1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2014 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 35 #include <dev/pci/pcivar.h> 36 37 #include "nvme_private.h" 38 39 static void _nvme_qpair_submit_request(struct nvme_qpair *qpair, 40 struct nvme_request *req); 41 static void nvme_qpair_destroy(struct nvme_qpair *qpair); 42 43 struct nvme_opcode_string { 44 45 uint16_t opc; 46 const char * str; 47 }; 48 49 static struct nvme_opcode_string admin_opcode[] = { 50 { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" }, 51 { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" }, 52 { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" }, 53 { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" }, 54 { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" }, 55 { NVME_OPC_IDENTIFY, "IDENTIFY" }, 56 { NVME_OPC_ABORT, "ABORT" }, 57 { NVME_OPC_SET_FEATURES, "SET FEATURES" }, 58 { NVME_OPC_GET_FEATURES, "GET FEATURES" }, 59 { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" }, 60 { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" }, 61 { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" }, 62 { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" }, 63 { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" }, 64 { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" }, 65 { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" }, 66 { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" }, 67 { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" }, 68 { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" }, 69 { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" }, 70 { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" }, 71 { NVME_OPC_FORMAT_NVM, "FORMAT NVM" }, 72 { NVME_OPC_SECURITY_SEND, "SECURITY SEND" }, 73 { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" }, 74 { NVME_OPC_SANITIZE, "SANITIZE" }, 75 { 0xFFFF, "ADMIN COMMAND" } 76 }; 77 78 static struct nvme_opcode_string io_opcode[] = { 79 { NVME_OPC_FLUSH, "FLUSH" }, 80 { NVME_OPC_WRITE, "WRITE" }, 81 { NVME_OPC_READ, "READ" }, 82 { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" }, 83 { NVME_OPC_COMPARE, "COMPARE" }, 84 { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" }, 85 { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" }, 86 { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" }, 87 { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" }, 88 { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" }, 89 { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" }, 90 { 0xFFFF, "IO COMMAND" } 91 }; 92 93 static const char * 94 get_admin_opcode_string(uint16_t opc) 95 { 96 struct nvme_opcode_string *entry; 97 98 entry = admin_opcode; 99 100 while (entry->opc != 0xFFFF) { 101 if (entry->opc == opc) 102 return (entry->str); 103 entry++; 104 } 105 return (entry->str); 106 } 107 108 static const char * 109 get_io_opcode_string(uint16_t opc) 110 { 111 struct nvme_opcode_string *entry; 112 113 entry = io_opcode; 114 115 while (entry->opc != 0xFFFF) { 116 if (entry->opc == opc) 117 return (entry->str); 118 entry++; 119 } 120 return (entry->str); 121 } 122 123 124 static void 125 nvme_admin_qpair_print_command(struct nvme_qpair *qpair, 126 struct nvme_command *cmd) 127 { 128 uint16_t opc; 129 130 opc = le16toh(cmd->opc_fuse) & NVME_CMD_OPC_MASK; 131 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x " 132 "cdw10:%08x cdw11:%08x\n", 133 get_admin_opcode_string(opc), opc, qpair->id, cmd->cid, 134 le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11)); 135 } 136 137 static void 138 nvme_io_qpair_print_command(struct nvme_qpair *qpair, 139 struct nvme_command *cmd) 140 { 141 uint16_t opc; 142 143 opc = le16toh(cmd->opc_fuse) & NVME_CMD_OPC_MASK; 144 switch (opc) { 145 case NVME_OPC_WRITE: 146 case NVME_OPC_READ: 147 case NVME_OPC_WRITE_UNCORRECTABLE: 148 case NVME_OPC_COMPARE: 149 case NVME_OPC_WRITE_ZEROES: 150 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d " 151 "lba:%llu len:%d\n", 152 get_io_opcode_string(opc), qpair->id, cmd->cid, le32toh(cmd->nsid), 153 ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10), 154 (le32toh(cmd->cdw12) & 0xFFFF) + 1); 155 break; 156 case NVME_OPC_FLUSH: 157 case NVME_OPC_DATASET_MANAGEMENT: 158 case NVME_OPC_RESERVATION_REGISTER: 159 case NVME_OPC_RESERVATION_REPORT: 160 case NVME_OPC_RESERVATION_ACQUIRE: 161 case NVME_OPC_RESERVATION_RELEASE: 