xref: /freebsd/sys/dev/ocs_fc/ocs_scsi.c (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 /*-
2  * Copyright (c) 2017 Broadcom. All rights reserved.
3  * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  *    this list of conditions and the following disclaimer in the documentation
13  *    and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * $FreeBSD$
32  */
33 
34 /**
35  * @file
36  * OCS Linux SCSI API base driver implementation.
37  */
38 
39 /**
40  * @defgroup scsi_api_base SCSI Base Target/Initiator
41  */
42 
43 #include "ocs.h"
44 #include "ocs_els.h"
45 #include "ocs_scsi.h"
46 #if defined(OCS_ENABLE_VPD_SUPPORT)
47 #include "ocs_vpd.h"
48 #endif
49 #include "ocs_utils.h"
50 #include "ocs_device.h"
51 
52 #define SCSI_IOFMT "[%04x][i:%0*x t:%0*x h:%04x]"
53 #define SCSI_ITT_SIZE(ocs)	((ocs->ocs_xport == OCS_XPORT_FC) ? 4 : 8)
54 
55 #define SCSI_IOFMT_ARGS(io) io->instance_index, SCSI_ITT_SIZE(io->ocs), io->init_task_tag, SCSI_ITT_SIZE(io->ocs), io->tgt_task_tag, io->hw_tag
56 
57 #define enable_tsend_auto_resp(ocs)		((ocs->ctrlmask & OCS_CTRLMASK_XPORT_DISABLE_AUTORSP_TSEND) == 0)
58 #define enable_treceive_auto_resp(ocs)	((ocs->ctrlmask & OCS_CTRLMASK_XPORT_DISABLE_AUTORSP_TRECEIVE) == 0)
59 
60 #define scsi_io_printf(io, fmt, ...) ocs_log_info(io->ocs, "[%s]" SCSI_IOFMT fmt, \
61 	io->node->display_name, SCSI_IOFMT_ARGS(io), ##__VA_ARGS__)
62 
63 #define scsi_io_trace(io, fmt, ...) \
64 	do { \
65 		if (OCS_LOG_ENABLE_SCSI_TRACE(io->ocs)) \
66 			scsi_io_printf(io, fmt, ##__VA_ARGS__); \
67 	} while (0)
68 
69 #define scsi_log(ocs, fmt, ...) \
70 	do { \
71 		if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) \
72 			ocs_log_info(ocs, fmt, ##__VA_ARGS__); \
73 	} while (0)
74 
75 static int32_t ocs_target_send_bls_resp(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg);
76 static int32_t ocs_scsi_abort_io_cb(struct ocs_hw_io_s *hio, ocs_remote_node_t *rnode, uint32_t len, int32_t status,
77 	uint32_t ext, void *arg);
78 
79 static void ocs_scsi_io_free_ovfl(ocs_io_t *io);
80 static uint32_t ocs_scsi_count_sgls(ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count);
81 static int ocs_scsi_dif_guard_is_crc(uint8_t direction, ocs_hw_dif_info_t *dif_info);
82 static ocs_scsi_io_status_e ocs_scsi_dif_check_unknown(ocs_io_t *io, uint32_t length, uint32_t check_length, int is_crc);
83 static uint32_t ocs_scsi_dif_check_guard(ocs_hw_dif_info_t *dif_info, ocs_scsi_vaddr_len_t addrlen[],
84 	uint32_t addrlen_count, ocs_dif_t *dif, int is_crc);
85 static uint32_t ocs_scsi_dif_check_app_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint16_t exp_app_tag, ocs_dif_t *dif);
86 static uint32_t ocs_scsi_dif_check_ref_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint32_t exp_ref_tag, ocs_dif_t *dif);
87 static int32_t ocs_scsi_convert_dif_info(ocs_t *ocs, ocs_scsi_dif_info_t *scsi_dif_info,
88 	ocs_hw_dif_info_t *hw_dif_info);
89 static int32_t ocs_scsi_io_dispatch_hw_io(ocs_io_t *io, ocs_hw_io_t *hio);
90 static int32_t ocs_scsi_io_dispatch_no_hw_io(ocs_io_t *io);
91 static void _ocs_scsi_io_free(void *arg);
92 
93 /**
94  * @ingroup scsi_api_base
95  * @brief Returns a big-endian 32-bit value given a pointer.
96  *
97  * @param p Pointer to the 32-bit big-endian location.
98  *
99  * @return Returns the byte-swapped 32-bit value.
100  */
101 
102 static inline uint32_t
103 ocs_fc_getbe32(void *p)
104 {
105 	return ocs_be32toh(*((uint32_t*)p));
106 }
107 
108 /**
109  * @ingroup scsi_api_base
110  * @brief Enable IO allocation.
111  *
112  * @par Description
113  * The SCSI and Transport IO allocation functions are enabled. If the allocation functions
114  * are not enabled, then calls to ocs_scsi_io_alloc() (and ocs_els_io_alloc() for FC) will
115  * fail.
116  *
117  * @param node Pointer to node object.
118  *
119  * @return None.
120  */
121 void
122 ocs_scsi_io_alloc_enable(ocs_node_t *node)
123 {
124 	ocs_assert(node != NULL);
125 	ocs_lock(&node->active_ios_lock);
126 		node->io_alloc_enabled = TRUE;
127 	ocs_unlock(&node->active_ios_lock);
128 }
129 
130 /**
131  * @ingroup scsi_api_base
132  * @brief Disable IO allocation
133  *
134  * @par Description
135  * The SCSI and Transport IO allocation functions are disabled. If the allocation functions
136  * are not enabled, then calls to ocs_scsi_io_alloc() (and ocs_els_io_alloc() for FC) will
137  * fail.
138  *
139  * @param node Pointer to node object
140  *
141  * @return None.
142  */
143 void
144 ocs_scsi_io_alloc_disable(ocs_node_t *node)
145 {
146 	ocs_assert(node != NULL);
147 	ocs_lock(&node->active_ios_lock);
148 		node->io_alloc_enabled = FALSE;
149 	ocs_unlock(&node->active_ios_lock);
150 }
151 
152 /**
153  * @ingroup scsi_api_base
154  * @brief Allocate a SCSI IO context.
155  *
156  * @par Description
157  * A SCSI IO context is allocated and associated with a @c node. This function
158  * is called by an initiator-client when issuing SCSI commands to remote
159  * target devices. On completion, ocs_scsi_io_free() is called.
160  * @n @n
161  * The returned ocs_io_t structure has an element of type ocs_scsi_ini_io_t named
162  * "ini_io" that is declared and used by an initiator-client for private information.
163  *
164  * @param node Pointer to the associated node structure.
165  * @param role Role for IO (originator/responder).
166  *
167  * @return Returns the pointer to the IO context, or NULL.
168  *
169  */
170 
171 ocs_io_t *
172 ocs_scsi_io_alloc(ocs_node_t *node, ocs_scsi_io_role_e role)
173 {
174 	ocs_t *ocs;
175 	ocs_xport_t *xport;
176 	ocs_io_t *io;
177 
178 	ocs_assert(node, NULL);
179 	ocs_assert(node->ocs, NULL);
180 
181 	ocs = node->ocs;
182 	ocs_assert(ocs->xport, NULL);
183 	xport = ocs->xport;
184 
185 	ocs_lock(&node->active_ios_lock);
186 
187 		if (!node->io_alloc_enabled) {
188 			ocs_unlock(&node->active_ios_lock);
189 			return NULL;
190 		}
191 
192 		io = ocs_io_alloc(ocs);
193 		if (io == NULL) {
194 			ocs_atomic_add_return(&xport->io_alloc_failed_count, 1);
195 			ocs_unlock(&node->active_ios_lock);
196 			return NULL;
197 		}
198 
199 		/* initialize refcount */
200 		ocs_ref_init(&io->ref, _ocs_scsi_io_free, io);
201 
202 		if (io->hio != NULL) {
203 			ocs_log_err(node->ocs, "assertion failed: io->hio is not NULL\n");
204 			ocs_io_free(ocs, io);
205 			ocs_unlock(&node->active_ios_lock);
206 			return NULL;
207 		}
208 
209 		/* set generic fields */
210 		io->ocs = ocs;
211 		io->node = node;
212 
213 		/* set type and name */
214 		io->io_type = OCS_IO_TYPE_IO;
215 		io->display_name = "scsi_io";
216 
217 		switch (role) {
218 		case OCS_SCSI_IO_ROLE_ORIGINATOR:
219 			io->cmd_ini = TRUE;
220 			io->cmd_tgt = FALSE;
221 			break;
222 		case OCS_SCSI_IO_ROLE_RESPONDER:
223 			io->cmd_ini = FALSE;
224 			io->cmd_tgt = TRUE;
225 			break;
226 		}
227 
228 		/* Add to node's active_ios list */
229 		ocs_list_add_tail(&node->active_ios, io);
230 
231 	ocs_unlock(&node->active_ios_lock);
232 
233 	return io;
234 }
235 
236 /**
237  * @ingroup scsi_api_base
238  * @brief Free a SCSI IO context (internal).
239  *
240  * @par Description
241  * The IO context previously allocated using ocs_scsi_io_alloc()
242  * is freed. This is called from within the transport layer,
243  * when the reference count goes to zero.
244  *
245  * @param arg Pointer to the IO context.
246  *
247  * @return None.
248  */
249 static void
250 _ocs_scsi_io_free(void *arg)
251 {
252 	ocs_io_t *io = (ocs_io_t *)arg;
253 	ocs_t *ocs = io->ocs;
254 	ocs_node_t *node = io->node;
255 	int send_empty_event;
256 
257 	ocs_assert(io != NULL);
258 
259 	scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
260 
261 	ocs_assert(ocs_io_busy(io));
262 
263 	ocs_lock(&node->active_ios_lock);
264 		ocs_list_remove(&node->active_ios, io);
265 		send_empty_event = (!node->io_alloc_enabled) && ocs_list_empty(&node->active_ios);
266 	ocs_unlock(&node->active_ios_lock);
267 
268 	if (send_empty_event) {
269 		ocs_node_post_event(node, OCS_EVT_NODE_ACTIVE_IO_LIST_EMPTY, NULL);
270 	}
271 
272 	io->node = NULL;
273 	ocs_io_free(ocs, io);
274 
275 }
276 
277 /**
278  * @ingroup scsi_api_base
279  * @brief Free a SCSI IO context.
280  *
281  * @par Description
282  * The IO context previously allocated using ocs_scsi_io_alloc() is freed.
283  *
284  * @param io Pointer to the IO context.
285  *
286  * @return None.
287  */
288 void
289 ocs_scsi_io_free(ocs_io_t *io)
290 {
291 	scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
292 	ocs_assert(ocs_ref_read_count(&io->ref) > 0);
293 	ocs_ref_put(&io->ref); /* ocs_ref_get(): ocs_scsi_io_alloc() */
294 }
295 
296 static int32_t
297 ocs_scsi_send_io(ocs_hw_io_type_e type, ocs_node_t *node, ocs_io_t *io, uint64_t lun,
298 	ocs_scsi_tmf_cmd_e tmf, uint8_t *cdb, uint32_t cdb_len,
299 	ocs_scsi_dif_info_t *dif_info,
300 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst,
301 	ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags);
302 
303 /**
304  * @brief Target response completion callback.
305  *
306  * @par Description
307  * Function is called upon the completion of a target IO request.
308  *
309  * @param hio Pointer to the HW IO structure.
310  * @param rnode Remote node associated with the IO that is completing.
311  * @param length Length of the response payload.
312  * @param status Completion status.
313  * @param ext_status Extended completion status.
314  * @param app Application-specific data (generally a pointer to the IO context).
315  *
316  * @return None.
317  */
318 
319 static void
320 ocs_target_io_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length,
321 	int32_t status, uint32_t ext_status, void *app)
322 {
323 	ocs_io_t *io = app;
324 	ocs_t *ocs;
325 	ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_GOOD;
326 	uint16_t additional_length;
327 	uint8_t edir;
328 	uint8_t tdpv;
329 	ocs_hw_dif_info_t *dif_info = &io->hw_dif;
330 	int is_crc;
331 
332 	ocs_assert(io);
333 
334 	scsi_io_trace(io, "status x%x ext_status x%x\n", status, ext_status);
335 
336 	ocs = io->ocs;
337 	ocs_assert(ocs);
338 
339 	ocs_scsi_io_free_ovfl(io);
340 
341 	io->transferred += length;
342 
343 	/* Call target server completion */
344 	if (io->scsi_tgt_cb) {
345 		ocs_scsi_io_cb_t cb = io->scsi_tgt_cb;
346 		uint32_t flags = 0;
347 
348 		/* Clear the callback before invoking the callback */
349 		io->scsi_tgt_cb = NULL;
350 
351 		/* if status was good, and auto-good-response was set, then callback
352 		 * target-server with IO_CMPL_RSP_SENT, otherwise send IO_CMPL
353 		 */
354 		if ((status == 0) && (io->auto_resp))
355 			flags |= OCS_SCSI_IO_CMPL_RSP_SENT;
356 		else
357 			flags |= OCS_SCSI_IO_CMPL;
358 
359 		switch (status) {
360 		case SLI4_FC_WCQE_STATUS_SUCCESS:
361 			scsi_status = OCS_SCSI_STATUS_GOOD;
362 			break;
363 		case SLI4_FC_WCQE_STATUS_DI_ERROR:
364 			if (ext_status & SLI4_FC_DI_ERROR_GE) {
365 				scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
366 			} else if (ext_status & SLI4_FC_DI_ERROR_AE) {
367 				scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR;
368 			} else if (ext_status & SLI4_FC_DI_ERROR_RE) {
369 				scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR;
370 			} else {
371 				additional_length = ((ext_status >> 16) & 0xFFFF);
372 
373 				/* Capture the EDIR and TDPV bits as 0 or 1 for easier printing. */
374 				edir = !!(ext_status & SLI4_FC_DI_ERROR_EDIR);
375 				tdpv = !!(ext_status & SLI4_FC_DI_ERROR_TDPV);
376 
377 				is_crc = ocs_scsi_dif_guard_is_crc(edir, dif_info);
378 
379 				if (edir == 0) {
380 					/* For reads, we have everything in memory.  Start checking from beginning. */
381 					scsi_status = ocs_scsi_dif_check_unknown(io, 0, io->wire_len, is_crc);
382 				} else {
383 					/* For writes, use the additional length to determine where to look for the error.
384 					 * The additional_length field is set to 0 if it is not supported.
