2326 } else if (otus_hw_rate_is_ofdm(sc, rate)) { 2327 phyctl |= AR_TX_PHY_MT_OFDM; 2328 /* Always use all tx antennas for now, just to be safe */ 2329 phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); 2330 } else { /* CCK */ 2331 phyctl |= AR_TX_PHY_MT_CCK; 2332 phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); 2333 } 2334 2335 /* Update net80211 with the current counters */ 2336 otus_tx_update_ratectl(sc, ni); 2337 2338 /* Update rate control stats for frames that are ACK'ed. */ 2339 if (!(macctl & AR_TX_MAC_NOACK)) 2340 OTUS_NODE(ni)->tx_done++; 2341 2342 /* Fill Tx descriptor. */ 2343 head = (struct ar_tx_head *)data->buf; 2344 head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN); 2345 head->macctl = htole16(macctl); 2346 head->phyctl = htole32(phyctl); 2347 2348 m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]); 2349 2350 data->buflen = xferlen; 2351 data->ni = ni; 2352 data->m = m; 2353 2354 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 2355 "%s: tx: m=%p; data=%p; len=%d mac=0x%04x phy=0x%08x rate=0x%02x, ni_txrate=%d\n", 2356 __func__, m, data, le16toh(head->len), macctl, phyctl, 2357 (int) rate, (int) ni->ni_txrate); 2358 2359 /* Submit transfer */ 2360 STAILQ_INSERT_TAIL(&sc->sc_tx_pending[OTUS_BULK_TX], data, next); 2361 usbd_transfer_start(sc->sc_xfer[OTUS_BULK_TX]); 2362 2363 return 0; 2364 } 2365 2366 static u_int 2367 otus_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2368 { 2369 uint32_t val, *hashes = arg; 2370 2371 val = le32dec(LLADDR(sdl) + 4); 2372 /* Get address byte 5 */ 2373 val = val & 0x0000ff00; 2374 val = val >> 8; 2375 2376 /* As per below, shift it >> 2 to get only 6 bits */ 2377 val = val >> 2; 2378 if (val < 32) 2379 hashes[0] |= 1 << val; 2380 else 2381 hashes[1] |= 1 << (val - 32); 2382 2383 return (1); 2384 } 2385 2386 int 2387 otus_set_multi(struct otus_softc *sc) 2388 { 2389 struct ieee80211com *ic = &sc->sc_ic; 2390 uint32_t hashes[2]; 2391 int r; 2392 2393 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 || 2394 ic->ic_opmode == IEEE80211_M_MONITOR) { 2395 hashes[0] = 0xffffffff; 2396 hashes[1] = 0xffffffff; 2397 } else { 2398 struct ieee80211vap *vap; 2399 2400 hashes[0] = hashes[1] = 0; 2401 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2402 if_foreach_llmaddr(vap->iv_ifp, otus_hash_maddr, 2403 hashes); 2404 } 2405 #if 0 2406 /* XXX openbsd code */ 2407 while (enm != NULL) { 2408 bit = enm->enm_addrlo[5] >> 2; 2409 if (bit < 32) 2410 hashes[0] |= 1 << bit; 2411 else 2412 hashes[1] |= 1 << (bit - 32); 2413 ETHER_NEXT_MULTI(step, enm); 2414 } 2415 #endif 2416 2417 hashes[1] |= 1U << 31; /* Make sure the broadcast bit is set. */ 2418 2419 OTUS_LOCK(sc); 2420 otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, hashes[0]); 2421 otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hashes[1]); 2422 r = otus_write_barrier(sc); 2423 /* XXX operating mode? filter? */ 2424 OTUS_UNLOCK(sc); 2425 return (r); 2426 } 2427 2428 static int 2429 otus_updateedca(struct ieee80211com *ic) 2430 { 2431 struct otus_softc *sc = ic->ic_softc; 2432 2433 OTUS_LOCK(sc); 2434 /* 2435 * XXX TODO: take temporary copy of EDCA information 2436 * when scheduling this so we have a more time-correct view 2437 * of things. 