xref: /freebsd/sys/dev/nvme/nvme_qpair.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*-
2  * Copyright (C) 2012-2014 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 
33 #include <dev/pci/pcivar.h>
34 
35 #include "nvme_private.h"
36 
37 static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
38 					   struct nvme_request *req);
39 static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
40 
41 struct nvme_opcode_string {
42 
43 	uint16_t	opc;
44 	const char *	str;
45 };
46 
47 static struct nvme_opcode_string admin_opcode[] = {
48 	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
49 	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
50 	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
51 	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
52 	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
53 	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
54 	{ NVME_OPC_ABORT, "ABORT" },
55 	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
56 	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
57 	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
58 	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
59 	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
60 	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
61 	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
62 	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
63 	{ 0xFFFF, "ADMIN COMMAND" }
64 };
65 
66 static struct nvme_opcode_string io_opcode[] = {
67 	{ NVME_OPC_FLUSH, "FLUSH" },
68 	{ NVME_OPC_WRITE, "WRITE" },
69 	{ NVME_OPC_READ, "READ" },
70 	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
71 	{ NVME_OPC_COMPARE, "COMPARE" },
72 	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
73 	{ 0xFFFF, "IO COMMAND" }
74 };
75 
76 static const char *
77 get_admin_opcode_string(uint16_t opc)
78 {
79 	struct nvme_opcode_string *entry;
80 
81 	entry = admin_opcode;
82 
83 	while (entry->opc != 0xFFFF) {
84 		if (entry->opc == opc)
85 			return (entry->str);
86 		entry++;
87 	}
88 	return (entry->str);
89 }
90 
91 static const char *
92 get_io_opcode_string(uint16_t opc)
93 {
94 	struct nvme_opcode_string *entry;
95 
96 	entry = io_opcode;
97 
98 	while (entry->opc != 0xFFFF) {
99 		if (entry->opc == opc)
100 			return (entry->str);
101 		entry++;
102 	}
103 	return (entry->str);
104 }
105 
106 
107 static void
108 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
109     struct nvme_command *cmd)
110 {
111 
112 	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
113 	    "cdw10:%08x cdw11:%08x\n",
114 	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
115 	    cmd->nsid, cmd->cdw10, cmd->cdw11);
116 }
117 
118 static void
119 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
120     struct nvme_command *cmd)
121 {
122 
123 	switch (cmd->opc) {
124 	case NVME_OPC_WRITE:
125 	case NVME_OPC_READ:
126 	case NVME_OPC_WRITE_UNCORRECTABLE:
127 	case NVME_OPC_COMPARE:
128 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
129 		    "lba:%llu len:%d\n",
130 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
131 		    cmd->nsid,
132 		    ((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
133 		    (cmd->cdw12 & 0xFFFF) + 1);
134 		break;
135 	case NVME_OPC_FLUSH:
136 	case NVME_OPC_DATASET_MANAGEMENT:
137 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
138 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
139 		    cmd->nsid);
140 		break;
141 	default:
142 		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
143 		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
144 		    cmd->cid, cmd->nsid);
145 		break;
146 	}
147 }
148 
149 static void
150 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
151 {
152 	if (qpair->id == 0)
153 		nvme_admin_qpair_print_command(qpair, cmd);
154 	else
155 		nvme_io_qpair_print_command(qpair, cmd);
156 }
157 
158 struct nvme_status_string {
159 
160 	uint16_t	sc;
161 	const char *	str;
162 };
163 
164 static struct nvme_status_string generic_status[] = {
165 	{ NVME_SC_SUCCESS, "SUCCESS" },
166 	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
167 	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
168 	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
169 	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
170 	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
171 	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
172 	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
173 	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
174 	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
175 	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
176 	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
177 	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
178 	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
179 	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
180 	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
181 	{ 0xFFFF, "GENERIC" }
182 };
183 
184 static struct nvme_status_string command_specific_status[] = {