385 					 * The additional length field is valid if:
386 					 *    . additional_length is not zero
387 					 *    . Total Data Placed is valid
388 					 *    . Error Direction is RX (1)
389 					 *    . Operation is a pass thru (CRC or CKSUM on IN, and CRC or CHKSUM on OUT) (all pass-thru cases except raw)
390 					 */
391 					if ((additional_length != 0) && (tdpv != 0) &&
392 					    (dif_info->dif == SLI4_DIF_PASS_THROUGH) && (dif_info->dif_oper != OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW) ) {
393 						scsi_status = ocs_scsi_dif_check_unknown(io, length, additional_length, is_crc);
394 					} else {
395 						/* If we can't do additional checking, then fall-back to guard error */
396 						scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
397 					}
398 				}
399 			}
400 			break;
401 		case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
402 			switch (ext_status) {
403 			case SLI4_FC_LOCAL_REJECT_INVALID_RELOFFSET:
404 			case SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED:
405 				scsi_status = OCS_SCSI_STATUS_ABORTED;
406 				break;
407 			case SLI4_FC_LOCAL_REJECT_INVALID_RPI:
408 				scsi_status = OCS_SCSI_STATUS_NEXUS_LOST;
409 				break;
410 			case SLI4_FC_LOCAL_REJECT_NO_XRI:
411 				scsi_status = OCS_SCSI_STATUS_NO_IO;
412 				break;
413 			default:
414 				/* TODO: we have seen 0x0d (TX_DMA_FAILED error) */
415 				scsi_status = OCS_SCSI_STATUS_ERROR;
416 				break;
417 			}
418 			break;
419 
420 		case SLI4_FC_WCQE_STATUS_TARGET_WQE_TIMEOUT:
421 			/* target IO timed out */
422 			scsi_status = OCS_SCSI_STATUS_TIMEDOUT_AND_ABORTED;
423 			break;
424 
425 		case SLI4_FC_WCQE_STATUS_SHUTDOWN:
426 			/* Target IO cancelled by HW */
427 			scsi_status = OCS_SCSI_STATUS_SHUTDOWN;
428 			break;
429 
430 		default:
431 			scsi_status = OCS_SCSI_STATUS_ERROR;
432 			break;
433 		}
434 
435 		cb(io, scsi_status, flags, io->scsi_tgt_cb_arg);
436 	}
437 	ocs_scsi_check_pending(ocs);
438 }
439 
440 /**
441  * @brief Determine if an IO is using CRC for DIF guard format.
442  *
443  * @param direction IO direction: 1 for write, 0 for read.
444  * @param dif_info Pointer to HW DIF info data.
445  *
446  * @return Returns TRUE if using CRC, FALSE if not.
447  */
448 static int
449 ocs_scsi_dif_guard_is_crc(uint8_t direction, ocs_hw_dif_info_t *dif_info)
450 {
451 	int is_crc;
452 
453 	if (direction) {
454 		/* For writes, check if operation is "OUT_CRC" or not */
455 		switch(dif_info->dif_oper) {
456 			case OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC:
457 			case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC:
458 			case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC:
459 				is_crc = TRUE;
460 				break;
461 			default:
462 				is_crc = FALSE;
463 				break;
464 		}
465 	} else {
466 		/* For reads, check if operation is "IN_CRC" or not */
467 		switch(dif_info->dif_oper) {
468 			case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF:
469 			case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC:
470 			case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM:
471 				is_crc = TRUE;
472 				break;
473 			default:
474 				is_crc = FALSE;
475 				break;
476 		}
477 	}
478 
479 	return is_crc;
480 }
481 
482 /**
483  * @brief Check a block and DIF data, computing the appropriate SCSI status
484  *
485  * @par Description
486  * This function is used to check blocks and DIF when given an unknown DIF
487  * status using the following logic:
488  *
489  * Given the address of the last good block, and a length of bytes that includes
490  * the block with the DIF error, find the bad block. If a block is found with an
491  * app_tag or ref_tag error, then return the appropriate error. No block is expected
492  * to have a block guard error since hardware "fixes" the crc. So if no block in the
493  * range of blocks has an error, then it is presumed to be a BLOCK GUARD error.
494  *
495  * @param io Pointer to the IO object.
496  * @param length Length of bytes covering the good blocks.
497  * @param check_length Length of bytes that covers the bad block.
498  * @param is_crc True if guard is using CRC format.
499  *
500  * @return Returns SCSI status.
501  */
502 
503 static ocs_scsi_io_status_e
504 ocs_scsi_dif_check_unknown(ocs_io_t *io, uint32_t length, uint32_t check_length, int is_crc)
505 {
506 	uint32_t i;
507 	ocs_t *ocs = io->ocs;
508 	ocs_hw_dif_info_t *dif_info = &io->hw_dif;
509 	ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
510 	uint32_t blocksize;			/* data block size */
511 	uint64_t first_check_block;		/* first block following total data placed */
512 	uint64_t last_check_block;		/* last block to check */
513 	uint32_t check_count;			/* count of blocks to check */
514 	ocs_scsi_vaddr_len_t addrlen[4];	/* address-length pairs returned from target */
515 	int32_t addrlen_count;			/* count of address-length pairs */
516 	ocs_dif_t *dif;				/* pointer to DIF block returned from target */
517 	ocs_scsi_dif_info_t scsi_dif_info = io->scsi_dif_info;
518 
519 	blocksize = ocs_hw_dif_mem_blocksize(&io->hw_dif, TRUE);
520 	first_check_block = length / blocksize;
521 	last_check_block = ((length + check_length) / blocksize);
522 	check_count = last_check_block - first_check_block;
523 
524 	ocs_log_debug(ocs, "blocksize %d first check_block %" PRId64 " last_check_block %" PRId64 " check_count %d\n",
525 		blocksize, first_check_block, last_check_block, check_count);
526 
527 	for (i = first_check_block; i < last_check_block; i++) {
528 		addrlen_count = ocs_scsi_get_block_vaddr(io, (scsi_dif_info.lba + i), addrlen, ARRAY_SIZE(addrlen), (void**) &dif);
529 		if (addrlen_count < 0) {
530 			ocs_log_test(ocs, "ocs_scsi_get_block_vaddr() failed: %d\n", addrlen_count);
531 			scsi_status = OCS_SCSI_STATUS_DIF_UNKNOWN_ERROR;
532 			break;
533 		}
534 
535 		if (! ocs_scsi_dif_check_guard(dif_info, addrlen, addrlen_count, dif, is_crc)) {
536 			ocs_log_debug(ocs, "block guard check error, lba %" PRId64 "\n", scsi_dif_info.lba + i);
537 			scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
538 			break;
539 		}
540 		if (! ocs_scsi_dif_check_app_tag(ocs, dif_info, scsi_dif_info.app_tag, dif)) {
541 			ocs_log_debug(ocs, "app tag check error, lba %" PRId64 "\n", scsi_dif_info.lba + i);
542 			scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR;
543 			break;
544 		}
545 		if (! ocs_scsi_dif_check_ref_tag(ocs, dif_info, (scsi_dif_info.ref_tag + i), dif)) {
546 			ocs_log_debug(ocs, "ref tag check error, lba %" PRId64 "\n", scsi_dif_info.lba + i);
547 			scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR;
548 			break;
549 		}
550 	}
551 	return scsi_status;
552 }
553 
554 /**
555  * @brief Check the block guard of block data
556  *
557  * @par Description
558  * Using the dif_info for the transfer, check the block guard value.
559  *
560  * @param dif_info Pointer to HW DIF info data.
561  * @param addrlen Array of address length pairs.
562  * @param addrlen_count Number of entries in the addrlen[] array.
563  * @param dif Pointer to the DIF data block being checked.
564  * @param is_crc True if guard is using CRC format.
565  *
566  * @return Returns TRUE if block guard check is ok.
567  */
568 static uint32_t
569 ocs_scsi_dif_check_guard(ocs_hw_dif_info_t *dif_info, ocs_scsi_vaddr_len_t addrlen[], uint32_t addrlen_count,
570 	ocs_dif_t *dif, int is_crc)
571 {
572 	uint16_t crc = dif_info->dif_seed;
573 	uint32_t i;
574 	uint16_t checksum;
575 
576 	if ((dif == NULL)  || !dif_info->check_guard) {
577 		return TRUE;
578 	}
579 
580 	if (is_crc) {
581 		for (i = 0; i < addrlen_count; i++) {
582 			crc = ocs_scsi_dif_calc_crc(addrlen[i].vaddr, addrlen[i].length, crc);
583 		}
584 		return (crc == ocs_be16toh(dif->crc));
585 	} else {
586 		checksum = ocs_scsi_dif_calc_checksum(addrlen, addrlen_count);
587 
588 		return (checksum == dif->crc);
589 	}
590 }
591 
592 /**
593  * @brief Check the app tag of dif data
594  *
595  * @par Description
596  * Using the dif_info for the transfer, check the app tag.
597  *
598  * @param ocs Pointer to the ocs structure for logging.
599  * @param dif_info Pointer to HW DIF info data.
600  * @param exp_app_tag The value the app tag is expected to be.
601  * @param dif Pointer to the DIF data block being checked.
602  *
603  * @return Returns TRUE if app tag check is ok.
604  */
605 static uint32_t
606 ocs_scsi_dif_check_app_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint16_t exp_app_tag, ocs_dif_t *dif)
607 {
608 	if ((dif == NULL)  || !dif_info->check_app_tag) {
609 		return TRUE;
610 	}
611 
612 	ocs_log_debug(ocs, "expected app tag 0x%x,  actual 0x%x\n",
613 		exp_app_tag, ocs_be16toh(dif->app_tag));
614 
615 	return (exp_app_tag == ocs_be16toh(dif->app_tag));
616 }
617 
618 /**
619  * @brief Check the ref tag of dif data
620  *
621  * @par Description
622  * Using the dif_info for the transfer, check the app tag.
623  *
624  * @param ocs Pointer to the ocs structure for logging.
625  * @param dif_info Pointer to HW DIF info data.
626  * @param exp_ref_tag The value the ref tag is expected to be.
627  * @param dif Pointer to the DIF data block being checked.
628  *
629  * @return Returns TRUE if ref tag check is ok.
630  */
631 static uint32_t
632 ocs_scsi_dif_check_ref_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint32_t exp_ref_tag, ocs_dif_t *dif)
633 {
634 	if ((dif == NULL)  || !dif_info->check_ref_tag) {
635 		return TRUE;
636 	}
637 
638 	if (exp_ref_tag != ocs_be32toh(dif->ref_tag)) {
639 		ocs_log_debug(ocs, "expected ref tag 0x%x, actual 0x%x\n",
640 			exp_ref_tag, ocs_be32toh(dif->ref_tag));
641 		return FALSE;
642 	} else {
643 		return TRUE;
644 	}
645 }
646 
647 /**
648  * @brief Return count of SGE's required for request
649  *
650  * @par Description
651  * An accurate count of SGEs is computed and returned.
652  *
653  * @param hw_dif Pointer to HW dif information.
654  * @param sgl Pointer to SGL from back end.
655  * @param sgl_count Count of SGEs in SGL.
656  *
657  * @return Count of SGEs.
658  */
659 static uint32_t
660 ocs_scsi_count_sgls(ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count)
661 {
662 	uint32_t count = 0;
663 	uint32_t i;
664 
665 	/* Convert DIF Information */
666 	if (hw_dif->dif_oper != OCS_HW_DIF_OPER_DISABLED) {
667 		/* If we're not DIF separate, then emit a seed SGE */
668 		if (!hw_dif->dif_separate) {
669 			count++;
670 		}
671 
672 		for (i = 0; i < sgl_count; i++) {
673 			/* If DIF is enabled, and DIF is separate, then append a SEED then DIF SGE */
674 			if (hw_dif->dif_separate) {
675 				count += 2;
676 			}
677 
678 			count++;
679 		}
680 	} else {
681 		count = sgl_count;
682 	}
683 	return count;
684 }
685 
686 static int32_t
687 ocs_scsi_build_sgls(ocs_hw_t *hw, ocs_hw_io_t *hio, ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, ocs_hw_io_type_e type)
688 {
689 	int32_t rc;
690 	uint32_t i;
691 	ocs_t *ocs = hw->os;
692 	uint32_t blocksize = 0;
693 	uint32_t blockcount;
694 
695 	ocs_assert(hio, -1);
696 
697 	/* Initialize HW SGL */
698 	rc = ocs_hw_io_init_sges(hw, hio, type);
699 	if (rc) {
700 		ocs_log_err(ocs, "ocs_hw_io_init_sges failed: %d\n", rc);
701 		return -1;
702 	}
703 
704 	/* Convert DIF Information */
705 	if (hw_dif->dif_oper != OCS_HW_DIF_OPER_DISABLED) {
706 		/* If we're not DIF separate, then emit a seed SGE */
707 		if (!hw_dif->dif_separate) {
708 			rc = ocs_hw_io_add_seed_sge(hw, hio, hw_dif);
709 			if (rc) {
710 				return rc;
711 			}
712 		}
713 
714 		/* if we are doing DIF separate, then figure out the block size so that we
715 		 * can update the ref tag in the DIF seed SGE.   Also verify that the
716 		 * the sgl lengths are all multiples of the blocksize
717 		 */
718 		if (hw_dif->dif_separate) {
719 			switch(hw_dif->blk_size) {
720 			case OCS_HW_DIF_BK_SIZE_512:	blocksize = 512; break;
721 			case OCS_HW_DIF_BK_SIZE_1024:	blocksize = 1024; break;
722 			case OCS_HW_DIF_BK_SIZE_2048:	blocksize = 2048; break;
723 			case OCS_HW_DIF_BK_SIZE_4096:	blocksize = 4096; break;
724 			case OCS_HW_DIF_BK_SIZE_520:	blocksize = 520; break;
725 			case OCS_HW_DIF_BK_SIZE_4104:	blocksize = 4104; break;
726 			default:
727 				ocs_log_test(hw->os, "Inavlid hw_dif blocksize %d\n", hw_dif->blk_size);
728 				return -1;
729 			}
730 			for (i = 0; i < sgl_count; i++) {
731 				if ((sgl[i].len % blocksize) != 0) {
732 					ocs_log_test(hw->os, "sgl[%d] len of %ld is not multiple of blocksize\n",
733 						     i, sgl[i].len);
734 					return -1;
735 				}
736 			}
737 		}
738 
739 		for (i = 0; i < sgl_count; i++) {
740 			ocs_assert(sgl[i].addr, -1);
741 			ocs_assert(sgl[i].len, -1);
742 
743 			/* If DIF is enabled, and DIF is separate, then append a SEED then DIF SGE */
744 			if (hw_dif->dif_separate) {
745 				rc = ocs_hw_io_add_seed_sge(hw, hio, hw_dif);
746 				if (rc) {
747 					return rc;
748 				}
749 				rc = ocs_hw_io_add_dif_sge(hw, hio, sgl[i].dif_addr);
750 				if (rc) {
751 					return rc;
752 				}
753 				/* Update the ref_tag for the next DIF seed SGE */
754 				blockcount = sgl[i].len / blocksize;
755 				if (hw_dif->dif_oper == OCS_HW_DIF_OPER_INSERT) {
756 					hw_dif->ref_tag_repl += blockcount;
757 				} else {
758 					hw_dif->ref_tag_cmp += blockcount;
759 				}
760 			}
761 
762 			/* Add data SGE */
763 			rc = ocs_hw_io_add_sge(hw, hio, sgl[i].addr, sgl[i].len);
764 			if (rc) {
765 				ocs_log_err(ocs, "ocs_hw_io_add_sge failed: count=%d rc=%d\n",
766 						sgl_count, rc);
767 				return rc;
768 			}
769 		}
770 	} else {
771 		for (i = 0; i < sgl_count; i++) {
772 			ocs_assert(sgl[i].addr, -1);
773 			ocs_assert(sgl[i].len, -1);
774 
775 			/* Add data SGE */
776 			rc = ocs_hw_io_add_sge(hw, hio, sgl[i].addr, sgl[i].len);
777 			if (rc) {
778 				ocs_log_err(ocs, "ocs_hw_io_add_sge failed: count=%d rc=%d\n",
779 						sgl_count, rc);
780 				return rc;
781 			}
782 		}
783 	}
784 	return 0;
785 }
786 
787 /**
788  * @ingroup scsi_api_base
789  * @brief Convert SCSI API T10 DIF information into the FC HW format.
