xref: /freebsd/sys/dev/nvme/nvme_qpair.c (revision cddbc3b40812213ff00041f79174cac0be360a2a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 
35 #include <dev/pci/pcivar.h>
36 
37 #include "nvme_private.h"
38 
39 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
40 #define DO_NOT_RETRY	1
41 
42 static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
43 					   struct nvme_request *req);
44 static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
45 
46 struct nvme_opcode_string {
47 
48 	uint16_t	opc;
49 	const char *	str;
50 };
51 
52 static struct nvme_opcode_string admin_opcode[] = {
53 	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
54 	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
55 	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
56 	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
57 	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
58 	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
59 	{ NVME_OPC_ABORT, "ABORT" },
60 	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
61 	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
62 	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
63 	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
64 	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
65 	{ NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
66 	{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
67 	{ NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
68 	{ NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
69 	{ NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
70 	{ NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
71 	{ NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
72 	{ NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
73 	{ NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
74 	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
75 	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
76 	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
77 	{ NVME_OPC_SANITIZE, "SANITIZE" },
78 	{ 0xFFFF, "ADMIN COMMAND" }
79 };
80 
81 static struct nvme_opcode_string io_opcode[] = {
82 	{ NVME_OPC_FLUSH, "FLUSH" },
83 	{ NVME_OPC_WRITE, "WRITE" },
84 	{ NVME_OPC_READ, "READ" },
85 	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
86 	{ NVME_OPC_COMPARE, "COMPARE" },
87 	{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
88 	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
89 	{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
90 	{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
91 	{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
92 	{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
93 	{ 0xFFFF, "IO COMMAND" }
94 };
95 
96 static const char *
97 get_admin_opcode_string(uint16_t opc)
98 {
99 	struct nvme_opcode_string *entry;
100 
101 	entry = admin_opcode;
102 
103 	while (entry->opc != 0xFFFF) {
104 		if (entry->opc == opc)
105 			return (entry->str);
106 		entry++;
107 	}
108 	return (entry->str);
109 }
110 
111 static const char *
112 get_io_opcode_string(uint16_t opc)
113 {
114 	struct nvme_opcode_string *entry;
115 
116 	entry = io_opcode;
117 
118 	while (entry->opc != 0xFFFF) {
119 		if (entry->opc == opc)
120 			return (entry->str);
121 		entry++;
122 	}
123 	return (entry->str);
124 }
125 
126 
127 static void
128 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
129     struct nvme_command *cmd)
130 {
131 
132 	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
133 	    "cdw10:%08x cdw11:%08x\n",
134 	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
135 	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
136 }
137 
138 static void
139 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
140     struct nvme_command *cmd)
141 {
142 
143 	switch (cmd->opc) {
144 	case NVME_OPC_WRITE:
145 	case NVME_OPC_READ:
146 	case NVME_OPC_WRITE_UNCORRECTABLE:
147 	case NVME_OPC_COMPARE:
148 	case NVME_OPC_WRITE_ZEROES:
149 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
150 		    "lba:%llu len:%d\n",
151 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
152 		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
153 		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
154 		break;
155 	case NVME_OPC_FLUSH:
156 	case NVME_OPC_DATASET_MANAGEMENT:
157 	case NVME_OPC_RESERVATION_REGISTER:
158 	case NVME_OPC_RESERVATION_REPORT:
159 	case NVME_OPC_RESERVATION_ACQUIRE:
160 	case NVME_OPC_RESERVATION_RELEASE:
161 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
162 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
163 		break;
164 	default:
165 		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
166 		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
167 		    cmd->cid, le32toh(cmd->nsid));
168 		break;
169 	}
170 }
171 
172 static void
173 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
174 {
175 	if (qpair->id == 0)
176 		nvme_admin_qpair_print_command(qpair, cmd);
177 	else
178 		nvme_io_qpair_print_command(qpair, cmd);
179 }
180 
181 struct nvme_status_string {
182 
183 	uint16_t	sc;
184 	const char *	str;
185 };
186 
187 static struct nvme_status_string generic_status[] = {
188 	{ NVME_SC_SUCCESS, "SUCCESS" },
189 	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
190 	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
191 	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
192 	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
193 	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
194 	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
195 	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
196 	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
197 	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
198 	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
199 	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
200 	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