185 	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
186 	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
187 	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
188 	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
189 	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
190 	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
191 	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
192 	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
193 	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
194 	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
195 	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
196 	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
197 	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
198 	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
199 	{ 0xFFFF, "COMMAND SPECIFIC" }
200 };
201 
202 static struct nvme_status_string media_error_status[] = {
203 	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
204 	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
205 	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
206 	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
207 	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
208 	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
209 	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
210 	{ 0xFFFF, "MEDIA ERROR" }
211 };
212 
213 static const char *
214 get_status_string(uint16_t sct, uint16_t sc)
215 {
216 	struct nvme_status_string *entry;
217 
218 	switch (sct) {
219 	case NVME_SCT_GENERIC:
220 		entry = generic_status;
221 		break;
222 	case NVME_SCT_COMMAND_SPECIFIC:
223 		entry = command_specific_status;
224 		break;
225 	case NVME_SCT_MEDIA_ERROR:
226 		entry = media_error_status;
227 		break;
228 	case NVME_SCT_VENDOR_SPECIFIC:
229 		return ("VENDOR SPECIFIC");
230 	default:
231 		return ("RESERVED");
232 	}
233 
234 	while (entry->sc != 0xFFFF) {
235 		if (entry->sc == sc)
236 			return (entry->str);
237 		entry++;
238 	}
239 	return (entry->str);
240 }
241 
242 static void
243 nvme_qpair_print_completion(struct nvme_qpair *qpair,
244     struct nvme_completion *cpl)
245 {
246 	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
247 	    get_status_string(cpl->status.sct, cpl->status.sc),
248 	    cpl->status.sct, cpl->status.sc, cpl->sqid, cpl->cid, cpl->cdw0);
249 }
250 
251 static boolean_t
252 nvme_completion_is_retry(const struct nvme_completion *cpl)
253 {
254 	/*
255 	 * TODO: spec is not clear how commands that are aborted due
256 	 *  to TLER will be marked.  So for now, it seems
257 	 *  NAMESPACE_NOT_READY is the only case where we should
258 	 *  look at the DNR bit.
259 	 */
260 	switch (cpl->status.sct) {
261 	case NVME_SCT_GENERIC:
262 		switch (cpl->status.sc) {
263 		case NVME_SC_ABORTED_BY_REQUEST:
264 		case NVME_SC_NAMESPACE_NOT_READY:
265 			if (cpl->status.dnr)
266 				return (0);
267 			else
268 				return (1);
269 		case NVME_SC_INVALID_OPCODE:
270 		case NVME_SC_INVALID_FIELD:
271 		case NVME_SC_COMMAND_ID_CONFLICT:
272 		case NVME_SC_DATA_TRANSFER_ERROR:
273 		case NVME_SC_ABORTED_POWER_LOSS:
274 		case NVME_SC_INTERNAL_DEVICE_ERROR:
275 		case NVME_SC_ABORTED_SQ_DELETION:
276 		case NVME_SC_ABORTED_FAILED_FUSED:
277 		case NVME_SC_ABORTED_MISSING_FUSED:
278 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
279 		case NVME_SC_COMMAND_SEQUENCE_ERROR:
280 		case NVME_SC_LBA_OUT_OF_RANGE:
281 		case NVME_SC_CAPACITY_EXCEEDED:
282 		default:
283 			return (0);
284 		}
285 	case NVME_SCT_COMMAND_SPECIFIC:
286 	case NVME_SCT_MEDIA_ERROR:
287 	case NVME_SCT_VENDOR_SPECIFIC:
288 	default:
289 		return (0);
290 	}
291 }
292 
293 static void
294 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
295     struct nvme_completion *cpl, boolean_t print_on_error)
296 {
297 	struct nvme_request	*req;
298 	boolean_t		retry, error;
299 
300 	req = tr->req;
301 	error = nvme_completion_is_error(cpl);
302 	retry = error && nvme_completion_is_retry(cpl) &&
303 	   req->retries < nvme_retry_count;
304 
305 	if (error && print_on_error) {
306 		nvme_qpair_print_command(qpair, &req->cmd);
307 		nvme_qpair_print_completion(qpair, cpl);
308 	}
309 
310 	qpair->act_tr[cpl->cid] = NULL;
311 
312 	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
313 
314 	if (req->cb_fn && !retry)
315 		req->cb_fn(req->cb_arg, cpl);
316 
317 	mtx_lock(&qpair->lock);
318 	callout_stop(&tr->timer);
319 
320 	if (retry) {
321 		req->retries++;
322 		nvme_qpair_submit_tracker(qpair, tr);
323 	} else {
324 		if (req->type != NVME_REQUEST_NULL)
325 			bus_dmamap_unload(qpair->dma_tag_payload,
326 			    tr->payload_dma_map);
327 
328 		nvme_free_request(req);
329 		tr->req = NULL;
330 
331 		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
332 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
333 
334 		/*
335 		 * If the controller is in the middle of resetting, don't
336 		 *  try to submit queued requests here - let the reset logic
337 		 *  handle that instead.