790  *
791  * @param ocs Pointer to the ocs structure for logging.
792  * @param scsi_dif_info Pointer to the SCSI API T10 DIF fields.
793  * @param hw_dif_info Pointer to the FC HW API T10 DIF fields.
794  *
795  * @return Returns 0 on success, or a negative error code value on failure.
796  */
797 
798 static int32_t
799 ocs_scsi_convert_dif_info(ocs_t *ocs, ocs_scsi_dif_info_t *scsi_dif_info, ocs_hw_dif_info_t *hw_dif_info)
800 {
801 	uint32_t dif_seed;
802 	ocs_memset(hw_dif_info, 0, sizeof(ocs_hw_dif_info_t));
803 
804 	if (scsi_dif_info == NULL) {
805 		hw_dif_info->dif_oper = OCS_HW_DIF_OPER_DISABLED;
806 		hw_dif_info->blk_size =  OCS_HW_DIF_BK_SIZE_NA;
807 		return 0;
808 	}
809 
810 	/* Convert the DIF operation */
811 	switch(scsi_dif_info->dif_oper) {
812 	case OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CRC:
813 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC;
814 		hw_dif_info->dif = SLI4_DIF_INSERT;
815 		break;
816 	case OCS_SCSI_DIF_OPER_IN_CRC_OUT_NODIF:
817 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF;
818 		hw_dif_info->dif = SLI4_DIF_STRIP;
819 		break;
820 	case OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CHKSUM:
821 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM;
822 		hw_dif_info->dif = SLI4_DIF_INSERT;
823 		break;
824 	case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_NODIF:
825 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF;
826 		hw_dif_info->dif = SLI4_DIF_STRIP;
827 		break;
828 	case OCS_SCSI_DIF_OPER_IN_CRC_OUT_CRC:
829 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC;
830 		hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
831 		break;
832 	case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CHKSUM:
833 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM;
834 		hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
835 		break;
836 	case OCS_SCSI_DIF_OPER_IN_CRC_OUT_CHKSUM:
837 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM;
838 		hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
839 		break;
840 	case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CRC:
841 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC;
842 		hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
843 		break;
844 	case OCS_SCSI_DIF_OPER_IN_RAW_OUT_RAW:
845 		hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW;
846 		hw_dif_info->dif = SLI4_DIF_PASS_THROUGH;
847 		break;
848 	default:
849 		ocs_log_test(ocs, "unhandled SCSI DIF operation %d\n",
850 			     scsi_dif_info->dif_oper);
851 		return -1;
852 	}
853 
854 	switch(scsi_dif_info->blk_size) {
855 	case OCS_SCSI_DIF_BK_SIZE_512:
856 		hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_512;
857 		break;
858 	case OCS_SCSI_DIF_BK_SIZE_1024:
859 		hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_1024;
860 		break;
861 	case OCS_SCSI_DIF_BK_SIZE_2048:
862 		hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_2048;
863 		break;
864 	case OCS_SCSI_DIF_BK_SIZE_4096:
865 		hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_4096;
866 		break;
867 	case OCS_SCSI_DIF_BK_SIZE_520:
868 		hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_520;
869 		break;
870 	case OCS_SCSI_DIF_BK_SIZE_4104:
871 		hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_4104;
872 		break;
873 	default:
874 		ocs_log_test(ocs, "unhandled SCSI DIF block size %d\n",
875 			     scsi_dif_info->blk_size);
876 		return -1;
877 	}
878 
879 	/* If the operation is an INSERT the tags provided are the ones that should be
880 	 * inserted, otherwise they're the ones to be checked against. */
881 	if (hw_dif_info->dif == SLI4_DIF_INSERT ) {
882 		hw_dif_info->ref_tag_repl = scsi_dif_info->ref_tag;
883 		hw_dif_info->app_tag_repl = scsi_dif_info->app_tag;
884 	} else {
885 		hw_dif_info->ref_tag_cmp = scsi_dif_info->ref_tag;
886 		hw_dif_info->app_tag_cmp = scsi_dif_info->app_tag;
887 	}
888 
889 	hw_dif_info->check_ref_tag = scsi_dif_info->check_ref_tag;
890 	hw_dif_info->check_app_tag = scsi_dif_info->check_app_tag;
891 	hw_dif_info->check_guard = scsi_dif_info->check_guard;
892 	hw_dif_info->auto_incr_ref_tag = 1;
893 	hw_dif_info->dif_separate = scsi_dif_info->dif_separate;
894 	hw_dif_info->disable_app_ffff = scsi_dif_info->disable_app_ffff;
895 	hw_dif_info->disable_app_ref_ffff = scsi_dif_info->disable_app_ref_ffff;
896 
897 	ocs_hw_get(&ocs->hw, OCS_HW_DIF_SEED, &dif_seed);
898 	hw_dif_info->dif_seed = dif_seed;
899 
900 	return 0;
901 }
902 
903 /**
904  * @ingroup scsi_api_base
905  * @brief This function logs the SGLs for an IO.
906  *
907  * @param io Pointer to the IO context.
908  */
909 static void ocs_log_sgl(ocs_io_t *io)
910 {
911 	ocs_hw_io_t *hio = io->hio;
912 	sli4_sge_t *data = NULL;
913 	uint32_t *dword = NULL;
914 	uint32_t i;
915 	uint32_t n_sge;
916 
917 	scsi_io_trace(io, "def_sgl at 0x%x 0x%08x\n",
918 		      ocs_addr32_hi(hio->def_sgl.phys),
919 		      ocs_addr32_lo(hio->def_sgl.phys));
920 	n_sge = (hio->sgl == &hio->def_sgl ? hio->n_sge : hio->def_sgl_count);
921 	for (i = 0, data = hio->def_sgl.virt; i < n_sge; i++, data++) {
922 		dword = (uint32_t*)data;
923 
924 		scsi_io_trace(io, "SGL %2d 0x%08x 0x%08x 0x%08x 0x%08x\n",
925 			 i, dword[0], dword[1], dword[2], dword[3]);
926 
927 		if (dword[2] & (1U << 31)) {
928 			break;
929 		}
930 	}
931 
932 	if (hio->ovfl_sgl != NULL &&
933 		hio->sgl == hio->ovfl_sgl) {
934 		scsi_io_trace(io, "Overflow at 0x%x 0x%08x\n",
935 			      ocs_addr32_hi(hio->ovfl_sgl->phys),
936 			      ocs_addr32_lo(hio->ovfl_sgl->phys));
937 		for (i = 0, data = hio->ovfl_sgl->virt; i < hio->n_sge; i++, data++) {
938 			dword = (uint32_t*)data;
939 
940 			scsi_io_trace(io, "SGL %2d 0x%08x 0x%08x 0x%08x 0x%08x\n",
941 				 i, dword[0], dword[1], dword[2], dword[3]);
942 			if (dword[2] & (1U << 31)) {
943 				break;
944 			}
945 		}
946 	}
947 
948 }
949 
950 /**
951  * @brief Check pending error asynchronous callback function.
952  *
953  * @par Description
954  * Invoke the HW callback function for a given IO. This function is called
955  * from the NOP mailbox completion context.
956  *
957  * @param hw Pointer to HW object.
958  * @param status Completion status.
959  * @param mqe Mailbox completion queue entry.
960  * @param arg General purpose argument.
961  *
962  * @return Returns 0.
963  */
964 static int32_t
965 ocs_scsi_check_pending_async_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg)
966 {
967 	ocs_io_t *io = arg;
968 
969 	if (io != NULL) {
970 		if (io->hw_cb != NULL) {
971 			ocs_hw_done_t cb = io->hw_cb;
972 
973 			io->hw_cb = NULL;
974 			cb(io->hio, NULL, 0, SLI4_FC_WCQE_STATUS_DISPATCH_ERROR, 0, io);
975 		}
976 	}
977 	return 0;
978 }
979 
980 /**
981  * @brief Check for pending IOs to dispatch.
982  *
983  * @par Description
984  * If there are IOs on the pending list, and a HW IO is available, then
985  * dispatch the IOs.
986  *
987  * @param ocs Pointer to the OCS structure.
988  *
989  * @return None.
990  */
991 
992 void
993 ocs_scsi_check_pending(ocs_t *ocs)
994 {
995 	ocs_xport_t *xport = ocs->xport;
996 	ocs_io_t *io;
997 	ocs_hw_io_t *hio;
998 	int32_t status;
999 	int count = 0;
1000 	int dispatch;
1001 
1002 	/* Guard against recursion */
1003 	if (ocs_atomic_add_return(&xport->io_pending_recursing, 1)) {
1004 		/* This function is already running.  Decrement and return. */
1005 		ocs_atomic_sub_return(&xport->io_pending_recursing, 1);
1006 		return;
1007 	}
1008 
1009 	do {
1010 		ocs_lock(&xport->io_pending_lock);
1011 			status = 0;
1012 			hio = NULL;
1013 			io = ocs_list_remove_head(&xport->io_pending_list);
1014 			if (io != NULL) {
1015 				if (io->io_type == OCS_IO_TYPE_ABORT) {
1016 					hio = NULL;
1017 				} else {
1018 					hio = ocs_hw_io_alloc(&ocs->hw);
1019 					if (hio == NULL) {
1020 						/*
1021 						 * No HW IO available.
1022 						 * Put IO back on the front of pending list
1023 						 */
1024 						ocs_list_add_head(&xport->io_pending_list, io);
1025 						io = NULL;
1026 					} else {
1027 						hio->eq = io->hw_priv;
1028 					}
1029 				}
1030 			}
1031 		/* Must drop the lock before dispatching the IO */
1032 		ocs_unlock(&xport->io_pending_lock);
1033 
1034 		if (io != NULL) {
1035 			count++;
1036 
1037 			/*
1038 			 * We pulled an IO off the pending list,
1039 			 * and either got an HW IO or don't need one
1040 			 */
1041 			ocs_atomic_sub_return(&xport->io_pending_count, 1);
1042 			if (hio == NULL) {
1043 				status = ocs_scsi_io_dispatch_no_hw_io(io);
1044 			} else {
1045 				status = ocs_scsi_io_dispatch_hw_io(io, hio);
1046 			}
1047 			if (status) {
1048 				/*
1049 				 * Invoke the HW callback, but do so in the separate execution context,
1050 				 * provided by the NOP mailbox completion processing context by using
1051 				 * ocs_hw_async_call()
1052 				 */
1053 				if (ocs_hw_async_call(&ocs->hw, ocs_scsi_check_pending_async_cb, io)) {
1054 					ocs_log_test(ocs, "call to ocs_hw_async_call() failed\n");
1055 				}
1056 			}
1057 		}
1058 	} while (io != NULL);
1059 
1060 	/*
1061 	 * If nothing was removed from the list,
1062 	 * we might be in a case where we need to abort an
1063 	 * active IO and the abort is on the pending list.
1064 	 * Look for an abort we can dispatch.
1065 	 */
1066 	if (count == 0 ) {
1067 		dispatch = 0;
1068 
1069 		ocs_lock(&xport->io_pending_lock);
1070 			ocs_list_foreach(&xport->io_pending_list, io) {
1071 				if (io->io_type == OCS_IO_TYPE_ABORT) {
1072 					if (io->io_to_abort->hio != NULL) {
1073 						/* This IO has a HW IO, so it is active.  Dispatch the abort. */
1074 						dispatch = 1;
1075 					} else {
1076 						/* Leave this abort on the pending list and keep looking */
1077 						dispatch = 0;
1078 					}
1079 				}
1080 				if (dispatch) {
1081 					ocs_list_remove(&xport->io_pending_list, io);
1082 					ocs_atomic_sub_return(&xport->io_pending_count, 1);
1083 					break;
1084 				}
1085 			}
1086 		ocs_unlock(&xport->io_pending_lock);
1087 
1088 		if (dispatch) {
1089 			status = ocs_scsi_io_dispatch_no_hw_io(io);
1090 			if (status) {
1091 				if (ocs_hw_async_call(&ocs->hw, ocs_scsi_check_pending_async_cb, io)) {
1092 					ocs_log_test(ocs, "call to ocs_hw_async_call() failed\n");
1093 				}
1094 			}
1095 		}
1096 	}
1097 
1098 	ocs_atomic_sub_return(&xport->io_pending_recursing, 1);
1099 	return;
1100 }
1101 
1102 /**
1103  * @brief Attempt to dispatch a non-abort IO
1104  *
1105  * @par Description
1106  * An IO is dispatched:
1107  * - if the pending list is not empty, add IO to pending list
1108  *   and call a function to process the pending list.
1109  * - if pending list is empty, try to allocate a HW IO. If none
1110  *   is available, place this IO at the tail of the pending IO
1111  *   list.
1112  * - if HW IO is available, attach this IO to the HW IO and
1113  *   submit it.
1114  *
1115  * @param io Pointer to IO structure.
1116  * @param cb Callback function.
1117  *
1118  * @return Returns 0 on success, a negative error code value on failure.
1119  */
1120 
1121 int32_t
1122 ocs_scsi_io_dispatch(ocs_io_t *io, void *cb)
1123 {
1124 	ocs_hw_io_t *hio;
1125 	ocs_t *ocs = io->ocs;
1126 	ocs_xport_t *xport = ocs->xport;
1127 
1128 	ocs_assert(io->cmd_tgt || io->cmd_ini, -1);
1129 	ocs_assert((io->io_type != OCS_IO_TYPE_ABORT), -1);
1130 	io->hw_cb = cb;
1131 
1132 	/*
1133 	 * if this IO already has a HW IO, then this is either not the first phase of
1134 	 * the IO. Send it to the HW.
1135 	 */
1136 	if (io->hio != NULL) {
1137 		return ocs_scsi_io_dispatch_hw_io(io, io->hio);
1138 	}
1139 
1140 	/*
1141 	 * We don't already have a HW IO associated with the IO. First check
1142 	 * the pending list. If not empty, add IO to the tail and process the
1143 	 * pending list.
1144 	 */
1145 	ocs_lock(&xport->io_pending_lock);
1146 		if (!ocs_list_empty(&xport->io_pending_list)) {
1147 			/*
1148 			 * If this is a low latency request, the put at the front of the IO pending
1149 			 * queue, otherwise put it at the end of the queue.
1150 			 */
1151 			if (io->low_latency) {
1152 				ocs_list_add_head(&xport->io_pending_list, io);
1153 			} else {
1154 				ocs_list_add_tail(&xport->io_pending_list, io);
1155 			}
1156 			ocs_unlock(&xport->io_pending_lock);
1157 			ocs_atomic_add_return(&xport->io_pending_count, 1);
1158 			ocs_atomic_add_return(&xport->io_total_pending, 1);
1159 
1160 			/* process pending list */
1161 			ocs_scsi_check_pending(ocs);
1162 			return 0;
1163 		}
1164 	ocs_unlock(&xport->io_pending_lock);
1165 
1166 	/*
1167 	 * We don't have a HW IO associated with the IO and there's nothing
1168 	 * on the pending list. Attempt to allocate a HW IO and dispatch it.