162 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n", 163 get_io_opcode_string(opc), qpair->id, cmd->cid, le32toh(cmd->nsid)); 164 break; 165 default: 166 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n", 167 get_io_opcode_string(opc), opc, qpair->id, 168 cmd->cid, le32toh(cmd->nsid)); 169 break; 170 } 171 } 172 173 static void 174 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) 175 { 176 if (qpair->id == 0) 177 nvme_admin_qpair_print_command(qpair, cmd); 178 else 179 nvme_io_qpair_print_command(qpair, cmd); 180 } 181 182 struct nvme_status_string { 183 184 uint16_t sc; 185 const char * str; 186 }; 187 188 static struct nvme_status_string generic_status[] = { 189 { NVME_SC_SUCCESS, "SUCCESS" }, 190 { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" }, 191 { NVME_SC_INVALID_FIELD, "INVALID_FIELD" }, 192 { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" }, 193 { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" }, 194 { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" }, 195 { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" }, 196 { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" }, 197 { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" }, 198 { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" }, 199 { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" }, 200 { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" }, 201 { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" }, 202 { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" }, 203 { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" }, 204 { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" }, 205 { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" }, 206 { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" }, 207 { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" }, 208 { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" }, 209 { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" }, 210 { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" }, 211 { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" }, 212 { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" }, 213 { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" }, 214 { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" }, 215 { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" }, 216 { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" }, 217 { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" }, 218 { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" }, 219 { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" }, 220 221 { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" }, 222 { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" }, 223 { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" }, 224 { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" }, 225 { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" }, 226 { 0xFFFF, "GENERIC" } 227 }; 228 229 static struct nvme_status_string command_specific_status[] = { 230 { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" }, 231 { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" }, 232 { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" }, 233 { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" }, 234 { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" }, 235 { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" }, 236 { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" }, 237 { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" }, 238 { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" }, 239 { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" }, 240 { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" }, 241 { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" }, 242 { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" }, 243 { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" }, 244 { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" }, 245 { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" }, 246 { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" }, 247 { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" }, 248 { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" }, 249 { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" }, 250 { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" }, 251 { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" }, 252 { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" }, 253 { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" }, 254 { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" }, 255 { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" }, 256 { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" }, 257 { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" }, 258 { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" }, 259 { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" }, 260 { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" }, 261 { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" }, 262 { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" }, 263 264 { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" }, 265 { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" }, 266 { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" }, 267 { 0xFFFF, "COMMAND SPECIFIC" } 268 }; 269 270 static struct nvme_status_string media_error_status[] = { 271 { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" }, 272 { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" }, 273 { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" }, 274 { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" }, 275 { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" }, 276 { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" }, 277 { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" }, 278 { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" }, 279 { 0xFFFF, "MEDIA ERROR" } 280 }; 281 282 static const char * 283 get_status_string(uint16_t sct, uint16_t sc) 284 { 285 struct nvme_status_string *entry; 286 287 switch (sct) { 288 case NVME_SCT_GENERIC: 289 entry = generic_status; 290 break; 291 case NVME_SCT_COMMAND_SPECIFIC: 292 entry = command_specific_status; 293 break; 294 case NVME_SCT_MEDIA_ERROR: 295 entry = media_error_status; 296 break; 297 case NVME_SCT_VENDOR_SPECIFIC: 298 return ("VENDOR SPECIFIC"); 299 default: 300 return ("RESERVED"); 301 } 302 303 while (entry->sc != 0xFFFF) { 304 if (entry->sc == sc) 305 return (entry->str); 306 entry++; 307 } 308 return (entry->str); 309 } 310 311 static void 312 nvme_qpair_print_completion(struct nvme_qpair *qpair, 313 struct nvme_completion *cpl) 314 { 315 uint16_t sct, sc; 316 317 sct = NVME_STATUS_GET_SCT(cpl->status); 318 sc = NVME_STATUS_GET_SC(cpl->status); 319 320 nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n", 321 get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid, 322 cpl->cdw0); 323 } 324 325 static boolean_t 326 nvme_completion_is_retry(const struct nvme_completion *cpl) 327 { 328 uint8_t sct, sc, dnr; 329 330 sct = NVME_STATUS_GET_SCT(cpl->status); 331 sc = NVME_STATUS_GET_SC(cpl->status); 332 dnr = NVME_STATUS_GET_DNR(cpl->status); 333 334 /* 335 * TODO: spec is not clear how commands that are aborted due 336 * to TLER will be marked. So for now, it seems 337 * NAMESPACE_NOT_READY is the only case where we should 338 * look at the DNR bit. 339 */ 340 switch (sct) { 341 case NVME_SCT_GENERIC: 342 switch (sc) { 343 case NVME_SC_ABORTED_BY_REQUEST: 344 case NVME_SC_NAMESPACE_NOT_READY: 345 if (dnr) 346 return (0); 347 else 348 return (1); 349 case NVME_SC_INVALID_OPCODE: 350 case NVME_SC_INVALID_FIELD: 351 case NVME_SC_COMMAND_ID_CONFLICT: 352 case NVME_SC_DATA_TRANSFER_ERROR: 353 case NVME_SC_ABORTED_POWER_LOSS: 354 case NVME_SC_INTERNAL_DEVICE_ERROR: 355 case NVME_SC_ABORTED_SQ_DELETION: 356 case NVME_SC_ABORTED_FAILED_FUSED: 357 case NVME_SC_ABORTED_MISSING_FUSED: 358 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT: 359 case NVME_SC_COMMAND_SEQUENCE_ERROR: 360 case NVME_SC_LBA_OUT_OF_RANGE: 361 case NVME_SC_CAPACITY_EXCEEDED: 362 default: 363 return (0); 364 } 365 case NVME_SCT_COMMAND_SPECIFIC: 366 case NVME_SCT_MEDIA_ERROR: 367 case NVME_SCT_VENDOR_SPECIFIC: 368 default: 369 return (0); 370 } 371 } 372 373 static void 374 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr, 375 struct nvme_completion *cpl, boolean_t print_on_error) 376 { 377 struct nvme_request *req; 378 boolean_t retry, error; 379 380 req = tr->req; 381 error = nvme_completion_is_error(cpl); 382 retry = error && nvme_completion_is_retry(cpl) && 383 req->retries < nvme_retry_count; 384 385 if (error && print_on_error) { 386 nvme_qpair_print_command(qpair, &req->cmd); 387 