338 		 */
339 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
340 		    !qpair->ctrlr->is_resetting) {
341 			req = STAILQ_FIRST(&qpair->queued_req);
342 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
343 			_nvme_qpair_submit_request(qpair, req);
344 		}
345 	}
346 
347 	mtx_unlock(&qpair->lock);
348 }
349 
350 static void
351 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
352     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
353     boolean_t print_on_error)
354 {
355 	struct nvme_completion	cpl;
356 
357 	memset(&cpl, 0, sizeof(cpl));
358 	cpl.sqid = qpair->id;
359 	cpl.cid = tr->cid;
360 	cpl.status.sct = sct;
361 	cpl.status.sc = sc;
362 	cpl.status.dnr = dnr;
363 	nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
364 }
365 
366 void
367 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
368     struct nvme_request *req, uint32_t sct, uint32_t sc,
369     boolean_t print_on_error)
370 {
371 	struct nvme_completion	cpl;
372 	boolean_t		error;
373 
374 	memset(&cpl, 0, sizeof(cpl));
375 	cpl.sqid = qpair->id;
376 	cpl.status.sct = sct;
377 	cpl.status.sc = sc;
378 
379 	error = nvme_completion_is_error(&cpl);
380 
381 	if (error && print_on_error) {
382 		nvme_qpair_print_command(qpair, &req->cmd);
383 		nvme_qpair_print_completion(qpair, &cpl);
384 	}
385 
386 	if (req->cb_fn)
387 		req->cb_fn(req->cb_arg, &cpl);
388 
389 	nvme_free_request(req);
390 }
391 
392 void
393 nvme_qpair_process_completions(struct nvme_qpair *qpair)
394 {
395 	struct nvme_tracker	*tr;
396 	struct nvme_completion	*cpl;
397 
398 	qpair->num_intr_handler_calls++;
399 
400 	if (!qpair->is_enabled)
401 		/*
402 		 * qpair is not enabled, likely because a controller reset is
403 		 *  is in progress.  Ignore the interrupt - any I/O that was
404 		 *  associated with this interrupt will get retried when the
405 		 *  reset is complete.
406 		 */
407 		return;
408 
409 	while (1) {
410 		cpl = &qpair->cpl[qpair->cq_head];
411 
412 		if (cpl->status.p != qpair->phase)
413 			break;
414 
415 		tr = qpair->act_tr[cpl->cid];
416 
417 		if (tr != NULL) {
418 			nvme_qpair_complete_tracker(qpair, tr, cpl, TRUE);
419 			qpair->sq_head = cpl->sqhd;
420 		} else {
421 			nvme_printf(qpair->ctrlr,
422 			    "cpl does not map to outstanding cmd\n");
423 			nvme_dump_completion(cpl);
424 			KASSERT(0, ("received completion for unknown cmd\n"));
425 		}
426 
427 		if (++qpair->cq_head == qpair->num_entries) {
428 			qpair->cq_head = 0;
429 			qpair->phase = !qpair->phase;
430 		}
431 
432 		nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
433 		    qpair->cq_head);
434 	}
435 }
436 
437 static void
438 nvme_qpair_msix_handler(void *arg)
439 {
440 	struct nvme_qpair *qpair = arg;
441 
442 	nvme_qpair_process_completions(qpair);
443 }
444 
445 int
446 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
447     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
448     struct nvme_controller *ctrlr)
449 {
450 	struct nvme_tracker	*tr;
451 	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
452 	uint64_t		queuemem_phys, prpmem_phys, list_phys;
453 	uint8_t			*queuemem, *prpmem, *prp_list;
454 	int			i, err;
455 
456 	qpair->id = id;
457 	qpair->vector = vector;
458 	qpair->num_entries = num_entries;
459 	qpair->num_trackers = num_trackers;
460 	qpair->ctrlr = ctrlr;
461 
462 	if (ctrlr->msix_enabled) {
463 
464 		/*
465 		 * MSI-X vector resource IDs start at 1, so we add one to
466 		 *  the queue's vector to get the corresponding rid to use.
