1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2014 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 #include <sys/conf.h> 35 #include <sys/domainset.h> 36 #include <sys/proc.h> 37 38 #include <dev/pci/pcivar.h> 39 40 #include "nvme_private.h" 41 42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t; 43 #define DO_NOT_RETRY 1 44 45 static void _nvme_qpair_submit_request(struct nvme_qpair *qpair, 46 struct nvme_request *req); 47 static void nvme_qpair_destroy(struct nvme_qpair *qpair); 48 49 struct nvme_opcode_string { 50 uint16_t opc; 51 const char * str; 52 }; 53 54 static struct nvme_opcode_string admin_opcode[] = { 55 { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" }, 56 { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" }, 57 { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" }, 58 { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" }, 59 { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" }, 60 { NVME_OPC_IDENTIFY, "IDENTIFY" }, 61 { NVME_OPC_ABORT, "ABORT" }, 62 { NVME_OPC_SET_FEATURES, "SET FEATURES" }, 63 { NVME_OPC_GET_FEATURES, "GET FEATURES" }, 64 { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" }, 65 { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" }, 66 { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" }, 67 { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" }, 68 { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" }, 69 { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" }, 70 { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" }, 71 { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" }, 72 { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" }, 73 { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" }, 74 { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" }, 75 { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" }, 76 { NVME_OPC_FORMAT_NVM, "FORMAT NVM" }, 77 { NVME_OPC_SECURITY_SEND, "SECURITY SEND" }, 78 { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" }, 79 { NVME_OPC_SANITIZE, "SANITIZE" }, 80 { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" }, 81 { 0xFFFF, "ADMIN COMMAND" } 82 }; 83 84 static struct nvme_opcode_string io_opcode[] = { 85 { NVME_OPC_FLUSH, "FLUSH" }, 86 { NVME_OPC_WRITE, "WRITE" }, 87 { NVME_OPC_READ, "READ" }, 88 { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" }, 89 { NVME_OPC_COMPARE, "COMPARE" }, 90 { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" }, 91 { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" }, 92 { NVME_OPC_VERIFY, "VERIFY" }, 93 { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" }, 94 { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" }, 95 { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" }, 96 { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" }, 97 { 0xFFFF, "IO COMMAND" } 98 }; 99 100 static const char * 101 get_admin_opcode_string(uint16_t opc) 102 { 103 struct nvme_opcode_string *entry; 104 105 entry = admin_opcode; 106 107 while (entry->opc != 0xFFFF) { 108 if (entry->opc == opc) 109 return (entry->str); 110 entry++; 111 } 112 return (entry->str); 113 } 114 115 static const char * 116 get_io_opcode_string(uint16_t opc) 117 { 118 struct nvme_opcode_string *entry; 119 120 entry = io_opcode; 121 122 while (entry->opc != 0xFFFF) { 123 if (entry->opc == opc) 124 return (entry->str); 125 entry++; 126 } 127 return (entry->str); 128 } 129 130 static void 131 nvme_admin_qpair_print_command(struct nvme_qpair *qpair, 132 struct nvme_command *cmd) 133 { 134 135 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x " 136 "cdw10:%08x cdw11:%08x\n", 137 get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid, 138 le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11)); 139 } 140 141 static void 142 nvme_io_qpair_print_command(struct nvme_qpair *qpair, 143 struct nvme_command *cmd) 144 { 145 146 switch (cmd->opc) { 147 case NVME_OPC_WRITE: 148 case NVME_OPC_READ: 149 case NVME_OPC_WRITE_UNCORRECTABLE: 150 case NVME_OPC_COMPARE: 151 case NVME_OPC_WRITE_ZEROES: 152 case NVME_OPC_VERIFY: 153 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d " 154 "lba:%llu len:%d\n", 155 get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid), 156 ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10), 157 (le32toh(cmd->cdw12) & 0xFFFF) + 1); 158 break; 159 case NVME_OPC_FLUSH: 160 case NVME_OPC_DATASET_MANAGEMENT: 161 case NVME_OPC_RESERVATION_REGISTER: 162 case NVME_OPC_RESERVATION_REPORT: 163 case NVME_OPC_RESERVATION_ACQUIRE: 164 case NVME_OPC_RESERVATION_RELEASE: 