xref: /freebsd/sys/dev/nvme/nvme_qpair.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/proc.h>
36 
37 #include <dev/pci/pcivar.h>
38 
39 #include "nvme_private.h"
40 
41 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
42 #define DO_NOT_RETRY	1
43 
44 static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
45 					   struct nvme_request *req);
46 static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
47 
48 struct nvme_opcode_string {
49 
50 	uint16_t	opc;
51 	const char *	str;
52 };
53 
54 static struct nvme_opcode_string admin_opcode[] = {
55 	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56 	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57 	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58 	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59 	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60 	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
61 	{ NVME_OPC_ABORT, "ABORT" },
62 	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
63 	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
64 	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65 	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66 	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67 	{ NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68 	{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69 	{ NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70 	{ NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71 	{ NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72 	{ NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73 	{ NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74 	{ NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75 	{ NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76 	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77 	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78 	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79 	{ NVME_OPC_SANITIZE, "SANITIZE" },
80 	{ 0xFFFF, "ADMIN COMMAND" }
81 };
82 
83 static struct nvme_opcode_string io_opcode[] = {
84 	{ NVME_OPC_FLUSH, "FLUSH" },
85 	{ NVME_OPC_WRITE, "WRITE" },
86 	{ NVME_OPC_READ, "READ" },
87 	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
88 	{ NVME_OPC_COMPARE, "COMPARE" },
89 	{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
90 	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
91 	{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
92 	{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
93 	{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
94 	{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
95 	{ 0xFFFF, "IO COMMAND" }
96 };
97 
98 static const char *
99 get_admin_opcode_string(uint16_t opc)
100 {
101 	struct nvme_opcode_string *entry;
102 
103 	entry = admin_opcode;
104 
105 	while (entry->opc != 0xFFFF) {
106 		if (entry->opc == opc)
107 			return (entry->str);
108 		entry++;
109 	}
110 	return (entry->str);
111 }
112 
113 static const char *
114 get_io_opcode_string(uint16_t opc)
115 {
116 	struct nvme_opcode_string *entry;
117 
118 	entry = io_opcode;
119 
120 	while (entry->opc != 0xFFFF) {
121 		if (entry->opc == opc)
122 			return (entry->str);
123 		entry++;
124 	}
125 	return (entry->str);
126 }
127 
128 
129 static void
130 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
131     struct nvme_command *cmd)
132 {
133 
134 	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
135 	    "cdw10:%08x cdw11:%08x\n",
136 	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
137 	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
138 }
139 
140 static void
141 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
142     struct nvme_command *cmd)
143 {
144 
145 	switch (cmd->opc) {
146 	case NVME_OPC_WRITE:
147 	case NVME_OPC_READ:
148 	case NVME_OPC_WRITE_UNCORRECTABLE:
149 	case NVME_OPC_COMPARE:
150 	case NVME_OPC_WRITE_ZEROES:
151 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
152 		    "lba:%llu len:%d\n",
153 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
154 		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
155 		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
156 		break;
157 	case NVME_OPC_FLUSH:
158 	case NVME_OPC_DATASET_MANAGEMENT:
159 	case NVME_OPC_RESERVATION_REGISTER:
160 	case NVME_OPC_RESERVATION_REPORT:
161 	case NVME_OPC_RESERVATION_ACQUIRE:
162 	case NVME_OPC_RESERVATION_RELEASE:
163 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
164 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
165 		break;
166 	default:
167 		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
168 		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
169 		    cmd->cid, le32toh(cmd->nsid));
170 		break;
171 	}
172 }
173 
174 static void
175 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
176 {
177 	if (qpair->id == 0)
178 		nvme_admin_qpair_print_command(qpair, cmd);
179 	else
180 		nvme_io_qpair_print_command(qpair, cmd);
181 }
182 
183 struct nvme_status_string {
184 
185 	uint16_t	sc;
186 	const char *	str;
187 };
188 
189 static struct nvme_status_string generic_status[] = {
190 	{ NVME_SC_SUCCESS, "SUCCESS" },
191 	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
192 	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
193 	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
194 	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
195 	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
196 	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
197 	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
198 	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
