xref: /freebsd/sys/dev/ocs_fc/ocs_hw_queues.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * Copyright (c) 2017 Broadcom. All rights reserved.
3  * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  *    this list of conditions and the following disclaimer in the documentation
13  *    and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * $FreeBSD$
32  */
33 
34 /**
35  * @file
36  *
37  */
38 
39 #include "ocs_os.h"
40 #include "ocs_hw.h"
41 #include "ocs_hw_queues.h"
42 
43 #define HW_QTOP_DEBUG		0
44 
45 /**
46  * @brief Initialize queues
47  *
48  * Given the parsed queue topology spec, the SLI queues are created and
49  * initialized
50  *
51  * @param hw pointer to HW object
52  * @param qtop pointer to queue topology
53  *
54  * @return returns 0 for success, an error code value for failure.
55  */
56 ocs_hw_rtn_e
57 ocs_hw_init_queues(ocs_hw_t *hw, ocs_hw_qtop_t *qtop)
58 {
59 	uint32_t i, j;
60 	uint32_t default_lengths[QTOP_LAST], len;
61 	uint32_t rqset_len = 0, rqset_ulp = 0, rqset_count = 0;
62 	uint8_t rqset_filter_mask = 0;
63 	hw_eq_t *eqs[hw->config.n_rq];
64 	hw_cq_t *cqs[hw->config.n_rq];
65 	hw_rq_t *rqs[hw->config.n_rq];
66 	ocs_hw_qtop_entry_t *qt, *next_qt;
67 	ocs_hw_mrq_t mrq;
68 	bool use_mrq = FALSE;
69 
70 	hw_eq_t *eq = NULL;
71 	hw_cq_t *cq = NULL;
72 	hw_wq_t *wq = NULL;
73 	hw_rq_t *rq = NULL;
74 	hw_mq_t *mq = NULL;
75 
76 	mrq.num_pairs = 0;
77 	default_lengths[QTOP_EQ] = 1024;
78 	default_lengths[QTOP_CQ] = hw->num_qentries[SLI_QTYPE_CQ];
79 	default_lengths[QTOP_WQ] = hw->num_qentries[SLI_QTYPE_WQ];
80 	default_lengths[QTOP_RQ] = hw->num_qentries[SLI_QTYPE_RQ];
81 	default_lengths[QTOP_MQ] = OCS_HW_MQ_DEPTH;
82 
83 	ocs_hw_verify(hw != NULL, OCS_HW_RTN_INVALID_ARG);
84 
85 	hw->eq_count = 0;
86 	hw->cq_count = 0;
87 	hw->mq_count = 0;
88 	hw->wq_count = 0;
89 	hw->rq_count = 0;
90 	hw->hw_rq_count = 0;
91 	ocs_list_init(&hw->eq_list, hw_eq_t, link);
92 
93 	/* If MRQ is requested, Check if it is supported by SLI. */
94 	if ((hw->config.n_rq > 1 ) && !hw->sli.config.features.flag.mrqp) {
95 		ocs_log_err(hw->os, "MRQ topology not supported by SLI4.\n");
96 		return OCS_HW_RTN_ERROR;
97 	}
98 
99 	if (hw->config.n_rq > 1)
100 		use_mrq = TRUE;
101 
102 	/* Allocate class WQ pools */
103 	for (i = 0; i < ARRAY_SIZE(hw->wq_class_array); i++) {
104 		hw->wq_class_array[i] = ocs_varray_alloc(hw->os, OCS_HW_MAX_NUM_WQ);
105 		if (hw->wq_class_array[i] == NULL) {
106 			ocs_log_err(hw->os, "ocs_varray_alloc for wq_class failed\n");
107 			return OCS_HW_RTN_NO_MEMORY;
108 		}
109 	}
110 
111 	/* Allocate per CPU WQ pools */
112 	for (i = 0; i < ARRAY_SIZE(hw->wq_cpu_array); i++) {
113 		hw->wq_cpu_array[i] = ocs_varray_alloc(hw->os, OCS_HW_MAX_NUM_WQ);
114 		if (hw->wq_cpu_array[i] == NULL) {
115 			ocs_log_err(hw->os, "ocs_varray_alloc for wq_class failed\n");
116 			return OCS_HW_RTN_NO_MEMORY;
117 		}
118 	}
119 
120 	ocs_hw_assert(qtop != NULL);
121 
122 	for (i = 0, qt = qtop->entries; i < qtop->inuse_count; i++, qt++) {
123 		if (i == qtop->inuse_count - 1)
124 			next_qt = NULL;
125 		else
126 			next_qt = qt + 1;
127 
128 		switch(qt->entry) {
129 		case QTOP_EQ:
130 			len = (qt->len) ? qt->len : default_lengths[QTOP_EQ];
131 
132 			if (qt->set_default) {
133 				default_lengths[QTOP_EQ] = len;
134 				break;
135 			}
136 
137 			eq = hw_new_eq(hw, len);
138 			if (eq == NULL) {
139 				hw_queue_teardown(hw);
140 				return OCS_HW_RTN_NO_MEMORY;
141 			}
142 			break;
143 
144 		case QTOP_CQ:
145 			len = (qt->len) ? qt->len : default_lengths[QTOP_CQ];
146 
147 			if (qt->set_default) {
148 				default_lengths[QTOP_CQ] = len;
149 				break;
150 			}
151 
152 			if (!eq || !next_qt) {
153 				goto fail;
154 			}
155 
156 			/* If this CQ is for MRQ, then delay the creation */
157 			if (!use_mrq || next_qt->entry != QTOP_RQ) {
158 				cq = hw_new_cq(eq, len);
159 				if (cq == NULL) {
160 					goto fail;
161 				}
162 			}
163 			break;
164 
165 		case QTOP_WQ: {
166 			len = (qt->len) ? qt->len : default_lengths[QTOP_WQ];
167 			if (qt->set_default) {
168 				default_lengths[QTOP_WQ] = len;
169 				break;
170 			}
171 
172 			if ((hw->ulp_start + qt->ulp) > hw->ulp_max) {
173 				ocs_log_err(hw->os, "invalid ULP %d for WQ\n", qt->ulp);
174 				hw_queue_teardown(hw);
175 				return OCS_HW_RTN_NO_MEMORY;
176 			}
177 
178 			if (cq == NULL)
179 				goto fail;
180 
181 			wq = hw_new_wq(cq, len, qt->class, hw->ulp_start + qt->ulp);
182 			if (wq == NULL) {
183 				goto fail;
184 			}
185 
186 			/* Place this WQ on the EQ WQ array */
187 			if (ocs_varray_add(eq->wq_array, wq)) {
188 				ocs_log_err(hw->os, "QTOP_WQ: EQ ocs_varray_add failed\n");
189 				hw_queue_teardown(hw);
190 				return OCS_HW_RTN_ERROR;
191 			}
192 
193 			/* Place this WQ on the HW class array */
194 			if (qt->class < ARRAY_SIZE(hw->wq_class_array)) {
195 				if (ocs_varray_add(hw->wq_class_array[qt->class], wq)) {
196 					ocs_log_err(hw->os, "HW wq_class_array ocs_varray_add failed\n");
197 					hw_queue_teardown(hw);
198 					return OCS_HW_RTN_ERROR;
199 				}
200 			} else {
201 				ocs_log_err(hw->os, "Invalid class value: %d\n", qt->class);
202 				hw_queue_teardown(hw);
203 				return OCS_HW_RTN_ERROR;
204 			}
205 
206 			/*
207 			 * Place this WQ on the per CPU list, asumming that EQs are mapped to cpu given
208 			 * by the EQ instance modulo number of CPUs
209 			 */
210 			if (ocs_varray_add(hw->wq_cpu_array[eq->instance % ocs_get_num_cpus()], wq)) {
211 				ocs_log_err(hw->os, "HW wq_cpu_array ocs_varray_add failed\n");
212 				hw_queue_teardown(hw);
213 				return OCS_HW_RTN_ERROR;
214 			}
215 
216 			break;
217 		}
218 		case QTOP_RQ: {
219 			len = (qt->len) ? qt->len : default_lengths[QTOP_RQ];
220 			if (qt->set_default) {
221 				default_lengths[QTOP_RQ] = len;
222 				break;
223 			}
224 
225 			if ((hw->ulp_start + qt->ulp) > hw->ulp_max) {
226 				ocs_log_err(hw->os, "invalid ULP %d for RQ\n", qt->ulp);
227 				hw_queue_teardown(hw);
228 				return OCS_HW_RTN_NO_MEMORY;
229 			}
230 
231 			if (use_mrq) {
232 				mrq.rq_cfg[mrq.num_pairs].len = len;
233 				mrq.rq_cfg[mrq.num_pairs].ulp = hw->ulp_start + qt->ulp;
234 				mrq.rq_cfg[mrq.num_pairs].filter_mask = qt->filter_mask;
235 				mrq.rq_cfg[mrq.num_pairs].eq = eq;
236 				mrq.num_pairs ++;
237 			} else {
238 				rq = hw_new_rq(cq, len, hw->ulp_start + qt->ulp);
239 				if (rq == NULL) {
240 					hw_queue_teardown(hw);
241 					return OCS_HW_RTN_NO_MEMORY;
242 				}
243 				rq->filter_mask = qt->filter_mask;
244 			}
245 			break;
246 		}
247 
248 		case QTOP_MQ:
249 			len = (qt->len) ? qt->len : default_lengths[QTOP_MQ];
250 			if (qt->set_default) {
251 				default_lengths[QTOP_MQ] = len;
252 				break;
253 			}
254 
255 			if (cq == NULL)
256 				goto fail;
257 
258 			mq = hw_new_mq(cq, len);
259 			if (mq == NULL) {
260 				goto fail;
261 			}
262 			break;
263 
264 		default:
265 			ocs_hw_assert(0);
266 			break;
267 		}
268 	}
269 
270 	if (mrq.num_pairs) {
271 		/* First create normal RQs. */
272 		for (i = 0; i < mrq.num_pairs; i++) {
273 			for (j = 0; j < mrq.num_pairs; j++) {
274 				if ((i != j) && (mrq.rq_cfg[i].filter_mask == mrq.rq_cfg[j].filter_mask)) {
275 					/* This should be created using set */
276 					if (rqset_filter_mask && (rqset_filter_mask != mrq.rq_cfg[i].filter_mask)) {
277 						ocs_log_crit(hw->os, "Cant create morethan one RQ Set\n");
278 						hw_queue_teardown(hw);
279 						return OCS_HW_RTN_ERROR;
280 					} else if (!rqset_filter_mask){
281 						rqset_filter_mask = mrq.rq_cfg[i].filter_mask;
282 						rqset_len = mrq.rq_cfg[i].len;
283 						rqset_ulp = mrq.rq_cfg[i].ulp;
284 					}
285 					eqs[rqset_count] = mrq.rq_cfg[i].eq;
286 					rqset_count++;
287 					break;
288 				}
289 			}
290 			if (j == mrq.num_pairs) {
291 				/* Normal RQ */
292 				cq = hw_new_cq(mrq.rq_cfg[i].eq, default_lengths[QTOP_CQ]);
293 				if (cq == NULL) {
294 					hw_queue_teardown(hw);
295 					return OCS_HW_RTN_NO_MEMORY;
296 				}
297 
298 				rq = hw_new_rq(cq, mrq.rq_cfg[i].len, mrq.rq_cfg[i].ulp);
299 				if (rq == NULL) {
300 					hw_queue_teardown(hw);
301 					return OCS_HW_RTN_NO_MEMORY;
302 				}
303 				rq->filter_mask = mrq.rq_cfg[i].filter_mask;
304 			}
305 		}
306 
307 		/* Now create RQ Set */
308 		if (rqset_count) {
309 			if (rqset_count > OCE_HW_MAX_NUM_MRQ_PAIRS) {
310 				ocs_log_crit(hw->os,
311 					     "Max Supported MRQ pairs = %d\n",
312 					     OCE_HW_MAX_NUM_MRQ_PAIRS);
313 				hw_queue_teardown(hw);
314 				return OCS_HW_RTN_ERROR;
315 			}
316 
317 			/* Create CQ set */
318 			if (hw_new_cq_set(eqs, cqs, rqset_count, default_lengths[QTOP_CQ])) {
319 				hw_queue_teardown(hw);
320 				return OCS_HW_RTN_ERROR;
321 			}
322 
323 			/* Create RQ set */
324 			if (hw_new_rq_set(cqs, rqs, rqset_count, rqset_len, rqset_ulp)) {
325 				hw_queue_teardown(hw);
326 				return OCS_HW_RTN_ERROR;
327 			}
328 
329 			for (i = 0; i < rqset_count ; i++) {
330 				rqs[i]->filter_mask = rqset_filter_mask;
331 				rqs[i]->is_mrq = TRUE;
332 				rqs[i]->base_mrq_id = rqs[0]->hdr->id;
333 			}
334 
335 			hw->hw_mrq_count = rqset_count;
336 		}
337 	}
338 
339 	return OCS_HW_RTN_SUCCESS;
340 fail:
341 	hw_queue_teardown(hw);
342 	return OCS_HW_RTN_NO_MEMORY;
343 
344 }
345 
346 /**
347  * @brief Allocate a new EQ object
348  *
349  * A new EQ object is instantiated
350  *
351  * @param hw pointer to HW object
352  * @param entry_count number of entries in the EQ
353  *
354  * @return pointer to allocated EQ object
355  */
356 hw_eq_t*
357 hw_new_eq(ocs_hw_t *hw, uint32_t entry_count)
358 {
359 	hw_eq_t *eq = ocs_malloc(hw->os, sizeof(*eq), OCS_M_ZERO | OCS_M_NOWAIT);
360 
361 	if (eq != NULL) {
362 		eq->type = SLI_QTYPE_EQ;
363 		eq->hw = hw;
364 		eq->entry_count = entry_count;
365 		eq->instance = hw->eq_count++;
366 		eq->queue = &hw->eq[eq->instance];
367 		ocs_list_init(&eq->cq_list, hw_cq_t, link);
368 
369 		eq->wq_array = ocs_varray_alloc(hw->os, OCS_HW_MAX_NUM_WQ);
370 		if (eq->wq_array == NULL) {
371 			ocs_free(hw->os, eq, sizeof(*eq));
372 			eq = NULL;
373 		} else {
374 			if (sli_queue_alloc(&hw->sli, SLI_QTYPE_EQ, eq->queue, entry_count, NULL, 0)) {
375 				ocs_log_err(hw->os, "EQ[%d] allocation failure\n", eq->instance);
376 				ocs_free(hw->os, eq, sizeof(*eq));
377 				eq = NULL;
378 			} else {
379 				sli_eq_modify_delay(&hw->sli, eq->queue, 1, 0, 8);
380 				hw->hw_eq[eq->instance] = eq;
381 				ocs_list_add_tail(&hw->eq_list, eq);
382 				ocs_log_debug(hw->os, "create eq[%2d] id %3d len %4d\n", eq->instance, eq->queue->id,
383 					eq->entry_count);
384 			}
385 		}
386 	}
387 	return eq;
388 }
389 
390 /**
391  * @brief Allocate a new CQ object
392  *
393  * A new CQ object is instantiated
394  *
395  * @param eq pointer to parent EQ object
396  * @param entry_count number of entries in the CQ
397  *
398  * @return pointer to allocated CQ object
399  */
400 hw_cq_t*
401 hw_new_cq(hw_eq_t *eq, uint32_t entry_count)
402 {
403 	ocs_hw_t *hw = eq->hw;
404 	hw_cq_t *cq = ocs_malloc(hw->os, sizeof(*cq), OCS_M_ZERO | OCS_M_NOWAIT);
405 
406 	if (cq != NULL) {
407 		cq->eq = eq;
408 		cq->type = SLI_QTYPE_CQ;
409 		cq->instance = eq->hw->cq_count++;
410 		cq->entry_count = entry_count;
411 		cq->queue = &hw->cq[cq->instance];
412 
413 		ocs_list_init(&cq->q_list, hw_q_t, link);
414 
415 		if (sli_queue_alloc(&hw->sli, SLI_QTYPE_CQ, cq->queue, cq->entry_count, eq->queue, 0)) {
416 			ocs_log_err(hw->os, "CQ[%d] allocation failure len=%d\n",
417 				eq->instance,
418 				eq->entry_count);
419 			ocs_free(hw->os, cq, sizeof(*cq));
420 			cq = NULL;
421 		} else {
422 			hw->hw_cq[cq->instance] = cq;
423 			ocs_list_add_tail(&eq->cq_list, cq);
424 			ocs_log_debug(hw->os, "create cq[%2d] id %3d len %4d\n", cq->instance, cq->queue->id,
425 				cq->entry_count);
426 		}
427 	}
428 	return cq;
429 }
430 
431 /**
432  * @brief Allocate a new CQ Set of objects.