1169 	 */
1170 	hio = ocs_hw_io_alloc(&io->ocs->hw);
1171 	if (hio == NULL) {
1172 		/* Couldn't get a HW IO. Save this IO on the pending list */
1173 		ocs_lock(&xport->io_pending_lock);
1174 			ocs_list_add_tail(&xport->io_pending_list, io);
1175 		ocs_unlock(&xport->io_pending_lock);
1176 
1177 		ocs_atomic_add_return(&xport->io_total_pending, 1);
1178 		ocs_atomic_add_return(&xport->io_pending_count, 1);
1179 		return 0;
1180 	}
1181 
1182 	/* We successfully allocated a HW IO; dispatch to HW */
1183 	return ocs_scsi_io_dispatch_hw_io(io, hio);
1184 }
1185 
1186 /**
1187  * @brief Attempt to dispatch an Abort IO.
1188  *
1189  * @par Description
1190  * An Abort IO is dispatched:
1191  * - if the pending list is not empty, add IO to pending list
1192  *   and call a function to process the pending list.
1193  * - if pending list is empty, send abort to the HW.
1194  *
1195  * @param io Pointer to IO structure.
1196  * @param cb Callback function.
1197  *
1198  * @return Returns 0 on success, a negative error code value on failure.
1199  */
1200 
1201 int32_t
1202 ocs_scsi_io_dispatch_abort(ocs_io_t *io, void *cb)
1203 {
1204 	ocs_t *ocs = io->ocs;
1205 	ocs_xport_t *xport = ocs->xport;
1206 
1207 	ocs_assert((io->io_type == OCS_IO_TYPE_ABORT), -1);
1208 	io->hw_cb = cb;
1209 
1210 	/*
1211 	 * For aborts, we don't need a HW IO, but we still want to pass through
1212 	 * the pending list to preserve ordering. Thus, if the pending list is
1213 	 * not empty, add this abort to the pending list and process the pending list.
1214 	 */
1215 	ocs_lock(&xport->io_pending_lock);
1216 		if (!ocs_list_empty(&xport->io_pending_list)) {
1217 			ocs_list_add_tail(&xport->io_pending_list, io);
1218 			ocs_unlock(&xport->io_pending_lock);
1219 			ocs_atomic_add_return(&xport->io_pending_count, 1);
1220 			ocs_atomic_add_return(&xport->io_total_pending, 1);
1221 
1222 			/* process pending list */
1223 			ocs_scsi_check_pending(ocs);
1224 			return 0;
1225 		}
1226 	ocs_unlock(&xport->io_pending_lock);
1227 
1228 	/* nothing on pending list, dispatch abort */
1229 	return ocs_scsi_io_dispatch_no_hw_io(io);
1230 
1231 }
1232 
1233 /**
1234  * @brief Dispatch IO
1235  *
1236  * @par Description
1237  * An IO and its associated HW IO is dispatched to the HW.
1238  *
1239  * @param io Pointer to IO structure.
1240  * @param hio Pointer to HW IO structure from which IO will be
1241  * dispatched.
1242  *
1243  * @return Returns 0 on success, a negative error code value on failure.
1244  */
1245 
1246 static int32_t
1247 ocs_scsi_io_dispatch_hw_io(ocs_io_t *io, ocs_hw_io_t *hio)
1248 {
1249 	int32_t rc;
1250 	ocs_t *ocs = io->ocs;
1251 
1252 	/* Got a HW IO; update ini/tgt_task_tag with HW IO info and dispatch */
1253 	io->hio = hio;
1254 	if (io->cmd_tgt) {
1255 		io->tgt_task_tag = hio->indicator;
1256 	} else if (io->cmd_ini) {
1257 		io->init_task_tag = hio->indicator;
1258 	}
1259 	io->hw_tag = hio->reqtag;
1260 
1261 	hio->eq = io->hw_priv;
1262 
1263 	/* Copy WQ steering */
1264 	switch(io->wq_steering) {
1265 	case OCS_SCSI_WQ_STEERING_CLASS >> OCS_SCSI_WQ_STEERING_SHIFT:
1266 		hio->wq_steering = OCS_HW_WQ_STEERING_CLASS;
1267 		break;
1268 	case OCS_SCSI_WQ_STEERING_REQUEST >> OCS_SCSI_WQ_STEERING_SHIFT:
1269 		hio->wq_steering = OCS_HW_WQ_STEERING_REQUEST;
1270 		break;
1271 	case OCS_SCSI_WQ_STEERING_CPU >> OCS_SCSI_WQ_STEERING_SHIFT:
1272 		hio->wq_steering = OCS_HW_WQ_STEERING_CPU;
1273 		break;
1274 	}
1275 
1276 	switch (io->io_type) {
1277 	case OCS_IO_TYPE_IO: {
1278 		uint32_t max_sgl;
1279 		uint32_t total_count;
1280 		uint32_t host_allocated;
1281 
1282 		ocs_hw_get(&ocs->hw, OCS_HW_N_SGL, &max_sgl);
1283 		ocs_hw_get(&ocs->hw, OCS_HW_SGL_CHAINING_HOST_ALLOCATED, &host_allocated);
1284 
1285 		/*
1286 		 * If the requested SGL is larger than the default size, then we can allocate
1287 		 * an overflow SGL.
1288 		 */
1289 		total_count = ocs_scsi_count_sgls(&io->hw_dif, io->sgl, io->sgl_count);
1290 
1291 		/*
1292 		 * Lancer requires us to allocate the chained memory area, but
1293 		 * Skyhawk must use the SGL list associated with another XRI.
1294 		 */
1295 		if (host_allocated && total_count > max_sgl) {
1296 			/* Compute count needed, the number extra plus 1 for the link sge */
1297 			uint32_t count = total_count - max_sgl + 1;
1298 			rc = ocs_dma_alloc(ocs, &io->ovfl_sgl, count*sizeof(sli4_sge_t), 64);
1299 			if (rc) {
1300 				ocs_log_err(ocs, "ocs_dma_alloc overflow sgl failed\n");
1301 				break;
1302 			}
1303 			rc = ocs_hw_io_register_sgl(&ocs->hw, io->hio, &io->ovfl_sgl, count);
1304 			if (rc) {
1305 				ocs_scsi_io_free_ovfl(io);
1306 				ocs_log_err(ocs, "ocs_hw_io_register_sgl() failed\n");
1307 				break;
1308 			}
1309 			/* EVT: update chained_io_count */
1310 			io->node->chained_io_count++;
1311 		}
1312 
1313 		rc = ocs_scsi_build_sgls(&ocs->hw, io->hio, &io->hw_dif, io->sgl, io->sgl_count, io->hio_type);
1314 		if (rc) {
1315 			ocs_scsi_io_free_ovfl(io);
1316 			break;
1317 		}
1318 
1319 		if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) {
1320 			ocs_log_sgl(io);
1321 		}
1322 
1323 		if (io->app_id) {
1324 			io->iparam.fcp_tgt.app_id = io->app_id;
1325 		}
1326 
1327 		rc = ocs_hw_io_send(&io->ocs->hw, io->hio_type, io->hio, io->wire_len, &io->iparam, &io->node->rnode,
1328 			io->hw_cb, io);
1329 		break;
1330 	}
1331 	case OCS_IO_TYPE_ELS:
1332 	case OCS_IO_TYPE_CT: {
1333 		rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio,
1334 			&io->els_req, io->wire_len,
1335 			&io->els_rsp, &io->node->rnode, &io->iparam,
1336 			io->hw_cb, io);
1337 		break;
1338 	}
1339 	case OCS_IO_TYPE_CT_RESP: {
1340 		rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio,
1341 			&io->els_rsp, io->wire_len,
1342 			NULL, &io->node->rnode, &io->iparam,
1343 			io->hw_cb, io);
1344 		break;
1345 	}
1346 	case OCS_IO_TYPE_BLS_RESP: {
1347 		/* no need to update tgt_task_tag for BLS response since the RX_ID
1348 		 * will be specified by the payload, not the XRI */
1349 		rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio,
1350 			NULL, 0, NULL, &io->node->rnode, &io->iparam, io->hw_cb, io);
1351 		break;
1352 	}
1353 	default:
1354 		scsi_io_printf(io, "Unknown IO type=%d\n", io->io_type);
1355 		rc = -1;
1356 		break;
1357 	}
1358 	return rc;
1359 }
1360 
1361 /**
1362  * @brief Dispatch IO
1363  *
1364  * @par Description
1365  * An IO that does require a HW IO is dispatched to the HW.
1366  *
1367  * @param io Pointer to IO structure.
1368  *
1369  * @return Returns 0 on success, or a negative error code value on failure.
1370  */
1371 
1372 static int32_t
1373 ocs_scsi_io_dispatch_no_hw_io(ocs_io_t *io)
1374 {
1375 	int32_t rc;
1376 
1377 	switch (io->io_type) {
1378 	case OCS_IO_TYPE_ABORT: {
1379 		ocs_hw_io_t *hio_to_abort = NULL;
1380 		ocs_assert(io->io_to_abort, -1);
1381 		hio_to_abort = io->io_to_abort->hio;
1382 
1383 		if (hio_to_abort == NULL) {
1384 			/*
1385 			 * If "IO to abort" does not have an associated HW IO, immediately
1386 			 * make callback with success. The command must have been sent to
1387 			 * the backend, but the data phase has not yet started, so we don't
1388 			 * have a HW IO.
1389 			 *
1390 			 * Note: since the backend shims should be taking a reference
1391 			 * on io_to_abort, it should not be possible to have been completed
1392 			 * and freed by the backend before the abort got here.
1393 			 */
1394 			scsi_io_printf(io, "IO: " SCSI_IOFMT " not active\n",
1395 				       SCSI_IOFMT_ARGS(io->io_to_abort));
1396 			((ocs_hw_done_t)io->hw_cb)(io->hio, NULL, 0, SLI4_FC_WCQE_STATUS_SUCCESS, 0, io);
1397 			rc = 0;
1398 		} else {
1399 			/* HW IO is valid, abort it */
1400 			scsi_io_printf(io, "aborting " SCSI_IOFMT "\n", SCSI_IOFMT_ARGS(io->io_to_abort));
1401 			rc = ocs_hw_io_abort(&io->ocs->hw, hio_to_abort, io->send_abts,
1402 					      io->hw_cb, io);
1403 			if (rc) {
1404 				int status = SLI4_FC_WCQE_STATUS_SUCCESS;
1405 				if ((rc != OCS_HW_RTN_IO_NOT_ACTIVE) &&
1406 				    (rc != OCS_HW_RTN_IO_ABORT_IN_PROGRESS)) {
1407 					status = -1;
1408 					scsi_io_printf(io, "Failed to abort IO: " SCSI_IOFMT " status=%d\n",
1409 						       SCSI_IOFMT_ARGS(io->io_to_abort), rc);
1410 				}
1411 				((ocs_hw_done_t)io->hw_cb)(io->hio, NULL, 0, status, 0, io);
1412 				rc = 0;
1413 			}
1414 		}
1415 
1416 		break;
1417 	}
1418 	default:
1419 		scsi_io_printf(io, "Unknown IO type=%d\n", io->io_type);
1420 		rc = -1;
1421 		break;
1422 	}
1423 	return rc;
1424 }
1425 
1426 /**
1427  * @ingroup scsi_api_base
1428  * @brief Send read/write data.
1429  *
1430  * @par Description
1431  * This call is made by a target-server to initiate a SCSI read or write data phase, transferring
1432  * data between the target to the remote initiator. The payload is specified by the
1433  * scatter-gather list @c sgl of length @c sgl_count. The @c wire_len argument
1434  * specifies the payload length (independent of the scatter-gather list cumulative length).
1435  * @n @n
1436  * The @c flags argument has one bit, OCS_SCSI_LAST_DATAPHASE, which is a hint to the base
1437  * driver that it may use auto SCSI response features if the hardware supports it.
1438  * @n @n
1439  * Upon completion, the callback function @b cb is called with flags indicating that the
1440  * IO has completed (OCS_SCSI_IO_COMPL) and another data phase or response may be sent;
1441  * that the IO has completed and no response needs to be sent (OCS_SCSI_IO_COMPL_NO_RSP);
1442  * or that the IO was aborted (OCS_SCSI_IO_ABORTED).
1443  *
1444  * @param io Pointer to the IO context.
1445  * @param flags Flags controlling the sending of data.
1446  * @param dif_info Pointer to T10 DIF fields, or NULL if no DIF.
1447  * @param sgl Pointer to the payload scatter-gather list.
1448  * @param sgl_count Count of the scatter-gather list elements.
1449  * @param xwire_len Length of the payload on wire, in bytes.
1450  * @param type HW IO type.
1451  * @param enable_ar Enable auto-response if true.
1452  * @param cb Completion callback.
1453  * @param arg Application-supplied callback data.
1454  *
1455  * @return Returns 0 on success, or a negative error code value on failure.