467 		 */
468 		qpair->rid = vector + 1;
469 
470 		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
471 		    &qpair->rid, RF_ACTIVE);
472 		bus_setup_intr(ctrlr->dev, qpair->res,
473 		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
474 		    nvme_qpair_msix_handler, qpair, &qpair->tag);
475 	}
476 
477 	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
478 
479 	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
480 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
481 	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
482 	    BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
483 	    (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
484 	    NULL, NULL, &qpair->dma_tag_payload);
485 	if (err != 0) {
486 		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
487 		goto out;
488 	}
489 
490 	/*
491 	 * Each component must be page aligned, and individual PRP lists
492 	 * cannot cross a page boundary.
493 	 */
494 	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
495 	cmdsz = roundup2(cmdsz, PAGE_SIZE);
496 	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
497 	cplsz = roundup2(cplsz, PAGE_SIZE);
498 	prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
499 	prpmemsz = qpair->num_trackers * prpsz;
500 	allocsz = cmdsz + cplsz + prpmemsz;
501 
502 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
503 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
504 	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
505 	if (err != 0) {
506 		nvme_printf(ctrlr, "tag create failed %d\n", err);
507 		goto out;
508 	}
509 
510 	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
511 	    BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
512 		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
513 		goto out;
514 	}
515 
516 	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
517 	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
518 		nvme_printf(ctrlr, "failed to load qpair memory\n");
519 		goto out;
520 	}
521 
522 	qpair->num_cmds = 0;
523 	qpair->num_intr_handler_calls = 0;
524 	qpair->cmd = (struct nvme_command *)queuemem;
525 	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
526 	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
527 	qpair->cmd_bus_addr = queuemem_phys;
528 	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
529 	prpmem_phys = queuemem_phys + cmdsz + cplsz;
530 
531 	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
532 	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
533 
534 	TAILQ_INIT(&qpair->free_tr);
535 	TAILQ_INIT(&qpair->outstanding_tr);
536 	STAILQ_INIT(&qpair->queued_req);
537 
538 	list_phys = prpmem_phys;
539 	prp_list = prpmem;
540 	for (i = 0; i < qpair->num_trackers; i++) {
541 
542 		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
543 			qpair->num_trackers = i;
544 			break;
545 		}
546 
547 		/*
548 		 * Make sure that the PRP list for this tracker doesn't
549 		 * overflow to another page.
550 		 */
551 		if (trunc_page(list_phys) !=
552 		    trunc_page(list_phys + prpsz - 1)) {
553 			list_phys = roundup2(list_phys, PAGE_SIZE);
554 			prp_list =
555 			    (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
556 		}
557 
558 		tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
559 		bus_dmamap_create(qpair->dma_tag_payload, 0,
560 		    &tr->payload_dma_map);
561 		callout_init(&tr->timer, 1);
562 		tr->cid = i;
563 		tr->qpair = qpair;
564 		tr->prp = (uint64_t *)prp_list;
565 		tr->prp_bus_addr = list_phys;
566 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
567 		list_phys += prpsz;
568 		prp_list += prpsz;
569 	}
570 
571 	if (qpair->num_trackers == 0) {
572 		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
573 		goto out;
574 	}
575 
576 	qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
577 	    qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
578 	return (0);
579 
580 out:
581 	nvme_qpair_destroy(qpair);
582 	return (ENOMEM);
583 }
584 
585 static void
586 nvme_qpair_destroy(struct nvme_qpair *qpair)
587 {
588 	struct nvme_tracker	*tr;
589 
590 	if (qpair->tag)
591 		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
592 
593 	if (mtx_initialized(&qpair->lock))
594 		mtx_destroy(&qpair->lock);
595 
596 	if (qpair->res)
597 		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
