1 /* $OpenBSD: if_otus.c,v 1.49 2015/11/24 13:33:18 mpi Exp $ */ 2 3 /*- 4 * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Atheros AR9001U chipset. 22 */ 23 24 #include <sys/cdefs.h> 25 #include "opt_wlan.h" 26 27 #include <sys/param.h> 28 #include <sys/endian.h> 29 #include <sys/sockio.h> 30 #include <sys/mbuf.h> 31 #include <sys/kernel.h> 32 #include <sys/malloc.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/conf.h> 36 #include <sys/bus.h> 37 #include <sys/rman.h> 38 #include <sys/firmware.h> 39 #include <sys/module.h> 40 #include <sys/taskqueue.h> 41 42 #include <machine/bus.h> 43 #include <machine/resource.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_arp.h> 49 #include <net/if_dl.h> 50 #include <net/if_media.h> 51 52 #include <netinet/in.h> 53 #include <netinet/in_systm.h> 54 #include <netinet/in_var.h> 55 #include <netinet/if_ether.h> 56 #include <netinet/ip.h> 57 58 #include <net80211/ieee80211_var.h> 59 #include <net80211/ieee80211_regdomain.h> 60 #include <net80211/ieee80211_radiotap.h> 61 #include <net80211/ieee80211_ratectl.h> 62 #ifdef IEEE80211_SUPPORT_SUPERG 63 #include <net80211/ieee80211_superg.h> 64 #endif 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include "usbdevs.h" 69 70 #define USB_DEBUG_VAR otus_debug 71 #include <dev/usb/usb_debug.h> 72 73 #include "if_otusreg.h" 74 75 static int otus_debug = 0; 76 static SYSCTL_NODE(_hw_usb, OID_AUTO, otus, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 77 "USB otus"); 78 SYSCTL_INT(_hw_usb_otus, OID_AUTO, debug, CTLFLAG_RWTUN, &otus_debug, 0, 79 "Debug level"); 80 #define OTUS_DEBUG_XMIT 0x00000001 81 #define OTUS_DEBUG_RECV 0x00000002 82 #define OTUS_DEBUG_TXDONE 0x00000004 83 #define OTUS_DEBUG_RXDONE 0x00000008 84 #define OTUS_DEBUG_CMD 0x00000010 85 #define OTUS_DEBUG_CMDDONE 0x00000020 86 #define OTUS_DEBUG_RESET 0x00000040 87 #define OTUS_DEBUG_STATE 0x00000080 88 #define OTUS_DEBUG_CMDNOTIFY 0x00000100 89 #define OTUS_DEBUG_REGIO 0x00000200 90 #define OTUS_DEBUG_IRQ 0x00000400 91 #define OTUS_DEBUG_TXCOMP 0x00000800 92 #define OTUS_DEBUG_RX_BUFFER 0x00001000 93 #define OTUS_DEBUG_ANY 0xffffffff 94 95 #define OTUS_DPRINTF(sc, dm, ...) \ 96 do { \ 97 if ((dm == OTUS_DEBUG_ANY) || (dm & otus_debug)) \ 98 device_printf(sc->sc_dev, __VA_ARGS__); \ 99 } while (0) 100 #define OTUS_DEV(v, p) { USB_VPI(v, p, 0) } 101 static const STRUCT_USB_HOST_ID otus_devs[] = { 102 OTUS_DEV(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_WN7512), 103 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_3CRUSBN275), 104 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_TG121N), 105 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_AR9170), 106 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN612), 107 OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN821NV2), 108 OTUS_DEV(USB_VENDOR_AVM, USB_PRODUCT_AVM_FRITZWLAN), 109 OTUS_DEV(USB_VENDOR_CACE, USB_PRODUCT_CACE_AIRPCAPNX), 110 OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130D1), 111 OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A1), 112 OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A2), 113 OTUS_DEV(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_WNGDNUS2), 114 OTUS_DEV(USB_VENDOR_NEC, USB_PRODUCT_NEC_WL300NUG), 115 OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WN111V2), 116 OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000), 117 OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNDA3100), 118 OTUS_DEV(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US300), 119 OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_O8494), 120 OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_WNC0600), 121 OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB81), 122 OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB82), 123 OTUS_DEV(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1221), 124 OTUS_DEV(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_NWD271N), 125 }; 126 127 static device_probe_t otus_match; 128 static device_attach_t otus_attach; 129 static device_detach_t otus_detach; 130 131 static int otus_attachhook(struct otus_softc *); 132 static void otus_getradiocaps(struct ieee80211com *, int, int *, 133 struct ieee80211_channel[]); 134 int otus_load_firmware(struct otus_softc *, const char *, 135 uint32_t); 136 int otus_open_pipes(struct otus_softc *); 137 void otus_close_pipes(struct otus_softc *); 138 139 static int otus_alloc_tx_cmd_list(struct otus_softc *); 140 static void otus_free_tx_cmd_list(struct otus_softc *); 141 142 static int otus_alloc_rx_list(struct otus_softc *); 143 static void otus_free_rx_list(struct otus_softc *); 144 static int otus_alloc_tx_list(struct otus_softc *); 145 static void otus_free_tx_list(struct otus_softc *); 146 static void otus_free_list(struct otus_softc *, struct otus_data [], int); 147 static struct otus_data *_otus_getbuf(struct otus_softc *); 148 static struct otus_data *otus_getbuf(struct otus_softc *); 149 static void otus_freebuf(struct otus_softc *, struct otus_data *); 150 151 static struct otus_tx_cmd *_otus_get_txcmd(struct otus_softc *); 152 static struct otus_tx_cmd *otus_get_txcmd(struct otus_softc *); 153 static void otus_free_txcmd(struct otus_softc *, struct otus_tx_cmd *); 154 155 void otus_next_scan(void *, int); 156 static void otus_tx_task(void *, int pending); 157 void otus_do_async(struct otus_softc *, 158 void (*)(struct otus_softc *, void *), void *, int); 159 int otus_newstate(struct ieee80211vap *, enum ieee80211_state, 160 int); 161 int otus_cmd(struct otus_softc *, uint8_t, const void *, int, 162 void *, int); 163 void otus_write(struct otus_softc *, uint32_t, uint32_t); 164 int otus_write_barrier(struct otus_softc *); 165 static struct ieee80211_node *otus_node_alloc(struct ieee80211vap *vap, 166 const uint8_t mac[IEEE80211_ADDR_LEN]); 167 int otus_read_eeprom(struct otus_softc *); 168 void otus_newassoc(struct ieee80211_node *, int); 169 void otus_cmd_rxeof(struct otus_softc *, uint8_t *, int); 170 void otus_sub_rxeof(struct otus_softc *, uint8_t *, int, 171 struct mbufq *); 172 static int otus_tx(struct otus_softc *, struct ieee80211_node *, 173 struct mbuf *, struct otus_data *, 174 const struct ieee80211_bpf_params *); 175 int otus_ioctl(if_t, u_long, caddr_t); 176 int otus_set_multi(struct otus_softc *); 177 static int otus_updateedca(struct ieee80211com *); 178 static void otus_updateedca_locked(struct otus_softc *); 179 static void otus_updateslot(struct otus_softc *); 180 static void otus_set_operating_mode(struct otus_softc *sc); 181 static void otus_set_rx_filter(struct otus_softc *sc); 182 int otus_init_mac(struct otus_softc *); 183 uint32_t otus_phy_get_def(struct otus_softc *, uint32_t); 184 int otus_set_board_values(struct otus_softc *, 185 struct ieee80211_channel *); 186 int otus_program_phy(struct otus_softc *, 187 struct ieee80211_channel *); 188 int otus_set_rf_bank4(struct otus_softc *, 189 struct ieee80211_channel *); 190 void otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *); 191 static int otus_set_chan(struct otus_softc *, struct ieee80211_channel *, 192 int); 193 int otus_set_key(struct ieee80211com *, struct ieee80211_node *, 194 struct ieee80211_key *); 195 void otus_set_key_cb(struct otus_softc *, void *); 196 void otus_delete_key(struct ieee80211com *, struct ieee80211_node *, 197 struct ieee80211_key *); 198 void otus_delete_key_cb(struct otus_softc *, void *); 199 void otus_calibrate_to(void *, int); 200 int otus_set_bssid(struct otus_softc *, const uint8_t *); 201 int otus_set_macaddr(struct otus_softc *, const uint8_t *); 202 void otus_led_newstate_type1(struct otus_softc *); 203 void otus_led_newstate_type2(struct otus_softc *); 204 void otus_led_newstate_type3(struct otus_softc *); 205 int otus_init(struct otus_softc *sc); 206 void otus_stop(struct otus_softc *sc); 207 208 static device_method_t otus_methods[] = { 209 DEVMETHOD(device_probe, otus_match), 210 DEVMETHOD(device_attach, otus_attach), 211 DEVMETHOD(device_detach, otus_detach), 212 213 DEVMETHOD_END 214 }; 215 216 static driver_t otus_driver = { 217 .name = "otus", 218 .methods = otus_methods, 219 .size = sizeof(struct otus_softc) 220 }; 221 222 DRIVER_MODULE(otus, uhub, otus_driver, NULL, NULL); 223 MODULE_DEPEND(otus, wlan, 1, 1, 1); 224 MODULE_DEPEND(otus, usb, 1, 1, 1); 225 MODULE_DEPEND(otus, firmware, 1, 1, 1); 226 MODULE_VERSION(otus, 1); 227 228 static usb_callback_t otus_bulk_tx_callback; 229 static usb_callback_t otus_bulk_rx_callback; 230 static usb_callback_t otus_bulk_irq_callback; 231 static usb_callback_t otus_bulk_cmd_callback; 232 233 static const struct usb_config otus_config[OTUS_N_XFER] = { 234 [OTUS_BULK_TX] = { 235 .type = UE_BULK, 236 .endpoint = UE_ADDR_ANY, 237 .direction = UE_DIR_OUT, 238 .bufsize = 0x200, 239 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 240 .callback = otus_bulk_tx_callback, 241 .timeout = 5000, /* ms */ 242 }, 243 [OTUS_BULK_RX] = { 244 .type = UE_BULK, 245 .endpoint = UE_ADDR_ANY, 246 .direction = UE_DIR_IN, 247 .bufsize = OTUS_RXBUFSZ, 248 .flags = { .ext_buffer = 1, .pipe_bof = 1,.short_xfer_ok = 1,}, 249 .callback = otus_bulk_rx_callback, 250 }, 251 [OTUS_BULK_IRQ] = { 252 .type = UE_INTERRUPT, 253 .endpoint = UE_ADDR_ANY, 254 .direction = UE_DIR_IN, 255 .bufsize = OTUS_MAX_CTRLSZ, 256 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 257 .callback = otus_bulk_irq_callback, 258 }, 259 [OTUS_BULK_CMD] = { 260 .type = UE_INTERRUPT, 261 .endpoint = UE_ADDR_ANY, 262 .direction = UE_DIR_OUT, 263 .bufsize = OTUS_MAX_CTRLSZ, 264 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 265 .callback = otus_bulk_cmd_callback, 266 .timeout = 5000, /* ms */ 267 }, 268 }; 269 270 static int 271 otus_match(device_t self) 272 { 273 struct usb_attach_arg *uaa = device_get_ivars(self); 274 275 if (uaa->usb_mode != USB_MODE_HOST || 276 uaa->info.bIfaceIndex != 0 || 277 uaa->info.bConfigIndex != 0) 278 return (ENXIO); 279 280 return (usbd_lookup_id_by_uaa(otus_devs, sizeof(otus_devs), uaa)); 281 } 282 283 static int 284 otus_attach(device_t self) 285 { 286 struct usb_attach_arg *uaa = device_get_ivars(self); 287 struct otus_softc *sc = device_get_softc(self); 288 int error; 289 uint8_t iface_index; 290 291 device_set_usb_desc(self); 292 sc->sc_udev = uaa->device; 293 sc->sc_dev = self; 294 295 mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, 296 MTX_DEF); 297 298 TIMEOUT_TASK_INIT(taskqueue_thread, &sc->scan_to, 0, otus_next_scan, sc); 299 TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_to, 0, otus_calibrate_to, sc); 300 TASK_INIT(&sc->tx_task, 0, otus_tx_task, sc); 301 mbufq_init(&sc->sc_snd, ifqmaxlen); 302 303 iface_index = 0; 304 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 305 otus_config, OTUS_N_XFER, sc, &sc->sc_mtx); 306 if (error) { 307 device_printf(sc->sc_dev, 308 "could not allocate USB transfers, err=%s\n", 309 usbd_errstr(error)); 310 goto fail_usb; 311 } 312 313 if ((error = otus_open_pipes(sc)) != 0) { 314 device_printf(sc->sc_dev, "%s: could not open pipes\n", 315 __func__); 316 goto fail; 317 } 318 319 /* XXX check return status; fail out if appropriate */ 320 if (otus_attachhook(sc) != 0) 321 goto fail; 322 323 return (0); 324 325 fail: 326 otus_close_pipes(sc); 327 fail_usb: 328 mtx_destroy(&sc->sc_mtx); 329 return (ENXIO); 330 } 331 332 static int 333 otus_detach(device_t self) 334 { 335 struct otus_softc *sc = device_get_softc(self); 336 struct ieee80211com *ic = &sc->sc_ic; 337 338 otus_stop(sc); 339 340 usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER); 341 342 taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to); 343 taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to); 344 taskqueue_drain(taskqueue_thread, &sc->tx_task); 345 346 otus_close_pipes(sc); 347 #if 0 348 /* Wait for all queued asynchronous commands to complete. */ 349 usb_rem_wait_task(sc->sc_udev, &sc->sc_task); 350 351 usbd_ref_wait(sc->sc_udev); 352 #endif 353 354 ieee80211_ifdetach(ic); 355 mtx_destroy(&sc->sc_mtx); 