165 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n", 166 get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid)); 167 break; 168 default: 169 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n", 170 get_io_opcode_string(cmd->opc), cmd->opc, qpair->id, 171 cmd->cid, le32toh(cmd->nsid)); 172 break; 173 } 174 } 175 176 static void 177 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) 178 { 179 if (qpair->id == 0) 180 nvme_admin_qpair_print_command(qpair, cmd); 181 else 182 nvme_io_qpair_print_command(qpair, cmd); 183 if (nvme_verbose_cmd_dump) { 184 nvme_printf(qpair->ctrlr, 185 "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n", 186 cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr, 187 (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2); 188 nvme_printf(qpair->ctrlr, 189 "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n", 190 cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14, 191 cmd->cdw15); 192 } 193 } 194 195 struct nvme_status_string { 196 uint16_t sc; 197 const char * str; 198 }; 199 200 static struct nvme_status_string generic_status[] = { 201 { NVME_SC_SUCCESS, "SUCCESS" }, 202 { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" }, 203 { NVME_SC_INVALID_FIELD, "INVALID_FIELD" }, 204 { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" }, 205 { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" }, 206 { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" }, 207 { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" }, 208 { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" }, 209 { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" }, 210 { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" }, 211 { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" }, 212 { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" }, 213 { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" }, 214 { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" }, 215 { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" }, 216 { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" }, 217 { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" }, 218 { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" }, 219 { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" }, 220 { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" }, 221 { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" }, 222 { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" }, 223 { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" }, 224 { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" }, 225 { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" }, 226 { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" }, 227 { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" }, 228 { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" }, 229 { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" }, 230 { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" }, 231 { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" }, 232 { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" }, 233 { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" }, 234 { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" }, 235 236 { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" }, 237 { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" }, 238 { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" }, 239 { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" }, 240 { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" }, 241 { 0xFFFF, "GENERIC" } 242 }; 243 244 static struct nvme_status_string command_specific_status[] = { 245 { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" }, 246 { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" }, 247 { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" }, 248 { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" }, 249 { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" }, 250 { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" }, 251 { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" }, 252 { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" }, 253 { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" }, 254 { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" }, 255 { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" }, 256 { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" }, 257 { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" }, 258 { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" }, 259 { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" }, 260 { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" }, 261 { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" }, 262 { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" }, 263 { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" }, 264 { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" }, 265 { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" }, 266 { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" }, 267 { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" }, 268 { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" }, 269 { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" }, 270 { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" }, 271 { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" }, 272 { NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" }, 273 { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" }, 274 { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" }, 275 { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" }, 276 { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" }, 277 { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" }, 278 { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" }, 279 { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" }, 280 { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" }, 281 282 { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" }, 283 { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" }, 284 { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" }, 285 { 0xFFFF, "COMMAND SPECIFIC" } 286 }; 287 288 static struct nvme_status_string media_error_status[] = { 289 { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" }, 290 { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" }, 291 { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" }, 292 { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" }, 293 { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" }, 294 { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" }, 295 { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" }, 296 { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" }, 297 { 0xFFFF, "MEDIA ERROR" } 298 }; 299 300 static struct nvme_status_string path_related_status[] = { 301 { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" }, 302 { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" }, 303 { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" }, 304 { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" }, 305 { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" }, 306 { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" }, 307 { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" }, 308 { 0xFFFF, "PATH RELATED" }, 309 }; 310 311 static const char * 312 get_status_string(uint16_t sct, uint16_t sc) 313 { 314 struct nvme_status_string *entry; 315 316 switch (sct) { 317 case NVME_SCT_GENERIC: 318 entry = generic_status; 319 break; 320 case NVME_SCT_COMMAND_SPECIFIC: 321 entry = command_specific_status; 322 break; 323 case NVME_SCT_MEDIA_ERROR: 324 entry = media_error_status; 325 break; 326 case NVME_SCT_PATH_RELATED: 327 entry = path_related_status; 328 break; 329 case NVME_SCT_VENDOR_SPECIFIC: 330 return ("VENDOR SPECIFIC"); 331 default: 332 return ("RESERVED"); 333 } 334 335 while (entry->sc != 0xFFFF) { 336 if (entry->sc == sc) 337 return (entry->str); 338 entry++; 339 } 340 return (entry->str); 341 } 342 343 static void 344 nvme_qpair_print_completion(struct nvme_qpair *qpair, 345 struct nvme_completion *cpl) 346 { 347 uint16_t sct, sc; 348 349 sct = NVME_STATUS_GET_SCT(cpl->status); 350 sc = NVME_STATUS_GET_SC(cpl->status); 351 352 nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n", 353 get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid, 354 cpl->cdw0); 355 } 356 357 static bool 358 nvme_completion_is_retry(const struct nvme_completion *cpl) 359 { 360 uint8_t sct, sc, dnr; 361 362 sct = NVME_STATUS_GET_SCT(cpl->status); 363 sc = NVME_STATUS_GET_SC(cpl->status); 364 dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */ 365 366 /* 367 * TODO: spec is not clear how commands that are aborted due 368 * to TLER will be marked. So for now, it seems 369 * NAMESPACE_NOT_READY is the only case where we should 370 * look at the DNR bit. Requests failed with ABORTED_BY_REQUEST 371 * set the DNR bit correctly since the driver controls that. 372 */ 373 switch (sct) { 374 case NVME_SCT_GENERIC: 375 switch (sc) { 376 case NVME_SC_ABORTED_BY_REQUEST: 377 case NVME_SC_NAMESPACE_NOT_READY: 