201 	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
202 	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
203 	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
204 	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
205 	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
206 	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
207 	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
208 	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
209 	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
210 	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
211 	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
212 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
213 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
214 	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
215 	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
216 	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
217 	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
218 	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
219 
220 	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
221 	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
222 	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
223 	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
224 	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
225 	{ 0xFFFF, "GENERIC" }
226 };
227 
228 static struct nvme_status_string command_specific_status[] = {
229 	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
230 	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
231 	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
232 	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
233 	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
234 	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
235 	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
236 	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
237 	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
238 	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
239 	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
240 	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
241 	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
242 	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
243 	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
244 	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
245 	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
246 	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
247 	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
248 	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
249 	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
250 	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
251 	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
252 	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
253 	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
254 	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
255 	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
256 	{ NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
257 	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
258 	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
259 	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
260 	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
261 	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
262 
263 	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
264 	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
265 	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
266 	{ 0xFFFF, "COMMAND SPECIFIC" }
267 };
268 
269 static struct nvme_status_string media_error_status[] = {
270 	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
271 	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
272 	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
273 	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
274 	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
275 	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
276 	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
277 	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
278 	{ 0xFFFF, "MEDIA ERROR" }
279 };
280 
281 static const char *
282 get_status_string(uint16_t sct, uint16_t sc)
283 {
284 	struct nvme_status_string *entry;
285 
286 	switch (sct) {
287 	case NVME_SCT_GENERIC:
288 		entry = generic_status;
289 		break;
290 	case NVME_SCT_COMMAND_SPECIFIC:
291 		entry = command_specific_status;
292 		break;
293 	case NVME_SCT_MEDIA_ERROR:
294 		entry = media_error_status;
295 		break;
296 	case NVME_SCT_VENDOR_SPECIFIC:
297 		return ("VENDOR SPECIFIC");
298 	default:
299 		return ("RESERVED");
300 	}
301 
302 	while (entry->sc != 0xFFFF) {
303 		if (entry->sc == sc)
304 			return (entry->str);
305 		entry++;
306 	}
307 	return (entry->str);
308 }
309 
310 static void
311 nvme_qpair_print_completion(struct nvme_qpair *qpair,
312     struct nvme_completion *cpl)
313 {
314 	uint16_t sct, sc;
315 
316 	sct = NVME_STATUS_GET_SCT(cpl->status);
317 	sc = NVME_STATUS_GET_SC(cpl->status);
318 
319 	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
320 	    get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
321 	    cpl->cdw0);
322 }
323 
324 static boolean_t
325 nvme_completion_is_retry(const struct nvme_completion *cpl)
326 {
327 	uint8_t sct, sc, dnr;
328 
329 	sct = NVME_STATUS_GET_SCT(cpl->status);
330 	sc = NVME_STATUS_GET_SC(cpl->status);
331 	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */
332 
333 	/*
334 	 * TODO: spec is not clear how commands that are aborted due
335 	 *  to TLER will be marked.  So for now, it seems
336 	 *  NAMESPACE_NOT_READY is the only case where we should
337 	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
338 	 *  set the DNR bit correctly since the driver controls that.