199 	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
200 	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
201 	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
202 	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
203 	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
204 	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
205 	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
206 	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
207 	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
208 	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
209 	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
210 	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
211 	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
212 	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
213 	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
214 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
215 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
216 	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
217 	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
218 	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
219 	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
220 	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
221 
222 	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
223 	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
224 	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
225 	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
226 	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
227 	{ 0xFFFF, "GENERIC" }
228 };
229 
230 static struct nvme_status_string command_specific_status[] = {
231 	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
232 	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
233 	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
234 	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
235 	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
236 	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
237 	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
238 	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
239 	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
240 	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
241 	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
242 	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
243 	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
244 	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
245 	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
246 	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
247 	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
248 	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
249 	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
250 	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
251 	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
252 	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
253 	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
254 	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
255 	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
256 	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
257 	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
258 	{ NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
259 	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
260 	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
261 	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
262 	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
263 	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
264 
265 	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
266 	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
267 	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
268 	{ 0xFFFF, "COMMAND SPECIFIC" }
269 };
270 
271 static struct nvme_status_string media_error_status[] = {
272 	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
273 	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
274 	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
275 	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
276 	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
277 	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
278 	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
279 	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
280 	{ 0xFFFF, "MEDIA ERROR" }
281 };
282 
283 static const char *
284 get_status_string(uint16_t sct, uint16_t sc)
285 {
286 	struct nvme_status_string *entry;
287 
288 	switch (sct) {
289 	case NVME_SCT_GENERIC:
290 		entry = generic_status;
291 		break;
292 	case NVME_SCT_COMMAND_SPECIFIC:
293 		entry = command_specific_status;
294 		break;
295 	case NVME_SCT_MEDIA_ERROR:
296 		entry = media_error_status;
297 		break;
298 	case NVME_SCT_VENDOR_SPECIFIC:
299 		return ("VENDOR SPECIFIC");
300 	default:
301 		return ("RESERVED");
302 	}
303 
304 	while (entry->sc != 0xFFFF) {
305 		if (entry->sc == sc)
306 			return (entry->str);
307 		entry++;
308 	}
309 	return (entry->str);
310 }
311 
312 static void
313 nvme_qpair_print_completion(struct nvme_qpair *qpair,
314     struct nvme_completion *cpl)
315 {
316 	uint16_t sct, sc;
317 
318 	sct = NVME_STATUS_GET_SCT(cpl->status);
319 	sc = NVME_STATUS_GET_SC(cpl->status);
320 
321 	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
322 	    get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
323 	    cpl->cdw0);
324 }
325 
326 static boolean_t
327 nvme_completion_is_retry(const struct nvme_completion *cpl)
328 {
329 	uint8_t sct, sc, dnr;
330 
331 	sct = NVME_STATUS_GET_SCT(cpl->status);