433  *
434  * @param eqs pointer to a set of EQ objects.
435  * @param cqs pointer to a set of CQ objects to be returned.
436  * @param num_cqs number of CQ queues in the set.
437  * @param entry_count number of entries in the CQ.
438  *
439  * @return 0 on success and -1 on failure.
440  */
441 uint32_t
442 hw_new_cq_set(hw_eq_t *eqs[], hw_cq_t *cqs[], uint32_t num_cqs, uint32_t entry_count)
443 {
444 	uint32_t i;
445 	ocs_hw_t *hw = eqs[0]->hw;
446 	sli4_t *sli4 = &hw->sli;
447 	hw_cq_t *cq = NULL;
448 	sli4_queue_t *qs[SLI_MAX_CQ_SET_COUNT], *assocs[SLI_MAX_CQ_SET_COUNT];
449 
450 	/* Initialise CQS pointers to NULL */
451 	for (i = 0; i < num_cqs; i++) {
452 		cqs[i] = NULL;
453 	}
454 
455 	for (i = 0; i < num_cqs; i++) {
456 		cq = ocs_malloc(hw->os, sizeof(*cq), OCS_M_ZERO | OCS_M_NOWAIT);
457 		if (cq == NULL)
458 			goto error;
459 
460 		cqs[i]          = cq;
461 		cq->eq          = eqs[i];
462 		cq->type        = SLI_QTYPE_CQ;
463 		cq->instance    = hw->cq_count++;
464 		cq->entry_count = entry_count;
465 		cq->queue       = &hw->cq[cq->instance];
466 		qs[i]           = cq->queue;
467 		assocs[i]       = eqs[i]->queue;
468 		ocs_list_init(&cq->q_list, hw_q_t, link);
469 	}
470 
471 	if (sli_cq_alloc_set(sli4, qs, num_cqs, entry_count, assocs)) {
472 		ocs_log_err(NULL, "Failed to create CQ Set. \n");
473 		goto error;
474 	}
475 
476 	for (i = 0; i < num_cqs; i++) {
477 		hw->hw_cq[cqs[i]->instance] = cqs[i];
478 		ocs_list_add_tail(&cqs[i]->eq->cq_list, cqs[i]);
479 	}
480 
481 	return 0;
482 
483 error:
484 	for (i = 0; i < num_cqs; i++) {
485 		if (cqs[i]) {
486 			ocs_free(hw->os, cqs[i], sizeof(*cqs[i]));
487 			cqs[i] = NULL;
488 		}
489 	}
490 	return -1;
491 }
492 
493 /**
494  * @brief Allocate a new MQ object
495  *
496  * A new MQ object is instantiated
497  *
498  * @param cq pointer to parent CQ object
499  * @param entry_count number of entries in the MQ
500  *
501  * @return pointer to allocated MQ object
502  */
503 hw_mq_t*
504 hw_new_mq(hw_cq_t *cq, uint32_t entry_count)
505 {
506 	ocs_hw_t *hw = cq->eq->hw;
507 	hw_mq_t *mq = ocs_malloc(hw->os, sizeof(*mq), OCS_M_ZERO | OCS_M_NOWAIT);
508 
509 	if (mq != NULL) {
510 		mq->cq = cq;
511 		mq->type = SLI_QTYPE_MQ;
512 		mq->instance = cq->eq->hw->mq_count++;
513 		mq->entry_count = entry_count;
514 		mq->entry_size = OCS_HW_MQ_DEPTH;
515 		mq->queue = &hw->mq[mq->instance];
516 
517 		if (sli_queue_alloc(&hw->sli, SLI_QTYPE_MQ,
518 				    mq->queue,
519 				    mq->entry_size,
520 				    cq->queue, 0)) {
521 			ocs_log_err(hw->os, "MQ allocation failure\n");
522 			ocs_free(hw->os, mq, sizeof(*mq));
523 			mq = NULL;
524 		} else {
525 			hw->hw_mq[mq->instance] = mq;
526 			ocs_list_add_tail(&cq->q_list, mq);
527 			ocs_log_debug(hw->os, "create mq[%2d] id %3d len %4d\n", mq->instance, mq->queue->id,
528 				mq->entry_count);
529 		}
530 	}
531 	return mq;
532 }
533 
534 /**
535  * @brief Allocate a new WQ object
536  *
537  * A new WQ object is instantiated
538  *
539  * @param cq pointer to parent CQ object
540  * @param entry_count number of entries in the WQ
541  * @param class WQ class
542  * @param ulp index of chute
543  *
544  * @return pointer to allocated WQ object
545  */
546 hw_wq_t*
547 hw_new_wq(hw_cq_t *cq, uint32_t entry_count, uint32_t class, uint32_t ulp)
548 {
549 	ocs_hw_t *hw = cq->eq->hw;
550 	hw_wq_t *wq = ocs_malloc(hw->os, sizeof(*wq), OCS_M_ZERO | OCS_M_NOWAIT);
551 
552 	if (wq != NULL) {
553 		wq->hw = cq->eq->hw;
554 		wq->cq = cq;
555 		wq->type = SLI_QTYPE_WQ;
556 		wq->instance = cq->eq->hw->wq_count++;
557 		wq->entry_count = entry_count;
558 		wq->queue = &hw->wq[wq->instance];
559 		wq->ulp = ulp;
560 		wq->wqec_set_count = OCS_HW_WQEC_SET_COUNT;
561 		wq->wqec_count = wq->wqec_set_count;
562 		wq->free_count = wq->entry_count - 1;
563 		wq->class = class;
564 		ocs_list_init(&wq->pending_list, ocs_hw_wqe_t, link);
565 
566 		if (sli_queue_alloc(&hw->sli, SLI_QTYPE_WQ, wq->queue, wq->entry_count, cq->queue, ulp)) {
567 			ocs_log_err(hw->os, "WQ allocation failure\n");
568 			ocs_free(hw->os, wq, sizeof(*wq));
569 			wq = NULL;
570 		} else {
571 			hw->hw_wq[wq->instance] = wq;
572 			ocs_list_add_tail(&cq->q_list, wq);
573 			ocs_log_debug(hw->os, "create wq[%2d] id %3d len %4d cls %d ulp %d\n", wq->instance, wq->queue->id,
574 				wq->entry_count, wq->class, wq->ulp);
575 		}
576 	}
577 	return wq;
578 }
579 
580 /**
581  * @brief Allocate a hw_rq_t object
582  *
583  * Allocate an RQ object, which encapsulates 2 SLI queues (for rq pair)
584  *
585  * @param cq pointer to parent CQ object
586  * @param entry_count number of entries in the RQs
587  * @param ulp ULP index for this RQ
588  *
589  * @return pointer to newly allocated hw_rq_t
590  */
591 hw_rq_t*
592 hw_new_rq(hw_cq_t *cq, uint32_t entry_count, uint32_t ulp)
593 {
594 	ocs_hw_t *hw = cq->eq->hw;
595 	hw_rq_t *rq = ocs_malloc(hw->os, sizeof(*rq), OCS_M_ZERO | OCS_M_NOWAIT);
596 	uint32_t max_hw_rq;
597 
598 	ocs_hw_get(hw, OCS_HW_MAX_RQ_ENTRIES, &max_hw_rq);
599 
600 	if (rq != NULL) {
601 		rq->instance = hw->hw_rq_count++;
602 		rq->cq = cq;
603 		rq->type = SLI_QTYPE_RQ;
604 		rq->ulp = ulp;
605 
606 		rq->entry_count = OCS_MIN(entry_count, OCS_MIN(max_hw_rq, OCS_HW_RQ_NUM_HDR));
607 
608 		/* Create the header RQ */
609 		ocs_hw_assert(hw->rq_count < ARRAY_SIZE(hw->rq));
610 		rq->hdr = &hw->rq[hw->rq_count];
611 		rq->hdr_entry_size = OCS_HW_RQ_HEADER_SIZE;
612 
613 		if (sli_fc_rq_alloc(&hw->sli, rq->hdr,
614 				    rq->entry_count,
615 				    rq->hdr_entry_size,
616 				    cq->queue,
617 				    ulp, TRUE)) {
618 			ocs_log_err(hw->os, "RQ allocation failure - header\n");
619 			ocs_free(hw->os, rq, sizeof(*rq));
620 			return NULL;
621 		}
622 		hw->hw_rq_lookup[hw->rq_count] = rq->instance;	/* Update hw_rq_lookup[] */
623 		hw->rq_count++;
624 		ocs_log_debug(hw->os, "create rq[%2d] id %3d len %4d hdr  size %4d ulp %d\n",
625 			rq->instance, rq->hdr->id, rq->entry_count, rq->hdr_entry_size, rq->ulp);
626 
627 		/* Create the default data RQ */
628 		ocs_hw_assert(hw->rq_count < ARRAY_SIZE(hw->rq));
629 		rq->data = &hw->rq[hw->rq_count];
630 		rq->data_entry_size = hw->config.rq_default_buffer_size;
631 
632 		if (sli_fc_rq_alloc(&hw->sli, rq->data,
633 				    rq->entry_count,
634 				    rq->data_entry_size,
635 				    cq->queue,
636 				    ulp, FALSE)) {
637 			ocs_log_err(hw->os, "RQ allocation failure - first burst\n");
638 			ocs_free(hw->os, rq, sizeof(*rq));
639 			return NULL;
640 		}
641 		hw->hw_rq_lookup[hw->rq_count] = rq->instance;	/* Update hw_rq_lookup[] */
642 		hw->rq_count++;
643 		ocs_log_debug(hw->os, "create rq[%2d] id %3d len %4d data size %4d ulp %d\n", rq->instance,
644 			rq->data->id, rq->entry_count, rq->data_entry_size, rq->ulp);
645 
646 		hw->hw_rq[rq->instance] = rq;
647 		ocs_list_add_tail(&cq->q_list, rq);
648 
649 		rq->rq_tracker = ocs_malloc(hw->os, sizeof(ocs_hw_sequence_t*) *
650 					    rq->entry_count, OCS_M_ZERO | OCS_M_NOWAIT);
651 		if (rq->rq_tracker == NULL) {
652 			ocs_log_err(hw->os, "RQ tracker buf allocation failure\n");
653 			return NULL;
654 		}
655 	}
656 	return rq;
657 }
658 
659 /**
660  * @brief Allocate a hw_rq_t object SET
661  *
662  * Allocate an RQ object SET, where each element in set
663  * encapsulates 2 SLI queues (for rq pair)
664  *
665  * @param cqs pointers to be associated with RQs.