356 return 0; 357 } 358 359 static void 360 otus_delay_ms(struct otus_softc *sc, int ms) 361 { 362 363 DELAY(1000 * ms); 364 } 365 366 static struct ieee80211vap * 367 otus_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 368 enum ieee80211_opmode opmode, int flags, 369 const uint8_t bssid[IEEE80211_ADDR_LEN], 370 const uint8_t mac[IEEE80211_ADDR_LEN]) 371 { 372 struct otus_vap *uvp; 373 struct ieee80211vap *vap; 374 375 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 376 return (NULL); 377 378 uvp = malloc(sizeof(struct otus_vap), M_80211_VAP, M_WAITOK | M_ZERO); 379 vap = &uvp->vap; 380 381 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 382 flags, bssid) != 0) { 383 /* out of memory */ 384 free(uvp, M_80211_VAP); 385 return (NULL); 386 } 387 388 /* override state transition machine */ 389 uvp->newstate = vap->iv_newstate; 390 vap->iv_newstate = otus_newstate; 391 392 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 393 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 394 395 ieee80211_ratectl_init(vap); 396 397 /* complete setup */ 398 ieee80211_vap_attach(vap, ieee80211_media_change, 399 ieee80211_media_status, mac); 400 ic->ic_opmode = opmode; 401 402 return (vap); 403 } 404 405 static void 406 otus_vap_delete(struct ieee80211vap *vap) 407 { 408 struct otus_vap *uvp = OTUS_VAP(vap); 409 410 ieee80211_ratectl_deinit(vap); 411 ieee80211_vap_detach(vap); 412 free(uvp, M_80211_VAP); 413 } 414 415 static void 416 otus_parent(struct ieee80211com *ic) 417 { 418 struct otus_softc *sc = ic->ic_softc; 419 int startall = 0; 420 421 if (ic->ic_nrunning > 0) { 422 if (!sc->sc_running) { 423 otus_init(sc); 424 startall = 1; 425 } else { 426 (void) otus_set_multi(sc); 427 } 428 } else if (sc->sc_running) 429 otus_stop(sc); 430 431 if (startall) 432 ieee80211_start_all(ic); 433 } 434 435 static void 436 otus_drain_mbufq(struct otus_softc *sc) 437 { 438 struct mbuf *m; 439 struct ieee80211_node *ni; 440 441 OTUS_LOCK_ASSERT(sc); 442 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 443 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 444 m->m_pkthdr.rcvif = NULL; 445 ieee80211_free_node(ni); 446 m_freem(m); 447 } 448 } 449 450 static void 451 otus_tx_start(struct otus_softc *sc) 452 { 453 454 taskqueue_enqueue(taskqueue_thread, &sc->tx_task); 455 } 456 457 static int 458 otus_transmit(struct ieee80211com *ic, struct mbuf *m) 459 { 460 struct otus_softc *sc = ic->ic_softc; 461 int error; 462 463 OTUS_LOCK(sc); 464 if (! sc->sc_running) { 465 OTUS_UNLOCK(sc); 466 return (ENXIO); 467 } 468 469 /* XXX TODO: handle fragments */ 470 error = mbufq_enqueue(&sc->sc_snd, m); 471 if (error) { 472 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 473 "%s: mbufq_enqueue failed: %d\n", 474 __func__, 475 error); 476 OTUS_UNLOCK(sc); 477 return (error); 478 } 479 OTUS_UNLOCK(sc); 480 481 /* Kick TX */ 482 otus_tx_start(sc); 483 484 return (0); 485 } 486 487 static void 488 _otus_start(struct otus_softc *sc) 489 { 490 struct ieee80211_node *ni; 491 struct otus_data *bf; 492 struct mbuf *m; 493 494 OTUS_LOCK_ASSERT(sc); 495 496 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 497 bf = otus_getbuf(sc); 498 if (bf == NULL) { 499 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 500 "%s: failed to get buffer\n", __func__); 501 mbufq_prepend(&sc->sc_snd, m); 502 break; 503 } 504 505 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 506 m->m_pkthdr.rcvif = NULL; 507 508 if (otus_tx(sc, ni, m, bf, NULL) != 0) { 509 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 510 "%s: failed to transmit\n", __func__); 511 if_inc_counter(ni->ni_vap->iv_ifp, 512 IFCOUNTER_OERRORS, 1); 513 otus_freebuf(sc, bf); 514 ieee80211_free_node(ni); 515 m_freem(m); 516 break; 517 } 518 } 519 } 520 521 static void 522 otus_tx_task(void *arg, int pending) 523 { 524 struct otus_softc *sc = arg; 525 526 OTUS_LOCK(sc); 527 _otus_start(sc); 528 OTUS_UNLOCK(sc); 529 } 530 531 static int 532 otus_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 533 const struct ieee80211_bpf_params *params) 534 { 535 struct ieee80211com *ic= ni->ni_ic; 536 struct otus_softc *sc = ic->ic_softc; 537 struct otus_data *bf = NULL; 538 int error = 0; 539 540 /* Don't transmit if we're not running */ 541 OTUS_LOCK(sc); 542 if (! sc->sc_running) { 543 error = ENETDOWN; 544 goto error; 545 } 546 547 bf = otus_getbuf(sc); 548 if (bf == NULL) { 549 error = ENOBUFS; 550 goto error; 551 } 552 553 if (otus_tx(sc, ni, m, bf, params) != 0) { 554 error = EIO; 555 goto error; 556 } 557 558 OTUS_UNLOCK(sc); 559 return (0); 560 error: 561 if (bf) 562 otus_freebuf(sc, bf); 563 OTUS_UNLOCK(sc); 564 m_freem(m); 565 return (error); 566 } 567 568 static void 569 otus_update_chw(struct ieee80211com *ic) 570 { 571 572 printf("%s: TODO\n", __func__); 573 } 574 575 static void 576 otus_set_channel(struct ieee80211com *ic) 577 { 578 struct otus_softc *sc = ic->ic_softc; 579 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "%s: set channel: %d\n", 580 __func__, 581 ic->ic_curchan->ic_freq); 582 583 OTUS_LOCK(sc); 584 (void) otus_set_chan(sc, ic->ic_curchan, 0); 585 OTUS_UNLOCK(sc); 586 } 587 588 static int 589 otus_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 590 { 591 592 /* For now, no A-MPDU TX support in the driver */ 593 return (0); 594 } 595 596 static void 597 otus_scan_start(struct ieee80211com *ic) 598 { 599 600 // printf("%s: TODO\n", __func__); 601 } 602 603 static void 604 otus_scan_end(struct ieee80211com *ic) 605 { 606 607 // printf("%s: TODO\n", __func__); 608 } 609 610 static void 611 otus_update_mcast(struct ieee80211com *ic) 612 { 613 struct otus_softc *sc = ic->ic_softc; 614 615 (void) otus_set_multi(sc); 616 } 617 618 static int 619 otus_attachhook(struct otus_softc *sc) 620 { 621 struct ieee80211com *ic = &sc->sc_ic; 622 usb_device_request_t req; 623 uint32_t in, out; 624 int error; 625 626 /* Not locked */ 627 error = otus_load_firmware(sc, "otusfw_init", AR_FW_INIT_ADDR); 628 if (error != 0) { 629 device_printf(sc->sc_dev, "%s: could not load %s firmware\n", 630 __func__, "init"); 631 return (ENXIO); 632 } 633 634 /* XXX not locked? */ 635 otus_delay_ms(sc, 1000); 636 637 /* Not locked */ 638 error = otus_load_firmware(sc, "otusfw_main", AR_FW_MAIN_ADDR); 639 if (error != 0) { 640 device_printf(sc->sc_dev, "%s: could not load %s firmware\n", 641 __func__, "main"); 642 return (ENXIO); 643 } 644 645 OTUS_LOCK(sc); 646 647 /* Tell device that firmware transfer is complete. */ 648 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 649 req.bRequest = AR_FW_DOWNLOAD_COMPLETE; 650 USETW(req.wValue, 0); 651 USETW(req.wIndex, 0); 652 USETW(req.wLength, 0); 653 if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req, NULL, 654 0, NULL, 250) != 0) { 655 OTUS_UNLOCK(sc); 656 device_printf(sc->sc_dev, 657 "%s: firmware initialization failed\n", 658 __func__); 659 return (ENXIO); 660 } 661 662 /* Send an ECHO command to check that everything is settled. */ 663 in = 0xbadc0ffe; 664 if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out, sizeof(out)) != 0) { 665 OTUS_UNLOCK(sc); 666 device_printf(sc->sc_dev, 667 "%s: echo command failed\n", __func__); 668 return (ENXIO); 669 } 670 if (in != out) { 671 OTUS_UNLOCK(sc); 672 device_printf(sc->sc_dev, 673 "%s: echo reply mismatch: 0x%08x!=0x%08x\n", 674 __func__, in, out); 675 return (ENXIO); 676 } 677 678 /* Read entire EEPROM. */ 679 if (otus_read_eeprom(sc) != 0) { 680 OTUS_UNLOCK(sc); 681 device_printf(sc->sc_dev, 682 "%s: could not read EEPROM\n", 683 __func__); 684 return (ENXIO); 685 } 686 687 OTUS_UNLOCK(sc); 688 689 sc->txmask = sc->eeprom.baseEepHeader.txMask; 690 sc->rxmask = sc->eeprom.baseEepHeader.rxMask; 691 sc->capflags = sc->eeprom.baseEepHeader.opCapFlags; 692 IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->eeprom.baseEepHeader.macAddr); 693 sc->sc_led_newstate = otus_led_newstate_type3; /* XXX */ 694 695 if (sc->txmask == 0x5) 696 ic->ic_txstream = 2; 697 else 698 ic->ic_txstream = 1; 699 700 if (sc->rxmask == 0x5) 701 ic->ic_rxstream = 2; 702 else 703 ic->ic_rxstream = 1; 704 705 device_printf(sc->sc_dev, 706 "MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n", 707 (sc->capflags & AR5416_OPFLAGS_11A) ? 708 0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101), 709 (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1, 710 ether_sprintf(ic->ic_macaddr)); 711 712 ic->ic_softc = sc; 713 ic->ic_name = device_get_nameunit(sc->sc_dev); 714 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 715 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 716 717 /* Set device capabilities. */ 718 ic->ic_caps = 719 IEEE80211_C_STA | /* station mode */ 720 #if 0 721 IEEE80211_C_BGSCAN | /* Background scan. */ 722 #endif 723 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ 724 IEEE80211_C_WME | /* WME/QoS */ 725 IEEE80211_C_SHSLOT | /* Short slot time supported. */ 726 IEEE80211_C_FF | /* Atheros fast-frames supported. */ 727 IEEE80211_C_MONITOR | /* Enable monitor mode */ 728 IEEE80211_C_SWAMSDUTX | /* Do software A-MSDU TX */ 729 IEEE80211_C_WPA; /* WPA/RSN. */ 730 731 ic->ic_htcaps = 732 IEEE80211_HTC_HT | 733 #if 0 734 IEEE80211_HTC_AMPDU | 735 #endif 736 IEEE80211_HTC_AMSDU | 737 IEEE80211_HTCAP_MAXAMSDU_3839 | 738 IEEE80211_HTCAP_SMPS_OFF; 739 740 otus_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 741 ic->ic_channels); 742 743 ieee80211_ifattach(ic); 744 ic->ic_raw_xmit = otus_raw_xmit; 745 ic->ic_scan_start = otus_scan_start; 746 ic->ic_scan_end = otus_scan_end; 747 ic->ic_set_channel = otus_set_channel; 748 ic->ic_getradiocaps = otus_getradiocaps; 749 ic->ic_vap_create = otus_vap_create; 750 ic->ic_vap_delete = otus_vap_delete; 751 ic->ic_update_mcast = otus_update_mcast; 752 ic->ic_update_promisc = otus_update_mcast; 753 ic->ic_parent = otus_parent; 754 ic->ic_transmit = otus_transmit; 755 ic->ic_update_chw = otus_update_chw; 756 ic->ic_ampdu_enable = otus_ampdu_enable; 757 ic->ic_wme.wme_update = otus_updateedca; 758 ic->ic_newassoc = otus_newassoc; 759 ic->ic_node_alloc = otus_node_alloc; 760 761 #ifdef notyet 762 ic->ic_set_key = otus_set_key; 763 ic->ic_delete_key = otus_delete_key; 764 #endif 765 766 ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, 767 sizeof(sc->sc_txtap), OTUS_TX_RADIOTAP_PRESENT, 768 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 769 OTUS_RX_RADIOTAP_PRESENT); 770 771 return (0); 772 } 773 774 static void 775 otus_getradiocaps(struct ieee80211com *ic, 776 int maxchans, int *nchans, struct ieee80211_channel chans[]) 777 { 778 struct otus_softc *sc = ic->ic_softc; 779 uint8_t bands[IEEE80211_MODE_BYTES]; 780 781 /* Set supported .11b and .11g rates. */ 782 memset(bands, 0, sizeof(bands)); 783 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { 784 setbit(bands, IEEE80211_MODE_11B); 785 setbit(bands, IEEE80211_MODE_11G); 786 setbit(bands, IEEE80211_MODE_11NG); 787 ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 788 ar_chans, 14, bands, 0); 789 } 790 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { 791 setbit(bands, IEEE80211_MODE_11A); 792 setbit(bands, IEEE80211_MODE_11NA); 793 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 794 &ar_chans[14], nitems(ar_chans) - 14, bands, 0); 795 } 796 } 797 798 int 799 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr) 800 { 801 usb_device_request_t req; 802 char *ptr; 803 const struct firmware *fw; 804 int mlen, error, size; 805 806 error = 0; 807 808 /* Read firmware image from the filesystem. */ 809 if ((fw = firmware_get(name)) == NULL) { 810 device_printf(sc->sc_dev, 811 "%s: failed loadfirmware of file %s\n", __func__, name); 812 return (ENXIO); 813 } 814 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 815 req.bRequest = AR_FW_DOWNLOAD; 816 USETW(req.wIndex, 0); 817 818 OTUS_LOCK(sc); 819 820 /* XXX const */ 821 ptr = __DECONST(char *, fw->data); 822 size = fw->datasize; 823 addr >>= 8; 824 while (size > 0) { 825 mlen = MIN(size, 4096); 826 827 USETW(req.wValue, addr); 828 USETW(req.wLength, mlen); 