332 	sc = NVME_STATUS_GET_SC(cpl->status);
333 	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */
334 
335 	/*
336 	 * TODO: spec is not clear how commands that are aborted due
337 	 *  to TLER will be marked.  So for now, it seems
338 	 *  NAMESPACE_NOT_READY is the only case where we should
339 	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
340 	 *  set the DNR bit correctly since the driver controls that.
341 	 */
342 	switch (sct) {
343 	case NVME_SCT_GENERIC:
344 		switch (sc) {
345 		case NVME_SC_ABORTED_BY_REQUEST:
346 		case NVME_SC_NAMESPACE_NOT_READY:
347 			if (dnr)
348 				return (0);
349 			else
350 				return (1);
351 		case NVME_SC_INVALID_OPCODE:
352 		case NVME_SC_INVALID_FIELD:
353 		case NVME_SC_COMMAND_ID_CONFLICT:
354 		case NVME_SC_DATA_TRANSFER_ERROR:
355 		case NVME_SC_ABORTED_POWER_LOSS:
356 		case NVME_SC_INTERNAL_DEVICE_ERROR:
357 		case NVME_SC_ABORTED_SQ_DELETION:
358 		case NVME_SC_ABORTED_FAILED_FUSED:
359 		case NVME_SC_ABORTED_MISSING_FUSED:
360 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
361 		case NVME_SC_COMMAND_SEQUENCE_ERROR:
362 		case NVME_SC_LBA_OUT_OF_RANGE:
363 		case NVME_SC_CAPACITY_EXCEEDED:
364 		default:
365 			return (0);
366 		}
367 	case NVME_SCT_COMMAND_SPECIFIC:
368 	case NVME_SCT_MEDIA_ERROR:
369 	case NVME_SCT_VENDOR_SPECIFIC:
370 	default:
371 		return (0);
372 	}
373 }
374 
375 static void
376 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
377     struct nvme_completion *cpl, error_print_t print_on_error)
378 {
379 	struct nvme_request	*req;
380 	boolean_t		retry, error;
381 
382 	req = tr->req;
383 	error = nvme_completion_is_error(cpl);
384 	retry = error && nvme_completion_is_retry(cpl) &&
385 	   req->retries < nvme_retry_count;
386 
387 	if (error && (print_on_error == ERROR_PRINT_ALL ||
388 		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
389 		nvme_qpair_print_command(qpair, &req->cmd);
390 		nvme_qpair_print_completion(qpair, cpl);
391 	}
392 
393 	qpair->act_tr[cpl->cid] = NULL;
394 
395 	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
396 
397 	if (req->cb_fn && !retry)
398 		req->cb_fn(req->cb_arg, cpl);
399 
400 	mtx_lock(&qpair->lock);
401 	callout_stop(&tr->timer);
402 
403 	if (retry) {
404 		req->retries++;
405 		nvme_qpair_submit_tracker(qpair, tr);
406 	} else {
407 		if (req->type != NVME_REQUEST_NULL) {
408 			bus_dmamap_sync(qpair->dma_tag_payload,
409 			    tr->payload_dma_map,
410 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
411 			bus_dmamap_unload(qpair->dma_tag_payload,
412 			    tr->payload_dma_map);
413 		}
414 
415 		nvme_free_request(req);
416 		tr->req = NULL;
417 
418 		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
419 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
420 
421 		/*
422 		 * If the controller is in the middle of resetting, don't
423 		 *  try to submit queued requests here - let the reset logic
424 		 *  handle that instead.
425 		 */
426 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
427 		    !qpair->ctrlr->is_resetting) {
428 			req = STAILQ_FIRST(&qpair->queued_req);
429 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
430 			_nvme_qpair_submit_request(qpair, req);
431 		}
432 	}
433 
434 	mtx_unlock(&qpair->lock);
435 }
436 
437 static void
438 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
439     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
440     error_print_t print_on_error)
441 {
442 	struct nvme_completion	cpl;
443 
444 	memset(&cpl, 0, sizeof(cpl));
445 	cpl.sqid = qpair->id;
446 	cpl.cid = tr->cid;
447 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
448 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
449 	cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
450 	nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
451 }
452 
453 void
454 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
455     struct nvme_request *req, uint32_t sct, uint32_t sc)
456 {
457 	struct nvme_completion	cpl;
458 	boolean_t		error;
459 
460 	memset(&cpl, 0, sizeof(cpl));
461 	cpl.sqid = qpair->id;
462 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
463 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
464 
465 	error = nvme_completion_is_error(&cpl);
466 
467 	if (error) {
468 		nvme_qpair_print_command(qpair, &req->cmd);
469 		nvme_qpair_print_completion(qpair, &cpl);
470 	}
471 
472 	if (req->cb_fn)
473 		req->cb_fn(req->cb_arg, &cpl);
474 
475 	nvme_free_request(req);
476 }
477 
478 bool
479 nvme_qpair_process_completions(struct nvme_qpair *qpair)
480 {
481 	struct nvme_tracker	*tr;
482 	struct nvme_completion	cpl;
483 	int done = 0;
484 	bool in_panic = dumping || SCHEDULER_STOPPED();
485 
486 	qpair->num_intr_handler_calls++;
487 
488 	/*
489 	 * qpair is not enabled, likely because a controller reset is is in
490 	 * progress.  Ignore the interrupt - any I/O that was associated with
491 	 * this interrupt will get retried when the reset is complete.
492 	 */
493 	if (!qpair->is_enabled)
494 		return (false);
495 
496 	/*
497 	 * A panic can stop the CPU this routine is running on at any point.  If
498 	 * we're called during a panic, complete the sq_head wrap protocol for
499 	 * the case where we are interrupted just after the increment at 1
500 	 * below, but before we can reset cq_head to zero at 2. Also cope with
501 	 * the case where we do the zero at 2, but may or may not have done the
502 	 * phase adjustment at step 3. The panic machinery flushes all pending
503 	 * memory writes, so we can make these strong ordering assumptions
504 	 * that would otherwise be unwise if we were racing in real time.
