1 /*- 2 * Copyright (c) 2017 Broadcom. All rights reserved. 3 * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright notice, 12 * this list of conditions and the following disclaimer in the documentation 13 * and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the copyright holder nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * $FreeBSD$ 32 */ 33 34 /** 35 * @file 36 * 37 */ 38 39 #include "ocs_os.h" 40 #include "ocs_hw.h" 41 #include "ocs_hw_queues.h" 42 43 #define HW_QTOP_DEBUG 0 44 45 /** 46 * @brief Initialize queues 47 * 48 * Given the parsed queue topology spec, the SLI queues are created and 49 * initialized 50 * 51 * @param hw pointer to HW object 52 * @param qtop pointer to queue topology 53 * 54 * @return returns 0 for success, an error code value for failure. 55 */ 56 ocs_hw_rtn_e 57 ocs_hw_init_queues(ocs_hw_t *hw, ocs_hw_qtop_t *qtop) 58 { 59 uint32_t i, j; 60 uint32_t default_lengths[QTOP_LAST], len; 61 uint32_t rqset_len = 0, rqset_ulp = 0, rqset_count = 0; 62 uint8_t rqset_filter_mask = 0; 63 hw_eq_t *eqs[hw->config.n_rq]; 64 hw_cq_t *cqs[hw->config.n_rq]; 65 hw_rq_t *rqs[hw->config.n_rq]; 66 ocs_hw_qtop_entry_t *qt, *next_qt; 67 ocs_hw_mrq_t mrq; 68 bool use_mrq = FALSE; 69 70 hw_eq_t *eq = NULL; 71 hw_cq_t *cq = NULL; 72 hw_wq_t *wq = NULL; 73 hw_rq_t *rq = NULL; 74 hw_mq_t *mq = NULL; 75 76 mrq.num_pairs = 0; 77 default_lengths[QTOP_EQ] = 1024; 78 default_lengths[QTOP_CQ] = hw->num_qentries[SLI_QTYPE_CQ]; 79 default_lengths[QTOP_WQ] = hw->num_qentries[SLI_QTYPE_WQ]; 80 default_lengths[QTOP_RQ] = hw->num_qentries[SLI_QTYPE_RQ]; 81 default_lengths[QTOP_MQ] = OCS_HW_MQ_DEPTH; 82 83 ocs_hw_verify(hw != NULL, OCS_HW_RTN_INVALID_ARG); 84 85 hw->eq_count = 0; 86 hw->cq_count = 0; 87 hw->mq_count = 0; 88 hw->wq_count = 0; 89 hw->rq_count = 0; 90 hw->hw_rq_count = 0; 91 ocs_list_init(&hw->eq_list, hw_eq_t, link); 92 93 /* If MRQ is requested, Check if it is supported by SLI. */ 94 if ((hw->config.n_rq > 1 ) && !hw->sli.config.features.flag.mrqp) { 95 ocs_log_err(hw->os, "MRQ topology not supported by SLI4.\n"); 96 return OCS_HW_RTN_ERROR; 97 } 98 99 if (hw->config.n_rq > 1) 100 use_mrq = TRUE; 101 102 /* Allocate class WQ pools */ 103 for (i = 0; i < ARRAY_SIZE(hw->wq_class_array); i++) { 104 hw->wq_class_array[i] = ocs_varray_alloc(hw->os, OCS_HW_MAX_NUM_WQ); 105 if (hw->wq_class_array[i] == NULL) { 106 ocs_log_err(hw->os, "ocs_varray_alloc for wq_class failed\n"); 107 return OCS_HW_RTN_NO_MEMORY; 108 } 109 } 110 111 /* Allocate per CPU WQ pools */ 112 for (i = 0; i < ARRAY_SIZE(hw->wq_cpu_array); i++) { 113 hw->wq_cpu_array[i] = ocs_varray_alloc(hw->os, OCS_HW_MAX_NUM_WQ); 114 if (hw->wq_cpu_array[i] == NULL) { 115 ocs_log_err(hw->os, "ocs_varray_alloc for wq_class failed\n"); 116 return OCS_HW_RTN_NO_MEMORY; 117 } 118 } 119 120 121 ocs_hw_assert(qtop != NULL); 122 123 for (i = 0, qt = qtop->entries; i < qtop->inuse_count; i++, qt++) { 124 if (i == qtop->inuse_count - 1) 125 next_qt = NULL; 126 else 127 next_qt = qt + 1; 128 129 switch(qt->entry) { 130 case QTOP_EQ: 131 len = (qt->len) ? qt->len : default_lengths[QTOP_EQ]; 132 133 if (qt->set_default) { 134 default_lengths[QTOP_EQ] = len; 135 break; 136 } 137 138 eq = hw_new_eq(hw, len); 139 if (eq == NULL) { 140 hw_queue_teardown(hw); 141 return OCS_HW_RTN_NO_MEMORY; 142 } 143 break; 144 145 case QTOP_CQ: 146 len = (qt->len) ? qt->len : default_lengths[QTOP_CQ]; 147 148 if (qt->set_default) { 149 default_lengths[QTOP_CQ] = len; 150 break; 151 } 152 153 /* If this CQ is for MRQ, then delay the creation */ 154 if (!use_mrq || next_qt->entry != QTOP_RQ) { 155 cq = hw_new_cq(eq, len); 156 if (cq == NULL) { 157 hw_queue_teardown(hw); 158 return OCS_HW_RTN_NO_MEMORY; 159 } 160 } 161 break; 162 163 case QTOP_WQ: { 164 165 len = (qt->len) ? qt->len : default_lengths[QTOP_WQ]; 166 if (qt->set_default) { 167 default_lengths[QTOP_WQ] = len; 168 break; 169 } 170 171 if ((hw->ulp_start + qt->ulp) > hw->ulp_max) { 172 ocs_log_err(hw->os, "invalid ULP %d for WQ\n", qt->ulp); 173 hw_queue_teardown(hw); 174 return OCS_HW_RTN_NO_MEMORY; 175 } 176 177 wq = hw_new_wq(cq, len, qt->class, hw->ulp_start + qt->ulp); 178 if (wq == NULL) { 179 hw_queue_teardown(hw); 180 return OCS_HW_RTN_NO_MEMORY; 181 } 182 183 /* Place this WQ on the EQ WQ array */ 184 if (ocs_varray_add(eq->wq_array, wq)) { 185 ocs_log_err(hw->os, "QTOP_WQ: EQ ocs_varray_add failed\n"); 186 hw_queue_teardown(hw); 187 return OCS_HW_RTN_ERROR; 188 } 189 190 /* Place this WQ on the HW class array */ 191 if (qt->class < ARRAY_SIZE(hw->wq_class_array)) { 192 if (ocs_varray_add(hw->wq_class_array[qt->class], wq)) { 193 ocs_log_err(hw->os, "HW wq_class_array ocs_varray_add failed\n"); 194 hw_queue_teardown(hw); 195 return OCS_HW_RTN_ERROR; 196 } 197 } else { 198 ocs_log_err(hw->os, "Invalid class value: %d\n", qt->class); 199 hw_queue_teardown(hw); 200 return OCS_HW_RTN_ERROR; 201 } 202 203 /* 204 * Place this WQ on the per CPU list, asumming that EQs are mapped to cpu given 205 * by the EQ instance modulo number of CPUs 206 */ 207 if (ocs_varray_add(hw->wq_cpu_array[eq->instance % ocs_get_num_cpus()], wq)) { 208 ocs_log_err(hw->os, "HW wq_cpu_array ocs_varray_add failed\n"); 209 hw_queue_teardown(hw); 210 return OCS_HW_RTN_ERROR; 211 } 212 213 break; 214 } 215 case QTOP_RQ: { 216 len = (qt->len) ? qt->len : default_lengths[QTOP_RQ]; 217 if (qt->set_default) { 218 default_lengths[QTOP_RQ] = len; 219 break; 220 } 221 222 if ((hw->ulp_start + qt->ulp) > hw->ulp_max) { 223 ocs_log_err(hw->os, "invalid ULP %d for RQ\n", qt->ulp); 224 hw_queue_teardown(hw); 225 return OCS_HW_RTN_NO_MEMORY; 226 } 227 228 if (use_mrq) { 229 mrq.rq_cfg[mrq.num_pairs].len = len; 230 mrq.rq_cfg[mrq.num_pairs].ulp = hw->ulp_start + qt->ulp; 231 mrq.rq_cfg[mrq.num_pairs].filter_mask = qt->filter_mask; 232 mrq.rq_cfg[mrq.num_pairs].eq = eq; 233 mrq.num_pairs ++; 234 } else { 235 rq = hw_new_rq(cq, len, hw->ulp_start + qt->ulp); 236 if (rq == NULL) { 237 hw_queue_teardown(hw); 238 return OCS_HW_RTN_NO_MEMORY; 239 } 240 rq->filter_mask = qt->filter_mask; 241 } 242 break; 243 } 244 245 case QTOP_MQ: 246 len = (qt->len) ? qt->len : default_lengths[QTOP_MQ]; 247 if (qt->set_default) { 248 default_lengths[QTOP_MQ] = len; 249 break; 250 } 251 252 mq = hw_new_mq(cq, len); 253 if (mq == NULL) { 254 hw_queue_teardown(hw); 255 return OCS_HW_RTN_NO_MEMORY; 256 } 257 break; 258 259 default: 260 ocs_hw_assert(0); 261 break; 262 } 263 } 264 265 if (mrq.num_pairs) { 266 /* First create normal RQs. */ 267 for (i = 0; i < mrq.num_pairs; i++) { 268 for (j = 0; j < mrq.num_pairs; j++) { 269 if ((i != j) && (mrq.rq_cfg[i].filter_mask == mrq.rq_cfg[j].filter_mask)) { 270 /* This should be created using set */ 271 if (rqset_filter_mask && (rqset_filter_mask != mrq.rq_cfg[i].filter_mask)) { 272 ocs_log_crit(hw->os, "Cant create morethan one RQ Set\n"); 273 hw_queue_teardown(hw); 274 return OCS_HW_RTN_ERROR; 275 } else if (!rqset_filter_mask){ 276 rqset_filter_mask = mrq.rq_cfg[i].filter_mask; 277 rqset_len = mrq.rq_cfg[i].len; 278 rqset_ulp = mrq.rq_cfg[i].ulp; 279 } 280 eqs[rqset_count] = mrq.rq_cfg[i].eq; 281 rqset_count++; 282 break; 283 } 284 } 285 if (j == mrq.num_pairs) { 286 /* Normal RQ */ 287 cq = hw_new_cq(mrq.rq_cfg[i].eq, default_lengths[QTOP_CQ]); 288 if (cq == NULL) { 289 hw_queue_teardown(hw); 290 return OCS_HW_RTN_NO_MEMORY; 291 } 292 293 rq = hw_new_rq(cq, mrq.rq_cfg[i].len, mrq.rq_cfg[i].ulp); 294 if (rq == NULL) { 295 hw_queue_teardown(hw); 296 return OCS_HW_RTN_NO_MEMORY; 297 } 298 rq->filter_mask = mrq.rq_cfg[i].filter_mask; 299 } 300 } 301 302 /* Now create RQ Set */ 303 if (rqset_count) { 304 if (rqset_count > OCE_HW_MAX_NUM_MRQ_PAIRS) { 305 ocs_log_crit(hw->os, 306 "Max Supported MRQ pairs = %d\n", 307 OCE_HW_MAX_NUM_MRQ_PAIRS); 308 hw_queue_teardown(hw); 309 return OCS_HW_RTN_ERROR; 310 } 311 312 /* Create CQ set */ 313 if (hw_new_cq_set(eqs, cqs, rqset_count, default_lengths[QTOP_CQ])) { 314 hw_queue_teardown(hw); 315 return OCS_HW_RTN_ERROR; 316 } 317 318 /* Create RQ set */ 319 if (hw_new_rq_set(cqs, rqs, rqset_count, rqset_len, rqset_ulp)) { 320 hw_queue_teardown(hw); 321 return OCS_HW_RTN_ERROR; 322 } 323 324 for (i = 0; i < rqset_count ; i++) { 325 rqs[i]->filter_mask = rqset_filter_mask; 326 rqs[i]->is_mrq = TRUE; 327 rqs[i]->base_mrq_id = rqs[0]->hdr->id; 328 } 329 330 hw->hw_mrq_count = rqset_count; 331 } 332 } 333 334 return OCS_HW_RTN_SUCCESS; 335 336 } 337 338 /** 339 * @brief Allocate a new EQ object 340 * 341 * A new EQ object is instantiated 342 * 343 * @param hw pointer to HW object 344 * @param entry_count number of entries in the EQ 345 * 346 * @return pointer to allocated EQ object 347 */ 348 hw_eq_t* 349 hw_new_eq(ocs_hw_t *hw, uint32_t entry_count) 350 { 351 hw_eq_t *eq = ocs_malloc(hw->os, sizeof(*eq), OCS_M_ZERO | OCS_M_NOWAIT); 352 353 if (eq != NULL) { 354 eq->type = SLI_QTYPE_EQ; 355 eq->hw = hw; 356 eq->entry_count = entry_count; 357 eq->instance = hw->eq_count++; 358 eq->queue = &hw->eq[eq->instance]; 359 ocs_list_init(&eq->cq_list, hw_cq_t, link); 360 361 eq->wq_array = ocs_varray_alloc(hw->os, OCS_HW_MAX_NUM_WQ); 362 if (eq->wq_array == NULL) { 363 ocs_free(hw->os, eq, sizeof(*eq)); 364 eq = NULL; 365 } else { 366 if (sli_queue_alloc(&hw->sli, SLI_QTYPE_EQ, eq->queue, entry_count, NULL, 0)) { 367 ocs_log_err(hw->os, "EQ[%d] allocation failure\n", eq->instance); 368 ocs_free(hw->os, eq, sizeof(*eq)); 369 eq = NULL; 370 } else { 371 sli_eq_modify_delay(&hw->sli, eq->queue, 1, 0, 8); 372 hw->hw_eq[eq->instance] = eq; 373 ocs_list_add_tail(&hw->eq_list, eq); 374 ocs_log_debug(hw->os, "create eq[%2d] id %3d len %4d\n", eq->instance, eq->queue->id, 375 eq->entry_count); 376 } 377 } 378 } 379 return eq; 380 } 381 382 /** 383 * @brief Allocate a new CQ object 384 * 385 * A new CQ object is instantiated 386 * 387 * @param eq pointer to parent EQ object 388 * @param entry_count number of entries in the CQ 389 * 390 * @return pointer to allocated CQ object 391 */ 392 hw_cq_t* 393 hw_new_cq(hw_eq_t *eq, uint32_t entry_count) 394 { 395 ocs_hw_t *hw = eq->hw; 396 hw_cq_t *cq = ocs_malloc(hw->os, sizeof(*cq), OCS_M_ZERO | OCS_M_NOWAIT); 397 398 if (cq != NULL) { 399 cq->eq = eq; 400 cq->type = SLI_QTYPE_CQ; 401 cq->instance = eq->hw->cq_count++; 402 cq->entry_count = entry_count; 403 cq->queue = &hw->cq[cq->instance]; 404 405 ocs_list_init(&cq->q_list, hw_q_t, link); 406 407 if (sli_queue_alloc(&hw->sli, SLI_QTYPE_CQ, cq->queue, cq->entry_count, eq->queue, 0)) { 408 ocs_log_err(hw->os, "CQ[%d] allocation failure len=%d\n", 409 eq->instance, 410 eq->entry_count); 411 ocs_free(hw->os, cq, sizeof(*cq)); 412 cq = NULL; 413 } else { 414 hw->hw_cq[cq->instance] = cq; 415 ocs_list_add_tail(&eq->cq_list, cq); 416 ocs_log_debug(hw->os, "create cq[%2d] id %3d len %4d\n", cq->instance, cq->queue->id, 417 cq->entry_count); 418 } 419 } 420 return cq; 421 } 422 423 /** 424 * @brief Allocate a new CQ Set of objects. 425 * 426 * @param eqs pointer to a set of EQ objects. 427 * @param cqs pointer to a set of CQ objects to be returned. 428 * @param num_cqs number of CQ queues in the set. 429 * @param entry_count number of entries in the CQ. 430 * 431 * @return 0 on success and -1 on failure. 432 */ 433 uint32_t 434 hw_new_cq_set(hw_eq_t *eqs[], hw_cq_t *cqs[], uint32_t num_cqs, uint32_t entry_count) 435 { 436 uint32_t i; 437 ocs_hw_t *hw = eqs[0]->hw; 438 sli4_t *sli4 = &hw->sli; 439 hw_cq_t *cq = NULL; 440 sli4_queue_t *qs[SLI_MAX_CQ_SET_COUNT], *assocs[SLI_MAX_CQ_SET_COUNT]; 441 442 /* Initialise CQS pointers to NULL */ 443 for (i = 0; i < num_cqs; i++) { 444 cqs[i] = NULL; 445 } 446 447 for (i = 0; i < num_cqs; i++) { 448 cq = ocs_malloc(hw->os, sizeof(*cq), OCS_M_ZERO | OCS_M_NOWAIT); 449 if (cq == NULL) 450 goto error; 451 452 cqs[i] = cq; 453 cq->eq = eqs[i]; 454 cq->type = SLI_QTYPE_CQ; 455 cq->instance = hw->cq_count++; 456 cq->entry_count = entry_count; 457 cq->queue = &hw->cq[cq->instance]; 458 qs[i] = cq->queue; 459 assocs[i] = eqs[i]->queue; 460 ocs_list_init(&cq->q_list, hw_q_t, link); 461 } 462 463 if (sli_cq_alloc_set(sli4, qs, num_cqs, entry_count, assocs)) { 464 ocs_log_err(NULL, "Failed to create CQ Set. \n"); 465 goto error; 466 } 467 468 for (i = 0; i < num_cqs; i++) { 469 hw->hw_cq[cqs[i]->instance] = cqs[i]; 470 ocs_list_add_tail(&cqs[i]->eq->cq_list, cqs[i]); 471 } 472 473 return 0; 474 475 error: 476 for (i = 0; i < num_cqs; i++) { 477 if (cqs[i]) { 478 ocs_free(hw->os, cqs[i], sizeof(*cqs[i])); 479 cqs[i] = NULL; 480 } 481 } 482 return -1; 483 } 484 485 486 /** 487 * @brief Allocate a new MQ object 488 * 489 * A new MQ object is instantiated 490 * 491 * @param cq pointer to parent CQ object 492 * @param entry_count number of entries in the MQ 493 * 494 * @return pointer to allocated MQ object 495 */ 496 hw_mq_t* 497 hw_new_mq(hw_cq_t *cq, uint32_t entry_count) 498 { 499 ocs_hw_t *hw = cq->eq->hw; 500 hw_mq_t *mq = ocs_malloc(hw->os, sizeof(*mq), OCS_M_ZERO | OCS_M_NOWAIT); 501 502 if (mq != NULL) { 503 mq->cq = cq; 504 mq->type = SLI_QTYPE_MQ; 505 mq->instance = cq->eq->hw->mq_count++; 506 mq->entry_count = entry_count; 507 mq->entry_size = OCS_HW_MQ_DEPTH; 508 mq->queue = &hw->mq[mq->instance]; 509 510 if (sli_queue_alloc(&hw->sli, SLI_QTYPE_MQ, 511 mq->queue, 512 mq->entry_size, 513 cq->queue, 0)) { 514 ocs_log_err(hw->os, "MQ allocation failure\n"); 515 ocs_free(hw->os, mq, sizeof(*mq)); 516 mq = NULL; 517 } else { 518 hw->hw_mq[mq->instance] = mq; 519 ocs_list_add_tail(&cq->q_list, mq); 520 ocs_log_debug(hw->os, "create mq[%2d] id %3d len %4d\n", mq->instance, mq->queue->id, 521 mq->entry_count); 522 } 523 } 524 return mq; 525 } 526 527 /** 528 * @brief Allocate a new WQ object 529 * 530 * A new WQ object is instantiated 531 * 532 * @param cq pointer to parent CQ object 533 * @param entry_count number of entries in the WQ 534 * @param class WQ class 535 * @param ulp index of chute 536 * 537 * @return pointer to allocated WQ object 538 */ 539 hw_wq_t* 540 hw_new_wq(hw_cq_t *cq, uint32_t entry_count, uint32_t class, uint32_t ulp) 541 { 542 ocs_hw_t *hw = cq->eq->hw; 543 hw_wq_t *wq = ocs_malloc(hw->os, sizeof(*wq), OCS_M_ZERO | OCS_M_NOWAIT); 544 545 if (wq != NULL) { 546 wq->hw = cq->eq->hw; 547 wq->cq = cq; 548 wq->type = SLI_QTYPE_WQ; 549 wq->instance = cq->eq->hw->wq_count++; 550 wq->entry_count = entry_count; 551 wq->queue = &hw->wq[wq->instance]; 552 wq->ulp = ulp; 553 wq->wqec_set_count = OCS_HW_WQEC_SET_COUNT; 554 wq->wqec_count = wq->wqec_set_count; 555 wq->free_count = wq->entry_count - 1; 556 wq->class = class; 557 ocs_list_init(&wq->pending_list, ocs_hw_wqe_t, link); 558 559 if (sli_queue_alloc(&hw->sli, SLI_QTYPE_WQ, wq->queue, wq->entry_count, cq->queue, ulp)) { 560 ocs_log_err(hw->os, "WQ allocation failure\n"); 561 ocs_free(hw->os, wq, sizeof(*wq)); 562 wq = NULL; 563 } else { 564 hw->hw_wq[wq->instance] = wq; 565 ocs_list_add_tail(&cq->q_list, wq); 566 ocs_log_debug(hw->os, "create wq[%2d] id %3d len %4d cls %d ulp %d\n", wq->instance, wq->queue->id, 567 wq->entry_count, wq->class, wq->ulp); 568 } 569 } 570 return wq; 571 } 572 573 /** 574 * @brief Allocate a hw_rq_t object 575 * 576 * Allocate an RQ object, which encapsulates 2 SLI queues (for rq pair) 577 * 578 * @param cq pointer to parent CQ object 579 * @param entry_count number of entries in the RQs 580 * @param ulp ULP index for this RQ 581 * 582 * @return pointer to newly allocated hw_rq_t 583 */ 584 hw_rq_t* 585 hw_new_rq(hw_cq_t *cq, uint32_t entry_count, uint32_t ulp) 586 { 587 ocs_hw_t *hw = cq->eq->hw; 588 hw_rq_t *rq = ocs_malloc(hw->os, sizeof(*rq), OCS_M_ZERO | OCS_M_NOWAIT); 589 uint32_t max_hw_rq; 590 591 ocs_hw_get(hw, OCS_HW_MAX_RQ_ENTRIES, &max_hw_rq); 592 593 594 if (rq != NULL) { 595 rq->instance = hw->hw_rq_count++; 596 rq->cq = cq; 597 rq->type = SLI_QTYPE_RQ; 598 rq->ulp = ulp; 599 600 rq->entry_count = OCS_MIN(entry_count, OCS_MIN(max_hw_rq, OCS_HW_RQ_NUM_HDR)); 601 602 /* Create the header RQ */ 603 ocs_hw_assert(hw->rq_count < ARRAY_SIZE(hw->rq)); 604 rq->hdr = &hw->rq[hw->rq_count]; 605 rq->hdr_entry_size = OCS_HW_RQ_HEADER_SIZE; 606 607 if (sli_fc_rq_alloc(&hw->sli, rq->hdr, 608 rq->entry_count, 609 rq->hdr_entry_size, 610 cq->queue, 611 ulp, TRUE)) { 612 ocs_log_err(hw->os, "RQ allocation failure - header\n"); 613 ocs_free(hw->os, rq, sizeof(*rq)); 614 return NULL; 615 } 616 hw->hw_rq_lookup[hw->rq_count] = rq->instance; /* Update hw_rq_lookup[] */ 617 hw->rq_count++; 618 ocs_log_debug(hw->os, "create rq[%2d] id %3d len %4d hdr size %4d ulp %d\n", 619 rq->instance, rq->hdr->id, rq->entry_count, rq->hdr_entry_size, rq->ulp); 620 621 /* Create the default data RQ */ 622 ocs_hw_assert(hw->rq_count < ARRAY_SIZE(hw->rq)); 623 rq->data = &hw->rq[hw->rq_count]; 624 rq->data_entry_size = hw->config.rq_default_buffer_size; 625 626 if (sli_fc_rq_alloc(&hw->sli, rq->data, 627 rq->entry_count, 628 rq->data_entry_size, 629 cq->queue, 630 ulp, FALSE)) { 631 ocs_log_err(hw->os, "RQ allocation failure - first burst\n"); 632 ocs_free(hw->os, rq, sizeof(*rq)); 633 return NULL; 634 } 635 hw->hw_rq_lookup[hw->rq_count] = rq->instance; /* Update hw_rq_lookup[] */ 636 hw->rq_count++; 637 ocs_log_debug(hw->os, "create rq[%2d] id %3d len %4d data size %4d ulp %d\n", rq->instance, 638 rq->data->id, rq->entry_count, rq->data_entry_size, rq->ulp); 639 640 hw->hw_rq[rq->instance] = rq; 641 ocs_list_add_tail(&cq->q_list, rq); 642 643 rq->rq_tracker = ocs_malloc(hw->os, sizeof(ocs_hw_sequence_t*) * 644 rq->entry_count, OCS_M_ZERO | OCS_M_NOWAIT); 645 if (rq->rq_tracker == NULL) { 646 ocs_log_err(hw->os, "RQ tracker buf allocation failure\n"); 647 return NULL; 648 } 649 } 650 return rq; 651 } 652 653 654 /** 655 * @brief Allocate a hw_rq_t object SET 656 * 657 * Allocate an RQ object SET, where each element in set 658 * encapsulates 2 SLI queues (for rq pair) 659 * 660 * @param cqs pointers to be associated with RQs. 661 * @param rqs RQ pointers to be returned on success. 662 * @param num_rq_pairs number of rq pairs in the Set. 663 * @param entry_count number of entries in the RQs 664 * @param ulp ULP index for this RQ 665 * 666 * @return 0 in success and -1 on failure. 