nvme_qpair_print_completion(qpair, cpl); 388 } 389 390 qpair->act_tr[cpl->cid] = NULL; 391 392 KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n")); 393 394 if (req->cb_fn && !retry) 395 req->cb_fn(req->cb_arg, cpl); 396 397 mtx_lock(&qpair->lock); 398 callout_stop(&tr->timer); 399 400 if (retry) { 401 req->retries++; 402 nvme_qpair_submit_tracker(qpair, tr); 403 } else { 404 if (req->type != NVME_REQUEST_NULL) 405 bus_dmamap_unload(qpair->dma_tag_payload, 406 tr->payload_dma_map); 407 408 nvme_free_request(req); 409 tr->req = NULL; 410 411 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq); 412 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); 413 414 /* 415 * If the controller is in the middle of resetting, don't 416 * try to submit queued requests here - let the reset logic 417 * handle that instead. 418 */ 419 if (!STAILQ_EMPTY(&qpair->queued_req) && 420 !qpair->ctrlr->is_resetting) { 421 req = STAILQ_FIRST(&qpair->queued_req); 422 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 423 _nvme_qpair_submit_request(qpair, req); 424 } 425 } 426 427 mtx_unlock(&qpair->lock); 428 } 429 430 static void 431 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair, 432 struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, 433 boolean_t print_on_error) 434 { 435 struct nvme_completion cpl; 436 437 memset(&cpl, 0, sizeof(cpl)); 438 cpl.sqid = qpair->id; 439 cpl.cid = tr->cid; 440 cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT; 441 cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; 442 cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT; 443 nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error); 444 } 445 446 void 447 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair, 448 struct nvme_request *req, uint32_t sct, uint32_t sc, 449 boolean_t print_on_error) 450 { 451 struct nvme_completion cpl; 452 boolean_t error; 453 454 memset(&cpl, 0, sizeof(cpl)); 455 cpl.sqid = qpair->id; 456 cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT; 457 cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; 458 459 error = nvme_completion_is_error(&cpl); 460 461 if (error && print_on_error) { 462 nvme_qpair_print_command(qpair, &req->cmd); 463 nvme_qpair_print_completion(qpair, &cpl); 464 } 465 466 if (req->cb_fn) 467 req->cb_fn(req->cb_arg, &cpl); 468 469 nvme_free_request(req); 470 } 471 472 bool 473 nvme_qpair_process_completions(struct nvme_qpair *qpair) 474 { 475 struct nvme_tracker *tr; 476 struct nvme_completion cpl; 477 int done = 0; 478 479 qpair->num_intr_handler_calls++; 480 481 if (!qpair->is_enabled) 482 /* 483 * qpair is not enabled, likely because a controller reset is 484 * is in progress. Ignore the interrupt - any I/O that was 485 * associated with this interrupt will get retried when the 486 * reset is complete. 487 */ 488 return (false); 489 490 while (1) { 491 cpl = qpair->cpl[qpair->cq_head]; 492 493 /* Convert to host endian */ 494 nvme_completion_swapbytes(&cpl); 495 496 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase) 497 break; 498 499 tr = qpair->act_tr[cpl.cid]; 500 501 if (tr != NULL) { 502 nvme_qpair_complete_tracker(qpair, tr, &cpl, TRUE); 503 qpair->sq_head = cpl.sqhd; 504 done++; 505 } else { 506 nvme_printf(qpair->ctrlr, 507 "cpl does not map to outstanding cmd\n"); 508 /* nvme_dump_completion expects device endianess */ 509 nvme_dump_completion(&qpair->cpl[qpair->cq_head]); 510 KASSERT(0, ("received completion for unknown cmd\n")); 511 } 512 513 if (++qpair->cq_head == qpair->num_entries) { 514 qpair->cq_head = 0; 515 qpair->phase = !qpair->phase; 516 } 517 518 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl, 519 qpair->cq_head); 520 } 521 return (done != 0); 522 } 523 524 static void 525 nvme_qpair_msix_handler(void *arg) 526 { 527 struct nvme_qpair *qpair = arg; 528 529 nvme_qpair_process_completions(qpair); 530 } 531 532 int 533 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id, 534 uint16_t vector, uint32_t num_entries, uint32_t num_trackers, 535 struct nvme_controller *ctrlr) 536 { 537 struct nvme_tracker *tr; 538 size_t cmdsz, cplsz, prpsz, allocsz, prpmemsz; 539 uint64_t queuemem_phys, prpmem_phys, list_phys; 540 uint8_t *queuemem, *prpmem, *prp_list; 541 int i, err; 542 543 qpair->id = id; 544 qpair->vector = vector; 545 qpair->num_entries = num_entries; 546 qpair->num_trackers = num_trackers; 547 qpair->ctrlr = ctrlr; 548 