2438 * XXX TODO: this can be done on the net80211 level 2439 */ 2440 otus_updateedca_locked(sc); 2441 OTUS_UNLOCK(sc); 2442 return (0); 2443 } 2444 2445 static void 2446 otus_updateedca_locked(struct otus_softc *sc) 2447 { 2448 #define EXP2(val) ((1 << (val)) - 1) 2449 #define AIFS(val) ((val) * 9 + 10) 2450 struct chanAccParams chp; 2451 struct ieee80211com *ic = &sc->sc_ic; 2452 const struct wmeParams *edca; 2453 2454 ieee80211_wme_ic_getparams(ic, &chp); 2455 2456 OTUS_LOCK_ASSERT(sc); 2457 2458 edca = chp.cap_wmeParams; 2459 2460 /* Set CWmin/CWmax values. */ 2461 otus_write(sc, AR_MAC_REG_AC0_CW, 2462 EXP2(edca[WME_AC_BE].wmep_logcwmax) << 16 | 2463 EXP2(edca[WME_AC_BE].wmep_logcwmin)); 2464 otus_write(sc, AR_MAC_REG_AC1_CW, 2465 EXP2(edca[WME_AC_BK].wmep_logcwmax) << 16 | 2466 EXP2(edca[WME_AC_BK].wmep_logcwmin)); 2467 otus_write(sc, AR_MAC_REG_AC2_CW, 2468 EXP2(edca[WME_AC_VI].wmep_logcwmax) << 16 | 2469 EXP2(edca[WME_AC_VI].wmep_logcwmin)); 2470 otus_write(sc, AR_MAC_REG_AC3_CW, 2471 EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 | 2472 EXP2(edca[WME_AC_VO].wmep_logcwmin)); 2473 otus_write(sc, AR_MAC_REG_AC4_CW, /* Special TXQ. */ 2474 EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 | 2475 EXP2(edca[WME_AC_VO].wmep_logcwmin)); 2476 2477 /* Set AIFSN values. */ 2478 otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS, 2479 AIFS(edca[WME_AC_VI].wmep_aifsn) << 24 | 2480 AIFS(edca[WME_AC_BK].wmep_aifsn) << 12 | 2481 AIFS(edca[WME_AC_BE].wmep_aifsn)); 2482 otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS, 2483 AIFS(edca[WME_AC_VO].wmep_aifsn) << 16 | /* Special TXQ. */ 2484 AIFS(edca[WME_AC_VO].wmep_aifsn) << 4 | 2485 AIFS(edca[WME_AC_VI].wmep_aifsn) >> 8); 2486 2487 /* Set TXOP limit. */ 2488 otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP, 2489 edca[WME_AC_BK].wmep_txopLimit << 16 | 2490 edca[WME_AC_BE].wmep_txopLimit); 2491 otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP, 2492 edca[WME_AC_VO].wmep_txopLimit << 16 | 2493 edca[WME_AC_VI].wmep_txopLimit); 2494 2495 /* XXX ACK policy? */ 2496 2497 (void)otus_write_barrier(sc); 2498 2499 #undef AIFS 2500 #undef EXP2 2501 } 2502 2503 static void 2504 otus_updateslot(struct otus_softc *sc) 2505 { 2506 struct ieee80211com *ic = &sc->sc_ic; 2507 uint32_t slottime; 2508 2509 OTUS_LOCK_ASSERT(sc); 2510 2511 slottime = IEEE80211_GET_SLOTTIME(ic); 2512 otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10); 2513 (void)otus_write_barrier(sc); 2514 } 2515 2516 /* 2517 * Things to do based on 2GHz or 5GHz: 2518 * 2519 * + slottime 2520 * + dyn_sifs_ack 2521 * + rts_cts_rate 2522 * + slot time 2523 * + mac_rates 2524 * + mac_tpc 2525 * 2526 * And in the transmit path 2527 * + tpc: carl9170_tx_rate_tpc_chains 2528 * + carl9170_tx_physet() 2529 * + disable short premable tx 2530 */ 2531 2532 int 2533 otus_init_mac(struct otus_softc *sc) 2534 { 2535 int error; 2536 2537 OTUS_LOCK_ASSERT(sc); 2538 2539 otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40); 2540 otus_write(sc, AR_MAC_REG_RETRY_MAX, 0); 2541 otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80); 2542 otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70); 2543 otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000); 2544 otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10); 2545 otus_write(sc, AR_MAC_REG_TID_CFACK_CFEND_RATE, 0x19000000); 2546 /* NAV protects ACK only (in TXOP). */ 2547 otus_write(sc, AR_MAC_REG_TXOP_DURATION, 0x201); 2548 /* Set beacon Tx power to 0x7. */ 2549 otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170); 2550 otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105); 2551 otus_write(sc, AR_MAC_REG_AMPDU_FACTOR, 0x10000a); 2552 2553 otus_set_rx_filter(sc); 2554 2555 otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f); 2556 otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f); 2557 otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb); 2558 otus_write(sc, AR_MAC_REG_ACK_TPC, 0x4003c1e); 2559 2560 /* Enable LED0 and LED1. */ 2561 otus_write(sc, AR_GPIO_REG_PORT_TYPE, 0x3); 2562 otus_write(sc, AR_GPIO_REG_PORT_DATA, 0x3); 2563 /* Switch MAC to OTUS interface. */ 2564 otus_write(sc, 0x1c3600, 0x3); 2565 otus_write(sc, AR_MAC_REG_AMPDU_RX_THRESH, 0xffff); 2566 otus_write(sc, AR_MAC_REG_MISC_680, 0xf00008); 2567 /* Disable Rx timeout (workaround). */ 2568 