505 	 */
506 	if (__predict_false(in_panic)) {
507 		if (qpair->cq_head == qpair->num_entries) {
508 			/*
509 			 * Here we know that we need to zero cq_head and then negate
510 			 * the phase, which hasn't been assigned if cq_head isn't
511 			 * zero due to the atomic_store_rel.
512 			 */
513 			qpair->cq_head = 0;
514 			qpair->phase = !qpair->phase;
515 		} else if (qpair->cq_head == 0) {
516 			/*
517 			 * In this case, we know that the assignment at 2
518 			 * happened below, but we don't know if it 3 happened or
519 			 * not. To do this, we look at the last completion
520 			 * entry and set the phase to the opposite phase
521 			 * that it has. This gets us back in sync
522 			 */
523 			cpl = qpair->cpl[qpair->num_entries - 1];
524 			nvme_completion_swapbytes(&cpl);
525 			qpair->phase = !NVME_STATUS_GET_P(cpl.status);
526 		}
527 	}
528 
529 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
530 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
531 	while (1) {
532 		cpl = qpair->cpl[qpair->cq_head];
533 
534 		/* Convert to host endian */
535 		nvme_completion_swapbytes(&cpl);
536 
537 		if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
538 			break;
539 
540 		tr = qpair->act_tr[cpl.cid];
541 
542 		if (tr != NULL) {
543 			nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
544 			qpair->sq_head = cpl.sqhd;
545 			done++;
546 		} else if (!in_panic) {
547 			/*
548 			 * A missing tracker is normally an error.  However, a
549 			 * panic can stop the CPU this routine is running on
550 			 * after completing an I/O but before updating
551 			 * qpair->cq_head at 1 below.  Later, we re-enter this
552 			 * routine to poll I/O associated with the kernel
553 			 * dump. We find that the tr has been set to null before
554 			 * calling the completion routine.  If it hasn't
555 			 * completed (or it triggers a panic), then '1' below
556 			 * won't have updated cq_head. Rather than panic again,
557 			 * ignore this condition because it's not unexpected.
558 			 */
559 			nvme_printf(qpair->ctrlr,
560 			    "cpl does not map to outstanding cmd\n");
561 			/* nvme_dump_completion expects device endianess */
562 			nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
563 			KASSERT(0, ("received completion for unknown cmd"));
564 		}
565 
566 		/*
567 		 * There's a number of races with the following (see above) when
568 		 * the system panics. We compensate for each one of them by
569 		 * using the atomic store to force strong ordering (at least when
570 		 * viewed in the aftermath of a panic).
571 		 */
572 		if (++qpair->cq_head == qpair->num_entries) {		/* 1 */
573 			atomic_store_rel_int(&qpair->cq_head, 0);	/* 2 */
574 			qpair->phase = !qpair->phase;			/* 3 */
575 		}
576 
577 		nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
578 		    qpair->cq_head);
579 	}
580 	return (done != 0);
581 }
582 
583 static void
584 nvme_qpair_msix_handler(void *arg)
585 {
586 	struct nvme_qpair *qpair = arg;
587 
588 	nvme_qpair_process_completions(qpair);
589 }
590 
591 int
592 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
593     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
594     struct nvme_controller *ctrlr)
595 {
596 	struct nvme_tracker	*tr;
597 	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
598 	uint64_t		queuemem_phys, prpmem_phys, list_phys;
599 	uint8_t			*queuemem, *prpmem, *prp_list;
600 	int			i, err;
601 
602 	qpair->id = id;
603 	qpair->vector = vector;
604 	qpair->num_entries = num_entries;
605 	qpair->num_trackers = num_trackers;
606 	qpair->ctrlr = ctrlr;
607 
608 	if (ctrlr->msix_enabled) {
609 
610 		/*
611 		 * MSI-X vector resource IDs start at 1, so we add one to
612 		 *  the queue's vector to get the corresponding rid to use.
613 		 */
614 		qpair->rid = vector + 1;
615 
616 		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
617 		    &qpair->rid, RF_ACTIVE);
618 		bus_setup_intr(ctrlr->dev, qpair->res,
619 		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
620 		    nvme_qpair_msix_handler, qpair, &qpair->tag);
621 		if (id == 0) {
622 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
623 			    "admin");
624 		} else {
625 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
626 			    "io%d", id - 1);
627 		}
628 	}
629 
630 	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
631 
632 	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
633 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
634 	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
635 	    BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
636 	    (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
637 	    NULL, NULL, &qpair->dma_tag_payload);
638 	if (err != 0) {
639 		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
640 		goto out;
641 	}
642 
643 	/*
644 	 * Each component must be page aligned, and individual PRP lists
645 	 * cannot cross a page boundary.
