1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2014 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/bus.h> 31 #include <sys/conf.h> 32 #include <sys/domainset.h> 33 #include <sys/proc.h> 34 35 #include <dev/pci/pcivar.h> 36 37 #include "nvme_private.h" 38 39 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t; 40 #define DO_NOT_RETRY 1 41 42 static void _nvme_qpair_submit_request(struct nvme_qpair *qpair, 43 struct nvme_request *req); 44 static void nvme_qpair_destroy(struct nvme_qpair *qpair); 45 46 #define DEFAULT_INDEX 256 47 #define DEFAULT_ENTRY(x) [DEFAULT_INDEX] = x 48 #define OPC_ENTRY(x) [NVME_OPC_ ## x] = #x 49 50 static const char *admin_opcode[DEFAULT_INDEX + 1] = { 51 OPC_ENTRY(DELETE_IO_SQ), 52 OPC_ENTRY(CREATE_IO_SQ), 53 OPC_ENTRY(GET_LOG_PAGE), 54 OPC_ENTRY(DELETE_IO_CQ), 55 OPC_ENTRY(CREATE_IO_CQ), 56 OPC_ENTRY(IDENTIFY), 57 OPC_ENTRY(ABORT), 58 OPC_ENTRY(SET_FEATURES), 59 OPC_ENTRY(GET_FEATURES), 60 OPC_ENTRY(ASYNC_EVENT_REQUEST), 61 OPC_ENTRY(NAMESPACE_MANAGEMENT), 62 OPC_ENTRY(FIRMWARE_ACTIVATE), 63 OPC_ENTRY(FIRMWARE_IMAGE_DOWNLOAD), 64 OPC_ENTRY(DEVICE_SELF_TEST), 65 OPC_ENTRY(NAMESPACE_ATTACHMENT), 66 OPC_ENTRY(KEEP_ALIVE), 67 OPC_ENTRY(DIRECTIVE_SEND), 68 OPC_ENTRY(DIRECTIVE_RECEIVE), 69 OPC_ENTRY(VIRTUALIZATION_MANAGEMENT), 70 OPC_ENTRY(NVME_MI_SEND), 71 OPC_ENTRY(NVME_MI_RECEIVE), 72 OPC_ENTRY(CAPACITY_MANAGEMENT), 73 OPC_ENTRY(LOCKDOWN), 74 OPC_ENTRY(DOORBELL_BUFFER_CONFIG), 75 OPC_ENTRY(FABRICS_COMMANDS), 76 OPC_ENTRY(FORMAT_NVM), 77 OPC_ENTRY(SECURITY_SEND), 78 OPC_ENTRY(SECURITY_RECEIVE), 79 OPC_ENTRY(SANITIZE), 80 OPC_ENTRY(GET_LBA_STATUS), 81 DEFAULT_ENTRY("ADMIN COMMAND"), 82 }; 83 84 static const char *io_opcode[DEFAULT_INDEX + 1] = { 85 OPC_ENTRY(FLUSH), 86 OPC_ENTRY(WRITE), 87 OPC_ENTRY(READ), 88 OPC_ENTRY(WRITE_UNCORRECTABLE), 89 OPC_ENTRY(COMPARE), 90 OPC_ENTRY(WRITE_ZEROES), 91 OPC_ENTRY(DATASET_MANAGEMENT), 92 OPC_ENTRY(VERIFY), 93 OPC_ENTRY(RESERVATION_REGISTER), 94 OPC_ENTRY(RESERVATION_REPORT), 95 OPC_ENTRY(RESERVATION_ACQUIRE), 96 OPC_ENTRY(RESERVATION_RELEASE), 97 OPC_ENTRY(COPY), 98 DEFAULT_ENTRY("IO COMMAND"), 99 }; 100 101 static const char * 102 get_opcode_string(const char *op[DEFAULT_INDEX + 1], uint16_t opc) 103 { 104 const char *nm = opc < DEFAULT_INDEX ? op[opc] : op[DEFAULT_INDEX]; 105 106 return (nm != NULL ? nm : op[DEFAULT_INDEX]); 107 } 108 109 static const char * 110 get_admin_opcode_string(uint16_t opc) 111 { 112 return (get_opcode_string(admin_opcode, opc)); 113 } 114 115 static const char * 116 get_io_opcode_string(uint16_t opc) 117 { 118 return (get_opcode_string(io_opcode, opc)); 119 } 120 121 static void 122 nvme_admin_qpair_print_command(struct nvme_qpair *qpair, 123 struct nvme_command *cmd) 124 { 125 126 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x " 127 "cdw10:%08x cdw11:%08x\n", 128 get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid, 129 le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11)); 130 } 131 132 static void 133 nvme_io_qpair_print_command(struct nvme_qpair *qpair, 134 struct nvme_command *cmd) 135 { 136 137 switch (cmd->opc) { 138 case NVME_OPC_WRITE: 139 case NVME_OPC_READ: 140 case NVME_OPC_WRITE_UNCORRECTABLE: 141 case NVME_OPC_COMPARE: 142 case NVME_OPC_WRITE_ZEROES: 143 case NVME_OPC_VERIFY: 144 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d " 145 "lba:%llu len:%d\n", 146 get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid), 147 ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10), 148 (le32toh(cmd->cdw12) & 0xFFFF) + 1); 149 break; 150 case NVME_OPC_FLUSH: 151 case NVME_OPC_DATASET_MANAGEMENT: 152 case NVME_OPC_RESERVATION_REGISTER: 153 case NVME_OPC_RESERVATION_REPORT: 154 case NVME_OPC_RESERVATION_ACQUIRE: 155 case NVME_OPC_RESERVATION_RELEASE: 156 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n", 157 get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid)); 158 break; 159 default: 160 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n", 161 get_io_opcode_string(cmd->opc), cmd->opc, qpair->id, 162 cmd->cid, le32toh(cmd->nsid)); 163 break; 164 } 165 } 166 167 void 168 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) 169 { 170 if (qpair->id == 0) 171 nvme_admin_qpair_print_command(qpair, cmd); 172 else 173 nvme_io_qpair_print_command(qpair, cmd); 174 if (nvme_verbose_cmd_dump) { 175 nvme_printf(qpair->ctrlr, 176 "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n", 177 cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr, 178 (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2); 179 nvme_printf(qpair->ctrlr, 180 "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n", 181 cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14, 182 cmd->cdw15); 183 } 184 } 185 186 struct nvme_status_string { 187 uint16_t sc; 188 const char * str; 189 }; 190 191 static struct nvme_status_string generic_status[] = { 192 { NVME_SC_SUCCESS, "SUCCESS" }, 193 { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" }, 194 { NVME_SC_INVALID_FIELD, "INVALID_FIELD" }, 195 { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" }, 196 { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" }, 197 { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" }, 198 { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" }, 199 { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" }, 200 { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" }, 201 { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" }, 202 { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" }, 203 { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" }, 204 { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" }, 205 { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" }, 206 { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" }, 207 { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" }, 208 { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" }, 209 { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" }, 210 { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" }, 211 { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" }, 212 { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" }, 213 { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" }, 214 { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" }, 215 { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" }, 216 { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" }, 217 { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" }, 218 { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" }, 219 { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" }, 220 { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" }, 221 { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" }, 222 { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" }, 223 { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" }, 224 { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" }, 225 { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" }, 226 227 { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" }, 228 { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" }, 229 { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" }, 230 { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" }, 231 { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" }, 232 { 0xFFFF, "GENERIC" } 233 }; 234 235 static struct nvme_status_string command_specific_status[] = { 236 { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" }, 237 { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" }, 238 { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" }, 239 { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" }, 240 { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" }, 241 { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" }, 242 { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" }, 243 { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" }, 244 { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" }, 245 { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" }, 246 { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" }, 247 { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" }, 248 { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" }, 249 { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" }, 250 { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" }, 251 { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" }, 252 { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" }, 253 { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" }, 254 { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" }, 255 { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" }, 256 { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" }, 257 { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" }, 258 { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" }, 259 { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" }, 260 { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" }, 261 { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" }, 262 { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" }, 263 { NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" }, 264 { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" }, 265 { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" }, 266 { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" }, 267 { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" }, 268 { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" }, 269 { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" }, 270 { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" }, 271 { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" }, 272 273 { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" }, 274 { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" }, 275 { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" }, 276 { 0xFFFF, "COMMAND SPECIFIC" } 277 }; 278 279 static struct nvme_status_string media_error_status[] = { 280 { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" }, 281 { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" }, 282 { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" }, 283 { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" }, 284 { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" }, 285 { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" }, 286 { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" }, 287 { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" }, 288 { 0xFFFF, "MEDIA ERROR" } 289 }; 290 291 static struct nvme_status_string path_related_status[] = { 292 { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" }, 293 { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" }, 294 { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" }, 295 { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" }, 296 { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" }, 297 { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" }, 298 { NVME_SC_COMMAND_ABORTED_BY_HOST, "COMMAND ABORTED BY HOST" }, 299 { 0xFFFF, "PATH RELATED" }, 300 }; 301 302 static const char * 303 get_status_string(uint16_t sct, uint16_t sc) 304 { 305 struct nvme_status_string *entry; 306 307 switch (sct) { 308 case NVME_SCT_GENERIC: 309 entry = generic_status; 310 break; 311 case NVME_SCT_COMMAND_SPECIFIC: 312 entry = command_specific_status; 313 break; 314 case NVME_SCT_MEDIA_ERROR: 315 entry = media_error_status; 316 break; 317 case NVME_SCT_PATH_RELATED: 318 entry = path_related_status; 319 break; 320 case NVME_SCT_VENDOR_SPECIFIC: 321 return ("VENDOR SPECIFIC"); 322 default: 323 return ("RESERVED"); 324 } 325 326 while (entry->sc != 0xFFFF) { 327 if (entry->sc == sc) 328 return (entry->str); 329 entry++; 330 } 331 return (entry->str); 332 } 333 334 void 335 nvme_qpair_print_completion(struct nvme_qpair *qpair, 336 struct nvme_completion *cpl) 337 { 338 uint8_t sct, sc, crd, m, dnr, p; 339 340 sct = NVME_STATUS_GET_SCT(cpl->status); 341 sc = NVME_STATUS_GET_SC(cpl->status); 342 crd = NVME_STATUS_GET_CRD(cpl->status); 343 m = NVME_STATUS_GET_M(cpl->status); 344 dnr = NVME_STATUS_GET_DNR(cpl->status); 345 p = NVME_STATUS_GET_P(cpl->status); 346 347 nvme_printf(qpair->ctrlr, "%s (%02x/%02x) crd:%x m:%x dnr:%x p:%d " 348 "sqid:%d cid:%d cdw0:%x\n", 349 get_status_string(sct, sc), sct, sc, crd, m, dnr, p, 350 cpl->sqid, cpl->cid, cpl->cdw0); 351 } 352 353 static bool 354 nvme_completion_is_retry(const struct