otus_write(sc, AR_MAC_REG_RX_TIMEOUT, 0); 2569 2570 /* Set USB Rx stream mode maximum frame number to 2. */ 2571 otus_write(sc, 0x1e1110, 0x4); 2572 /* Set USB Rx stream mode timeout to 10us. */ 2573 otus_write(sc, 0x1e1114, 0x80); 2574 2575 /* Set clock frequency to 88/80MHz. */ 2576 otus_write(sc, AR_PWR_REG_CLOCK_SEL, 0x73); 2577 /* Set WLAN DMA interrupt mode: generate intr per packet. */ 2578 otus_write(sc, AR_MAC_REG_TXRX_MPI, 0x110011); 2579 otus_write(sc, AR_MAC_REG_FCS_SELECT, 0x4); 2580 otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48); 2581 2582 /* Disable HW decryption for now. */ 2583 otus_write(sc, AR_MAC_REG_ENCRYPTION, 0x78); 2584 2585 if ((error = otus_write_barrier(sc)) != 0) 2586 return error; 2587 2588 /* Set default EDCA parameters. */ 2589 otus_updateedca_locked(sc); 2590 2591 return 0; 2592 } 2593 2594 /* 2595 * Return default value for PHY register based on current operating mode. 2596 */ 2597 uint32_t 2598 otus_phy_get_def(struct otus_softc *sc, uint32_t reg) 2599 { 2600 int i; 2601 2602 for (i = 0; i < nitems(ar5416_phy_regs); i++) 2603 if (AR_PHY(ar5416_phy_regs[i]) == reg) 2604 return sc->phy_vals[i]; 2605 return 0; /* Register not found. */ 2606 } 2607 2608 /* 2609 * Update PHY's programming based on vendor-specific data stored in EEPROM. 2610 * This is for FEM-type devices only. 2611 */ 2612 int 2613 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c) 2614 { 2615 const struct ModalEepHeader *eep; 2616 uint32_t tmp, offset; 2617 2618 if (IEEE80211_IS_CHAN_5GHZ(c)) 2619 eep = &sc->eeprom.modalHeader[0]; 2620 else 2621 eep = &sc->eeprom.modalHeader[1]; 2622 2623 /* Offset of chain 2. */ 2624 offset = 2 * 0x1000; 2625 2626 tmp = le32toh(eep->antCtrlCommon); 2627 otus_write(sc, AR_PHY_SWITCH_COM, tmp); 2628 2629 tmp = le32toh(eep->antCtrlChain[0]); 2630 otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp); 2631 2632 tmp = le32toh(eep->antCtrlChain[1]); 2633 otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp); 2634 2635 if (1 /* sc->sc_sco == AR_SCO_SCN */) { 2636 tmp = otus_phy_get_def(sc, AR_PHY_SETTLING); 2637 tmp &= ~(0x7f << 7); 2638 tmp |= (eep->switchSettling & 0x7f) << 7; 2639 otus_write(sc, AR_PHY_SETTLING, tmp); 2640 } 2641 2642 tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ); 2643 tmp &= ~0xffff; 2644 tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize; 2645 otus_write(sc, AR_PHY_DESIRED_SZ, tmp); 2646 2647 tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 | 2648 eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn; 2649 otus_write(sc, AR_PHY_RF_CTL4, tmp); 2650 2651 tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3); 2652 tmp &= ~(0xff << 16); 2653 tmp |= eep->txEndToRxOn << 16; 2654 otus_write(sc, AR_PHY_RF_CTL3, tmp); 2655 2656 tmp = otus_phy_get_def(sc, AR_PHY_CCA); 2657 tmp &= ~(0x7f << 12); 2658 tmp |= (eep->thresh62 & 0x7f) << 12; 2659 otus_write(sc, AR_PHY_CCA, tmp); 2660 2661 tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN); 2662 tmp &= ~(0x3f << 12); 2663 tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12; 2664 otus_write(sc, AR_PHY_RXGAIN, tmp); 2665 2666 tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset); 2667 tmp &= ~(0x3f << 12); 2668 tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12; 2669 otus_write(sc, AR_PHY_RXGAIN + offset, tmp); 2670 2671 tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ); 2672 tmp &= ~(0x3f << 18); 2673 tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18; 2674 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2675 tmp &= ~(0xf << 10); 2676 tmp |= (eep->bswMargin[0] & 0xf) << 10; 2677 } 2678 otus_write(sc, AR_PHY_GAIN_2GHZ, tmp); 2679 2680 tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset); 2681 tmp &= ~(0x3f << 18); 2682 tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18; 2683 otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp); 2684 2685 tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4); 2686 tmp &= ~(0x3f << 5 | 0x1f); 2687 tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f); 2688 otus_write(sc, AR_PHY_TIMING_CTRL4, tmp); 2689 2690 tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset); 2691 tmp &= ~(0x3f << 5 | 0x1f); 2692 tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f); 2693 otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp); 2694 2695 tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1); 2696 tmp &= ~(0xf << 16); 2697 tmp |= (eep->xpd & 0xf) << 16; 2698 otus_write(sc, AR_PHY_TPCRG1, tmp); 2699 2700 return otus_write_barrier(sc); 2701 } 2702 2703 int 2704 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c) 2705 { 2706 const uint32_t *vals; 2707 int error, i; 2708 2709 /* Select PHY programming based on band and bandwidth. */ 2710 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2711 if (IEEE80211_IS_CHAN_HT40(c)) 2712 vals = ar5416_phy_vals_2ghz_40mhz; 2713 else 2714 vals = ar5416_phy_vals_2ghz_20mhz; 2715 } else { 2716 if (IEEE80211_IS_CHAN_HT40(c)) 2717 vals = ar5416_phy_vals_5ghz_40mhz; 2718 else 2719 vals = ar5416_phy_vals_5ghz_20mhz; 2720 } 2721 for (i = 0; i < nitems(ar5416_phy_regs); i++) 2722 otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]); 2723 sc->phy_vals = vals; 2724 2725 if (sc->eeprom.baseEepHeader.deviceType == 0x80) /* FEM */ 2726 if ((error = otus_set_board_values(sc, c)) != 0) 2727 return error; 2728 2729 /* Initial Tx power settings. */ 2730 otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f); 2731 otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f); 2732 otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f); 2733 otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f); 2734 otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f); 2735 otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f); 2736 otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f); 2737 otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f); 2738 otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f); 2739 otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f); 2740 2741 if (IEEE80211_IS_CHAN_2GHZ(c)) 2742 otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5163); 2743 else 2744 otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5143); 2745 2746 return otus_write_barrier(sc); 2747 } 2748 2749 static __inline uint8_t 2750 otus_reverse_bits(uint8_t v) 2751 { 2752 v = ((v >> 1) & 0x55) | ((v & 0x55) << 1); 2753 v = ((v >> 2) & 0x33) | ((v & 0x33) << 2); 2754 v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4); 2755 return v; 2756 } 2757 2758 int 2759 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c) 2760 { 2761 uint8_t chansel, d0, d1; 2762 uint16_t data; 2763 int error; 2764 2765 OTUS_LOCK_ASSERT(sc); 2766 2767 d0 = 0; 2768 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2769 chansel = (c->ic_freq - 4800) / 5; 2770 if (chansel & 1) 2771 d0 |= AR_BANK4_AMODE_REFSEL(2); 2772 else 2773 d0 |= AR_BANK4_AMODE_REFSEL(1); 2774 } else { 2775 d0 |= AR_BANK4_AMODE_REFSEL(2); 2776 if (c->ic_freq == 2484) { /* CH 14 */ 2777 d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ; 2778 chansel = 10 + (c->ic_freq - 2274) / 5; 2779 } else 2780 chansel = 16 + (c->ic_freq - 2272) / 5; 2781 chansel <<= 2; 2782 } 2783 d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP; 2784 d1 = otus_reverse_bits(chansel); 2785 2786 /* Write bits 0-4 of d0 and d1. */ 2787 data = (d1 & 0x1f) << 5 | (d0 & 0x1f); 2788 otus_write(sc, AR_PHY(44), data); 2789 /* Write bits 5-7 of d0 and d1. */ 2790 data = (d1 >> 5) << 5 | (d0 >> 5); 2791 otus_write(sc, AR_PHY(58), data); 2792 2793 if ((error = otus_write_barrier(sc)) == 0) 2794 otus_delay_ms(sc, 