666  * @param rqs RQ pointers to be returned on success.
667  * @param num_rq_pairs number of rq pairs in the Set.
668  * @param entry_count number of entries in the RQs
669  * @param ulp ULP index for this RQ
670  *
671  * @return 0 in success and -1 on failure.
672  */
673 uint32_t
674 hw_new_rq_set(hw_cq_t *cqs[], hw_rq_t *rqs[], uint32_t num_rq_pairs, uint32_t entry_count, uint32_t ulp)
675 {
676 	ocs_hw_t *hw = cqs[0]->eq->hw;
677 	hw_rq_t *rq = NULL;
678 	sli4_queue_t *qs[SLI_MAX_RQ_SET_COUNT * 2] = { NULL };
679 	uint32_t max_hw_rq, i, q_count;
680 
681 	ocs_hw_get(hw, OCS_HW_MAX_RQ_ENTRIES, &max_hw_rq);
682 
683 	/* Initialise RQS pointers */
684 	for (i = 0; i < num_rq_pairs; i++) {
685 		rqs[i] = NULL;
686 	}
687 
688 	for (i = 0, q_count = 0; i < num_rq_pairs; i++, q_count += 2) {
689 		rq = ocs_malloc(hw->os, sizeof(*rq), OCS_M_ZERO | OCS_M_NOWAIT);
690 		if (rq == NULL)
691 			goto error;
692 
693 		rqs[i] = rq;
694 		rq->instance = hw->hw_rq_count++;
695 		rq->cq = cqs[i];
696 		rq->type = SLI_QTYPE_RQ;
697 		rq->ulp = ulp;
698 		rq->entry_count = OCS_MIN(entry_count, OCS_MIN(max_hw_rq, OCS_HW_RQ_NUM_HDR));
699 
700 		/* Header RQ */
701 		rq->hdr = &hw->rq[hw->rq_count];
702 		rq->hdr_entry_size = OCS_HW_RQ_HEADER_SIZE;
703 		hw->hw_rq_lookup[hw->rq_count] = rq->instance;
704 		hw->rq_count++;
705 		qs[q_count] = rq->hdr;
706 
707 		/* Data RQ */
708 		rq->data = &hw->rq[hw->rq_count];
709 		rq->data_entry_size = hw->config.rq_default_buffer_size;
710 		hw->hw_rq_lookup[hw->rq_count] = rq->instance;
711 		hw->rq_count++;
712 		qs[q_count + 1] = rq->data;
713 
714 		rq->rq_tracker = NULL;
715 	}
716 
717 	if (sli_fc_rq_set_alloc(&hw->sli, num_rq_pairs, qs,
718 			    cqs[0]->queue->id,
719 			    rqs[0]->entry_count,
720 			    rqs[0]->hdr_entry_size,
721 			    rqs[0]->data_entry_size,
722 			    ulp)) {
723 		ocs_log_err(hw->os, "RQ Set allocation failure for base CQ=%d\n", cqs[0]->queue->id);
724 		goto error;
725 	}
726 
727 	for (i = 0; i < num_rq_pairs; i++) {
728 		hw->hw_rq[rqs[i]->instance] = rqs[i];
729 		ocs_list_add_tail(&cqs[i]->q_list, rqs[i]);
730 		rqs[i]->rq_tracker = ocs_malloc(hw->os, sizeof(ocs_hw_sequence_t*) *
731 					    rqs[i]->entry_count, OCS_M_ZERO | OCS_M_NOWAIT);
732 		if (rqs[i]->rq_tracker == NULL) {
733 			ocs_log_err(hw->os, "RQ tracker buf allocation failure\n");
734 			goto error;
735 		}
736 	}
737 
738 	return 0;
739 
740 error:
741 	for (i = 0; i < num_rq_pairs; i++) {
742 		if (rqs[i] != NULL) {
743 			if (rqs[i]->rq_tracker != NULL) {
744 				ocs_free(hw->os, rqs[i]->rq_tracker,
745 					 sizeof(ocs_hw_sequence_t*) *
746 					 rqs[i]->entry_count);
747 			}
748 			ocs_free(hw->os, rqs[i], sizeof(*rqs[i]));
749 		}
750 	}
751 
752 	return -1;
753 }
754 
755 /**
756  * @brief Free an EQ object
757  *
758  * The EQ object and any child queue objects are freed
759  *
760  * @param eq pointer to EQ object
761  *
762  * @return none
763  */
764 void
765 hw_del_eq(hw_eq_t *eq)
766 {
767 	if (eq != NULL) {
768 		hw_cq_t *cq;
769 		hw_cq_t *cq_next;
770 
771 		ocs_list_foreach_safe(&eq->cq_list, cq, cq_next) {
772 			hw_del_cq(cq);
773 		}
774 		ocs_varray_free(eq->wq_array);
775 		ocs_list_remove(&eq->hw->eq_list, eq);
776 		eq->hw->hw_eq[eq->instance] = NULL;
777 		ocs_free(eq->hw->os, eq, sizeof(*eq));
778 	}
779 }
780 
781 /**
782  * @brief Free a CQ object
783  *
784  * The CQ object and any child queue objects are freed
785  *
786  * @param cq pointer to CQ object
787  *
788  * @return none
789  */
790 void
791 hw_del_cq(hw_cq_t *cq)
792 {
793 	if (cq != NULL) {
794 		hw_q_t *q;
795 		hw_q_t *q_next;
796 
797 		ocs_list_foreach_safe(&cq->q_list, q, q_next) {
798 			switch(q->type) {
799 			case SLI_QTYPE_MQ:
800 				hw_del_mq((hw_mq_t*) q);
801 				break;
802 			case SLI_QTYPE_WQ:
803 				hw_del_wq((hw_wq_t*) q);
804 				break;
805 			case SLI_QTYPE_RQ:
806 				hw_del_rq((hw_rq_t*) q);
807 				break;
808 			default:
809 				break;
810 			}
811 		}
812 		ocs_list_remove(&cq->eq->cq_list, cq);
813 		cq->eq->hw->hw_cq[cq->instance] = NULL;
814 		ocs_free(cq->eq->hw->os, cq, sizeof(*cq));
815 	}
816 }
817 
818 /**
819  * @brief Free a MQ object
820  *
821  * The MQ object is freed
822  *
823  * @param mq pointer to MQ object
824  *
825  * @return none
826  */
827 void
828 hw_del_mq(hw_mq_t *mq)
829 {
830 	if (mq != NULL) {
831 		ocs_list_remove(&mq->cq->q_list, mq);
832 		mq->cq->eq->hw->hw_mq[mq->instance] = NULL;
833 		ocs_free(mq->cq->eq->hw->os, mq, sizeof(*mq));
834 	}
835 }
836 
837 /**
838  * @brief Free a WQ object
839  *
840  * The WQ object is freed
841  *
842  * @param wq pointer to WQ object
843  *
844  * @return none
845  */
846 void
847 hw_del_wq(hw_wq_t *wq)
848 {
849 	if (wq != NULL) {
850 		ocs_list_remove(&wq->cq->q_list, wq);
851 		wq->cq->eq->hw->hw_wq[wq->instance] = NULL;
852 		ocs_free(wq->cq->eq->hw->os, wq, sizeof(*wq));
853 	}
854 }
855 
856 /**
857  * @brief Free an RQ object
858  *
859  * The RQ object is freed
860  *
861  * @param rq pointer to RQ object
862  *
863  * @return none
864  */
865 void
866 hw_del_rq(hw_rq_t *rq)
867 {
868 
869 	if (rq != NULL) {
870 		ocs_hw_t *hw = rq->cq->eq->hw;
871 		/* Free RQ tracker */
872 		if (rq->rq_tracker != NULL) {
873 			ocs_free(hw->os, rq->rq_tracker, sizeof(ocs_hw_sequence_t*) * rq->entry_count);
874 			rq->rq_tracker = NULL;
875 		}
876 		ocs_list_remove(&rq->cq->q_list, rq);
877 		hw->hw_rq[rq->instance] = NULL;
878 		ocs_free(hw->os, rq, sizeof(*rq));
879 	}
880 }
881 
882 /**
883  * @brief Display HW queue objects
884  *
885  * The HW queue objects are displayed using ocs_log
886  *
887  * @param hw pointer to HW object
888  *
889  * @return none
890  */
891 void
892 hw_queue_dump(ocs_hw_t *hw)
893 {
894 	hw_eq_t *eq;
895 	hw_cq_t *cq;
896 	hw_q_t *q;
897 	hw_mq_t *mq;
898 	hw_wq_t *wq;
899 	hw_rq_t *rq;
900 
901 	ocs_list_foreach(&hw->eq_list, eq) {
902 		ocs_printf("eq[%d] id %2d\n", eq->instance, eq->queue->id);
903 		ocs_list_foreach(&eq->cq_list, cq) {
904 			ocs_printf("  cq[%d] id %2d current\n", cq->instance, cq->queue->id);
905 			ocs_list_foreach(&cq->q_list, q) {
906 				switch(q->type) {
907 				case SLI_QTYPE_MQ:
908 					mq = (hw_mq_t *) q;
909 					ocs_printf("    mq[%d] id %2d\n", mq->instance, mq->queue->id);
910 					break;
911 				case SLI_QTYPE_WQ:
912 					wq = (hw_wq_t *) q;
913 					ocs_printf("    wq[%d] id %2d\n", wq->instance, wq->queue->id);
914 					break;
915 				case SLI_QTYPE_RQ:
916 					rq = (hw_rq_t *) q;
917 					ocs_printf("    rq[%d] hdr id %2d\n", rq->instance, rq->hdr->id);
918 					break;
919 				default:
920 					break;
921 				}
922 			}
923 		}
924 	}
925 }
926 
927 /**
928  * @brief Teardown HW queue objects
929  *
930  * The HW queue objects are freed
931  *
932  * @param hw pointer to HW object
933  *
934  * @return none
935  */
936 void
937 hw_queue_teardown(ocs_hw_t *hw)
938 {
939 	uint32_t i;
940 	hw_eq_t *eq;
941 	hw_eq_t *eq_next;
942 
943 	if (ocs_list_valid(&hw->eq_list)) {
944 		ocs_list_foreach_safe(&hw->eq_list, eq, eq_next) {
945 			hw_del_eq(eq);
946 		}
947 	}
948 	for (i = 0; i < ARRAY_SIZE(hw->wq_cpu_array); i++) {
949 		ocs_varray_free(hw->wq_cpu_array[i]);
950 		hw->wq_cpu_array[i] = NULL;
951 	}
952 	for (i = 0; i < ARRAY_SIZE(hw->wq_class_array); i++) {
953 		ocs_varray_free(hw->wq_class_array[i]);
954 		hw->wq_class_array[i] = NULL;
955 	}
956 }
957 
958 /**
959  * @brief Allocate a WQ to an IO object
960  *
961  * The next work queue index is used to assign a WQ to an IO.
962  *
963  * If wq_steering is OCS_HW_WQ_STEERING_CLASS, a WQ from io->wq_class is
964  * selected.
965  *
966  * If wq_steering is OCS_HW_WQ_STEERING_REQUEST, then a WQ from the EQ that
967  * the IO request came in on is selected.
968  *
969  * If wq_steering is OCS_HW_WQ_STEERING_CPU, then a WQ associated with the
970  * CPU the request is made on is selected.