667 */ 668 uint32_t 669 hw_new_rq_set(hw_cq_t *cqs[], hw_rq_t *rqs[], uint32_t num_rq_pairs, uint32_t entry_count, uint32_t ulp) 670 { 671 ocs_hw_t *hw = cqs[0]->eq->hw; 672 hw_rq_t *rq = NULL; 673 sli4_queue_t *qs[SLI_MAX_RQ_SET_COUNT * 2] = { NULL }; 674 uint32_t max_hw_rq, i, q_count; 675 676 ocs_hw_get(hw, OCS_HW_MAX_RQ_ENTRIES, &max_hw_rq); 677 678 /* Initialise RQS pointers */ 679 for (i = 0; i < num_rq_pairs; i++) { 680 rqs[i] = NULL; 681 } 682 683 for (i = 0, q_count = 0; i < num_rq_pairs; i++, q_count += 2) { 684 rq = ocs_malloc(hw->os, sizeof(*rq), OCS_M_ZERO | OCS_M_NOWAIT); 685 if (rq == NULL) 686 goto error; 687 688 rqs[i] = rq; 689 rq->instance = hw->hw_rq_count++; 690 rq->cq = cqs[i]; 691 rq->type = SLI_QTYPE_RQ; 692 rq->ulp = ulp; 693 rq->entry_count = OCS_MIN(entry_count, OCS_MIN(max_hw_rq, OCS_HW_RQ_NUM_HDR)); 694 695 /* Header RQ */ 696 rq->hdr = &hw->rq[hw->rq_count]; 697 rq->hdr_entry_size = OCS_HW_RQ_HEADER_SIZE; 698 hw->hw_rq_lookup[hw->rq_count] = rq->instance; 699 hw->rq_count++; 700 qs[q_count] = rq->hdr; 701 702 /* Data RQ */ 703 rq->data = &hw->rq[hw->rq_count]; 704 rq->data_entry_size = hw->config.rq_default_buffer_size; 705 hw->hw_rq_lookup[hw->rq_count] = rq->instance; 706 hw->rq_count++; 707 qs[q_count + 1] = rq->data; 708 709 rq->rq_tracker = NULL; 710 } 711 712 if (sli_fc_rq_set_alloc(&hw->sli, num_rq_pairs, qs, 713 cqs[0]->queue->id, 714 rqs[0]->entry_count, 715 rqs[0]->hdr_entry_size, 716 rqs[0]->data_entry_size, 717 ulp)) { 718 ocs_log_err(hw->os, "RQ Set allocation failure for base CQ=%d\n", cqs[0]->queue->id); 719 goto error; 720 } 721 722 723 for (i = 0; i < num_rq_pairs; i++) { 724 hw->hw_rq[rqs[i]->instance] = rqs[i]; 725 ocs_list_add_tail(&cqs[i]->q_list, rqs[i]); 726 rqs[i]->rq_tracker = ocs_malloc(hw->os, sizeof(ocs_hw_sequence_t*) * 727 rqs[i]->entry_count, OCS_M_ZERO | OCS_M_NOWAIT); 728 if (rqs[i]->rq_tracker == NULL) { 729 ocs_log_err(hw->os, "RQ tracker buf allocation failure\n"); 730 goto error; 731 } 732 } 733 734 return 0; 735 736 error: 737 for (i = 0; i < num_rq_pairs; i++) { 738 if (rqs[i] != NULL) { 739 if (rqs[i]->rq_tracker != NULL) { 740 ocs_free(hw->os, rq->rq_tracker, 741 sizeof(ocs_hw_sequence_t*) * rq->entry_count); 742 } 743 ocs_free(hw->os, rqs[i], sizeof(*rqs[i])); 744 } 745 } 746 747 return -1; 748 } 749 750 751 /** 752 * @brief Free an EQ object 753 * 754 * The EQ object and any child queue objects are freed 755 * 756 * @param eq pointer to EQ object 757 * 758 * @return none 759 */ 760 void 761 hw_del_eq(hw_eq_t *eq) 762 { 763 if (eq != NULL) { 764 hw_cq_t *cq; 765 hw_cq_t *cq_next; 766 767 ocs_list_foreach_safe(&eq->cq_list, cq, cq_next) { 768 hw_del_cq(cq); 769 } 770 ocs_varray_free(eq->wq_array); 771 ocs_list_remove(&eq->hw->eq_list, eq); 772 eq->hw->hw_eq[eq->instance] = NULL; 773 ocs_free(eq->hw->os, eq, sizeof(*eq)); 774 } 775 } 776 777 /** 778 * @brief Free a CQ object 779 * 780 * The CQ object and any child queue objects are freed 781 * 782 * @param cq pointer to CQ object 783 * 784 * @return none 785 */ 786 void 787 hw_del_cq(hw_cq_t *cq) 788 { 789 if (cq != NULL) { 790 hw_q_t *q; 791 hw_q_t *q_next; 792 793 ocs_list_foreach_safe(&cq->q_list, q, q_next) { 794 switch(q->type) { 795 case SLI_QTYPE_MQ: 796 hw_del_mq((hw_mq_t*) q); 797 break; 798 case SLI_QTYPE_WQ: 799 hw_del_wq((hw_wq_t*) q); 800 break; 801 case SLI_QTYPE_RQ: 802 hw_del_rq((hw_rq_t*) q); 803 break; 804 default: 805 break; 806 } 807 } 808 ocs_list_remove(&cq->eq->cq_list, cq); 809 cq->eq->hw->hw_cq[cq->instance] = NULL; 810 ocs_free(cq->eq->hw->os, cq, sizeof(*cq)); 811 } 812 } 813 814 /** 815 * @brief Free a MQ object 816 * 817 * The MQ object is freed 818 * 819 * @param mq pointer to MQ object 820 * 821 * @return none 822 */ 823 void 824 hw_del_mq(hw_mq_t *mq) 825 { 826 if (mq != NULL) { 827 ocs_list_remove(&mq->cq->q_list, mq); 828 mq->cq->eq->hw->hw_mq[mq->instance] = NULL; 829 ocs_free(mq->cq->eq->hw->os, mq, sizeof(*mq)); 830 } 831 } 832 833 /** 834 * @brief Free a WQ object 835 * 836 * The WQ object is freed 837 * 838 * @param wq pointer to WQ object 839 * 840 * @return none 841 */ 842 void 843 hw_del_wq(hw_wq_t *wq) 844 { 845 if (wq != NULL) { 846 ocs_list_remove(&wq->cq->q_list, wq); 847 wq->cq->eq->hw->hw_wq[wq->instance] = NULL; 848 ocs_free(wq->cq->eq->hw->os, wq, sizeof(*wq)); 849 } 850 } 851 852 /** 853 * @brief Free an RQ object 854 * 855 * The RQ object is freed 856 * 857 * @param rq pointer to RQ object 858 * 859 * @return none 860 */ 861 void 862 hw_del_rq(hw_rq_t *rq) 863 { 864 ocs_hw_t *hw = rq->cq->eq->hw; 865 866 if (rq != NULL) { 867 /* Free RQ tracker */ 868 if (rq->rq_tracker != NULL) { 869 ocs_free(hw->os, rq->rq_tracker, sizeof(ocs_hw_sequence_t*) * rq->entry_count); 870 rq->rq_tracker = NULL; 871 } 872 ocs_list_remove(&rq->cq->q_list, rq); 873 hw->hw_rq[rq->instance] = NULL; 874 ocs_free(hw->os, rq, sizeof(*rq)); 875 } 876 } 877 878 /** 879 * @brief Display HW queue objects 880 * 881 * The HW queue objects are displayed using ocs_log 882 * 883 * @param hw pointer to HW object 884 * 885 * @return none 886 */ 887 void 888 hw_queue_dump(ocs_hw_t *hw) 889 { 890 hw_eq_t *eq; 891 hw_cq_t *cq; 892 hw_q_t *q; 893 hw_mq_t *mq; 894 hw_wq_t *wq; 895 hw_rq_t *rq; 896 897 ocs_list_foreach(&hw->eq_list, eq) { 898 ocs_printf("eq[%d] id %2d\n", eq->instance, eq->queue->id); 899 ocs_list_foreach(&eq->cq_list, cq) { 900 ocs_printf(" cq[%d] id %2d current\n", cq->instance, cq->queue->id); 901 ocs_list_foreach(&cq->q_list, q) { 902 switch(q->type) { 903 case SLI_QTYPE_MQ: 904 mq = (hw_mq_t *) q; 905 ocs_printf(" mq[%d] id %2d\n", mq->instance, mq->queue->id); 906 break; 907 case SLI_QTYPE_WQ: 908 wq = (hw_wq_t *) q; 909 ocs_printf(" wq[%d] id %2d\n", wq->instance, wq->queue->id); 910 break; 911 case SLI_QTYPE_RQ: 912 rq = (hw_rq_t *) q; 913 ocs_printf(" rq[%d] hdr id %2d\n", rq->instance, rq->hdr->id); 914 break; 915 default: 916 break; 917 } 918 } 919 } 920 } 921 } 922 923 /** 924 * @brief Teardown HW queue objects 925 * 926 * The HW queue objects are freed 927 * 928 * @param hw pointer to HW object 929 * 930 * @return none 931 */ 932 void 933 hw_queue_teardown(ocs_hw_t *hw) 934 { 935 uint32_t i; 936 hw_eq_t *eq; 937 hw_eq_t *eq_next; 938 939 if (ocs_list_valid(&hw->eq_list)) { 940 ocs_list_foreach_safe(&hw->eq_list, eq, eq_next) { 941 hw_del_eq(eq); 942 } 943 } 944 for (i = 0; i < ARRAY_SIZE(hw->wq_cpu_array); i++) { 945 ocs_varray_free(hw->wq_cpu_array[i]); 946 hw->wq_cpu_array[i] = NULL; 947 } 948 for (i = 0; i < ARRAY_SIZE(hw->wq_class_array); i++) { 949 ocs_varray_free(hw->wq_class_array[i]); 950 hw->wq_class_array[i] = NULL; 951 } 952 } 953 954 /** 955 * @brief Allocate a WQ to an IO object 956 * 957 * The next work queue index is used to assign a WQ to an IO. 958 * 959 * If wq_steering is OCS_HW_WQ_STEERING_CLASS, a WQ from io->wq_class is 960 * selected. 961 * 962 * If wq_steering is OCS_HW_WQ_STEERING_REQUEST, then a WQ from the EQ that 963 * the IO request came in on is selected. 964 * 965 * If wq_steering is OCS_HW_WQ_STEERING_CPU, then a WQ associted with the 966 * CPU the request is made on is selected. 967 * 968 * @param hw pointer to HW object 969 * @param io pointer to IO object 970 * 971 * @return Return pointer to next WQ 972 */ 973 hw_wq_t * 974 ocs_hw_queue_next_wq(ocs_hw_t *hw, ocs_hw_io_t *io) 975 { 976 hw_eq_t *eq; 977 hw_wq_t *wq = NULL; 978 979 switch(io->wq_steering) { 980 case OCS_HW_WQ_STEERING_CLASS: 981 if (likely(io->wq_class < ARRAY_SIZE(hw->wq_class_array))) { 982 wq = ocs_varray_iter_next(hw->wq_class_array[io->wq_class]); 983 } 984 break; 985 case OCS_HW_WQ_STEERING_REQUEST: 986 eq = io->eq; 987 if (likely(eq != NULL)) { 988 wq = ocs_varray_iter_next(eq->wq_array); 989 } 990 break; 991 case OCS_HW_WQ_STEERING_CPU: { 992 uint32_t cpuidx = ocs_thread_getcpu(); 993 994 if (likely(cpuidx < ARRAY_SIZE(hw->wq_cpu_array))) { 995 wq = ocs_varray_iter_next(hw->wq_cpu_array[cpuidx]); 996 } 997 break; 998 } 999 } 1000 1001 if (unlikely(wq == NULL)) { 1002 wq = hw->hw_wq[0]; 1003 } 1004 1005 return wq; 1006 } 1007 1008 /** 1009 * @brief Return count of EQs for a queue topology object 1010 * 1011 * The EQ count for in the HWs queue topology (hw->qtop) object is returned 1012 * 1013 * @param hw pointer to HW object 1014 * 1015 * @return count of EQs 1016 */ 1017 uint32_t 1018 ocs_hw_qtop_eq_count(ocs_hw_t *hw) 1019 { 1020 return hw->qtop->entry_counts[QTOP_EQ]; 1021 } 1022 1023 #define TOKEN_LEN 32 1024 1025 /** 1026 * @brief return string given a QTOP entry 1027 * 1028 * @param entry QTOP entry 1029 * 1030 * @return returns string or "unknown" 1031 */ 1032 #if HW_QTOP_DEBUG 1033 static char * 1034 qtopentry2s(ocs_hw_qtop_entry_e entry) { 1035 switch(entry) { 1036 #define P(x) case x: return #x; 1037 P(QTOP_EQ) 1038 P(QTOP_CQ) 1039 P(QTOP_WQ) 1040 P(QTOP_RQ) 1041 P(QTOP_MQ) 1042 P(QTOP_THREAD_START) 1043 P(QTOP_THREAD_END) 1044 P(QTOP_LAST) 1045 #undef P 1046 } 1047 return "unknown"; 1048 } 1049 #endif 1050 1051 /** 1052 * @brief Declare token types 1053 */ 1054 typedef enum { 1055 TOK_LPAREN = 1, 1056 TOK_RPAREN, 1057 TOK_COLON, 1058 TOK_EQUALS, 1059 TOK_QUEUE, 1060 TOK_ATTR_NAME, 1061 TOK_NUMBER, 1062 TOK_NUMBER_VALUE, 1063 TOK_NUMBER_LIST, 1064 } tok_type_e; 1065 1066 /** 1067 * @brief Declare token sub-types 1068 */ 1069 typedef enum { 1070 TOK_SUB_EQ = 100, 1071 TOK_SUB_CQ, 1072 TOK_SUB_RQ, 1073 TOK_SUB_MQ, 1074 TOK_SUB_WQ, 1075 TOK_SUB_LEN, 1076 TOK_SUB_CLASS, 1077 TOK_SUB_ULP, 1078 TOK_SUB_FILTER, 1079 } tok_subtype_e; 1080 1081 /** 1082 * @brief convert queue subtype to QTOP entry 1083 * 1084 * @param q queue subtype 1085 * 1086 * @return QTOP entry or 0 1087 */ 