378 if (dnr) 379 return (0); 380 else 381 return (1); 382 case NVME_SC_INVALID_OPCODE: 383 case NVME_SC_INVALID_FIELD: 384 case NVME_SC_COMMAND_ID_CONFLICT: 385 case NVME_SC_DATA_TRANSFER_ERROR: 386 case NVME_SC_ABORTED_POWER_LOSS: 387 case NVME_SC_INTERNAL_DEVICE_ERROR: 388 case NVME_SC_ABORTED_SQ_DELETION: 389 case NVME_SC_ABORTED_FAILED_FUSED: 390 case NVME_SC_ABORTED_MISSING_FUSED: 391 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT: 392 case NVME_SC_COMMAND_SEQUENCE_ERROR: 393 case NVME_SC_LBA_OUT_OF_RANGE: 394 case NVME_SC_CAPACITY_EXCEEDED: 395 default: 396 return (0); 397 } 398 case NVME_SCT_COMMAND_SPECIFIC: 399 case NVME_SCT_MEDIA_ERROR: 400 return (0); 401 case NVME_SCT_PATH_RELATED: 402 switch (sc) { 403 case NVME_SC_INTERNAL_PATH_ERROR: 404 if (dnr) 405 return (0); 406 else 407 return (1); 408 default: 409 return (0); 410 } 411 case NVME_SCT_VENDOR_SPECIFIC: 412 default: 413 return (0); 414 } 415 } 416 417 static void 418 nvme_qpair_complete_tracker(struct nvme_tracker *tr, 419 struct nvme_completion *cpl, error_print_t print_on_error) 420 { 421 struct nvme_qpair * qpair = tr->qpair; 422 struct nvme_request *req; 423 bool retry, error, retriable; 424 425 req = tr->req; 426 error = nvme_completion_is_error(cpl); 427 retriable = nvme_completion_is_retry(cpl); 428 retry = error && retriable && req->retries < nvme_retry_count; 429 if (retry) 430 qpair->num_retries++; 431 if (error && req->retries >= nvme_retry_count && retriable) 432 qpair->num_failures++; 433 434 if (error && (print_on_error == ERROR_PRINT_ALL || 435 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) { 436 nvme_qpair_print_command(qpair, &req->cmd); 437 nvme_qpair_print_completion(qpair, cpl); 438 } 439 440 qpair->act_tr[cpl->cid] = NULL; 441 442 KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n")); 443 444 if (!retry) { 445 if (req->type != NVME_REQUEST_NULL) { 446 bus_dmamap_sync(qpair->dma_tag_payload, 447 tr->payload_dma_map, 448 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 449 } 450 if (req->cb_fn) 451 req->cb_fn(req->cb_arg, cpl); 452 } 453 454 mtx_lock(&qpair->lock); 455 callout_stop(&tr->timer); 456 457 if (retry) { 458 req->retries++; 459 nvme_qpair_submit_tracker(qpair, tr); 460 } else { 461 if (req->type != NVME_REQUEST_NULL) { 462 bus_dmamap_unload(qpair->dma_tag_payload, 463 tr->payload_dma_map); 464 } 465 466 nvme_free_request(req); 467 tr->req = NULL; 468 469 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq); 470 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); 471 472 /* 473 * If the controller is in the middle of resetting, don't 474 * try to submit queued requests here - let the reset logic 475 * handle that instead. 476 */ 477 if (!STAILQ_EMPTY(&qpair->queued_req) && 478 !qpair->ctrlr->is_resetting) { 479 req = STAILQ_FIRST(&qpair->queued_req); 480 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 481 _nvme_qpair_submit_request(qpair, req); 482 } 483 } 484 485 mtx_unlock(&qpair->lock); 486 } 487 488 static void 489 nvme_qpair_manual_complete_tracker( 490 struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, 491 error_print_t print_on_error) 492 { 493 struct nvme_completion cpl; 494 495 memset(&cpl, 0, sizeof(cpl)); 496 497 struct nvme_qpair * qpair = tr->qpair; 498 499 cpl.sqid = qpair->id; 500 cpl.cid = tr->cid; 501 cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT; 502 cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; 503 cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT; 504 nvme_qpair_complete_tracker(tr, &cpl, print_on_error); 505 } 506 507 void 508 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair, 509 struct nvme_request *req, uint32_t sct, uint32_t sc) 510 { 511 struct nvme_completion cpl; 512 bool error; 513 514 memset(&cpl, 0, sizeof(cpl)); 515 cpl.sqid = qpair->id; 516 cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT; 517 cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; 518 519 error = nvme_completion_is_error(&cpl); 520 521 if (error) { 522 nvme_qpair_print_command(qpair, &req->cmd); 523 nvme_qpair_print_completion(qpair, &cpl); 524 } 525 526 if (req->cb_fn) 527 req->cb_fn(req->cb_arg, &cpl); 528 529 nvme_free_request(req); 530 } 531 532 bool 533 nvme_qpair_process_completions(struct nvme_qpair *qpair) 534 { 535 struct nvme_tracker *tr; 536 struct nvme_completion cpl; 537 int done = 0; 538 bool in_panic = dumping || SCHEDULER_STOPPED(); 539 540 qpair->num_intr_handler_calls++; 541 542 /* 543 * qpair is not enabled, likely because a controller reset is is in 544 * progress. Ignore the interrupt - any I/O that was associated with 545 * this interrupt will get retried when the reset is complete. 