1456  */
1457 
1458 static inline int32_t
1459 ocs_scsi_xfer_data(ocs_io_t *io, uint32_t flags,
1460 	ocs_scsi_dif_info_t *dif_info,
1461 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t xwire_len,
1462 	ocs_hw_io_type_e type, int enable_ar,
1463 	ocs_scsi_io_cb_t cb, void *arg)
1464 {
1465 	int32_t rc;
1466 	ocs_t *ocs;
1467 	uint32_t disable_ar_tgt_dif = FALSE;
1468 	size_t residual = 0;
1469 
1470 	if ((dif_info != NULL) && (dif_info->dif_oper == OCS_SCSI_DIF_OPER_DISABLED)) {
1471 		dif_info = NULL;
1472 	}
1473 
1474 	ocs_assert(io, -1);
1475 
1476 	if (dif_info != NULL) {
1477 		ocs_hw_get(&io->ocs->hw, OCS_HW_DISABLE_AR_TGT_DIF, &disable_ar_tgt_dif);
1478 		if (disable_ar_tgt_dif) {
1479 			enable_ar = FALSE;
1480 		}
1481 	}
1482 
1483 	io->sgl_count = sgl_count;
1484 
1485 	/* If needed, copy SGL */
1486 	if (sgl && (sgl != io->sgl)) {
1487 		ocs_assert(sgl_count <= io->sgl_allocated, -1);
1488 		ocs_memcpy(io->sgl, sgl, sgl_count*sizeof(*io->sgl));
1489 	}
1490 
1491 	ocs = io->ocs;
1492 	ocs_assert(ocs, -1);
1493 	ocs_assert(io->node, -1);
1494 
1495 	scsi_io_trace(io, "%s wire_len %d\n", (type == OCS_HW_IO_TARGET_READ) ? "send" : "recv", xwire_len);
1496 
1497 	ocs_assert(sgl, -1);
1498 	ocs_assert(sgl_count > 0, -1);
1499 	ocs_assert(io->exp_xfer_len > io->transferred, -1);
1500 
1501 	io->hio_type = type;
1502 
1503 	io->scsi_tgt_cb = cb;
1504 	io->scsi_tgt_cb_arg = arg;
1505 
1506 	rc = ocs_scsi_convert_dif_info(ocs, dif_info, &io->hw_dif);
1507 	if (rc) {
1508 		return rc;
1509 	}
1510 
1511 	/* If DIF is used, then save lba for error recovery */
1512 	if (dif_info) {
1513 		io->scsi_dif_info = *dif_info;
1514 	}
1515 
1516 	io->wire_len = MIN(xwire_len, io->exp_xfer_len - io->transferred);
1517 	residual = (xwire_len - io->wire_len);
1518 
1519 	ocs_memset(&io->iparam, 0, sizeof(io->iparam));
1520 	io->iparam.fcp_tgt.ox_id = io->init_task_tag;
1521 	io->iparam.fcp_tgt.offset = io->transferred;
1522 	io->iparam.fcp_tgt.dif_oper = io->hw_dif.dif;
1523 	io->iparam.fcp_tgt.blk_size = io->hw_dif.blk_size;
1524 	io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
1525 	io->iparam.fcp_tgt.timeout = io->timeout;
1526 
1527 	/* if this is the last data phase and there is no residual, enable
1528 	 * auto-good-response
1529 	 */
1530 	if (enable_ar && (flags & OCS_SCSI_LAST_DATAPHASE) &&
1531 		(residual == 0) && ((io->transferred + io->wire_len) == io->exp_xfer_len) && (!(flags & OCS_SCSI_NO_AUTO_RESPONSE))) {
1532 		io->iparam.fcp_tgt.flags |= SLI4_IO_AUTO_GOOD_RESPONSE;
1533 		io->auto_resp = TRUE;
1534 	} else {
1535 		io->auto_resp = FALSE;
1536 	}
1537 
1538 	/* save this transfer length */
1539 	io->xfer_req = io->wire_len;
1540 
1541 	/* Adjust the transferred count to account for overrun
1542 	 * when the residual is calculated in ocs_scsi_send_resp
1543 	 */
1544 	io->transferred += residual;
1545 
1546 	/* Adjust the SGL size if there is overrun */
1547 
1548 	if (residual) {
1549 		ocs_scsi_sgl_t  *sgl_ptr = &io->sgl[sgl_count-1];
1550 
1551 		while (residual) {
1552 			size_t len = sgl_ptr->len;
1553 			if ( len > residual) {
1554 				sgl_ptr->len = len - residual;
1555 				residual = 0;
1556 			} else {
1557 				sgl_ptr->len = 0;
1558 				residual -= len;
1559 				io->sgl_count--;
1560 			}
1561 			sgl_ptr--;
1562 		}
1563 	}
1564 
1565 	/* Set latency and WQ steering */
1566 	io->low_latency = (flags & OCS_SCSI_LOW_LATENCY) != 0;
1567 	io->wq_steering = (flags & OCS_SCSI_WQ_STEERING_MASK) >> OCS_SCSI_WQ_STEERING_SHIFT;
1568 	io->wq_class = (flags & OCS_SCSI_WQ_CLASS_MASK) >> OCS_SCSI_WQ_CLASS_SHIFT;
1569 
1570 	return ocs_scsi_io_dispatch(io, ocs_target_io_cb);
1571 }
1572 
1573 int32_t
1574 ocs_scsi_send_rd_data(ocs_io_t *io, uint32_t flags,
1575 	ocs_scsi_dif_info_t *dif_info,
1576 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len,
1577 	ocs_scsi_io_cb_t cb, void *arg)
1578 {
1579 	return ocs_scsi_xfer_data(io, flags, dif_info, sgl, sgl_count, len, OCS_HW_IO_TARGET_READ,
1580 				  enable_tsend_auto_resp(io->ocs), cb, arg);
1581 }
1582 
1583 int32_t
1584 ocs_scsi_recv_wr_data(ocs_io_t *io, uint32_t flags,
1585 	ocs_scsi_dif_info_t *dif_info,
1586 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len,
1587 	ocs_scsi_io_cb_t cb, void *arg)
1588 {
1589 	return ocs_scsi_xfer_data(io, flags, dif_info, sgl, sgl_count, len, OCS_HW_IO_TARGET_WRITE,
1590 				  enable_treceive_auto_resp(io->ocs), cb, arg);
1591 }
1592 
1593 /**
1594  * @ingroup scsi_api_base
1595  * @brief Free overflow SGL.
1596  *
1597  * @par Description
1598  * Free the overflow SGL if it is present.
1599  *
1600  * @param io Pointer to IO object.
1601  *
1602  * @return None.
1603  */
1604 static void
1605 ocs_scsi_io_free_ovfl(ocs_io_t *io) {
1606 	if (io->ovfl_sgl.size) {
1607 		ocs_dma_free(io->ocs, &io->ovfl_sgl);
1608 	}
1609 }
1610 
1611 /**
1612  * @ingroup scsi_api_base
1613  * @brief Send response data.
1614  *
1615  * @par Description
1616  * This function is used by a target-server to send the SCSI response data to a remote
1617  * initiator node. The target-server populates the @c ocs_scsi_cmd_resp_t
1618  * argument with scsi status, status qualifier, sense data, and response data, as
1619  * needed.
1620  * @n @n
1621  * Upon completion, the callback function @c cb is invoked. The target-server will generally
1622  * clean up its IO context resources and call ocs_scsi_io_complete().
1623  *
1624  * @param io Pointer to the IO context.
1625  * @param flags Flags to control sending of the SCSI response.
1626  * @param rsp Pointer to the response data populated by the caller.
1627  * @param cb Completion callback.
1628  * @param arg Application-specified completion callback argument.
1629 
1630  * @return Returns 0 on success, or a negative error code value on failure.
1631  */
1632 int32_t
1633 ocs_scsi_send_resp(ocs_io_t *io, uint32_t flags, ocs_scsi_cmd_resp_t *rsp, ocs_scsi_io_cb_t cb, void *arg)
1634 {
1635 	ocs_t *ocs;
1636 	int32_t residual;
1637 	int auto_resp = TRUE;		/* Always try auto resp */
1638 	uint8_t scsi_status = 0;
1639 	uint16_t scsi_status_qualifier = 0;
1640 	uint8_t *sense_data = NULL;
1641 	uint32_t sense_data_length = 0;
1642 
1643 	ocs_assert(io, -1);
1644 
1645 	ocs = io->ocs;
1646 	ocs_assert(ocs, -1);
1647 
1648 	ocs_assert(io->node, -1);
1649 
1650 	ocs_scsi_convert_dif_info(ocs, NULL, &io->hw_dif);
1651 
1652 	if (rsp) {
1653 		scsi_status = rsp->scsi_status;
1654 		scsi_status_qualifier = rsp->scsi_status_qualifier;
1655 		sense_data = rsp->sense_data;
1656 		sense_data_length = rsp->sense_data_length;
1657 		residual = rsp->residual;
1658 	} else {
1659 		residual = io->exp_xfer_len - io->transferred;
1660 	}
1661 
1662 	io->wire_len = 0;
1663 	io->hio_type = OCS_HW_IO_TARGET_RSP;
1664 
1665 	io->scsi_tgt_cb = cb;
1666 	io->scsi_tgt_cb_arg = arg;
1667 
1668 	ocs_memset(&io->iparam, 0, sizeof(io->iparam));
1669 	io->iparam.fcp_tgt.ox_id = io->init_task_tag;
1670 	io->iparam.fcp_tgt.offset = 0;
1671 	io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
1672 	io->iparam.fcp_tgt.timeout = io->timeout;
1673 
1674 	/* Set low latency queueing request */
1675 	io->low_latency = (flags & OCS_SCSI_LOW_LATENCY) != 0;
1676 	io->wq_steering = (flags & OCS_SCSI_WQ_STEERING_MASK) >> OCS_SCSI_WQ_STEERING_SHIFT;
1677 	io->wq_class = (flags & OCS_SCSI_WQ_CLASS_MASK) >> OCS_SCSI_WQ_CLASS_SHIFT;
1678 
1679 	if ((scsi_status != 0) || residual || sense_data_length) {
1680 		fcp_rsp_iu_t *fcprsp = io->rspbuf.virt;
1681 
1682 		if (!fcprsp) {
1683 			ocs_log_err(ocs, "NULL response buffer\n");
1684 			return -1;
1685 		}
1686 
1687 		auto_resp = FALSE;
1688 
1689 		ocs_memset(fcprsp, 0, sizeof(*fcprsp));
1690 
1691 		io->wire_len += (sizeof(*fcprsp) - sizeof(fcprsp->data));
1692 
1693 		fcprsp->scsi_status = scsi_status;
1694 		*((uint16_t*)fcprsp->status_qualifier) = ocs_htobe16(scsi_status_qualifier);
1695 
1696 		/* set residual status if necessary */
1697 		if (residual != 0) {
1698 			/* FCP: if data transferred is less than the amount expected, then this is an
1699 			 * underflow.  If data transferred would have been greater than the amount expected
1700 			 * then this is an overflow
1701 			 */
1702 			if (residual > 0) {
1703 				fcprsp->flags |= FCP_RESID_UNDER;
1704 				*((uint32_t *)fcprsp->fcp_resid) = ocs_htobe32(residual);
1705 			} else {
1706 				fcprsp->flags |= FCP_RESID_OVER;
1707 				*((uint32_t *)fcprsp->fcp_resid) = ocs_htobe32(-residual);
1708 			}
1709 		}
1710 
1711 		if (sense_data && sense_data_length) {
1712 			ocs_assert(sense_data_length <= sizeof(fcprsp->data), -1);
1713 			fcprsp->flags |= FCP_SNS_LEN_VALID;
1714 			ocs_memcpy(fcprsp->data, sense_data, sense_data_length);
1715 			*((uint32_t*)fcprsp->fcp_sns_len) = ocs_htobe32(sense_data_length);
1716 			io->wire_len += sense_data_length;
1717 		}
1718 
1719 		io->sgl[0].addr = io->rspbuf.phys;
1720 		io->sgl[0].dif_addr = 0;
1721 		io->sgl[0].len = io->wire_len;
1722 		io->sgl_count = 1;
1723 	}
1724 
1725 	if (auto_resp) {
1726 		io->iparam.fcp_tgt.flags |= SLI4_IO_AUTO_GOOD_RESPONSE;
1727 	}
1728 
1729 	return ocs_scsi_io_dispatch(io, ocs_target_io_cb);
1730 }
1731 
1732 /**
1733  * @ingroup scsi_api_base
1734  * @brief Send TMF response data.
1735  *
1736  * @par Description
1737  * This function is used by a target-server to send SCSI TMF response data to a remote
1738  * initiator node.
1739  * Upon completion, the callback function @c cb is invoked. The target-server will generally
1740  * clean up its IO context resources and call ocs_scsi_io_complete().
1741  *
1742  * @param io Pointer to the IO context.
1743  * @param rspcode TMF response code.
1744  * @param addl_rsp_info Additional TMF response information (may be NULL for zero data).
1745  * @param cb Completion callback.
1746  * @param arg Application-specified completion callback argument.
1747  *
1748  * @return Returns 0 on success, or a negative error code value on failure.
1749  */
1750 int32_t
1751 ocs_scsi_send_tmf_resp(ocs_io_t *io, ocs_scsi_tmf_resp_e rspcode, uint8_t addl_rsp_info[3],
1752 		ocs_scsi_io_cb_t cb, void *arg)
1753 {
1754 	int32_t rc = -1;
1755 	ocs_t *ocs = NULL;
1756 	fcp_rsp_iu_t *fcprsp = NULL;
1757 	fcp_rsp_info_t *rspinfo = NULL;
1758 	uint8_t fcp_rspcode;
1759 
1760 	ocs_assert(io, -1);
1761 	ocs_assert(io->ocs, -1);
1762 	ocs_assert(io->node, -1);
1763 
1764 	ocs = io->ocs;
1765 
1766 	io->wire_len = 0;
1767 	ocs_scsi_convert_dif_info(ocs, NULL, &io->hw_dif);
1768 
1769 	switch(rspcode) {
1770 	case OCS_SCSI_TMF_FUNCTION_COMPLETE:
1771 		fcp_rspcode = FCP_TMF_COMPLETE;
1772 		break;
1773 	case OCS_SCSI_TMF_FUNCTION_SUCCEEDED:
1774 	case OCS_SCSI_TMF_FUNCTION_IO_NOT_FOUND:
1775 		fcp_rspcode = FCP_TMF_SUCCEEDED;
1776 		break;
1777 	case OCS_SCSI_TMF_FUNCTION_REJECTED:
1778 		fcp_rspcode = FCP_TMF_REJECTED;
1779 		break;
1780 	case OCS_SCSI_TMF_INCORRECT_LOGICAL_UNIT_NUMBER:
1781 		fcp_rspcode = FCP_TMF_INCORRECT_LUN;
1782 		break;
1783 	case OCS_SCSI_TMF_SERVICE_DELIVERY:
1784 		fcp_rspcode = FCP_TMF_FAILED;
1785 		break;
1786 	default:
1787 		fcp_rspcode = FCP_TMF_REJECTED;
1788 		break;
1789 	}
1790 
1791 	io->hio_type = OCS_HW_IO_TARGET_RSP;
1792 
1793 	io->scsi_tgt_cb = cb;
1794 	io->scsi_tgt_cb_arg = arg;
1795 
1796 	if (io->tmf_cmd == OCS_SCSI_TMF_ABORT_TASK) {
1797 		rc = ocs_target_send_bls_resp(io, cb, arg);
1798 		return rc;
1799 	}
1800 
1801 	/* populate the FCP TMF response */
1802 	fcprsp = io->rspbuf.virt;
1803 	ocs_memset(fcprsp, 0, sizeof(*fcprsp));
1804 
1805 	fcprsp->flags |= FCP_RSP_LEN_VALID;
1806 
1807 	rspinfo = (fcp_rsp_info_t*) fcprsp->data;
1808 	if (addl_rsp_info != NULL) {
1809 		ocs_memcpy(rspinfo->addl_rsp_info, addl_rsp_info, sizeof(rspinfo->addl_rsp_info));
1810 	}
1811 	rspinfo->rsp_code = fcp_rspcode;
1812 
1813 	io->wire_len = sizeof(*fcprsp) - sizeof(fcprsp->data) + sizeof(*rspinfo);
1814 
1815 	*((uint32_t*)fcprsp->fcp_rsp_len) = ocs_htobe32(sizeof(*rspinfo));
1816 
1817 	io->sgl[0].addr = io->rspbuf.phys;
1818 	io->sgl[0].dif_addr = 0;
1819 	io->sgl[0].len = io->wire_len;
1820 	io->sgl_count = 1;
1821 
1822 	ocs_memset(&io->iparam, 0, sizeof(io->iparam));
1823 	io->iparam.fcp_tgt.ox_id = io->init_task_tag;
1824 	io->iparam.fcp_tgt.offset = 0;
1825 	io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
1826 	io->iparam.fcp_tgt.timeout = io->timeout;
1827 
1828 	rc = ocs_scsi_io_dispatch(io, ocs_target_io_cb);
1829 
1830 	return rc;
1831 }
1832 
1833 /**
1834  * @brief Process target abort callback.
1835  *
1836  * @par Description
1837  * Accepts HW abort requests.
1838  *
1839  * @param hio HW IO context.
1840  * @param rnode Remote node.
1841  * @param length Length of response data.