829 if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 830 &req, ptr, 0, NULL, 250) != 0) { 831 error = EIO; 832 break; 833 } 834 addr += mlen >> 8; 835 ptr += mlen; 836 size -= mlen; 837 } 838 839 OTUS_UNLOCK(sc); 840 841 firmware_put(fw, FIRMWARE_UNLOAD); 842 if (error != 0) 843 device_printf(sc->sc_dev, 844 "%s: %s: error=%d\n", __func__, name, error); 845 return error; 846 } 847 848 int 849 otus_open_pipes(struct otus_softc *sc) 850 { 851 #if 0 852 int isize, error; 853 int i; 854 #endif 855 int error; 856 857 OTUS_UNLOCK_ASSERT(sc); 858 859 if ((error = otus_alloc_tx_cmd_list(sc)) != 0) { 860 device_printf(sc->sc_dev, 861 "%s: could not allocate command xfer\n", 862 __func__); 863 goto fail; 864 } 865 866 if ((error = otus_alloc_tx_list(sc)) != 0) { 867 device_printf(sc->sc_dev, "%s: could not allocate Tx xfers\n", 868 __func__); 869 goto fail; 870 } 871 872 if ((error = otus_alloc_rx_list(sc)) != 0) { 873 device_printf(sc->sc_dev, "%s: could not allocate Rx xfers\n", 874 __func__); 875 goto fail; 876 } 877 878 /* Enable RX transfers; needed for initial firmware messages */ 879 OTUS_LOCK(sc); 880 usbd_transfer_start(sc->sc_xfer[OTUS_BULK_RX]); 881 usbd_transfer_start(sc->sc_xfer[OTUS_BULK_IRQ]); 882 OTUS_UNLOCK(sc); 883 return 0; 884 885 fail: otus_close_pipes(sc); 886 return error; 887 } 888 889 void 890 otus_close_pipes(struct otus_softc *sc) 891 { 892 893 OTUS_LOCK(sc); 894 otus_free_tx_cmd_list(sc); 895 otus_free_tx_list(sc); 896 otus_free_rx_list(sc); 897 OTUS_UNLOCK(sc); 898 899 usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER); 900 } 901 902 static void 903 otus_free_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], int ndata) 904 { 905 int i; 906 907 /* XXX TODO: someone has to have waken up waiters! */ 908 for (i = 0; i < ndata; i++) { 909 struct otus_tx_cmd *dp = &cmd[i]; 910 911 if (dp->buf != NULL) { 912 free(dp->buf, M_USBDEV); 913 dp->buf = NULL; 914 } 915 } 916 } 917 918 static int 919 otus_alloc_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], 920 int ndata, int maxsz) 921 { 922 int i, error; 923 924 for (i = 0; i < ndata; i++) { 925 struct otus_tx_cmd *dp = &cmd[i]; 926 dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT | M_ZERO); 927 dp->odata = NULL; 928 if (dp->buf == NULL) { 929 device_printf(sc->sc_dev, 930 "could not allocate buffer\n"); 931 error = ENOMEM; 932 goto fail; 933 } 934 } 935 936 return (0); 937 fail: 938 otus_free_cmd_list(sc, cmd, ndata); 939 return (error); 940 } 941 942 static int 943 otus_alloc_tx_cmd_list(struct otus_softc *sc) 944 { 945 int error, i; 946 947 error = otus_alloc_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT, 948 OTUS_MAX_TXCMDSZ); 949 if (error != 0) 950 return (error); 951 952 STAILQ_INIT(&sc->sc_cmd_active); 953 STAILQ_INIT(&sc->sc_cmd_inactive); 954 STAILQ_INIT(&sc->sc_cmd_pending); 955 STAILQ_INIT(&sc->sc_cmd_waiting); 956 957 for (i = 0; i < OTUS_CMD_LIST_COUNT; i++) 958 STAILQ_INSERT_HEAD(&sc->sc_cmd_inactive, &sc->sc_cmd[i], 959 next_cmd); 960 961 return (0); 962 } 963 964 static void 965 otus_free_tx_cmd_list(struct otus_softc *sc) 966 { 967 968 /* 969 * XXX TODO: something needs to wake up any pending/sleeping 970 * waiters! 971 */ 972 STAILQ_INIT(&sc->sc_cmd_active); 973 STAILQ_INIT(&sc->sc_cmd_inactive); 974 STAILQ_INIT(&sc->sc_cmd_pending); 975 STAILQ_INIT(&sc->sc_cmd_waiting); 976 977 otus_free_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT); 978 } 979 980 static int 981 otus_alloc_list(struct otus_softc *sc, struct otus_data data[], 982 int ndata, int maxsz) 983 { 984 int i, error; 985 986 for (i = 0; i < ndata; i++) { 987 struct otus_data *dp = &data[i]; 988 dp->sc = sc; 989 dp->m = NULL; 990 dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT | M_ZERO); 991 if (dp->buf == NULL) { 992 device_printf(sc->sc_dev, 993 "could not allocate buffer\n"); 994 error = ENOMEM; 995 goto fail; 996 } 997 dp->ni = NULL; 998 } 999 1000 return (0); 1001 fail: 1002 otus_free_list(sc, data, ndata); 1003 return (error); 1004 } 1005 1006 static int 1007 otus_alloc_rx_list(struct otus_softc *sc) 1008 { 1009 int error, i; 1010 1011 error = otus_alloc_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT, 1012 OTUS_RXBUFSZ); 1013 if (error != 0) 1014 return (error); 1015 1016 STAILQ_INIT(&sc->sc_rx_active); 1017 STAILQ_INIT(&sc->sc_rx_inactive); 1018 1019 for (i = 0; i < OTUS_RX_LIST_COUNT; i++) 1020 STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); 1021 1022 return (0); 1023 } 1024 1025 static int 1026 otus_alloc_tx_list(struct otus_softc *sc) 1027 { 1028 int error, i; 1029 1030 error = otus_alloc_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT, 1031 OTUS_TXBUFSZ); 1032 if (error != 0) 1033 return (error); 1034 1035 STAILQ_INIT(&sc->sc_tx_inactive); 1036 1037 for (i = 0; i != OTUS_N_XFER; i++) { 1038 STAILQ_INIT(&sc->sc_tx_active[i]); 1039 STAILQ_INIT(&sc->sc_tx_pending[i]); 1040 } 1041 1042 for (i = 0; i < OTUS_TX_LIST_COUNT; i++) { 1043 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); 1044 } 1045 1046 return (0); 1047 } 1048 1049 static void 1050 otus_free_tx_list(struct otus_softc *sc) 1051 { 1052 int i; 1053 1054 /* prevent further allocations from TX list(s) */ 1055 STAILQ_INIT(&sc->sc_tx_inactive); 1056 1057 for (i = 0; i != OTUS_N_XFER; i++) { 1058 STAILQ_INIT(&sc->sc_tx_active[i]); 1059 STAILQ_INIT(&sc->sc_tx_pending[i]); 1060 } 1061 1062 otus_free_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT); 1063 } 1064 1065 static void 1066 otus_free_rx_list(struct otus_softc *sc) 1067 { 1068 /* prevent further allocations from RX list(s) */ 1069 STAILQ_INIT(&sc->sc_rx_inactive); 1070 STAILQ_INIT(&sc->sc_rx_active); 1071 1072 otus_free_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT); 1073 } 1074 1075 static void 1076 otus_free_list(struct otus_softc *sc, struct otus_data data[], int ndata) 1077 { 1078 int i; 1079 1080 for (i = 0; i < ndata; i++) { 1081 struct otus_data *dp = &data[i]; 1082 1083 if (dp->buf != NULL) { 1084 free(dp->buf, M_USBDEV); 1085 dp->buf = NULL; 1086 } 1087 if (dp->ni != NULL) { 1088 ieee80211_free_node(dp->ni); 1089 dp->ni = NULL; 1090 } 1091 } 1092 } 1093 1094 static struct otus_data * 1095 _otus_getbuf(struct otus_softc *sc) 1096 { 1097 struct otus_data *bf; 1098 1099 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 1100 if (bf != NULL) 1101 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 1102 else 1103 bf = NULL; 1104 /* XXX bzero? */ 1105 return (bf); 1106 } 1107 1108 static struct otus_data * 1109 otus_getbuf(struct otus_softc *sc) 1110 { 1111 struct otus_data *bf; 1112 1113 OTUS_LOCK_ASSERT(sc); 1114 1115 bf = _otus_getbuf(sc); 1116 return (bf); 1117 } 1118 1119 static void 1120 otus_freebuf(struct otus_softc *sc, struct otus_data *bf) 1121 { 1122 1123 OTUS_LOCK_ASSERT(sc); 1124 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next); 1125 } 1126 1127 static struct otus_tx_cmd * 1128 _otus_get_txcmd(struct otus_softc *sc) 1129 { 1130 struct otus_tx_cmd *bf; 1131 1132 bf = STAILQ_FIRST(&sc->sc_cmd_inactive); 1133 if (bf != NULL) 1134 STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next_cmd); 1135 else 1136 bf = NULL; 1137 return (bf); 1138 } 1139 1140 static struct otus_tx_cmd * 1141 otus_get_txcmd(struct otus_softc *sc) 1142 { 1143 struct otus_tx_cmd *bf; 1144 1145 OTUS_LOCK_ASSERT(sc); 1146 1147 bf = _otus_get_txcmd(sc); 1148 if (bf == NULL) { 1149 device_printf(sc->sc_dev, "%s: no tx cmd buffers\n", 1150 __func__); 1151 } 1152 return (bf); 1153 } 1154 1155 static void 1156 otus_free_txcmd(struct otus_softc *sc, struct otus_tx_cmd *bf) 1157 { 1158 1159 OTUS_LOCK_ASSERT(sc); 1160 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, bf, next_cmd); 1161 } 1162 1163 void 1164 otus_next_scan(void *arg, int pending) 1165 { 1166 #if 0 1167 struct otus_softc *sc = arg; 1168 1169 if (usbd_is_dying(sc->sc_udev)) 1170 return; 1171 1172 usbd_ref_incr(sc->sc_udev); 1173 1174 if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) 1175 ieee80211_next_scan(&sc->sc_ic.ic_if); 1176 1177 usbd_ref_decr(sc->sc_udev); 1178 #endif 1179 } 1180 1181 int 1182 otus_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1183 { 1184 struct otus_vap *uvp = OTUS_VAP(vap); 1185 struct ieee80211com *ic = vap->iv_ic; 1186 struct otus_softc *sc = ic->ic_softc; 1187 enum ieee80211_state ostate; 1188 1189 ostate = vap->iv_state; 1190 OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "%s: %s -> %s\n", __func__, 1191 ieee80211_state_name[ostate], 1192 ieee80211_state_name[nstate]); 1193 1194 IEEE80211_UNLOCK(ic); 1195 1196 OTUS_LOCK(sc); 1197 1198 /* XXX TODO: more fleshing out! */ 1199 1200 switch (nstate) { 1201 case IEEE80211_S_INIT: 1202 otus_set_operating_mode(sc); 1203 otus_set_rx_filter(sc); 1204 break; 1205 case IEEE80211_S_RUN: 1206 if (ic->ic_opmode == IEEE80211_M_STA) { 1207 otus_updateslot(sc); 1208 otus_set_operating_mode(sc); 1209 otus_set_rx_filter(sc); 1210 1211 /* Start calibration timer. */ 1212 taskqueue_enqueue_timeout(taskqueue_thread, 1213 &sc->calib_to, hz); 1214 } 1215 break; 1216 default: 1217 break; 1218 } 1219 1220 /* XXX TODO: calibration? */ 1221 1222 sc->sc_led_newstate(sc); 1223 1224 OTUS_UNLOCK(sc); 1225 IEEE80211_LOCK(ic); 1226 return (uvp->newstate(vap, nstate, arg)); 1227 } 1228 1229 int 1230 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen, 1231 void *odata, int odatalen) 1232 { 1233 struct otus_tx_cmd *cmd; 1234 struct ar_cmd_hdr *hdr; 1235 int xferlen, error; 1236 1237 OTUS_LOCK_ASSERT(sc); 1238 1239 /* Always bulk-out a multiple of 4 bytes. */ 1240 xferlen = (sizeof (*hdr) + ilen + 3) & ~3; 1241 if (xferlen > OTUS_MAX_TXCMDSZ) { 1242 device_printf(sc->sc_dev, "%s: command (0x%02x) size (%d) > %d\n", 1243 __func__, 1244 code, 1245 xferlen, 1246 OTUS_MAX_TXCMDSZ); 1247 return (EIO); 1248 } 1249 1250 cmd = otus_get_txcmd(sc); 1251 if (cmd == NULL) { 1252 device_printf(sc->sc_dev, "%s: failed to get buf\n", 1253 __func__); 1254 return (EIO); 1255 } 1256 1257 hdr = (struct ar_cmd_hdr *)cmd->buf; 1258 hdr->code = code; 1259 hdr->len = ilen; 1260 hdr->token = ++sc->token; /* Don't care about endianness. */ 1261 cmd->token = hdr->token; 1262 /* XXX TODO: check max cmd length? */ 1263 memcpy((uint8_t *)&hdr[1], idata, ilen); 1264 1265 OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, 1266 "%s: sending command code=0x%02x len=%d token=%d\n", 1267 __func__, code, ilen, hdr->token); 1268 1269 cmd->odata = odata; 1270 cmd->odatalen = odatalen; 1271 cmd->buflen = xferlen; 1272 1273 /* Queue the command to the endpoint */ 1274 STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next_cmd); 1275 usbd_transfer_start(sc->sc_xfer[OTUS_BULK_CMD]); 1276 1277 /* Sleep on the command; wait for it to complete */ 1278 error = msleep(cmd, &sc->sc_mtx, PCATCH, "otuscmd", hz); 1279 1280 /* 1281 * At this point we don't own cmd any longer; it'll be 1282 * freed by the cmd bulk path or the RX notification 1283 * path. If the data is made available then it'll be copied 1284 * to the caller. All that is left to do is communicate 1285 * status back to the caller. 