646 	 */
647 	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
648 	cmdsz = roundup2(cmdsz, PAGE_SIZE);
649 	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
650 	cplsz = roundup2(cplsz, PAGE_SIZE);
651 	prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
652 	prpmemsz = qpair->num_trackers * prpsz;
653 	allocsz = cmdsz + cplsz + prpmemsz;
654 
655 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
656 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
657 	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
658 	if (err != 0) {
659 		nvme_printf(ctrlr, "tag create failed %d\n", err);
660 		goto out;
661 	}
662 
663 	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
664 	    BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
665 		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
666 		goto out;
667 	}
668 
669 	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
670 	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
671 		nvme_printf(ctrlr, "failed to load qpair memory\n");
672 		goto out;
673 	}
674 
675 	qpair->num_cmds = 0;
676 	qpair->num_intr_handler_calls = 0;
677 	qpair->cmd = (struct nvme_command *)queuemem;
678 	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
679 	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
680 	qpair->cmd_bus_addr = queuemem_phys;
681 	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
682 	prpmem_phys = queuemem_phys + cmdsz + cplsz;
683 
684 	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
685 	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
686 
687 	TAILQ_INIT(&qpair->free_tr);
688 	TAILQ_INIT(&qpair->outstanding_tr);
689 	STAILQ_INIT(&qpair->queued_req);
690 
691 	list_phys = prpmem_phys;
692 	prp_list = prpmem;
693 	for (i = 0; i < qpair->num_trackers; i++) {
694 
695 		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
696 			qpair->num_trackers = i;
697 			break;
698 		}
699 
700 		/*
701 		 * Make sure that the PRP list for this tracker doesn't
702 		 * overflow to another page.
703 		 */
704 		if (trunc_page(list_phys) !=
705 		    trunc_page(list_phys + prpsz - 1)) {
706 			list_phys = roundup2(list_phys, PAGE_SIZE);
707 			prp_list =
708 			    (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
709 		}
710 
711 		tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
712 		bus_dmamap_create(qpair->dma_tag_payload, 0,
713 		    &tr->payload_dma_map);
714 		callout_init(&tr->timer, 1);
715 		tr->cid = i;
716 		tr->qpair = qpair;
717 		tr->prp = (uint64_t *)prp_list;
718 		tr->prp_bus_addr = list_phys;
719 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
720 		list_phys += prpsz;
721 		prp_list += prpsz;
722 	}
723 
724 	if (qpair->num_trackers == 0) {
725 		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
726 		goto out;
727 	}
728 
729 	qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
730 	    qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
731 	return (0);
732 
733 out:
734 	nvme_qpair_destroy(qpair);
735 	return (ENOMEM);
736 }
737 
738 static void
739 nvme_qpair_destroy(struct nvme_qpair *qpair)
740 {
741 	struct nvme_tracker	*tr;
742 
743 	if (qpair->tag)
744 		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
745 
746 	if (mtx_initialized(&qpair->lock))
747 		mtx_destroy(&qpair->lock);
748 
749 	if (qpair->res)
750 		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
751 		    rman_get_rid(qpair->res), qpair->res);
752 
753 	if (qpair->cmd != NULL) {
754 		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
755 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
756 		    qpair->queuemem_map);
757 	}
758 
759 	if (qpair->act_tr)
760 		free(qpair->act_tr, M_NVME);
761 
762 	while (!TAILQ_EMPTY(&qpair->free_tr)) {
763 		tr = TAILQ_FIRST(&qpair->free_tr);
764 		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
765 		bus_dmamap_destroy(qpair->dma_tag_payload,
766 		    tr->payload_dma_map);
767 		free(tr, M_NVME);
768 	}
769 
770 	if (qpair->dma_tag)
771 		bus_dma_tag_destroy(qpair->dma_tag);
772 
773 	if (qpair->dma_tag_payload)
774 		bus_dma_tag_destroy(qpair->dma_tag_payload);
775 }
776 
777 static void
778 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
779 {
780 	struct nvme_tracker	*tr;
781 
782 	tr = TAILQ_FIRST(&qpair->outstanding_tr);
783 	while (tr != NULL) {
784 		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
785 			nvme_qpair_manual_complete_tracker(qpair, tr,
786 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
787 			    ERROR_PRINT_NONE);
788 			tr = TAILQ_FIRST(&qpair->outstanding_tr);
789 		} else {
790 			tr = TAILQ_NEXT(tr, tailq);
791 		}
792 	}
793 }
794 
795 void
796 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
797 {
798 
799 	nvme_admin_qpair_abort_aers(qpair);
800 	nvme_qpair_destroy(qpair);
801 }
802 
803 void
804 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
805 {
806 
807 	nvme_qpair_destroy(qpair);
808 }
809 
810 static void
811 nvme_abort_complete(void *arg, const struct nvme_completion *status)
812 {
813 	struct nvme_tracker	*tr = arg;
814 
815 	/*
816 	 * If cdw0 == 1, the controller was not able to abort the command
817 	 *  we requested.  We still need to check the active tracker array,
818 	 *  to cover race where I/O timed out at same time controller was
819 	 *  completing the I/O.