1088 static ocs_hw_qtop_entry_e 1089 subtype2qtop(tok_subtype_e q) 1090 { 1091 switch(q) { 1092 case TOK_SUB_EQ: return QTOP_EQ; 1093 case TOK_SUB_CQ: return QTOP_CQ; 1094 case TOK_SUB_RQ: return QTOP_RQ; 1095 case TOK_SUB_MQ: return QTOP_MQ; 1096 case TOK_SUB_WQ: return QTOP_WQ; 1097 default: 1098 break; 1099 } 1100 return 0; 1101 } 1102 1103 /** 1104 * @brief Declare token object 1105 */ 1106 typedef struct { 1107 tok_type_e type; 1108 tok_subtype_e subtype; 1109 char string[TOKEN_LEN]; 1110 } tok_t; 1111 1112 /** 1113 * @brief Declare token array object 1114 */ 1115 typedef struct { 1116 tok_t *tokens; /* Pointer to array of tokens */ 1117 uint32_t alloc_count; /* Number of tokens in the array */ 1118 uint32_t inuse_count; /* Number of tokens posted to array */ 1119 uint32_t iter_idx; /* Iterator index */ 1120 } tokarray_t; 1121 1122 /** 1123 * @brief Declare token match structure 1124 */ 1125 typedef struct { 1126 char *s; 1127 tok_type_e type; 1128 tok_subtype_e subtype; 1129 } tokmatch_t; 1130 1131 /** 1132 * @brief test if character is ID start character 1133 * 1134 * @param c character to test 1135 * 1136 * @return TRUE if character is an ID start character 1137 */ 1138 static int32_t 1139 idstart(int c) 1140 { 1141 return isalpha(c) || (c == '_') || (c == '$'); 1142 } 1143 1144 /** 1145 * @brief test if character is an ID character 1146 * 1147 * @param c character to test 1148 * 1149 * @return TRUE if character is an ID character 1150 */ 1151 static int32_t 1152 idchar(int c) 1153 { 1154 return idstart(c) || ocs_isdigit(c); 1155 } 1156 1157 /** 1158 * @brief Declare single character matches 1159 */ 1160 static tokmatch_t cmatches[] = { 1161 {"(", TOK_LPAREN}, 1162 {")", TOK_RPAREN}, 1163 {":", TOK_COLON}, 1164 {"=", TOK_EQUALS}, 1165 }; 1166 1167 /** 1168 * @brief Declare identifier match strings 1169 */ 1170 static tokmatch_t smatches[] = { 1171 {"eq", TOK_QUEUE, TOK_SUB_EQ}, 1172 {"cq", TOK_QUEUE, TOK_SUB_CQ}, 1173 {"rq", TOK_QUEUE, TOK_SUB_RQ}, 1174 {"mq", TOK_QUEUE, TOK_SUB_MQ}, 1175 {"wq", TOK_QUEUE, TOK_SUB_WQ}, 1176 {"len", TOK_ATTR_NAME, TOK_SUB_LEN}, 1177 {"class", TOK_ATTR_NAME, TOK_SUB_CLASS}, 1178 {"ulp", TOK_ATTR_NAME, TOK_SUB_ULP}, 1179 {"filter", TOK_ATTR_NAME, TOK_SUB_FILTER}, 1180 }; 1181 1182 /** 1183 * @brief Scan string and return next token 1184 * 1185 * The string is scanned and the next token is returned 1186 * 1187 * @param s input string to scan 1188 * @param tok pointer to place scanned token 1189 * 1190 * @return pointer to input string following scanned token, or NULL 1191 */ 1192 static const char * 1193 tokenize(const char *s, tok_t *tok) 1194 { 1195 uint32_t i; 1196 1197 memset(tok, 0, sizeof(*tok)); 1198 1199 /* Skip over whitespace */ 1200 while (*s && ocs_isspace(*s)) { 1201 s++; 1202 } 1203 1204 /* Return if nothing left in this string */ 1205 if (*s == 0) { 1206 return NULL; 1207 } 1208 1209 /* Look for single character matches */ 1210 for (i = 0; i < ARRAY_SIZE(cmatches); i++) { 1211 if (cmatches[i].s[0] == *s) { 1212 tok->type = cmatches[i].type; 1213 tok->subtype = cmatches[i].subtype; 1214 tok->string[0] = *s++; 1215 return s; 1216 } 1217 } 1218 1219 /* Scan for a hex number or decimal */ 1220 if ((s[0] == '0') && ((s[1] == 'x') || (s[1] == 'X'))) { 1221 char *p = tok->string; 1222 1223 tok->type = TOK_NUMBER; 1224 1225 *p++ = *s++; 1226 *p++ = *s++; 1227 while ((*s == '.') || ocs_isxdigit(*s)) { 1228 if ((p - tok->string) < (int32_t)sizeof(tok->string)) { 1229 *p++ = *s; 1230 } 1231 if (*s == ',') { 1232 tok->type = TOK_NUMBER_LIST; 1233 } 1234 s++; 1235 } 1236 *p = 0; 1237 return s; 1238 } else if (ocs_isdigit(*s)) { 1239 char *p = tok->string; 1240 1241 tok->type = TOK_NUMBER; 1242 while ((*s == ',') || ocs_isdigit(*s)) { 1243 if ((p - tok->string) < (int32_t)sizeof(tok->string)) { 1244 *p++ = *s; 1245 } 1246 if (*s == ',') { 1247 tok->type = TOK_NUMBER_LIST; 1248 } 1249 s++; 1250 } 1251 *p = 0; 1252 return s; 1253 } 1254 1255 /* Scan for an ID */ 1256 if (idstart(*s)) { 1257 char *p = tok->string; 1258 1259 for (*p++ = *s++; idchar(*s); s++) { 1260 if ((p - tok->string) < TOKEN_LEN) { 1261 *p++ = *s; 1262 } 1263 } 1264 1265 /* See if this is a $ number value */ 1266 if (tok->string[0] == '$') { 1267 tok->type = TOK_NUMBER_VALUE; 1268 } else { 1269 /* Look for a string match */ 1270 for (i = 0; i < ARRAY_SIZE(smatches); i++) { 1271 if (strcmp(smatches[i].s, tok->string) == 0) { 1272 tok->type = smatches[i].type; 1273 tok->subtype = smatches[i].subtype; 1274 return s; 1275 } 1276 } 1277 } 1278 } 1279 return s; 1280 } 1281 1282 /** 1283 * @brief convert token type to string 1284 * 1285 * @param type token type 1286 * 1287 * @return string, or "unknown" 1288 */ 1289 static const char * 1290 token_type2s(tok_type_e type) 1291 { 1292 switch(type) { 1293 #define P(x) case x: return #x; 1294 P(TOK_LPAREN) 1295 P(TOK_RPAREN) 1296 P(TOK_COLON) 1297 P(TOK_EQUALS) 1298 P(TOK_QUEUE) 1299 P(TOK_ATTR_NAME) 1300 P(TOK_NUMBER) 1301 P(TOK_NUMBER_VALUE) 1302 P(TOK_NUMBER_LIST) 1303 #undef P 1304 } 1305 return "unknown"; 1306 } 1307 1308 /** 1309 * @brief convert token sub-type to string 1310 * 1311 * @param subtype token sub-type 1312 * 1313 * @return string, or "unknown" 1314 */ 1315 static const char * 1316 token_subtype2s(tok_subtype_e subtype) 1317 { 1318 switch(subtype) { 1319 #define P(x) case x: return #x; 1320 P(TOK_SUB_EQ) 1321 P(TOK_SUB_CQ) 1322 P(TOK_SUB_RQ) 1323 P(TOK_SUB_MQ) 1324 P(TOK_SUB_WQ) 1325 P(TOK_SUB_LEN) 1326 P(TOK_SUB_CLASS) 1327 P(TOK_SUB_ULP) 1328 P(TOK_SUB_FILTER) 1329 #undef P 1330 } 1331 return ""; 1332 } 1333 1334 /** 1335 * @brief Generate syntax error message 1336 * 1337 * A syntax error message is found, the input tokens are dumped up to and including 1338 * the token that failed as indicated by the current iterator index. 1339 * 1340 * @param hw pointer to HW object 1341 * @param tokarray pointer to token array object 1342 * 1343 * @return none 1344 */ 1345 static void 1346 tok_syntax(ocs_hw_t *hw, tokarray_t *tokarray) 1347 { 1348 uint32_t i; 1349 tok_t *tok; 1350 1351 ocs_log_test(hw->os, "Syntax error:\n"); 1352 1353 for (i = 0, tok = tokarray->tokens; (i <= tokarray->inuse_count); i++, tok++) { 1354 ocs_log_test(hw->os, "%s [%2d] %-16s %-16s %s\n", (i == tokarray->iter_idx) ? ">>>" : " ", i, 1355 token_type2s(tok->type), token_subtype2s(tok->subtype), tok->string); 1356 } 1357 } 1358 1359 /** 1360 * @brief parse a number 1361 * 1362 * Parses tokens of type TOK_NUMBER and TOK_NUMBER_VALUE, returning a numeric value 1363 * 1364 * @param hw pointer to HW object 1365 * @param qtop pointer to QTOP object 1366 * @param tok pointer to token to parse 1367 * 1368 * @return numeric value 1369 */ 1370 static uint32_t 1371 tok_getnumber(ocs_hw_t *hw, ocs_hw_qtop_t *qtop, tok_t *tok) 1372 { 1373 uint32_t rval = 0; 1374 uint32_t num_cpus = ocs_get_num_cpus(); 1375 1376 switch(tok->type) { 1377 case TOK_NUMBER_VALUE: 1378 if (ocs_strcmp(tok->string, "$ncpu") == 0) { 1379 rval = num_cpus; 1380 } else if (ocs_strcmp(tok->string, "$ncpu1") == 0) { 1381 rval = num_cpus - 1; 1382 } else if (ocs_strcmp(tok->string, "$nwq") == 0) { 1383 if (hw != NULL) { 1384 rval = hw->config.n_wq; 1385 } 1386 } else if (ocs_strcmp(tok->string, "$maxmrq") == 0) { 1387 rval = MIN(num_cpus, OCS_HW_MAX_MRQS); 1388 } else if (ocs_strcmp(tok->string, "$nulp") == 0) { 1389 rval = hw->ulp_max - hw->ulp_start + 1; 1390 } else if ((qtop->rptcount_idx > 0) && ocs_strcmp(tok->string, "$rpt0") == 0) { 1391 rval = qtop->rptcount[qtop->rptcount_idx-1]; 1392 } else if ((qtop->rptcount_idx > 1) && ocs_strcmp(tok->string, "$rpt1") == 0) { 1393 rval = qtop->rptcount[qtop->rptcount_idx-2]; 1394 } else if ((qtop->rptcount_idx > 2) && ocs_strcmp(tok->string, "$rpt2") == 0) { 1395 rval = qtop->rptcount[qtop->rptcount_idx-3]; 1396 } else if ((qtop->rptcount_idx > 3) && ocs_strcmp(tok->string, "$rpt3") == 0) { 1397 rval = qtop->rptcount[qtop->rptcount_idx-4]; 1398 } else { 1399 rval = ocs_strtoul(tok->string, 0, 0); 1400 } 1401 break; 1402 case TOK_NUMBER: 1403 rval = ocs_strtoul(tok->string, 0, 0); 1404 break; 1405 default: 1406 break; 1407 } 1408 return rval; 1409 } 1410 1411 1412 /** 1413 * @brief parse an array of tokens 1414 * 1415 * The tokens are semantically parsed, to generate QTOP entries. 1416 * 1417 * @param hw pointer to HW object 1418 * @param tokarray array array of tokens 1419 * @param qtop ouptut QTOP object 1420 * 1421 * @return returns 0 for success, a negative error code value for failure. 