546 */ 547 if (!qpair->is_enabled) 548 return (false); 549 550 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, 551 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 552 /* 553 * A panic can stop the CPU this routine is running on at any point. If 554 * we're called during a panic, complete the sq_head wrap protocol for 555 * the case where we are interrupted just after the increment at 1 556 * below, but before we can reset cq_head to zero at 2. Also cope with 557 * the case where we do the zero at 2, but may or may not have done the 558 * phase adjustment at step 3. The panic machinery flushes all pending 559 * memory writes, so we can make these strong ordering assumptions 560 * that would otherwise be unwise if we were racing in real time. 561 */ 562 if (__predict_false(in_panic)) { 563 if (qpair->cq_head == qpair->num_entries) { 564 /* 565 * Here we know that we need to zero cq_head and then negate 566 * the phase, which hasn't been assigned if cq_head isn't 567 * zero due to the atomic_store_rel. 568 */ 569 qpair->cq_head = 0; 570 qpair->phase = !qpair->phase; 571 } else if (qpair->cq_head == 0) { 572 /* 573 * In this case, we know that the assignment at 2 574 * happened below, but we don't know if it 3 happened or 575 * not. To do this, we look at the last completion 576 * entry and set the phase to the opposite phase 577 * that it has. This gets us back in sync 578 */ 579 cpl = qpair->cpl[qpair->num_entries - 1]; 580 nvme_completion_swapbytes(&cpl); 581 qpair->phase = !NVME_STATUS_GET_P(cpl.status); 582 } 583 } 584 585 while (1) { 586 uint16_t status; 587 588 /* 589 * We need to do this dance to avoid a race between the host and 590 * the device where the device overtakes the host while the host 591 * is reading this record, leaving the status field 'new' and 592 * the sqhd and cid fields potentially stale. If the phase 593 * doesn't match, that means status hasn't yet been updated and 594 * we'll get any pending changes next time. It also means that 595 * the phase must be the same the second time. We have to sync 596 * before reading to ensure any bouncing completes. 597 */ 598 status = le16toh(qpair->cpl[qpair->cq_head].status); 599 if (NVME_STATUS_GET_P(status) != qpair->phase) 600 break; 601 602 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, 603 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 604 cpl = qpair->cpl[qpair->cq_head]; 605 nvme_completion_swapbytes(&cpl); 606 607 KASSERT( 608 NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status), 609 ("Phase unexpectedly inconsistent")); 610 611 tr = qpair->act_tr[cpl.cid]; 612 613 if (tr != NULL) { 614 nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL); 615 qpair->sq_head = cpl.sqhd; 616 done++; 617 } else if (!in_panic) { 618 /* 619 * A missing tracker is normally an error. However, a 620 * panic can stop the CPU this routine is running on 621 * after completing an I/O but before updating 622 * qpair->cq_head at 1 below. Later, we re-enter this 623 * routine to poll I/O associated with the kernel 624 * dump. We find that the tr has been set to null before 625 * calling the completion routine. If it hasn't 626 * completed (or it triggers a panic), then '1' below 627 * won't have updated cq_head. Rather than panic again, 628 * ignore this condition because it's not unexpected. 629 */ 630 nvme_printf(qpair->ctrlr, 631 "cpl does not map to outstanding cmd\n"); 632 /* nvme_dump_completion expects device endianess */ 633 nvme_dump_completion(&qpair->cpl[qpair->cq_head]); 634 KASSERT(0, ("received completion for unknown cmd")); 635 } 636 637 /* 638 * There's a number of races with the following (see above) when 639 * the system panics. We compensate for each one of them by 640 * using the atomic store to force strong ordering (at least when 641 * viewed in the aftermath of a panic). 