820 	 */
821 	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
822 		/*
823 		 * An I/O has timed out, and the controller was unable to
824 		 *  abort it for some reason.  Construct a fake completion
825 		 *  status, and then complete the I/O's tracker manually.
826 		 */
827 		nvme_printf(tr->qpair->ctrlr,
828 		    "abort command failed, aborting command manually\n");
829 		nvme_qpair_manual_complete_tracker(tr->qpair, tr,
830 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
831 	}
832 }
833 
834 static void
835 nvme_timeout(void *arg)
836 {
837 	struct nvme_tracker	*tr = arg;
838 	struct nvme_qpair	*qpair = tr->qpair;
839 	struct nvme_controller	*ctrlr = qpair->ctrlr;
840 	uint32_t		csts;
841 	uint8_t			cfs;
842 
843 	/*
844 	 * Read csts to get value of cfs - controller fatal status.
845 	 * If no fatal status, try to call the completion routine, and
846 	 * if completes transactions, report a missed interrupt and
847 	 * return (this may need to be rate limited). Otherwise, if
848 	 * aborts are enabled and the controller is not reporting
849 	 * fatal status, abort the command. Otherwise, just reset the
850 	 * controller and hope for the best.
851 	 */
852 	csts = nvme_mmio_read_4(ctrlr, csts);
853 	cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
854 	if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
855 		nvme_printf(ctrlr, "Missing interrupt\n");
856 		return;
857 	}
858 	if (ctrlr->enable_aborts && cfs == 0) {
859 		nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
860 		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
861 		    nvme_abort_complete, tr);
862 	} else {
863 		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
864 		    cfs ? " and fatal error status" : "");
865 		nvme_ctrlr_reset(ctrlr);
866 	}
867 }
868 
869 void
870 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
871 {
872 	struct nvme_request	*req;
873 	struct nvme_controller	*ctrlr;
874 
875 	mtx_assert(&qpair->lock, MA_OWNED);
876 
877 	req = tr->req;
878 	req->cmd.cid = tr->cid;
879 	qpair->act_tr[tr->cid] = tr;
880 	ctrlr = qpair->ctrlr;
881 
882 	if (req->timeout)
883 		callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
884 		    nvme_timeout, tr);
885 
886 	/* Copy the command from the tracker to the submission queue. */
887 	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
888 
889 	if (++qpair->sq_tail == qpair->num_entries)
890 		qpair->sq_tail = 0;
891 
892 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
893 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
894 #ifndef __powerpc__
895 	/*
896 	 * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
897 	 * no other archs do.
898 	 */
899 	wmb();
900 #endif
901 
902 	nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
903 	    qpair->sq_tail);
904 
905 	qpair->num_cmds++;
906 }
907 
908 static void
909 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
910 {
911 	struct nvme_tracker 	*tr = arg;
912 	uint32_t		cur_nseg;
913 
914 	/*
915 	 * If the mapping operation failed, return immediately.  The caller
916 	 *  is responsible for detecting the error status and failing the
917 	 *  tracker manually.
918 	 */
919 	if (error != 0) {
920 		nvme_printf(tr->qpair->ctrlr,
921 		    "nvme_payload_map err %d\n", error);
922 		return;
923 	}
924 
925 	/*
926 	 * Note that we specified PAGE_SIZE for alignment and max
927 	 *  segment size when creating the bus dma tags.  So here
928 	 *  we can safely just transfer each segment to its
929 	 *  associated PRP entry.