10); 2795 return error; 2796 } 2797 2798 void 2799 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa) 2800 { 2801 #define COEFF_SCALE_SHIFT 24 2802 uint32_t exp, man; 2803 2804 /* exponent = 14 - floor(log2(coeff)) */ 2805 for (exp = 31; exp > 0; exp--) 2806 if (coeff & (1 << exp)) 2807 break; 2808 KASSERT(exp != 0, ("exp")); 2809 exp = 14 - (exp - COEFF_SCALE_SHIFT); 2810 2811 /* mantissa = floor(coeff * 2^exponent + 0.5) */ 2812 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1)); 2813 2814 *mantissa = man >> (COEFF_SCALE_SHIFT - exp); 2815 *exponent = exp - 16; 2816 #undef COEFF_SCALE_SHIFT 2817 } 2818 2819 static int 2820 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc) 2821 { 2822 struct ieee80211com *ic = &sc->sc_ic; 2823 struct ar_cmd_frequency cmd; 2824 struct ar_rsp_frequency rsp; 2825 const uint32_t *vals; 2826 uint32_t coeff, exp, man, tmp; 2827 uint8_t code; 2828 int error, chan, i; 2829 2830 error = 0; 2831 chan = ieee80211_chan2ieee(ic, c); 2832 2833 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2834 "setting channel %d (%dMHz)\n", chan, c->ic_freq); 2835 2836 tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104; 2837 otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp); 2838 if ((error = otus_write_barrier(sc)) != 0) 2839 goto finish; 2840 2841 /* Disable BB Heavy Clip. */ 2842 otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200); 2843 if ((error = otus_write_barrier(sc)) != 0) 2844 goto finish; 2845 2846 /* XXX Is that FREQ_START ? */ 2847 error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL, 0); 2848 if (error != 0) 2849 goto finish; 2850 2851 /* Reprogram PHY and RF on channel band or bandwidth changes. */ 2852 if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) { 2853 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "band switch\n"); 2854 2855 /* Cold/Warm reset BB/ADDA. */ 2856 otus_write(sc, AR_PWR_REG_RESET, sc->bb_reset ? 0x800 : 0x400); 2857 if ((error = otus_write_barrier(sc)) != 0) 2858 goto finish; 2859 otus_write(sc, AR_PWR_REG_RESET, 0); 2860 if ((error = otus_write_barrier(sc)) != 0) 2861 goto finish; 2862 sc->bb_reset = 0; 2863 2864 if ((error = otus_program_phy(sc, c)) != 0) { 2865 device_printf(sc->sc_dev, 2866 "%s: could not program PHY\n", 2867 __func__); 2868 goto finish; 2869 } 2870 2871 /* Select RF programming based on band. */ 2872 if (IEEE80211_IS_CHAN_5GHZ(c)) 2873 vals = ar5416_banks_vals_5ghz; 2874 else 2875 vals = ar5416_banks_vals_2ghz; 2876 for (i = 0; i < nitems(ar5416_banks_regs); i++) 2877 otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]); 2878 if ((error = otus_write_barrier(sc)) != 0) { 2879 device_printf(sc->sc_dev, 2880 "%s: could not program RF\n", 2881 __func__); 2882 goto finish; 2883 } 2884 code = AR_CMD_RF_INIT; 2885 } else { 2886 code = AR_CMD_FREQUENCY; 2887 } 2888 2889 if ((error = otus_set_rf_bank4(sc, c)) != 0) 2890 goto finish; 2891 2892 tmp = (sc->txmask == 0x5) ? 0x340 : 0x240; 2893 otus_write(sc, AR_PHY_TURBO, tmp); 2894 if ((error = otus_write_barrier(sc)) != 0) 2895 goto finish; 2896 2897 /* Send firmware command to set channel. */ 2898 cmd.freq = htole32((uint32_t)c->ic_freq * 1000); 2899 cmd.dynht2040 = htole32(0); 2900 cmd.htena = htole32(1); 2901 /* Set Delta Slope (exponent and mantissa). */ 2902 coeff = (100 << 24) / c->ic_freq; 2903 otus_get_delta_slope(coeff, &exp, &man); 2904 cmd.dsc_exp = htole32(exp); 2905 cmd.dsc_man = htole32(man); 2906 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2907 "ds coeff=%u exp=%u man=%u\n", coeff, exp, man); 2908 /* For Short GI, coeff is 9/10 that of normal coeff. */ 2909 coeff = (9 * coeff) / 10; 2910 otus_get_delta_slope(coeff, &exp, &man); 2911 cmd.dsc_shgi_exp = htole32(exp); 2912 cmd.dsc_shgi_man = htole32(man); 2913 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2914 "ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man); 2915 /* Set wait time for AGC and noise calibration (100 or 200ms). */ 2916 cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000); 2917 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2918 "%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"); 2919 error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp, sizeof(rsp)); 2920 if (error != 0) 2921 goto finish; 2922 if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) { 2923 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2924 "status=0x%x\n", le32toh(rsp.status)); 2925 /* Force cold reset on next channel. */ 2926 sc->bb_reset = 1; 2927 } 2928 #ifdef USB_DEBUG 2929 if (otus_debug & OTUS_DEBUG_RESET) { 2930 device_printf(sc->sc_dev, "calibration status=0x%x\n", 2931 le32toh(rsp.status)); 2932 for (i = 0; i < 2; i++) { /* 2 Rx chains */ 2933 /* Sign-extend 9-bit NF values. */ 2934 device_printf(sc->sc_dev, 2935 "noisefloor chain %d=%d\n", i, 2936 (((int32_t)le32toh(rsp.nf[i])) << 4) >> 23); 2937 device_printf(sc->sc_dev, 2938 "noisefloor ext chain %d=%d\n", i, 2939 ((int32_t)le32toh(rsp.nf_ext[i])) >> 23); 2940 } 2941 } 2942 #endif 2943 for (i = 0; i < OTUS_NUM_CHAINS; i++) { 2944 sc->sc_nf[i] = ((((int32_t)le32toh(rsp.nf[i])) << 4) >> 23); 2945 } 2946 sc->sc_curchan = c; 2947 finish: 2948 return (error); 2949 } 2950 2951 #ifdef notyet 2952 int 2953 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 2954 struct ieee80211_key *k) 2955 { 2956 struct otus_softc *sc = ic->ic_softc; 2957 struct otus_cmd_key cmd; 2958 2959 /* Defer setting of WEP keys until interface is brought up. */ 2960 if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != 2961 (IFF_UP | IFF_RUNNING)) 2962 return 0; 2963 2964 /* Do it in a process context. */ 2965 cmd.key = *k; 2966 cmd.associd = (ni != NULL) ? ni->ni_associd : 0; 2967 otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd); 2968 return 0; 2969 } 2970 2971 void 2972 otus_set_key_cb(struct otus_softc *sc, void *arg) 2973 { 2974 struct otus_cmd_key *cmd = arg; 2975 struct ieee80211_key *k = &cmd->key; 2976 struct ar_cmd_ekey key; 2977 uint16_t cipher; 2978 int error; 2979 2980 memset(&key, 0, sizeof key); 2981 if (k->k_flags & IEEE80211_KEY_GROUP) { 2982 key.uid = htole16(k->k_id); 2983 IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr); 2984 key.macaddr[0] |= 0x80; 2985 } else { 2986 key.uid = htole16(OTUS_UID(cmd->associd)); 2987 IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr); 2988 } 2989 key.kix = htole16(0); 2990 /* Map net80211 cipher to hardware. */ 2991 switch (k->k_cipher) { 2992 case IEEE80211_CIPHER_WEP40: 2993 cipher = AR_CIPHER_WEP64; 2994 break; 2995 case IEEE80211_CIPHER_WEP104: 2996 cipher = AR_CIPHER_WEP128; 2997 break; 2998 case IEEE80211_CIPHER_TKIP: 2999 cipher = AR_CIPHER_TKIP; 3000 break; 3001 case IEEE80211_CIPHER_CCMP: 3002 cipher = AR_CIPHER_AES; 3003 break; 3004 default: 3005 return; 3006 } 3007 key.cipher = htole16(cipher); 3008 memcpy(key.key, k->k_key, MIN(k->k_len, 16)); 3009 error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0); 3010 if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP) 3011 return; 3012 3013 /* TKIP: set Tx/Rx MIC Key. */ 3014 key.kix = htole16(1); 3015 memcpy(key.key, k->k_key + 16, 16); 3016 (void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0); 3017 } 3018 3019 void 3020 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 3021 struct ieee80211_key *k) 3022 { 3023 struct otus_softc *sc = ic->ic_softc; 3024 struct otus_cmd_key cmd; 3025 3026 if (!