598 		    rman_get_rid(qpair->res), qpair->res);
599 
600 	if (qpair->cmd != NULL) {
601 		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
602 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
603 		    qpair->queuemem_map);
604 	}
605 
606 	if (qpair->dma_tag)
607 		bus_dma_tag_destroy(qpair->dma_tag);
608 
609 	if (qpair->dma_tag_payload)
610 		bus_dma_tag_destroy(qpair->dma_tag_payload);
611 
612 	if (qpair->act_tr)
613 		free(qpair->act_tr, M_NVME);
614 
615 	while (!TAILQ_EMPTY(&qpair->free_tr)) {
616 		tr = TAILQ_FIRST(&qpair->free_tr);
617 		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
618 		bus_dmamap_destroy(qpair->dma_tag, tr->payload_dma_map);
619 		free(tr, M_NVME);
620 	}
621 }
622 
623 static void
624 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
625 {
626 	struct nvme_tracker	*tr;
627 
628 	tr = TAILQ_FIRST(&qpair->outstanding_tr);
629 	while (tr != NULL) {
630 		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
631 			nvme_qpair_manual_complete_tracker(qpair, tr,
632 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
633 			    FALSE);
634 			tr = TAILQ_FIRST(&qpair->outstanding_tr);
635 		} else {
636 			tr = TAILQ_NEXT(tr, tailq);
637 		}
638 	}
639 }
640 
641 void
642 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
643 {
644 
645 	nvme_admin_qpair_abort_aers(qpair);
646 	nvme_qpair_destroy(qpair);
647 }
648 
649 void
650 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
651 {
652 
653 	nvme_qpair_destroy(qpair);
654 }
655 
656 static void
657 nvme_abort_complete(void *arg, const struct nvme_completion *status)
658 {
659 	struct nvme_tracker	*tr = arg;
660 
661 	/*
662 	 * If cdw0 == 1, the controller was not able to abort the command
663 	 *  we requested.  We still need to check the active tracker array,
664 	 *  to cover race where I/O timed out at same time controller was
665 	 *  completing the I/O.
666 	 */
667 	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
668 		/*
669 		 * An I/O has timed out, and the controller was unable to
670 		 *  abort it for some reason.  Construct a fake completion
671 		 *  status, and then complete the I/O's tracker manually.
672 		 */
673 		nvme_printf(tr->qpair->ctrlr,
674 		    "abort command failed, aborting command manually\n");
675 		nvme_qpair_manual_complete_tracker(tr->qpair, tr,
676 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
677 	}
678 }
679 
680 static void
681 nvme_timeout(void *arg)
682 {
683 	struct nvme_tracker	*tr = arg;
684 	struct nvme_qpair	*qpair = tr->qpair;
685 	struct nvme_controller	*ctrlr = qpair->ctrlr;
686 	union csts_register	csts;
687 
688 	/* Read csts to get value of cfs - controller fatal status. */
689 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
690 
691 	if (ctrlr->enable_aborts && csts.bits.cfs == 0) {
692 		/*
693 		 * If aborts are enabled, only use them if the controller is
694 		 *  not reporting fatal status.
695 		 */
696 		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
697 		    nvme_abort_complete, tr);
698 	} else
699 		nvme_ctrlr_reset(ctrlr);
700 }
701 
702 void
703 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
704 {
705 	struct nvme_request	*req;
706 	struct nvme_controller	*ctrlr;
707 
708 	mtx_assert(&qpair->lock, MA_OWNED);
709 
710 	req = tr->req;
711 	req->cmd.cid = tr->cid;
712 	qpair->act_tr[tr->cid] = tr;
713 	ctrlr = qpair->ctrlr;
714 
715 	if (req->timeout)
716 #if __FreeBSD_version >= 800030
717 		callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
718 		    nvme_timeout, tr);
719 #else
720 		callout_reset(&tr->timer, ctrlr->timeout_period * hz,
721 		    nvme_timeout, tr);
722 #endif
723 
724 	/* Copy the command from the tracker to the submission queue. */
725 	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
726 
727 	if (++qpair->sq_tail == qpair->num_entries)
728 		qpair->sq_tail = 0;
729 
730 	wmb();
731 	nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
732 	    qpair->sq_tail);
733 
734 	qpair->num_cmds++;
735 }
736 
737 static void
738 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
739 {
740 	struct nvme_tracker 	*tr = arg;
741 	uint32_t		cur_nseg;
742 
743 	/*
744 	 * If the mapping operation failed, return immediately.  The caller
745 	 *  is responsible for detecting the error status and failing the
746 	 *  tracker manually.