971  *
972  * @param hw pointer to HW object
973  * @param io pointer to IO object
974  *
975  * @return Return pointer to next WQ
976  */
977 hw_wq_t *
978 ocs_hw_queue_next_wq(ocs_hw_t *hw, ocs_hw_io_t *io)
979 {
980 	hw_eq_t *eq;
981 	hw_wq_t *wq = NULL;
982 
983 	switch(io->wq_steering) {
984 	case OCS_HW_WQ_STEERING_CLASS:
985 		if (likely(io->wq_class < ARRAY_SIZE(hw->wq_class_array))) {
986 			wq = ocs_varray_iter_next(hw->wq_class_array[io->wq_class]);
987 		}
988 		break;
989 	case OCS_HW_WQ_STEERING_REQUEST:
990 		eq = io->eq;
991 		if (likely(eq != NULL)) {
992 			wq = ocs_varray_iter_next(eq->wq_array);
993 		}
994 		break;
995 	case OCS_HW_WQ_STEERING_CPU: {
996 		uint32_t cpuidx = ocs_thread_getcpu();
997 
998 		if (likely(cpuidx < ARRAY_SIZE(hw->wq_cpu_array))) {
999 			wq = ocs_varray_iter_next(hw->wq_cpu_array[cpuidx]);
1000 		}
1001 		break;
1002 	}
1003 	}
1004 
1005 	if (unlikely(wq == NULL)) {
1006 		wq = hw->hw_wq[0];
1007 	}
1008 
1009 	return wq;
1010 }
1011 
1012 /**
1013  * @brief Return count of EQs for a queue topology object
1014  *
1015  * The EQ count for in the HWs queue topology (hw->qtop) object is returned
1016  *
1017  * @param hw pointer to HW object
1018  *
1019  * @return count of EQs
1020  */
1021 uint32_t
1022 ocs_hw_qtop_eq_count(ocs_hw_t *hw)
1023 {
1024 	return hw->qtop->entry_counts[QTOP_EQ];
1025 }
1026 
1027 #define TOKEN_LEN		32
1028 
1029 /**
1030  * @brief return string given a QTOP entry
1031  *
1032  * @param entry QTOP entry
1033  *
1034  * @return returns string or "unknown"
1035  */
1036 #if HW_QTOP_DEBUG
1037 static char *
1038 qtopentry2s(ocs_hw_qtop_entry_e entry) {
1039 	switch(entry) {
1040 	#define P(x)	case x: return #x;
1041 	P(QTOP_EQ)
1042 	P(QTOP_CQ)
1043 	P(QTOP_WQ)
1044 	P(QTOP_RQ)
1045 	P(QTOP_MQ)
1046 	P(QTOP_THREAD_START)
1047 	P(QTOP_THREAD_END)
1048 	P(QTOP_LAST)
1049 	#undef P
1050 	}
1051 	return "unknown";
1052 }
1053 #endif
1054 
1055 /**
1056  * @brief Declare token types
1057  */
1058 typedef enum {
1059 	TOK_LPAREN = 1,
1060 	TOK_RPAREN,
1061 	TOK_COLON,
1062 	TOK_EQUALS,
1063 	TOK_QUEUE,
1064 	TOK_ATTR_NAME,
1065 	TOK_NUMBER,
1066 	TOK_NUMBER_VALUE,
1067 	TOK_NUMBER_LIST,
1068 } tok_type_e;
1069 
1070 /**
1071  * @brief Declare token sub-types
1072  */
1073 typedef enum {
1074 	TOK_SUB_EQ = 100,
1075 	TOK_SUB_CQ,
1076 	TOK_SUB_RQ,
1077 	TOK_SUB_MQ,
1078 	TOK_SUB_WQ,
1079 	TOK_SUB_LEN,
1080 	TOK_SUB_CLASS,
1081 	TOK_SUB_ULP,
1082 	TOK_SUB_FILTER,
1083 } tok_subtype_e;
1084 
1085 /**
1086  * @brief convert queue subtype to QTOP entry
1087  *
1088  * @param q queue subtype
1089  *
1090  * @return QTOP entry or 0
1091  */
1092 static ocs_hw_qtop_entry_e
1093 subtype2qtop(tok_subtype_e q)
1094 {
1095 	switch(q) {
1096 	case TOK_SUB_EQ:	return QTOP_EQ;
1097 	case TOK_SUB_CQ:	return QTOP_CQ;
1098 	case TOK_SUB_RQ:	return QTOP_RQ;
1099 	case TOK_SUB_MQ:	return QTOP_MQ;
1100 	case TOK_SUB_WQ:	return QTOP_WQ;
1101 	default:
1102 		break;
1103 	}
1104 	return 0;
1105 }
1106 
1107 /**
1108  * @brief Declare token object
1109  */
1110 typedef struct {
1111 	tok_type_e type;
1112 	tok_subtype_e subtype;
1113 	char string[TOKEN_LEN];
1114 } tok_t;
1115 
1116 /**
1117  * @brief Declare token array object
1118  */
1119 typedef struct {
1120 	tok_t *tokens;			/* Pointer to array of tokens */
1121 	uint32_t alloc_count;		/* Number of tokens in the array */
1122 	uint32_t inuse_count;		/* Number of tokens posted to array */
1123 	uint32_t iter_idx;		/* Iterator index */
1124 } tokarray_t;
1125 
1126 /**
1127  * @brief Declare token match structure
1128  */
1129 typedef struct {
1130 	char *s;
1131 	tok_type_e type;
1132 	tok_subtype_e subtype;
1133 } tokmatch_t;
1134 
1135 /**
1136  * @brief test if character is ID start character
1137  *
1138  * @param c character to test
1139  *
1140  * @return TRUE if character is an ID start character
1141  */
1142 static int32_t
1143 idstart(int c)
1144 {
1145 	return	isalpha(c) || (c == '_') || (c == '$');
1146 }
1147 
1148 /**
1149  * @brief test if character is an ID character
1150  *
1151  * @param c character to test
1152  *
1153  * @return TRUE if character is an ID character
1154  */
1155 static int32_t
1156 idchar(int c)
1157 {
1158 	return idstart(c) || ocs_isdigit(c);
1159 }
1160 
1161 /**
1162  * @brief Declare single character matches
1163  */
1164 static tokmatch_t cmatches[] = {
1165 	{"(", TOK_LPAREN},
1166 	{")", TOK_RPAREN},
1167 	{":", TOK_COLON},
1168 	{"=", TOK_EQUALS},
1169 };
1170 
1171 /**
1172  * @brief Declare identifier match strings
1173  */
1174 static tokmatch_t smatches[] = {
1175 	{"eq", TOK_QUEUE, TOK_SUB_EQ},
1176 	{"cq", TOK_QUEUE, TOK_SUB_CQ},
1177 	{"rq", TOK_QUEUE, TOK_SUB_RQ},
1178 	{"mq", TOK_QUEUE, TOK_SUB_MQ},
1179 	{"wq", TOK_QUEUE, TOK_SUB_WQ},
1180 	{"len", TOK_ATTR_NAME, TOK_SUB_LEN},
1181 	{"class", TOK_ATTR_NAME, TOK_SUB_CLASS},
1182 	{"ulp", TOK_ATTR_NAME, TOK_SUB_ULP},
1183 	{"filter", TOK_ATTR_NAME, TOK_SUB_FILTER},
1184 };
1185 
1186 /**
1187  * @brief Scan string and return next token
1188  *
1189  * The string is scanned and the next token is returned
1190  *
1191  * @param s input string to scan
1192  * @param tok pointer to place scanned token
1193  *
1194  * @return pointer to input string following scanned token, or NULL
1195  */
1196 static const char *
1197 tokenize(const char *s, tok_t *tok)
1198 {
1199 	uint32_t i;
1200 
1201 	memset(tok, 0, sizeof(*tok));
1202 
1203 	/* Skip over whitespace */
1204 	while (*s && ocs_isspace(*s)) {
1205 		s++;
1206 	}
1207 
1208 	/* Return if nothing left in this string */
1209 	if (*s == 0) {
1210 		return NULL;
1211 	}
1212 
1213 	/* Look for single character matches */
1214 	for (i = 0; i < ARRAY_SIZE(cmatches); i++) {
1215 		if (cmatches[i].s[0] == *s) {
1216 			tok->type = cmatches[i].type;
1217 			tok->subtype = cmatches[i].subtype;
1218 			tok->string[0] = *s++;
1219 			return s;
1220 		}
1221 	}
1222 
1223 	/* Scan for a hex number or decimal */
1224 	if ((s[0] == '0') && ((s[1] == 'x') || (s[1] == 'X'))) {
1225 		char *p = tok->string;
1226 
1227 		tok->type = TOK_NUMBER;
1228 
1229 		*p++ = *s++;
1230 		*p++ = *s++;
1231 		while ((*s == '.') || ocs_isxdigit(*s)) {
1232 			if ((p - tok->string) < (int32_t)sizeof(tok->string)) {
1233 				*p++ = *s;
1234 			}
1235 			if (*s == ',') {
1236 				tok->type = TOK_NUMBER_LIST;
1237 			}
1238 			s++;
1239 		}
1240 		*p = 0;
1241 		return s;
1242 	} else if (ocs_isdigit(*s)) {
1243 		char *p = tok->string;
1244 
1245 		tok->type = TOK_NUMBER;
1246 		while ((*s == ',') || ocs_isdigit(*s)) {
1247 			if ((p - tok->string) < (int32_t)sizeof(tok->string)) {
1248 				*p++ = *s;
1249 			}
1250 			if (*s == ',') {
1251 				tok->type = TOK_NUMBER_LIST;
1252 			}
1253 			s++;
1254 		}
1255 		*p = 0;
1256 		return s;
1257 	}
1258 
1259 	/* Scan for an ID */
1260 	if (idstart(*s)) {
1261 		char *p = tok->string;
1262 
1263 		for (*p++ = *s++; idchar(*s); s++) {
1264 			if ((p - tok->string) < TOKEN_LEN) {
1265 				*p++ = *s;
1266 			}
1267 		}
1268 
1269 		/* See if this is a $ number value */
1270 		if (tok->string[0] == '$') {
1271 			tok->type = TOK_NUMBER_VALUE;
1272 		} else {
1273 			/* Look for a string match */
1274 			for (i = 0; i < ARRAY_SIZE(smatches); i++) {
1275 				if (strcmp(smatches[i].s, tok->string) == 0) {
1276 					tok->type = smatches[i].type;
1277 					tok->subtype = smatches[i].subtype;
1278 					return s;
1279 				}
1280 			}
1281 		}
1282 	}
1283 	return s;
1284 }
1285 
1286 /**
1287  * @brief convert token type to string
1288  *
1289  * @param type token type
1290  *
1291  * @return string, or "unknown"
1292  */
1293 static const char *
1294 token_type2s(tok_type_e type)
1295 {
1296 	switch(type) {
1297 	#define P(x)	case x: return #x;
1298 	P(TOK_LPAREN)
1299 	P(TOK_RPAREN)
1300 	P(TOK_COLON)
1301 	P(TOK_EQUALS)
1302 	P(TOK_QUEUE)
1303 	P(TOK_ATTR_NAME)
1304 	P(TOK_NUMBER)
1305 	P(TOK_NUMBER_VALUE)
1306 	P(TOK_NUMBER_LIST)
1307 	#undef P
1308 	}
1309 	return "unknown";
1310 }
1311 
1312 /**
1313  * @brief convert token sub-type to string
1314  *
1315  * @param subtype token sub-type
1316  *
1317  * @return string, or "unknown"
1318  */
1319 static const char *
1320 token_subtype2s(tok_subtype_e subtype)
1321 {
1322 	switch(subtype) {
1323 	#define P(x)	case x: return #x;
1324 	P(TOK_SUB_EQ)
1325 	P(TOK_SUB_CQ)
1326 	P(TOK_SUB_RQ)
1327 	P(TOK_SUB_MQ)
1328 	P(TOK_SUB_WQ)
1329 	P(TOK_SUB_LEN)
1330 	P(TOK_SUB_CLASS)
1331 	P(TOK_SUB_ULP)
1332 	P(TOK_SUB_FILTER)
1333 	#undef P
1334 	}
1335 	return "";
1336 }
1337 
1338 /**
1339  * @brief Generate syntax error message
1340  *
1341  * A syntax error message is found, the input tokens are dumped up to and including
1342  * the token that failed as indicated by the current iterator index.
1343  *
1344  * @param hw pointer to HW object
1345  * @param tokarray pointer to token array object
1346  *
1347  * @return none
1348  */
1349 static void
1350 tok_syntax(ocs_hw_t *hw, tokarray_t *tokarray)
1351 {
1352 	uint32_t i;
1353 	tok_t *tok;
1354 
1355 	ocs_log_test(hw->os, "Syntax error:\n");
1356 
1357 	for (i = 0, tok = tokarray->tokens; (i <= tokarray->inuse_count); i++, tok++) {
1358 		ocs_log_test(hw->os, "%s [%2d]    %-16s %-16s %s\n", (i == tokarray->iter_idx) ? ">>>" : "   ", i,
1359 			token_type2s(tok->type), token_subtype2s(tok->subtype), tok->string);
1360 	}
1361 }
1362 
1363 /**
1364  * @brief parse a number
1365  *
1366  * Parses tokens of type TOK_NUMBER and TOK_NUMBER_VALUE, returning a numeric value
1367  *
1368  * @param hw pointer to HW object
1369  * @param qtop pointer to QTOP object
1370  * @param tok pointer to token to parse
1371  *
1372  * @return numeric value
1373  */
1374 static uint32_t
1375 tok_getnumber(ocs_hw_t *hw, ocs_hw_qtop_t *qtop, tok_t *tok)
1376 {
1377 	uint32_t rval = 0;
1378 	uint32_t num_cpus = ocs_get_num_cpus();
1379 
1380 	switch(tok->type) {
1381 	case TOK_NUMBER_VALUE:
1382 		if (ocs_strcmp(tok->string, "$ncpu") == 0) {
1383 			rval = num_cpus;
1384 		} else if (ocs_strcmp(tok->string, "$ncpu1") == 0) {
1385 			rval = num_cpus - 1;
1386 		} else if (ocs_strcmp(tok->string, "$nwq") == 0) {
1387 			if (hw != NULL) {
1388 				rval = hw->config.n_wq;
1389 			}
1390 		} else if (ocs_strcmp(tok->string, "$maxmrq") == 0) {
1391 			rval = MIN(num_cpus, OCS_HW_MAX_MRQS);
1392 		} else if (ocs_strcmp(tok->string, "$nulp") == 0) {
1393 			rval = hw->ulp_max - hw->ulp_start + 1;
1394 		} else if ((qtop->rptcount_idx > 0) && ocs_strcmp(tok->string, "$rpt0") == 0) {
1395 			rval = qtop->rptcount[qtop->rptcount_idx-1];
1396 		} else if ((qtop->rptcount_idx > 1) && ocs_strcmp(tok->string, "$rpt1") == 0) {
1397 			rval = qtop->rptcount[qtop->rptcount_idx-2];
1398 		} else if ((qtop->rptcount_idx > 2) && ocs_strcmp(tok->string, "$rpt2") == 0) {
1399 			rval = qtop->rptcount[qtop->rptcount_idx-3];
1400 		} else if ((qtop->rptcount_idx > 3) && ocs_strcmp(tok->string, "$rpt3") == 0) {
1401 			rval = qtop->rptcount[qtop->rptcount_idx-4];
1402 		} else {
1403 			rval = ocs_strtoul(tok->string, 0, 0);
1404 		}
1405 		break;
1406 	case TOK_NUMBER:
1407 		rval = ocs_strtoul(tok->string, 0, 0);
1408 		break;
1409 	default:
1410 		break;
1411 	}
1412 	return rval;
1413 }
1414 
1415 /**
1416  * @brief parse an array of tokens
1417  *
1418  * The tokens are semantically parsed, to generate QTOP entries.
1419  *
1420  * @param hw pointer to HW object
1421  * @param tokarray array array of tokens
1422  * @param qtop ouptut QTOP object
1423  *
1424  * @return returns 0 for success, a negative error code value for failure.