1422 */ 1423 static int32_t 1424 parse_topology(ocs_hw_t *hw, tokarray_t *tokarray, ocs_hw_qtop_t *qtop) 1425 { 1426 ocs_hw_qtop_entry_t *qt = qtop->entries + qtop->inuse_count; 1427 tok_t *tok; 1428 1429 for (; (tokarray->iter_idx < tokarray->inuse_count) && 1430 ((tok = &tokarray->tokens[tokarray->iter_idx]) != NULL); ) { 1431 if (qtop->inuse_count >= qtop->alloc_count) { 1432 return -1; 1433 } 1434 1435 qt = qtop->entries + qtop->inuse_count; 1436 1437 switch (tok[0].type) 1438 { 1439 case TOK_QUEUE: 1440 qt->entry = subtype2qtop(tok[0].subtype); 1441 qt->set_default = FALSE; 1442 qt->len = 0; 1443 qt->class = 0; 1444 qtop->inuse_count++; 1445 1446 tokarray->iter_idx++; /* Advance current token index */ 1447 1448 /* Parse for queue attributes, possibly multiple instances */ 1449 while ((tokarray->iter_idx + 4) <= tokarray->inuse_count) { 1450 tok = &tokarray->tokens[tokarray->iter_idx]; 1451 if( (tok[0].type == TOK_COLON) && 1452 (tok[1].type == TOK_ATTR_NAME) && 1453 (tok[2].type == TOK_EQUALS) && 1454 ((tok[3].type == TOK_NUMBER) || 1455 (tok[3].type == TOK_NUMBER_VALUE) || 1456 (tok[3].type == TOK_NUMBER_LIST))) { 1457 1458 switch (tok[1].subtype) { 1459 case TOK_SUB_LEN: 1460 qt->len = tok_getnumber(hw, qtop, &tok[3]); 1461 break; 1462 1463 case TOK_SUB_CLASS: 1464 qt->class = tok_getnumber(hw, qtop, &tok[3]); 1465 break; 1466 1467 case TOK_SUB_ULP: 1468 qt->ulp = tok_getnumber(hw, qtop, &tok[3]); 1469 break; 1470 1471 case TOK_SUB_FILTER: 1472 if (tok[3].type == TOK_NUMBER_LIST) { 1473 uint32_t mask = 0; 1474 char *p = tok[3].string; 1475 1476 while ((p != NULL) && *p) { 1477 uint32_t v; 1478 1479 v = ocs_strtoul(p, 0, 0); 1480 if (v < 32) { 1481 mask |= (1U << v); 1482 } 1483 1484 p = ocs_strchr(p, ','); 1485 if (p != NULL) { 1486 p++; 1487 } 1488 } 1489 qt->filter_mask = mask; 1490 } else { 1491 qt->filter_mask = (1U << tok_getnumber(hw, qtop, &tok[3])); 1492 } 1493 break; 1494 default: 1495 break; 1496 } 1497 /* Advance current token index */ 1498 tokarray->iter_idx += 4; 1499 } else { 1500 break; 1501 } 1502 } 1503 qtop->entry_counts[qt->entry]++; 1504 break; 1505 1506 case TOK_ATTR_NAME: 1507 if ( ((tokarray->iter_idx + 5) <= tokarray->inuse_count) && 1508 (tok[1].type == TOK_COLON) && 1509 (tok[2].type == TOK_QUEUE) && 1510 (tok[3].type == TOK_EQUALS) && 1511 ((tok[4].type == TOK_NUMBER) || (tok[4].type == TOK_NUMBER_VALUE))) { 1512 qt->entry = subtype2qtop(tok[2].subtype); 1513 qt->set_default = TRUE; 1514 switch(tok[0].subtype) { 1515 case TOK_SUB_LEN: 1516 qt->len = tok_getnumber(hw, qtop, &tok[4]); 1517 break; 1518 case TOK_SUB_CLASS: 1519 qt->class = tok_getnumber(hw, qtop, &tok[4]); 1520 break; 1521 case TOK_SUB_ULP: 1522 qt->ulp = tok_getnumber(hw, qtop, &tok[4]); 1523 break; 1524 default: 1525 break; 1526 } 1527 qtop->inuse_count++; 1528 tokarray->iter_idx += 5; 1529 } else { 1530 tok_syntax(hw, tokarray); 1531 return -1; 1532 } 1533 break; 1534 1535 case TOK_NUMBER: 1536 case TOK_NUMBER_VALUE: { 1537 uint32_t rpt_count = 1; 1538 uint32_t i; 1539 1540 rpt_count = tok_getnumber(hw, qtop, tok); 1541 1542 if (tok[1].type == TOK_LPAREN) { 1543 uint32_t iter_idx_save; 1544 1545 tokarray->iter_idx += 2; 1546 1547 /* save token array iteration index */ 1548 iter_idx_save = tokarray->iter_idx; 1549 1550 for (i = 0; i < rpt_count; i++) { 1551 uint32_t rptcount_idx = qtop->rptcount_idx; 1552 1553 if (qtop->rptcount_idx < ARRAY_SIZE(qtop->rptcount)) { 1554 qtop->rptcount[qtop->rptcount_idx++] = i; 1555 } 1556 1557 /* restore token array iteration index */ 1558 tokarray->iter_idx = iter_idx_save; 1559 1560 /* parse, append to qtop */ 1561 parse_topology(hw, tokarray, qtop); 1562 1563 qtop->rptcount_idx = rptcount_idx; 1564 } 1565 } 1566 break; 1567 } 1568 1569 case TOK_RPAREN: 1570 tokarray->iter_idx++; 1571 return 0; 1572 1573 default: 1574 tok_syntax(hw, tokarray); 1575 return -1; 1576 } 1577 } 1578 return 0; 1579 } 1580 1581 /** 1582 * @brief Parse queue topology string 1583 * 1584 * The queue topology object is allocated, and filled with the results of parsing the 1585 * passed in queue topology string 1586 * 1587 * @param hw pointer to HW object 1588 * @param qtop_string input queue topology string 1589 * 1590 * @return pointer to allocated QTOP object, or NULL if there was an error 1591 */ 1592 ocs_hw_qtop_t * 1593 ocs_hw_qtop_parse(ocs_hw_t *hw, const char *qtop_string) 1594 { 1595 ocs_hw_qtop_t *qtop; 1596 tokarray_t tokarray; 1597 const char *s; 1598 #if HW_QTOP_DEBUG 1599 uint32_t i; 1600 ocs_hw_qtop_entry_t *qt; 1601 #endif 1602 1603 ocs_log_debug(hw->os, "queue topology: %s\n", qtop_string); 1604 1605 /* Allocate a token array */ 1606 tokarray.tokens = ocs_malloc(hw->os, MAX_TOKENS * sizeof(*tokarray.tokens), OCS_M_ZERO | OCS_M_NOWAIT); 1607 if (tokarray.tokens == NULL) { 1608 return NULL; 1609 } 1610 tokarray.alloc_count = MAX_TOKENS; 1611 tokarray.inuse_count = 0; 1612 tokarray.iter_idx = 0; 1613 1614 /* Parse the tokens */ 1615 for (s = qtop_string; (tokarray.inuse_count < tokarray.alloc_count) && 1616 ((s = tokenize(s, &tokarray.tokens[tokarray.inuse_count]))) != NULL; ) { 1617 tokarray.inuse_count++;; 1618 } 1619 1620 /* Allocate a queue topology structure */ 1621 qtop = ocs_malloc(hw->os, sizeof(*qtop), OCS_M_ZERO | OCS_M_NOWAIT); 1622 if (qtop == NULL) { 1623 ocs_free(hw->os, tokarray.tokens, MAX_TOKENS * sizeof(*tokarray.tokens)); 1624 ocs_log_err(hw->os, "malloc qtop failed\n"); 1625 return NULL; 1626 } 1627 qtop->os = hw->os; 1628 1629 /* Allocate queue topology entries */ 1630 qtop->entries = ocs_malloc(hw->os, OCS_HW_MAX_QTOP_ENTRIES*sizeof(*qtop->entries), OCS_M_ZERO | OCS_M_NOWAIT); 1631 if (qtop->entries == NULL) { 1632 ocs_log_err(hw->os, "malloc qtop entries failed\n"); 1633 ocs_free(hw->os, qtop, sizeof(*qtop)); 1634 ocs_free(hw->os, tokarray.tokens, MAX_TOKENS * sizeof(*tokarray.tokens)); 1635 return NULL; 1636 } 1637 qtop->alloc_count = OCS_HW_MAX_QTOP_ENTRIES; 1638 qtop->inuse_count = 0; 1639 1640 /* Parse the tokens */ 1641 parse_topology(hw, &tokarray, qtop); 1642 #if HW_QTOP_DEBUG 1643 for (i = 0, qt = qtop->entries; i < qtop->inuse_count; i++, qt++) { 1644 ocs_log_debug(hw->os, "entry %s set_df %d len %4d class %d ulp %d\n", qtopentry2s(qt->entry), qt->set_default, qt->len, 1645 qt->class, qt->ulp); 1646 } 1647 #endif 1648 1649 /* Free the tokens array */ 1650 ocs_free(hw->os, tokarray.tokens, MAX_TOKENS * sizeof(*tokarray.tokens)); 1651 1652 return qtop; 1653 } 1654 1655 /** 1656 * @brief free queue topology object 1657 * 1658 * @param qtop pointer to QTOP object 1659 * 1660 * @return none 1661 */ 1662 void 1663 ocs_hw_qtop_free(ocs_hw_qtop_t *qtop) 1664 { 1665 if (qtop != NULL) { 1666 if (qtop->entries != NULL) { 1667 ocs_free(qtop->os, qtop->entries, qtop->alloc_count*sizeof(*qtop->entries)); 1668 } 1669 ocs_free(qtop->os, qtop, sizeof(*qtop)); 1670 } 1671 } 1672 1673 /* Uncomment this to turn on RQ debug */ 1674 // #define ENABLE_DEBUG_RQBUF 1675 1676 static int32_t ocs_hw_rqpair_find(ocs_hw_t *hw, uint16_t rq_id); 1677 static ocs_hw_sequence_t * ocs_hw_rqpair_get(ocs_hw_t *hw, uint16_t rqindex, uint16_t bufindex); 1678 static int32_t ocs_hw_rqpair_put(ocs_hw_t *hw, ocs_hw_sequence_t *seq); 1679 static ocs_hw_rtn_e ocs_hw_rqpair_auto_xfer_rdy_buffer_sequence_reset(ocs_hw_t *hw, ocs_hw_sequence_t *seq); 1680 1681 /** 1682 * @brief Process receive queue completions for RQ Pair mode. 1683 * 1684 * @par Description 1685 * RQ completions are processed. In RQ pair mode, a single header and single payload 1686 * buffer are received, and passed to the function that has registered for unsolicited 1687 * callbacks. 1688 * 1689 * @param hw Hardware context. 1690 * @param cq Pointer to HW completion queue. 1691 * @param cqe Completion queue entry. 1692 * 1693 * @return Returns 0 for success, or a negative error code value for failure. 1694 */ 1695 1696 int32_t 1697 ocs_hw_rqpair_process_rq(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe) 1698 { 1699 uint16_t rq_id; 1700 uint32_t index; 1701 int32_t rqindex; 1702 int32_t rq_status; 1703 uint32_t h_len; 1704 uint32_t p_len; 1705 ocs_hw_sequence_t *seq; 1706 1707 rq_status = sli_fc_rqe_rqid_and_index(&hw->sli, cqe, &rq_id, &index); 1708 if (0 != rq_status) { 1709 switch (rq_status) { 1710 case SLI4_FC_ASYNC_RQ_BUF_LEN_EXCEEDED: 1711 case SLI4_FC_ASYNC_RQ_DMA_FAILURE: 1712 /* just get RQ buffer then return to chip */ 1713 rqindex = ocs_hw_rqpair_find(hw, rq_id); 1714 if (rqindex < 0) { 1715 ocs_log_test(hw->os, "status=%#x: rq_id lookup failed for id=%#x\n", 1716 rq_status, rq_id); 1717 break; 1718 } 1719 1720 /* get RQ buffer */ 1721 seq = ocs_hw_rqpair_get(hw, rqindex, index); 1722 1723 /* return to chip */ 1724 if (ocs_hw_rqpair_sequence_free(hw, seq)) { 1725 ocs_log_test(hw->os, "status=%#x, failed to return buffers to RQ\n", 1726 rq_status); 1727 break; 1728 } 1729 break; 1730 case SLI4_FC_ASYNC_RQ_INSUFF_BUF_NEEDED: 1731 case SLI4_FC_ASYNC_RQ_INSUFF_BUF_FRM_DISC: 1732 /* since RQ buffers were not consumed, cannot return them to chip */ 1733 /* fall through */ 1734 ocs_log_debug(hw->os, "Warning: RCQE status=%#x, \n", rq_status); 1735 default: 1736 break; 1737 } 1738 return -1; 1739 } 1740 1741 rqindex = ocs_hw_rqpair_find(hw, rq_id); 1742 if (rqindex < 0) { 1743 ocs_log_test(hw->os, "Error: rq_id lookup failed for id=%#x\n", rq_id); 1744 return -1; 1745 } 1746 1747 OCS_STAT({ hw_rq_t *rq = hw->hw_rq[hw->hw_rq_lookup[rqindex]]; rq->use_count++; rq->hdr_use_count++; 1748 rq->payload_use_count++;}) 1749 1750 seq = ocs_hw_rqpair_get(hw, rqindex, index); 1751 ocs_hw_assert(seq != NULL); 1752 1753 seq->hw = hw; 1754 seq->auto_xrdy = 0; 1755 seq->out_of_xris = 0; 1756 seq->xri = 0; 1757 seq->hio = NULL; 1758 1759 sli_fc_rqe_length(&hw->sli, cqe, &h_len, &p_len); 1760 seq->header->dma.len = h_len; 1761 seq->payload->dma.len = p_len; 1762 seq->fcfi = sli_fc_rqe_fcfi(&hw->sli, cqe); 1763 seq->hw_priv = cq->eq; 1764 1765 /* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */ 1766 if (hw->config.bounce) { 1767 fc_header_t *hdr = seq->header->dma.virt; 1768 uint32_t s_id = fc_be24toh(hdr->s_id); 1769 uint32_t d_id = fc_be24toh(hdr->d_id); 1770 uint32_t ox_id = ocs_be16toh(hdr->ox_id); 1771 if (hw->callback.bounce != NULL) { 1772 (*hw->callback.bounce)(ocs_hw_unsol_process_bounce, seq, s_id, d_id, ox_id); 1773 } 1774 } else { 1775 hw->callback.unsolicited(hw->args.unsolicited, seq); 1776 } 1777 1778 return 0; 1779 } 1780 1781 /** 1782 * @brief Process receive queue completions for RQ Pair mode - Auto xfer rdy 1783 * 1784 * @par Description 1785 * RQ completions are processed. In RQ pair mode, a single header and single payload 1786 * buffer are received, and passed to the function that has registered for unsolicited 1787 * callbacks. 