930 	 */
931 	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
932 
933 	if (nseg == 2) {
934 		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
935 	} else if (nseg > 2) {
936 		cur_nseg = 1;
937 		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
938 		while (cur_nseg < nseg) {
939 			tr->prp[cur_nseg-1] =
940 			    htole64((uint64_t)seg[cur_nseg].ds_addr);
941 			cur_nseg++;
942 		}
943 	} else {
944 		/*
945 		 * prp2 should not be used by the controller
946 		 *  since there is only one segment, but set
947 		 *  to 0 just to be safe.
948 		 */
949 		tr->req->cmd.prp2 = 0;
950 	}
951 
952 	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
953 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
954 	nvme_qpair_submit_tracker(tr->qpair, tr);
955 }
956 
957 static void
958 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
959 {
960 	struct nvme_tracker	*tr;
961 	int			err = 0;
962 
963 	mtx_assert(&qpair->lock, MA_OWNED);
964 
965 	tr = TAILQ_FIRST(&qpair->free_tr);
966 	req->qpair = qpair;
967 
968 	if (tr == NULL || !qpair->is_enabled) {
969 		/*
970 		 * No tracker is available, or the qpair is disabled due to
971 		 *  an in-progress controller-level reset or controller
972 		 *  failure.
973 		 */
974 
975 		if (qpair->ctrlr->is_failed) {
976 			/*
977 			 * The controller has failed.  Post the request to a
978 			 *  task where it will be aborted, so that we do not
979 			 *  invoke the request's callback in the context
980 			 *  of the submission.
981 			 */
982 			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
983 		} else {
984 			/*
985 			 * Put the request on the qpair's request queue to be
986 			 *  processed when a tracker frees up via a command
987 			 *  completion or when the controller reset is
988 			 *  completed.
989 			 */
990 			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
991 		}
992 		return;
993 	}
994 
995 	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
996 	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
997 	tr->req = req;
998 
999 	switch (req->type) {
1000 	case NVME_REQUEST_VADDR:
1001 		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1002 		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1003 		    req->payload_size, qpair->ctrlr->max_xfer_size));
1004 		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1005 		    tr->payload_dma_map, req->u.payload, req->payload_size,
1006 		    nvme_payload_map, tr, 0);
1007 		if (err != 0)
1008 			nvme_printf(qpair->ctrlr,
1009 			    "bus_dmamap_load returned 0x%x!\n", err);
1010 		break;
1011 	case NVME_REQUEST_NULL:
1012 		nvme_qpair_submit_tracker(tr->qpair, tr);
1013 		break;
1014 	case NVME_REQUEST_BIO:
1015 		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1016 		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1017 		    (intmax_t)req->u.bio->bio_bcount,
1018 		    qpair->ctrlr->max_xfer_size));
1019 		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1020 		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1021 		if (err != 0)
1022 			nvme_printf(qpair->ctrlr,
1023 			    "bus_dmamap_load_bio returned 0x%x!\n", err);
1024 		break;
1025 	case NVME_REQUEST_CCB:
1026 		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1027 		    tr->payload_dma_map, req->u.payload,
1028 		    nvme_payload_map, tr, 0);
1029 		if (err != 0)
1030 			nvme_printf(qpair->ctrlr,
1031 			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
1032 		break;
1033 	default:
1034 		panic("unknown nvme request type 0x%x\n", req->type);
1035 		break;
1036 	}
1037 
1038 	if (err != 0) {
1039 		/*
1040 		 * The dmamap operation failed, so we manually fail the
1041 		 *  tracker here with DATA_TRANSFER_ERROR status.
1042 		 *
1043 		 * nvme_qpair_manual_complete_tracker must not be called
1044 		 *  with the qpair lock held.
1045 		 */
1046 		mtx_unlock(&qpair->lock);
1047 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1048 		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1049 		mtx_lock(&qpair->lock);
1050 	}
1051 }
1052 
1053 void
1054 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1055 {
1056 
1057 	mtx_lock(&qpair->lock);
1058 	_nvme_qpair_submit_request(qpair, req);
1059 	mtx_unlock(&qpair->lock);
1060 }
1061 
1062 static void
1063 nvme_qpair_enable(struct nvme_qpair *qpair)
1064 {
1065 
1066 	qpair->is_enabled = TRUE;
1067 }
1068 
1069 void
1070 nvme_qpair_reset(struct nvme_qpair *qpair)
1071 {
1072 
1073 	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1074 
1075 	/*
1076 	 * First time through the completion queue, HW will set phase
1077 	 *  bit on completions to 1.  So set this to 1 here, indicating
1078 	 *  we're looking for a 1 to know which entries have completed.
