xref: /freebsd/sys/dev/nvme/nvme_qpair.c (revision d316de24faa7453118a90fb0e9839e8026e36a4e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/bus.h>
31 #include <sys/conf.h>
32 #include <sys/domainset.h>
33 #include <sys/proc.h>
34 
35 #include <dev/pci/pcivar.h>
36 
37 #include "nvme_private.h"
38 
39 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
40 #define DO_NOT_RETRY	1
41 
42 static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
43 					   struct nvme_request *req);
44 static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
45 
46 #define DEFAULT_INDEX	256
47 #define DEFAULT_ENTRY(x)	[DEFAULT_INDEX] = x
48 #define OPC_ENTRY(x)		[NVME_OPC_ ## x] = #x
49 
50 static const char *admin_opcode[DEFAULT_INDEX + 1] = {
51 	OPC_ENTRY(DELETE_IO_SQ),
52 	OPC_ENTRY(CREATE_IO_SQ),
53 	OPC_ENTRY(GET_LOG_PAGE),
54 	OPC_ENTRY(DELETE_IO_CQ),
55 	OPC_ENTRY(CREATE_IO_CQ),
56 	OPC_ENTRY(IDENTIFY),
57 	OPC_ENTRY(ABORT),
58 	OPC_ENTRY(SET_FEATURES),
59 	OPC_ENTRY(GET_FEATURES),
60 	OPC_ENTRY(ASYNC_EVENT_REQUEST),
61 	OPC_ENTRY(NAMESPACE_MANAGEMENT),
62 	OPC_ENTRY(FIRMWARE_ACTIVATE),
63 	OPC_ENTRY(FIRMWARE_IMAGE_DOWNLOAD),
64 	OPC_ENTRY(DEVICE_SELF_TEST),
65 	OPC_ENTRY(NAMESPACE_ATTACHMENT),
66 	OPC_ENTRY(KEEP_ALIVE),
67 	OPC_ENTRY(DIRECTIVE_SEND),
68 	OPC_ENTRY(DIRECTIVE_RECEIVE),
69 	OPC_ENTRY(VIRTUALIZATION_MANAGEMENT),
70 	OPC_ENTRY(NVME_MI_SEND),
71 	OPC_ENTRY(NVME_MI_RECEIVE),
72 	OPC_ENTRY(CAPACITY_MANAGEMENT),
73 	OPC_ENTRY(LOCKDOWN),
74 	OPC_ENTRY(DOORBELL_BUFFER_CONFIG),
75 	OPC_ENTRY(FABRICS_COMMANDS),
76 	OPC_ENTRY(FORMAT_NVM),
77 	OPC_ENTRY(SECURITY_SEND),
78 	OPC_ENTRY(SECURITY_RECEIVE),
79 	OPC_ENTRY(SANITIZE),
80 	OPC_ENTRY(GET_LBA_STATUS),
81 	DEFAULT_ENTRY("ADMIN COMMAND"),
82 };
83 
84 static const char *io_opcode[DEFAULT_INDEX + 1] = {
85 	OPC_ENTRY(FLUSH),
86 	OPC_ENTRY(WRITE),
87 	OPC_ENTRY(READ),
88 	OPC_ENTRY(WRITE_UNCORRECTABLE),
89 	OPC_ENTRY(COMPARE),
90 	OPC_ENTRY(WRITE_ZEROES),
91 	OPC_ENTRY(DATASET_MANAGEMENT),
92 	OPC_ENTRY(VERIFY),
93 	OPC_ENTRY(RESERVATION_REGISTER),
94 	OPC_ENTRY(RESERVATION_REPORT),
95 	OPC_ENTRY(RESERVATION_ACQUIRE),
96 	OPC_ENTRY(RESERVATION_RELEASE),
97 	OPC_ENTRY(COPY),
98 	DEFAULT_ENTRY("IO COMMAND"),
99 };
100 
101 static const char *
102 get_opcode_string(const char *op[DEFAULT_INDEX + 1], uint16_t opc)
103 {
104 	const char *nm = opc < DEFAULT_INDEX ? op[opc] : op[DEFAULT_INDEX];
105 
106 	return (nm != NULL ? nm : op[DEFAULT_INDEX]);
107 }
108 
109 static const char *
110 get_admin_opcode_string(uint16_t opc)
111 {
112 	return (get_opcode_string(admin_opcode, opc));
113 }
114 
115 static const char *
116 get_io_opcode_string(uint16_t opc)
117 {
118 	return (get_opcode_string(io_opcode, opc));
119 }
120 
121 static void
122 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
123     struct nvme_command *cmd)
124 {
125 
126 	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
127 	    "cdw10:%08x cdw11:%08x\n",
128 	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
129 	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
130 }
131 
132 static void
133 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
134     struct nvme_command *cmd)
135 {
136 
137 	switch (cmd->opc) {
138 	case NVME_OPC_WRITE:
139 	case NVME_OPC_READ:
140 	case NVME_OPC_WRITE_UNCORRECTABLE:
141 	case NVME_OPC_COMPARE:
142 	case NVME_OPC_WRITE_ZEROES:
143 	case NVME_OPC_VERIFY:
144 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
145 		    "lba:%llu len:%d\n",
146 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
147 		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
148 		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
149 		break;
150 	case NVME_OPC_FLUSH:
151 	case NVME_OPC_DATASET_MANAGEMENT:
152 	case NVME_OPC_RESERVATION_REGISTER:
153 	case NVME_OPC_RESERVATION_REPORT:
154 	case NVME_OPC_RESERVATION_ACQUIRE:
155 	case NVME_OPC_RESERVATION_RELEASE:
156 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
157 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
158 		break;
159 	default:
160 		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
161 		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
162 		    cmd->cid, le32toh(cmd->nsid));
163 		break;
164 	}
165 }
166 
167 void
168 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
169 {
170 	if (qpair->id == 0)
171 		nvme_admin_qpair_print_command(qpair, cmd);
172 	else
173 		nvme_io_qpair_print_command(qpair, cmd);
174 	if (nvme_verbose_cmd_dump) {
175 		nvme_printf(qpair->ctrlr,
176 		    "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
177 		    cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
178 		    (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
179 		nvme_printf(qpair->ctrlr,
180 		    "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
181 		    cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
182 		    cmd->cdw15);
183 	}
184 }
185 
186 struct nvme_status_string {
187 	uint16_t	sc;
188 	const char *	str;
189 };
190 
191 static struct nvme_status_string generic_status[] = {
192 	{ NVME_SC_SUCCESS, "SUCCESS" },
193 	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
194 	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
195 	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
196 	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
197 	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
198 	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
199 	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
200 	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
201 	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
202 	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
203 	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
204 	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
205 	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
206 	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
207 	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
208 	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
209 	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
210 	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
211 	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
212 	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
213 	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
214 	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
215 	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
216 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
217 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
218 	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
219 	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
220 	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
221 	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
222 	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
223 	{ NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
224 	{ NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
225 	{ NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
226 
227 	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
228 	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
229 	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
230 	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
231 	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
232 	{ 0xFFFF, "GENERIC" }
233 };
234 
235 static struct nvme_status_string command_specific_status[] = {
236 	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
237 	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
238 	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
239 	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
240 	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
241 	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
242 	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
243 	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
244 	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