1788 * 1789 * @param hw Hardware context. 1790 * @param cq Pointer to HW completion queue. 1791 * @param cqe Completion queue entry. 1792 * 1793 * @return Returns 0 for success, or a negative error code value for failure. 1794 */ 1795 1796 int32_t 1797 ocs_hw_rqpair_process_auto_xfr_rdy_cmd(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe) 1798 { 1799 /* Seems silly to call a SLI function to decode - use the structure directly for performance */ 1800 sli4_fc_optimized_write_cmd_cqe_t *opt_wr = (sli4_fc_optimized_write_cmd_cqe_t*)cqe; 1801 uint16_t rq_id; 1802 uint32_t index; 1803 int32_t rqindex; 1804 int32_t rq_status; 1805 uint32_t h_len; 1806 uint32_t p_len; 1807 ocs_hw_sequence_t *seq; 1808 uint8_t axr_lock_taken = 0; 1809 #if defined(OCS_DISC_SPIN_DELAY) 1810 uint32_t delay = 0; 1811 char prop_buf[32]; 1812 #endif 1813 1814 rq_status = sli_fc_rqe_rqid_and_index(&hw->sli, cqe, &rq_id, &index); 1815 if (0 != rq_status) { 1816 switch (rq_status) { 1817 case SLI4_FC_ASYNC_RQ_BUF_LEN_EXCEEDED: 1818 case SLI4_FC_ASYNC_RQ_DMA_FAILURE: 1819 /* just get RQ buffer then return to chip */ 1820 rqindex = ocs_hw_rqpair_find(hw, rq_id); 1821 if (rqindex < 0) { 1822 ocs_log_err(hw->os, "status=%#x: rq_id lookup failed for id=%#x\n", 1823 rq_status, rq_id); 1824 break; 1825 } 1826 1827 /* get RQ buffer */ 1828 seq = ocs_hw_rqpair_get(hw, rqindex, index); 1829 1830 /* return to chip */ 1831 if (ocs_hw_rqpair_sequence_free(hw, seq)) { 1832 ocs_log_err(hw->os, "status=%#x, failed to return buffers to RQ\n", 1833 rq_status); 1834 break; 1835 } 1836 break; 1837 case SLI4_FC_ASYNC_RQ_INSUFF_BUF_NEEDED: 1838 case SLI4_FC_ASYNC_RQ_INSUFF_BUF_FRM_DISC: 1839 /* since RQ buffers were not consumed, cannot return them to chip */ 1840 ocs_log_debug(hw->os, "Warning: RCQE status=%#x, \n", rq_status); 1841 /* fall through */ 1842 default: 1843 break; 1844 } 1845 return -1; 1846 } 1847 1848 rqindex = ocs_hw_rqpair_find(hw, rq_id); 1849 if (rqindex < 0) { 1850 ocs_log_err(hw->os, "Error: rq_id lookup failed for id=%#x\n", rq_id); 1851 return -1; 1852 } 1853 1854 OCS_STAT({ hw_rq_t *rq = hw->hw_rq[hw->hw_rq_lookup[rqindex]]; rq->use_count++; rq->hdr_use_count++; 1855 rq->payload_use_count++;}) 1856 1857 seq = ocs_hw_rqpair_get(hw, rqindex, index); 1858 ocs_hw_assert(seq != NULL); 1859 1860 seq->hw = hw; 1861 seq->auto_xrdy = opt_wr->agxr; 1862 seq->out_of_xris = opt_wr->oox; 1863 seq->xri = opt_wr->xri; 1864 seq->hio = NULL; 1865 1866 sli_fc_rqe_length(&hw->sli, cqe, &h_len, &p_len); 1867 seq->header->dma.len = h_len; 1868 seq->payload->dma.len = p_len; 1869 seq->fcfi = sli_fc_rqe_fcfi(&hw->sli, cqe); 1870 seq->hw_priv = cq->eq; 1871 1872 if (seq->auto_xrdy) { 1873 fc_header_t *fc_hdr = seq->header->dma.virt; 1874 1875 seq->hio = ocs_hw_io_lookup(hw, seq->xri); 1876 ocs_lock(&seq->hio->axr_lock); 1877 axr_lock_taken = 1; 1878 1879 /* save the FCFI, src_id, dest_id and ox_id because we need it for the sequence object when the data comes. */ 1880 seq->hio->axr_buf->fcfi = seq->fcfi; 1881 seq->hio->axr_buf->hdr.ox_id = fc_hdr->ox_id; 1882 seq->hio->axr_buf->hdr.s_id = fc_hdr->s_id; 1883 seq->hio->axr_buf->hdr.d_id = fc_hdr->d_id; 1884 seq->hio->axr_buf->cmd_cqe = 1; 1885 1886 /* 1887 * Since auto xfer rdy is used for this IO, then clear the sequence 1888 * initiative bit in the header so that the upper layers wait for the 1889 * data. This should flow exactly like the first burst case. 1890 */ 1891 fc_hdr->f_ctl &= fc_htobe24(~FC_FCTL_SEQUENCE_INITIATIVE); 1892 1893 /* If AXR CMD CQE came before previous TRSP CQE of same XRI */ 1894 if (seq->hio->type == OCS_HW_IO_TARGET_RSP) { 1895 seq->hio->axr_buf->call_axr_cmd = 1; 1896 seq->hio->axr_buf->cmd_seq = seq; 1897 goto exit_ocs_hw_rqpair_process_auto_xfr_rdy_cmd; 1898 } 1899 } 1900 1901 /* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */ 1902 if (hw->config.bounce) { 1903 fc_header_t *hdr = seq->header->dma.virt; 1904 uint32_t s_id = fc_be24toh(hdr->s_id); 1905 uint32_t d_id = fc_be24toh(hdr->d_id); 1906 uint32_t ox_id = ocs_be16toh(hdr->ox_id); 1907 if (hw->callback.bounce != NULL) { 1908 (*hw->callback.bounce)(ocs_hw_unsol_process_bounce, seq, s_id, d_id, ox_id); 1909 } 1910 } else { 1911 hw->callback.unsolicited(hw->args.unsolicited, seq); 1912 } 1913 1914 if (seq->auto_xrdy) { 1915 /* If data cqe came before cmd cqe in out of order in case of AXR */ 1916 if(seq->hio->axr_buf->data_cqe == 1) { 1917 1918 #if defined(OCS_DISC_SPIN_DELAY) 1919 if (ocs_get_property("disk_spin_delay", prop_buf, sizeof(prop_buf)) == 0) { 1920 delay = ocs_strtoul(prop_buf, 0, 0); 1921 ocs_udelay(delay); 1922 } 1923 #endif 1924 /* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */ 1925 if (hw->config.bounce) { 1926 fc_header_t *hdr = seq->header->dma.virt; 1927 uint32_t s_id = fc_be24toh(hdr->s_id); 1928 uint32_t d_id = fc_be24toh(hdr->d_id); 1929 uint32_t ox_id = ocs_be16toh(hdr->ox_id); 1930 if (hw->callback.bounce != NULL) { 1931 (*hw->callback.bounce)(ocs_hw_unsol_process_bounce, &seq->hio->axr_buf->seq, s_id, d_id, ox_id); 1932 } 1933 } else { 1934 hw->callback.unsolicited(hw->args.unsolicited, &seq->hio->axr_buf->seq); 1935 } 1936 } 1937 } 1938 1939 exit_ocs_hw_rqpair_process_auto_xfr_rdy_cmd: 1940 if(axr_lock_taken) { 1941 ocs_unlock(&seq->hio->axr_lock); 1942 } 1943 return 0; 1944 } 1945 1946 /** 1947 * @brief Process CQ completions for Auto xfer rdy data phases. 1948 * 1949 * @par Description 1950 * The data is DMA'd into the data buffer posted to the SGL prior to the XRI 1951 * being assigned to an IO. When the completion is received, All of the data 1952 * is in the single buffer. 1953 * 1954 * @param hw Hardware context. 1955 * @param cq Pointer to HW completion queue. 1956 * @param cqe Completion queue entry. 1957 * 1958 * @return Returns 0 for success, or a negative error code value for failure. 1959 */ 1960 1961 int32_t 1962 ocs_hw_rqpair_process_auto_xfr_rdy_data(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe) 1963 { 1964 /* Seems silly to call a SLI function to decode - use the structure directly for performance */ 1965 sli4_fc_optimized_write_data_cqe_t *opt_wr = (sli4_fc_optimized_write_data_cqe_t*)cqe; 1966 ocs_hw_sequence_t *seq; 1967 ocs_hw_io_t *io; 1968 ocs_hw_auto_xfer_rdy_buffer_t *buf; 1969 #if defined(OCS_DISC_SPIN_DELAY) 1970 uint32_t delay = 0; 1971 char prop_buf[32]; 1972 #endif 1973 /* Look up the IO */ 1974 io = ocs_hw_io_lookup(hw, opt_wr->xri); 1975 ocs_lock(&io->axr_lock); 1976 buf = io->axr_buf; 1977 buf->data_cqe = 1; 1978 seq = &buf->seq; 1979 seq->hw = hw; 1980 seq->auto_xrdy = 1; 1981 seq->out_of_xris = 0; 1982 seq->xri = opt_wr->xri; 1983 seq->hio = io; 1984 seq->header = &buf->header; 1985 seq->payload = &buf->payload; 1986 1987 seq->header->dma.len = sizeof(fc_header_t); 1988 seq->payload->dma.len = opt_wr->total_data_placed; 1989 seq->fcfi = buf->fcfi; 1990 seq->hw_priv = cq->eq; 1991 1992 1993 if (opt_wr->status == SLI4_FC_WCQE_STATUS_SUCCESS) { 1994 seq->status = OCS_HW_UNSOL_SUCCESS; 1995 } else if (opt_wr->status == SLI4_FC_WCQE_STATUS_REMOTE_STOP) { 1996 seq->status = OCS_HW_UNSOL_ABTS_RCVD; 1997 } else { 1998 seq->status = OCS_HW_UNSOL_ERROR; 1999 } 2000 2001 /* If AXR CMD CQE came before previous TRSP CQE of same XRI */ 2002 if(io->type == OCS_HW_IO_TARGET_RSP) { 2003 io->axr_buf->call_axr_data = 1; 2004 goto exit_ocs_hw_rqpair_process_auto_xfr_rdy_data; 2005 } 2006 2007 if(!buf->cmd_cqe) { 2008 /* if data cqe came before cmd cqe, return here, cmd cqe will handle */ 2009 goto exit_ocs_hw_rqpair_process_auto_xfr_rdy_data; 2010 } 2011 #if defined(OCS_DISC_SPIN_DELAY) 2012 if (ocs_get_property("disk_spin_delay", prop_buf, sizeof(prop_buf)) == 0) { 2013 delay = ocs_strtoul(prop_buf, 0, 0); 2014 ocs_udelay(delay); 2015 } 2016 #endif 2017 2018 /* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */ 2019 if (hw->config.bounce) { 2020 fc_header_t *hdr = seq->header->dma.virt; 2021 uint32_t s_id = fc_be24toh(hdr->s_id); 2022 uint32_t d_id = fc_be24toh(hdr->d_id); 2023 uint32_t ox_id = ocs_be16toh(hdr->ox_id); 2024 if (hw->callback.bounce != NULL) { 2025 (*hw->callback.bounce)(ocs_hw_unsol_process_bounce, seq, s_id, d_id, ox_id); 2026 } 2027 } else { 2028 hw->callback.unsolicited(hw->args.unsolicited, seq); 2029 } 2030 2031 exit_ocs_hw_rqpair_process_auto_xfr_rdy_data: 2032 ocs_unlock(&io->axr_lock); 2033 return 0; 2034 } 2035 2036 /** 2037 * @brief Return pointer to RQ buffer entry. 2038 * 2039 * @par Description 2040 * Returns a pointer to the RQ buffer entry given by @c rqindex and @c bufindex. 