549 if (ctrlr->msix_enabled) { 550 551 /* 552 * MSI-X vector resource IDs start at 1, so we add one to 553 * the queue's vector to get the corresponding rid to use. 554 */ 555 qpair->rid = vector + 1; 556 557 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 558 &qpair->rid, RF_ACTIVE); 559 bus_setup_intr(ctrlr->dev, qpair->res, 560 INTR_TYPE_MISC | INTR_MPSAFE, NULL, 561 nvme_qpair_msix_handler, qpair, &qpair->tag); 562 } 563 564 mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF); 565 566 /* Note: NVMe PRP format is restricted to 4-byte alignment. */ 567 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 568 4, PAGE_SIZE, BUS_SPACE_MAXADDR, 569 BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE, 570 (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0, 571 NULL, NULL, &qpair->dma_tag_payload); 572 if (err != 0) { 573 nvme_printf(ctrlr, "payload tag create failed %d\n", err); 574 goto out; 575 } 576 577 /* 578 * Each component must be page aligned, and individual PRP lists 579 * cannot cross a page boundary. 580 */ 581 cmdsz = qpair->num_entries * sizeof(struct nvme_command); 582 cmdsz = roundup2(cmdsz, PAGE_SIZE); 583 cplsz = qpair->num_entries * sizeof(struct nvme_completion); 584 cplsz = roundup2(cplsz, PAGE_SIZE); 585 prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;; 586 prpmemsz = qpair->num_trackers * prpsz; 587 allocsz = cmdsz + cplsz + prpmemsz; 588 589 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 590 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 591 allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag); 592 if (err != 0) { 593 nvme_printf(ctrlr, "tag create failed %d\n", err); 594 goto out; 595 } 596 597 if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem, 598 BUS_DMA_NOWAIT, &qpair->queuemem_map)) { 599 nvme_printf(ctrlr, "failed to alloc qpair memory\n"); 600 goto out; 601 } 602 603 if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map, 604 queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) { 605 nvme_printf(ctrlr, "failed to load qpair memory\n"); 606 goto out; 607 } 608 609 qpair->num_cmds = 0; 610 qpair->num_intr_handler_calls = 0; 611 qpair->cmd = (struct nvme_command *)queuemem; 612 qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz); 613 prpmem = (uint8_t *)(queuemem + cmdsz + cplsz); 614 qpair->cmd_bus_addr = queuemem_phys; 615 qpair->cpl_bus_addr = queuemem_phys + cmdsz; 616 prpmem_phys = queuemem_phys + cmdsz + cplsz; 617 618 qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl); 619 qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl); 620 621 TAILQ_INIT(&qpair->free_tr); 622 TAILQ_INIT(&qpair->outstanding_tr); 623 STAILQ_INIT(&qpair->queued_req); 624 625 list_phys = prpmem_phys; 626 prp_list = prpmem; 627 for (i = 0; i < qpair->num_trackers; i++) { 628 629 if (list_phys + prpsz > prpmem_phys + prpmemsz) { 630 qpair->num_trackers = i; 631 break; 632 } 633 634 /* 635 * Make sure that the PRP list for this tracker doesn't 636 * overflow to another page. 637 */ 638 if (trunc_page(list_phys) != 639 trunc_page(list_phys + prpsz - 1)) { 640 list_phys = roundup2(list_phys, PAGE_SIZE); 641 prp_list = 642 (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE); 643 } 644 645 tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK); 646 bus_dmamap_create(qpair->dma_tag_payload, 0, 647 &tr->payload_dma_map); 648 callout_init(&tr->timer, 1); 649 tr->cid = i; 650 tr->qpair = qpair; 651 tr->prp = (uint64_t *)prp_list; 652 tr->prp_bus_addr = list_phys; 653 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); 654 list_phys += prpsz; 655 prp_list += prpsz; 656 } 657 658 if (qpair->num_trackers == 0) { 659 nvme_printf(ctrlr, "failed to allocate enough trackers\n"); 660 goto out; 661 } 662 663 qpair->act_tr = malloc(sizeof(struct nvme_tracker *) * 664 qpair->num_entries, M_NVME, M_ZERO | M_WAITOK); 665 return (0); 666 667 out: 668 nvme_qpair_destroy(qpair); 669 return (ENOMEM); 670 } 671 672 static void 673 nvme_qpair_destroy(struct nvme_qpair *qpair) 674 { 675 struct nvme_tracker *tr; 676 677 if (qpair->tag) 678 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag); 679 680 if (mtx_initialized(&qpair->lock)) 681 mtx_destroy(&qpair->lock); 682 683 if (qpair->res) 684 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ, 685 rman_get_rid(qpair->res), qpair->res); 686 687 if (qpair->cmd != NULL) { 688 