642 */ 643 if (++qpair->cq_head == qpair->num_entries) { /* 1 */ 644 atomic_store_rel_int(&qpair->cq_head, 0); /* 2 */ 645 qpair->phase = !qpair->phase; /* 3 */ 646 } 647 648 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle, 649 qpair->cq_hdbl_off, qpair->cq_head); 650 } 651 return (done != 0); 652 } 653 654 static void 655 nvme_qpair_msi_handler(void *arg) 656 { 657 struct nvme_qpair *qpair = arg; 658 659 nvme_qpair_process_completions(qpair); 660 } 661 662 int 663 nvme_qpair_construct(struct nvme_qpair *qpair, 664 uint32_t num_entries, uint32_t num_trackers, 665 struct nvme_controller *ctrlr) 666 { 667 struct nvme_tracker *tr; 668 size_t cmdsz, cplsz, prpsz, allocsz, prpmemsz; 669 uint64_t queuemem_phys, prpmem_phys, list_phys; 670 uint8_t *queuemem, *prpmem, *prp_list; 671 int i, err; 672 673 qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0; 674 qpair->num_entries = num_entries; 675 qpair->num_trackers = num_trackers; 676 qpair->ctrlr = ctrlr; 677 678 mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF); 679 680 /* Note: NVMe PRP format is restricted to 4-byte alignment. */ 681 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 682 4, PAGE_SIZE, BUS_SPACE_MAXADDR, 683 BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size, 684 btoc(ctrlr->max_xfer_size) + 1, PAGE_SIZE, 0, 685 NULL, NULL, &qpair->dma_tag_payload); 686 if (err != 0) { 687 nvme_printf(ctrlr, "payload tag create failed %d\n", err); 688 goto out; 689 } 690 691 /* 692 * Each component must be page aligned, and individual PRP lists 693 * cannot cross a page boundary. 694 */ 695 cmdsz = qpair->num_entries * sizeof(struct nvme_command); 696 cmdsz = roundup2(cmdsz, PAGE_SIZE); 697 cplsz = qpair->num_entries * sizeof(struct nvme_completion); 698 cplsz = roundup2(cplsz, PAGE_SIZE); 699 /* 700 * For commands requiring more than 2 PRP entries, one PRP will be 701 * embedded in the command (prp1), and the rest of the PRP entries 702 * will be in a list pointed to by the command (prp2). 703 */ 704 prpsz = sizeof(uint64_t) * btoc(ctrlr->max_xfer_size); 705 prpmemsz = qpair->num_trackers * prpsz; 706 allocsz = cmdsz + cplsz + prpmemsz; 707 708 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 709 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 710 allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag); 711 if (err != 0) { 712 nvme_printf(ctrlr, "tag create failed %d\n", err); 713 goto out; 714 } 715 bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain); 716 717 if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem, 718 BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) { 719 nvme_printf(ctrlr, "failed to alloc qpair memory\n"); 720 goto out; 721 } 722 723 if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map, 724 queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) { 725 nvme_printf(ctrlr, "failed to load qpair memory\n"); 726 bus_dmamem_free(qpair->dma_tag, qpair->cmd, 727 qpair->queuemem_map); 728 goto out; 729 } 730 731 qpair->num_cmds = 0; 732 qpair->num_intr_handler_calls = 0; 733 qpair->num_retries = 0; 734 qpair->num_failures = 0; 735 qpair->cmd = (struct nvme_command *)queuemem; 736 qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz); 737 prpmem = (uint8_t *)(queuemem + cmdsz + cplsz); 738 qpair->cmd_bus_addr = queuemem_phys; 739 qpair->cpl_bus_addr = queuemem_phys + cmdsz; 740 prpmem_phys = queuemem_phys + cmdsz + cplsz; 741 742 /* 743 * Calcuate the stride of the doorbell register. Many emulators set this 744 * value to correspond to a cache line. However, some hardware has set 745 * it to various small values. 746 */ 747 qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) + 748 (qpair->id << (ctrlr->dstrd + 1)); 749 qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) + 750 (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd); 751 752 TAILQ_INIT(&qpair->free_tr); 753 TAILQ_INIT(&qpair->outstanding_tr); 754 STAILQ_INIT(&qpair->queued_req); 755 756 list_phys = prpmem_phys; 757 prp_list = prpmem; 758 for (i = 0; i < qpair->num_trackers; i++) { 759 if (list_phys + prpsz > prpmem_phys + prpmemsz) { 760 qpair->num_trackers = i; 761 break; 762 } 763 764 /* 765 * Make sure that the PRP list for this tracker doesn't 766 * overflow to another page. 767 */ 768 if (trunc_page(list_phys) != 769 trunc_page(list_phys + prpsz - 1)) { 770 list_phys = roundup2(list_phys, PAGE_SIZE); 771 prp_list = 772 (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE); 773 } 774 775 tr = malloc_domainset(sizeof(*tr), M_NVME, 776 DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK); 777 bus_dmamap_create(qpair->dma_tag_payload, 0, 778 &tr->payload_dma_map); 779 callout_init(&tr->timer, 1); 780 tr->cid = i; 781 tr->qpair = qpair; 782 tr->prp = (uint64_t *)prp_list; 783 tr->prp_bus_addr = list_phys; 784 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); 785 list_phys += prpsz; 786 prp_list += prpsz; 787 } 788 789 if (qpair->num_trackers == 0) { 790 nvme_printf(ctrlr, "failed to allocate enough trackers\n"); 791 goto out; 792 } 793 794 qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) * 