339 	 */
340 	switch (sct) {
341 	case NVME_SCT_GENERIC:
342 		switch (sc) {
343 		case NVME_SC_ABORTED_BY_REQUEST:
344 		case NVME_SC_NAMESPACE_NOT_READY:
345 			if (dnr)
346 				return (0);
347 			else
348 				return (1);
349 		case NVME_SC_INVALID_OPCODE:
350 		case NVME_SC_INVALID_FIELD:
351 		case NVME_SC_COMMAND_ID_CONFLICT:
352 		case NVME_SC_DATA_TRANSFER_ERROR:
353 		case NVME_SC_ABORTED_POWER_LOSS:
354 		case NVME_SC_INTERNAL_DEVICE_ERROR:
355 		case NVME_SC_ABORTED_SQ_DELETION:
356 		case NVME_SC_ABORTED_FAILED_FUSED:
357 		case NVME_SC_ABORTED_MISSING_FUSED:
358 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
359 		case NVME_SC_COMMAND_SEQUENCE_ERROR:
360 		case NVME_SC_LBA_OUT_OF_RANGE:
361 		case NVME_SC_CAPACITY_EXCEEDED:
362 		default:
363 			return (0);
364 		}
365 	case NVME_SCT_COMMAND_SPECIFIC:
366 	case NVME_SCT_MEDIA_ERROR:
367 	case NVME_SCT_VENDOR_SPECIFIC:
368 	default:
369 		return (0);
370 	}
371 }
372 
373 static void
374 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
375     struct nvme_completion *cpl, error_print_t print_on_error)
376 {
377 	struct nvme_request	*req;
378 	boolean_t		retry, error;
379 
380 	req = tr->req;
381 	error = nvme_completion_is_error(cpl);
382 	retry = error && nvme_completion_is_retry(cpl) &&
383 	   req->retries < nvme_retry_count;
384 
385 	if (error && (print_on_error == ERROR_PRINT_ALL ||
386 		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
387 		nvme_qpair_print_command(qpair, &req->cmd);
388 		nvme_qpair_print_completion(qpair, cpl);
389 	}
390 
391 	qpair->act_tr[cpl->cid] = NULL;
392 
393 	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
394 
395 	if (req->cb_fn && !retry)
396 		req->cb_fn(req->cb_arg, cpl);
397 
398 	mtx_lock(&qpair->lock);
399 	callout_stop(&tr->timer);
400 
401 	if (retry) {
402 		req->retries++;
403 		nvme_qpair_submit_tracker(qpair, tr);
404 	} else {
405 		if (req->type != NVME_REQUEST_NULL) {
406 			bus_dmamap_sync(qpair->dma_tag_payload,
407 			    tr->payload_dma_map,
408 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
409 			bus_dmamap_unload(qpair->dma_tag_payload,
410 			    tr->payload_dma_map);
411 		}
412 
413 		nvme_free_request(req);
414 		tr->req = NULL;
415 
416 		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
417 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
418 
419 		/*
420 		 * If the controller is in the middle of resetting, don't
421 		 *  try to submit queued requests here - let the reset logic
422 		 *  handle that instead.
423 		 */
424 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
425 		    !qpair->ctrlr->is_resetting) {
426 			req = STAILQ_FIRST(&qpair->queued_req);
427 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
428 			_nvme_qpair_submit_request(qpair, req);
429 		}
430 	}
431 
432 	mtx_unlock(&qpair->lock);
433 }
434 
435 static void
436 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
437     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
438     error_print_t print_on_error)
439 {
440 	struct nvme_completion	cpl;
441 
442 	memset(&cpl, 0, sizeof(cpl));
443 	cpl.sqid = qpair->id;
444 	cpl.cid = tr->cid;
445 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
446 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
447 	cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
448 	nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
449 }
450 
451 void
452 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
453     struct nvme_request *req, uint32_t sct, uint32_t sc)
454 {
455 	struct nvme_completion	cpl;
456 	boolean_t		error;
457 
458 	memset(&cpl, 0, sizeof(cpl));
459 	cpl.sqid = qpair->id;
460 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
461 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
462 
463 	error = nvme_completion_is_error(&cpl);
464 
465 	if (error) {
466 		nvme_qpair_print_command(qpair, &req->cmd);
467 		nvme_qpair_print_completion(qpair, &cpl);
468 	}
469 
470 	if (req->cb_fn)
471 		req->cb_fn(req->cb_arg, &cpl);
472 
473 	nvme_free_request(req);
474 }
475 
476 bool
477 nvme_qpair_process_completions(struct nvme_qpair *qpair)
478 {
479 	struct nvme_tracker	*tr;
480 	struct nvme_completion	cpl;
481 	int done = 0;
482 
483 	qpair->num_intr_handler_calls++;
484 
485 	if (!qpair->is_enabled)
486 		/*
487 		 * qpair is not enabled, likely because a controller reset is
488 		 *  is in progress.  Ignore the interrupt - any I/O that was
489 		 *  associated with this interrupt will get retried when the
490 		 *  reset is complete.