(ic->ic_if.if_flags & IFF_RUNNING) || 3027 ic->ic_state != IEEE80211_S_RUN) 3028 return; /* Nothing to do. */ 3029 3030 /* Do it in a process context. */ 3031 cmd.key = *k; 3032 cmd.associd = (ni != NULL) ? ni->ni_associd : 0; 3033 otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd); 3034 } 3035 3036 void 3037 otus_delete_key_cb(struct otus_softc *sc, void *arg) 3038 { 3039 struct otus_cmd_key *cmd = arg; 3040 struct ieee80211_key *k = &cmd->key; 3041 uint32_t uid; 3042 3043 if (k->k_flags & IEEE80211_KEY_GROUP) 3044 uid = htole32(k->k_id); 3045 else 3046 uid = htole32(OTUS_UID(cmd->associd)); 3047 (void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL, 0); 3048 } 3049 #endif 3050 3051 /* 3052 * XXX TODO: check if we have to be doing any calibration in the host 3053 * or whether it's purely a firmware thing. 3054 */ 3055 void 3056 otus_calibrate_to(void *arg, int pending) 3057 { 3058 #if 0 3059 struct otus_softc *sc = arg; 3060 3061 device_printf(sc->sc_dev, "%s: called\n", __func__); 3062 struct ieee80211com *ic = &sc->sc_ic; 3063 struct ieee80211_node *ni; 3064 int s; 3065 3066 if (usbd_is_dying(sc->sc_udev)) 3067 return; 3068 3069 usbd_ref_incr(sc->sc_udev); 3070 3071 s = splnet(); 3072 ni = ic->ic_bss; 3073 ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn); 3074 splx(s); 3075 3076 if (!usbd_is_dying(sc->sc_udev)) 3077 timeout_add_sec(&sc->calib_to, 1); 3078 3079 usbd_ref_decr(sc->sc_udev); 3080 #endif 3081 } 3082 3083 int 3084 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid) 3085 { 3086 3087 OTUS_LOCK_ASSERT(sc); 3088 3089 otus_write(sc, AR_MAC_REG_BSSID_L, 3090 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 3091 otus_write(sc, AR_MAC_REG_BSSID_H, 3092 bssid[4] | bssid[5] << 8); 3093 return otus_write_barrier(sc); 3094 } 3095 3096 int 3097 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr) 3098 { 3099 OTUS_LOCK_ASSERT(sc); 3100 3101 otus_write(sc, AR_MAC_REG_MAC_ADDR_L, 3102 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 3103 otus_write(sc, AR_MAC_REG_MAC_ADDR_H, 3104 addr[4] | addr[5] << 8); 3105 return otus_write_barrier(sc); 3106 } 3107 3108 /* Default single-LED. */ 3109 void 3110 otus_led_newstate_type1(struct otus_softc *sc) 3111 { 3112 /* TBD */ 3113 device_printf(sc->sc_dev, "%s: TODO\n", __func__); 3114 } 3115 3116 /* NETGEAR, dual-LED. */ 3117 void 3118 otus_led_newstate_type2(struct otus_softc *sc) 3119 { 3120 /* TBD */ 3121 device_printf(sc->sc_dev, "%s: TODO\n", __func__); 3122 } 3123 3124 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */ 3125 void 3126 otus_led_newstate_type3(struct otus_softc *sc) 3127 { 3128 #if 0 3129 struct ieee80211com *ic = &sc->sc_ic; 3130 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3131 3132 uint32_t state = sc->led_state; 3133 3134 OTUS_LOCK_ASSERT(sc); 3135 3136 if (!vap) { 3137 state = 0; /* led off */ 3138 } else if (vap->iv_state == IEEE80211_S_INIT) { 3139 state = 0; /* LED off. */ 3140 } else if (vap->iv_state == IEEE80211_S_RUN) { 3141 /* Associated, LED always on. */ 3142 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) 3143 state = AR_LED0_ON; /* 2GHz=>Red. */ 3144 else 3145 state = AR_LED1_ON; /* 5GHz=>Blue. */ 3146 } else { 3147 /* Scanning, blink LED. */ 3148 state ^= AR_LED0_ON | AR_LED1_ON; 3149 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) 3150 state &= ~AR_LED1_ON; 3151 else 3152 state &= ~AR_LED0_ON; 3153 } 3154 if (state != sc->led_state) { 3155 otus_write(sc, AR_GPIO_REG_PORT_DATA, state); 3156 if (otus_write_barrier(sc) == 0) 3157 sc->led_state = state; 3158 } 3159 #endif 3160 } 3161 3162 static uint8_t zero_macaddr[IEEE80211_ADDR_LEN] = { 0,0,0,0,0,0 }; 3163 3164 /* 3165 * Set up operating mode, MAC/BSS address and RX filter. 