245 	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
246 	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
247 	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
248 	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
249 	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
250 	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
251 	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
252 	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
253 	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
254 	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
255 	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
256 	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
257 	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
258 	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
259 	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
260 	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
261 	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
262 	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
263 	{ NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
264 	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
265 	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
266 	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
267 	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
268 	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
269 	{ NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
270 	{ NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
271 	{ NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
272 
273 	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
274 	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
275 	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
276 	{ 0xFFFF, "COMMAND SPECIFIC" }
277 };
278 
279 static struct nvme_status_string media_error_status[] = {
280 	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
281 	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
282 	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
283 	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
284 	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
285 	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
286 	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
287 	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
288 	{ 0xFFFF, "MEDIA ERROR" }
289 };
290 
291 static struct nvme_status_string path_related_status[] = {
292 	{ NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
293 	{ NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
294 	{ NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
295 	{ NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
296 	{ NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
297 	{ NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
298 	{ NVME_SC_COMMAND_ABORTED_BY_HOST, "COMMAND ABORTED BY HOST" },
299 	{ 0xFFFF, "PATH RELATED" },
300 };
301 
302 static const char *
303 get_status_string(uint16_t sct, uint16_t sc)
304 {
305 	struct nvme_status_string *entry;
306 
307 	switch (sct) {
308 	case NVME_SCT_GENERIC:
309 		entry = generic_status;
310 		break;
311 	case NVME_SCT_COMMAND_SPECIFIC:
312 		entry = command_specific_status;
313 		break;
314 	case NVME_SCT_MEDIA_ERROR:
315 		entry = media_error_status;
316 		break;
317 	case NVME_SCT_PATH_RELATED:
318 		entry = path_related_status;
319 		break;
320 	case NVME_SCT_VENDOR_SPECIFIC:
321 		return ("VENDOR SPECIFIC");
322 	default:
323 		return ("RESERVED");
324 	}
325 
326 	while (entry->sc != 0xFFFF) {
327 		if (entry->sc == sc)
328 			return (entry->str);
329 		entry++;
330 	}
331 	return (entry->str);
332 }
333 
334 void
335 nvme_qpair_print_completion(struct nvme_qpair *qpair,
336     struct nvme_completion *cpl)
337 {
338 	uint8_t sct, sc, crd, m, dnr, p;
339 
340 	sct = NVME_STATUS_GET_SCT(cpl->status);
341 	sc = NVME_STATUS_GET_SC(cpl->status);
342 	crd = NVME_STATUS_GET_CRD(cpl->status);
343 	m = NVME_STATUS_GET_M(cpl->status);
344 	dnr = NVME_STATUS_GET_DNR(cpl->status);
345 	p = NVME_STATUS_GET_P(cpl->status);
346 
347 	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) crd:%x m:%x dnr:%x p:%d "
348 	    "sqid:%d cid:%d cdw0:%x\n",
349 	    get_status_string(sct, sc), sct, sc, crd, m, dnr, p,
350 	    cpl->sqid, cpl->cid, cpl->cdw0);
351 }
352 
353 static bool
354 nvme_completion_is_retry(const struct nvme_completion *cpl)
355 {
356 	uint8_t sct, sc, dnr;
357 
358 	sct = NVME_STATUS_GET_SCT(cpl->status);
359 	sc = NVME_STATUS_GET_SC(cpl->status);
360 	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */
361 
362 	/*
363 	 * TODO: spec is not clear how commands that are aborted due
364 	 *  to TLER will be marked.  So for now, it seems
365 	 *  NAMESPACE_NOT_READY is the only case where we should
366 	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
367 	 *  set the DNR bit correctly since the driver controls that.
368 	 */
369 	switch (sct) {
370 	case NVME_SCT_GENERIC:
371 		switch (sc) {
372 		case NVME_SC_ABORTED_BY_REQUEST:
373 		case NVME_SC_NAMESPACE_NOT_READY:
374 			if (dnr)
375 				return (0);
376 			else
377 				return (1);
378 		case NVME_SC_INVALID_OPCODE:
379 		case NVME_SC_INVALID_FIELD:
380 		case NVME_SC_COMMAND_ID_CONFLICT:
381 		case NVME_SC_DATA_TRANSFER_ERROR:
382 		case NVME_SC_ABORTED_POWER_LOSS:
383 		case NVME_SC_INTERNAL_DEVICE_ERROR:
384 		case NVME_SC_ABORTED_SQ_DELETION:
385 		case NVME_SC_ABORTED_FAILED_FUSED:
386 		case NVME_SC_ABORTED_MISSING_FUSED:
387 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
388 		case NVME_SC_COMMAND_SEQUENCE_ERROR:
389 		case NVME_SC_LBA_OUT_OF_RANGE:
390 		case NVME_SC_CAPACITY_EXCEEDED:
391 		default:
392 			return (0);
393 		}
394 	case NVME_SCT_COMMAND_SPECIFIC:
395 	case NVME_SCT_MEDIA_ERROR:
396 		return (0);
397 	case NVME_SCT_PATH_RELATED:
398 		switch (sc) {
399 		case NVME_SC_INTERNAL_PATH_ERROR:
400 			if (dnr)
401 				return (0);
402 			else
403 				return (1);
404 		default:
405 			return (0);
406 		}
407 	case NVME_SCT_VENDOR_SPECIFIC:
408 	default:
409 		return (0);
410 	}
411 }
412 
413 static void
414 nvme_qpair_complete_tracker(struct nvme_tracker *tr,
415     struct nvme_completion *cpl, error_print_t print_on_error)
416 {
417 	struct nvme_qpair	*qpair = tr->qpair;
418 	struct nvme_request	*req;
419 	bool			retry, error, retriable;
420 
421 	mtx_assert(&qpair->lock, MA_NOTOWNED);
422 
423 	req = tr->req;
424 	error = nvme_completion_is_error(cpl);
425 	retriable = nvme_completion_is_retry(cpl);
426 	retry = error && retriable && req->retries < nvme_retry_count;
427 	if (retry)
428 		qpair->num_retries++;
429 	if (error && req->retries >= nvme_retry_count && retriable)
430 		qpair->num_failures++;
431 
432 	if (error && (print_on_error == ERROR_PRINT_ALL ||
433 		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
434 		nvme_qpair_print_command(qpair, &req->cmd);
435 		nvme_qpair_print_completion(qpair, cpl);
436 	}
437 
438 	qpair->act_tr[cpl->cid] = NULL;
439 
440 	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
441 
442 	if (!retry) {
443 		if (req->payload_valid) {
444 			bus_dmamap_sync(qpair->dma_tag_payload,
445 			    tr->payload_dma_map,
446 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
447 		}
448 		if (req->cb_fn)
449 			req->cb_fn(req->cb_arg, cpl);
450 	}
451 
452 	mtx_lock(&qpair->lock);
453 
454 	if (retry) {
455 		req->retries++;
456 		nvme_qpair_submit_tracker(qpair, tr);
457 	} else {
458 		if (req->payload_valid) {
459 			bus_dmamap_unload(qpair->dma_tag_payload,
460 			    tr->payload_dma_map);
461 		}
462 
463 		nvme_free_request(req);
464 		tr->req = NULL;
465 
466 		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
467 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
468 
469 		/*
470 		 * If the controller is in the middle of resetting, don't
471 		 *  try to submit queued requests here - let the reset logic
472 		 *  handle that instead.