nvme_completion *cpl) 355 { 356 uint8_t sct, sc, dnr; 357 358 sct = NVME_STATUS_GET_SCT(cpl->status); 359 sc = NVME_STATUS_GET_SC(cpl->status); 360 dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */ 361 362 /* 363 * TODO: spec is not clear how commands that are aborted due 364 * to TLER will be marked. So for now, it seems 365 * NAMESPACE_NOT_READY is the only case where we should 366 * look at the DNR bit. Requests failed with ABORTED_BY_REQUEST 367 * set the DNR bit correctly since the driver controls that. 368 */ 369 switch (sct) { 370 case NVME_SCT_GENERIC: 371 switch (sc) { 372 case NVME_SC_ABORTED_BY_REQUEST: 373 case NVME_SC_NAMESPACE_NOT_READY: 374 if (dnr) 375 return (0); 376 else 377 return (1); 378 case NVME_SC_INVALID_OPCODE: 379 case NVME_SC_INVALID_FIELD: 380 case NVME_SC_COMMAND_ID_CONFLICT: 381 case NVME_SC_DATA_TRANSFER_ERROR: 382 case NVME_SC_ABORTED_POWER_LOSS: 383 case NVME_SC_INTERNAL_DEVICE_ERROR: 384 case NVME_SC_ABORTED_SQ_DELETION: 385 case NVME_SC_ABORTED_FAILED_FUSED: 386 case NVME_SC_ABORTED_MISSING_FUSED: 387 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT: 388 case NVME_SC_COMMAND_SEQUENCE_ERROR: 389 case NVME_SC_LBA_OUT_OF_RANGE: 390 case NVME_SC_CAPACITY_EXCEEDED: 391 default: 392 return (0); 393 } 394 case NVME_SCT_COMMAND_SPECIFIC: 395 case NVME_SCT_MEDIA_ERROR: 396 return (0); 397 case NVME_SCT_PATH_RELATED: 398 switch (sc) { 399 case NVME_SC_INTERNAL_PATH_ERROR: 400 if (dnr) 401 return (0); 402 else 403 return (1); 404 default: 405 return (0); 406 } 407 case NVME_SCT_VENDOR_SPECIFIC: 408 default: 409 return (0); 410 } 411 } 412 413 static void 414 nvme_qpair_complete_tracker(struct nvme_tracker *tr, 415 struct nvme_completion *cpl, error_print_t print_on_error) 416 { 417 struct nvme_qpair *qpair = tr->qpair; 418 struct nvme_request *req; 419 bool retry, error, retriable; 420 421 mtx_assert(&qpair->lock, MA_NOTOWNED); 422 423 req = tr->req; 424 error = nvme_completion_is_error(cpl); 425 retriable = nvme_completion_is_retry(cpl); 426 retry = error && retriable && req->retries < nvme_retry_count; 427 if (retry) 428 qpair->num_retries++; 429 if (error && req->retries >= nvme_retry_count && retriable) 430 qpair->num_failures++; 431 432 if (error && (print_on_error == ERROR_PRINT_ALL || 433 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) { 434 nvme_qpair_print_command(qpair, &req->cmd); 435 nvme_qpair_print_completion(qpair, cpl); 436 } 437 438 qpair->act_tr[cpl->cid] = NULL; 439 440 KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n")); 441 442 if (!retry) { 443 if (req->payload_valid) { 444 bus_dmamap_sync(qpair->dma_tag_payload, 445 tr->payload_dma_map, 446 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 447 } 448 if (req->cb_fn) 449 req->cb_fn(req->cb_arg, cpl); 450 } 451 452 mtx_lock(&qpair->lock); 453 454 if (retry) { 455 req->retries++; 456 nvme_qpair_submit_tracker(qpair, tr); 457 } else { 458 if (req->payload_valid) { 459 bus_dmamap_unload(qpair->dma_tag_payload, 460 tr->payload_dma_map); 461 } 462 463 nvme_free_request(req); 464 tr->req = NULL; 465 466 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq); 467 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); 468 469 /* 470 * If the controller is in the middle of resetting, don't 471 * try to submit queued requests here - let the reset logic 472 * handle that instead. 473 */ 474 if (!STAILQ_EMPTY(&qpair->queued_req) && 475 !qpair->ctrlr->is_resetting) { 476 req = STAILQ_FIRST(&qpair->queued_req); 477 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 478 _nvme_qpair_submit_request(qpair, req); 479 } 480 } 481 482 mtx_unlock(&qpair->lock); 483 } 484 485 static void 486 nvme_qpair_manual_complete_tracker( 487 struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, 488 error_print_t print_on_error) 489 { 490 struct nvme_completion cpl; 491 struct nvme_qpair * qpair = tr->qpair; 492 493 mtx_assert(&qpair->lock, MA_NOTOWNED); 494 495 memset(&cpl, 0, sizeof(cpl)); 496 497 cpl.sqid = qpair->id; 498 cpl.cid = tr->cid; 499 cpl.status |= NVMEF(NVME_STATUS_SCT, sct); 500 cpl.status |= NVMEF(NVME_STATUS_SC, sc); 501 cpl.status |= NVMEF(NVME_STATUS_DNR, dnr); 502 /* M=0 : this is artificial so no data in error log page */ 503 /* CRD=0 : this is artificial and no delayed retry support anyway */ 504 /* P=0 : phase not checked */ 505 nvme_qpair_complete_tracker(tr, &cpl, print_on_error); 506 } 507 508 void 509 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair, 510 struct nvme_request *req, uint32_t sct, uint32_t sc) 511 { 512 struct nvme_completion cpl; 513 bool error; 514 515 memset(&cpl, 0, sizeof(cpl)); 516 cpl.sqid = qpair->id; 517 cpl.status |= NVMEF(NVME_STATUS_SCT, sct); 518 cpl.status |= NVMEF(NVME_STATUS_SC, sc); 519 520 error = nvme_completion_is_error(&cpl); 521 522 if (error) { 523 nvme_qpair_print_command(qpair, &req->cmd); 524 nvme_qpair_print_completion(qpair, &cpl); 525 } 526 527 if (req->cb_fn) 528 req->cb_fn(req->cb_arg, &cpl); 529 530 nvme_free_request(req); 531 } 532 533 /* Locked version of completion processor */ 534 static bool 535 _nvme_qpair_process_completions(struct nvme_qpair *qpair) 536 { 537 struct nvme_tracker *tr; 538 struct nvme_completion cpl; 539 bool done = false; 540 bool in_panic = dumping || SCHEDULER_STOPPED(); 541 542 mtx_assert(&qpair->recovery, MA_OWNED); 543 544 /* 545 * qpair is not enabled, likely because a controller reset is in 546 * progress. Ignore the interrupt - any I/O that was associated with 547 * this interrupt will get retried when the reset is complete. Any 548 * pending completions for when we're in startup will be completed 549 * as soon as initialization is complete and we start sending commands 550 * to the device. 551 */ 552 if (qpair->recovery_state != RECOVERY_NONE) { 553 qpair->num_ignored++; 554 return (false); 555 } 556 557 /* 558 * Sanity check initialization. After we reset the hardware, the phase 559 * is defined to be 1. So if we get here with zero prior calls and the 560 * phase is 0, it means that we've lost a race between the 561 * initialization and the ISR running. With the phase wrong, we'll 562 * process a bunch of completions that aren't really completions leading 563 * to a KASSERT below. 