747 	 */
748 	if (error != 0) {
749 		nvme_printf(tr->qpair->ctrlr,
750 		    "nvme_payload_map err %d\n", error);
751 		return;
752 	}
753 
754 	/*
755 	 * Note that we specified PAGE_SIZE for alignment and max
756 	 *  segment size when creating the bus dma tags.  So here
757 	 *  we can safely just transfer each segment to its
758 	 *  associated PRP entry.
759 	 */
760 	tr->req->cmd.prp1 = seg[0].ds_addr;
761 
762 	if (nseg == 2) {
763 		tr->req->cmd.prp2 = seg[1].ds_addr;
764 	} else if (nseg > 2) {
765 		cur_nseg = 1;
766 		tr->req->cmd.prp2 = (uint64_t)tr->prp_bus_addr;
767 		while (cur_nseg < nseg) {
768 			tr->prp[cur_nseg-1] =
769 			    (uint64_t)seg[cur_nseg].ds_addr;
770 			cur_nseg++;
771 		}
772 	} else {
773 		/*
774 		 * prp2 should not be used by the controller
775 		 *  since there is only one segment, but set
776 		 *  to 0 just to be safe.
777 		 */
778 		tr->req->cmd.prp2 = 0;
779 	}
780 
781 	nvme_qpair_submit_tracker(tr->qpair, tr);
782 }
783 
784 static void
785 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
786 {
787 	struct nvme_tracker	*tr;
788 	int			err = 0;
789 
790 	mtx_assert(&qpair->lock, MA_OWNED);
791 
792 	tr = TAILQ_FIRST(&qpair->free_tr);
793 	req->qpair = qpair;
794 
795 	if (tr == NULL || !qpair->is_enabled) {
796 		/*
797 		 * No tracker is available, or the qpair is disabled due to
798 		 *  an in-progress controller-level reset or controller
799 		 *  failure.
800 		 */
801 
802 		if (qpair->ctrlr->is_failed) {
803 			/*
804 			 * The controller has failed.  Post the request to a
805 			 *  task where it will be aborted, so that we do not
806 			 *  invoke the request's callback in the context
807 			 *  of the submission.
808 			 */
809 			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
810 		} else {
811 			/*
812 			 * Put the request on the qpair's request queue to be
813 			 *  processed when a tracker frees up via a command
814 			 *  completion or when the controller reset is
815 			 *  completed.
816 			 */
817 			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
818 		}
819 		return;
820 	}
821 
822 	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
823 	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
824 	tr->req = req;
825 
826 	switch (req->type) {
827 	case NVME_REQUEST_VADDR:
828 		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
829 		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
830 		    req->payload_size, qpair->ctrlr->max_xfer_size));
831 		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
832 		    tr->payload_dma_map, req->u.payload, req->payload_size,
833 		    nvme_payload_map, tr, 0);
834 		if (err != 0)
835 			nvme_printf(qpair->ctrlr,
836 			    "bus_dmamap_load returned 0x%x!\n", err);
837 		break;
838 	case NVME_REQUEST_NULL:
839 		nvme_qpair_submit_tracker(tr->qpair, tr);
840 		break;
841 #ifdef NVME_UNMAPPED_BIO_SUPPORT
842 	case NVME_REQUEST_BIO:
843 		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
844 		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
845 		    (intmax_t)req->u.bio->bio_bcount,
846 		    qpair->ctrlr->max_xfer_size));
847 		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
848 		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
849 		if (err != 0)
850 			nvme_printf(qpair->ctrlr,
851 			    "bus_dmamap_load_bio returned 0x%x!\n", err);
852 		break;
853 #endif
854 	default:
855 		panic("unknown nvme request type 0x%x\n", req->type);
856 		break;
857 	}
858 
859 	if (err != 0) {
860 		/*
861 		 * The dmamap operation failed, so we manually fail the
862 		 *  tracker here with DATA_TRANSFER_ERROR status.
863 		 *
864 		 * nvme_qpair_manual_complete_tracker must not be called
865 		 *  with the qpair lock held.
866 		 */
867 		mtx_unlock(&qpair->lock);
868 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
869 		    NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE);
870 		mtx_lock(&qpair->lock);
871 	}
872 }
873 
874 void
875 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
876 {
877 
878 	mtx_lock(&qpair->lock);
879 	_nvme_qpair_submit_request(qpair, req);
880 	mtx_unlock(&qpair->lock);
881 }
882 
883 static void
884 nvme_qpair_enable(struct nvme_qpair *qpair)
885 {
886 
887 	qpair->is_enabled = TRUE;
888 }
889 
890 void
891 nvme_qpair_reset(struct nvme_qpair *qpair)
892 {
893 
894 	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
895 
896 	/*
897 	 * First time through the completion queue, HW will set phase
898 	 *  bit on completions to 1.  So set this to 1 here, indicating
899 	 *  we're looking for a 1 to know which entries have completed.