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map); 689 bus_dmamem_free(qpair->dma_tag, qpair->cmd, 690 qpair->queuemem_map); 691 } 692 693 if (qpair->act_tr) 694 free(qpair->act_tr, M_NVME); 695 696 while (!TAILQ_EMPTY(&qpair->free_tr)) { 697 tr = TAILQ_FIRST(&qpair->free_tr); 698 TAILQ_REMOVE(&qpair->free_tr, tr, tailq); 699 bus_dmamap_destroy(qpair->dma_tag_payload, 700 tr->payload_dma_map); 701 free(tr, M_NVME); 702 } 703 704 if (qpair->dma_tag) 705 bus_dma_tag_destroy(qpair->dma_tag); 706 707 if (qpair->dma_tag_payload) 708 bus_dma_tag_destroy(qpair->dma_tag_payload); 709 } 710 711 static void 712 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair) 713 { 714 struct nvme_tracker *tr; 715 716 tr = TAILQ_FIRST(&qpair->outstanding_tr); 717 while (tr != NULL) { 718 if ((le16toh(tr->req->cmd.opc_fuse) & NVME_CMD_OPC_MASK) == NVME_OPC_ASYNC_EVENT_REQUEST) { 719 nvme_qpair_manual_complete_tracker(qpair, tr, 720 NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0, 721 FALSE); 722 tr = TAILQ_FIRST(&qpair->outstanding_tr); 723 } else { 724 tr = TAILQ_NEXT(tr, tailq); 725 } 726 } 727 } 728 729 void 730 nvme_admin_qpair_destroy(struct nvme_qpair *qpair) 731 { 732 733 nvme_admin_qpair_abort_aers(qpair); 734 nvme_qpair_destroy(qpair); 735 } 736 737 void 738 nvme_io_qpair_destroy(struct nvme_qpair *qpair) 739 { 740 741 nvme_qpair_destroy(qpair); 742 } 743 744 static void 745 nvme_abort_complete(void *arg, const struct nvme_completion *status) 746 { 747 struct nvme_tracker *tr = arg; 748 749 /* 750 * If cdw0 == 1, the controller was not able to abort the command 751 * we requested. We still need to check the active tracker array, 752 * to cover race where I/O timed out at same time controller was 753 * completing the I/O. 754 */ 755 if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) { 756 /* 757 * An I/O has timed out, and the controller was unable to 758 * abort it for some reason. Construct a fake completion 759 * status, and then complete the I/O's tracker manually. 760 */ 761 nvme_printf(tr->qpair->ctrlr, 762 "abort command failed, aborting command manually\n"); 763 nvme_qpair_manual_complete_tracker(tr->qpair, tr, 764 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE); 765 } 766 } 767 768 static void 769 nvme_timeout(void *arg) 770 { 771 struct nvme_tracker *tr = arg; 772 struct nvme_qpair *qpair = tr->qpair; 773 struct nvme_controller *ctrlr = qpair->ctrlr; 774 uint32_t csts; 775 uint8_t cfs; 776 777 /* 778 * Read csts to get value of cfs - controller fatal status. 779 * If no fatal status, try to call the completion routine, and 780 * if completes transactions, report a missed interrupt and 781 * return (this may need to be rate limited). Otherwise, if 782 * aborts are enabled and the controller is not reporting 783 * fatal status, abort the command. Otherwise, just reset the 784 * controller and hope for the best. 785 */ 786 csts = nvme_mmio_read_4(ctrlr, csts); 787 cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK; 788 if (cfs == 0 && nvme_qpair_process_completions(qpair)) { 789 nvme_printf(ctrlr, "Missing interrupt\n"); 790 return; 791 } 792 if (ctrlr->enable_aborts && cfs == 0) { 793 nvme_printf(ctrlr, "Aborting command due to a timeout.\n"); 794 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id, 795 nvme_abort_complete, tr); 796 } else { 797 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n", 798 cfs ? " and fatal error status" : ""); 799 nvme_ctrlr_reset(ctrlr); 800 } 801 } 802 803 void 804 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr) 805 { 806 struct nvme_request *req; 807 struct nvme_controller *ctrlr; 808 809 mtx_assert(&qpair->lock, MA_OWNED); 810 811 req = tr->req; 812 req->cmd.cid = tr->cid; 813 qpair->act_tr[tr->cid] = tr; 814 ctrlr = qpair->ctrlr; 815 816 if (req->timeout) 817 #if __FreeBSD_version >= 800030 818 callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz, 819 nvme_timeout, tr); 820 #else 821 callout_reset(&tr->timer, ctrlr->timeout_period * hz, 822 nvme_timeout, tr); 823 #endif 824 825 /* Copy the command from the tracker to the submission queue. */ 826 memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd)); 827 828 if (++qpair->sq_tail == qpair->num_entries) 829 qpair->sq_tail = 0; 830 831 wmb(); 832 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl, 833 qpair->sq_tail); 834 835 qpair->num_cmds++; 836 } 837 838 static void 839 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 840 { 841 struct nvme_tracker *tr = arg; 842 uint32_t cur_nseg; 843 844 /* 845 * If the mapping operation failed, return immediately. The caller 846 * is responsible for detecting the error status and failing the 847 * tracker manually. 