564 */ 565 KASSERT(!(qpair->num_intr_handler_calls == 0 && qpair->phase == 0), 566 ("%s: Phase wrong for first interrupt call.", 567 device_get_nameunit(qpair->ctrlr->dev))); 568 569 qpair->num_intr_handler_calls++; 570 571 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, 572 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 573 /* 574 * A panic can stop the CPU this routine is running on at any point. If 575 * we're called during a panic, complete the sq_head wrap protocol for 576 * the case where we are interrupted just after the increment at 1 577 * below, but before we can reset cq_head to zero at 2. Also cope with 578 * the case where we do the zero at 2, but may or may not have done the 579 * phase adjustment at step 3. The panic machinery flushes all pending 580 * memory writes, so we can make these strong ordering assumptions 581 * that would otherwise be unwise if we were racing in real time. 582 */ 583 if (__predict_false(in_panic)) { 584 if (qpair->cq_head == qpair->num_entries) { 585 /* 586 * Here we know that we need to zero cq_head and then negate 587 * the phase, which hasn't been assigned if cq_head isn't 588 * zero due to the atomic_store_rel. 589 */ 590 qpair->cq_head = 0; 591 qpair->phase = !qpair->phase; 592 } else if (qpair->cq_head == 0) { 593 /* 594 * In this case, we know that the assignment at 2 595 * happened below, but we don't know if it 3 happened or 596 * not. To do this, we look at the last completion 597 * entry and set the phase to the opposite phase 598 * that it has. This gets us back in sync 599 */ 600 cpl = qpair->cpl[qpair->num_entries - 1]; 601 nvme_completion_swapbytes(&cpl); 602 qpair->phase = !NVME_STATUS_GET_P(cpl.status); 603 } 604 } 605 606 while (1) { 607 uint16_t status; 608 609 /* 610 * We need to do this dance to avoid a race between the host and 611 * the device where the device overtakes the host while the host 612 * is reading this record, leaving the status field 'new' and 613 * the sqhd and cid fields potentially stale. If the phase 614 * doesn't match, that means status hasn't yet been updated and 615 * we'll get any pending changes next time. It also means that 616 * the phase must be the same the second time. We have to sync 617 * before reading to ensure any bouncing completes. 618 */ 619 status = le16toh(qpair->cpl[qpair->cq_head].status); 620 if (NVME_STATUS_GET_P(status) != qpair->phase) 621 break; 622 623 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, 624 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 625 cpl = qpair->cpl[qpair->cq_head]; 626 nvme_completion_swapbytes(&cpl); 627 628 KASSERT( 629 NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status), 630 ("Phase unexpectedly inconsistent")); 631 632 if (cpl.cid < qpair->num_trackers) 633 tr = qpair->act_tr[cpl.cid]; 634 else 635 tr = NULL; 636 637 done = true; 638 if (tr != NULL) { 639 nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL); 640 qpair->sq_head = cpl.sqhd; 641 } else if (!in_panic) { 642 /* 643 * A missing tracker is normally an error. However, a 644 * panic can stop the CPU this routine is running on 645 * after completing an I/O but before updating 646 * qpair->cq_head at 1 below. Later, we re-enter this 647 * routine to poll I/O associated with the kernel 648 * dump. We find that the tr has been set to null before 649 * calling the completion routine. If it hasn't 650 * completed (or it triggers a panic), then '1' below 651 * won't have updated cq_head. Rather than panic again, 652 * ignore this condition because it's not unexpected. 653 */ 654 nvme_printf(qpair->ctrlr, 655 "cpl (cid = %u) does not map to outstanding cmd\n", 656 cpl.cid); 657 nvme_qpair_print_completion(qpair, 658 &qpair->cpl[qpair->cq_head]); 659 KASSERT(0, ("received completion for unknown cmd")); 660 } 661 662 /* 663 * There's a number of races with the following (see above) when 664 * the system panics. We compensate for each one of them by 665 * using the atomic store to force strong ordering (at least when 666 * viewed in the aftermath of a panic). 667 */ 668 if (++qpair->cq_head == qpair->num_entries) { /* 1 */ 669 atomic_store_rel_int(&qpair->cq_head, 0); /* 2 */ 670 qpair->phase = !qpair->phase; /* 3 */ 671 } 672 } 673 674 if (done) { 675 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle, 676 qpair->cq_hdbl_off, qpair->cq_head); 677 } 678 679 return (done); 680 } 681 682 bool 683 nvme_qpair_process_completions(struct nvme_qpair *qpair) 684 { 685 bool done; 686 687 /* 688 * Interlock with reset / recovery code. This is an usually uncontended 689 * to make sure that we drain out of the ISRs before we reset the card 690 * and to prevent races with the recovery process called from a timeout 691 * context. 692 */ 693 if (!mtx_trylock(&qpair->recovery)) { 694 qpair->num_recovery_nolock++; 695 return (false); 696 } 697 698 done = _nvme_qpair_process_completions(qpair); 699 700 mtx_unlock(&qpair->recovery); 701 702 return (done); 703 } 704 705 static void 706 nvme_qpair_msi_handler(void *arg) 707 { 708 struct nvme_qpair *qpair = arg; 709 710 nvme_qpair_process_completions(qpair); 711 } 712 713 int 714 nvme_qpair_construct(struct nvme_qpair *qpair, 715 uint32_t num_entries, uint32_t num_trackers, 716 struct nvme_controller *ctrlr) 717 { 718 struct nvme_tracker *tr; 719 size_t cmdsz, cplsz, prpsz, allocsz, prpmemsz; 720 uint64_t queuemem_phys, prpmem_phys, list_phys; 721 uint8_t *queuemem, *prpmem, *prp_list; 722 int i, err; 723 724 qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0; 725 qpair->num_entries = num_entries; 726 qpair->num_trackers = num_trackers; 727 qpair->ctrlr = ctrlr; 728 729 mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF); 730 mtx_init(&qpair->recovery, "nvme qpair recovery", NULL, MTX_DEF); 731 732 callout_init_mtx(&qpair->timer, &qpair->recovery, 0); 733 qpair->timer_armed = false; 734 qpair->recovery_state = RECOVERY_WAITING; 735 736 /* Note: NVMe PRP format is restricted to 4-byte alignment. */ 737 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 738 4, ctrlr->page_size, BUS_SPACE_MAXADDR, 739 BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size, 740 howmany(ctrlr->max_xfer_size, ctrlr->page_size) + 1, 741 ctrlr->page_size, 0, 742 NULL, NULL, &qpair->dma_tag_payload); 743 if (err != 0) { 744 nvme_printf(ctrlr, "payload tag create failed %d\n", err); 745 goto out; 746 } 747 748 /* 749 * Each component must be page aligned, and individual PRP lists 750 * cannot cross a page boundary. 