900 	 *  we'll toggle the bit each time when the completion queue
901 	 *  rolls over.
902 	 */
903 	qpair->phase = 1;
904 
905 	memset(qpair->cmd, 0,
906 	    qpair->num_entries * sizeof(struct nvme_command));
907 	memset(qpair->cpl, 0,
908 	    qpair->num_entries * sizeof(struct nvme_completion));
909 }
910 
911 void
912 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
913 {
914 	struct nvme_tracker		*tr;
915 	struct nvme_tracker		*tr_temp;
916 
917 	/*
918 	 * Manually abort each outstanding admin command.  Do not retry
919 	 *  admin commands found here, since they will be left over from
920 	 *  a controller reset and its likely the context in which the
921 	 *  command was issued no longer applies.
922 	 */
923 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
924 		nvme_printf(qpair->ctrlr,
925 		    "aborting outstanding admin command\n");
926 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
927 		    NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
928 	}
929 
930 	nvme_qpair_enable(qpair);
931 }
932 
933 void
934 nvme_io_qpair_enable(struct nvme_qpair *qpair)
935 {
936 	STAILQ_HEAD(, nvme_request)	temp;
937 	struct nvme_tracker		*tr;
938 	struct nvme_tracker		*tr_temp;
939 	struct nvme_request		*req;
940 
941 	/*
942 	 * Manually abort each outstanding I/O.  This normally results in a
943 	 *  retry, unless the retry count on the associated request has
944 	 *  reached its limit.
945 	 */
946 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
947 		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
948 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
949 		    NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
950 	}
951 
952 	mtx_lock(&qpair->lock);
953 
954 	nvme_qpair_enable(qpair);
955 
956 	STAILQ_INIT(&temp);
957 	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
958 
959 	while (!STAILQ_EMPTY(&temp)) {
960 		req = STAILQ_FIRST(&temp);
961 		STAILQ_REMOVE_HEAD(&temp, stailq);
962 		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
963 		nvme_qpair_print_command(qpair, &req->cmd);
964 		_nvme_qpair_submit_request(qpair, req);
965 	}
966 
967 	mtx_unlock(&qpair->lock);
968 }
969 
970 static void
971 nvme_qpair_disable(struct nvme_qpair *qpair)
972 {
973 	struct nvme_tracker *tr;
974 
975 	qpair->is_enabled = FALSE;
976 	mtx_lock(&qpair->lock);
977 	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
978 		callout_stop(&tr->timer);
979 	mtx_unlock(&qpair->lock);
980 }
981 
982 void
983 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
984 {
985 
986 	nvme_qpair_disable(qpair);
987 	nvme_admin_qpair_abort_aers(qpair);
988 }
989 
990 void
991 nvme_io_qpair_disable(struct nvme_qpair *qpair)
992 {
993 
994 	nvme_qpair_disable(qpair);
995 }
996 
997 void
998 nvme_qpair_fail(struct nvme_qpair *qpair)
999 {
1000 	struct nvme_tracker		*tr;
1001 	struct nvme_request		*req;
1002 
1003 	mtx_lock(&qpair->lock);
1004 
1005 	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1006 		req = STAILQ_FIRST(&qpair->queued_req);
1007 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1008 		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1009 		mtx_unlock(&qpair->lock);
1010 		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1011 		    NVME_SC_ABORTED_BY_REQUEST, TRUE);
1012 		mtx_lock(&qpair->lock);
1013 	}
1014 
1015 	/* Manually abort each outstanding I/O. */
1016 	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1017 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1018 		/*
1019 		 * Do not remove the tracker.  The abort_tracker path will
1020 		 *  do that for us.
1021 		 */
1022 		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1023 		mtx_unlock(&qpair->lock);
1024 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1025 		    NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
1026 		mtx_lock(&qpair->lock);
1027 	}
1028 
1029 	mtx_unlock(&qpair->lock);
1030 }
1031 
1032