491 		 */
492 		return (false);
493 
494 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
495 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
496 	while (1) {
497 		cpl = qpair->cpl[qpair->cq_head];
498 
499 		/* Convert to host endian */
500 		nvme_completion_swapbytes(&cpl);
501 
502 		if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
503 			break;
504 
505 		tr = qpair->act_tr[cpl.cid];
506 
507 		if (tr != NULL) {
508 			nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
509 			qpair->sq_head = cpl.sqhd;
510 			done++;
511 		} else {
512 			nvme_printf(qpair->ctrlr,
513 			    "cpl does not map to outstanding cmd\n");
514 			/* nvme_dump_completion expects device endianess */
515 			nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
516 			KASSERT(0, ("received completion for unknown cmd\n"));
517 		}
518 
519 		if (++qpair->cq_head == qpair->num_entries) {
520 			qpair->cq_head = 0;
521 			qpair->phase = !qpair->phase;
522 		}
523 
524 		nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
525 		    qpair->cq_head);
526 	}
527 	return (done != 0);
528 }
529 
530 static void
531 nvme_qpair_msix_handler(void *arg)
532 {
533 	struct nvme_qpair *qpair = arg;
534 
535 	nvme_qpair_process_completions(qpair);
536 }
537 
538 int
539 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
540     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
541     struct nvme_controller *ctrlr)
542 {
543 	struct nvme_tracker	*tr;
544 	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
545 	uint64_t		queuemem_phys, prpmem_phys, list_phys;
546 	uint8_t			*queuemem, *prpmem, *prp_list;
547 	int			i, err;
548 
549 	qpair->id = id;
550 	qpair->vector = vector;
551 	qpair->num_entries = num_entries;
552 	qpair->num_trackers = num_trackers;
553 	qpair->ctrlr = ctrlr;
554 
555 	if (ctrlr->msix_enabled) {
556 
557 		/*
558 		 * MSI-X vector resource IDs start at 1, so we add one to
559 		 *  the queue's vector to get the corresponding rid to use.
560 		 */
561 		qpair->rid = vector + 1;
562 
563 		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
564 		    &qpair->rid, RF_ACTIVE);
565 		bus_setup_intr(ctrlr->dev, qpair->res,
566 		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
567 		    nvme_qpair_msix_handler, qpair, &qpair->tag);
568 		if (id == 0) {
569 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
570 			    "admin");
571 		} else {
572 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
573 			    "io%d", id - 1);
574 		}
575 	}
576 
577 	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
578 
579 	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
580 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
581 	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
582 	    BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
583 	    (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
584 	    NULL, NULL, &qpair->dma_tag_payload);
585 	if (err != 0) {
586 		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
587 		goto out;
588 	}
589 
590 	/*
591 	 * Each component must be page aligned, and individual PRP lists
592 	 * cannot cross a page boundary.
593 	 */
594 	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
595 	cmdsz = roundup2(cmdsz, PAGE_SIZE);
596 	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
597 	cplsz = roundup2(cplsz, PAGE_SIZE);
598 	prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
599 	prpmemsz = qpair->num_trackers * prpsz;
600 	allocsz = cmdsz + cplsz + prpmemsz;
601 
602 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
603 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
604 	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
605 	if (err != 0) {
606 		nvme_printf(ctrlr, "tag create failed %d\n", err);
607 		goto out;
608 	}
609 
610 	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
611 	    BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
612 		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
613 		goto out;
614 	}
615 
616 	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
617 	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
618 		nvme_printf(ctrlr, "failed to load qpair memory\n");
619 		goto out;
620 	}
621 
622 	qpair->num_cmds = 0;
623 	qpair->num_intr_handler_calls = 0;
624 	qpair->cmd = (struct nvme_command *)queuemem;
625 	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
626 	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
627 	qpair->cmd_bus_addr = queuemem_phys;
628 	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
629 	prpmem_phys = queuemem_phys + cmdsz + cplsz;
630 
631 	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
632 	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
633 
634 	TAILQ_INIT(&qpair->free_tr);
635 	TAILQ_INIT(&qpair->outstanding_tr);
636 	STAILQ_INIT(&qpair->queued_req);
637 
638 	list_phys = prpmem_phys;
639 	prp_list = prpmem;
640 	for (i = 0; i < qpair->num_trackers; i++) {
641 
642 		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
643 			qpair->num_trackers = i;
644 			break;
645 		}
646 
647 		/*
648 		 * Make sure that the PRP list for this tracker doesn't
649 		 * overflow to another page.