2041 * 2042 * @param hw Hardware context. 2043 * @param rqindex Index of the RQ that is being processed. 2044 * @param bufindex Index into the RQ that is being processed. 2045 * 2046 * @return Pointer to the sequence structure, or NULL otherwise. 2047 */ 2048 static ocs_hw_sequence_t * 2049 ocs_hw_rqpair_get(ocs_hw_t *hw, uint16_t rqindex, uint16_t bufindex) 2050 { 2051 sli4_queue_t *rq_hdr = &hw->rq[rqindex]; 2052 sli4_queue_t *rq_payload = &hw->rq[rqindex+1]; 2053 ocs_hw_sequence_t *seq = NULL; 2054 hw_rq_t *rq = hw->hw_rq[hw->hw_rq_lookup[rqindex]]; 2055 2056 #if defined(ENABLE_DEBUG_RQBUF) 2057 uint64_t rqbuf_debug_value = 0xdead0000 | ((rq->id & 0xf) << 12) | (bufindex & 0xfff); 2058 #endif 2059 2060 if (bufindex >= rq_hdr->length) { 2061 ocs_log_err(hw->os, "RQ index %d bufindex %d exceed ring length %d for id %d\n", 2062 rqindex, bufindex, rq_hdr->length, rq_hdr->id); 2063 return NULL; 2064 } 2065 2066 sli_queue_lock(rq_hdr); 2067 sli_queue_lock(rq_payload); 2068 2069 #if defined(ENABLE_DEBUG_RQBUF) 2070 /* Put a debug value into the rq, to track which entries are still valid */ 2071 _sli_queue_poke(&hw->sli, rq_hdr, bufindex, (uint8_t *)&rqbuf_debug_value); 2072 _sli_queue_poke(&hw->sli, rq_payload, bufindex, (uint8_t *)&rqbuf_debug_value); 2073 #endif 2074 2075 seq = rq->rq_tracker[bufindex]; 2076 rq->rq_tracker[bufindex] = NULL; 2077 2078 if (seq == NULL ) { 2079 ocs_log_err(hw->os, "RQ buffer NULL, rqindex %d, bufindex %d, current q index = %d\n", 2080 rqindex, bufindex, rq_hdr->index); 2081 } 2082 2083 sli_queue_unlock(rq_payload); 2084 sli_queue_unlock(rq_hdr); 2085 return seq; 2086 } 2087 2088 /** 2089 * @brief Posts an RQ buffer to a queue and update the verification structures 2090 * 2091 * @param hw hardware context 2092 * @param seq Pointer to sequence object. 2093 * 2094 * @return Returns 0 on success, or a non-zero value otherwise. 2095 */ 2096 static int32_t 2097 ocs_hw_rqpair_put(ocs_hw_t *hw, ocs_hw_sequence_t *seq) 2098 { 2099 sli4_queue_t *rq_hdr = &hw->rq[seq->header->rqindex]; 2100 sli4_queue_t *rq_payload = &hw->rq[seq->payload->rqindex]; 2101 uint32_t hw_rq_index = hw->hw_rq_lookup[seq->header->rqindex]; 2102 hw_rq_t *rq = hw->hw_rq[hw_rq_index]; 2103 uint32_t phys_hdr[2]; 2104 uint32_t phys_payload[2]; 2105 int32_t qindex_hdr; 2106 int32_t qindex_payload; 2107 2108 /* Update the RQ verification lookup tables */ 2109 phys_hdr[0] = ocs_addr32_hi(seq->header->dma.phys); 2110 phys_hdr[1] = ocs_addr32_lo(seq->header->dma.phys); 2111 phys_payload[0] = ocs_addr32_hi(seq->payload->dma.phys); 2112 phys_payload[1] = ocs_addr32_lo(seq->payload->dma.phys); 2113 2114 sli_queue_lock(rq_hdr); 2115 sli_queue_lock(rq_payload); 2116 2117 /* 2118 * Note: The header must be posted last for buffer pair mode because 2119 * posting on the header queue posts the payload queue as well. 2120 * We do not ring the payload queue independently in RQ pair mode. 2121 */ 2122 qindex_payload = _sli_queue_write(&hw->sli, rq_payload, (void *)phys_payload); 2123 qindex_hdr = _sli_queue_write(&hw->sli, rq_hdr, (void *)phys_hdr); 2124 if (qindex_hdr < 0 || 2125 qindex_payload < 0) { 2126 ocs_log_err(hw->os, "RQ_ID=%#x write failed\n", rq_hdr->id); 2127 sli_queue_unlock(rq_payload); 2128 sli_queue_unlock(rq_hdr); 2129 return OCS_HW_RTN_ERROR; 2130 } 2131 2132 /* ensure the indexes are the same */ 2133 ocs_hw_assert(qindex_hdr == qindex_payload); 2134 2135 /* Update the lookup table */ 2136 if (rq->rq_tracker[qindex_hdr] == NULL) { 2137 rq->rq_tracker[qindex_hdr] = seq; 2138 } else { 2139 ocs_log_test(hw->os, "expected rq_tracker[%d][%d] buffer to be NULL\n", 2140 hw_rq_index, qindex_hdr); 2141 } 2142 2143 sli_queue_unlock(rq_payload); 2144 sli_queue_unlock(rq_hdr); 2145 return OCS_HW_RTN_SUCCESS; 2146 } 2147 2148 /** 2149 * @brief Return RQ buffers (while in RQ pair mode). 2150 * 2151 * @par Description 2152 * The header and payload buffers are returned to the Receive Queue. 2153 * 2154 * @param hw Hardware context. 2155 * @param seq Header/payload sequence buffers. 2156 * 2157 * @return Returns OCS_HW_RTN_SUCCESS on success, or an error code value on failure. 2158 */ 2159 2160 ocs_hw_rtn_e 2161 ocs_hw_rqpair_sequence_free(ocs_hw_t *hw, ocs_hw_sequence_t *seq) 2162 { 2163 ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; 2164 2165 /* Check for auto xfer rdy dummy buffers and call the proper release function. */ 2166 if (seq->header->rqindex == OCS_HW_RQ_INDEX_DUMMY_HDR) { 2167 return ocs_hw_rqpair_auto_xfer_rdy_buffer_sequence_reset(hw, seq); 2168 } 2169 2170 /* 2171 * Post the data buffer first. Because in RQ pair mode, ringing the 2172 * doorbell of the header ring will post the data buffer as well. 2173 */ 2174 if (ocs_hw_rqpair_put(hw, seq)) { 2175 ocs_log_err(hw->os, "error writing buffers\n"); 2176 return OCS_HW_RTN_ERROR; 2177 } 2178 2179 return rc; 2180 } 2181 2182 /** 2183 * @brief Find the RQ index of RQ_ID. 2184 * 2185 * @param hw Hardware context. 2186 * @param rq_id RQ ID to find. 2187 * 2188 * @return Returns the RQ index, or -1 if not found 2189 */ 2190 static inline int32_t 2191 ocs_hw_rqpair_find(ocs_hw_t *hw, uint16_t rq_id) 2192 { 2193 return ocs_hw_queue_hash_find(hw->rq_hash, rq_id); 2194 } 2195 2196 /** 2197 * @ingroup devInitShutdown 2198 * @brief Allocate auto xfer rdy buffers. 2199 * 2200 * @par Description 2201 * Allocates the auto xfer rdy buffers and places them on the free list. 2202 * 2203 * @param hw Hardware context allocated by the caller. 2204 * @param num_buffers Number of buffers to allocate. 2205 * 2206 * @return Returns 0 on success, or a non-zero value on failure. 2207 */ 2208 ocs_hw_rtn_e 2209 ocs_hw_rqpair_auto_xfer_rdy_buffer_alloc(ocs_hw_t *hw, uint32_t num_buffers) 2210 { 2211 ocs_hw_auto_xfer_rdy_buffer_t *buf; 2212 uint32_t i; 2213 2214 hw->auto_xfer_rdy_buf_pool = ocs_pool_alloc(hw->os, sizeof(ocs_hw_auto_xfer_rdy_buffer_t), num_buffers, FALSE); 2215 if (hw->auto_xfer_rdy_buf_pool == NULL) { 2216 ocs_log_err(hw->os, "Failure to allocate auto xfer ready buffer pool\n"); 2217 return OCS_HW_RTN_NO_MEMORY; 2218 } 2219 2220 for (i = 0; i < num_buffers; i++) { 2221 /* allocate the wrapper object */ 2222 buf = ocs_pool_get_instance(hw->auto_xfer_rdy_buf_pool, i); 2223 ocs_hw_assert(buf != NULL); 2224 2225 /* allocate the auto xfer ready buffer */ 2226 if (ocs_dma_alloc(hw->os, &buf->payload.dma, hw->config.auto_xfer_rdy_size, OCS_MIN_DMA_ALIGNMENT)) { 2227 ocs_log_err(hw->os, "DMA allocation failed\n"); 2228 ocs_free(hw->os, buf, sizeof(*buf)); 2229 return OCS_HW_RTN_NO_MEMORY; 2230 } 2231 2232 /* build a fake data header in big endian */ 2233 buf->hdr.info = FC_RCTL_INFO_SOL_DATA; 2234 buf->hdr.r_ctl = FC_RCTL_FC4_DATA; 2235 buf->hdr.type = FC_TYPE_FCP; 2236 buf->hdr.f_ctl = fc_htobe24(FC_FCTL_EXCHANGE_RESPONDER | 2237 FC_FCTL_FIRST_SEQUENCE | 2238 FC_FCTL_LAST_SEQUENCE | 2239 FC_FCTL_END_SEQUENCE | 2240 FC_FCTL_SEQUENCE_INITIATIVE); 2241 2242 /* build the fake header DMA object */ 2243 buf->header.rqindex = OCS_HW_RQ_INDEX_DUMMY_HDR; 2244 buf->header.dma.virt = &buf->hdr; 2245 buf->header.dma.alloc = buf; 2246 buf->header.dma.size = sizeof(buf->hdr); 2247 buf->header.dma.len = sizeof(buf->hdr); 2248 2249 buf->payload.rqindex = OCS_HW_RQ_INDEX_DUMMY_DATA; 2250 } 2251 return OCS_HW_RTN_SUCCESS; 2252 } 2253 2254 /** 2255 * @ingroup devInitShutdown 2256 * @brief Post Auto xfer rdy buffers to the XRIs posted with DNRX. 2257 * 2258 * @par Description 2259 * When new buffers are freed, check existing XRIs waiting for buffers. 2260 * 2261 * @param hw Hardware context allocated by the caller. 2262 */ 2263 static void 2264 ocs_hw_rqpair_auto_xfer_rdy_dnrx_check(ocs_hw_t *hw) 2265 { 2266 ocs_hw_io_t *io; 2267 int32_t rc; 2268 2269 ocs_lock(&hw->io_lock); 2270 2271 while (!ocs_list_empty(&hw->io_port_dnrx)) { 2272 io = ocs_list_remove_head(&hw->io_port_dnrx); 2273 rc = ocs_hw_reque_xri(hw, io); 2274 if(rc) { 2275 break; 2276 } 2277 } 2278 2279 ocs_unlock(&hw->io_lock); 2280 } 2281 2282 /** 2283 * @brief Called when the POST_SGL_PAGE command completes. 2284 * 2285 * @par Description 2286 * Free the mailbox command buffer. 2287 * 2288 * @param hw Hardware context. 2289 * @param status Status field from the mbox completion. 2290 * @param mqe Mailbox response structure. 2291 * @param arg Pointer to a callback function that signals the caller that the command is done. 2292 * 2293 * @return Returns 0. 2294 */ 2295 static int32_t 2296 ocs_hw_rqpair_auto_xfer_rdy_move_to_port_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) 2297 { 2298 if (status != 0) { 2299 ocs_log_debug(hw->os, "Status 0x%x\n", status); 2300 } 2301 2302 ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); 2303 return 0; 2304 } 2305 2306 /** 2307 * @brief Prepares an XRI to move to the chip. 2308 * 2309 * @par Description 2310 * Puts the data SGL into the SGL list for the IO object and possibly registers 2311 * an SGL list for the XRI. Since both the POST_XRI and POST_SGL_PAGES commands are 2312 * mailbox commands, we don't need to wait for completion before preceding. 2313 * 2314 * @param hw Hardware context allocated by the caller. 2315 * @param io Pointer to the IO object. 2316 * 2317 * @return Returns OCS_HW_RTN_SUCCESS for success, or an error code value for failure. 