1842  * @param status Completion status.
1843  * @param ext_status Extended completion status.
1844  * @param app Application-specified callback data.
1845  *
1846  * @return Returns 0 on success, or a negative error code value on failure.
1847  */
1848 
1849 static int32_t
1850 ocs_target_abort_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *app)
1851 {
1852 	ocs_io_t *io = app;
1853 	ocs_t *ocs;
1854 	ocs_scsi_io_status_e scsi_status;
1855 
1856 	ocs_assert(io, -1);
1857 	ocs_assert(io->ocs, -1);
1858 
1859 	ocs = io->ocs;
1860 
1861 	if (io->abort_cb) {
1862 		ocs_scsi_io_cb_t abort_cb = io->abort_cb;
1863 		void *abort_cb_arg = io->abort_cb_arg;
1864 
1865 		io->abort_cb = NULL;
1866 		io->abort_cb_arg = NULL;
1867 
1868 		switch (status) {
1869 		case SLI4_FC_WCQE_STATUS_SUCCESS:
1870 			scsi_status = OCS_SCSI_STATUS_GOOD;
1871 			break;
1872 		case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
1873 			switch (ext_status) {
1874 			case SLI4_FC_LOCAL_REJECT_NO_XRI:
1875 				scsi_status = OCS_SCSI_STATUS_NO_IO;
1876 				break;
1877 			case SLI4_FC_LOCAL_REJECT_ABORT_IN_PROGRESS:
1878 				scsi_status = OCS_SCSI_STATUS_ABORT_IN_PROGRESS;
1879 				break;
1880 			default:
1881 				/* TODO: we have seen 0x15 (abort in progress) */
1882 				scsi_status = OCS_SCSI_STATUS_ERROR;
1883 				break;
1884 			}
1885 			break;
1886 		case SLI4_FC_WCQE_STATUS_FCP_RSP_FAILURE:
1887 			scsi_status = OCS_SCSI_STATUS_CHECK_RESPONSE;
1888 			break;
1889 		default:
1890 			scsi_status = OCS_SCSI_STATUS_ERROR;
1891 			break;
1892 		}
1893 		/* invoke callback */
1894 		abort_cb(io->io_to_abort, scsi_status, 0, abort_cb_arg);
1895 	}
1896 
1897 	ocs_assert(io != io->io_to_abort, -1);
1898 
1899 	/* done with IO to abort */
1900 	ocs_ref_put(&io->io_to_abort->ref); /* ocs_ref_get(): ocs_scsi_tgt_abort_io() */
1901 
1902 	ocs_io_free(ocs, io);
1903 
1904 	ocs_scsi_check_pending(ocs);
1905 	return 0;
1906 }
1907 
1908 /**
1909  * @ingroup scsi_api_base
1910  * @brief Abort a target IO.
1911  *
1912  * @par Description
1913  * This routine is called from a SCSI target-server. It initiates an abort of a
1914  * previously-issued target data phase or response request.
1915  *
1916  * @param io IO context.
1917  * @param cb SCSI target server callback.
1918  * @param arg SCSI target server supplied callback argument.
1919  *
1920  * @return Returns 0 on success, or a non-zero value on failure.
1921  */
1922 int32_t
1923 ocs_scsi_tgt_abort_io(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg)
1924 {
1925 	ocs_t *ocs;
1926 	ocs_xport_t *xport;
1927 	int32_t rc;
1928 
1929 	ocs_io_t *abort_io = NULL;
1930 	ocs_assert(io, -1);
1931 	ocs_assert(io->node, -1);
1932 	ocs_assert(io->ocs, -1);
1933 
1934 	ocs = io->ocs;
1935 	xport = ocs->xport;
1936 
1937 	/* take a reference on IO being aborted */
1938 	if ((ocs_ref_get_unless_zero(&io->ref) == 0)) {
1939 		/* command no longer active */
1940 		scsi_io_printf(io, "command no longer active\n");
1941 		return -1;
1942 	}
1943 
1944 	/*
1945 	 * allocate a new IO to send the abort request. Use ocs_io_alloc() directly, as
1946 	 * we need an IO object that will not fail allocation due to allocations being
1947 	 * disabled (in ocs_scsi_io_alloc())
1948 	 */
1949 	abort_io = ocs_io_alloc(ocs);
1950 	if (abort_io == NULL) {
1951 		ocs_atomic_add_return(&xport->io_alloc_failed_count, 1);
1952 		ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */
1953 		return -1;
1954 	}
1955 
1956 	/* Save the target server callback and argument */
1957 	ocs_assert(abort_io->hio == NULL, -1);
1958 
1959 	/* set generic fields */
1960 	abort_io->cmd_tgt = TRUE;
1961 	abort_io->node = io->node;
1962 
1963 	/* set type and abort-specific fields */
1964 	abort_io->io_type = OCS_IO_TYPE_ABORT;
1965 	abort_io->display_name = "tgt_abort";
1966 	abort_io->io_to_abort = io;
1967 	abort_io->send_abts = FALSE;
1968 	abort_io->abort_cb = cb;
1969 	abort_io->abort_cb_arg = arg;
1970 
1971 	/* now dispatch IO */
1972 	rc = ocs_scsi_io_dispatch_abort(abort_io, ocs_target_abort_cb);
1973 	if (rc) {
1974 		ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */
1975 	}
1976 	return rc;
1977 }
1978 
1979 /**
1980  * @brief Process target BLS response callback.
1981  *
1982  * @par Description
1983  * Accepts HW abort requests.
1984  *
1985  * @param hio HW IO context.
1986  * @param rnode Remote node.
1987  * @param length Length of response data.
1988  * @param status Completion status.
1989  * @param ext_status Extended completion status.
1990  * @param app Application-specified callback data.
1991  *
1992  * @return Returns 0 on success, or a negative error code value on failure.
1993  */
1994 
1995 static int32_t
1996 ocs_target_bls_resp_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *app)
1997 {
1998 	ocs_io_t *io = app;
1999 	ocs_t *ocs;
2000 	ocs_scsi_io_status_e bls_status;
2001 
2002 	ocs_assert(io, -1);
2003 	ocs_assert(io->ocs, -1);
2004 
2005 	ocs = io->ocs;
2006 
2007 	/* BLS isn't really a "SCSI" concept, but use SCSI status */
2008 	if (status) {
2009 		io_error_log(io, "s=%#x x=%#x\n", status, ext_status);
2010 		bls_status = OCS_SCSI_STATUS_ERROR;
2011 	} else {
2012 		bls_status = OCS_SCSI_STATUS_GOOD;
2013 	}
2014 
2015 	if (io->bls_cb) {
2016 		ocs_scsi_io_cb_t bls_cb = io->bls_cb;
2017 		void *bls_cb_arg = io->bls_cb_arg;
2018 
2019 		io->bls_cb = NULL;
2020 		io->bls_cb_arg = NULL;
2021 
2022 		/* invoke callback */
2023 		bls_cb(io, bls_status, 0, bls_cb_arg);
2024 	}
2025 
2026 	ocs_scsi_check_pending(ocs);
2027 	return 0;
2028 }
2029 
2030 /**
2031  * @brief Complete abort request.
2032  *
2033  * @par Description
2034  * An abort request is completed by posting a BA_ACC for the IO that requested the abort.
2035  *
2036  * @param io Pointer to the IO context.
2037  * @param cb Callback function to invoke upon completion.
2038  * @param arg Application-specified completion callback argument.
2039  *
2040  * @return Returns 0 on success, or a negative error code value on failure.
2041  */
2042 
2043 static int32_t
2044 ocs_target_send_bls_resp(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg)
2045 {
2046 	int32_t rc;
2047 	fc_ba_acc_payload_t *acc;
2048 
2049 	ocs_assert(io, -1);
2050 
2051 	/* fill out IO structure with everything needed to send BA_ACC */
2052 	ocs_memset(&io->iparam, 0, sizeof(io->iparam));
2053 	io->iparam.bls.ox_id = io->init_task_tag;
2054 	io->iparam.bls.rx_id = io->abort_rx_id;
2055 
2056 	acc = (void *)io->iparam.bls.payload;
2057 
2058 	ocs_memset(io->iparam.bls.payload, 0, sizeof(io->iparam.bls.payload));
2059 	acc->ox_id = io->iparam.bls.ox_id;
2060 	acc->rx_id = io->iparam.bls.rx_id;
2061 	acc->high_seq_cnt = UINT16_MAX;
2062 
2063 	/* generic io fields have already been populated */
2064 
2065 	/* set type and BLS-specific fields */
2066 	io->io_type = OCS_IO_TYPE_BLS_RESP;
2067 	io->display_name = "bls_rsp";
2068 	io->hio_type = OCS_HW_BLS_ACC;
2069 	io->bls_cb = cb;
2070 	io->bls_cb_arg = arg;
2071 
2072 	/* dispatch IO */
2073 	rc = ocs_scsi_io_dispatch(io, ocs_target_bls_resp_cb);
2074 	return rc;
2075 }
2076 
2077 /**
2078  * @ingroup scsi_api_base
2079  * @brief Notify the base driver that the IO is complete.
2080  *
2081  * @par Description
2082  * This function is called by a target-server to notify the base driver that an IO
2083  * has completed, allowing for the base driver to free resources.
2084  * @n
2085  * @n @b Note: This function is not called by initiator-clients.
2086  *
2087  * @param io Pointer to IO context.
2088  *
2089  * @return None.
2090  */
2091 void
2092 ocs_scsi_io_complete(ocs_io_t *io)
2093 {
2094 	ocs_assert(io);
2095 
2096 	if (!ocs_io_busy(io)) {
2097 		ocs_log_test(io->ocs, "Got completion for non-busy io with tag 0x%x\n", io->tag);
2098 		return;
2099 	}
2100 
2101 	scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
2102 	ocs_assert(ocs_ref_read_count(&io->ref) > 0);
2103 	ocs_ref_put(&io->ref); /* ocs_ref_get(): ocs_scsi_io_alloc() */
2104 }
2105 
2106 /**
2107  * @brief Handle initiator IO completion.
2108  *
2109  * @par Description
2110  * This callback is made upon completion of an initiator operation (initiator read/write command).
2111  *
2112  * @param hio HW IO context.
2113  * @param rnode Remote node.
2114  * @param length Length of completion data.
2115  * @param status Completion status.
2116  * @param ext_status Extended completion status.
2117  * @param app Application-specified callback data.
2118  *
2119  * @return None.
2120  */
2121 
2122 static void
2123 ocs_initiator_io_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length,
2124 	int32_t status, uint32_t ext_status, void *app)
2125 {
2126 	ocs_io_t *io = app;
2127 	ocs_t *ocs;
2128 	ocs_scsi_io_status_e scsi_status;
2129 
2130 	ocs_assert(io);
2131 	ocs_assert(io->scsi_ini_cb);
2132 
2133 	scsi_io_trace(io, "status x%x ext_status x%x\n", status, ext_status);
2134 
2135 	ocs = io->ocs;
2136 	ocs_assert(ocs);
2137 
2138 	ocs_scsi_io_free_ovfl(io);
2139 
2140 	/* Call target server completion */
2141 	if (io->scsi_ini_cb) {
2142 		fcp_rsp_iu_t *fcprsp = io->rspbuf.virt;
2143 		ocs_scsi_cmd_resp_t rsp;
2144 		ocs_scsi_rsp_io_cb_t cb = io->scsi_ini_cb;
2145 		uint32_t flags = 0;
2146 		uint8_t *pd = fcprsp->data;
2147 
2148 		/* Clear the callback before invoking the callback */
2149 		io->scsi_ini_cb = NULL;
2150 
2151 		ocs_memset(&rsp, 0, sizeof(rsp));
2152 
2153 		/* Unless status is FCP_RSP_FAILURE, fcprsp is not filled in */
2154 		switch (status) {
2155 		case SLI4_FC_WCQE_STATUS_SUCCESS:
2156 			scsi_status = OCS_SCSI_STATUS_GOOD;
2157 			break;
2158 		case SLI4_FC_WCQE_STATUS_FCP_RSP_FAILURE:
2159 			scsi_status = OCS_SCSI_STATUS_CHECK_RESPONSE;
2160 			rsp.scsi_status = fcprsp->scsi_status;
2161 			rsp.scsi_status_qualifier = ocs_be16toh(*((uint16_t*)fcprsp->status_qualifier));
2162 
2163 			if (fcprsp->flags & FCP_RSP_LEN_VALID) {
2164 				rsp.response_data = pd;
2165 				rsp.response_data_length = ocs_fc_getbe32(fcprsp->fcp_rsp_len);
2166 				pd += rsp.response_data_length;
2167 			}
2168 			if (fcprsp->flags & FCP_SNS_LEN_VALID) {
2169 				uint32_t sns_len = ocs_fc_getbe32(fcprsp->fcp_sns_len);
2170 				rsp.sense_data = pd;
2171 				rsp.sense_data_length = sns_len;
2172 				pd += sns_len;
2173 			}
2174 			/* Set residual */
2175 			if (fcprsp->flags & FCP_RESID_OVER) {
2176 				rsp.residual = -ocs_fc_getbe32(fcprsp->fcp_resid);
2177 				rsp.response_wire_length = length;
2178 			} else	if (fcprsp->flags & FCP_RESID_UNDER) {
2179 				rsp.residual = ocs_fc_getbe32(fcprsp->fcp_resid);
2180 				rsp.response_wire_length = length;
2181 			}
2182 
2183 			/*
2184 			 * Note: The FCP_RSP_FAILURE can be returned for initiator IOs when the total data
2185 			 * placed does not match the requested length even if the status is good. If
2186 			 * the status is all zeroes, then we have to assume that a frame(s) were
2187 			 * dropped and change the status to LOCAL_REJECT/OUT_OF_ORDER_DATA
2188 			 */
2189 			if (length != io->wire_len) {
2190 				uint32_t rsp_len = ext_status;
2191 				uint8_t *rsp_bytes = io->rspbuf.virt;
2192 				uint32_t i;
2193 				uint8_t all_zeroes = (rsp_len > 0);
2194 				/* Check if the rsp is zero */
2195 				for (i = 0; i < rsp_len; i++) {
2196 					if (rsp_bytes[i] != 0) {
2197 						all_zeroes = FALSE;
2198 						break;
2199 					}
2200 				}
2201 				if (all_zeroes) {
2202 					scsi_status = OCS_SCSI_STATUS_ERROR;
2203 					ocs_log_test(io->ocs, "[%s]" SCSI_IOFMT "local reject=0x%02x\n",
2204 						     io->node->display_name, SCSI_IOFMT_ARGS(io),
2205 						     SLI4_FC_LOCAL_REJECT_OUT_OF_ORDER_DATA);
2206 				}
2207 			}
2208 			break;
2209 		case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
2210 			if (ext_status == SLI4_FC_LOCAL_REJECT_SEQUENCE_TIMEOUT) {
2211 				scsi_status = OCS_SCSI_STATUS_COMMAND_TIMEOUT;
2212 			} else {
2213 				scsi_status = OCS_SCSI_STATUS_ERROR;
2214 			}
2215 			break;
2216 		case SLI4_FC_WCQE_STATUS_DI_ERROR:
2217 			if (ext_status & 0x01) {
2218 				scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR;
2219 			} else if (ext_status & 0x02) {
2220 				scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR;
2221 			} else if (ext_status & 0x04) {
2222 				scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR;
2223 			} else {
2224 				scsi_status = OCS_SCSI_STATUS_DIF_UNKNOWN_ERROR;
2225 			}
2226 			break;
2227 		default:
2228 			scsi_status = OCS_SCSI_STATUS_ERROR;
2229 			break;
2230 		}
2231 
2232 		cb(io, scsi_status, &rsp, flags, io->scsi_ini_cb_arg);
2233 	}
2234 	ocs_scsi_check_pending(ocs);
2235 }
2236 
2237 /**
2238  * @ingroup scsi_api_base
2239  * @brief Initiate initiator read IO.