1286 */ 1287 if (error != 0) { 1288 device_printf(sc->sc_dev, 1289 "%s: timeout waiting for command 0x%02x reply\n", 1290 __func__, code); 1291 } 1292 return error; 1293 } 1294 1295 void 1296 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val) 1297 { 1298 1299 OTUS_LOCK_ASSERT(sc); 1300 1301 sc->write_buf[sc->write_idx].reg = htole32(reg); 1302 sc->write_buf[sc->write_idx].val = htole32(val); 1303 1304 if (++sc->write_idx > (AR_MAX_WRITE_IDX-1)) 1305 (void)otus_write_barrier(sc); 1306 } 1307 1308 int 1309 otus_write_barrier(struct otus_softc *sc) 1310 { 1311 int error; 1312 1313 OTUS_LOCK_ASSERT(sc); 1314 1315 if (sc->write_idx == 0) 1316 return 0; /* Nothing to flush. */ 1317 1318 OTUS_DPRINTF(sc, OTUS_DEBUG_REGIO, "%s: called; %d updates\n", 1319 __func__, 1320 sc->write_idx); 1321 1322 error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf, 1323 sizeof (sc->write_buf[0]) * sc->write_idx, NULL, 0); 1324 sc->write_idx = 0; 1325 return error; 1326 } 1327 1328 static struct ieee80211_node * 1329 otus_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1330 { 1331 1332 return malloc(sizeof (struct otus_node), M_80211_NODE, 1333 M_NOWAIT | M_ZERO); 1334 } 1335 1336 int 1337 otus_read_eeprom(struct otus_softc *sc) 1338 { 1339 uint32_t regs[8], reg; 1340 uint8_t *eep; 1341 int i, j, error; 1342 1343 OTUS_LOCK_ASSERT(sc); 1344 1345 /* Read EEPROM by blocks of 32 bytes. */ 1346 eep = (uint8_t *)&sc->eeprom; 1347 reg = AR_EEPROM_OFFSET; 1348 for (i = 0; i < sizeof (sc->eeprom) / 32; i++) { 1349 for (j = 0; j < 8; j++, reg += 4) 1350 regs[j] = htole32(reg); 1351 error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep, 32); 1352 if (error != 0) 1353 break; 1354 eep += 32; 1355 } 1356 return error; 1357 } 1358 1359 void 1360 otus_newassoc(struct ieee80211_node *ni, int isnew) 1361 { 1362 struct ieee80211com *ic = ni->ni_ic; 1363 struct otus_softc *sc = ic->ic_softc; 1364 struct otus_node *on = OTUS_NODE(ni); 1365 1366 OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "new assoc isnew=%d addr=%s\n", 1367 isnew, ether_sprintf(ni->ni_macaddr)); 1368 1369 on->tx_done = 0; 1370 on->tx_err = 0; 1371 on->tx_retries = 0; 1372 } 1373 1374 static void 1375 otus_cmd_handle_response(struct otus_softc *sc, struct ar_cmd_hdr *hdr) 1376 { 1377 struct otus_tx_cmd *cmd; 1378 1379 OTUS_LOCK_ASSERT(sc); 1380 1381 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1382 "%s: received reply code=0x%02x len=%d token=%d\n", 1383 __func__, 1384 hdr->code, hdr->len, hdr->token); 1385 1386 /* 1387 * Walk the list, freeing items that aren't ours, 1388 * stopping when we hit our token. 1389 */ 1390 while ((cmd = STAILQ_FIRST(&sc->sc_cmd_waiting)) != NULL) { 1391 STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next_cmd); 1392 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1393 "%s: cmd=%p; hdr.token=%d, cmd.token=%d\n", 1394 __func__, 1395 cmd, 1396 (int) hdr->token, 1397 (int) cmd->token); 1398 if (hdr->token == cmd->token) { 1399 /* Copy answer into caller's supplied buffer. */ 1400 if (cmd->odata != NULL) { 1401 if (hdr->len != cmd->odatalen) { 1402 device_printf(sc->sc_dev, 1403 "%s: code 0x%02x, len=%d, olen=%d\n", 1404 __func__, 1405 (int) hdr->code, 1406 (int) hdr->len, 1407 (int) cmd->odatalen); 1408 } 1409 memcpy(cmd->odata, &hdr[1], 1410 MIN(cmd->odatalen, hdr->len)); 1411 } 1412 wakeup(cmd); 1413 } 1414 1415 STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next_cmd); 1416 } 1417 } 1418 1419 void 1420 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len) 1421 { 1422 struct ieee80211com *ic = &sc->sc_ic; 1423 struct ar_cmd_hdr *hdr; 1424 1425 OTUS_LOCK_ASSERT(sc); 1426 1427 if (__predict_false(len < sizeof (*hdr))) { 1428 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1429 "cmd too small %d\n", len); 1430 return; 1431 } 1432 hdr = (struct ar_cmd_hdr *)buf; 1433 if (__predict_false(sizeof (*hdr) + hdr->len > len || 1434 sizeof (*hdr) + hdr->len > 64)) { 1435 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1436 "cmd too large %d\n", hdr->len); 1437 return; 1438 } 1439 1440 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1441 "%s: code=%.02x\n", 1442 __func__, 1443 hdr->code); 1444 1445 /* 1446 * This has to reach into the cmd queue "waiting for 1447 * an RX response" list, grab the head entry and check 1448 * if we need to wake anyone up. 1449 */ 1450 if ((hdr->code & 0xc0) != 0xc0) { 1451 otus_cmd_handle_response(sc, hdr); 1452 return; 1453 } 1454 1455 /* Received unsolicited notification. */ 1456 switch (hdr->code & 0x3f) { 1457 case AR_EVT_BEACON: 1458 break; 1459 case AR_EVT_TX_COMP: 1460 { 1461 struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1]; 1462 struct ieee80211_node *ni; 1463 1464 ni = ieee80211_find_node(&ic->ic_sta, tx->macaddr); 1465 if (ni == NULL) { 1466 device_printf(sc->sc_dev, 1467 "%s: txcomp on unknown node (%s)\n", 1468 __func__, 1469 ether_sprintf(tx->macaddr)); 1470 break; 1471 } 1472 1473 OTUS_DPRINTF(sc, OTUS_DEBUG_TXCOMP, 1474 "tx completed %s status=%d phy=0x%x\n", 1475 ether_sprintf(tx->macaddr), le16toh(tx->status), 1476 le32toh(tx->phy)); 1477 1478 switch (le16toh(tx->status)) { 1479 case AR_TX_STATUS_COMP: 1480 #if 0 1481 ackfailcnt = 0; 1482 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 1483 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 1484 #endif 1485 /* 1486 * We don't get the above; only error notifications. 1487 * Sigh. So, don't worry about this. 1488 */ 1489 break; 1490 case AR_TX_STATUS_RETRY_COMP: 1491 OTUS_NODE(ni)->tx_retries++; 1492 break; 1493 case AR_TX_STATUS_FAILED: 1494 OTUS_NODE(ni)->tx_err++; 1495 break; 1496 } 1497 ieee80211_free_node(ni); 1498 break; 1499 } 1500 case AR_EVT_TBTT: 1501 break; 1502 case AR_EVT_DO_BB_RESET: 1503 /* 1504 * This is "tell driver to reset baseband" from ar9170-fw. 1505 * 1506 * I'm not sure what we should do here, so I'm going to 1507 * fall through; it gets generated when RTSRetryCnt internally 1508 * reaches '5' - I guess the firmware authors thought that 1509 * meant that the BB may have gone deaf or something. 1510 */ 1511 default: 1512 device_printf(sc->sc_dev, 1513 "%s: received notification code=0x%02x len=%d\n", 1514 __func__, 1515 hdr->code, hdr->len); 1516 } 1517 } 1518 1519 /* 1520 * Handle a single MPDU. 1521 * 1522 * This may be a single MPDU, or it may be a sub-frame from an A-MPDU. 1523 * In the latter case some of the header details need to be adjusted. 1524 */ 1525 void 1526 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len, struct mbufq *rxq) 1527 { 1528 struct ieee80211com *ic = &sc->sc_ic; 1529 struct ieee80211_rx_stats rxs; 1530 #if 0 1531 struct ieee80211_node *ni; 1532 #endif 1533 struct ar_rx_macstatus *mac_status = NULL; 1534 struct ar_rx_phystatus *phy_status = NULL; 1535 struct ieee80211_frame *wh; 1536 struct mbuf *m; 1537 // int s; 1538 1539 if (otus_debug & OTUS_DEBUG_RX_BUFFER) { 1540 device_printf(sc->sc_dev, "%s: %*D\n", 1541 __func__, len, buf, "-"); 1542 } 1543 1544 /* 1545 * Before any data path stuff - check to see if this is a command 1546 * response. 1547 * 1548 * All bits in the PLCP header are set to 1 for non-MPDU. 1549 */ 1550 if ((len >= AR_PLCP_HDR_LEN) && 1551 memcmp(buf, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) { 1552 otus_cmd_rxeof(sc, buf + AR_PLCP_HDR_LEN, 1553 len - AR_PLCP_HDR_LEN); 1554 return; 1555 } 1556 1557 /* 1558 * First step - get the status for the given frame. 1559 * This will tell us whether it's a single MPDU or 1560 * an A-MPDU subframe. 1561 */ 1562 if (len < sizeof(*mac_status)) { 1563 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1564 "%s: sub-xfer too short (no mac_status) (len %d)\n", 1565 __func__, len); 1566 counter_u64_add(ic->ic_ierrors, 1); 1567 return; 1568 } 1569 /* 1570 * Remove the mac_status from the payload length. 1571 * 1572 * Note: cheating, don't reallocate the buffer! 1573 */ 1574 mac_status = (struct ar_rx_macstatus *)(buf + len - sizeof(*mac_status)); 1575 len -= sizeof(*mac_status); 1576 1577 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: mac status=0x%x\n", 1578 __func__, mac_status->status); 1579 1580 /* 1581 * Next - check the MAC status before doing anything else. 1582 * Extract out the PLCP header for single and first frames; 1583 * since there's a single RX path we can shove PLCP headers 1584 * from both into sc->ar_last_rx_plcp[] so it can be reused. 1585 */ 1586 if (((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_SINGLE) || 1587 ((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_FIRST)) { 1588 /* 1589 * Ok, we need to at least have a PLCP header at 1590 * this point. 1591 */ 1592 if (len < AR_PLCP_HDR_LEN) { 1593 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1594 "%s sub-xfer too short (no mac+plcp) (len %d\n)", 1595 __func__, len); 1596 counter_u64_add(ic->ic_ierrors, 1); 1597 return; 1598 } 1599 memcpy(sc->ar_last_rx_plcp, buf, AR_PLCP_HDR_LEN); 1600 1601 /* 1602 * At this point we can just consume the PLCP header. 1603 * The beginning of the frame should thus be data. 1604 */ 1605 buf += AR_PLCP_HDR_LEN; 1606 len -= AR_PLCP_HDR_LEN; 1607 } 1608 1609 /* 1610 * Next - see if we have a PHY status. 1611 * 1612 * The PHY status is at the end of the final A-MPDU subframe 1613 * or a single MPDU frame. 1614 * 1615 * We'll use this to tag frames with noise floor / RSSI 1616 * if they have valid information. 1617 */ 1618 if (((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_SINGLE) || 1619 ((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_LAST)) { 1620 if (len < sizeof(*phy_status)) { 1621 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1622 "%s sub-xfer too short (no phy status) (len %d\n)", 1623 __func__, len); 1624 counter_u64_add(ic->ic_ierrors, 1); 1625 return; 1626 } 1627 /* 1628 * Take a pointer to the phy status and remove the length 1629 * from the end of the buffer. 1630 * 1631 * Note: we're cheating here; don't reallocate the buffer! 1632 */ 1633 phy_status = (struct ar_rx_phystatus *) 1634 (buf + len - sizeof(*phy_status)); 1635 len -= sizeof(*phy_status); 1636 } 1637 1638 /* 1639 * Middle frames just have a MAC status (stripped above.) 1640 * No PHY status, and PLCP is from ar_last_rx_plcp. 1641 */ 1642 1643 /* 1644 * Discard error frames; don't discard BAD_RA (eg monitor mode); 1645 * let net80211 do that 1646 */ 1647 if (__predict_false((mac_status->error & ~AR_RX_ERROR_BAD_RA) != 0)) { 1648 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "error frame 0x%02x\n", mac_status->error); 1649 if (mac_status->error & AR_RX_ERROR_FCS) { 1650 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "bad FCS\n"); 1651 } else if (mac_status->error & AR_RX_ERROR_MMIC) { 1652 /* Report Michael MIC failures to net80211. */ 1653 #if 0 1654 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyidx); 1655 #endif 1656 device_printf(sc->sc_dev, "%s: MIC failure\n", __func__); 1657 } 1658 counter_u64_add(ic->ic_ierrors, 1); 1659 return; 1660 } 1661 1662 /* 1663 * Make sure there's room for an 802.11 header + FCS. 1664 * 1665 * Note: a CTS/ACK is 14 bytes (FC, DUR, RA, FCS). 1666 * Making it IEEE80211_MIN_LEN misses CTS/ACKs. 1667 * 1668 * This won't be tossed at this point; eventually once 1669 * rx radiotap is implemented this will allow for 1670 * CTS/ACK frames. Passing them up to net80211 will 1671 * currently make it angry (too short packets.) 1672 */ 1673 if (len < 2 + 2 + IEEE80211_ADDR_LEN + IEEE80211_CRC_LEN) { 1674 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1675 "%s: too short for 802.11 (len %d)\n", 1676 __func__, len); 1677 counter_u64_add(ic->ic_ierrors, 1); 1678 return; 1679 } 1680 1681 len -= IEEE80211_CRC_LEN; /* strip 802.11 FCS */ 1682 wh = (struct ieee80211_frame *) buf; 1683 1684 /* 1685 * The firmware does seem to spit out a bunch of frames 1686 * with invalid frame control values here. Just toss them 1687 * rather than letting net80211 get angry and log. 1688 */ 1689 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 1690 IEEE80211_FC0_VERSION_0) { 1691 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1692 "%s: invalid 802.11 fc version (firmware bug?)