795 qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain), 796 M_ZERO | M_WAITOK); 797 798 if (ctrlr->msi_count > 1) { 799 /* 800 * MSI-X vector resource IDs start at 1, so we add one to 801 * the queue's vector to get the corresponding rid to use. 802 */ 803 qpair->rid = qpair->vector + 1; 804 805 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 806 &qpair->rid, RF_ACTIVE); 807 if (qpair->res == NULL) { 808 nvme_printf(ctrlr, "unable to allocate MSI\n"); 809 goto out; 810 } 811 if (bus_setup_intr(ctrlr->dev, qpair->res, 812 INTR_TYPE_MISC | INTR_MPSAFE, NULL, 813 nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) { 814 nvme_printf(ctrlr, "unable to setup MSI\n"); 815 goto out; 816 } 817 if (qpair->id == 0) { 818 bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, 819 "admin"); 820 } else { 821 bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, 822 "io%d", qpair->id - 1); 823 } 824 } 825 826 return (0); 827 828 out: 829 nvme_qpair_destroy(qpair); 830 return (ENOMEM); 831 } 832 833 static void 834 nvme_qpair_destroy(struct nvme_qpair *qpair) 835 { 836 struct nvme_tracker *tr; 837 838 if (qpair->tag) { 839 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag); 840 qpair->tag = NULL; 841 } 842 843 if (qpair->act_tr) { 844 free(qpair->act_tr, M_NVME); 845 qpair->act_tr = NULL; 846 } 847 848 while (!TAILQ_EMPTY(&qpair->free_tr)) { 849 tr = TAILQ_FIRST(&qpair->free_tr); 850 TAILQ_REMOVE(&qpair->free_tr, tr, tailq); 851 bus_dmamap_destroy(qpair->dma_tag_payload, 852 tr->payload_dma_map); 853 free(tr, M_NVME); 854 } 855 856 if (qpair->cmd != NULL) { 857 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map); 858 bus_dmamem_free(qpair->dma_tag, qpair->cmd, 859 qpair->queuemem_map); 860 qpair->cmd = NULL; 861 } 862 863 if (qpair->dma_tag) { 864 bus_dma_tag_destroy(qpair->dma_tag); 865 qpair->dma_tag = NULL; 866 } 867 868 if (qpair->dma_tag_payload) { 869 bus_dma_tag_destroy(qpair->dma_tag_payload); 870 qpair->dma_tag_payload = NULL; 871 } 872 873 if (mtx_initialized(&qpair->lock)) 874 mtx_destroy(&qpair->lock); 875 876 if (qpair->res) { 877 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ, 878 rman_get_rid(qpair->res), qpair->res); 879 qpair->res = NULL; 880 } 881 } 882 883 static void 884 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair) 885 { 886 struct nvme_tracker *tr; 887 888 tr = TAILQ_FIRST(&qpair->outstanding_tr); 889 while (tr != NULL) { 890 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) { 891 nvme_qpair_manual_complete_tracker(tr, 892 NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0, 893 ERROR_PRINT_NONE); 894 tr = TAILQ_FIRST(&qpair->outstanding_tr); 895 } else { 896 tr = TAILQ_NEXT(tr, tailq); 897 } 898 } 899 } 900 901 void 902 nvme_admin_qpair_destroy(struct nvme_qpair *qpair) 903 { 904 905 nvme_admin_qpair_abort_aers(qpair); 906 nvme_qpair_destroy(qpair); 907 } 908 909 void 910 nvme_io_qpair_destroy(struct nvme_qpair *qpair) 911 { 912 913 nvme_qpair_destroy(qpair); 914 } 915 916 static void 917 nvme_abort_complete(void *arg, const struct nvme_completion *status) 918 { 919 struct nvme_tracker *tr = arg; 920 921 /* 922 * If cdw0 == 1, the controller was not able to abort the command 923 * we requested. We still need to check the active tracker array, 924 * to cover race where I/O timed out at same time controller was 925 * completing the I/O. 926 */ 927 if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) { 928 /* 929 * An I/O has timed out, and the controller was unable to 930 * abort it for some reason. Construct a fake completion 931 * status, and then complete the I/O's tracker manually. 932 */ 933 nvme_printf(tr->qpair->ctrlr, 934 "abort command failed, aborting command manually\n"); 935 nvme_qpair_manual_complete_tracker(tr, 936 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL); 937 } 938 } 939 940 static void 941 nvme_timeout(void *arg) 942 { 943 struct nvme_tracker *tr = arg; 944 struct nvme_qpair *qpair = tr->qpair; 945 struct nvme_controller *ctrlr = qpair->ctrlr; 946 uint32_t csts; 947 uint8_t cfs; 948 949 /* 950 * Read csts to get value of cfs - controller fatal status. 951 * If no fatal status, try to call the completion routine, and 952 * if completes transactions, report a missed interrupt and 953 * return (this may need to be rate limited). Otherwise, if 954 * aborts are enabled and the controller is not reporting 955 * fatal status, abort the command. Otherwise, just reset the 956 * controller and hope for the best. 957 */ 958 csts = nvme_mmio_read_4(ctrlr, csts); 959 cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK; 960 if (cfs == 0 && nvme_qpair_process_completions(qpair)) { 961 nvme_printf(ctrlr, "Missing interrupt\n"); 962 return; 963 } 964 if (ctrlr->enable_aborts && cfs == 0) { 965 nvme_printf(ctrlr, "Aborting command due to a timeout.