2240  *
2241  * @par Description
2242  * This call is made by an initiator-client to send a SCSI read command. The payload
2243  * for the command is given by a scatter-gather list @c sgl for @c sgl_count
2244  * entries.
2245  * @n @n
2246  * Upon completion, the callback @b cb is invoked and passed request status.
2247  * If the command completed successfully, the callback is given SCSI response data.
2248  *
2249  * @param node Pointer to the node.
2250  * @param io Pointer to the IO context.
2251  * @param lun LUN value.
2252  * @param cdb Pointer to the CDB.
2253  * @param cdb_len Length of the CDB.
2254  * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF.
2255  * @param sgl Pointer to the scatter-gather list.
2256  * @param sgl_count Count of the scatter-gather list elements.
2257  * @param wire_len Length of the payload.
2258  * @param cb Completion callback.
2259  * @param arg Application-specified completion callback argument.
2260  *
2261  * @return Returns 0 on success, or a negative error code value on failure.
2262  */
2263 int32_t
2264 ocs_scsi_send_rd_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len,
2265 	ocs_scsi_dif_info_t *dif_info,
2266 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len,
2267 	ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2268 {
2269 	int32_t rc;
2270 
2271 	rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_READ, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count,
2272 			      wire_len, 0, cb, arg, flags);
2273 
2274 	return rc;
2275 }
2276 
2277 /**
2278  * @ingroup scsi_api_base
2279  * @brief Initiate initiator write IO.
2280  *
2281  * @par Description
2282  * This call is made by an initiator-client to send a SCSI write command. The payload
2283  * for the command is given by a scatter-gather list @c sgl for @c sgl_count
2284  * entries.
2285  * @n @n
2286  * Upon completion, the callback @c cb is invoked and passed request status. If the command
2287  * completed successfully, the callback is given SCSI response data.
2288  *
2289  * @param node Pointer to the node.
2290  * @param io Pointer to IO context.
2291  * @param lun LUN value.
2292  * @param cdb Pointer to the CDB.
2293  * @param cdb_len Length of the CDB.
2294  * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF.
2295  * @param sgl Pointer to the scatter-gather list.
2296  * @param sgl_count Count of the scatter-gather list elements.
2297  * @param wire_len Length of the payload.
2298  * @param cb Completion callback.
2299  * @param arg Application-specified completion callback argument.
2300  *
2301  * @return Returns 0 on success, or a negative error code value on failure.
2302  */
2303 int32_t ocs_scsi_send_wr_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len,
2304 	ocs_scsi_dif_info_t *dif_info,
2305 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len,
2306 	ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2307 {
2308 	int32_t rc;
2309 
2310 	rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_WRITE, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count,
2311 			      wire_len, 0, cb, arg, flags);
2312 
2313 	return rc;
2314 }
2315 
2316 /**
2317  * @ingroup scsi_api_base
2318  * @brief Initiate initiator write IO.
2319  *
2320  * @par Description
2321  * This call is made by an initiator-client to send a SCSI write command. The payload
2322  * for the command is given by a scatter-gather list @c sgl for @c sgl_count
2323  * entries.
2324  * @n @n
2325  * Upon completion, the callback @c cb is invoked and passed request status. If the command
2326  * completed successfully, the callback is given SCSI response data.
2327  *
2328  * @param node Pointer to the node.
2329  * @param io Pointer to IO context.
2330  * @param lun LUN value.
2331  * @param cdb Pointer to the CDB.
2332  * @param cdb_len Length of the CDB.
2333  * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF.
2334  * @param sgl Pointer to the scatter-gather list.
2335  * @param sgl_count Count of the scatter-gather list elements.
2336  * @param wire_len Length of the payload.
2337  * @param first_burst Number of first burst bytes to send.
2338  * @param cb Completion callback.
2339  * @param arg Application-specified completion callback argument.
2340  *
2341  * @return Returns 0 on success, or a negative error code value on failure.
2342  */
2343 int32_t
2344 ocs_scsi_send_wr_io_first_burst(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len,
2345 	ocs_scsi_dif_info_t *dif_info,
2346 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst,
2347 	ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2348 {
2349 	int32_t rc;
2350 
2351 	rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_WRITE, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count,
2352 			      wire_len, 0, cb, arg, flags);
2353 
2354 	return rc;
2355 }
2356 
2357 /**
2358  * @ingroup scsi_api_base
2359  * @brief Initiate initiator SCSI command with no data.
2360  *
2361  * @par Description
2362  * This call is made by an initiator-client to send a SCSI command with no data.
2363  * @n @n
2364  * Upon completion, the callback @c cb is invoked and passed request status. If the command
2365  * completed successfully, the callback is given SCSI response data.
2366  *
2367  * @param node Pointer to the node.
2368  * @param io Pointer to the IO context.
2369  * @param lun LUN value.
2370  * @param cdb Pointer to the CDB.
2371  * @param cdb_len Length of the CDB.
2372  * @param cb Completion callback.
2373  * @param arg Application-specified completion callback argument.
2374  *
2375  * @return Returns 0 on success, or a negative error code value on failure.
2376  */
2377 int32_t ocs_scsi_send_nodata_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len,
2378 	ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2379 {
2380 	int32_t rc;
2381 
2382 	rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_NODATA, node, io, lun, 0, cdb, cdb_len, NULL, NULL, 0, 0, 0, cb, arg, flags);
2383 
2384 	return rc;
2385 }
2386 /**
2387  * @ingroup scsi_api_base
2388  * @brief Initiate initiator task management operation.
2389  *
2390  * @par Description
2391  * This command is used to send a SCSI task management function command. If the command
2392  * requires it (QUERY_TASK_SET for example), a payload may be associated with the command.
2393  * If no payload is required, then @c sgl_count may be zero and @c sgl is ignored.
2394  * @n @n
2395  * Upon completion @c cb is invoked with status and SCSI response data.
2396  *
2397  * @param node Pointer to the node.
2398  * @param io Pointer to the IO context.
2399  * @param io_to_abort Pointer to the IO context to abort in the
2400  * case of OCS_SCSI_TMF_ABORT_TASK. Note: this can point to the
2401  * same the same ocs_io_t as @c io, provided that @c io does not
2402  * have any outstanding work requests.
2403  * @param lun LUN value.
2404  * @param tmf Task management command.
2405  * @param sgl Pointer to the scatter-gather list.
2406  * @param sgl_count Count of the scatter-gather list elements.
2407  * @param len Length of the payload.
2408  * @param cb Completion callback.
2409  * @param arg Application-specified completion callback argument.
2410  *
2411  * @return Returns 0 on success, or a negative error code value on failure.
2412  */
2413 int32_t
2414 ocs_scsi_send_tmf(ocs_node_t *node, ocs_io_t *io, ocs_io_t *io_to_abort, uint64_t lun, ocs_scsi_tmf_cmd_e tmf,
2415 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len, ocs_scsi_rsp_io_cb_t cb, void *arg)
2416 {
2417 	int32_t rc;
2418 	ocs_assert(io, -1);
2419 
2420 	if (tmf == OCS_SCSI_TMF_ABORT_TASK) {
2421 		ocs_assert(io_to_abort, -1);
2422 
2423 		/* take a reference on IO being aborted */
2424 		if ((ocs_ref_get_unless_zero(&io_to_abort->ref) == 0)) {
2425 			/* command no longer active */
2426 			scsi_io_printf(io, "command no longer active\n");
2427 			return -1;
2428 		}
2429 		/* generic io fields have already been populated */
2430 
2431 		/* abort-specific fields */
2432 		io->io_type = OCS_IO_TYPE_ABORT;
2433 		io->display_name = "abort_task";
2434 		io->io_to_abort = io_to_abort;
2435 		io->send_abts = TRUE;
2436 		io->scsi_ini_cb = cb;
2437 		io->scsi_ini_cb_arg = arg;
2438 
2439 		/* now dispatch IO */
2440 		rc = ocs_scsi_io_dispatch_abort(io, ocs_scsi_abort_io_cb);
2441 		if (rc) {
2442 			scsi_io_printf(io, "Failed to dispatch abort\n");
2443 			ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */
2444 		}
2445 	} else {
2446 		io->display_name = "tmf";
2447 		rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_READ, node, io, lun, tmf, NULL, 0, NULL,
2448 				      sgl, sgl_count, len, 0, cb, arg, 0);
2449 	}
2450 
2451 	return rc;
2452 }
2453 
2454 /**
2455  * @ingroup scsi_api_base
2456  * @brief Send an FCP IO.
2457  *
2458  * @par Description
2459  * An FCP read/write IO command, with optional task management flags, is sent to @c node.
2460  *
2461  * @param type HW IO type to send.
2462  * @param node Pointer to the node destination of the IO.
2463  * @param io Pointer to the IO context.
2464  * @param lun LUN value.
2465  * @param tmf Task management command.
2466  * @param cdb Pointer to the SCSI CDB.
2467  * @param cdb_len Length of the CDB, in bytes.
2468  * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF.
2469  * @param sgl Pointer to the scatter-gather list.
2470  * @param sgl_count Number of SGL entries in SGL.
2471  * @param wire_len Payload length, in bytes, of data on wire.
2472  * @param first_burst Number of first burst bytes to send.
2473  * @param cb Completion callback.
2474  * @param arg Application-specified completion callback argument.
2475  *
2476  * @return Returns 0 on success, or a negative error code value on failure.
2477  */
2478 
2479 /* tc: could elminiate LUN, as it's part of the IO structure */
2480 
2481 static int32_t ocs_scsi_send_io(ocs_hw_io_type_e type, ocs_node_t *node, ocs_io_t *io, uint64_t lun,
2482 	ocs_scsi_tmf_cmd_e tmf, uint8_t *cdb, uint32_t cdb_len,
2483 	ocs_scsi_dif_info_t *dif_info,
2484 	ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst,
2485 	ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags)
2486 {
2487 	int32_t rc;
2488 	ocs_t *ocs;
2489 	fcp_cmnd_iu_t *cmnd;
2490 	uint32_t cmnd_bytes = 0;
2491 	uint32_t *fcp_dl;
2492 	uint8_t tmf_flags = 0;
2493 
2494 	ocs_assert(io->node, -1);
2495 	ocs_assert(io->node == node, -1);
2496 	ocs_assert(io, -1);
2497 	ocs = io->ocs;
2498 	ocs_assert(cb, -1);
2499 
2500 	io->sgl_count = sgl_count;
2501 
2502 	/* Copy SGL if needed */
2503 	if (sgl != io->sgl) {
2504 		ocs_assert(sgl_count <= io->sgl_allocated, -1);
2505 		ocs_memcpy(io->sgl, sgl, sizeof(*io->sgl) * sgl_count);
2506 	}
2507 
2508 	/* save initiator and target task tags for debugging */
2509 	io->tgt_task_tag = 0xffff;
2510 
2511 	io->wire_len = wire_len;
2512 	io->hio_type = type;
2513 
2514 	if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) {
2515 		char buf[80];
2516 		ocs_textbuf_t txtbuf;
2517 		uint32_t i;
2518 
2519 		ocs_textbuf_init(ocs, &txtbuf, buf, sizeof(buf));
2520 
2521 		ocs_textbuf_printf(&txtbuf, "cdb%d: ", cdb_len);
2522 		for (i = 0; i < cdb_len; i ++) {
2523 			ocs_textbuf_printf(&txtbuf, "%02X%s", cdb[i], (i == (cdb_len-1)) ? "" : " ");
2524 		}
2525 		scsi_io_printf(io, "%s len %d, %s\n", (io->hio_type == OCS_HW_IO_INITIATOR_READ) ? "read" :
2526 			(io->hio_type == OCS_HW_IO_INITIATOR_WRITE) ? "write" : "",  io->wire_len,
2527 			ocs_textbuf_get_buffer(&txtbuf));
2528 	}
2529 
2530 	ocs_assert(io->cmdbuf.virt, -1);
2531 
2532 	cmnd = io->cmdbuf.virt;
2533 
2534 	ocs_assert(sizeof(*cmnd) <= io->cmdbuf.size, -1);
2535 
2536 	ocs_memset(cmnd, 0, sizeof(*cmnd));
2537 
2538 	/* Default FCP_CMND IU doesn't include additional CDB bytes but does include FCP_DL */
2539 	cmnd_bytes = sizeof(fcp_cmnd_iu_t) - sizeof(cmnd->fcp_cdb_and_dl) + sizeof(uint32_t);
2540 
2541 	fcp_dl = (uint32_t*)(&(cmnd->fcp_cdb_and_dl));
2542 
2543 	if (cdb) {
2544 		if (cdb_len <= 16) {
2545 			ocs_memcpy(cmnd->fcp_cdb, cdb, cdb_len);
2546 		} else {
2547 			uint32_t addl_cdb_bytes;
2548 
2549 			ocs_memcpy(cmnd->fcp_cdb, cdb, 16);
2550 			addl_cdb_bytes = cdb_len - 16;
2551 			ocs_memcpy(cmnd->fcp_cdb_and_dl, &(cdb[16]), addl_cdb_bytes);
2552 			/* additional_fcp_cdb_length is in words, not bytes */
2553 			cmnd->additional_fcp_cdb_length = (addl_cdb_bytes + 3) / 4;
2554 			fcp_dl += cmnd->additional_fcp_cdb_length;
2555 
2556 			/* Round up additional CDB bytes */
2557 			cmnd_bytes += (addl_cdb_bytes + 3) & ~0x3;
2558 		}
2559 	}
2560 
2561 	be64enc(cmnd->fcp_lun, CAM_EXTLUN_BYTE_SWIZZLE(lun));
2562 
2563 	if (node->fcp2device) {
2564 		if(ocs_get_crn(node, &cmnd->command_reference_number,
2565 					lun)) {
2566 			return -1;
2567 		}
2568 	}
2569 	if (flags & OCS_SCSI_CMD_HEAD_OF_QUEUE)
2570 		cmnd->task_attribute = FCP_TASK_ATTR_HEAD_OF_QUEUE;
2571 	else if (flags & OCS_SCSI_CMD_ORDERED)
2572 		cmnd->task_attribute = FCP_TASK_ATTR_ORDERED;
2573 	else if (flags & OCS_SCSI_CMD_UNTAGGED)
2574 		cmnd->task_attribute = FCP_TASK_ATTR_UNTAGGED;
2575 	else if (flags & OCS_SCSI_CMD_ACA)
2576 		cmnd->task_attribute = FCP_TASK_ATTR_ACA;
2577 	else
2578 		cmnd->task_attribute = FCP_TASK_ATTR_SIMPLE;
2579 	cmnd->command_priority = (flags & OCS_SCSI_PRIORITY_MASK) >>
2580 	    OCS_SCSI_PRIORITY_SHIFT;
2581 
2582 	switch (tmf) {
2583 	case OCS_SCSI_TMF_QUERY_TASK_SET:
2584 		tmf_flags = FCP_QUERY_TASK_SET;
2585 		break;
2586 	case OCS_SCSI_TMF_ABORT_TASK_SET:
2587 		tmf_flags = FCP_ABORT_TASK_SET;
2588 		break;
2589 	case OCS_SCSI_TMF_CLEAR_TASK_SET:
2590 		tmf_flags = FCP_CLEAR_TASK_SET;
2591 		break;
2592 	case OCS_SCSI_TMF_QUERY_ASYNCHRONOUS_EVENT:
2593 		tmf_flags = FCP_QUERY_ASYNCHRONOUS_EVENT;
2594 		break;
2595 	case OCS_SCSI_TMF_LOGICAL_UNIT_RESET:
2596 		tmf_flags = FCP_LOGICAL_UNIT_RESET;
2597 		break;
2598 	case OCS_SCSI_TMF_CLEAR_ACA:
2599 		tmf_flags = FCP_CLEAR_ACA;
2600 		break;
2601 	case OCS_SCSI_TMF_TARGET_RESET:
2602 		tmf_flags = FCP_TARGET_RESET;
2603 		break;
2604 	default:
2605 		tmf_flags = 0;
2606 	}
2607 	cmnd->task_management_flags = tmf_flags;
2608 
2609 	*fcp_dl = ocs_htobe32(io->wire_len);
2610 
2611 	switch (io->hio_type) {
2612 	case OCS_HW_IO_INITIATOR_READ:
2613 		cmnd->rddata = 1;
2614 		break;
2615 	case OCS_HW_IO_INITIATOR_WRITE:
2616 		cmnd->wrdata = 1;
2617 		break;
2618 	case  OCS_HW_IO_INITIATOR_NODATA:
2619 		/* sets neither */
2620 		break;
2621 	default:
2622 		ocs_log_test(ocs, "bad IO type %d\n", io->hio_type);
2623 		return -1;
2624 	}
2625 
2626 	rc = ocs_scsi_convert_dif_info(ocs, dif_info, &io->hw_dif);
2627 	if (rc) {
2628 		return rc;
2629 	}
2630 
2631 	io->scsi_ini_cb = cb;
2632 	io->scsi_ini_cb_arg = arg;
2633 
2634 	/* set command and response buffers in the iparam */
2635 	io->iparam.fcp_ini.cmnd = &io->cmdbuf;
2636 	io->iparam.fcp_ini.cmnd_size = cmnd_bytes;
2637 	io->iparam.fcp_ini.rsp = &io->rspbuf;
2638 	io->iparam.fcp_ini.flags = 0;
2639 	io->iparam.fcp_ini.dif_oper = io->hw_dif.dif;
2640 	io->iparam.fcp_ini.blk_size = io->hw_dif.blk_size;
2641 	io->iparam.fcp_ini.timeout = io->timeout;
2642 	io->iparam.fcp_ini.first_burst = first_burst;
2643 
2644 	return ocs_scsi_io_dispatch(io, ocs_initiator_io_cb);
2645 }
2646 
2647 /**
2648  * @ingroup scsi_api_base
2649  * @brief Callback for an aborted IO.