1425  */
1426 static int32_t
1427 parse_topology(ocs_hw_t *hw, tokarray_t *tokarray, ocs_hw_qtop_t *qtop)
1428 {
1429 	ocs_hw_qtop_entry_t *qt = qtop->entries + qtop->inuse_count;
1430 	tok_t *tok;
1431 
1432 	for (; (tokarray->iter_idx < tokarray->inuse_count) &&
1433 	     ((tok = &tokarray->tokens[tokarray->iter_idx]) != NULL); ) {
1434 		if (qtop->inuse_count >= qtop->alloc_count) {
1435 			return -1;
1436 		}
1437 
1438 		qt = qtop->entries + qtop->inuse_count;
1439 
1440 		switch (tok[0].type)
1441 		{
1442 		case TOK_QUEUE:
1443 			qt->entry = subtype2qtop(tok[0].subtype);
1444 			qt->set_default = FALSE;
1445 			qt->len = 0;
1446 			qt->class = 0;
1447 			qtop->inuse_count++;
1448 
1449 			tokarray->iter_idx++;		/* Advance current token index */
1450 
1451 			/* Parse for queue attributes, possibly multiple instances */
1452 			while ((tokarray->iter_idx + 4) <= tokarray->inuse_count) {
1453 				tok = &tokarray->tokens[tokarray->iter_idx];
1454 				if(	(tok[0].type == TOK_COLON) &&
1455 					(tok[1].type == TOK_ATTR_NAME) &&
1456 					(tok[2].type == TOK_EQUALS) &&
1457 					((tok[3].type == TOK_NUMBER) ||
1458 					 (tok[3].type == TOK_NUMBER_VALUE) ||
1459 					 (tok[3].type == TOK_NUMBER_LIST))) {
1460 					switch (tok[1].subtype) {
1461 					case TOK_SUB_LEN:
1462 						qt->len = tok_getnumber(hw, qtop, &tok[3]);
1463 						break;
1464 
1465 					case TOK_SUB_CLASS:
1466 						qt->class = tok_getnumber(hw, qtop, &tok[3]);
1467 						break;
1468 
1469 					case TOK_SUB_ULP:
1470 						qt->ulp = tok_getnumber(hw, qtop, &tok[3]);
1471 						break;
1472 
1473 					case TOK_SUB_FILTER:
1474 						if (tok[3].type == TOK_NUMBER_LIST) {
1475 							uint32_t mask = 0;
1476 							char *p = tok[3].string;
1477 
1478 							while ((p != NULL) && *p) {
1479 								uint32_t v;
1480 
1481 								v = ocs_strtoul(p, 0, 0);
1482 								if (v < 32) {
1483 									mask |= (1U << v);
1484 								}
1485 
1486 								p = ocs_strchr(p, ',');
1487 								if (p != NULL) {
1488 									p++;
1489 								}
1490 							}
1491 							qt->filter_mask = mask;
1492 						} else {
1493 							qt->filter_mask = (1U << tok_getnumber(hw, qtop, &tok[3]));
1494 						}
1495 						break;
1496 					default:
1497 						break;
1498 					}
1499 					/* Advance current token index */
1500 					tokarray->iter_idx += 4;
1501 				} else {
1502 					break;
1503 				}
1504 			}
1505 			qtop->entry_counts[qt->entry]++;
1506 			break;
1507 
1508 		case TOK_ATTR_NAME:
1509 			if (	((tokarray->iter_idx + 5) <= tokarray->inuse_count) &&
1510 				(tok[1].type == TOK_COLON) &&
1511 				(tok[2].type == TOK_QUEUE) &&
1512 				(tok[3].type == TOK_EQUALS) &&
1513 				((tok[4].type == TOK_NUMBER) || (tok[4].type == TOK_NUMBER_VALUE))) {
1514 				qt->entry = subtype2qtop(tok[2].subtype);
1515 				qt->set_default = TRUE;
1516 				switch(tok[0].subtype) {
1517 				case TOK_SUB_LEN:
1518 					qt->len = tok_getnumber(hw, qtop, &tok[4]);
1519 					break;
1520 				case TOK_SUB_CLASS:
1521 					qt->class = tok_getnumber(hw, qtop, &tok[4]);
1522 					break;
1523 				case TOK_SUB_ULP:
1524 					qt->ulp = tok_getnumber(hw, qtop, &tok[4]);
1525 					break;
1526 				default:
1527 					break;
1528 				}
1529 				qtop->inuse_count++;
1530 				tokarray->iter_idx += 5;
1531 			} else {
1532 				tok_syntax(hw, tokarray);
1533 				return -1;
1534 			}
1535 			break;
1536 
1537 		case TOK_NUMBER:
1538 		case TOK_NUMBER_VALUE: {
1539 			uint32_t rpt_count = 1;
1540 			uint32_t i;
1541 
1542 			rpt_count = tok_getnumber(hw, qtop, tok);
1543 
1544 			if (tok[1].type == TOK_LPAREN) {
1545 				uint32_t iter_idx_save;
1546 
1547 				tokarray->iter_idx += 2;
1548 
1549 				/* save token array iteration index */
1550 				iter_idx_save = tokarray->iter_idx;
1551 
1552 				for (i = 0; i < rpt_count; i++) {
1553 					uint32_t rptcount_idx = qtop->rptcount_idx;
1554 
1555 					if (qtop->rptcount_idx < ARRAY_SIZE(qtop->rptcount)) {
1556 						qtop->rptcount[qtop->rptcount_idx++] = i;
1557 					}
1558 
1559 					/* restore token array iteration index */
1560 					tokarray->iter_idx = iter_idx_save;
1561 
1562 					/* parse, append to qtop */
1563 					parse_topology(hw, tokarray, qtop);
1564 
1565 					qtop->rptcount_idx = rptcount_idx;
1566 				}
1567 			}
1568 			break;
1569 		}
1570 
1571 		case TOK_RPAREN:
1572 			tokarray->iter_idx++;
1573 			return 0;
1574 
1575 		default:
1576 			tok_syntax(hw, tokarray);
1577 			return -1;
1578 		}
1579 	}
1580 	return 0;
1581 }
1582 
1583 /**
1584  * @brief Parse queue topology string
1585  *
1586  * The queue topology object is allocated, and filled with the results of parsing the
1587  * passed in queue topology string
1588  *
1589  * @param hw pointer to HW object
1590  * @param qtop_string input queue topology string
1591  *
1592  * @return pointer to allocated QTOP object, or NULL if there was an error
1593  */
1594 ocs_hw_qtop_t *
1595 ocs_hw_qtop_parse(ocs_hw_t *hw, const char *qtop_string)
1596 {
1597 	ocs_hw_qtop_t *qtop;
1598 	tokarray_t tokarray;
1599 	const char *s;
1600 #if HW_QTOP_DEBUG
1601 	uint32_t i;
1602 	ocs_hw_qtop_entry_t *qt;
1603 #endif
1604 
1605 	ocs_log_debug(hw->os, "queue topology: %s\n", qtop_string);
1606 
1607 	/* Allocate a token array */
1608 	tokarray.tokens = ocs_malloc(hw->os, MAX_TOKENS * sizeof(*tokarray.tokens), OCS_M_ZERO | OCS_M_NOWAIT);
1609 	if (tokarray.tokens == NULL) {
1610 		return NULL;
1611 	}
1612 	tokarray.alloc_count = MAX_TOKENS;
1613 	tokarray.inuse_count = 0;
1614 	tokarray.iter_idx = 0;
1615 
1616 	/* Parse the tokens */
1617 	for (s = qtop_string; (tokarray.inuse_count < tokarray.alloc_count) &&
1618 	     ((s = tokenize(s, &tokarray.tokens[tokarray.inuse_count]))) != NULL; ) {
1619 		tokarray.inuse_count++;
1620 	}
1621 
1622 	/* Allocate a queue topology structure */
1623 	qtop = ocs_malloc(hw->os, sizeof(*qtop), OCS_M_ZERO | OCS_M_NOWAIT);
1624 	if (qtop == NULL) {
1625 		ocs_free(hw->os, tokarray.tokens, MAX_TOKENS * sizeof(*tokarray.tokens));
1626 		ocs_log_err(hw->os, "malloc qtop failed\n");
1627 		return NULL;
1628 	}
1629 	qtop->os = hw->os;
1630 
1631 	/* Allocate queue topology entries */
1632 	qtop->entries = ocs_malloc(hw->os, OCS_HW_MAX_QTOP_ENTRIES*sizeof(*qtop->entries), OCS_M_ZERO | OCS_M_NOWAIT);
1633 	if (qtop->entries == NULL) {
1634 		ocs_log_err(hw->os, "malloc qtop entries failed\n");
1635 		ocs_free(hw->os, qtop, sizeof(*qtop));
1636 		ocs_free(hw->os, tokarray.tokens, MAX_TOKENS * sizeof(*tokarray.tokens));
1637 		return NULL;
1638 	}
1639 	qtop->alloc_count = OCS_HW_MAX_QTOP_ENTRIES;
1640 	qtop->inuse_count = 0;
1641 
1642 	/* Parse the tokens */
1643 	parse_topology(hw, &tokarray, qtop);
1644 #if HW_QTOP_DEBUG
1645 	for (i = 0, qt = qtop->entries; i < qtop->inuse_count; i++, qt++) {
1646 		ocs_log_debug(hw->os, "entry %s set_df %d len %4d class %d ulp %d\n", qtopentry2s(qt->entry), qt->set_default, qt->len,
1647 		       qt->class, qt->ulp);
1648 	}
1649 #endif
1650 
1651 	/* Free the tokens array */
1652 	ocs_free(hw->os, tokarray.tokens, MAX_TOKENS * sizeof(*tokarray.tokens));
1653 
1654 	return qtop;
1655 }
1656 
1657 /**
1658  * @brief free queue topology object
1659  *
1660  * @param qtop pointer to QTOP object
1661  *
1662  * @return none
1663  */
1664 void
1665 ocs_hw_qtop_free(ocs_hw_qtop_t *qtop)
1666 {
1667 	if (qtop != NULL) {
1668 		if (qtop->entries != NULL) {
1669 			ocs_free(qtop->os, qtop->entries, qtop->alloc_count*sizeof(*qtop->entries));
1670 		}
1671 		ocs_free(qtop->os, qtop, sizeof(*qtop));
1672 	}
1673 }
1674 
1675 /* Uncomment this to turn on RQ debug */
1676 // #define ENABLE_DEBUG_RQBUF
1677 
1678 static int32_t ocs_hw_rqpair_find(ocs_hw_t *hw, uint16_t rq_id);
1679 static ocs_hw_sequence_t * ocs_hw_rqpair_get(ocs_hw_t *hw, uint16_t rqindex, uint16_t bufindex);
1680 static int32_t ocs_hw_rqpair_put(ocs_hw_t *hw, ocs_hw_sequence_t *seq);
1681 static ocs_hw_rtn_e ocs_hw_rqpair_auto_xfer_rdy_buffer_sequence_reset(ocs_hw_t *hw, ocs_hw_sequence_t *seq);
1682 
1683 /**
1684  * @brief Process receive queue completions for RQ Pair mode.
1685  *
1686  * @par Description
1687  * RQ completions are processed. In RQ pair mode, a single header and single payload
1688  * buffer are received, and passed to the function that has registered for unsolicited
1689  * callbacks.
1690  *
1691  * @param hw Hardware context.
1692  * @param cq Pointer to HW completion queue.
1693  * @param cqe Completion queue entry.
1694  *
1695  * @return Returns 0 for success, or a negative error code value for failure.