1079 	 *  we'll toggle the bit each time when the completion queue
1080 	 *  rolls over.
1081 	 */
1082 	qpair->phase = 1;
1083 
1084 	memset(qpair->cmd, 0,
1085 	    qpair->num_entries * sizeof(struct nvme_command));
1086 	memset(qpair->cpl, 0,
1087 	    qpair->num_entries * sizeof(struct nvme_completion));
1088 }
1089 
1090 void
1091 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1092 {
1093 	struct nvme_tracker		*tr;
1094 	struct nvme_tracker		*tr_temp;
1095 
1096 	/*
1097 	 * Manually abort each outstanding admin command.  Do not retry
1098 	 *  admin commands found here, since they will be left over from
1099 	 *  a controller reset and its likely the context in which the
1100 	 *  command was issued no longer applies.
1101 	 */
1102 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1103 		nvme_printf(qpair->ctrlr,
1104 		    "aborting outstanding admin command\n");
1105 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1106 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1107 	}
1108 
1109 	nvme_qpair_enable(qpair);
1110 }
1111 
1112 void
1113 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1114 {
1115 	STAILQ_HEAD(, nvme_request)	temp;
1116 	struct nvme_tracker		*tr;
1117 	struct nvme_tracker		*tr_temp;
1118 	struct nvme_request		*req;
1119 
1120 	/*
1121 	 * Manually abort each outstanding I/O.  This normally results in a
1122 	 *  retry, unless the retry count on the associated request has
1123 	 *  reached its limit.
1124 	 */
1125 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1126 		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1127 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1128 		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1129 	}
1130 
1131 	mtx_lock(&qpair->lock);
1132 
1133 	nvme_qpair_enable(qpair);
1134 
1135 	STAILQ_INIT(&temp);
1136 	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1137 
1138 	while (!STAILQ_EMPTY(&temp)) {
1139 		req = STAILQ_FIRST(&temp);
1140 		STAILQ_REMOVE_HEAD(&temp, stailq);
1141 		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1142 		nvme_qpair_print_command(qpair, &req->cmd);
1143 		_nvme_qpair_submit_request(qpair, req);
1144 	}
1145 
1146 	mtx_unlock(&qpair->lock);
1147 }
1148 
1149 static void
1150 nvme_qpair_disable(struct nvme_qpair *qpair)
1151 {
1152 	struct nvme_tracker *tr;
1153 
1154 	qpair->is_enabled = FALSE;
1155 	mtx_lock(&qpair->lock);
1156 	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1157 		callout_stop(&tr->timer);
1158 	mtx_unlock(&qpair->lock);
1159 }
1160 
1161 void
1162 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1163 {
1164 
1165 	nvme_qpair_disable(qpair);
1166 	nvme_admin_qpair_abort_aers(qpair);
1167 }
1168 
1169 void
1170 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1171 {
1172 
1173 	nvme_qpair_disable(qpair);
1174 }
1175 
1176 void
1177 nvme_qpair_fail(struct nvme_qpair *qpair)
1178 {
1179 	struct nvme_tracker		*tr;
1180 	struct nvme_request		*req;
1181 
1182 	if (!mtx_initialized(&qpair->lock))
1183 		return;
1184 
1185 	mtx_lock(&qpair->lock);
1186 
1187 	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1188 		req = STAILQ_FIRST(&qpair->queued_req);
1189 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1190 		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1191 		mtx_unlock(&qpair->lock);
1192 		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1193 		    NVME_SC_ABORTED_BY_REQUEST);
1194 		mtx_lock(&qpair->lock);
1195 	}
1196 
1197 	/* Manually abort each outstanding I/O. */
1198 	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1199 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1200 		/*
1201 		 * Do not remove the tracker.  The abort_tracker path will
1202 		 *  do that for us.
1203 		 */
1204 		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1205 		mtx_unlock(&qpair->lock);
1206 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1207 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1208 		mtx_lock(&qpair->lock);
1209 	}
1210 
1211 	mtx_unlock(&qpair->lock);
1212 }
1213 
1214