650 		 */
651 		if (trunc_page(list_phys) !=
652 		    trunc_page(list_phys + prpsz - 1)) {
653 			list_phys = roundup2(list_phys, PAGE_SIZE);
654 			prp_list =
655 			    (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
656 		}
657 
658 		tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
659 		bus_dmamap_create(qpair->dma_tag_payload, 0,
660 		    &tr->payload_dma_map);
661 		callout_init(&tr->timer, 1);
662 		tr->cid = i;
663 		tr->qpair = qpair;
664 		tr->prp = (uint64_t *)prp_list;
665 		tr->prp_bus_addr = list_phys;
666 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
667 		list_phys += prpsz;
668 		prp_list += prpsz;
669 	}
670 
671 	if (qpair->num_trackers == 0) {
672 		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
673 		goto out;
674 	}
675 
676 	qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
677 	    qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
678 	return (0);
679 
680 out:
681 	nvme_qpair_destroy(qpair);
682 	return (ENOMEM);
683 }
684 
685 static void
686 nvme_qpair_destroy(struct nvme_qpair *qpair)
687 {
688 	struct nvme_tracker	*tr;
689 
690 	if (qpair->tag)
691 		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
692 
693 	if (mtx_initialized(&qpair->lock))
694 		mtx_destroy(&qpair->lock);
695 
696 	if (qpair->res)
697 		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
698 		    rman_get_rid(qpair->res), qpair->res);
699 
700 	if (qpair->cmd != NULL) {
701 		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
702 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
703 		    qpair->queuemem_map);
704 	}
705 
706 	if (qpair->act_tr)
707 		free(qpair->act_tr, M_NVME);
708 
709 	while (!TAILQ_EMPTY(&qpair->free_tr)) {
710 		tr = TAILQ_FIRST(&qpair->free_tr);
711 		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
712 		bus_dmamap_destroy(qpair->dma_tag_payload,
713 		    tr->payload_dma_map);
714 		free(tr, M_NVME);
715 	}
716 
717 	if (qpair->dma_tag)
718 		bus_dma_tag_destroy(qpair->dma_tag);
719 
720 	if (qpair->dma_tag_payload)
721 		bus_dma_tag_destroy(qpair->dma_tag_payload);
722 }
723 
724 static void
725 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
726 {
727 	struct nvme_tracker	*tr;
728 
729 	tr = TAILQ_FIRST(&qpair->outstanding_tr);
730 	while (tr != NULL) {
731 		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
732 			nvme_qpair_manual_complete_tracker(qpair, tr,
733 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
734 			    ERROR_PRINT_NONE);
735 			tr = TAILQ_FIRST(&qpair->outstanding_tr);
736 		} else {
737 			tr = TAILQ_NEXT(tr, tailq);
738 		}
739 	}
740 }
741 
742 void
743 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
744 {
745 
746 	nvme_admin_qpair_abort_aers(qpair);
747 	nvme_qpair_destroy(qpair);
748 }
749 
750 void
751 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
752 {
753 
754 	nvme_qpair_destroy(qpair);
755 }
756 
757 static void
758 nvme_abort_complete(void *arg, const struct nvme_completion *status)
759 {
760 	struct nvme_tracker	*tr = arg;
761 
762 	/*
763 	 * If cdw0 == 1, the controller was not able to abort the command
764 	 *  we requested.  We still need to check the active tracker array,
765 	 *  to cover race where I/O timed out at same time controller was
766 	 *  completing the I/O.