473 		 */
474 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
475 		    !qpair->ctrlr->is_resetting) {
476 			req = STAILQ_FIRST(&qpair->queued_req);
477 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
478 			_nvme_qpair_submit_request(qpair, req);
479 		}
480 	}
481 
482 	mtx_unlock(&qpair->lock);
483 }
484 
485 static void
486 nvme_qpair_manual_complete_tracker(
487     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
488     error_print_t print_on_error)
489 {
490 	struct nvme_completion	cpl;
491 	struct nvme_qpair * qpair = tr->qpair;
492 
493 	mtx_assert(&qpair->lock, MA_NOTOWNED);
494 
495 	memset(&cpl, 0, sizeof(cpl));
496 
497 	cpl.sqid = qpair->id;
498 	cpl.cid = tr->cid;
499 	cpl.status |= NVMEF(NVME_STATUS_SCT, sct);
500 	cpl.status |= NVMEF(NVME_STATUS_SC, sc);
501 	cpl.status |= NVMEF(NVME_STATUS_DNR, dnr);
502 	/* M=0 : this is artificial so no data in error log page */
503 	/* CRD=0 : this is artificial and no delayed retry support anyway */
504 	/* P=0 : phase not checked */
505 	nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
506 }
507 
508 void
509 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
510     struct nvme_request *req, uint32_t sct, uint32_t sc)
511 {
512 	struct nvme_completion	cpl;
513 	bool			error;
514 
515 	memset(&cpl, 0, sizeof(cpl));
516 	cpl.sqid = qpair->id;
517 	cpl.status |= NVMEF(NVME_STATUS_SCT, sct);
518 	cpl.status |= NVMEF(NVME_STATUS_SC, sc);
519 
520 	error = nvme_completion_is_error(&cpl);
521 
522 	if (error) {
523 		nvme_qpair_print_command(qpair, &req->cmd);
524 		nvme_qpair_print_completion(qpair, &cpl);
525 	}
526 
527 	if (req->cb_fn)
528 		req->cb_fn(req->cb_arg, &cpl);
529 
530 	nvme_free_request(req);
531 }
532 
533 /* Locked version of completion processor */
534 static bool
535 _nvme_qpair_process_completions(struct nvme_qpair *qpair)
536 {
537 	struct nvme_tracker	*tr;
538 	struct nvme_completion	cpl;
539 	bool done = false;
540 	bool in_panic = dumping || SCHEDULER_STOPPED();
541 
542 	mtx_assert(&qpair->recovery, MA_OWNED);
543 
544 	/*
545 	 * qpair is not enabled, likely because a controller reset is in
546 	 * progress.  Ignore the interrupt - any I/O that was associated with
547 	 * this interrupt will get retried when the reset is complete. Any
548 	 * pending completions for when we're in startup will be completed
549 	 * as soon as initialization is complete and we start sending commands
550 	 * to the device.
551 	 */
552 	if (qpair->recovery_state != RECOVERY_NONE) {
553 		qpair->num_ignored++;
554 		return (false);
555 	}
556 
557 	/*
558 	 * Sanity check initialization. After we reset the hardware, the phase
559 	 * is defined to be 1. So if we get here with zero prior calls and the
560 	 * phase is 0, it means that we've lost a race between the
561 	 * initialization and the ISR running. With the phase wrong, we'll
562 	 * process a bunch of completions that aren't really completions leading
563 	 * to a KASSERT below.
564 	 */
565 	KASSERT(!(qpair->num_intr_handler_calls == 0 && qpair->phase == 0),
566 	    ("%s: Phase wrong for first interrupt call.",
567 		device_get_nameunit(qpair->ctrlr->dev)));
568 
569 	qpair->num_intr_handler_calls++;
570 
571 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
572 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
573 	/*
574 	 * A panic can stop the CPU this routine is running on at any point.  If
575 	 * we're called during a panic, complete the sq_head wrap protocol for
576 	 * the case where we are interrupted just after the increment at 1
577 	 * below, but before we can reset cq_head to zero at 2. Also cope with
578 	 * the case where we do the zero at 2, but may or may not have done the
579 	 * phase adjustment at step 3. The panic machinery flushes all pending
580 	 * memory writes, so we can make these strong ordering assumptions
581 	 * that would otherwise be unwise if we were racing in real time.
582 	 */
583 	if (__predict_false(in_panic)) {
584 		if (qpair->cq_head == qpair->num_entries) {
585 			/*
586 			 * Here we know that we need to zero cq_head and then negate
587 			 * the phase, which hasn't been assigned if cq_head isn't
588 			 * zero due to the atomic_store_rel.
589 			 */
590 			qpair->cq_head = 0;
591 			qpair->phase = !qpair->phase;
592 		} else if (qpair->cq_head == 0) {
593 			/*
594 			 * In this case, we know that the assignment at 2
595 			 * happened below, but we don't know if it 3 happened or
596 			 * not. To do this, we look at the last completion
597 			 * entry and set the phase to the opposite phase
598 			 * that it has. This gets us back in sync
599 			 */
600 			cpl = qpair->cpl[qpair->num_entries - 1];
601 			nvme_completion_swapbytes(&cpl);
602 			qpair->phase = !NVME_STATUS_GET_P(cpl.status);
603 		}
604 	}
605 
606 	while (1) {
607 		uint16_t status;
608 
609 		/*
610 		 * We need to do this dance to avoid a race between the host and
611 		 * the device where the device overtakes the host while the host
612 		 * is reading this record, leaving the status field 'new' and
613 		 * the sqhd and cid fields potentially stale. If the phase
614 		 * doesn't match, that means status hasn't yet been updated and
615 		 * we'll get any pending changes next time. It also means that
616 		 * the phase must be the same the second time. We have to sync
617 		 * before reading to ensure any bouncing completes.