2318 */ 2319 ocs_hw_rtn_e 2320 ocs_hw_rqpair_auto_xfer_rdy_move_to_port(ocs_hw_t *hw, ocs_hw_io_t *io) 2321 { 2322 /* We only need to preregister the SGL if it has not yet been done. */ 2323 if (!sli_get_sgl_preregister(&hw->sli)) { 2324 uint8_t *post_sgl; 2325 ocs_dma_t *psgls = &io->def_sgl; 2326 ocs_dma_t **sgls = &psgls; 2327 2328 /* non-local buffer required for mailbox queue */ 2329 post_sgl = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); 2330 if (post_sgl == NULL) { 2331 ocs_log_err(hw->os, "no buffer for command\n"); 2332 return OCS_HW_RTN_NO_MEMORY; 2333 } 2334 if (sli_cmd_fcoe_post_sgl_pages(&hw->sli, post_sgl, SLI4_BMBX_SIZE, 2335 io->indicator, 1, sgls, NULL, NULL)) { 2336 if (ocs_hw_command(hw, post_sgl, OCS_CMD_NOWAIT, 2337 ocs_hw_rqpair_auto_xfer_rdy_move_to_port_cb, NULL)) { 2338 ocs_free(hw->os, post_sgl, SLI4_BMBX_SIZE); 2339 ocs_log_err(hw->os, "SGL post failed\n"); 2340 return OCS_HW_RTN_ERROR; 2341 } 2342 } 2343 } 2344 2345 ocs_lock(&hw->io_lock); 2346 if (ocs_hw_rqpair_auto_xfer_rdy_buffer_post(hw, io, 0) != 0) { /* DNRX set - no buffer */ 2347 ocs_unlock(&hw->io_lock); 2348 return OCS_HW_RTN_ERROR; 2349 } 2350 ocs_unlock(&hw->io_lock); 2351 return OCS_HW_RTN_SUCCESS; 2352 } 2353 2354 /** 2355 * @brief Prepares an XRI to move back to the host. 2356 * 2357 * @par Description 2358 * Releases any attached buffer back to the pool. 2359 * 2360 * @param hw Hardware context allocated by the caller. 2361 * @param io Pointer to the IO object. 2362 */ 2363 void 2364 ocs_hw_rqpair_auto_xfer_rdy_move_to_host(ocs_hw_t *hw, ocs_hw_io_t *io) 2365 { 2366 if (io->axr_buf != NULL) { 2367 ocs_lock(&hw->io_lock); 2368 /* check list and remove if there */ 2369 if (ocs_list_on_list(&io->dnrx_link)) { 2370 ocs_list_remove(&hw->io_port_dnrx, io); 2371 io->auto_xfer_rdy_dnrx = 0; 2372 2373 /* release the count for waiting for a buffer */ 2374 ocs_hw_io_free(hw, io); 2375 } 2376 2377 ocs_pool_put(hw->auto_xfer_rdy_buf_pool, io->axr_buf); 2378 io->axr_buf = NULL; 2379 ocs_unlock(&hw->io_lock); 2380 2381 ocs_hw_rqpair_auto_xfer_rdy_dnrx_check(hw); 2382 } 2383 return; 2384 } 2385 2386 2387 /** 2388 * @brief Posts an auto xfer rdy buffer to an IO. 2389 * 2390 * @par Description 2391 * Puts the data SGL into the SGL list for the IO object 2392 * @n @name 2393 * @b Note: io_lock must be held. 2394 * 2395 * @param hw Hardware context allocated by the caller. 2396 * @param io Pointer to the IO object. 2397 * 2398 * @return Returns the value of DNRX bit in the TRSP and ABORT WQEs. 2399 */ 2400 uint8_t 2401 ocs_hw_rqpair_auto_xfer_rdy_buffer_post(ocs_hw_t *hw, ocs_hw_io_t *io, int reuse_buf) 2402 { 2403 ocs_hw_auto_xfer_rdy_buffer_t *buf; 2404 sli4_sge_t *data; 2405 2406 if(!reuse_buf) { 2407 buf = ocs_pool_get(hw->auto_xfer_rdy_buf_pool); 2408 io->axr_buf = buf; 2409 } 2410 2411 data = io->def_sgl.virt; 2412 data[0].sge_type = SLI4_SGE_TYPE_SKIP; 2413 data[0].last = 0; 2414 2415 /* 2416 * Note: if we are doing DIF assists, then the SGE[1] must contain the 2417 * DI_SEED SGE. The host is responsible for programming: 2418 * SGE Type (Word 2, bits 30:27) 2419 * Replacement App Tag (Word 2 bits 15:0) 2420 * App Tag (Word 3 bits 15:0) 2421 * New Ref Tag (Word 3 bit 23) 2422 * Metadata Enable (Word 3 bit 20) 2423 * Auto-Increment RefTag (Word 3 bit 19) 2424 * Block Size (Word 3 bits 18:16) 2425 * The following fields are managed by the SLI Port: 2426 * Ref Tag Compare (Word 0) 2427 * Replacement Ref Tag (Word 1) - In not the LBA 2428 * NA (Word 2 bit 25) 2429 * Opcode RX (Word 3 bits 27:24) 2430 * Checksum Enable (Word 3 bit 22) 2431 * RefTag Enable (Word 3 bit 21) 2432 * 2433 * The first two SGLs are cleared by ocs_hw_io_init_sges(), so assume eveything is cleared. 2434 */ 2435 if (hw->config.auto_xfer_rdy_p_type) { 2436 sli4_diseed_sge_t *diseed = (sli4_diseed_sge_t*)&data[1]; 2437 2438 diseed->sge_type = SLI4_SGE_TYPE_DISEED; 2439 diseed->repl_app_tag = hw->config.auto_xfer_rdy_app_tag_value; 2440 diseed->app_tag_cmp = hw->config.auto_xfer_rdy_app_tag_value; 2441 diseed->check_app_tag = hw->config.auto_xfer_rdy_app_tag_valid; 2442 diseed->auto_incr_ref_tag = TRUE; /* Always the LBA */ 2443 diseed->dif_blk_size = hw->config.auto_xfer_rdy_blk_size_chip; 2444 } else { 2445 data[1].sge_type = SLI4_SGE_TYPE_SKIP; 2446 data[1].last = 0; 2447 } 2448 2449 data[2].sge_type = SLI4_SGE_TYPE_DATA; 2450 data[2].buffer_address_high = ocs_addr32_hi(io->axr_buf->payload.dma.phys); 2451 data[2].buffer_address_low = ocs_addr32_lo(io->axr_buf->payload.dma.phys); 2452 data[2].buffer_length = io->axr_buf->payload.dma.size; 2453 data[2].last = TRUE; 2454 data[3].sge_type = SLI4_SGE_TYPE_SKIP; 2455 2456 return 0; 2457 } 2458 2459 /** 2460 * @brief Return auto xfer ready buffers (while in RQ pair mode). 2461 * 2462 * @par Description 2463 * The header and payload buffers are returned to the auto xfer rdy pool. 2464 * 2465 * @param hw Hardware context. 2466 * @param seq Header/payload sequence buffers. 2467 * 2468 * @return Returns OCS_HW_RTN_SUCCESS for success, an error code value for failure. 2469 */ 2470 2471 static ocs_hw_rtn_e 2472 ocs_hw_rqpair_auto_xfer_rdy_buffer_sequence_reset(ocs_hw_t *hw, ocs_hw_sequence_t *seq) 2473 { 2474 ocs_hw_auto_xfer_rdy_buffer_t *buf = seq->header->dma.alloc; 2475 2476 buf->data_cqe = 0; 2477 buf->cmd_cqe = 0; 2478 buf->fcfi = 0; 2479 buf->call_axr_cmd = 0; 2480 buf->call_axr_data = 0; 2481 2482 /* build a fake data header in big endian */ 2483 buf->hdr.info = FC_RCTL_INFO_SOL_DATA; 2484 buf->hdr.r_ctl = FC_RCTL_FC4_DATA; 2485 buf->hdr.type = FC_TYPE_FCP; 2486 buf->hdr.f_ctl = fc_htobe24(FC_FCTL_EXCHANGE_RESPONDER | 2487 FC_FCTL_FIRST_SEQUENCE | 2488 FC_FCTL_LAST_SEQUENCE | 2489 FC_FCTL_END_SEQUENCE | 2490 FC_FCTL_SEQUENCE_INITIATIVE); 2491 2492 /* build the fake header DMA object */ 2493 buf->header.rqindex = OCS_HW_RQ_INDEX_DUMMY_HDR; 2494 buf->header.dma.virt = &buf->hdr; 2495 buf->header.dma.alloc = buf; 2496 buf->header.dma.size = sizeof(buf->hdr); 2497 buf->header.dma.len = sizeof(buf->hdr); 2498 buf->payload.rqindex = OCS_HW_RQ_INDEX_DUMMY_DATA; 2499 2500 ocs_hw_rqpair_auto_xfer_rdy_dnrx_check(hw); 2501 2502 return OCS_HW_RTN_SUCCESS; 2503 } 2504 2505 /** 2506 * @ingroup devInitShutdown 2507 * @brief Free auto xfer rdy buffers. 2508 * 2509 * @par Description 2510 * Frees the auto xfer rdy buffers. 2511 * 2512 * @param hw Hardware context allocated by the caller. 2513 * 2514 * @return Returns 0 on success, or a non-zero value on failure. 2515 */ 2516 static void 2517 ocs_hw_rqpair_auto_xfer_rdy_buffer_free(ocs_hw_t *hw) 2518 { 2519 ocs_hw_auto_xfer_rdy_buffer_t *buf; 2520 uint32_t i; 2521 2522 if (hw->auto_xfer_rdy_buf_pool != NULL) { 2523 ocs_lock(&hw->io_lock); 2524 for (i = 0; i < ocs_pool_get_count(hw->auto_xfer_rdy_buf_pool); i++) { 2525 buf = ocs_pool_get_instance(hw->auto_xfer_rdy_buf_pool, i); 2526 if (buf != NULL) { 2527 ocs_dma_free(hw->os, &buf->payload.dma); 2528 } 2529 } 2530 ocs_unlock(&hw->io_lock); 2531 2532 ocs_pool_free(hw->auto_xfer_rdy_buf_pool); 2533 hw->auto_xfer_rdy_buf_pool = NULL; 2534 } 2535 } 2536 2537 /** 2538 * @ingroup devInitShutdown 2539 * @brief Configure the rq_pair function from ocs_hw_init(). 2540 * 2541 * @par Description 2542 * Allocates the buffers to auto xfer rdy and posts initial XRIs for this feature. 2543 * 2544 * @param hw Hardware context allocated by the caller. 2545 * 2546 * @return Returns 0 on success, or a non-zero value on failure. 2547 */ 2548 ocs_hw_rtn_e 2549 ocs_hw_rqpair_init(ocs_hw_t *hw) 2550 { 2551 ocs_hw_rtn_e rc; 2552 uint32_t xris_posted; 2553 2554 ocs_log_debug(hw->os, "RQ Pair mode\n"); 2555 2556 /* 2557 * If we get this far, the auto XFR_RDY feature was enabled successfully, otherwise ocs_hw_init() would 2558 * return with an error. So allocate the buffers based on the initial XRI pool required to support this 2559 * feature. 2560 */ 2561 if (sli_get_auto_xfer_rdy_capable(&hw->sli) && 2562 hw->config.auto_xfer_rdy_size > 0) { 2563 if (hw->auto_xfer_rdy_buf_pool == NULL) { 2564 /* 2565 * Allocate one more buffer than XRIs so that when all the XRIs are in use, we still have 2566 * one to post back for the case where the response phase is started in the context of 2567 * the data completion. 2568 */ 2569 rc = ocs_hw_rqpair_auto_xfer_rdy_buffer_alloc(hw, hw->config.auto_xfer_rdy_xri_cnt + 1); 2570 if (rc != OCS_HW_RTN_SUCCESS) { 2571 return rc; 2572 } 2573 } else { 2574 ocs_pool_reset(hw->auto_xfer_rdy_buf_pool); 2575 } 2576 2577 /* Post the auto XFR_RDY XRIs */ 2578 xris_posted = ocs_hw_xri_move_to_port_owned(hw, hw->config.auto_xfer_rdy_xri_cnt); 2579 if (xris_posted != hw->config.auto_xfer_rdy_xri_cnt) { 2580 ocs_log_err(hw->os, "post_xri failed, only posted %d XRIs\n", xris_posted); 2581 return OCS_HW_RTN_ERROR; 2582 } 2583 } 2584 2585 return 0; 2586 } 2587 2588 /** 2589 * @ingroup devInitShutdown 2590 * @brief Tear down the rq_pair function from ocs_hw_teardown(). 2591 * 2592 * @par Description 2593 * Frees the buffers to auto xfer rdy. 2594 * 2595 * @param hw Hardware context allocated by the caller. 2596 */ 2597 void 2598 ocs_hw_rqpair_teardown(ocs_hw_t *hw) 2599 { 2600 /* We need to free any auto xfer ready buffers */ 2601 ocs_hw_rqpair_auto_xfer_rdy_buffer_free(hw); 2602 } 2603