767 	 */
768 	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
769 		/*
770 		 * An I/O has timed out, and the controller was unable to
771 		 *  abort it for some reason.  Construct a fake completion
772 		 *  status, and then complete the I/O's tracker manually.
773 		 */
774 		nvme_printf(tr->qpair->ctrlr,
775 		    "abort command failed, aborting command manually\n");
776 		nvme_qpair_manual_complete_tracker(tr->qpair, tr,
777 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
778 	}
779 }
780 
781 static void
782 nvme_timeout(void *arg)
783 {
784 	struct nvme_tracker	*tr = arg;
785 	struct nvme_qpair	*qpair = tr->qpair;
786 	struct nvme_controller	*ctrlr = qpair->ctrlr;
787 	uint32_t		csts;
788 	uint8_t			cfs;
789 
790 	/*
791 	 * Read csts to get value of cfs - controller fatal status.
792 	 * If no fatal status, try to call the completion routine, and
793 	 * if completes transactions, report a missed interrupt and
794 	 * return (this may need to be rate limited). Otherwise, if
795 	 * aborts are enabled and the controller is not reporting
796 	 * fatal status, abort the command. Otherwise, just reset the
797 	 * controller and hope for the best.
798 	 */
799 	csts = nvme_mmio_read_4(ctrlr, csts);
800 	cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
801 	if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
802 		nvme_printf(ctrlr, "Missing interrupt\n");
803 		return;
804 	}
805 	if (ctrlr->enable_aborts && cfs == 0) {
806 		nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
807 		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
808 		    nvme_abort_complete, tr);
809 	} else {
810 		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
811 		    cfs ? " and fatal error status" : "");
812 		nvme_ctrlr_reset(ctrlr);
813 	}
814 }
815 
816 void
817 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
818 {
819 	struct nvme_request	*req;
820 	struct nvme_controller	*ctrlr;
821 
822 	mtx_assert(&qpair->lock, MA_OWNED);
823 
824 	req = tr->req;
825 	req->cmd.cid = tr->cid;
826 	qpair->act_tr[tr->cid] = tr;
827 	ctrlr = qpair->ctrlr;
828 
829 	if (req->timeout)
830 		callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
831 		    nvme_timeout, tr);
832 
833 	/* Copy the command from the tracker to the submission queue. */
834 	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
835 
836 	if (++qpair->sq_tail == qpair->num_entries)
837 		qpair->sq_tail = 0;
838 
839 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
840 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
841 #ifndef __powerpc__
842 	/*
843 	 * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
844 	 * no other archs do.
845 	 */
846 	wmb();
847 #endif
848 
849 	nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
850 	    qpair->sq_tail);
851 
852 	qpair->num_cmds++;
853 }
854 
855 static void
856 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
857 {
858 	struct nvme_tracker 	*tr = arg;
859 	uint32_t		cur_nseg;
860 
861 	/*
862 	 * If the mapping operation failed, return immediately.  The caller
863 	 *  is responsible for detecting the error status and failing the
864 	 *  tracker manually.
865 	 */
866 	if (error != 0) {
867 		nvme_printf(tr->qpair->ctrlr,
868 		    "nvme_payload_map err %d\n", error);
869 		return;
870 	}
871 
872 	/*
873 	 * Note that we specified PAGE_SIZE for alignment and max
874 	 *  segment size when creating the bus dma tags.  So here
875 	 *  we can safely just transfer each segment to its
876 	 *  associated PRP entry.
877 	 */
878 	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
879 
880 	if (nseg == 2) {
881 		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
882 	} else if (nseg > 2) {
883 		cur_nseg = 1;
884 		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
885 		while (cur_nseg < nseg) {
886 			tr->prp[cur_nseg-1] =
887 			    htole64((uint64_t)seg[cur_nseg].ds_addr);
888 			cur_nseg++;
889 		}
890 	} else {
891 		/*
892 		 * prp2 should not be used by the controller
893 		 *  since there is only one segment, but set
894 		 *  to 0 just to be safe.