848 */ 849 if (error != 0) { 850 nvme_printf(tr->qpair->ctrlr, 851 "nvme_payload_map err %d\n", error); 852 return; 853 } 854 855 /* 856 * Note that we specified PAGE_SIZE for alignment and max 857 * segment size when creating the bus dma tags. So here 858 * we can safely just transfer each segment to its 859 * associated PRP entry. 860 */ 861 tr->req->cmd.prp1 = htole64(seg[0].ds_addr); 862 863 if (nseg == 2) { 864 tr->req->cmd.prp2 = htole64(seg[1].ds_addr); 865 } else if (nseg > 2) { 866 cur_nseg = 1; 867 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr); 868 while (cur_nseg < nseg) { 869 tr->prp[cur_nseg-1] = 870 htole64((uint64_t)seg[cur_nseg].ds_addr); 871 cur_nseg++; 872 } 873 } else { 874 /* 875 * prp2 should not be used by the controller 876 * since there is only one segment, but set 877 * to 0 just to be safe. 878 */ 879 tr->req->cmd.prp2 = 0; 880 } 881 882 nvme_qpair_submit_tracker(tr->qpair, tr); 883 } 884 885 static void 886 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) 887 { 888 struct nvme_tracker *tr; 889 int err = 0; 890 891 mtx_assert(&qpair->lock, MA_OWNED); 892 893 tr = TAILQ_FIRST(&qpair->free_tr); 894 req->qpair = qpair; 895 896 if (tr == NULL || !qpair->is_enabled) { 897 /* 898 * No tracker is available, or the qpair is disabled due to 899 * an in-progress controller-level reset or controller 900 * failure. 901 */ 902 903 if (qpair->ctrlr->is_failed) { 904 /* 905 * The controller has failed. Post the request to a 906 * task where it will be aborted, so that we do not 907 * invoke the request's callback in the context 908 * of the submission. 909 */ 910 nvme_ctrlr_post_failed_request(qpair->ctrlr, req); 911 } else { 912 /* 913 * Put the request on the qpair's request queue to be 914 * processed when a tracker frees up via a command 915 * completion or when the controller reset is 916 * completed. 917 */ 918 STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); 919 } 920 return; 921 } 922 923 TAILQ_REMOVE(&qpair->free_tr, tr, tailq); 924 TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq); 925 tr->req = req; 926 927 switch (req->type) { 928 case NVME_REQUEST_VADDR: 929 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size, 930 ("payload_size (%d) exceeds max_xfer_size (%d)\n", 931 req->payload_size, qpair->ctrlr->max_xfer_size)); 932 err = bus_dmamap_load(tr->qpair->dma_tag_payload, 933 tr->payload_dma_map, req->u.payload, req->payload_size, 934 nvme_payload_map, tr, 0); 935 if (err != 0) 936 nvme_printf(qpair->ctrlr, 937 "bus_dmamap_load returned 0x%x!\n", err); 938 break; 939 case NVME_REQUEST_NULL: 940 nvme_qpair_submit_tracker(tr->qpair, tr); 941 break; 942 #ifdef NVME_UNMAPPED_BIO_SUPPORT 943 case NVME_REQUEST_BIO: 944 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size, 945 ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n", 946 (intmax_t)req->u.bio->bio_bcount, 947 qpair->ctrlr->max_xfer_size)); 948 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload, 949 tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0); 950 if (err != 0) 951 nvme_printf(qpair->ctrlr, 952 "bus_dmamap_load_bio returned 0x%x!\n", err); 953 break; 954 #endif 955 case NVME_REQUEST_CCB: 956 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload, 957 tr->payload_dma_map, req->u.payload, 958 nvme_payload_map, tr, 0); 959 if (err != 0) 960 nvme_printf(qpair->ctrlr, 961 "bus_dmamap_load_ccb returned 0x%x!\n", err); 962 break; 963 default: 964 panic("unknown nvme request type 0x%x\n", req->type); 965 break; 966 } 967 968 if (err != 0) { 969 /* 970 * The dmamap operation failed, so we manually fail the 971 * tracker here with DATA_TRANSFER_ERROR status. 