3166 */ 3167 static void 3168 otus_set_operating_mode(struct otus_softc *sc) 3169 { 3170 struct ieee80211com *ic = &sc->sc_ic; 3171 struct ieee80211vap *vap; 3172 uint32_t cam_mode = AR_MAC_CAM_DEFAULTS; 3173 uint32_t rx_ctrl = AR_MAC_RX_CTRL_DEAGG | AR_MAC_RX_CTRL_SHORT_FILTER; 3174 uint32_t sniffer = AR_MAC_SNIFFER_DEFAULTS; 3175 uint32_t enc_mode = 0x78; /* XXX */ 3176 const uint8_t *macaddr; 3177 uint8_t bssid[IEEE80211_ADDR_LEN]; 3178 struct ieee80211_node *ni; 3179 3180 OTUS_LOCK_ASSERT(sc); 3181 3182 /* 3183 * If we're in sniffer mode or we don't have a MAC 3184 * address assigned, ensure it gets reset to all-zero. 3185 */ 3186 IEEE80211_ADDR_COPY(bssid, zero_macaddr); 3187 vap = TAILQ_FIRST(&ic->ic_vaps); 3188 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 3189 3190 switch (ic->ic_opmode) { 3191 case IEEE80211_M_STA: 3192 if (vap) { 3193 ni = ieee80211_ref_node(vap->iv_bss); 3194 IEEE80211_ADDR_COPY(bssid, ni->ni_bssid); 3195 ieee80211_free_node(ni); 3196 } 3197 cam_mode |= AR_MAC_CAM_STA; 3198 rx_ctrl |= AR_MAC_RX_CTRL_PASS_TO_HOST; 3199 break; 3200 case IEEE80211_M_MONITOR: 3201 /* 3202 * Note: monitor mode ends up causing the MAC to 3203 * generate ACK frames for everything it sees. 3204 * So don't do that; instead just put it in STA mode 3205 * and disable RX filters. 3206 */ 3207 default: 3208 cam_mode |= AR_MAC_CAM_STA; 3209 rx_ctrl |= AR_MAC_RX_CTRL_PASS_TO_HOST; 3210 break; 3211 } 3212 3213 /* 3214 * TODO: if/when we do hardware encryption, ensure it's 3215 * disabled if the NIC is in monitor mode. 3216 */ 3217 otus_write(sc, AR_MAC_REG_SNIFFER, sniffer); 3218 otus_write(sc, AR_MAC_REG_CAM_MODE, cam_mode); 3219 otus_write(sc, AR_MAC_REG_ENCRYPTION, enc_mode); 3220 otus_write(sc, AR_MAC_REG_RX_CONTROL, rx_ctrl); 3221 otus_set_macaddr(sc, macaddr); 3222 otus_set_bssid(sc, bssid); 3223 /* XXX barrier? */ 3224 } 3225 3226 static void 3227 otus_set_rx_filter(struct otus_softc *sc) 3228 { 3229 // struct ieee80211com *ic = &sc->sc_ic; 3230 3231 OTUS_LOCK_ASSERT(sc); 3232 3233 #if 0 3234 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 || 3235 ic->ic_opmode == IEEE80211_M_MONITOR) { 3236 otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0xff00ffff); 3237 } else { 3238 #endif 3239 /* Filter any control frames, BAR is bit 24. */ 3240 otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0x0500ffff); 3241 #if 0 3242 } 3243 #endif 3244 } 3245 3246 int 3247 otus_init(struct otus_softc *sc) 3248 { 3249 struct ieee80211com *ic = &sc->sc_ic; 3250 int error; 3251 3252 OTUS_UNLOCK_ASSERT(sc); 3253 3254 OTUS_LOCK(sc); 3255 3256 /* Drain any pending TX frames */ 3257 otus_drain_mbufq(sc); 3258 3259 /* Init MAC */ 3260 if ((error = otus_init_mac(sc)) != 0) { 3261 OTUS_UNLOCK(sc); 3262 device_printf(sc->sc_dev, 3263 "%s: could not initialize MAC\n", __func__); 3264 return error; 3265 } 3266 3267 otus_set_operating_mode(sc); 3268 otus_set_rx_filter(sc); 3269 (void) otus_set_operating_mode(sc); 3270 3271 sc->bb_reset = 1; /* Force cold reset. */ 3272 3273 if ((error = otus_set_chan(sc, ic->ic_curchan, 0)) != 0) { 3274 OTUS_UNLOCK(sc); 3275 device_printf(sc->sc_dev, 3276 "%s: could not set channel\n", __func__); 3277 return error; 3278 } 3279 3280 /* Start Rx. */ 3281 otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0x100); 3282 (void)otus_write_barrier(sc); 3283 3284 sc->sc_running = 1; 3285 3286 OTUS_UNLOCK(sc); 3287 return 0; 3288 } 3289 3290 void 3291 otus_stop(struct otus_softc *sc) 3292 { 3293 #if 0 3294 int s; 3295 #endif 3296 3297 OTUS_UNLOCK_ASSERT(sc); 3298 3299 OTUS_LOCK(sc); 3300 sc->sc_running = 0; 3301 sc->sc_tx_timer = 0; 3302 OTUS_UNLOCK(sc); 3303 3304 taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to); 3305 taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to); 3306 taskqueue_drain(taskqueue_thread, &sc->tx_task); 3307 3308 OTUS_LOCK(sc); 3309 sc->sc_running = 0; 3310 /* Stop Rx. */ 3311 otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0); 3312 (void)otus_write_barrier(sc); 3313 3314 /* Drain any pending TX frames */ 3315 otus_drain_mbufq(sc); 3316 3317 OTUS_UNLOCK(sc); 3318 } 3319