\n", 1693 __func__); 1694 counter_u64_add(ic->ic_ierrors, 1); 1695 return; 1696 } 1697 1698 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 1699 if (m == NULL) { 1700 device_printf(sc->sc_dev, "%s: failed m_get2() (len=%d)\n", 1701 __func__, len); 1702 counter_u64_add(ic->ic_ierrors, 1); 1703 return; 1704 } 1705 1706 /* Finalize mbuf. */ 1707 memcpy(mtod(m, uint8_t *), wh, len); 1708 m->m_pkthdr.len = m->m_len = len; 1709 1710 /* XXX TODO: add setting rx radiotap fields here */ 1711 1712 /* 1713 * Ok, check the frame length and toss if it's too short 1714 * for net80211. This will toss ACK/CTS. 1715 */ 1716 if (m->m_len < IEEE80211_MIN_LEN) { 1717 /* XXX TODO: add radiotap receive here */ 1718 m_free(m); m = NULL; 1719 return; 1720 } 1721 1722 /* Add RSSI to this mbuf if we have a PHY header */ 1723 bzero(&rxs, sizeof(rxs)); 1724 rxs.r_flags = IEEE80211_R_NF; 1725 rxs.c_nf = sc->sc_nf[0]; /* XXX chain 0 != combined rssi/nf */ 1726 if (phy_status != NULL) { 1727 rxs.r_flags |= IEEE80211_R_RSSI; 1728 rxs.c_rssi = phy_status->rssi; 1729 } 1730 /* XXX TODO: add MIMO RSSI/NF as well */ 1731 if (ieee80211_add_rx_params(m, &rxs) == 0) { 1732 counter_u64_add(ic->ic_ierrors, 1); 1733 return; 1734 } 1735 1736 /* XXX make a method */ 1737 STAILQ_INSERT_TAIL(&rxq->mq_head, m, m_stailqpkt); 1738 1739 #if 0 1740 OTUS_UNLOCK(sc); 1741 ni = ieee80211_find_rxnode(ic, wh); 1742 rxi.rxi_flags = 0; 1743 rxi.rxi_rssi = tail->rssi; 1744 rxi.rxi_tstamp = 0; /* unused */ 1745 ieee80211_input(ifp, m, ni, &rxi); 1746 1747 /* Node is no longer needed. */ 1748 ieee80211_release_node(ic, ni); 1749 OTUS_LOCK(sc); 1750 #endif 1751 } 1752 1753 static void 1754 otus_rxeof(struct usb_xfer *xfer, struct otus_data *data, struct mbufq *rxq) 1755 { 1756 struct otus_softc *sc = usbd_xfer_softc(xfer); 1757 caddr_t buf = data->buf; 1758 struct ar_rx_head *head; 1759 uint16_t hlen; 1760 int len, offset = 0; 1761 1762 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 1763 1764 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1765 "%s: transfer completed; len=%d\n", 1766 __func__, len); 1767 if (otus_debug & OTUS_DEBUG_RX_BUFFER) { 1768 device_printf(sc->sc_dev, "%s: %*D\n", 1769 __func__, len, buf, "-"); 1770 } 1771 1772 while (len >= sizeof (*head)) { 1773 head = (struct ar_rx_head *)buf; 1774 if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) { 1775 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1776 "tag not valid 0x%x\n", le16toh(head->tag)); 1777 break; 1778 } 1779 hlen = le16toh(head->len); 1780 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: hlen=%d\n", 1781 __func__, hlen); 1782 if (__predict_false(sizeof (*head) + hlen > len)) { 1783 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1784 "xfer too short %d/%d\n", len, hlen); 1785 break; 1786 } 1787 /* Process sub-xfer. */ 1788 otus_sub_rxeof(sc, (uint8_t *) (((uint8_t *) buf) + 4), hlen, rxq); 1789 1790 /* Next sub-xfer is aligned on a 32-bit boundary. */ 1791 hlen = (sizeof (*head) + hlen + 3) & ~3; 1792 offset += hlen; 1793 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, 1794 "%s: rounded size is %d, next packet starts at %d\n", 1795 __func__, hlen, offset); 1796 buf += hlen; 1797 len -= hlen; 1798 } 1799 OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: done!\n", __func__); 1800 } 1801 1802 static void 1803 otus_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 1804 { 1805 struct epoch_tracker et; 1806 struct otus_softc *sc = usbd_xfer_softc(xfer); 1807 struct ieee80211com *ic = &sc->sc_ic; 1808 struct ieee80211_frame *wh; 1809 struct ieee80211_node *ni; 1810 struct mbuf *m; 1811 struct mbufq scrx; 1812 struct otus_data *data; 1813 1814 OTUS_LOCK_ASSERT(sc); 1815 1816 mbufq_init(&scrx, 1024); 1817 1818 #if 0 1819 device_printf(sc->sc_dev, "%s: called; state=%d; error=%d\n", 1820 __func__, 1821 USB_GET_STATE(xfer), 1822 error); 1823 #endif 1824 1825 switch (USB_GET_STATE(xfer)) { 1826 case USB_ST_TRANSFERRED: 1827 data = STAILQ_FIRST(&sc->sc_rx_active); 1828 if (data == NULL) 1829 goto tr_setup; 1830 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 1831 otus_rxeof(xfer, data, &scrx); 1832 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 1833 /* FALLTHROUGH */ 1834 case USB_ST_SETUP: 1835 tr_setup: 1836 /* 1837 * XXX TODO: what if sc_rx isn't empty, but data 1838 * is empty? Then we leak mbufs. 1839 */ 1840 data = STAILQ_FIRST(&sc->sc_rx_inactive); 1841 if (data == NULL) { 1842 //KASSERT(m == NULL, ("mbuf isn't NULL")); 1843 return; 1844 } 1845 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 1846 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 1847 usbd_xfer_set_frame_data(xfer, 0, data->buf, 1848 usbd_xfer_max_len(xfer)); 1849 usbd_transfer_submit(xfer); 1850 /* 1851 * To avoid LOR we should unlock our private mutex here to call 1852 * ieee80211_input() because here is at the end of a USB 1853 * callback and safe to unlock. 1854 */ 1855 OTUS_UNLOCK(sc); 1856 NET_EPOCH_ENTER(et); 1857 while ((m = mbufq_dequeue(&scrx)) != NULL) { 1858 wh = mtod(m, struct ieee80211_frame *); 1859 ni = ieee80211_find_rxnode(ic, 1860 (struct ieee80211_frame_min *)wh); 1861 if (ni != NULL) { 1862 if (ni->ni_flags & IEEE80211_NODE_HT) 1863 m->m_flags |= M_AMPDU; 1864 (void)ieee80211_input_mimo(ni, m); 1865 ieee80211_free_node(ni); 1866 } else 1867 (void)ieee80211_input_mimo_all(ic, m); 1868 } 1869 NET_EPOCH_EXIT(et); 1870 #ifdef IEEE80211_SUPPORT_SUPERG 1871 ieee80211_ff_age_all(ic, 100); 1872 #endif 1873 OTUS_LOCK(sc); 1874 break; 1875 default: 1876 /* needs it to the inactive queue due to a error. */ 1877 data = STAILQ_FIRST(&sc->sc_rx_active); 1878 if (data != NULL) { 1879 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 1880 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 1881 } 1882 if (error != USB_ERR_CANCELLED) { 1883 usbd_xfer_set_stall(xfer); 1884 counter_u64_add(ic->ic_ierrors, 1); 1885 goto tr_setup; 1886 } 1887 break; 1888 } 1889 } 1890 1891 static void 1892 otus_txeof(struct usb_xfer *xfer, struct otus_data *data) 1893 { 1894 struct otus_softc *sc = usbd_xfer_softc(xfer); 1895 1896 OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE, 1897 "%s: called; data=%p\n", __func__, data); 1898 1899 OTUS_LOCK_ASSERT(sc); 1900 1901 if (sc->sc_tx_n_active == 0) { 1902 device_printf(sc->sc_dev, 1903 "%s: completed but tx_active=0\n", 1904 __func__); 1905 } else { 1906 sc->sc_tx_n_active--; 1907 } 1908 1909 if (data->m) { 1910 /* XXX status? */ 1911 /* XXX we get TX status via the RX path.. */ 1912 ieee80211_tx_complete(data->ni, data->m, 0); 1913 data->m = NULL; 1914 data->ni = NULL; 1915 } 1916 } 1917 1918 static void 1919 otus_txcmdeof(struct usb_xfer *xfer, struct otus_tx_cmd *cmd) 1920 { 1921 struct otus_softc *sc = usbd_xfer_softc(xfer); 1922 1923 OTUS_LOCK_ASSERT(sc); 1924 1925 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 1926 "%s: called; data=%p; odata=%p\n", 1927 __func__, cmd, cmd->odata); 1928 1929 /* 1930 * Non-response commands still need wakeup so the caller 1931 * knows it was submitted and completed OK; response commands should 1932 * wait until they're ACKed by the firmware with a response. 1933 */ 1934 if (cmd->odata) { 1935 STAILQ_INSERT_TAIL(&sc->sc_cmd_waiting, cmd, next_cmd); 1936 } else { 1937 wakeup(cmd); 1938 otus_free_txcmd(sc, cmd); 1939 } 1940 } 1941 1942 static void 1943 otus_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 1944 { 1945 uint8_t which = OTUS_BULK_TX; 1946 struct otus_softc *sc = usbd_xfer_softc(xfer); 1947 struct ieee80211com *ic = &sc->sc_ic; 1948 struct otus_data *data; 1949 1950 OTUS_LOCK_ASSERT(sc); 1951 1952 switch (USB_GET_STATE(xfer)) { 1953 case USB_ST_TRANSFERRED: 1954 data = STAILQ_FIRST(&sc->sc_tx_active[which]); 1955 if (data == NULL) 1956 goto tr_setup; 1957 OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE, 1958 "%s: transfer done %p\n", __func__, data); 1959 STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); 1960 otus_txeof(xfer, data); 1961 otus_freebuf(sc, data); 1962 /* FALLTHROUGH */ 1963 case USB_ST_SETUP: 1964 tr_setup: 1965 data = STAILQ_FIRST(&sc->sc_tx_pending[which]); 1966 if (data == NULL) { 1967 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 1968 "%s: empty pending queue sc %p\n", __func__, sc); 1969 sc->sc_tx_n_active = 0; 1970 goto finish; 1971 } 1972 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next); 1973 STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next); 1974 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 1975 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 1976 "%s: submitting transfer %p\n", __func__, data); 1977 usbd_transfer_submit(xfer); 1978 sc->sc_tx_n_active++; 1979 break; 1980 default: 1981 data = STAILQ_FIRST(&sc->sc_tx_active[which]); 1982 if (data != NULL) { 1983 STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); 1984 otus_txeof(xfer, data); 1985 otus_freebuf(sc, data); 1986 } 1987 counter_u64_add(ic->ic_oerrors, 1); 1988 1989 if (error != USB_ERR_CANCELLED) { 1990 usbd_xfer_set_stall(xfer); 1991 goto tr_setup; 1992 } 1993 break; 1994 } 1995 1996 finish: 1997 #ifdef IEEE80211_SUPPORT_SUPERG 1998 /* 1999 * If the TX active queue drops below a certain 2000 * threshold, ensure we age fast-frames out so they're 2001 * transmitted. 2002 */ 2003 if (sc->sc_tx_n_active < 2) { 2004 /* XXX ew - net80211 should defer this for us! */ 2005 OTUS_UNLOCK(sc); 2006 ieee80211_ff_flush(ic, WME_AC_VO); 2007 ieee80211_ff_flush(ic, WME_AC_VI); 2008 ieee80211_ff_flush(ic, WME_AC_BE); 2009 ieee80211_ff_flush(ic, WME_AC_BK); 2010 OTUS_LOCK(sc); 2011 } 2012 #endif 2013 /* Kick TX */ 2014 otus_tx_start(sc); 2015 } 2016 2017 static void 2018 otus_bulk_cmd_callback(struct usb_xfer *xfer, usb_error_t error) 2019 { 2020 struct otus_softc *sc = usbd_xfer_softc(xfer); 2021 #if 0 2022 struct ieee80211com *ic = &sc->sc_ic; 2023 #endif 2024 struct otus_tx_cmd *cmd; 2025 2026 OTUS_LOCK_ASSERT(sc); 2027 2028 switch (USB_GET_STATE(xfer)) { 2029 case USB_ST_TRANSFERRED: 2030 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2031 if (cmd == NULL) 2032 goto tr_setup; 2033 OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, 2034 "%s: transfer done %p\n", __func__, cmd); 2035 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd); 2036 otus_txcmdeof(xfer, cmd); 2037 /* FALLTHROUGH */ 2038 case USB_ST_SETUP: 2039 tr_setup: 2040 cmd = STAILQ_FIRST(&sc->sc_cmd_pending); 2041 if (cmd == NULL) { 2042 OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, 2043 "%s: empty pending queue sc %p\n", __func__, sc); 2044 return; 2045 } 2046 STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next_cmd); 2047 STAILQ_INSERT_TAIL(&sc->sc_cmd_active, cmd, next_cmd); 2048 usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); 2049 OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, 2050 "%s: submitting transfer %p; buf=%p, buflen=%d\n", __func__, cmd, cmd->buf, cmd->buflen); 2051 usbd_transfer_submit(xfer); 2052 break; 2053 default: 2054 cmd = STAILQ_FIRST(&sc->sc_cmd_active); 2055 if (cmd != NULL) { 2056 STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd); 2057 otus_txcmdeof(xfer, cmd); 2058 } 2059 2060 if (error != USB_ERR_CANCELLED) { 2061 usbd_xfer_set_stall(xfer); 2062 goto tr_setup; 2063 } 2064 break; 2065 } 2066 } 2067 2068 /* 2069 * This isn't used by carl9170; it however may be used by the 2070 * initial bootloader. 2071 */ 2072 static void 2073 otus_bulk_irq_callback(struct usb_xfer *xfer, usb_error_t error) 2074 { 2075 struct otus_softc *sc = usbd_xfer_softc(xfer); 2076 int actlen; 2077 int sumlen; 2078 2079 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 2080 OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, 2081 "%s: called; state=%d\n", __func__, USB_GET_STATE(xfer)); 2082 2083 switch (USB_GET_STATE(xfer)) { 2084 case USB_ST_TRANSFERRED: 2085 /* 2086 * Read usb frame data, if any. 2087 * "actlen" has the total length for all frames 2088 * transferred. 2089 */ 2090 OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, 2091 "%s: comp; %d bytes\n", 2092 __func__, 2093 actlen); 2094 #if 0 2095 pc = usbd_xfer_get_frame(xfer, 0); 2096 otus_dump_usb_rx_page(sc, pc, actlen); 2097 #endif 2098 /* XXX fallthrough */ 2099 case USB_ST_SETUP: 2100 /* 2101 * Setup xfer frame lengths/count and data 2102 */ 2103 OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: setup\n", __func__); 2104 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2105 usbd_transfer_submit(xfer); 2106 break; 2107 2108 default: /* Error */ 2109 /* 2110 * Print error message and clear stall 2111 * for example. 2112 */ 2113 OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: ERROR?