1696  */
1697 
1698 int32_t
1699 ocs_hw_rqpair_process_rq(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe)
1700 {
1701 	uint16_t rq_id;
1702 	uint32_t index;
1703 	int32_t rqindex;
1704 	int32_t	 rq_status;
1705 	uint32_t h_len;
1706 	uint32_t p_len;
1707 	ocs_hw_sequence_t *seq;
1708 
1709 	rq_status = sli_fc_rqe_rqid_and_index(&hw->sli, cqe, &rq_id, &index);
1710 	if (0 != rq_status) {
1711 		switch (rq_status) {
1712 		case SLI4_FC_ASYNC_RQ_BUF_LEN_EXCEEDED:
1713 		case SLI4_FC_ASYNC_RQ_DMA_FAILURE:
1714 			/* just get RQ buffer then return to chip */
1715 			rqindex = ocs_hw_rqpair_find(hw, rq_id);
1716 			if (rqindex < 0) {
1717 				ocs_log_test(hw->os, "status=%#x: rq_id lookup failed for id=%#x\n",
1718 					     rq_status, rq_id);
1719 				break;
1720 			}
1721 
1722 			/* get RQ buffer */
1723 			seq = ocs_hw_rqpair_get(hw, rqindex, index);
1724 
1725 			/* return to chip */
1726 			if (ocs_hw_rqpair_sequence_free(hw, seq)) {
1727 				ocs_log_test(hw->os, "status=%#x, failed to return buffers to RQ\n",
1728 					     rq_status);
1729 				break;
1730 			}
1731 			break;
1732 		case SLI4_FC_ASYNC_RQ_INSUFF_BUF_NEEDED:
1733 		case SLI4_FC_ASYNC_RQ_INSUFF_BUF_FRM_DISC:
1734 			/* since RQ buffers were not consumed, cannot return them to chip */
1735 			/* fall through */
1736 			ocs_log_debug(hw->os, "Warning: RCQE status=%#x, \n", rq_status);
1737 		default:
1738 			break;
1739 		}
1740 		return -1;
1741 	}
1742 
1743 	rqindex = ocs_hw_rqpair_find(hw, rq_id);
1744 	if (rqindex < 0) {
1745 		ocs_log_test(hw->os, "Error: rq_id lookup failed for id=%#x\n", rq_id);
1746 		return -1;
1747 	}
1748 
1749 	OCS_STAT({ hw_rq_t *rq = hw->hw_rq[hw->hw_rq_lookup[rqindex]]; rq->use_count++; rq->hdr_use_count++;
1750 		 rq->payload_use_count++;})
1751 
1752 	seq = ocs_hw_rqpair_get(hw, rqindex, index);
1753 	ocs_hw_assert(seq != NULL);
1754 
1755 	seq->hw = hw;
1756 	seq->auto_xrdy = 0;
1757 	seq->out_of_xris = 0;
1758 	seq->xri = 0;
1759 	seq->hio = NULL;
1760 
1761 	sli_fc_rqe_length(&hw->sli, cqe, &h_len, &p_len);
1762 	seq->header->dma.len = h_len;
1763 	seq->payload->dma.len = p_len;
1764 	seq->fcfi = sli_fc_rqe_fcfi(&hw->sli, cqe);
1765 	seq->hw_priv = cq->eq;
1766 
1767 	/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
1768 	if (hw->config.bounce) {
1769 		fc_header_t *hdr = seq->header->dma.virt;
1770 		uint32_t s_id = fc_be24toh(hdr->s_id);
1771 		uint32_t d_id = fc_be24toh(hdr->d_id);
1772 		uint32_t ox_id =  ocs_be16toh(hdr->ox_id);
1773 		if (hw->callback.bounce != NULL) {
1774 			(*hw->callback.bounce)(ocs_hw_unsol_process_bounce, seq, s_id, d_id, ox_id);
1775 		}
1776 	} else {
1777 		hw->callback.unsolicited(hw->args.unsolicited, seq);
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 /**
1784  * @brief Process receive queue completions for RQ Pair mode - Auto xfer rdy
1785  *
1786  * @par Description
1787  * RQ completions are processed. In RQ pair mode, a single header and single payload
1788  * buffer are received, and passed to the function that has registered for unsolicited
1789  * callbacks.
1790  *
1791  * @param hw Hardware context.
1792  * @param cq Pointer to HW completion queue.
1793  * @param cqe Completion queue entry.
1794  *
1795  * @return Returns 0 for success, or a negative error code value for failure.
1796  */
1797 
1798 int32_t
1799 ocs_hw_rqpair_process_auto_xfr_rdy_cmd(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe)
1800 {
1801 	/* Seems silly to call a SLI function to decode - use the structure directly for performance */
1802 	sli4_fc_optimized_write_cmd_cqe_t *opt_wr = (sli4_fc_optimized_write_cmd_cqe_t*)cqe;
1803 	uint16_t rq_id;
1804 	uint32_t index;
1805 	int32_t rqindex;
1806 	int32_t	 rq_status;
1807 	uint32_t h_len;
1808 	uint32_t p_len;
1809 	ocs_hw_sequence_t *seq;
1810 	uint8_t axr_lock_taken = 0;
1811 #if defined(OCS_DISC_SPIN_DELAY)
1812 	uint32_t 	delay = 0;
1813 	char 		prop_buf[32];
1814 #endif
1815 
1816 	rq_status = sli_fc_rqe_rqid_and_index(&hw->sli, cqe, &rq_id, &index);
1817 	if (0 != rq_status) {
1818 		switch (rq_status) {
1819 		case SLI4_FC_ASYNC_RQ_BUF_LEN_EXCEEDED:
1820 		case SLI4_FC_ASYNC_RQ_DMA_FAILURE:
1821 			/* just get RQ buffer then return to chip */
1822 			rqindex = ocs_hw_rqpair_find(hw, rq_id);
1823 			if (rqindex < 0) {
1824 				ocs_log_err(hw->os, "status=%#x: rq_id lookup failed for id=%#x\n",
1825 					    rq_status, rq_id);
1826 				break;
1827 			}
1828 
1829 			/* get RQ buffer */
1830 			seq = ocs_hw_rqpair_get(hw, rqindex, index);
1831 
1832 			/* return to chip */
1833 			if (ocs_hw_rqpair_sequence_free(hw, seq)) {
1834 				ocs_log_err(hw->os, "status=%#x, failed to return buffers to RQ\n",
1835 					    rq_status);
1836 				break;
1837 			}
1838 			break;
1839 		case SLI4_FC_ASYNC_RQ_INSUFF_BUF_NEEDED:
1840 		case SLI4_FC_ASYNC_RQ_INSUFF_BUF_FRM_DISC:
1841 			/* since RQ buffers were not consumed, cannot return them to chip */
1842 			ocs_log_debug(hw->os, "Warning: RCQE status=%#x, \n", rq_status);
1843 			/* fall through */
1844 		default:
1845 			break;
1846 		}
1847 		return -1;
1848 	}
1849 
1850 	rqindex = ocs_hw_rqpair_find(hw, rq_id);
1851 	if (rqindex < 0) {
1852 		ocs_log_err(hw->os, "Error: rq_id lookup failed for id=%#x\n", rq_id);
1853 		return -1;
1854 	}
1855 
1856 	OCS_STAT({ hw_rq_t *rq = hw->hw_rq[hw->hw_rq_lookup[rqindex]]; rq->use_count++; rq->hdr_use_count++;
1857 		 rq->payload_use_count++;})
1858 
1859 	seq = ocs_hw_rqpair_get(hw, rqindex, index);
1860 	ocs_hw_assert(seq != NULL);
1861 
1862 	seq->hw = hw;
1863 	seq->auto_xrdy = opt_wr->agxr;
1864 	seq->out_of_xris = opt_wr->oox;
1865 	seq->xri = opt_wr->xri;
1866 	seq->hio = NULL;
1867 
1868 	sli_fc_rqe_length(&hw->sli, cqe, &h_len, &p_len);
1869 	seq->header->dma.len = h_len;
1870 	seq->payload->dma.len = p_len;
1871 	seq->fcfi = sli_fc_rqe_fcfi(&hw->sli, cqe);
1872 	seq->hw_priv = cq->eq;
1873 
1874 	if (seq->auto_xrdy) {
1875 		fc_header_t *fc_hdr = seq->header->dma.virt;
1876 
1877 		seq->hio = ocs_hw_io_lookup(hw, seq->xri);
1878 		ocs_lock(&seq->hio->axr_lock);
1879 		axr_lock_taken = 1;
1880 
1881 		/* save the FCFI, src_id, dest_id and ox_id because we need it for the sequence object when the data comes. */
1882 		seq->hio->axr_buf->fcfi = seq->fcfi;
1883 		seq->hio->axr_buf->hdr.ox_id = fc_hdr->ox_id;
1884 		seq->hio->axr_buf->hdr.s_id = fc_hdr->s_id;
1885 		seq->hio->axr_buf->hdr.d_id = fc_hdr->d_id;
1886 		seq->hio->axr_buf->cmd_cqe = 1;
1887 
1888 		/*
1889 		 * Since auto xfer rdy is used for this IO, then clear the sequence
1890 		 * initiative bit in the header so that the upper layers wait for the
1891 		 * data. This should flow exactly like the first burst case.
1892 		 */
1893 		fc_hdr->f_ctl &= fc_htobe24(~FC_FCTL_SEQUENCE_INITIATIVE);
1894 
1895 		/* If AXR CMD CQE came before previous TRSP CQE of same XRI */
1896 		if (seq->hio->type == OCS_HW_IO_TARGET_RSP) {
1897 			seq->hio->axr_buf->call_axr_cmd = 1;
1898 			seq->hio->axr_buf->cmd_seq = seq;
1899 			goto exit_ocs_hw_rqpair_process_auto_xfr_rdy_cmd;
1900 		}
1901 	}
1902 
1903 	/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
1904 	if (hw->config.bounce) {
1905 		fc_header_t *hdr = seq->header->dma.virt;
1906 		uint32_t s_id = fc_be24toh(hdr->s_id);
1907 		uint32_t d_id = fc_be24toh(hdr->d_id);
1908 		uint32_t ox_id =  ocs_be16toh(hdr->ox_id);
1909 		if (hw->callback.bounce != NULL) {
1910 			(*hw->callback.bounce)(ocs_hw_unsol_process_bounce, seq, s_id, d_id, ox_id);
1911 		}
1912 	} else {
1913 		hw->callback.unsolicited(hw->args.unsolicited, seq);
1914 	}
1915 
1916 	if (seq->auto_xrdy) {
1917 		/* If data cqe came before cmd cqe in out of order in case of AXR */
1918 		if(seq->hio->axr_buf->data_cqe == 1) {
1919 #if defined(OCS_DISC_SPIN_DELAY)
1920 			if (ocs_get_property("disk_spin_delay", prop_buf, sizeof(prop_buf)) == 0) {
1921 				delay = ocs_strtoul(prop_buf, 0, 0);
1922 				ocs_udelay(delay);
1923 			}
1924 #endif
1925 			/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
1926 			if (hw->config.bounce) {
1927 				fc_header_t *hdr = seq->header->dma.virt;
1928 				uint32_t s_id = fc_be24toh(hdr->s_id);
1929 				uint32_t d_id = fc_be24toh(hdr->d_id);
1930 				uint32_t ox_id =  ocs_be16toh(hdr->ox_id);
1931 				if (hw->callback.bounce != NULL) {
1932 					(*hw->callback.bounce)(ocs_hw_unsol_process_bounce, &seq->hio->axr_buf->seq, s_id, d_id, ox_id);
1933 				}
1934 			} else {
1935 				hw->callback.unsolicited(hw->args.unsolicited, &seq->hio->axr_buf->seq);
1936 			}
1937 		}
1938 	}
1939 
1940 exit_ocs_hw_rqpair_process_auto_xfr_rdy_cmd:
1941 	if(axr_lock_taken) {
1942 		ocs_unlock(&seq->hio->axr_lock);
1943 	}
1944 	return 0;
1945 }
1946 
1947 /**
1948  * @brief Process CQ completions for Auto xfer rdy data phases.
1949  *
1950  * @par Description
1951  * The data is DMA'd into the data buffer posted to the SGL prior to the XRI
1952  * being assigned to an IO. When the completion is received, All of the data
1953  * is in the single buffer.
1954  *
1955  * @param hw Hardware context.
1956  * @param cq Pointer to HW completion queue.
1957  * @param cqe Completion queue entry.
1958  *
1959  * @return Returns 0 for success, or a negative error code value for failure.
1960  */
1961 
1962 int32_t
1963 ocs_hw_rqpair_process_auto_xfr_rdy_data(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe)
1964 {
1965 	/* Seems silly to call a SLI function to decode - use the structure directly for performance */
1966 	sli4_fc_optimized_write_data_cqe_t *opt_wr = (sli4_fc_optimized_write_data_cqe_t*)cqe;
1967 	ocs_hw_sequence_t *seq;
1968 	ocs_hw_io_t *io;
1969 	ocs_hw_auto_xfer_rdy_buffer_t *buf;
1970 #if defined(OCS_DISC_SPIN_DELAY)
1971 	uint32_t 	delay = 0;
1972 	char 		prop_buf[32];
1973 #endif
1974 	/* Look up the IO */
1975 	io = ocs_hw_io_lookup(hw, opt_wr->xri);
1976 	ocs_lock(&io->axr_lock);
1977 	buf = io->axr_buf;
1978 	buf->data_cqe = 1;
1979 	seq = &buf->seq;
1980 	seq->hw = hw;
1981 	seq->auto_xrdy = 1;
1982 	seq->out_of_xris = 0;
1983 	seq->xri = opt_wr->xri;
1984 	seq->hio = io;
1985 	seq->header = &buf->header;
1986 	seq->payload = &buf->payload;
1987 
1988 	seq->header->dma.len = sizeof(fc_header_t);
1989 	seq->payload->dma.len = opt_wr->total_data_placed;
1990 	seq->fcfi = buf->fcfi;
1991 	seq->hw_priv = cq->eq;
1992 
1993 	if (opt_wr->status == SLI4_FC_WCQE_STATUS_SUCCESS) {
1994 		seq->status = OCS_HW_UNSOL_SUCCESS;
1995 	} else if (opt_wr->status == SLI4_FC_WCQE_STATUS_REMOTE_STOP) {
1996 		seq->status = OCS_HW_UNSOL_ABTS_RCVD;
1997 	} else {
1998 		seq->status = OCS_HW_UNSOL_ERROR;
1999 	}
2000 
2001  	/* If AXR CMD CQE came before previous TRSP CQE of same XRI */
2002 	if(io->type == OCS_HW_IO_TARGET_RSP) {
2003 		io->axr_buf->call_axr_data = 1;
2004 		goto exit_ocs_hw_rqpair_process_auto_xfr_rdy_data;
2005 	}
2006 
2007 	if(!buf->cmd_cqe) {
2008 		/* if data cqe came before cmd cqe, return here, cmd cqe will handle */
2009 		goto exit_ocs_hw_rqpair_process_auto_xfr_rdy_data;
2010 	}
2011 #if defined(OCS_DISC_SPIN_DELAY)
2012 	if (ocs_get_property("disk_spin_delay", prop_buf, sizeof(prop_buf)) == 0) {
2013 		delay = ocs_strtoul(prop_buf, 0, 0);
2014 		ocs_udelay(delay);
2015 	}
2016 #endif
2017 
2018 	/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
2019 	if (hw->config.bounce) {
2020 		fc_header_t *hdr = seq->header->dma.virt;
2021 		uint32_t s_id = fc_be24toh(hdr->s_id);
2022 		uint32_t d_id = fc_be24toh(hdr->d_id);
2023 		uint32_t ox_id =  ocs_be16toh(hdr->ox_id);
2024 		if (hw->callback.bounce != NULL) {
2025 			(*hw->callback.bounce)(ocs_hw_unsol_process_bounce, seq, s_id, d_id, ox_id);
2026 		}
2027 	} else {
2028 		hw->callback.unsolicited(hw->args.unsolicited, seq);
2029 	}
2030 
2031 exit_ocs_hw_rqpair_process_auto_xfr_rdy_data:
2032 	ocs_unlock(&io->axr_lock);
2033 	return 0;
2034 }
2035 
2036 /**
2037  * @brief Return pointer to RQ buffer entry.