618 		 */
619 		status = le16toh(qpair->cpl[qpair->cq_head].status);
620 		if (NVME_STATUS_GET_P(status) != qpair->phase)
621 			break;
622 
623 		bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
624 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
625 		cpl = qpair->cpl[qpair->cq_head];
626 		nvme_completion_swapbytes(&cpl);
627 
628 		KASSERT(
629 		    NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status),
630 		    ("Phase unexpectedly inconsistent"));
631 
632 		if (cpl.cid < qpair->num_trackers)
633 			tr = qpair->act_tr[cpl.cid];
634 		else
635 			tr = NULL;
636 
637 		done = true;
638 		if (tr != NULL) {
639 			nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
640 			qpair->sq_head = cpl.sqhd;
641 		} else if (!in_panic) {
642 			/*
643 			 * A missing tracker is normally an error.  However, a
644 			 * panic can stop the CPU this routine is running on
645 			 * after completing an I/O but before updating
646 			 * qpair->cq_head at 1 below.  Later, we re-enter this
647 			 * routine to poll I/O associated with the kernel
648 			 * dump. We find that the tr has been set to null before
649 			 * calling the completion routine.  If it hasn't
650 			 * completed (or it triggers a panic), then '1' below
651 			 * won't have updated cq_head. Rather than panic again,
652 			 * ignore this condition because it's not unexpected.
653 			 */
654 			nvme_printf(qpair->ctrlr,
655 			    "cpl (cid = %u) does not map to outstanding cmd\n",
656 				cpl.cid);
657 			nvme_qpair_print_completion(qpair,
658 			    &qpair->cpl[qpair->cq_head]);
659 			KASSERT(0, ("received completion for unknown cmd"));
660 		}
661 
662 		/*
663 		 * There's a number of races with the following (see above) when
664 		 * the system panics. We compensate for each one of them by
665 		 * using the atomic store to force strong ordering (at least when
666 		 * viewed in the aftermath of a panic).
667 		 */
668 		if (++qpair->cq_head == qpair->num_entries) {		/* 1 */
669 			atomic_store_rel_int(&qpair->cq_head, 0);	/* 2 */
670 			qpair->phase = !qpair->phase;			/* 3 */
671 		}
672 	}
673 
674 	if (done) {
675 		bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
676 		    qpair->cq_hdbl_off, qpair->cq_head);
677 	}
678 
679 	return (done);
680 }
681 
682 bool
683 nvme_qpair_process_completions(struct nvme_qpair *qpair)
684 {
685 	bool done;
686 
687 	/*
688 	 * Interlock with reset / recovery code. This is an usually uncontended
689 	 * to make sure that we drain out of the ISRs before we reset the card
690 	 * and to prevent races with the recovery process called from a timeout
691 	 * context.
692 	 */
693 	if (!mtx_trylock(&qpair->recovery)) {
694 		qpair->num_recovery_nolock++;
695 		return (false);
696 	}
697 
698 	done = _nvme_qpair_process_completions(qpair);
699 
700 	mtx_unlock(&qpair->recovery);
701 
702 	return (done);
703 }
704 
705 static void
706 nvme_qpair_msi_handler(void *arg)
707 {
708 	struct nvme_qpair *qpair = arg;
709 
710 	nvme_qpair_process_completions(qpair);
711 }
712 
713 int
714 nvme_qpair_construct(struct nvme_qpair *qpair,
715     uint32_t num_entries, uint32_t num_trackers,
716     struct nvme_controller *ctrlr)
717 {
718 	struct nvme_tracker	*tr;
719 	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
720 	uint64_t		queuemem_phys, prpmem_phys, list_phys;
721 	uint8_t			*queuemem, *prpmem, *prp_list;
722 	int			i, err;
723 
724 	qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0;
725 	qpair->num_entries = num_entries;
726 	qpair->num_trackers = num_trackers;
727 	qpair->ctrlr = ctrlr;
728 
729 	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
730 	mtx_init(&qpair->recovery, "nvme qpair recovery", NULL, MTX_DEF);
731 
732 	callout_init_mtx(&qpair->timer, &qpair->recovery, 0);
733 	qpair->timer_armed = false;
734 	qpair->recovery_state = RECOVERY_WAITING;
735 
736 	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
737 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
738 	    4, ctrlr->page_size, BUS_SPACE_MAXADDR,
739 	    BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
740 	    howmany(ctrlr->max_xfer_size, ctrlr->page_size) + 1,
741 	    ctrlr->page_size, 0,
742 	    NULL, NULL, &qpair->dma_tag_payload);
743 	if (err != 0) {
744 		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
745 		goto out;
746 	}
747 
748 	/*
749 	 * Each component must be page aligned, and individual PRP lists
750 	 * cannot cross a page boundary.
751 	 */
752 	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
753 	cmdsz = roundup2(cmdsz, ctrlr->page_size);
754 	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
755 	cplsz = roundup2(cplsz, ctrlr->page_size);
756 	/*
757 	 * For commands requiring more than 2 PRP entries, one PRP will be
758 	 * embedded in the command (prp1), and the rest of the PRP entries
759 	 * will be in a list pointed to by the command (prp2).
760 	 */
761 	prpsz = sizeof(uint64_t) *
762 	    howmany(ctrlr->max_xfer_size, ctrlr->page_size);
763 	prpmemsz = qpair->num_trackers * prpsz;
764 	allocsz = cmdsz + cplsz + prpmemsz;
765 
766 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
767 	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
768 	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
769 	if (err != 0) {
770 		nvme_printf(ctrlr, "tag create failed %d\n", err);
771 		goto out;
772 	}
773 	bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
774 
775 	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
776 	     BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
777 		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
778 		goto out;
779 	}
780 
781 	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
782 	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
783 		nvme_printf(ctrlr, "failed to load qpair memory\n");
784 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
785 		    qpair->queuemem_map);
786 		goto out;
787 	}
788 
789 	qpair->num_cmds = 0;
790 	qpair->num_intr_handler_calls = 0;
791 	qpair->num_retries = 0;
792 	qpair->num_failures = 0;
793 	qpair->num_ignored = 0;
794 	qpair->cmd = (struct nvme_command *)queuemem;
795 	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
796 	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
797 	qpair->cmd_bus_addr = queuemem_phys;
798 	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
799 	prpmem_phys = queuemem_phys + cmdsz + cplsz;
800 
801 	/*
802 	 * Calcuate the stride of the doorbell register. Many emulators set this
803 	 * value to correspond to a cache line. However, some hardware has set
804 	 * it to various small values.