751 */ 752 cmdsz = qpair->num_entries * sizeof(struct nvme_command); 753 cmdsz = roundup2(cmdsz, ctrlr->page_size); 754 cplsz = qpair->num_entries * sizeof(struct nvme_completion); 755 cplsz = roundup2(cplsz, ctrlr->page_size); 756 /* 757 * For commands requiring more than 2 PRP entries, one PRP will be 758 * embedded in the command (prp1), and the rest of the PRP entries 759 * will be in a list pointed to by the command (prp2). 760 */ 761 prpsz = sizeof(uint64_t) * 762 howmany(ctrlr->max_xfer_size, ctrlr->page_size); 763 prpmemsz = qpair->num_trackers * prpsz; 764 allocsz = cmdsz + cplsz + prpmemsz; 765 766 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 767 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 768 allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag); 769 if (err != 0) { 770 nvme_printf(ctrlr, "tag create failed %d\n", err); 771 goto out; 772 } 773 bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain); 774 775 if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem, 776 BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) { 777 nvme_printf(ctrlr, "failed to alloc qpair memory\n"); 778 goto out; 779 } 780 781 if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map, 782 queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) { 783 nvme_printf(ctrlr, "failed to load qpair memory\n"); 784 bus_dmamem_free(qpair->dma_tag, qpair->cmd, 785 qpair->queuemem_map); 786 goto out; 787 } 788 789 qpair->num_cmds = 0; 790 qpair->num_intr_handler_calls = 0; 791 qpair->num_retries = 0; 792 qpair->num_failures = 0; 793 qpair->num_ignored = 0; 794 qpair->cmd = (struct nvme_command *)queuemem; 795 qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz); 796 prpmem = (uint8_t *)(queuemem + cmdsz + cplsz); 797 qpair->cmd_bus_addr = queuemem_phys; 798 qpair->cpl_bus_addr = queuemem_phys + cmdsz; 799 prpmem_phys = queuemem_phys + cmdsz + cplsz; 800 801 /* 802 * Calcuate the stride of the doorbell register. Many emulators set this 803 * value to correspond to a cache line. However, some hardware has set 804 * it to various small values. 805 */ 806 qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) + 807 (qpair->id << (ctrlr->dstrd + 1)); 808 qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) + 809 (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd); 810 811 TAILQ_INIT(&qpair->free_tr); 812 TAILQ_INIT(&qpair->outstanding_tr); 813 STAILQ_INIT(&qpair->queued_req); 814 815 list_phys = prpmem_phys; 816 prp_list = prpmem; 817 for (i = 0; i < qpair->num_trackers; i++) { 818 if (list_phys + prpsz > prpmem_phys + prpmemsz) { 819 qpair->num_trackers = i; 820 break; 821 } 822 823 /* 824 * Make sure that the PRP list for this tracker doesn't 825 * overflow to another nvme page. 826 */ 827 if (trunc_page(list_phys) != 828 trunc_page(list_phys + prpsz - 1)) { 829 list_phys = roundup2(list_phys, ctrlr->page_size); 830 prp_list = 831 (uint8_t *)roundup2((uintptr_t)prp_list, ctrlr->page_size); 832 } 833 834 tr = malloc_domainset(sizeof(*tr), M_NVME, 835 DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK); 836 bus_dmamap_create(qpair->dma_tag_payload, 0, 837 &tr->payload_dma_map); 838 tr->cid = i; 839 tr->qpair = qpair; 840 tr->prp = (uint64_t *)prp_list; 841 tr->prp_bus_addr = list_phys; 842 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); 843 list_phys += prpsz; 844 prp_list += prpsz; 845 } 846 847 if (qpair->num_trackers == 0) { 848 nvme_printf(ctrlr, "failed to allocate enough trackers\n"); 849 goto out; 850 } 851 852 qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) * 853 qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain), 854 M_ZERO | M_WAITOK); 855 856 if (ctrlr->msi_count > 1) { 857 /* 858 * MSI-X vector resource IDs start at 1, so we add one to 859 * the queue's vector to get the corresponding rid to use. 860 */ 861 qpair->rid = qpair->vector + 1; 862 863 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 864 &qpair->rid, RF_ACTIVE); 865 if (qpair->res == NULL) { 866 nvme_printf(ctrlr, "unable to allocate MSI\n"); 867 goto out; 868 } 869 if (bus_setup_intr(ctrlr->dev, qpair->res, 870 INTR_TYPE_MISC | INTR_MPSAFE, NULL, 871 nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) { 872 nvme_printf(ctrlr, "unable to setup MSI\n"); 873 goto out; 874 } 875 if (qpair->id == 0) { 876 bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, 877 "admin"); 878 } else { 879 bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, 880 "io%d", qpair->id - 1); 881 } 882 } 883 884 return (0); 885 886 out: 887 nvme_qpair_destroy(qpair); 888 return (ENOMEM); 889 } 890 891 static void 892 nvme_qpair_destroy(struct nvme_qpair *qpair) 893 { 894 struct nvme_tracker *tr; 895 896 mtx_lock(&qpair->recovery); 897 qpair->timer_armed = false; 898 mtx_unlock(&qpair->recovery); 899 callout_drain(&qpair->timer); 900 901 if (qpair->tag) { 902 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag); 903 qpair->tag = NULL; 904 } 905 906 if (qpair->act_tr) { 907 free(qpair->act_tr, M_NVME); 908 qpair->act_tr = NULL; 909 } 910 911 while (!TAILQ_EMPTY(&qpair->free_tr)) { 912 tr = TAILQ_FIRST(&qpair->free_tr); 913 TAILQ_REMOVE(&qpair->free_tr, tr, tailq); 914 bus_dmamap_destroy(qpair->dma_tag_payload, 915 tr->payload_dma_map); 916 free(tr, M_NVME); 917 } 918 919 if (qpair->cmd != NULL) { 920 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map); 921 bus_dmamem_free(qpair->dma_tag, qpair->cmd, 922 qpair->queuemem_map); 923 qpair->cmd = NULL; 924 } 925 926 if (qpair->dma_tag) { 927 bus_dma_tag_destroy(qpair->dma_tag); 928 qpair->dma_tag = NULL; 929 } 930 931 if (qpair->dma_tag_payload) { 932 bus_dma_tag_destroy(qpair->dma_tag_payload); 933 qpair->dma_tag_payload = NULL; 934 } 935 936 if (mtx_initialized(&qpair->lock)) 937 mtx_destroy(&qpair->lock); 938 if (mtx_initialized(&qpair->recovery)) 939 mtx_destroy(&qpair->recovery); 940 941 if (qpair->res) { 942 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ, 943 rman_get_rid(qpair->res), qpair->res); 944 qpair->res = NULL; 945 } 946 } 947 948 static void 949 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair) 950 { 951 struct nvme_tracker *tr; 952 953 /* 954 * nvme_complete_tracker must be called without the qpair lock held. It 955 * takes the lock to adjust outstanding_tr list, so make sure we don't 956 * have it yet. We need the lock to make the list traverse safe, but 957 * have to drop the lock to complete any AER. We restart the list scan 958 * when we do this to make this safe. There's interlock with the ISR so 959 * we know this tracker won't be completed twice. 