2038  *
2039  * @par Description
2040  * Returns a pointer to the RQ buffer entry given by @c rqindex and @c bufindex.
2041  *
2042  * @param hw Hardware context.
2043  * @param rqindex Index of the RQ that is being processed.
2044  * @param bufindex Index into the RQ that is being processed.
2045  *
2046  * @return Pointer to the sequence structure, or NULL otherwise.
2047  */
2048 static ocs_hw_sequence_t *
2049 ocs_hw_rqpair_get(ocs_hw_t *hw, uint16_t rqindex, uint16_t bufindex)
2050 {
2051 	sli4_queue_t *rq_hdr = &hw->rq[rqindex];
2052 	sli4_queue_t *rq_payload = &hw->rq[rqindex+1];
2053 	ocs_hw_sequence_t *seq = NULL;
2054 	hw_rq_t *rq = hw->hw_rq[hw->hw_rq_lookup[rqindex]];
2055 
2056 #if defined(ENABLE_DEBUG_RQBUF)
2057 	uint64_t rqbuf_debug_value = 0xdead0000 | ((rq->id & 0xf) << 12) | (bufindex & 0xfff);
2058 #endif
2059 
2060 	if (bufindex >= rq_hdr->length) {
2061 		ocs_log_err(hw->os, "RQ index %d bufindex %d exceed ring length %d for id %d\n",
2062 			    rqindex, bufindex, rq_hdr->length, rq_hdr->id);
2063 		return NULL;
2064 	}
2065 
2066 	sli_queue_lock(rq_hdr);
2067 	sli_queue_lock(rq_payload);
2068 
2069 #if defined(ENABLE_DEBUG_RQBUF)
2070 	/* Put a debug value into the rq, to track which entries are still valid */
2071 	_sli_queue_poke(&hw->sli, rq_hdr, bufindex, (uint8_t *)&rqbuf_debug_value);
2072 	_sli_queue_poke(&hw->sli, rq_payload, bufindex, (uint8_t *)&rqbuf_debug_value);
2073 #endif
2074 
2075 	seq = rq->rq_tracker[bufindex];
2076 	rq->rq_tracker[bufindex] = NULL;
2077 
2078 	if (seq == NULL ) {
2079 		ocs_log_err(hw->os, "RQ buffer NULL, rqindex %d, bufindex %d, current q index = %d\n",
2080 			    rqindex, bufindex, rq_hdr->index);
2081 	}
2082 
2083 	sli_queue_unlock(rq_payload);
2084 	sli_queue_unlock(rq_hdr);
2085 	return seq;
2086 }
2087 
2088 /**
2089  * @brief Posts an RQ buffer to a queue and update the verification structures
2090  *
2091  * @param hw		hardware context
2092  * @param seq Pointer to sequence object.
2093  *
2094  * @return Returns 0 on success, or a non-zero value otherwise.
2095  */
2096 static int32_t
2097 ocs_hw_rqpair_put(ocs_hw_t *hw, ocs_hw_sequence_t *seq)
2098 {
2099 	sli4_queue_t *rq_hdr = &hw->rq[seq->header->rqindex];
2100 	sli4_queue_t *rq_payload = &hw->rq[seq->payload->rqindex];
2101 	uint32_t hw_rq_index = hw->hw_rq_lookup[seq->header->rqindex];
2102 	hw_rq_t *rq = hw->hw_rq[hw_rq_index];
2103 	uint32_t     phys_hdr[2];
2104 	uint32_t     phys_payload[2];
2105 	int32_t      qindex_hdr;
2106 	int32_t      qindex_payload;
2107 
2108 	/* Update the RQ verification lookup tables */
2109 	phys_hdr[0] = ocs_addr32_hi(seq->header->dma.phys);
2110 	phys_hdr[1] = ocs_addr32_lo(seq->header->dma.phys);
2111 	phys_payload[0] = ocs_addr32_hi(seq->payload->dma.phys);
2112 	phys_payload[1] = ocs_addr32_lo(seq->payload->dma.phys);
2113 
2114 	sli_queue_lock(rq_hdr);
2115 	sli_queue_lock(rq_payload);
2116 
2117 	/*
2118 	 * Note: The header must be posted last for buffer pair mode because
2119 	 *       posting on the header queue posts the payload queue as well.
2120 	 *       We do not ring the payload queue independently in RQ pair mode.
2121 	 */
2122 	qindex_payload = _sli_queue_write(&hw->sli, rq_payload, (void *)phys_payload);
2123 	qindex_hdr = _sli_queue_write(&hw->sli, rq_hdr, (void *)phys_hdr);
2124 	if (qindex_hdr < 0 ||
2125 	    qindex_payload < 0) {
2126 		ocs_log_err(hw->os, "RQ_ID=%#x write failed\n", rq_hdr->id);
2127 		sli_queue_unlock(rq_payload);
2128 		sli_queue_unlock(rq_hdr);
2129 		return OCS_HW_RTN_ERROR;
2130 	}
2131 
2132 	/* ensure the indexes are the same */
2133 	ocs_hw_assert(qindex_hdr == qindex_payload);
2134 
2135 	/* Update the lookup table */
2136 	if (rq->rq_tracker[qindex_hdr] == NULL) {
2137 		rq->rq_tracker[qindex_hdr] = seq;
2138 	} else {
2139 		ocs_log_test(hw->os, "expected rq_tracker[%d][%d] buffer to be NULL\n",
2140 			     hw_rq_index, qindex_hdr);
2141 	}
2142 
2143 	sli_queue_unlock(rq_payload);
2144 	sli_queue_unlock(rq_hdr);
2145 	return OCS_HW_RTN_SUCCESS;
2146 }
2147 
2148 /**
2149  * @brief Return RQ buffers (while in RQ pair mode).
2150  *
2151  * @par Description
2152  * The header and payload buffers are returned to the Receive Queue.
2153  *
2154  * @param hw Hardware context.
2155  * @param seq Header/payload sequence buffers.
2156  *
2157  * @return Returns OCS_HW_RTN_SUCCESS on success, or an error code value on failure.
2158  */
2159 
2160 ocs_hw_rtn_e
2161 ocs_hw_rqpair_sequence_free(ocs_hw_t *hw, ocs_hw_sequence_t *seq)
2162 {
2163 	ocs_hw_rtn_e   rc = OCS_HW_RTN_SUCCESS;
2164 
2165 	/* Check for auto xfer rdy dummy buffers and call the proper release function. */
2166 	if (seq->header->rqindex == OCS_HW_RQ_INDEX_DUMMY_HDR) {
2167 		return ocs_hw_rqpair_auto_xfer_rdy_buffer_sequence_reset(hw, seq);
2168 	}
2169 
2170 	/*
2171 	 * Post the data buffer first. Because in RQ pair mode, ringing the
2172 	 * doorbell of the header ring will post the data buffer as well.
2173 	 */
2174 	if (ocs_hw_rqpair_put(hw, seq)) {
2175 		ocs_log_err(hw->os, "error writing buffers\n");
2176 		return OCS_HW_RTN_ERROR;
2177 	}
2178 
2179 	return rc;
2180 }
2181 
2182 /**
2183  * @brief Find the RQ index of RQ_ID.
2184  *
2185  * @param hw Hardware context.
2186  * @param rq_id RQ ID to find.
2187  *
2188  * @return Returns the RQ index, or -1 if not found
2189  */
2190 static inline int32_t
2191 ocs_hw_rqpair_find(ocs_hw_t *hw, uint16_t rq_id)
2192 {
2193 	return ocs_hw_queue_hash_find(hw->rq_hash, rq_id);
2194 }
2195 
2196 /**
2197  * @ingroup devInitShutdown
2198  * @brief Allocate auto xfer rdy buffers.
2199  *
2200  * @par Description
2201  * Allocates the auto xfer rdy buffers and places them on the free list.
2202  *
2203  * @param hw Hardware context allocated by the caller.
2204  * @param num_buffers Number of buffers to allocate.
2205  *
2206  * @return Returns 0 on success, or a non-zero value on failure.
2207  */
2208 ocs_hw_rtn_e
2209 ocs_hw_rqpair_auto_xfer_rdy_buffer_alloc(ocs_hw_t *hw, uint32_t num_buffers)
2210 {
2211 	ocs_hw_auto_xfer_rdy_buffer_t *buf;
2212 	uint32_t i;
2213 
2214 	hw->auto_xfer_rdy_buf_pool = ocs_pool_alloc(hw->os, sizeof(ocs_hw_auto_xfer_rdy_buffer_t), num_buffers, FALSE);
2215 	if (hw->auto_xfer_rdy_buf_pool == NULL) {
2216 		ocs_log_err(hw->os, "Failure to allocate auto xfer ready buffer pool\n");
2217 		return OCS_HW_RTN_NO_MEMORY;
2218 	}
2219 
2220 	for (i = 0; i < num_buffers; i++) {
2221 		/* allocate the wrapper object */
2222 		buf = ocs_pool_get_instance(hw->auto_xfer_rdy_buf_pool, i);
2223 		ocs_hw_assert(buf != NULL);
2224 
2225 		/* allocate the auto xfer ready buffer */
2226 		if (ocs_dma_alloc(hw->os, &buf->payload.dma, hw->config.auto_xfer_rdy_size, OCS_MIN_DMA_ALIGNMENT)) {
2227 			ocs_log_err(hw->os, "DMA allocation failed\n");
2228 			ocs_free(hw->os, buf, sizeof(*buf));
2229 			return OCS_HW_RTN_NO_MEMORY;
2230 		}
2231 
2232 		/* build a fake data header in big endian */
2233 		buf->hdr.info = FC_RCTL_INFO_SOL_DATA;
2234 		buf->hdr.r_ctl = FC_RCTL_FC4_DATA;
2235 		buf->hdr.type = FC_TYPE_FCP;
2236 		buf->hdr.f_ctl = fc_htobe24(FC_FCTL_EXCHANGE_RESPONDER |
2237 					    FC_FCTL_FIRST_SEQUENCE |
2238 					    FC_FCTL_LAST_SEQUENCE |
2239 					    FC_FCTL_END_SEQUENCE |
2240 					    FC_FCTL_SEQUENCE_INITIATIVE);
2241 
2242 		/* build the fake header DMA object */
2243 		buf->header.rqindex = OCS_HW_RQ_INDEX_DUMMY_HDR;
2244 		buf->header.dma.virt = &buf->hdr;
2245 		buf->header.dma.alloc = buf;
2246 		buf->header.dma.size = sizeof(buf->hdr);
2247 		buf->header.dma.len = sizeof(buf->hdr);
2248 
2249 		buf->payload.rqindex = OCS_HW_RQ_INDEX_DUMMY_DATA;
2250 	}
2251 	return OCS_HW_RTN_SUCCESS;
2252 }
2253 
2254 /**
2255  * @ingroup devInitShutdown
2256  * @brief Post Auto xfer rdy buffers to the XRIs posted with DNRX.
2257  *
2258  * @par Description
2259  * When new buffers are freed, check existing XRIs waiting for buffers.
2260  *
2261  * @param hw Hardware context allocated by the caller.
2262  */
2263 static void
2264 ocs_hw_rqpair_auto_xfer_rdy_dnrx_check(ocs_hw_t *hw)
2265 {
2266 	ocs_hw_io_t *io;
2267 	int32_t rc;
2268 
2269 	ocs_lock(&hw->io_lock);
2270 
2271 	while (!ocs_list_empty(&hw->io_port_dnrx)) {
2272 		io = ocs_list_remove_head(&hw->io_port_dnrx);
2273 		rc = ocs_hw_reque_xri(hw, io);
2274 		if(rc) {
2275 			break;
2276 		}
2277 	}
2278 
2279 	ocs_unlock(&hw->io_lock);
2280 }
2281 
2282 /**
2283  * @brief Called when the POST_SGL_PAGE command completes.
2284  *
2285  * @par Description
2286  * Free the mailbox command buffer.
2287  *
2288  * @param hw Hardware context.
2289  * @param status Status field from the mbox completion.
2290  * @param mqe Mailbox response structure.
2291  * @param arg Pointer to a callback function that signals the caller that the command is done.
2292  *
2293  * @return Returns 0.
2294  */
2295 static int32_t
2296 ocs_hw_rqpair_auto_xfer_rdy_move_to_port_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void  *arg)
2297 {
2298 	if (status != 0) {
2299 		ocs_log_debug(hw->os, "Status 0x%x\n", status);
2300 	}
2301 
2302 	ocs_free(hw->os, mqe, SLI4_BMBX_SIZE);
2303 	return 0;
2304 }
2305 
2306 /**
2307  * @brief Prepares an XRI to move to the chip.
2308  *
2309  * @par Description
2310  * Puts the data SGL into the SGL list for the IO object and possibly registers
2311  * an SGL list for the XRI. Since both the POST_XRI and POST_SGL_PAGES commands are
2312  * mailbox commands, we don't need to wait for completion before preceding.
2313  *
2314  * @param hw Hardware context allocated by the caller.
2315  * @param io Pointer to the IO object.