805 	 */
806 	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
807 	    (qpair->id << (ctrlr->dstrd + 1));
808 	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
809 	    (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
810 
811 	TAILQ_INIT(&qpair->free_tr);
812 	TAILQ_INIT(&qpair->outstanding_tr);
813 	STAILQ_INIT(&qpair->queued_req);
814 
815 	list_phys = prpmem_phys;
816 	prp_list = prpmem;
817 	for (i = 0; i < qpair->num_trackers; i++) {
818 		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
819 			qpair->num_trackers = i;
820 			break;
821 		}
822 
823 		/*
824 		 * Make sure that the PRP list for this tracker doesn't
825 		 * overflow to another nvme page.
826 		 */
827 		if (trunc_page(list_phys) !=
828 		    trunc_page(list_phys + prpsz - 1)) {
829 			list_phys = roundup2(list_phys, ctrlr->page_size);
830 			prp_list =
831 			    (uint8_t *)roundup2((uintptr_t)prp_list, ctrlr->page_size);
832 		}
833 
834 		tr = malloc_domainset(sizeof(*tr), M_NVME,
835 		    DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
836 		bus_dmamap_create(qpair->dma_tag_payload, 0,
837 		    &tr->payload_dma_map);
838 		tr->cid = i;
839 		tr->qpair = qpair;
840 		tr->prp = (uint64_t *)prp_list;
841 		tr->prp_bus_addr = list_phys;
842 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
843 		list_phys += prpsz;
844 		prp_list += prpsz;
845 	}
846 
847 	if (qpair->num_trackers == 0) {
848 		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
849 		goto out;
850 	}
851 
852 	qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
853 	    qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
854 	    M_ZERO | M_WAITOK);
855 
856 	if (ctrlr->msi_count > 1) {
857 		/*
858 		 * MSI-X vector resource IDs start at 1, so we add one to
859 		 *  the queue's vector to get the corresponding rid to use.
860 		 */
861 		qpair->rid = qpair->vector + 1;
862 
863 		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
864 		    &qpair->rid, RF_ACTIVE);
865 		if (qpair->res == NULL) {
866 			nvme_printf(ctrlr, "unable to allocate MSI\n");
867 			goto out;
868 		}
869 		if (bus_setup_intr(ctrlr->dev, qpair->res,
870 		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
871 		    nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) {
872 			nvme_printf(ctrlr, "unable to setup MSI\n");
873 			goto out;
874 		}
875 		if (qpair->id == 0) {
876 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
877 			    "admin");
878 		} else {
879 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
880 			    "io%d", qpair->id - 1);
881 		}
882 	}
883 
884 	return (0);
885 
886 out:
887 	nvme_qpair_destroy(qpair);
888 	return (ENOMEM);
889 }
890 
891 static void
892 nvme_qpair_destroy(struct nvme_qpair *qpair)
893 {
894 	struct nvme_tracker	*tr;
895 
896 	mtx_lock(&qpair->recovery);
897 	qpair->timer_armed = false;
898 	mtx_unlock(&qpair->recovery);
899 	callout_drain(&qpair->timer);
900 
901 	if (qpair->tag) {
902 		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
903 		qpair->tag = NULL;
904 	}
905 
906 	if (qpair->act_tr) {
907 		free(qpair->act_tr, M_NVME);
908 		qpair->act_tr = NULL;
909 	}
910 
911 	while (!TAILQ_EMPTY(&qpair->free_tr)) {
912 		tr = TAILQ_FIRST(&qpair->free_tr);
913 		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
914 		bus_dmamap_destroy(qpair->dma_tag_payload,
915 		    tr->payload_dma_map);
916 		free(tr, M_NVME);
917 	}
918 
919 	if (qpair->cmd != NULL) {
920 		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
921 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
922 		    qpair->queuemem_map);
923 		qpair->cmd = NULL;
924 	}
925 
926 	if (qpair->dma_tag) {
927 		bus_dma_tag_destroy(qpair->dma_tag);
928 		qpair->dma_tag = NULL;
929 	}
930 
931 	if (qpair->dma_tag_payload) {
932 		bus_dma_tag_destroy(qpair->dma_tag_payload);
933 		qpair->dma_tag_payload = NULL;
934 	}
935 
936 	if (mtx_initialized(&qpair->lock))
937 		mtx_destroy(&qpair->lock);
938 	if (mtx_initialized(&qpair->recovery))
939 		mtx_destroy(&qpair->recovery);
940 
941 	if (qpair->res) {
942 		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
943 		    rman_get_rid(qpair->res), qpair->res);
944 		qpair->res = NULL;
945 	}
946 }
947 
948 static void
949 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
950 {
951 	struct nvme_tracker	*tr;
952 
953 	/*
954 	 * nvme_complete_tracker must be called without the qpair lock held. It
955 	 * takes the lock to adjust outstanding_tr list, so make sure we don't
956 	 * have it yet. We need the lock to make the list traverse safe, but
957 	 * have to drop the lock to complete any AER. We restart the list scan
958 	 * when we do this to make this safe. There's interlock with the ISR so
959 	 * we know this tracker won't be completed twice.
960 	 */
961 	mtx_assert(&qpair->lock, MA_NOTOWNED);
962 
963 	mtx_lock(&qpair->lock);
964 	tr = TAILQ_FIRST(&qpair->outstanding_tr);
965 	while (tr != NULL) {
966 		if (tr->req->cmd.opc != NVME_OPC_ASYNC_EVENT_REQUEST) {
967 			tr = TAILQ_NEXT(tr, tailq);
968 			continue;
969 		}
970 		mtx_unlock(&qpair->lock);
971 		nvme_qpair_manual_complete_tracker(tr,
972 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
973 		    ERROR_PRINT_NONE);
974 		mtx_lock(&qpair->lock);
975 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
976 	}
977 	mtx_unlock(&qpair->lock);
978 }
979 
980 void
981 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
982 {
983 	mtx_assert(&qpair->lock, MA_NOTOWNED);
984 
985 	nvme_admin_qpair_abort_aers(qpair);
986 	nvme_qpair_destroy(qpair);
987 }
988 
989 void
990 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
991 {
992 
993 	nvme_qpair_destroy(qpair);
994 }
995 
996 static void
997 nvme_abort_complete(void *arg, const struct nvme_completion *status)
998 {
999 	struct nvme_tracker     *tr = arg;
1000 
1001 	/*
1002 	 * If cdw0 == 1, the controller was not able to abort the command
1003 	 *  we requested.  We still need to check the active tracker array,
1004 	 *  to cover race where I/O timed out at same time controller was
1005 	 *  completing the I/O.