972 * 973 * nvme_qpair_manual_complete_tracker must not be called 974 * with the qpair lock held. 975 */ 976 mtx_unlock(&qpair->lock); 977 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, 978 NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE); 979 mtx_lock(&qpair->lock); 980 } 981 } 982 983 void 984 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) 985 { 986 987 mtx_lock(&qpair->lock); 988 _nvme_qpair_submit_request(qpair, req); 989 mtx_unlock(&qpair->lock); 990 } 991 992 static void 993 nvme_qpair_enable(struct nvme_qpair *qpair) 994 { 995 996 qpair->is_enabled = TRUE; 997 } 998 999 void 1000 nvme_qpair_reset(struct nvme_qpair *qpair) 1001 { 1002 1003 qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0; 1004 1005 /* 1006 * First time through the completion queue, HW will set phase 1007 * bit on completions to 1. So set this to 1 here, indicating 1008 * we're looking for a 1 to know which entries have completed. 1009 * we'll toggle the bit each time when the completion queue 1010 * rolls over. 1011 */ 1012 qpair->phase = 1; 1013 1014 memset(qpair->cmd, 0, 1015 qpair->num_entries * sizeof(struct nvme_command)); 1016 memset(qpair->cpl, 0, 1017 qpair->num_entries * sizeof(struct nvme_completion)); 1018 } 1019 1020 void 1021 nvme_admin_qpair_enable(struct nvme_qpair *qpair) 1022 { 1023 struct nvme_tracker *tr; 1024 struct nvme_tracker *tr_temp; 1025 1026 /* 1027 * Manually abort each outstanding admin command. Do not retry 1028 * admin commands found here, since they will be left over from 1029 * a controller reset and its likely the context in which the 1030 * command was issued no longer applies. 1031 */ 1032 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1033 nvme_printf(qpair->ctrlr, 1034 "aborting outstanding admin command\n"); 1035 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, 1036 NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE); 1037 } 1038 1039 nvme_qpair_enable(qpair); 1040 } 1041 1042 void 1043 nvme_io_qpair_enable(struct nvme_qpair *qpair) 1044 { 1045 STAILQ_HEAD(, nvme_request) temp; 1046 struct nvme_tracker *tr; 1047 struct nvme_tracker *tr_temp; 1048 struct nvme_request *req; 1049 1050 /* 1051 * Manually abort each outstanding I/O. This normally results in a 1052 * retry, unless the retry count on the associated request has 1053 * reached its limit. 1054 */ 1055 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1056 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n"); 1057 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, 1058 NVME_SC_ABORTED_BY_REQUEST, 0, TRUE); 1059 } 1060 1061 mtx_lock(&qpair->lock); 1062 1063 nvme_qpair_enable(qpair); 1064 1065 STAILQ_INIT(&temp); 1066 STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request); 1067 1068 while (!STAILQ_EMPTY(&temp)) { 1069 req = STAILQ_FIRST(&temp); 1070 STAILQ_REMOVE_HEAD(&temp, stailq); 1071 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n"); 1072 nvme_qpair_print_command(qpair, &req->cmd); 1073 _nvme_qpair_submit_request(qpair, req); 1074 } 1075 1076 mtx_unlock(&qpair->lock); 1077 } 1078 1079 static void 1080 nvme_qpair_disable(struct nvme_qpair *qpair) 1081 { 1082 struct nvme_tracker *tr; 1083 1084 qpair->is_enabled = FALSE; 1085 mtx_lock(&qpair->lock); 1086 TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) 1087 callout_stop(&tr->timer); 1088 mtx_unlock(&qpair->lock); 1089 } 1090 1091 void 1092 nvme_admin_qpair_disable(struct nvme_qpair *qpair) 1093 { 1094 1095 nvme_qpair_disable(qpair); 1096 nvme_admin_qpair_abort_aers(qpair); 1097 } 1098 1099 void 1100 nvme_io_qpair_disable(struct nvme_qpair *qpair) 1101 { 1102 1103 nvme_qpair_disable(qpair); 1104 } 1105 1106 void 1107 nvme_qpair_fail(struct nvme_qpair *qpair) 1108 { 1109 struct nvme_tracker *tr; 1110 struct nvme_request *req; 1111 1112 if (!mtx_initialized(&qpair->lock)) 1113 return; 1114 1115 mtx_lock(&qpair->lock); 1116 1117 while (!STAILQ_EMPTY(&qpair->queued_req)) { 1118 req = STAILQ_FIRST(&qpair->queued_req); 1119 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 1120 nvme_printf(qpair->ctrlr, "failing queued i/o\n"); 1121 mtx_unlock(&qpair->lock); 1122 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC, 1123 NVME_SC_ABORTED_BY_REQUEST, TRUE); 1124 mtx_lock(&qpair->lock); 1125 } 1126 1127 /* Manually abort each outstanding I/O. */ 1128 while (!TAILQ_EMPTY(&qpair->outstanding_tr)) { 1129 tr = TAILQ_FIRST(&qpair->outstanding_tr); 1130 /* 1131 * Do not remove the tracker. The abort_tracker path will 1132 * do that for us. 1133 */ 1134 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n"); 1135 mtx_unlock(&qpair->lock); 1136 nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC, 1137 NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE); 1138 mtx_lock(&qpair->lock); 1139 } 1140 1141 mtx_unlock(&qpair->lock); 1142 } 1143 1144