2316  *
2317  * @return Returns OCS_HW_RTN_SUCCESS for success, or an error code value for failure.
2318  */
2319 ocs_hw_rtn_e
2320 ocs_hw_rqpair_auto_xfer_rdy_move_to_port(ocs_hw_t *hw, ocs_hw_io_t *io)
2321 {
2322 	/* We only need to preregister the SGL if it has not yet been done. */
2323 	if (!sli_get_sgl_preregister(&hw->sli)) {
2324 		uint8_t	*post_sgl;
2325 		ocs_dma_t *psgls = &io->def_sgl;
2326 		ocs_dma_t **sgls = &psgls;
2327 
2328 		/* non-local buffer required for mailbox queue */
2329 		post_sgl = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
2330 		if (post_sgl == NULL) {
2331 			ocs_log_err(hw->os, "no buffer for command\n");
2332 			return OCS_HW_RTN_NO_MEMORY;
2333 		}
2334 		if (sli_cmd_fcoe_post_sgl_pages(&hw->sli, post_sgl, SLI4_BMBX_SIZE,
2335 						io->indicator, 1, sgls, NULL, NULL)) {
2336 			if (ocs_hw_command(hw, post_sgl, OCS_CMD_NOWAIT,
2337 					    ocs_hw_rqpair_auto_xfer_rdy_move_to_port_cb, NULL)) {
2338 				ocs_free(hw->os, post_sgl, SLI4_BMBX_SIZE);
2339 				ocs_log_err(hw->os, "SGL post failed\n");
2340 				return OCS_HW_RTN_ERROR;
2341 			}
2342 		}
2343 	}
2344 
2345 	ocs_lock(&hw->io_lock);
2346 	if (ocs_hw_rqpair_auto_xfer_rdy_buffer_post(hw, io, 0) != 0) { /* DNRX set - no buffer */
2347 		ocs_unlock(&hw->io_lock);
2348 		return OCS_HW_RTN_ERROR;
2349 	}
2350 	ocs_unlock(&hw->io_lock);
2351 	return OCS_HW_RTN_SUCCESS;
2352 }
2353 
2354 /**
2355  * @brief Prepares an XRI to move back to the host.
2356  *
2357  * @par Description
2358  * Releases any attached buffer back to the pool.
2359  *
2360  * @param hw Hardware context allocated by the caller.
2361  * @param io Pointer to the IO object.
2362  */
2363 void
2364 ocs_hw_rqpair_auto_xfer_rdy_move_to_host(ocs_hw_t *hw, ocs_hw_io_t *io)
2365 {
2366 	if (io->axr_buf != NULL) {
2367 		ocs_lock(&hw->io_lock);
2368 			/* check  list and remove if there */
2369 			if (ocs_list_on_list(&io->dnrx_link)) {
2370 				ocs_list_remove(&hw->io_port_dnrx, io);
2371 				io->auto_xfer_rdy_dnrx = 0;
2372 
2373 				/* release the count for waiting for a buffer */
2374 				ocs_hw_io_free(hw, io);
2375 			}
2376 
2377 			ocs_pool_put(hw->auto_xfer_rdy_buf_pool, io->axr_buf);
2378 			io->axr_buf = NULL;
2379 		ocs_unlock(&hw->io_lock);
2380 
2381 		ocs_hw_rqpair_auto_xfer_rdy_dnrx_check(hw);
2382 	}
2383 	return;
2384 }
2385 
2386 /**
2387  * @brief Posts an auto xfer rdy buffer to an IO.
2388  *
2389  * @par Description
2390  * Puts the data SGL into the SGL list for the IO object
2391  * @n @name
2392  * @b Note: io_lock must be held.
2393  *
2394  * @param hw Hardware context allocated by the caller.
2395  * @param io Pointer to the IO object.
2396  *
2397  * @return Returns the value of DNRX bit in the TRSP and ABORT WQEs.
2398  */
2399 uint8_t
2400 ocs_hw_rqpair_auto_xfer_rdy_buffer_post(ocs_hw_t *hw, ocs_hw_io_t *io, int reuse_buf)
2401 {
2402 	ocs_hw_auto_xfer_rdy_buffer_t *buf;
2403 	sli4_sge_t	*data;
2404 
2405 	if(!reuse_buf) {
2406 		buf = ocs_pool_get(hw->auto_xfer_rdy_buf_pool);
2407 		io->axr_buf = buf;
2408 	}
2409 
2410 	data = io->def_sgl.virt;
2411 	data[0].sge_type = SLI4_SGE_TYPE_SKIP;
2412 	data[0].last = 0;
2413 
2414 	/*
2415 	 * Note: if we are doing DIF assists, then the SGE[1] must contain the
2416 	 * DI_SEED SGE. The host is responsible for programming:
2417 	 *   SGE Type (Word 2, bits 30:27)
2418 	 *   Replacement App Tag (Word 2 bits 15:0)
2419 	 *   App Tag (Word 3 bits 15:0)
2420 	 *   New Ref Tag (Word 3 bit 23)
2421 	 *   Metadata Enable (Word 3 bit 20)
2422 	 *   Auto-Increment RefTag (Word 3 bit 19)
2423 	 *   Block Size (Word 3 bits 18:16)
2424 	 * The following fields are managed by the SLI Port:
2425 	 *    Ref Tag Compare (Word 0)
2426 	 *    Replacement Ref Tag (Word 1) - In not the LBA
2427 	 *    NA (Word 2 bit 25)
2428 	 *    Opcode RX (Word 3 bits 27:24)
2429 	 *    Checksum Enable (Word 3 bit 22)
2430 	 *    RefTag Enable (Word 3 bit 21)
2431 	 *
2432 	 * The first two SGLs are cleared by ocs_hw_io_init_sges(), so assume eveything is cleared.
2433 	 */
2434 	if (hw->config.auto_xfer_rdy_p_type) {
2435 		sli4_diseed_sge_t *diseed = (sli4_diseed_sge_t*)&data[1];
2436 
2437 		diseed->sge_type = SLI4_SGE_TYPE_DISEED;
2438 		diseed->repl_app_tag = hw->config.auto_xfer_rdy_app_tag_value;
2439 		diseed->app_tag_cmp = hw->config.auto_xfer_rdy_app_tag_value;
2440 		diseed->check_app_tag = hw->config.auto_xfer_rdy_app_tag_valid;
2441 		diseed->auto_incr_ref_tag = TRUE; /* Always the LBA */
2442 		diseed->dif_blk_size = hw->config.auto_xfer_rdy_blk_size_chip;
2443 	} else {
2444 		data[1].sge_type = SLI4_SGE_TYPE_SKIP;
2445 		data[1].last = 0;
2446 	}
2447 
2448 	data[2].sge_type = SLI4_SGE_TYPE_DATA;
2449 	data[2].buffer_address_high = ocs_addr32_hi(io->axr_buf->payload.dma.phys);
2450 	data[2].buffer_address_low  = ocs_addr32_lo(io->axr_buf->payload.dma.phys);
2451 	data[2].buffer_length = io->axr_buf->payload.dma.size;
2452 	data[2].last = TRUE;
2453 	data[3].sge_type = SLI4_SGE_TYPE_SKIP;
2454 
2455 	return 0;
2456 }
2457 
2458 /**
2459  * @brief Return auto xfer ready buffers (while in RQ pair mode).
2460  *
2461  * @par Description
2462  * The header and payload buffers are returned to the auto xfer rdy pool.
2463  *
2464  * @param hw Hardware context.
2465  * @param seq Header/payload sequence buffers.
2466  *
2467  * @return Returns OCS_HW_RTN_SUCCESS for success, an error code value for failure.
2468  */
2469 
2470 static ocs_hw_rtn_e
2471 ocs_hw_rqpair_auto_xfer_rdy_buffer_sequence_reset(ocs_hw_t *hw, ocs_hw_sequence_t *seq)
2472 {
2473 	ocs_hw_auto_xfer_rdy_buffer_t *buf = seq->header->dma.alloc;
2474 
2475 	buf->data_cqe = 0;
2476 	buf->cmd_cqe = 0;
2477 	buf->fcfi = 0;
2478 	buf->call_axr_cmd = 0;
2479 	buf->call_axr_data = 0;
2480 
2481 	/* build a fake data header in big endian */
2482 	buf->hdr.info = FC_RCTL_INFO_SOL_DATA;
2483 	buf->hdr.r_ctl = FC_RCTL_FC4_DATA;
2484 	buf->hdr.type = FC_TYPE_FCP;
2485 	buf->hdr.f_ctl = fc_htobe24(FC_FCTL_EXCHANGE_RESPONDER |
2486 					FC_FCTL_FIRST_SEQUENCE |
2487 					FC_FCTL_LAST_SEQUENCE |
2488 					FC_FCTL_END_SEQUENCE |
2489 					FC_FCTL_SEQUENCE_INITIATIVE);
2490 
2491 	/* build the fake header DMA object */
2492 	buf->header.rqindex = OCS_HW_RQ_INDEX_DUMMY_HDR;
2493 	buf->header.dma.virt = &buf->hdr;
2494 	buf->header.dma.alloc = buf;
2495 	buf->header.dma.size = sizeof(buf->hdr);
2496 	buf->header.dma.len = sizeof(buf->hdr);
2497 	buf->payload.rqindex = OCS_HW_RQ_INDEX_DUMMY_DATA;
2498 
2499 	ocs_hw_rqpair_auto_xfer_rdy_dnrx_check(hw);
2500 
2501 	return OCS_HW_RTN_SUCCESS;
2502 }
2503 
2504 /**
2505  * @ingroup devInitShutdown
2506  * @brief Free auto xfer rdy buffers.
2507  *
2508  * @par Description
2509  * Frees the auto xfer rdy buffers.
2510  *
2511  * @param hw Hardware context allocated by the caller.
2512  *
2513  * @return Returns 0 on success, or a non-zero value on failure.
2514  */
2515 static void
2516 ocs_hw_rqpair_auto_xfer_rdy_buffer_free(ocs_hw_t *hw)
2517 {
2518 	ocs_hw_auto_xfer_rdy_buffer_t *buf;
2519 	uint32_t i;
2520 
2521 	if (hw->auto_xfer_rdy_buf_pool != NULL) {
2522 		ocs_lock(&hw->io_lock);
2523 			for (i = 0; i < ocs_pool_get_count(hw->auto_xfer_rdy_buf_pool); i++) {
2524 				buf = ocs_pool_get_instance(hw->auto_xfer_rdy_buf_pool, i);
2525 				if (buf != NULL) {
2526 					ocs_dma_free(hw->os, &buf->payload.dma);
2527 				}
2528 			}
2529 		ocs_unlock(&hw->io_lock);
2530 
2531 		ocs_pool_free(hw->auto_xfer_rdy_buf_pool);
2532 		hw->auto_xfer_rdy_buf_pool = NULL;
2533 	}
2534 }
2535 
2536 /**
2537  * @ingroup devInitShutdown
2538  * @brief Configure the rq_pair function from ocs_hw_init().
2539  *
2540  * @par Description
2541  * Allocates the buffers to auto xfer rdy and posts initial XRIs for this feature.
2542  *
2543  * @param hw Hardware context allocated by the caller.
2544  *
2545  * @return Returns 0 on success, or a non-zero value on failure.
2546  */
2547 ocs_hw_rtn_e
2548 ocs_hw_rqpair_init(ocs_hw_t *hw)
2549 {
2550 	ocs_hw_rtn_e	rc;
2551 	uint32_t xris_posted;
2552 
2553 	ocs_log_debug(hw->os, "RQ Pair mode\n");
2554 
2555 	/*
2556 	 * If we get this far, the auto XFR_RDY feature was enabled successfully, otherwise ocs_hw_init() would
2557 	 * return with an error. So allocate the buffers based on the initial XRI pool required to support this
2558 	 * feature.
2559 	 */
2560 	if (sli_get_auto_xfer_rdy_capable(&hw->sli) &&
2561 	    hw->config.auto_xfer_rdy_size > 0) {
2562 		if (hw->auto_xfer_rdy_buf_pool == NULL) {
2563 			/*
2564 			 * Allocate one more buffer than XRIs so that when all the XRIs are in use, we still have
2565 			 * one to post back for the case where the response phase is started in the context of
2566 			 * the data completion.
2567 			 */
2568 			rc = ocs_hw_rqpair_auto_xfer_rdy_buffer_alloc(hw, hw->config.auto_xfer_rdy_xri_cnt + 1);
2569 			if (rc != OCS_HW_RTN_SUCCESS) {
2570 				return rc;
2571 			}
2572 		} else {
2573 			ocs_pool_reset(hw->auto_xfer_rdy_buf_pool);
2574 		}
2575 
2576 		/* Post the auto XFR_RDY XRIs */
2577 		xris_posted = ocs_hw_xri_move_to_port_owned(hw, hw->config.auto_xfer_rdy_xri_cnt);
2578 		if (xris_posted != hw->config.auto_xfer_rdy_xri_cnt) {
2579 			ocs_log_err(hw->os, "post_xri failed, only posted %d XRIs\n", xris_posted);
2580 			return OCS_HW_RTN_ERROR;
2581 		}
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 /**
2588  * @ingroup devInitShutdown
2589  * @brief Tear down the rq_pair function from ocs_hw_teardown().
2590  *
2591  * @par Description
2592  * Frees the buffers to auto xfer rdy.
2593  *
2594  * @param hw Hardware context allocated by the caller.
2595  */
2596 void
2597 ocs_hw_rqpair_teardown(ocs_hw_t *hw)
2598 {
2599 	/* We need to free any auto xfer ready buffers */
2600 	ocs_hw_rqpair_auto_xfer_rdy_buffer_free(hw);
2601 }
2602