1006 	 */
1007 	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
1008 		/*
1009 		 * An I/O has timed out, and the controller was unable to
1010 		 *  abort it for some reason.  Construct a fake completion
1011 		 *  status, and then complete the I/O's tracker manually.
1012 		 */
1013 		nvme_printf(tr->qpair->ctrlr,
1014 		    "abort command failed, aborting command manually\n");
1015 		nvme_qpair_manual_complete_tracker(tr,
1016 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
1017 	}
1018 }
1019 
1020 static void
1021 nvme_qpair_timeout(void *arg)
1022 {
1023 	struct nvme_qpair	*qpair = arg;
1024 	struct nvme_controller	*ctrlr = qpair->ctrlr;
1025 	struct nvme_tracker	*tr;
1026 	sbintime_t		now;
1027 	bool			idle = false;
1028 	bool			needs_reset;
1029 	uint32_t		csts;
1030 	uint8_t			cfs;
1031 
1032 	mtx_assert(&qpair->recovery, MA_OWNED);
1033 
1034 	/*
1035 	 * If the controller is failed, then stop polling. This ensures that any
1036 	 * failure processing that races with the qpair timeout will fail
1037 	 * safely.
1038 	 */
1039 	if (qpair->ctrlr->is_failed) {
1040 		nvme_printf(qpair->ctrlr,
1041 		    "Failed controller, stopping watchdog timeout.\n");
1042 		qpair->timer_armed = false;
1043 		return;
1044 	}
1045 
1046 	/*
1047 	 * Shutdown condition: We set qpair->timer_armed to false in
1048 	 * nvme_qpair_destroy before calling callout_drain. When we call that,
1049 	 * this routine might get called one last time. Exit w/o setting a
1050 	 * timeout. None of the watchdog stuff needs to be done since we're
1051 	 * destroying the qpair.
1052 	 */
1053 	if (!qpair->timer_armed) {
1054 		nvme_printf(qpair->ctrlr,
1055 		    "Timeout fired during nvme_qpair_destroy\n");
1056 		return;
1057 	}
1058 
1059 	switch (qpair->recovery_state) {
1060 	case RECOVERY_NONE:
1061 		/*
1062 		 * Read csts to get value of cfs - controller fatal status.  If
1063 		 * we are in the hot-plug or controller failed status proceed
1064 		 * directly to reset. We also bail early if the status reads all
1065 		 * 1's or the control fatal status bit is now 1. The latter is
1066 		 * always true when the former is true, but not vice versa.  The
1067 		 * intent of the code is that if the card is gone (all 1's) or
1068 		 * we've failed, then try to do a reset (which someitmes
1069 		 * unwedges a card reading all 1's that's not gone away, but
1070 		 * usually doesn't).
1071 		 */
1072 		csts = nvme_mmio_read_4(ctrlr, csts);
1073 		cfs = NVMEV(NVME_CSTS_REG_CFS, csts);
1074 		if (csts == NVME_GONE || cfs == 1)
1075 			goto do_reset;
1076 
1077 		/*
1078 		 * Process completions. We already have the recovery lock, so
1079 		 * call the locked version.
1080 		 */
1081 		_nvme_qpair_process_completions(qpair);
1082 
1083 		/*
1084 		 * Check to see if we need to timeout any commands. If we do, then
1085 		 * we also enter a recovery phase.
1086 		 */
1087 		now = getsbinuptime();
1088 		needs_reset = false;
1089 		idle = true;
1090 		mtx_lock(&qpair->lock);
1091 		TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) {
1092 			/*
1093 			 * Skip async commands, they are posted to the card for
1094 			 * an indefinite amount of time and have no deadline.
1095 			 */
1096 			if (tr->deadline == SBT_MAX)
1097 				continue;
1098 			if (now > tr->deadline) {
1099 				if (tr->req->cb_fn != nvme_abort_complete &&
1100 				    ctrlr->enable_aborts) {
1101 					/*
1102 					 * This isn't an abort command, ask
1103 					 * for a hardware abort.
1104 					 */
1105 					nvme_ctrlr_cmd_abort(ctrlr, tr->cid,
1106 					    qpair->id, nvme_abort_complete, tr);
1107 				} else {
1108 					/*
1109 					 * Otherwise we have a live command in
1110 					 * the card (either one we couldn't
1111 					 * abort, or aborts weren't enabled).
1112 					 * The only safe way to proceed is to do
1113 					 * a reset.
1114 					 */
1115 					needs_reset = true;
1116 				}
1117 			} else {
1118 				idle = false;
1119 			}
1120 		}
1121 		mtx_unlock(&qpair->lock);
1122 		if (!needs_reset)
1123 			break;
1124 
1125 		/*
1126 		 * We've had a command timeout that we weren't able to abort
1127 		 *
1128 		 * If we get here due to a possible surprise hot-unplug event,
1129 		 * then we let nvme_ctrlr_reset confirm and fail the
1130 		 * controller.
1131 		 */
1132 	do_reset:
1133 		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
1134 		    (csts == 0xffffffff) ? " and possible hot unplug" :
1135 		    (cfs ? " and fatal error status" : ""));
1136 		qpair->recovery_state = RECOVERY_WAITING;
1137 		nvme_ctrlr_reset(ctrlr);
1138 		idle = false;			/* We want to keep polling */
1139 		break;
1140 	case RECOVERY_WAITING:
1141 		/*
1142 		 * These messages aren't interesting while we're suspended. We
1143 		 * put the queues into waiting state while
1144 		 * suspending. Suspending takes a while, so we'll see these
1145 		 * during that time and they aren't diagnostic. At other times,
1146 		 * they indicate a problem that's worth complaining about.
1147 		 */
1148 		if (!device_is_suspended(ctrlr->dev))
1149 			nvme_printf(ctrlr, "Waiting for reset to complete\n");
1150 		idle = false;		/* We want to keep polling */
1151 		break;
1152 	}
1153 
1154 	/*
1155 	 * Rearm the timeout.
1156 	 */
1157 	if (!idle) {
1158 		callout_schedule_sbt(&qpair->timer, SBT_1S / 2, SBT_1S / 2, 0);
1159 	} else {
1160 		qpair->timer_armed = false;
1161 	}
1162 }
1163 
1164 /*
1165  * Submit the tracker to the hardware. Must already be in the
1166  * outstanding queue when called.