960 */ 961 mtx_assert(&qpair->lock, MA_NOTOWNED); 962 963 mtx_lock(&qpair->lock); 964 tr = TAILQ_FIRST(&qpair->outstanding_tr); 965 while (tr != NULL) { 966 if (tr->req->cmd.opc != NVME_OPC_ASYNC_EVENT_REQUEST) { 967 tr = TAILQ_NEXT(tr, tailq); 968 continue; 969 } 970 mtx_unlock(&qpair->lock); 971 nvme_qpair_manual_complete_tracker(tr, 972 NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0, 973 ERROR_PRINT_NONE); 974 mtx_lock(&qpair->lock); 975 tr = TAILQ_FIRST(&qpair->outstanding_tr); 976 } 977 mtx_unlock(&qpair->lock); 978 } 979 980 void 981 nvme_admin_qpair_destroy(struct nvme_qpair *qpair) 982 { 983 mtx_assert(&qpair->lock, MA_NOTOWNED); 984 985 nvme_admin_qpair_abort_aers(qpair); 986 nvme_qpair_destroy(qpair); 987 } 988 989 void 990 nvme_io_qpair_destroy(struct nvme_qpair *qpair) 991 { 992 993 nvme_qpair_destroy(qpair); 994 } 995 996 static void 997 nvme_abort_complete(void *arg, const struct nvme_completion *status) 998 { 999 struct nvme_tracker *tr = arg; 1000 1001 /* 1002 * If cdw0 == 1, the controller was not able to abort the command 1003 * we requested. We still need to check the active tracker array, 1004 * to cover race where I/O timed out at same time controller was 1005 * completing the I/O. 1006 */ 1007 if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) { 1008 /* 1009 * An I/O has timed out, and the controller was unable to 1010 * abort it for some reason. Construct a fake completion 1011 * status, and then complete the I/O's tracker manually. 1012 */ 1013 nvme_printf(tr->qpair->ctrlr, 1014 "abort command failed, aborting command manually\n"); 1015 nvme_qpair_manual_complete_tracker(tr, 1016 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL); 1017 } 1018 } 1019 1020 static void 1021 nvme_qpair_timeout(void *arg) 1022 { 1023 struct nvme_qpair *qpair = arg; 1024 struct nvme_controller *ctrlr = qpair->ctrlr; 1025 struct nvme_tracker *tr; 1026 sbintime_t now; 1027 bool idle = false; 1028 bool needs_reset; 1029 uint32_t csts; 1030 uint8_t cfs; 1031 1032 mtx_assert(&qpair->recovery, MA_OWNED); 1033 1034 /* 1035 * If the controller is failed, then stop polling. This ensures that any 1036 * failure processing that races with the qpair timeout will fail 1037 * safely. 1038 */ 1039 if (qpair->ctrlr->is_failed) { 1040 nvme_printf(qpair->ctrlr, 1041 "Failed controller, stopping watchdog timeout.\n"); 1042 qpair->timer_armed = false; 1043 return; 1044 } 1045 1046 /* 1047 * Shutdown condition: We set qpair->timer_armed to false in 1048 * nvme_qpair_destroy before calling callout_drain. When we call that, 1049 * this routine might get called one last time. Exit w/o setting a 1050 * timeout. None of the watchdog stuff needs to be done since we're 1051 * destroying the qpair. 1052 */ 1053 if (!qpair->timer_armed) { 1054 nvme_printf(qpair->ctrlr, 1055 "Timeout fired during nvme_qpair_destroy\n"); 1056 return; 1057 } 1058 1059 switch (qpair->recovery_state) { 1060 case RECOVERY_NONE: 1061 /* 1062 * Read csts to get value of cfs - controller fatal status. If 1063 * we are in the hot-plug or controller failed status proceed 1064 * directly to reset. We also bail early if the status reads all 1065 * 1's or the control fatal status bit is now 1. The latter is 1066 * always true when the former is true, but not vice versa. The 1067 * intent of the code is that if the card is gone (all 1's) or 1068 * we've failed, then try to do a reset (which someitmes 1069 * unwedges a card reading all 1's that's not gone away, but 1070 * usually doesn't). 1071 */ 1072 csts = nvme_mmio_read_4(ctrlr, csts); 1073 cfs = NVMEV(NVME_CSTS_REG_CFS, csts); 1074 if (csts == NVME_GONE || cfs == 1) 1075 goto do_reset; 1076 1077 /* 1078 * Process completions. We already have the recovery lock, so 1079 * call the locked version. 1080 */ 1081 _nvme_qpair_process_completions(qpair); 1082 1083 /* 1084 * Check to see if we need to timeout any commands. If we do, then 1085 * we also enter a recovery phase. 1086 */ 1087 now = getsbinuptime(); 1088 needs_reset = false; 1089 idle = true; 1090 mtx_lock(&qpair->lock); 1091 TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) { 1092 /* 1093 * Skip async commands, they are posted to the card for 1094 * an indefinite amount of time and have no deadline. 1095 */ 1096 if (tr->deadline == SBT_MAX) 1097 continue; 1098 if (now > tr->deadline) { 1099 if (tr->req->cb_fn != nvme_abort_complete && 1100 ctrlr->enable_aborts) { 1101 /* 1102 * This isn't an abort command, ask 1103 * for a hardware abort. 1104 */ 1105 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, 1106 qpair->id, nvme_abort_complete, tr); 1107 } else { 1108 /* 1109 * Otherwise we have a live command in 1110 * the card (either one we couldn't 1111 * abort, or aborts weren't enabled). 1112 * The only safe way to proceed is to do 1113 * a reset. 1114 */ 1115 needs_reset = true; 1116 } 1117 } else { 1118 idle = false; 1119 } 1120 } 1121 mtx_unlock(&qpair->lock); 1122 if (!needs_reset) 1123 break; 1124 1125 /* 1126 * We've had a command timeout that we weren't able to abort 1127 * 1128 * If we get here due to a possible surprise hot-unplug event, 1129 * then we let nvme_ctrlr_reset confirm and fail the 1130 * controller. 1131 */ 1132 do_reset: 1133 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n", 1134 (csts == 0xffffffff) ? " and possible hot unplug" : 1135 (cfs ? " and fatal error status" : "")); 1136 qpair->recovery_state = RECOVERY_WAITING; 1137 nvme_ctrlr_reset(ctrlr); 1138 idle = false; /* We want to keep polling */ 1139 break; 1140 case RECOVERY_WAITING: 1141 /* 1142 * These messages aren't interesting while we're suspended. We 1143 * put the queues into waiting state while 1144 * suspending. Suspending takes a while, so we'll see these 1145 * during that time and they aren't diagnostic. At other times, 1146 * they indicate a problem that's worth complaining about. 