\n", __func__); 2114 break; 2115 } 2116 } 2117 2118 /* 2119 * Map net80211 rate to hw rate for otus MAC/PHY. 2120 */ 2121 static uint8_t 2122 otus_rate_to_hw_rate(struct otus_softc *sc, uint8_t rate) 2123 { 2124 int is_2ghz; 2125 2126 is_2ghz = !! (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan)); 2127 2128 /* MCS check */ 2129 if (rate & 0x80) { 2130 return rate; 2131 } 2132 2133 switch (rate) { 2134 /* CCK */ 2135 case 2: 2136 return (0x0); 2137 case 4: 2138 return (0x1); 2139 case 11: 2140 return (0x2); 2141 case 22: 2142 return (0x3); 2143 /* OFDM */ 2144 case 12: 2145 return (0xb); 2146 case 18: 2147 return (0xf); 2148 case 24: 2149 return (0xa); 2150 case 36: 2151 return (0xe); 2152 case 48: 2153 return (0x9); 2154 case 72: 2155 return (0xd); 2156 case 96: 2157 return (0x8); 2158 case 108: 2159 return (0xc); 2160 default: 2161 device_printf(sc->sc_dev, "%s: unknown rate '%d'\n", 2162 __func__, (int) rate); 2163 case 0: 2164 if (is_2ghz) 2165 return (0x0); /* 1MB CCK */ 2166 else 2167 return (0xb); /* 6MB OFDM */ 2168 } 2169 } 2170 2171 static int 2172 otus_hw_rate_is_ht(struct otus_softc *sc, uint8_t hw_rate) 2173 { 2174 2175 return !! (hw_rate & 0x80); 2176 } 2177 2178 static int 2179 otus_hw_rate_is_ofdm(struct otus_softc *sc, uint8_t hw_rate) 2180 { 2181 2182 switch (hw_rate) { 2183 case 0x0: 2184 case 0x1: 2185 case 0x2: 2186 case 0x3: 2187 return (0); 2188 default: 2189 return (1); 2190 } 2191 } 2192 2193 static void 2194 otus_tx_update_ratectl(struct otus_softc *sc, struct ieee80211_node *ni) 2195 { 2196 struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs; 2197 struct otus_node *on = OTUS_NODE(ni); 2198 2199 txs->flags = IEEE80211_RATECTL_TX_STATS_NODE | 2200 IEEE80211_RATECTL_TX_STATS_RETRIES; 2201 txs->ni = ni; 2202 txs->nframes = on->tx_done; 2203 txs->nsuccess = on->tx_done - on->tx_err; 2204 txs->nretries = on->tx_retries; 2205 2206 ieee80211_ratectl_tx_update(ni->ni_vap, txs); 2207 on->tx_done = on->tx_err = on->tx_retries = 0; 2208 } 2209 2210 /* 2211 * XXX TODO: support tx bpf parameters for configuration! 2212 * 2213 * Relevant pieces: 2214 * 2215 * ac = params->ibp_pri & 3; 2216 * rate = params->ibp_rate0; 2217 * params->ibp_flags & IEEE80211_BPF_NOACK 2218 * params->ibp_flags & IEEE80211_BPF_RTS 2219 * params->ibp_flags & IEEE80211_BPF_CTS 2220 * tx->rts_ntries = params->ibp_try1; 2221 * tx->data_ntries = params->ibp_try0; 2222 */ 2223 static int 2224 otus_tx(struct otus_softc *sc, struct ieee80211_node *ni, struct mbuf *m, 2225 struct otus_data *data, const struct ieee80211_bpf_params *params) 2226 { 2227 const struct ieee80211_txparam *tp = ni->ni_txparms; 2228 struct ieee80211com *ic = &sc->sc_ic; 2229 struct ieee80211vap *vap = ni->ni_vap; 2230 struct ieee80211_frame *wh; 2231 struct ieee80211_key *k; 2232 struct ar_tx_head *head; 2233 uint32_t phyctl; 2234 uint16_t macctl, qos; 2235 uint8_t qid, rate; 2236 int hasqos, xferlen, type, ismcast; 2237 2238 wh = mtod(m, struct ieee80211_frame *); 2239 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2240 k = ieee80211_crypto_encap(ni, m); 2241 if (k == NULL) { 2242 device_printf(sc->sc_dev, 2243 "%s: m=%p: ieee80211_crypto_encap returns NULL\n", 2244 __func__, 2245 m); 2246 return (ENOBUFS); 2247 } 2248 wh = mtod(m, struct ieee80211_frame *); 2249 } 2250 2251 /* Calculate transfer length; ensure data buffer is large enough */ 2252 xferlen = sizeof (*head) + m->m_pkthdr.len; 2253 if (xferlen > OTUS_TXBUFSZ) { 2254 device_printf(sc->sc_dev, 2255 "%s: 802.11 TX frame is %d bytes, max %d bytes\n", 2256 __func__, 2257 xferlen, 2258 OTUS_TXBUFSZ); 2259 return (ENOBUFS); 2260 } 2261 2262 hasqos = !! IEEE80211_QOS_HAS_SEQ(wh); 2263 2264 if (hasqos) { 2265 uint8_t tid; 2266 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 2267 tid = qos & IEEE80211_QOS_TID; 2268 qid = TID_TO_WME_AC(tid); 2269 } else { 2270 qos = 0; 2271 qid = WME_AC_BE; 2272 } 2273 2274 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2275 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2276 2277 /* Pickup a rate index. */ 2278 if (params != NULL) 2279 rate = otus_rate_to_hw_rate(sc, params->ibp_rate0); 2280 else if (!!(m->m_flags & M_EAPOL) || type != IEEE80211_FC0_TYPE_DATA) 2281 rate = otus_rate_to_hw_rate(sc, tp->mgmtrate); 2282 else if (ismcast) 2283 rate = otus_rate_to_hw_rate(sc, tp->mcastrate); 2284 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2285 rate = otus_rate_to_hw_rate(sc, tp->ucastrate); 2286 else { 2287 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2288 rate = otus_rate_to_hw_rate(sc, ni->ni_txrate); 2289 } 2290 2291 phyctl = 0; 2292 macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid); 2293 2294 /* 2295 * XXX TODO: params for NOACK, ACK, RTS, CTS, etc 2296 */ 2297 if (ismcast || 2298 (hasqos && ((qos & IEEE80211_QOS_ACKPOLICY) == 2299 IEEE80211_QOS_ACKPOLICY_NOACK))) 2300 macctl |= AR_TX_MAC_NOACK; 2301 2302 if (!ismcast) { 2303 if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= vap->iv_rtsthreshold) 2304 macctl |= AR_TX_MAC_RTS; 2305 else if (otus_hw_rate_is_ht(sc, rate)) { 2306 if (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) 2307 macctl |= AR_TX_MAC_RTS; 2308 } else if (ic->ic_flags & IEEE80211_F_USEPROT) { 2309 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2310 macctl |= AR_TX_MAC_CTS; 2311 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2312 macctl |= AR_TX_MAC_RTS; 2313 } 2314 } 2315 2316 phyctl |= AR_TX_PHY_MCS(rate & 0x7f); /* Note: MCS rates are 0x80 and above */ 2317 if (otus_hw_rate_is_ht(sc, rate)) { 2318 phyctl |= AR_TX_PHY_MT_HT; 2319 /* Always use all tx antennas for now, just to be safe */ 2320 phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); 2321 2322 /* Heavy clip */ 2323 phyctl |= (rate & 0x7) << AR_TX_PHY_TX_HEAVY_CLIP_SHIFT; 2324 } else if (otus_hw_rate_is_ofdm(sc, rate)) { 2325 phyctl |= AR_TX_PHY_MT_OFDM; 2326 /* Always use all tx antennas for now, just to be safe */ 2327 phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); 2328 } else { /* CCK */ 2329 phyctl |= AR_TX_PHY_MT_CCK; 2330 phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); 2331 } 2332 2333 /* Update net80211 with the current counters */ 2334 otus_tx_update_ratectl(sc, ni); 2335 2336 /* Update rate control stats for frames that are ACK'ed. */ 2337 if (!(macctl & AR_TX_MAC_NOACK)) 2338 OTUS_NODE(ni)->tx_done++; 2339 2340 /* Fill Tx descriptor. */ 2341 head = (struct ar_tx_head *)data->buf; 2342 head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN); 2343 head->macctl = htole16(macctl); 2344 head->phyctl = htole32(phyctl); 2345 2346 m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]); 2347 2348 data->buflen = xferlen; 2349 data->ni = ni; 2350 data->m = m; 2351 2352 OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, 2353 "%s: tx: m=%p; data=%p; len=%d mac=0x%04x phy=0x%08x rate=0x%02x, ni_txrate=%d\n", 2354 __func__, m, data, le16toh(head->len), macctl, phyctl, 2355 (int) rate, (int) ni->ni_txrate); 2356 2357 /* Submit transfer */ 2358 STAILQ_INSERT_TAIL(&sc->sc_tx_pending[OTUS_BULK_TX], data, next); 2359 usbd_transfer_start(sc->sc_xfer[OTUS_BULK_TX]); 2360 2361 return 0; 2362 } 2363 2364 static u_int 2365 otus_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2366 { 2367 uint32_t val, *hashes = arg; 2368 2369 val = le32dec(LLADDR(sdl) + 4); 2370 /* Get address byte 5 */ 2371 val = val & 0x0000ff00; 2372 val = val >> 8; 2373 2374 /* As per below, shift it >> 2 to get only 6 bits */ 2375 val = val >> 2; 2376 if (val < 32) 2377 hashes[0] |= 1 << val; 2378 else 2379 hashes[1] |= 1 << (val - 32); 2380 2381 return (1); 2382 } 2383 2384 int 2385 otus_set_multi(struct otus_softc *sc) 2386 { 2387 struct ieee80211com *ic = &sc->sc_ic; 2388 uint32_t hashes[2]; 2389 int r; 2390 2391 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 || 2392 ic->ic_opmode == IEEE80211_M_MONITOR) { 2393 hashes[0] = 0xffffffff; 2394 hashes[1] = 0xffffffff; 2395 } else { 2396 struct ieee80211vap *vap; 2397 2398 hashes[0] = hashes[1] = 0; 2399 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2400 if_foreach_llmaddr(vap->iv_ifp, otus_hash_maddr, 2401 hashes); 2402 } 2403 #if 0 2404 /* XXX openbsd code */ 2405 while (enm != NULL) { 2406 bit = enm->enm_addrlo[5] >> 2; 2407 if (bit < 32) 2408 hashes[0] |= 1 << bit; 2409 else 2410 hashes[1] |= 1 << (bit - 32); 2411 ETHER_NEXT_MULTI(step, enm); 2412 } 2413 #endif 2414 2415 hashes[1] |= 1U << 31; /* Make sure the broadcast bit is set. */ 2416 2417 OTUS_LOCK(sc); 2418 otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, hashes[0]); 2419 otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hashes[1]); 2420 r = otus_write_barrier(sc); 2421 /* XXX operating mode? filter? */ 2422 OTUS_UNLOCK(sc); 2423 return (r); 2424 } 2425 2426 static int 2427 otus_updateedca(struct ieee80211com *ic) 2428 { 2429 struct otus_softc *sc = ic->ic_softc; 2430 2431 OTUS_LOCK(sc); 2432 /* 2433 * XXX TODO: take temporary copy of EDCA information 2434 * when scheduling this so we have a more time-correct view 2435 * of things. 2436 * XXX TODO: this can be done on the net80211 level 2437 */ 2438 otus_updateedca_locked(sc); 2439 OTUS_UNLOCK(sc); 2440 return (0); 2441 } 2442 2443 static void 2444 otus_updateedca_locked(struct otus_softc *sc) 2445 { 2446 #define EXP2(val) ((1 << (val)) - 1) 2447 #define AIFS(val) ((val) * 9 + 10) 2448 struct chanAccParams chp; 2449 struct ieee80211com *ic = &sc->sc_ic; 2450 const struct wmeParams *edca; 2451 2452 ieee80211_wme_ic_getparams(ic, &chp); 2453 2454 OTUS_LOCK_ASSERT(sc); 2455 2456 edca = chp.cap_wmeParams; 2457 2458 /* Set CWmin/CWmax values. */ 2459 otus_write(sc, AR_MAC_REG_AC0_CW, 2460 EXP2(edca[WME_AC_BE].wmep_logcwmax) << 16 | 2461 EXP2(edca[WME_AC_BE].wmep_logcwmin)); 2462 otus_write(sc, AR_MAC_REG_AC1_CW, 2463 EXP2(edca[WME_AC_BK].wmep_logcwmax) << 16 | 2464 EXP2(edca[WME_AC_BK].wmep_logcwmin)); 2465 otus_write(sc, AR_MAC_REG_AC2_CW, 2466 EXP2(edca[WME_AC_VI].wmep_logcwmax) << 16 | 2467 EXP2(edca[WME_AC_VI].wmep_logcwmin)); 2468 otus_write(sc, AR_MAC_REG_AC3_CW, 2469 EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 | 2470 EXP2(edca[WME_AC_VO].wmep_logcwmin)); 2471 otus_write(sc, AR_MAC_REG_AC4_CW, /* Special TXQ. */ 2472 EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 | 2473 EXP2(edca[WME_AC_VO].wmep_logcwmin)); 2474 2475 /* Set AIFSN values. */ 2476 otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS, 2477 AIFS(edca[WME_AC_VI].wmep_aifsn) << 24 | 2478 AIFS(edca[WME_AC_BK].wmep_aifsn) << 12 | 2479 AIFS(edca[WME_AC_BE].wmep_aifsn)); 2480 otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS, 2481 AIFS(edca[WME_AC_VO].wmep_aifsn) << 16 | /* Special TXQ. */ 2482 AIFS(edca[WME_AC_VO].wmep_aifsn) << 4 | 2483 AIFS(edca[WME_AC_VI].wmep_aifsn) >> 8); 2484 2485 /* Set TXOP limit. */ 2486 otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP, 2487 edca[WME_AC_BK].wmep_txopLimit << 16 | 2488 edca[WME_AC_BE].wmep_txopLimit); 2489 otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP, 2490 edca[WME_AC_VO].wmep_txopLimit << 16 | 2491 edca[WME_AC_VI].wmep_txopLimit); 2492 2493 /* XXX ACK policy? */ 2494 2495 (void)otus_write_barrier(sc); 2496 2497 #undef AIFS 2498 #undef EXP2 2499 } 2500 2501 static void 2502 otus_updateslot(struct otus_softc *sc) 2503 { 2504 struct ieee80211com *ic = &sc->sc_ic; 2505 uint32_t slottime; 2506 2507 OTUS_LOCK_ASSERT(sc); 2508 2509 slottime = IEEE80211_GET_SLOTTIME(ic); 2510 otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10); 2511 (void)otus_write_barrier(sc); 2512 } 2513 2514 /* 2515 * Things to do based on 2GHz or 5GHz: 2516 * 2517 * + slottime 2518 * + dyn_sifs_ack 2519 * + rts_cts_rate 2520 * + slot time 2521 * + mac_rates 2522 * + mac_tpc 2523 * 2524 * And in the transmit path 2525 * + tpc: carl9170_tx_rate_tpc_chains 2526 * + carl9170_tx_physet() 2527 * + disable short premable tx 2528 */ 2529 2530 int 2531 otus_init_mac(struct otus_softc *sc) 2532 { 2533 int error; 2534 2535 OTUS_LOCK_ASSERT(sc); 2536 2537 otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40); 2538 otus_write(sc, AR_MAC_REG_RETRY_MAX, 0); 2539 otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80); 2540 otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70); 2541 otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000); 2542 otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10); 2543 otus_write(sc, AR_MAC_REG_TID_CFACK_CFEND_RATE, 0x19000000); 2544 /* NAV protects ACK only (in TXOP). */ 2545 otus_write(sc, AR_MAC_REG_TXOP_DURATION, 0x201); 2546 /* Set beacon Tx power to 0x7. */ 2547 otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170); 2548 otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105); 2549 otus_write(sc, AR_MAC_REG_AMPDU_FACTOR, 0x10000a); 2550 2551 otus_set_rx_filter(sc); 2552 2553 otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f); 2554 otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f); 2555 otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb); 2556 otus_write(sc, AR_MAC_REG_ACK_TPC, 0x4003c1e); 2557 2558 /* Enable LED0 and LED1. */ 2559 otus_write(sc, AR_GPIO_REG_PORT_TYPE, 0x3); 2560 otus_write(sc, AR_GPIO_REG_PORT_DATA, 0x3); 2561 /* Switch MAC to OTUS interface. */ 2562 otus_write(sc, 0x1c3600, 0x3); 2563 otus_write(sc, AR_MAC_REG_AMPDU_RX_THRESH, 0xffff); 2564 otus_write(sc, AR_MAC_REG_MISC_680, 0xf00008); 2565 /* Disable Rx timeout (workaround). */ 2566 otus_write(sc, AR_MAC_REG_RX_TIMEOUT, 0); 2567 2568 /* Set USB Rx stream mode maximum frame number to 2. */ 2569 otus_write(sc, 0x1e1110, 0x4); 2570 /* Set USB Rx stream mode timeout to 10us. */ 2571 otus_write(sc, 0x1e1114, 0x80); 2572 2573 /* Set clock frequency to 88/80MHz. */ 2574 otus_write(sc, AR_PWR_REG_CLOCK_SEL, 0x73); 2575 /* Set WLAN DMA interrupt mode: generate intr per packet. */ 2576 otus_write(sc, AR_MAC_REG_TXRX_MPI, 0x110011); 2577 otus_write(sc, AR_MAC_REG_FCS_SELECT, 0x4); 2578 otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48); 2579 2580 /* Disable HW decryption for now. */ 2581 otus_write(sc, AR_MAC_REG_ENCRYPTION, 0x78); 2582 2583 if ((error = otus_write_barrier(sc)) != 0) 2584 return error; 2585 2586 /* Set default EDCA parameters. */ 2587 otus_updateedca_locked(sc); 2588 2589 return 0; 2590 } 2591 2592 /* 2593 * Return default value for PHY register based on current operating mode. 2594 */ 2595 uint32_t 2596 otus_phy_get_def(struct otus_softc *sc, uint32_t reg) 2597 { 2598 int i; 2599 2600 for (i = 0; i < nitems(ar5416_phy_regs); i++) 2601 if (AR_PHY(ar5416_phy_regs[i]) == reg) 2602 return sc->phy_vals[i]; 2603 return 0; /* Register not found. */ 2604 } 2605 2606 /* 2607 * Update PHY's programming based on vendor-specific data stored in EEPROM. 2608 * This is for FEM-type devices only. 2609 */ 2610 int 2611 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c) 2612 { 2613 const struct ModalEepHeader *eep; 2614 uint32_t tmp, offset; 2615 2616 if (IEEE80211_IS_CHAN_5GHZ(c)) 2617 eep = &sc->eeprom.modalHeader[0]; 2618 else 2619 eep = &sc->eeprom.modalHeader[1]; 2620 2621 /* Offset of chain 2. */ 2622 offset = 2 * 0x1000; 2623 2624 tmp = le32toh(eep->antCtrlCommon); 2625 otus_write(sc, AR_PHY_SWITCH_COM, tmp); 2626 2627 tmp = le32toh(eep->antCtrlChain[0]); 2628 otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp); 2629 2630 tmp = le32toh(eep->antCtrlChain[1]); 2631 otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp); 2632 2633 if (1 /* sc->sc_sco == AR_SCO_SCN */) { 2634 tmp = otus_phy_get_def(sc, AR_PHY_SETTLING); 2635 tmp &= ~(0x7f << 7); 2636 tmp |= (eep->switchSettling & 0x7f) << 7; 2637 otus_write(sc, AR_PHY_SETTLING, tmp); 2638 } 2639 2640 tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ); 2641 tmp &= ~0xffff; 2642 tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize; 2643 otus_write(sc, AR_PHY_DESIRED_SZ, tmp); 2644 2645 tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 | 2646 eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn; 2647 otus_write(sc, AR_PHY_RF_CTL4, tmp); 2648 2649 tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3); 2650 tmp &= ~(0xff << 16); 2651 tmp |= eep->txEndToRxOn << 16; 2652 otus_write(sc, AR_PHY_RF_CTL3, tmp); 2653 2654 tmp = otus_phy_get_def(sc, AR_PHY_CCA); 2655 tmp &= ~(0x7f << 12); 2656 tmp |= (eep->thresh62 & 0x7f) << 12; 2657 otus_write(sc, AR_PHY_CCA, tmp); 2658 2659 tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN); 2660 tmp &= ~(0x3f << 12); 2661 tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12; 2662 otus_write(sc, AR_PHY_RXGAIN, tmp); 2663 2664 tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset); 2665 tmp &= ~(0x3f << 12); 2666 tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12; 2667 otus_write(sc, AR_PHY_RXGAIN + offset, tmp); 2668 2669 tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ); 2670 tmp &= ~(0x3f << 18); 2671 tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18; 2672 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2673 tmp &= ~(0xf << 10); 2674 tmp |= (eep->bswMargin[0] & 0xf) << 10; 2675 } 2676 otus_write(sc, AR_PHY_GAIN_2GHZ, tmp); 2677 2678 tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset); 2679 tmp &= ~(0x3f << 18); 2680 tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18; 2681 otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp); 2682 2683 tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4); 2684 tmp &= ~(0x3f << 5 | 0x1f); 2685 tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f); 2686 otus_write(sc, AR_PHY_TIMING_CTRL4, tmp); 2687 2688 tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset); 2689 tmp &= ~(0x3f << 5 | 0x1f); 2690 tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f); 2691 otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp); 2692 2693 tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1); 2694 tmp &= ~(0xf << 16); 2695 tmp |= (eep->xpd & 0xf) << 16; 2696 otus_write(sc, AR_PHY_TPCRG1, tmp); 2697 2698 return otus_write_barrier(sc); 2699 } 2700 2701 int 2702 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c) 2703 { 2704 const uint32_t *vals; 2705 int error, i; 2706 2707 /* Select PHY programming based on band and bandwidth. */ 2708 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2709 if (IEEE80211_IS_CHAN_HT40(c)) 2710 vals = ar5416_phy_vals_2ghz_40mhz; 2711 else 2712 vals = ar5416_phy_vals_2ghz_20mhz; 2713 } else { 2714 if (IEEE80211_IS_CHAN_HT40(c)) 2715 vals = ar5416_phy_vals_5ghz_40mhz; 2716 else 2717 vals = ar5416_phy_vals_5ghz_20mhz; 2718 } 2719 for (i = 0; i < nitems(ar5416_phy_regs); i++) 2720 otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]); 2721 sc->phy_vals = vals; 2722 2723 if (sc->eeprom.baseEepHeader.deviceType == 0x80) /* FEM */ 2724 if ((error = otus_set_board_values(sc, c)) != 0) 2725 return error; 2726 2727 /* Initial Tx power settings. */ 2728 otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f); 2729 otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f); 2730 otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f); 2731 otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f); 2732 otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f); 2733 otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f); 2734 otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f); 2735 otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f); 2736 otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f); 2737 otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f); 2738 2739 if (IEEE80211_IS_CHAN_2GHZ(c)) 2740 otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5163); 2741 else 2742 otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5143); 2743 2744 return otus_write_barrier(sc); 2745 } 2746 2747 static __inline uint8_t 2748 otus_reverse_bits(uint8_t v) 2749 { 2750 v = ((v >> 1) & 0x55) | ((v & 0x55) << 1); 2751 v = ((v >> 2) & 0x33) | ((v & 0x33) << 2); 2752 v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4); 2753 return v; 2754 } 2755 2756 int 2757 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c) 2758 { 2759 uint8_t chansel, d0, d1; 2760 uint16_t data; 2761 int error; 2762 2763 OTUS_LOCK_ASSERT(sc); 2764 2765 d0 = 0; 2766 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2767 chansel = (c->ic_freq - 4800) / 5; 2768 if (chansel & 1) 2769 d0 |= AR_BANK4_AMODE_REFSEL(2); 2770 else 2771 d0 |= AR_BANK4_AMODE_REFSEL(1); 2772 } else { 2773 d0 |= AR_BANK4_AMODE_REFSEL(2); 2774 if (c->ic_freq == 2484) { /* CH 14 */ 2775 d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ; 2776 chansel = 10 + (c->ic_freq - 2274) / 5; 2777 } else 2778 chansel = 16 + (c->ic_freq - 2272) / 5; 2779 chansel <<= 2; 2780 } 2781 d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP; 2782 d1 = otus_reverse_bits(chansel); 2783 2784 /* Write bits 0-4 of d0 and d1. */ 2785 data = (d1 & 0x1f) << 5 | (d0 & 0x1f); 2786 otus_write(sc, AR_PHY(44), data); 2787 /* Write bits 5-7 of d0 and d1. */ 2788 data = (d1 >> 5) << 5 | (d0 >> 5); 2789 otus_write(sc, AR_PHY(58), data); 2790 2791 if ((error = otus_write_barrier(sc)) == 0) 2792 otus_delay_ms(sc, 10); 2793 return error; 2794 } 2795 2796 void 2797 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa) 2798 { 2799 #define COEFF_SCALE_SHIFT 24 2800 uint32_t exp, man; 2801 2802 /* exponent = 14 - floor(log2(coeff)) */ 2803 for (exp = 31; exp > 0; exp--) 2804 if (coeff & (1 << exp)) 2805 break; 2806 KASSERT(exp != 0, ("exp")); 2807 exp = 14 - (exp - COEFF_SCALE_SHIFT); 2808 2809 /* mantissa = floor(coeff * 2^exponent + 0.5) */ 2810 man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1)); 2811 2812 *mantissa = man >> (COEFF_SCALE_SHIFT - exp); 2813 *exponent = exp - 16; 2814 #undef COEFF_SCALE_SHIFT 2815 } 2816 2817 static int 2818 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc) 2819 { 2820 struct ieee80211com *ic = &sc->sc_ic; 2821 struct ar_cmd_frequency cmd; 2822 struct ar_rsp_frequency rsp; 2823 const uint32_t *vals; 2824 uint32_t coeff, exp, man, tmp; 2825 uint8_t code; 2826 int error, chan, i; 2827 2828 error = 0; 2829 chan = ieee80211_chan2ieee(ic, c); 2830 2831 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2832 "setting channel %d (%dMHz)\n", chan, c->ic_freq); 2833 2834 tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104; 2835 otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp); 2836 if ((error = otus_write_barrier(sc)) != 0) 2837 goto finish; 2838 2839 /* Disable BB Heavy Clip. */ 2840 otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200); 2841 if ((error = otus_write_barrier(sc)) != 0) 2842 goto finish; 2843 2844 /* XXX Is that FREQ_START ? */ 2845 error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL, 0); 2846 if (error != 0) 2847 goto finish; 2848 2849 /* Reprogram PHY and RF on channel band or bandwidth changes. */ 2850 if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) { 2851 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "band switch\n"); 2852 2853 /* Cold/Warm reset BB/ADDA. */ 2854 otus_write(sc, AR_PWR_REG_RESET, sc->bb_reset ? 0x800 : 0x400); 2855 if ((error = otus_write_barrier(sc)) != 0) 2856 goto finish; 2857 otus_write(sc, AR_PWR_REG_RESET, 0); 2858 if ((error = otus_write_barrier(sc)) != 0) 2859 goto finish; 2860 sc->bb_reset = 0; 2861 2862 if ((error = otus_program_phy(sc, c)) != 0) { 2863 device_printf(sc->sc_dev, 2864 "%s: could not program PHY\n", 2865 __func__); 2866 goto finish; 2867 } 2868 2869 /* Select RF programming based on band. */ 2870 if (IEEE80211_IS_CHAN_5GHZ(c)) 2871 vals = ar5416_banks_vals_5ghz; 2872 else 2873 vals = ar5416_banks_vals_2ghz; 2874 for (i = 0; i < nitems(ar5416_banks_regs); i++) 2875 otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]); 2876 if ((error = otus_write_barrier(sc)) != 0) { 2877 device_printf(sc->sc_dev, 2878 "%s: could not program RF\n", 2879 __func__); 2880 goto finish; 2881 } 2882 code = AR_CMD_RF_INIT; 2883 } else { 2884 code = AR_CMD_FREQUENCY; 2885 } 2886 2887 if ((error = otus_set_rf_bank4(sc, c)) != 0) 2888 goto finish; 2889 2890 tmp = (sc->txmask == 0x5) ? 