1167  */
1168 void
1169 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
1170 {
1171 	struct nvme_request	*req;
1172 	struct nvme_controller	*ctrlr;
1173 	int timeout;
1174 
1175 	mtx_assert(&qpair->lock, MA_OWNED);
1176 
1177 	req = tr->req;
1178 	req->cmd.cid = tr->cid;
1179 	qpair->act_tr[tr->cid] = tr;
1180 	ctrlr = qpair->ctrlr;
1181 
1182 	if (req->timeout) {
1183 		if (req->cb_fn == nvme_completion_poll_cb)
1184 			timeout = 1;
1185 		else if (qpair->id == 0)
1186 			timeout = ctrlr->admin_timeout_period;
1187 		else
1188 			timeout = ctrlr->timeout_period;
1189 		tr->deadline = getsbinuptime() + timeout * SBT_1S;
1190 		if (!qpair->timer_armed) {
1191 			qpair->timer_armed = true;
1192 			callout_reset_sbt_on(&qpair->timer, SBT_1S / 2, SBT_1S / 2,
1193 			    nvme_qpair_timeout, qpair, qpair->cpu, 0);
1194 		}
1195 	} else
1196 		tr->deadline = SBT_MAX;
1197 
1198 	/* Copy the command from the tracker to the submission queue. */
1199 	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
1200 
1201 	if (++qpair->sq_tail == qpair->num_entries)
1202 		qpair->sq_tail = 0;
1203 
1204 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
1205 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1206 	bus_space_write_4(ctrlr->bus_tag, ctrlr->bus_handle,
1207 	    qpair->sq_tdbl_off, qpair->sq_tail);
1208 	qpair->num_cmds++;
1209 }
1210 
1211 static void
1212 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1213 {
1214 	struct nvme_tracker 	*tr = arg;
1215 	uint32_t		cur_nseg;
1216 
1217 	/*
1218 	 * If the mapping operation failed, return immediately.  The caller
1219 	 *  is responsible for detecting the error status and failing the
1220 	 *  tracker manually.
1221 	 */
1222 	if (error != 0) {
1223 		nvme_printf(tr->qpair->ctrlr,
1224 		    "nvme_payload_map err %d\n", error);
1225 		return;
1226 	}
1227 
1228 	/*
1229 	 * Note that we specified ctrlr->page_size for alignment and max
1230 	 * segment size when creating the bus dma tags.  So here we can safely
1231 	 * just transfer each segment to its associated PRP entry.
1232 	 */
1233 	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
1234 
1235 	if (nseg == 2) {
1236 		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
1237 	} else if (nseg > 2) {
1238 		cur_nseg = 1;
1239 		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
1240 		while (cur_nseg < nseg) {
1241 			tr->prp[cur_nseg-1] =
1242 			    htole64((uint64_t)seg[cur_nseg].ds_addr);
1243 			cur_nseg++;
1244 		}
1245 	} else {
1246 		/*
1247 		 * prp2 should not be used by the controller
1248 		 *  since there is only one segment, but set
1249 		 *  to 0 just to be safe.
1250 		 */
1251 		tr->req->cmd.prp2 = 0;
1252 	}
1253 
1254 	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1255 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1256 	nvme_qpair_submit_tracker(tr->qpair, tr);
1257 }
1258 
1259 static void
1260 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1261 {
1262 	struct nvme_tracker	*tr;
1263 	int			err = 0;
1264 
1265 	mtx_assert(&qpair->lock, MA_OWNED);
1266 
1267 	tr = TAILQ_FIRST(&qpair->free_tr);
1268 	req->qpair = qpair;
1269 
1270 	if (tr == NULL || qpair->recovery_state != RECOVERY_NONE) {
1271 		/*
1272 		 * No tracker is available, or the qpair is disabled due to an
1273 		 * in-progress controller-level reset. If we lose the race with
1274 		 * recovery_state, then we may add an extra request to the queue
1275 		 * which will be resubmitted later.  We only set recovery_state
1276 		 * to NONE with qpair->lock also held, so if we observe that the
1277 		 * state is not NONE, we know it can't transition to NONE below
1278 		 * when we've submitted the request to hardware.
1279 		 *
1280 		 * Also, as part of the failure process, we set recovery_state
1281 		 * to RECOVERY_WAITING, so we check here to see if we've failed
1282 		 * the controller. We set it before we call the qpair_fail
1283 		 * functions, which take out the lock lock before messing with
1284 		 * queued_req. Since we hold that lock, we know it's safe to
1285 		 * either fail directly, or queue the failure should is_failed
1286 		 * be stale. If we lose the race reading is_failed, then
1287 		 * nvme_qpair_fail will fail the queued request.
1288 		 */
1289 
1290 		if (qpair->ctrlr->is_failed) {
1291 			/*
1292 			 * The controller has failed, so fail the request.
1293 			 */
1294 			nvme_qpair_manual_complete_request(qpair, req,
1295 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
1296 		} else {
1297 			/*
1298 			 * Put the request on the qpair's request queue to be
1299 			 *  processed when a tracker frees up via a command
1300 			 *  completion or when the controller reset is
1301 			 *  completed.
1302 			 */
1303 			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1304 		}
1305 		return;
1306 	}
1307 
1308 	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1309 	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1310 	tr->deadline = SBT_MAX;
1311 	tr->req = req;
1312 
1313 	if (!req->payload_valid) {
1314 		nvme_qpair_submit_tracker(tr->qpair, tr);
1315 		return;
1316 	}
1317 
1318 	/*
1319 	 * tr->deadline updating when nvme_payload_map calls
1320 	 * nvme_qpair_submit_tracker (we call it above directly
1321 	 * when there's no map to load).
1322 	 */
1323 	err = bus_dmamap_load_mem(tr->qpair->dma_tag_payload,
1324 	    tr->payload_dma_map, &req->payload, nvme_payload_map, tr, 0);
1325 	if (err != 0) {
1326 		/*
1327 		 * The dmamap operation failed, so we manually fail the
1328 		 *  tracker here with DATA_TRANSFER_ERROR status.
1329 		 *
1330 		 * nvme_qpair_manual_complete_tracker must not be called
1331 		 *  with the qpair lock held.