1147 */ 1148 if (!device_is_suspended(ctrlr->dev)) 1149 nvme_printf(ctrlr, "Waiting for reset to complete\n"); 1150 idle = false; /* We want to keep polling */ 1151 break; 1152 } 1153 1154 /* 1155 * Rearm the timeout. 1156 */ 1157 if (!idle) { 1158 callout_schedule_sbt(&qpair->timer, SBT_1S / 2, SBT_1S / 2, 0); 1159 } else { 1160 qpair->timer_armed = false; 1161 } 1162 } 1163 1164 /* 1165 * Submit the tracker to the hardware. Must already be in the 1166 * outstanding queue when called. 1167 */ 1168 void 1169 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr) 1170 { 1171 struct nvme_request *req; 1172 struct nvme_controller *ctrlr; 1173 int timeout; 1174 1175 mtx_assert(&qpair->lock, MA_OWNED); 1176 1177 req = tr->req; 1178 req->cmd.cid = tr->cid; 1179 qpair->act_tr[tr->cid] = tr; 1180 ctrlr = qpair->ctrlr; 1181 1182 if (req->timeout) { 1183 if (req->cb_fn == nvme_completion_poll_cb) 1184 timeout = 1; 1185 else if (qpair->id == 0) 1186 timeout = ctrlr->admin_timeout_period; 1187 else 1188 timeout = ctrlr->timeout_period; 1189 tr->deadline = getsbinuptime() + timeout * SBT_1S; 1190 if (!qpair->timer_armed) { 1191 qpair->timer_armed = true; 1192 callout_reset_sbt_on(&qpair->timer, SBT_1S / 2, SBT_1S / 2, 1193 nvme_qpair_timeout, qpair, qpair->cpu, 0); 1194 } 1195 } else 1196 tr->deadline = SBT_MAX; 1197 1198 /* Copy the command from the tracker to the submission queue. */ 1199 memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd)); 1200 1201 if (++qpair->sq_tail == qpair->num_entries) 1202 qpair->sq_tail = 0; 1203 1204 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, 1205 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1206 bus_space_write_4(ctrlr->bus_tag, ctrlr->bus_handle, 1207 qpair->sq_tdbl_off, qpair->sq_tail); 1208 qpair->num_cmds++; 1209 } 1210 1211 static void 1212 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 1213 { 1214 struct nvme_tracker *tr = arg; 1215 uint32_t cur_nseg; 1216 1217 /* 1218 * If the mapping operation failed, return immediately. The caller 1219 * is responsible for detecting the error status and failing the 1220 * tracker manually. 1221 */ 1222 if (error != 0) { 1223 nvme_printf(tr->qpair->ctrlr, 1224 "nvme_payload_map err %d\n", error); 1225 return; 1226 } 1227 1228 /* 1229 * Note that we specified ctrlr->page_size for alignment and max 1230 * segment size when creating the bus dma tags. So here we can safely 1231 * just transfer each segment to its associated PRP entry. 1232 */ 1233 tr->req->cmd.prp1 = htole64(seg[0].ds_addr); 1234 1235 if (nseg == 2) { 1236 tr->req->cmd.prp2 = htole64(seg[1].ds_addr); 1237 } else if (nseg > 2) { 1238 cur_nseg = 1; 1239 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr); 1240 while (cur_nseg < nseg) { 1241 tr->prp[cur_nseg-1] = 1242 htole64((uint64_t)seg[cur_nseg].ds_addr); 1243 cur_nseg++; 1244 } 1245 } else { 1246 /* 1247 * prp2 should not be used by the controller 1248 * since there is only one segment, but set 1249 * to 0 just to be safe. 1250 */ 1251 tr->req->cmd.prp2 = 0; 1252 } 1253 1254 bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map, 1255 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1256 nvme_qpair_submit_tracker(tr->qpair, tr); 1257 } 1258 1259 static void 1260 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) 1261 { 1262 struct nvme_tracker *tr; 1263 int err = 0; 1264 1265 mtx_assert(&qpair->lock, MA_OWNED); 1266 1267 tr = TAILQ_FIRST(&qpair->free_tr); 1268 req->qpair = qpair; 1269 1270 if (tr == NULL || qpair->recovery_state != RECOVERY_NONE) { 1271 /* 1272 * No tracker is available, or the qpair is disabled due to an 1273 * in-progress controller-level reset. If we lose the race with 1274 * recovery_state, then we may add an extra request to the queue 1275 * which will be resubmitted later. We only set recovery_state 1276 * to NONE with qpair->lock also held, so if we observe that the 1277 * state is not NONE, we know it can't transition to NONE below 1278 * when we've submitted the request to hardware. 1279 * 1280 * Also, as part of the failure process, we set recovery_state 1281 * to RECOVERY_WAITING, so we check here to see if we've failed 1282 * the controller. We set it before we call the qpair_fail 1283 * functions, which take out the lock lock before messing with 1284 * queued_req. Since we hold that lock, we know it's safe to 1285 * either fail directly, or queue the failure should is_failed 1286 * be stale. If we lose the race reading is_failed, then 1287 * nvme_qpair_fail will fail the queued request. 1288 */ 1289 1290 if (qpair->ctrlr->is_failed) { 1291 /* 1292 * The controller has failed, so fail the request. 1293 */ 1294 nvme_qpair_manual_complete_request(qpair, req, 1295 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); 1296 } else { 1297 /* 1298 * Put the request on the qpair's request queue to be 1299 * processed when a tracker frees up via a command 1300 * completion or when the controller reset is 1301 * completed. 1302 */ 1303 STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); 1304 } 1305 return; 1306 } 1307 1308 TAILQ_REMOVE(&qpair->free_tr, tr, tailq); 1309 TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq); 1310 tr->deadline = SBT_MAX; 1311 tr->req = req; 1312 1313 if (!req->payload_valid) { 1314 nvme_qpair_submit_tracker(tr->qpair, tr); 1315 return; 1316 } 1317 1318 /* 1319 * tr->deadline updating when nvme_payload_map calls 1320 * nvme_qpair_submit_tracker (we call it above directly 1321 * when there's no map to load). 1322 */ 1323 err = bus_dmamap_load_mem(tr->qpair->dma_tag_payload, 1324 tr->payload_dma_map, &req->payload, nvme_payload_map, tr, 0); 1325 if (err != 0) { 1326 /* 1327 * The dmamap operation failed, so we manually fail the 1328 * tracker here with DATA_TRANSFER_ERROR status. 1329 * 1330 * nvme_qpair_manual_complete_tracker must not be called 1331 * with the qpair lock held. 1332 */ 1333 nvme_printf(qpair->ctrlr, 1334 "bus_dmamap_load_mem returned 0x%x!