0x340 : 0x240; 2891 otus_write(sc, AR_PHY_TURBO, tmp); 2892 if ((error = otus_write_barrier(sc)) != 0) 2893 goto finish; 2894 2895 /* Send firmware command to set channel. */ 2896 cmd.freq = htole32((uint32_t)c->ic_freq * 1000); 2897 cmd.dynht2040 = htole32(0); 2898 cmd.htena = htole32(1); 2899 /* Set Delta Slope (exponent and mantissa). */ 2900 coeff = (100 << 24) / c->ic_freq; 2901 otus_get_delta_slope(coeff, &exp, &man); 2902 cmd.dsc_exp = htole32(exp); 2903 cmd.dsc_man = htole32(man); 2904 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2905 "ds coeff=%u exp=%u man=%u\n", coeff, exp, man); 2906 /* For Short GI, coeff is 9/10 that of normal coeff. */ 2907 coeff = (9 * coeff) / 10; 2908 otus_get_delta_slope(coeff, &exp, &man); 2909 cmd.dsc_shgi_exp = htole32(exp); 2910 cmd.dsc_shgi_man = htole32(man); 2911 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2912 "ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man); 2913 /* Set wait time for AGC and noise calibration (100 or 200ms). */ 2914 cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000); 2915 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2916 "%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"); 2917 error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp, sizeof(rsp)); 2918 if (error != 0) 2919 goto finish; 2920 if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) { 2921 OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, 2922 "status=0x%x\n", le32toh(rsp.status)); 2923 /* Force cold reset on next channel. */ 2924 sc->bb_reset = 1; 2925 } 2926 #ifdef USB_DEBUG 2927 if (otus_debug & OTUS_DEBUG_RESET) { 2928 device_printf(sc->sc_dev, "calibration status=0x%x\n", 2929 le32toh(rsp.status)); 2930 for (i = 0; i < 2; i++) { /* 2 Rx chains */ 2931 /* Sign-extend 9-bit NF values. */ 2932 device_printf(sc->sc_dev, 2933 "noisefloor chain %d=%d\n", i, 2934 (((int32_t)le32toh(rsp.nf[i])) << 4) >> 23); 2935 device_printf(sc->sc_dev, 2936 "noisefloor ext chain %d=%d\n", i, 2937 ((int32_t)le32toh(rsp.nf_ext[i])) >> 23); 2938 } 2939 } 2940 #endif 2941 for (i = 0; i < OTUS_NUM_CHAINS; i++) { 2942 sc->sc_nf[i] = ((((int32_t)le32toh(rsp.nf[i])) << 4) >> 23); 2943 } 2944 sc->sc_curchan = c; 2945 finish: 2946 return (error); 2947 } 2948 2949 #ifdef notyet 2950 int 2951 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 2952 struct ieee80211_key *k) 2953 { 2954 struct otus_softc *sc = ic->ic_softc; 2955 struct otus_cmd_key cmd; 2956 2957 /* Defer setting of WEP keys until interface is brought up. */ 2958 if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != 2959 (IFF_UP | IFF_RUNNING)) 2960 return 0; 2961 2962 /* Do it in a process context. */ 2963 cmd.key = *k; 2964 cmd.associd = (ni != NULL) ? ni->ni_associd : 0; 2965 otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd); 2966 return 0; 2967 } 2968 2969 void 2970 otus_set_key_cb(struct otus_softc *sc, void *arg) 2971 { 2972 struct otus_cmd_key *cmd = arg; 2973 struct ieee80211_key *k = &cmd->key; 2974 struct ar_cmd_ekey key; 2975 uint16_t cipher; 2976 int error; 2977 2978 memset(&key, 0, sizeof key); 2979 if (k->k_flags & IEEE80211_KEY_GROUP) { 2980 key.uid = htole16(k->k_id); 2981 IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr); 2982 key.macaddr[0] |= 0x80; 2983 } else { 2984 key.uid = htole16(OTUS_UID(cmd->associd)); 2985 IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr); 2986 } 2987 key.kix = htole16(0); 2988 /* Map net80211 cipher to hardware. */ 2989 switch (k->k_cipher) { 2990 case IEEE80211_CIPHER_WEP40: 2991 cipher = AR_CIPHER_WEP64; 2992 break; 2993 case IEEE80211_CIPHER_WEP104: 2994 cipher = AR_CIPHER_WEP128; 2995 break; 2996 case IEEE80211_CIPHER_TKIP: 2997 cipher = AR_CIPHER_TKIP; 2998 break; 2999 case IEEE80211_CIPHER_CCMP: 3000 cipher = AR_CIPHER_AES; 3001 break; 3002 default: 3003 return; 3004 } 3005 key.cipher = htole16(cipher); 3006 memcpy(key.key, k->k_key, MIN(k->k_len, 16)); 3007 error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0); 3008 if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP) 3009 return; 3010 3011 /* TKIP: set Tx/Rx MIC Key. */ 3012 key.kix = htole16(1); 3013 memcpy(key.key, k->k_key + 16, 16); 3014 (void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0); 3015 } 3016 3017 void 3018 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 3019 struct ieee80211_key *k) 3020 { 3021 struct otus_softc *sc = ic->ic_softc; 3022 struct otus_cmd_key cmd; 3023 3024 if (!(ic->ic_if.if_flags & IFF_RUNNING) || 3025 ic->ic_state != IEEE80211_S_RUN) 3026 return; /* Nothing to do. */ 3027 3028 /* Do it in a process context. */ 3029 cmd.key = *k; 3030 cmd.associd = (ni != NULL) ? ni->ni_associd : 0; 3031 otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd); 3032 } 3033 3034 void 3035 otus_delete_key_cb(struct otus_softc *sc, void *arg) 3036 { 3037 struct otus_cmd_key *cmd = arg; 3038 struct ieee80211_key *k = &cmd->key; 3039 uint32_t uid; 3040 3041 if (k->k_flags & IEEE80211_KEY_GROUP) 3042 uid = htole32(k->k_id); 3043 else 3044 uid = htole32(OTUS_UID(cmd->associd)); 3045 (void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL, 0); 3046 } 3047 #endif 3048 3049 /* 3050 * XXX TODO: check if we have to be doing any calibration in the host 3051 * or whether it's purely a firmware thing. 3052 */ 3053 void 3054 otus_calibrate_to(void *arg, int pending) 3055 { 3056 #if 0 3057 struct otus_softc *sc = arg; 3058 3059 device_printf(sc->sc_dev, "%s: called\n", __func__); 3060 struct ieee80211com *ic = &sc->sc_ic; 3061 struct ieee80211_node *ni; 3062 int s; 3063 3064 if (usbd_is_dying(sc->sc_udev)) 3065 return; 3066 3067 usbd_ref_incr(sc->sc_udev); 3068 3069 s = splnet(); 3070 ni = ic->ic_bss; 3071 ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn); 3072 splx(s); 3073 3074 if (!usbd_is_dying(sc->sc_udev)) 3075 timeout_add_sec(&sc->calib_to, 1); 3076 3077 usbd_ref_decr(sc->sc_udev); 3078 #endif 3079 } 3080 3081 int 3082 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid) 3083 { 3084 3085 OTUS_LOCK_ASSERT(sc); 3086 3087 otus_write(sc, AR_MAC_REG_BSSID_L, 3088 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 3089 otus_write(sc, AR_MAC_REG_BSSID_H, 3090 bssid[4] | bssid[5] << 8); 3091 return otus_write_barrier(sc); 3092 } 3093 3094 int 3095 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr) 3096 { 3097 OTUS_LOCK_ASSERT(sc); 3098 3099 otus_write(sc, AR_MAC_REG_MAC_ADDR_L, 3100 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 3101 otus_write(sc, AR_MAC_REG_MAC_ADDR_H, 3102 addr[4] | addr[5] << 8); 3103 return otus_write_barrier(sc); 3104 } 3105 3106 /* Default single-LED. */ 3107 void 3108 otus_led_newstate_type1(struct otus_softc *sc) 3109 { 3110 /* TBD */ 3111 device_printf(sc->sc_dev, "%s: TODO\n", __func__); 3112 } 3113 3114 /* NETGEAR, dual-LED. */ 3115 void 3116 otus_led_newstate_type2(struct otus_softc *sc) 3117 { 3118 /* TBD */ 3119 device_printf(sc->sc_dev, "%s: TODO\n", __func__); 3120 } 3121 3122 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */ 3123 void 3124 otus_led_newstate_type3(struct otus_softc *sc) 3125 { 3126 #if 0 3127 struct ieee80211com *ic = &sc->sc_ic; 3128 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3129 3130 uint32_t state = sc->led_state; 3131 3132 OTUS_LOCK_ASSERT(sc); 3133 3134 if (!vap) { 3135 state = 0; /* led off */ 3136 } else if (vap->iv_state == IEEE80211_S_INIT) { 3137 state = 0; /* LED off. */ 3138 } else if (vap->iv_state == IEEE80211_S_RUN) { 3139 /* Associated, LED always on. */ 3140 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) 3141 state = AR_LED0_ON; /* 2GHz=>Red. */ 3142 else 3143 state = AR_LED1_ON; /* 5GHz=>Blue. */ 3144 } else { 3145 /* Scanning, blink LED. */ 3146 state ^= AR_LED0_ON | AR_LED1_ON; 3147 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) 3148 state &= ~AR_LED1_ON; 3149 else 3150 state &= ~AR_LED0_ON; 3151 } 3152 if (state != sc->led_state) { 3153 otus_write(sc, AR_GPIO_REG_PORT_DATA, state); 3154 if (otus_write_barrier(sc) == 0) 3155 sc->led_state = state; 3156 } 3157 #endif 3158 } 3159 3160 static uint8_t zero_macaddr[IEEE80211_ADDR_LEN] = { 0,0,0,0,0,0 }; 3161 3162 /* 3163 * Set up operating mode, MAC/BSS address and RX filter. 3164 */ 3165 static void 3166 otus_set_operating_mode(struct otus_softc *sc) 3167 { 3168 struct ieee80211com *ic = &sc->sc_ic; 3169 struct ieee80211vap *vap; 3170 uint32_t cam_mode = AR_MAC_CAM_DEFAULTS; 3171 uint32_t rx_ctrl = AR_MAC_RX_CTRL_DEAGG | AR_MAC_RX_CTRL_SHORT_FILTER; 3172 uint32_t sniffer = AR_MAC_SNIFFER_DEFAULTS; 3173 uint32_t enc_mode = 0x78; /* XXX */ 3174 const uint8_t *macaddr; 3175 uint8_t bssid[IEEE80211_ADDR_LEN]; 3176 struct ieee80211_node *ni; 3177 3178 OTUS_LOCK_ASSERT(sc); 3179 3180 /* 3181 * If we're in sniffer mode or we don't have a MAC 3182 * address assigned, ensure it gets reset to all-zero. 3183 */ 3184 IEEE80211_ADDR_COPY(bssid, zero_macaddr); 3185 vap = TAILQ_FIRST(&ic->ic_vaps); 3186 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 3187 3188 switch (ic->ic_opmode) { 3189 case IEEE80211_M_STA: 3190 if (vap) { 3191 ni = ieee80211_ref_node(vap->iv_bss); 3192 IEEE80211_ADDR_COPY(bssid, ni->ni_bssid); 3193 ieee80211_free_node(ni); 3194 } 3195 cam_mode |= AR_MAC_CAM_STA; 3196 rx_ctrl |= AR_MAC_RX_CTRL_PASS_TO_HOST; 3197 break; 3198 case IEEE80211_M_MONITOR: 3199 /* 3200 * Note: monitor mode ends up causing the MAC to 3201 * generate ACK frames for everything it sees. 3202 * So don't do that; instead just put it in STA mode 3203 * and disable RX filters. 3204 */ 3205 default: 3206 cam_mode |= AR_MAC_CAM_STA; 3207 rx_ctrl |= AR_MAC_RX_CTRL_PASS_TO_HOST; 3208 break; 3209 } 3210 3211 /* 3212 * TODO: if/when we do hardware encryption, ensure it's 3213 * disabled if the NIC is in monitor mode. 3214 */ 3215 otus_write(sc, AR_MAC_REG_SNIFFER, sniffer); 3216 otus_write(sc, AR_MAC_REG_CAM_MODE, cam_mode); 3217 otus_write(sc, AR_MAC_REG_ENCRYPTION, enc_mode); 3218 otus_write(sc, AR_MAC_REG_RX_CONTROL, rx_ctrl); 3219 otus_set_macaddr(sc, macaddr); 3220 otus_set_bssid(sc, bssid); 3221 /* XXX barrier? */ 3222 } 3223 3224 static void 3225 otus_set_rx_filter(struct otus_softc *sc) 3226 { 3227 // struct ieee80211com *ic = &sc->sc_ic; 3228 3229 OTUS_LOCK_ASSERT(sc); 3230 3231 #if 0 3232 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 || 3233 ic->ic_opmode == IEEE80211_M_MONITOR) { 3234 otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0xff00ffff); 3235 } else { 3236 #endif 3237 /* Filter any control frames, BAR is bit 24. */ 3238 otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0x0500ffff); 3239 #if 0 3240 } 3241 #endif 3242 } 3243 3244 int 3245 otus_init(struct otus_softc *sc) 3246 { 3247 struct ieee80211com *ic = &sc->sc_ic; 3248 int error; 3249 3250 OTUS_UNLOCK_ASSERT(sc); 3251 3252 OTUS_LOCK(sc); 3253 3254 /* Drain any pending TX frames */ 3255 otus_drain_mbufq(sc); 3256 3257 /* Init MAC */ 3258 if ((error = otus_init_mac(sc)) != 0) { 3259 OTUS_UNLOCK(sc); 3260 device_printf(sc->sc_dev, 3261 "%s: could not initialize MAC\n", __func__); 3262 return error; 3263 } 3264 3265 otus_set_operating_mode(sc); 3266 otus_set_rx_filter(sc); 3267 (void) otus_set_operating_mode(sc); 3268 3269 sc->bb_reset = 1; /* Force cold reset. */ 3270 3271 if ((error = otus_set_chan(sc, ic->ic_curchan, 0)) != 0) { 3272 OTUS_UNLOCK(sc); 3273 device_printf(sc->sc_dev, 3274 "%s: could not set channel\n", __func__); 3275 return error; 3276 } 3277 3278 /* Start Rx. */ 3279 otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0x100); 3280 (void)otus_write_barrier(sc); 3281 3282 sc->sc_running = 1; 3283 3284 OTUS_UNLOCK(sc); 3285 return 0; 3286 } 3287 3288 void 3289 otus_stop(struct otus_softc *sc) 3290 { 3291 #if 0 3292 int s; 3293 #endif 3294 3295 OTUS_UNLOCK_ASSERT(sc); 3296 3297 OTUS_LOCK(sc); 3298 sc->sc_running = 0; 3299 sc->sc_tx_timer = 0; 3300 OTUS_UNLOCK(sc); 3301 3302 taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to); 3303 taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to); 3304 taskqueue_drain(taskqueue_thread, &sc->tx_task); 3305 3306 OTUS_LOCK(sc); 3307 sc->sc_running = 0; 3308 /* Stop Rx. */ 3309 otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0); 3310 (void)otus_write_barrier(sc); 3311 3312 /* Drain any pending TX frames */ 3313 otus_drain_mbufq(sc); 3314 3315 OTUS_UNLOCK(sc); 3316 } 3317