1332 		 */
1333 		nvme_printf(qpair->ctrlr,
1334 		    "bus_dmamap_load_mem returned 0x%x!\n", err);
1335 		mtx_unlock(&qpair->lock);
1336 		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1337 		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1338 		mtx_lock(&qpair->lock);
1339 	}
1340 }
1341 
1342 void
1343 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1344 {
1345 
1346 	mtx_lock(&qpair->lock);
1347 	_nvme_qpair_submit_request(qpair, req);
1348 	mtx_unlock(&qpair->lock);
1349 }
1350 
1351 static void
1352 nvme_qpair_enable(struct nvme_qpair *qpair)
1353 {
1354 	if (mtx_initialized(&qpair->recovery))
1355 		mtx_assert(&qpair->recovery, MA_OWNED);
1356 	if (mtx_initialized(&qpair->lock))
1357 		mtx_assert(&qpair->lock, MA_OWNED);
1358 	KASSERT(!qpair->ctrlr->is_failed,
1359 	    ("Enabling a failed qpair\n"));
1360 
1361 	qpair->recovery_state = RECOVERY_NONE;
1362 }
1363 
1364 void
1365 nvme_qpair_reset(struct nvme_qpair *qpair)
1366 {
1367 
1368 	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1369 
1370 	/*
1371 	 * First time through the completion queue, HW will set phase
1372 	 *  bit on completions to 1.  So set this to 1 here, indicating
1373 	 *  we're looking for a 1 to know which entries have completed.
1374 	 *  we'll toggle the bit each time when the completion queue
1375 	 *  rolls over.
1376 	 */
1377 	qpair->phase = 1;
1378 
1379 	memset(qpair->cmd, 0,
1380 	    qpair->num_entries * sizeof(struct nvme_command));
1381 	memset(qpair->cpl, 0,
1382 	    qpair->num_entries * sizeof(struct nvme_completion));
1383 }
1384 
1385 void
1386 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1387 {
1388 	struct nvme_tracker		*tr;
1389 	struct nvme_tracker		*tr_temp;
1390 	bool				rpt;
1391 
1392 	/*
1393 	 * Manually abort each outstanding admin command.  Do not retry
1394 	 * admin commands found here, since they will be left over from
1395 	 * a controller reset and its likely the context in which the
1396 	 * command was issued no longer applies.
1397 	 */
1398 	rpt = !TAILQ_EMPTY(&qpair->outstanding_tr);
1399 	if (rpt)
1400 		nvme_printf(qpair->ctrlr,
1401 		    "aborting outstanding admin command\n");
1402 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1403 		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1404 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1405 	}
1406 	if (rpt)
1407 		nvme_printf(qpair->ctrlr,
1408 		    "done aborting outstanding admin\n");
1409 
1410 	mtx_lock(&qpair->recovery);
1411 	mtx_lock(&qpair->lock);
1412 	nvme_qpair_enable(qpair);
1413 	mtx_unlock(&qpair->lock);
1414 	mtx_unlock(&qpair->recovery);
1415 }
1416 
1417 void
1418 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1419 {
1420 	STAILQ_HEAD(, nvme_request)	temp;
1421 	struct nvme_tracker		*tr;
1422 	struct nvme_tracker		*tr_temp;
1423 	struct nvme_request		*req;
1424 	bool				report;
1425 
1426 	/*
1427 	 * Manually abort each outstanding I/O.  This normally results in a
1428 	 * retry, unless the retry count on the associated request has
1429 	 * reached its limit.
1430 	 */
1431 	report = !TAILQ_EMPTY(&qpair->outstanding_tr);
1432 	if (report)
1433 		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1434 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1435 		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1436 		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1437 	}
1438 	if (report)
1439 		nvme_printf(qpair->ctrlr, "done aborting outstanding i/o\n");
1440 
1441 	mtx_lock(&qpair->recovery);
1442 	mtx_lock(&qpair->lock);
1443 	nvme_qpair_enable(qpair);
1444 
1445 	STAILQ_INIT(&temp);
1446 	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1447 
1448 	report = !STAILQ_EMPTY(&temp);
1449 	if (report)
1450 		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1451 	while (!STAILQ_EMPTY(&temp)) {
1452 		req = STAILQ_FIRST(&temp);
1453 		STAILQ_REMOVE_HEAD(&temp, stailq);
1454 		nvme_qpair_print_command(qpair, &req->cmd);
1455 		_nvme_qpair_submit_request(qpair, req);
1456 	}
1457 	if (report)
1458 		nvme_printf(qpair->ctrlr, "done resubmitting i/o\n");
1459 
1460 	mtx_unlock(&qpair->lock);
1461 	mtx_unlock(&qpair->recovery);
1462 }
1463 
1464 static void
1465 nvme_qpair_disable(struct nvme_qpair *qpair)
1466 {
1467 	struct nvme_tracker	*tr, *tr_temp;
1468 
1469 	if (mtx_initialized(&qpair->recovery))
1470 		mtx_assert(&qpair->recovery, MA_OWNED);
1471 	if (mtx_initialized(&qpair->lock))
1472 		mtx_assert(&qpair->lock, MA_OWNED);
1473 
1474 	qpair->recovery_state = RECOVERY_WAITING;
1475 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1476 		tr->deadline = SBT_MAX;
1477 	}
1478 }
1479 
1480 void
1481 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1482 {
1483 	mtx_lock(&qpair->recovery);
1484 
1485 	mtx_lock(&qpair->lock);
1486 	nvme_qpair_disable(qpair);
1487 	mtx_unlock(&qpair->lock);
1488 
1489 	nvme_admin_qpair_abort_aers(qpair);
1490 
1491 	mtx_unlock(&qpair->recovery);
1492 }
1493 
1494 void
1495 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1496 {
1497 	mtx_lock(&qpair->recovery);
1498 	mtx_lock(&qpair->lock);
1499 
1500 	nvme_qpair_disable(qpair);
1501 
1502 	mtx_unlock(&qpair->lock);
1503 	mtx_unlock(&qpair->recovery);
1504 }
1505 
1506 void
1507 nvme_qpair_fail(struct nvme_qpair *qpair)
1508 {
1509 	struct nvme_tracker		*tr;
1510 	struct nvme_request		*req;
1511 
1512 	if (!mtx_initialized(&qpair->lock))
1513 		return;
1514 
1515 	mtx_lock(&qpair->lock);
1516 
1517 	if (!STAILQ_EMPTY(&qpair->queued_req)) {
1518 		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1519 	}
1520 	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1521 		req = STAILQ_FIRST(&qpair->queued_req);
1522 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1523 		mtx_unlock(&qpair->lock);
1524 		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1525 		    NVME_SC_ABORTED_BY_REQUEST);
1526 		mtx_lock(&qpair->lock);
1527 	}
1528 
1529 	if (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1530 		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1531 	}
1532 	/* Manually abort each outstanding I/O. */
1533 	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1534 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1535 		/*
1536 		 * Do not remove the tracker.  The abort_tracker path will
1537 		 *  do that for us.
1538 		 */
1539 		mtx_unlock(&qpair->lock);
1540 		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1541 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1542 		mtx_lock(&qpair->lock);
1543 	}
1544 
1545 	mtx_unlock(&qpair->lock);
1546 }
1547