895 		 */
896 		tr->req->cmd.prp2 = 0;
897 	}
898 
899 	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
900 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
901 	nvme_qpair_submit_tracker(tr->qpair, tr);
902 }
903 
904 static void
905 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
906 {
907 	struct nvme_tracker	*tr;
908 	int			err = 0;
909 
910 	mtx_assert(&qpair->lock, MA_OWNED);
911 
912 	tr = TAILQ_FIRST(&qpair->free_tr);
913 	req->qpair = qpair;
914 
915 	if (tr == NULL || !qpair->is_enabled) {
916 		/*
917 		 * No tracker is available, or the qpair is disabled due to
918 		 *  an in-progress controller-level reset or controller
919 		 *  failure.
920 		 */
921 
922 		if (qpair->ctrlr->is_failed) {
923 			/*
924 			 * The controller has failed.  Post the request to a
925 			 *  task where it will be aborted, so that we do not
926 			 *  invoke the request's callback in the context
927 			 *  of the submission.
928 			 */
929 			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
930 		} else {
931 			/*
932 			 * Put the request on the qpair's request queue to be
933 			 *  processed when a tracker frees up via a command
934 			 *  completion or when the controller reset is
935 			 *  completed.
936 			 */
937 			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
938 		}
939 		return;
940 	}
941 
942 	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
943 	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
944 	tr->req = req;
945 
946 	switch (req->type) {
947 	case NVME_REQUEST_VADDR:
948 		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
949 		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
950 		    req->payload_size, qpair->ctrlr->max_xfer_size));
951 		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
952 		    tr->payload_dma_map, req->u.payload, req->payload_size,
953 		    nvme_payload_map, tr, 0);
954 		if (err != 0)
955 			nvme_printf(qpair->ctrlr,
956 			    "bus_dmamap_load returned 0x%x!\n", err);
957 		break;
958 	case NVME_REQUEST_NULL:
959 		nvme_qpair_submit_tracker(tr->qpair, tr);
960 		break;
961 	case NVME_REQUEST_BIO:
962 		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
963 		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
964 		    (intmax_t)req->u.bio->bio_bcount,
965 		    qpair->ctrlr->max_xfer_size));
966 		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
967 		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
968 		if (err != 0)
969 			nvme_printf(qpair->ctrlr,
970 			    "bus_dmamap_load_bio returned 0x%x!\n", err);
971 		break;
972 	case NVME_REQUEST_CCB:
973 		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
974 		    tr->payload_dma_map, req->u.payload,
975 		    nvme_payload_map, tr, 0);
976 		if (err != 0)
977 			nvme_printf(qpair->ctrlr,
978 			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
979 		break;
980 	default:
981 		panic("unknown nvme request type 0x%x\n", req->type);
982 		break;
983 	}
984 
985 	if (err != 0) {
986 		/*
987 		 * The dmamap operation failed, so we manually fail the
988 		 *  tracker here with DATA_TRANSFER_ERROR status.
989 		 *
990 		 * nvme_qpair_manual_complete_tracker must not be called
991 		 *  with the qpair lock held.
992 		 */
993 		mtx_unlock(&qpair->lock);
994 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
995 		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
996 		mtx_lock(&qpair->lock);
997 	}
998 }
999 
1000 void
1001 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1002 {
1003 
1004 	mtx_lock(&qpair->lock);
1005 	_nvme_qpair_submit_request(qpair, req);
1006 	mtx_unlock(&qpair->lock);
1007 }
1008 
1009 static void
1010 nvme_qpair_enable(struct nvme_qpair *qpair)
1011 {
1012 
1013 	qpair->is_enabled = TRUE;
1014 }
1015 
1016 void
1017 nvme_qpair_reset(struct nvme_qpair *qpair)
1018 {
1019 
1020 	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1021 
1022 	/*
1023 	 * First time through the completion queue, HW will set phase
1024 	 *  bit on completions to 1.  So set this to 1 here, indicating
1025 	 *  we're looking for a 1 to know which entries have completed.