\n", err); 1335 mtx_unlock(&qpair->lock); 1336 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1337 NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL); 1338 mtx_lock(&qpair->lock); 1339 } 1340 } 1341 1342 void 1343 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) 1344 { 1345 1346 mtx_lock(&qpair->lock); 1347 _nvme_qpair_submit_request(qpair, req); 1348 mtx_unlock(&qpair->lock); 1349 } 1350 1351 static void 1352 nvme_qpair_enable(struct nvme_qpair *qpair) 1353 { 1354 if (mtx_initialized(&qpair->recovery)) 1355 mtx_assert(&qpair->recovery, MA_OWNED); 1356 if (mtx_initialized(&qpair->lock)) 1357 mtx_assert(&qpair->lock, MA_OWNED); 1358 KASSERT(!qpair->ctrlr->is_failed, 1359 ("Enabling a failed qpair\n")); 1360 1361 qpair->recovery_state = RECOVERY_NONE; 1362 } 1363 1364 void 1365 nvme_qpair_reset(struct nvme_qpair *qpair) 1366 { 1367 1368 qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0; 1369 1370 /* 1371 * First time through the completion queue, HW will set phase 1372 * bit on completions to 1. So set this to 1 here, indicating 1373 * we're looking for a 1 to know which entries have completed. 1374 * we'll toggle the bit each time when the completion queue 1375 * rolls over. 1376 */ 1377 qpair->phase = 1; 1378 1379 memset(qpair->cmd, 0, 1380 qpair->num_entries * sizeof(struct nvme_command)); 1381 memset(qpair->cpl, 0, 1382 qpair->num_entries * sizeof(struct nvme_completion)); 1383 } 1384 1385 void 1386 nvme_admin_qpair_enable(struct nvme_qpair *qpair) 1387 { 1388 struct nvme_tracker *tr; 1389 struct nvme_tracker *tr_temp; 1390 bool rpt; 1391 1392 /* 1393 * Manually abort each outstanding admin command. Do not retry 1394 * admin commands found here, since they will be left over from 1395 * a controller reset and its likely the context in which the 1396 * command was issued no longer applies. 1397 */ 1398 rpt = !TAILQ_EMPTY(&qpair->outstanding_tr); 1399 if (rpt) 1400 nvme_printf(qpair->ctrlr, 1401 "aborting outstanding admin command\n"); 1402 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1403 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1404 NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); 1405 } 1406 if (rpt) 1407 nvme_printf(qpair->ctrlr, 1408 "done aborting outstanding admin\n"); 1409 1410 mtx_lock(&qpair->recovery); 1411 mtx_lock(&qpair->lock); 1412 nvme_qpair_enable(qpair); 1413 mtx_unlock(&qpair->lock); 1414 mtx_unlock(&qpair->recovery); 1415 } 1416 1417 void 1418 nvme_io_qpair_enable(struct nvme_qpair *qpair) 1419 { 1420 STAILQ_HEAD(, nvme_request) temp; 1421 struct nvme_tracker *tr; 1422 struct nvme_tracker *tr_temp; 1423 struct nvme_request *req; 1424 bool report; 1425 1426 /* 1427 * Manually abort each outstanding I/O. This normally results in a 1428 * retry, unless the retry count on the associated request has 1429 * reached its limit. 1430 */ 1431 report = !TAILQ_EMPTY(&qpair->outstanding_tr); 1432 if (report) 1433 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n"); 1434 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1435 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1436 NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY); 1437 } 1438 if (report) 1439 nvme_printf(qpair->ctrlr, "done aborting outstanding i/o\n"); 1440 1441 mtx_lock(&qpair->recovery); 1442 mtx_lock(&qpair->lock); 1443 nvme_qpair_enable(qpair); 1444 1445 STAILQ_INIT(&temp); 1446 STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request); 1447 1448 report = !STAILQ_EMPTY(&temp); 1449 if (report) 1450 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n"); 1451 while (!STAILQ_EMPTY(&temp)) { 1452 req = STAILQ_FIRST(&temp); 1453 STAILQ_REMOVE_HEAD(&temp, stailq); 1454 nvme_qpair_print_command(qpair, &req->cmd); 1455 _nvme_qpair_submit_request(qpair, req); 1456 } 1457 if (report) 1458 nvme_printf(qpair->ctrlr, "done resubmitting i/o\n"); 1459 1460 mtx_unlock(&qpair->lock); 1461 mtx_unlock(&qpair->recovery); 1462 } 1463 1464 static void 1465 nvme_qpair_disable(struct nvme_qpair *qpair) 1466 { 1467 struct nvme_tracker *tr, *tr_temp; 1468 1469 if (mtx_initialized(&qpair->recovery)) 1470 mtx_assert(&qpair->recovery, MA_OWNED); 1471 if (mtx_initialized(&qpair->lock)) 1472 mtx_assert(&qpair->lock, MA_OWNED); 1473 1474 qpair->recovery_state = RECOVERY_WAITING; 1475 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1476 tr->deadline = SBT_MAX; 1477 } 1478 } 1479 1480 void 1481 nvme_admin_qpair_disable(struct nvme_qpair *qpair) 1482 { 1483 mtx_lock(&qpair->recovery); 1484 1485 mtx_lock(&qpair->lock); 1486 nvme_qpair_disable(qpair); 1487 mtx_unlock(&qpair->lock); 1488 1489 nvme_admin_qpair_abort_aers(qpair); 1490 1491 mtx_unlock(&qpair->recovery); 1492 } 1493 1494 void 1495 nvme_io_qpair_disable(struct nvme_qpair *qpair) 1496 { 1497 mtx_lock(&qpair->recovery); 1498 mtx_lock(&qpair->lock); 1499 1500 nvme_qpair_disable(qpair); 1501 1502 mtx_unlock(&qpair->lock); 1503 mtx_unlock(&qpair->recovery); 1504 } 1505 1506 void 1507 nvme_qpair_fail(struct nvme_qpair *qpair) 1508 { 1509 struct nvme_tracker *tr; 1510 struct nvme_request *req; 1511 1512 if (!mtx_initialized(&qpair->lock)) 1513 return; 1514 1515 mtx_lock(&qpair->lock); 1516 1517 if (!STAILQ_EMPTY(&qpair->queued_req)) { 1518 nvme_printf(qpair->ctrlr, "failing queued i/o\n"); 1519 } 1520 while (!STAILQ_EMPTY(&qpair->queued_req)) { 1521 req = STAILQ_FIRST(&qpair->queued_req); 1522 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 1523 mtx_unlock(&qpair->lock); 1524 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC, 1525 NVME_SC_ABORTED_BY_REQUEST); 1526 mtx_lock(&qpair->lock); 1527 } 1528 1529 if (!TAILQ_EMPTY(&qpair->outstanding_tr)) { 1530 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n"); 1531 } 1532 /* Manually abort each outstanding I/O. */ 1533 while (!TAILQ_EMPTY(&qpair->outstanding_tr)) { 1534 tr = TAILQ_FIRST(&qpair->outstanding_tr); 1535 /* 1536 * Do not remove the tracker. The abort_tracker path will 1537 * do that for us. 1538 */ 1539 mtx_unlock(&qpair->lock); 1540 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1541 NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); 1542 mtx_lock(&qpair->lock); 1543 } 1544 1545 mtx_unlock(&qpair->lock); 1546 } 1547