2650  *
2651  * @par Description
2652  * Callback function invoked upon completion of an IO abort request.
2653  *
2654  * @param hio HW IO context.
2655  * @param rnode Remote node.
2656  * @param len Response length.
2657  * @param status Completion status.
2658  * @param ext_status Extended completion status.
2659  * @param arg Application-specific callback, usually IO context.
2660 
2661  * @return Returns 0 on success, or a negative error code value on failure.
2662  */
2663 
2664 static int32_t
2665 ocs_scsi_abort_io_cb(struct ocs_hw_io_s *hio, ocs_remote_node_t *rnode, uint32_t len, int32_t status,
2666 	uint32_t ext_status, void *arg)
2667 {
2668 	ocs_io_t *io = arg;
2669 	ocs_t *ocs;
2670 	ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_GOOD;
2671 
2672 	ocs_assert(io, -1);
2673 	ocs_assert(ocs_io_busy(io), -1);
2674 	ocs_assert(io->ocs, -1);
2675 	ocs_assert(io->io_to_abort, -1);
2676 	ocs = io->ocs;
2677 
2678 	ocs_log_debug(ocs, "status %d ext %d\n", status, ext_status);
2679 
2680 	/* done with IO to abort */
2681 	ocs_ref_put(&io->io_to_abort->ref); /* ocs_ref_get(): ocs_scsi_send_tmf() */
2682 
2683 	ocs_scsi_io_free_ovfl(io);
2684 
2685 	switch (status) {
2686 	case SLI4_FC_WCQE_STATUS_SUCCESS:
2687 		scsi_status = OCS_SCSI_STATUS_GOOD;
2688 		break;
2689 	case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
2690 		if (ext_status == SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED) {
2691 			scsi_status = OCS_SCSI_STATUS_ABORTED;
2692 		} else if (ext_status == SLI4_FC_LOCAL_REJECT_NO_XRI) {
2693 			scsi_status = OCS_SCSI_STATUS_NO_IO;
2694 		} else if (ext_status == SLI4_FC_LOCAL_REJECT_ABORT_IN_PROGRESS) {
2695 			scsi_status = OCS_SCSI_STATUS_ABORT_IN_PROGRESS;
2696 		} else {
2697 			ocs_log_test(ocs, "Unhandled local reject 0x%x/0x%x\n", status, ext_status);
2698 			scsi_status = OCS_SCSI_STATUS_ERROR;
2699 		}
2700 		break;
2701 	default:
2702 		scsi_status = OCS_SCSI_STATUS_ERROR;
2703 		break;
2704 	}
2705 
2706 	if (io->scsi_ini_cb) {
2707 		(*io->scsi_ini_cb)(io, scsi_status, NULL, 0, io->scsi_ini_cb_arg);
2708 	} else {
2709 		ocs_scsi_io_free(io);
2710 	}
2711 
2712 	ocs_scsi_check_pending(ocs);
2713 	return 0;
2714 }
2715 
2716 /**
2717  * @ingroup scsi_api_base
2718  * @brief Return SCSI API integer valued property.
2719  *
2720  * @par Description
2721  * This function is called by a target-server or initiator-client to
2722  * retrieve an integer valued property.
2723  *
2724  * @param ocs Pointer to the ocs.
2725  * @param prop Property value to return.
2726  *
2727  * @return Returns a value, or 0 if invalid property was requested.
2728  */
2729 uint32_t
2730 ocs_scsi_get_property(ocs_t *ocs, ocs_scsi_property_e prop)
2731 {
2732 	ocs_xport_t *xport = ocs->xport;
2733 	uint32_t	val;
2734 
2735 	switch (prop) {
2736 	case OCS_SCSI_MAX_SGE:
2737 		if (0 == ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGE, &val)) {
2738 			return val;
2739 		}
2740 		break;
2741 	case OCS_SCSI_MAX_SGL:
2742 		if (ocs->ctrlmask & OCS_CTRLMASK_TEST_CHAINED_SGLS) {
2743 			/*
2744 			 * If chain SGL test-mode is enabled, the number of HW SGEs
2745 			 * has been limited; report back original max.
2746 			 */
2747 			return (OCS_FC_MAX_SGL);
2748 		}
2749 		if (0 == ocs_hw_get(&ocs->hw, OCS_HW_N_SGL, &val)) {
2750 			return val;
2751 		}
2752 		break;
2753 	case OCS_SCSI_MAX_IOS:
2754 		return ocs_io_pool_allocated(xport->io_pool);
2755 	case OCS_SCSI_DIF_CAPABLE:
2756 	        if (0 == ocs_hw_get(&ocs->hw, OCS_HW_DIF_CAPABLE, &val)) {
2757 	                return val;
2758 	        }
2759 		break;
2760 	case OCS_SCSI_MAX_FIRST_BURST:
2761 		return 0;
2762 	case OCS_SCSI_DIF_MULTI_SEPARATE:
2763 	        if (ocs_hw_get(&ocs->hw, OCS_HW_DIF_MULTI_SEPARATE, &val) == 0) {
2764 	                return val;
2765 	        }
2766 		break;
2767 	case OCS_SCSI_ENABLE_TASK_SET_FULL:
2768 		/* Return FALSE if we are send frame capable */
2769 		if (ocs_hw_get(&ocs->hw, OCS_HW_SEND_FRAME_CAPABLE, &val) == 0) {
2770 			return ! val;
2771 		}
2772 		break;
2773 	default:
2774 		break;
2775 	}
2776 
2777 	ocs_log_debug(ocs, "invalid property request %d\n", prop);
2778 	return 0;
2779 }
2780 
2781 /**
2782  * @ingroup scsi_api_base
2783  * @brief Return a property pointer.
2784  *
2785  * @par Description
2786  * This function is called by a target-server or initiator-client to
2787  * retrieve a pointer to the requested property.
2788  *
2789  * @param ocs Pointer to the ocs.
2790  * @param prop Property value to return.
2791  *
2792  * @return Returns pointer to the requested property, or NULL otherwise.
2793  */
2794 void *ocs_scsi_get_property_ptr(ocs_t *ocs, ocs_scsi_property_e prop)
2795 {
2796 	void *rc = NULL;
2797 
2798 	switch (prop) {
2799 	case OCS_SCSI_WWNN:
2800 		rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_WWN_NODE);
2801 		break;
2802 	case OCS_SCSI_WWPN:
2803 		rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_WWN_PORT);
2804 		break;
2805 	case OCS_SCSI_PORTNUM:
2806 		rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_PORTNUM);
2807 		break;
2808 	case OCS_SCSI_BIOS_VERSION_STRING:
2809 		rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_BIOS_VERSION_STRING);
2810 		break;
2811 #if defined(OCS_ENABLE_VPD_SUPPORT)
2812 	case OCS_SCSI_SERIALNUMBER:
2813 	{
2814 		uint8_t *pvpd;
2815 		uint32_t vpd_len;
2816 
2817 		if (ocs_hw_get(&ocs->hw, OCS_HW_VPD_LEN, &vpd_len)) {
2818 			ocs_log_test(ocs, "Can't get VPD length\n");
2819 			rc = "\012sn-unknown";
2820 			break;
2821 		}
2822 
2823 		pvpd = ocs_hw_get_ptr(&ocs->hw, OCS_HW_VPD);
2824 		if (pvpd) {
2825 			rc = ocs_find_vpd(pvpd, vpd_len, "SN");
2826 		}
2827 
2828 		if (rc == NULL ||
2829 		    ocs_strlen(rc) == 0) {
2830 			/* Note: VPD is missing, using wwnn for serial number */
2831 			scsi_log(ocs, "Note: VPD is missing, using wwnn for serial number\n");
2832 			/* Use the last 32 bits of the WWN */
2833 			if ((ocs == NULL) || (ocs->domain == NULL) || (ocs->domain->sport == NULL)) {
2834 				rc = "\011(Unknown)";
2835 			} else {
2836 				rc = &ocs->domain->sport->wwnn_str[8];
2837 			}
2838 		}
2839 		break;
2840 	}
2841 	case OCS_SCSI_PARTNUMBER:
2842 	{
2843 		uint8_t *pvpd;
2844 		uint32_t vpd_len;
2845 
2846 		if (ocs_hw_get(&ocs->hw, OCS_HW_VPD_LEN, &vpd_len)) {
2847 			ocs_log_test(ocs, "Can't get VPD length\n");
2848 			rc = "\012pn-unknown";
2849 			break;
2850 		}
2851 		pvpd = ocs_hw_get_ptr(&ocs->hw, OCS_HW_VPD);
2852 		if (pvpd) {
2853 			rc = ocs_find_vpd(pvpd, vpd_len, "PN");
2854 			if (rc == NULL) {
2855 				rc = "\012pn-unknown";
2856 			}
2857 		} else {
2858 			rc = "\012pn-unknown";
2859 		}
2860 		break;
2861 	}
2862 #endif
2863 	default:
2864 		break;
2865 	}
2866 
2867 	if (rc == NULL) {
2868 		ocs_log_debug(ocs, "invalid property request %d\n", prop);
2869 	}
2870 	return rc;
2871 }
2872 
2873 /**
2874  * @ingroup scsi_api_base
2875  * @brief Notify that delete initiator is complete.
2876  *
2877  * @par Description
2878  * Sent by the target-server to notify the base driver that the work started from
2879  * ocs_scsi_del_initiator() is now complete and that it is safe for the node to
2880  * release the rest of its resources.
2881  *
2882  * @param node Pointer to the node.
2883  *
2884  * @return None.
2885  */
2886 void
2887 ocs_scsi_del_initiator_complete(ocs_node_t *node)
2888 {
2889 	/* Notify the node to resume */
2890 	ocs_node_post_event(node, OCS_EVT_NODE_DEL_INI_COMPLETE, NULL);
2891 }
2892 
2893 /**
2894  * @ingroup scsi_api_base
2895  * @brief Notify that delete target is complete.
2896  *
2897  * @par Description
2898  * Sent by the initiator-client to notify the base driver that the work started from
2899  * ocs_scsi_del_target() is now complete and that it is safe for the node to
2900  * release the rest of its resources.
2901  *
2902  * @param node Pointer to the node.
2903  *
2904  * @return None.
2905  */
2906 void
2907 ocs_scsi_del_target_complete(ocs_node_t *node)
2908 {
2909 	/* Notify the node to resume */
2910 	ocs_node_post_event(node, OCS_EVT_NODE_DEL_TGT_COMPLETE, NULL);
2911 }
2912 
2913 /**
2914  * @brief Update transferred count
2915  *
2916  * @par Description
2917  * Updates io->transferred, as required when using first burst, when the amount
2918  * of first burst data processed differs from the amount of first burst
2919  * data received.
2920  *
2921  * @param io Pointer to the io object.
2922  * @param transferred Number of bytes transferred out of first burst buffers.
2923  *
2924  * @return None.
2925  */
2926 void
2927 ocs_scsi_update_first_burst_transferred(ocs_io_t *io, uint32_t transferred)
2928 {
2929 	io->transferred = transferred;
2930 }
2931 
2932 /**
2933  * @brief Register bounce callback for multi-threading.
2934  *
2935  * @par Description
2936  * Register the back end bounce function.
2937  *
2938  * @param ocs Pointer to device object.
2939  * @param fctn Function pointer of bounce function.
2940  *
2941  * @return None.
2942  */
2943 void
2944 ocs_scsi_register_bounce(ocs_t *ocs, void(*fctn)(void(*fctn)(void *arg), void *arg, uint32_t s_id, uint32_t d_id,
2945 						 uint32_t ox_id))
2946 {
2947 	ocs_hw_rtn_e rc;
2948 
2949 	rc = ocs_hw_callback(&ocs->hw, OCS_HW_CB_BOUNCE, fctn, NULL);
2950 	if (rc) {
2951 		ocs_log_test(ocs, "ocs_hw_callback(OCS_HW_CB_BOUNCE) failed: %d\n", rc);
2952 	}
2953 }
2954