1026 	 *  we'll toggle the bit each time when the completion queue
1027 	 *  rolls over.
1028 	 */
1029 	qpair->phase = 1;
1030 
1031 	memset(qpair->cmd, 0,
1032 	    qpair->num_entries * sizeof(struct nvme_command));
1033 	memset(qpair->cpl, 0,
1034 	    qpair->num_entries * sizeof(struct nvme_completion));
1035 }
1036 
1037 void
1038 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1039 {
1040 	struct nvme_tracker		*tr;
1041 	struct nvme_tracker		*tr_temp;
1042 
1043 	/*
1044 	 * Manually abort each outstanding admin command.  Do not retry
1045 	 *  admin commands found here, since they will be left over from
1046 	 *  a controller reset and its likely the context in which the
1047 	 *  command was issued no longer applies.
1048 	 */
1049 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1050 		nvme_printf(qpair->ctrlr,
1051 		    "aborting outstanding admin command\n");
1052 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1053 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1054 	}
1055 
1056 	nvme_qpair_enable(qpair);
1057 }
1058 
1059 void
1060 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1061 {
1062 	STAILQ_HEAD(, nvme_request)	temp;
1063 	struct nvme_tracker		*tr;
1064 	struct nvme_tracker		*tr_temp;
1065 	struct nvme_request		*req;
1066 
1067 	/*
1068 	 * Manually abort each outstanding I/O.  This normally results in a
1069 	 *  retry, unless the retry count on the associated request has
1070 	 *  reached its limit.
1071 	 */
1072 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1073 		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1074 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1075 		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1076 	}
1077 
1078 	mtx_lock(&qpair->lock);
1079 
1080 	nvme_qpair_enable(qpair);
1081 
1082 	STAILQ_INIT(&temp);
1083 	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1084 
1085 	while (!STAILQ_EMPTY(&temp)) {
1086 		req = STAILQ_FIRST(&temp);
1087 		STAILQ_REMOVE_HEAD(&temp, stailq);
1088 		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1089 		nvme_qpair_print_command(qpair, &req->cmd);
1090 		_nvme_qpair_submit_request(qpair, req);
1091 	}
1092 
1093 	mtx_unlock(&qpair->lock);
1094 }
1095 
1096 static void
1097 nvme_qpair_disable(struct nvme_qpair *qpair)
1098 {
1099 	struct nvme_tracker *tr;
1100 
1101 	qpair->is_enabled = FALSE;
1102 	mtx_lock(&qpair->lock);
1103 	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1104 		callout_stop(&tr->timer);
1105 	mtx_unlock(&qpair->lock);
1106 }
1107 
1108 void
1109 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1110 {
1111 
1112 	nvme_qpair_disable(qpair);
1113 	nvme_admin_qpair_abort_aers(qpair);
1114 }
1115 
1116 void
1117 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1118 {
1119 
1120 	nvme_qpair_disable(qpair);
1121 }
1122 
1123 void
1124 nvme_qpair_fail(struct nvme_qpair *qpair)
1125 {
1126 	struct nvme_tracker		*tr;
1127 	struct nvme_request		*req;
1128 
1129 	if (!mtx_initialized(&qpair->lock))
1130 		return;
1131 
1132 	mtx_lock(&qpair->lock);
1133 
1134 	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1135 		req = STAILQ_FIRST(&qpair->queued_req);
1136 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1137 		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1138 		mtx_unlock(&qpair->lock);
1139 		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1140 		    NVME_SC_ABORTED_BY_REQUEST);
1141 		mtx_lock(&qpair->lock);
1142 	}
1143 
1144 	/* Manually abort each outstanding I/O. */
1145 	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1146 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1147 		/*
1148 		 * Do not remove the tracker.  The abort_tracker path will
1149 		 *  do that for us.
1150 		 */
1151 		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1152 		mtx_unlock(&qpair->lock);
1153 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1154 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1155 		mtx_lock(&qpair->lock);
1156 	}
1157 
1158 	mtx_unlock(&qpair->lock);
1159 }
1160 
1161