\n"); 966 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id, 967 nvme_abort_complete, tr); 968 } else { 969 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n", 970 (csts == NVME_GONE) ? " and possible hot unplug" : 971 (cfs ? " and fatal error status" : "")); 972 nvme_ctrlr_reset(ctrlr); 973 } 974 } 975 976 void 977 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr) 978 { 979 struct nvme_request *req; 980 struct nvme_controller *ctrlr; 981 int timeout; 982 983 mtx_assert(&qpair->lock, MA_OWNED); 984 985 req = tr->req; 986 req->cmd.cid = tr->cid; 987 qpair->act_tr[tr->cid] = tr; 988 ctrlr = qpair->ctrlr; 989 990 if (req->timeout) { 991 if (req->cb_fn == nvme_completion_poll_cb) 992 timeout = hz; 993 else 994 timeout = ctrlr->timeout_period * hz; 995 callout_reset_on(&tr->timer, timeout, nvme_timeout, tr, 996 qpair->cpu); 997 } 998 999 /* Copy the command from the tracker to the submission queue. */ 1000 memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd)); 1001 1002 if (++qpair->sq_tail == qpair->num_entries) 1003 qpair->sq_tail = 0; 1004 1005 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, 1006 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1007 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle, 1008 qpair->sq_tdbl_off, qpair->sq_tail); 1009 qpair->num_cmds++; 1010 } 1011 1012 static void 1013 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 1014 { 1015 struct nvme_tracker *tr = arg; 1016 uint32_t cur_nseg; 1017 1018 /* 1019 * If the mapping operation failed, return immediately. The caller 1020 * is responsible for detecting the error status and failing the 1021 * tracker manually. 1022 */ 1023 if (error != 0) { 1024 nvme_printf(tr->qpair->ctrlr, 1025 "nvme_payload_map err %d\n", error); 1026 return; 1027 } 1028 1029 /* 1030 * Note that we specified PAGE_SIZE for alignment and max 1031 * segment size when creating the bus dma tags. So here 1032 * we can safely just transfer each segment to its 1033 * associated PRP entry. 1034 */ 1035 tr->req->cmd.prp1 = htole64(seg[0].ds_addr); 1036 1037 if (nseg == 2) { 1038 tr->req->cmd.prp2 = htole64(seg[1].ds_addr); 1039 } else if (nseg > 2) { 1040 cur_nseg = 1; 1041 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr); 1042 while (cur_nseg < nseg) { 1043 tr->prp[cur_nseg-1] = 1044 htole64((uint64_t)seg[cur_nseg].ds_addr); 1045 cur_nseg++; 1046 } 1047 } else { 1048 /* 1049 * prp2 should not be used by the controller 1050 * since there is only one segment, but set 1051 * to 0 just to be safe. 1052 */ 1053 tr->req->cmd.prp2 = 0; 1054 } 1055 1056 bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map, 1057 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1058 nvme_qpair_submit_tracker(tr->qpair, tr); 1059 } 1060 1061 static void 1062 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) 1063 { 1064 struct nvme_tracker *tr; 1065 int err = 0; 1066 1067 mtx_assert(&qpair->lock, MA_OWNED); 1068 1069 tr = TAILQ_FIRST(&qpair->free_tr); 1070 req->qpair = qpair; 1071 1072 if (tr == NULL || !qpair->is_enabled) { 1073 /* 1074 * No tracker is available, or the qpair is disabled due to 1075 * an in-progress controller-level reset or controller 1076 * failure. 1077 */ 1078 1079 if (qpair->ctrlr->is_failed) { 1080 /* 1081 * The controller has failed, so fail the request. 1082 */ 1083 nvme_qpair_manual_complete_request(qpair, req, 1084 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); 1085 } else { 1086 /* 1087 * Put the request on the qpair's request queue to be 1088 * processed when a tracker frees up via a command 1089 * completion or when the controller reset is 1090 * completed. 1091 */ 1092 STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); 1093 } 1094 return; 1095 } 1096 1097 TAILQ_REMOVE(&qpair->free_tr, tr, tailq); 1098 TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq); 1099 tr->req = req; 1100 1101 switch (req->type) { 1102 case NVME_REQUEST_VADDR: 1103 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size, 1104 ("payload_size (%d) exceeds max_xfer_size (%d)\n", 1105 req->payload_size, qpair->ctrlr->max_xfer_size)); 1106 err = bus_dmamap_load(tr->qpair->dma_tag_payload, 1107 tr->payload_dma_map, req->u.payload, req->payload_size, 1108 nvme_payload_map, tr, 0); 1109 if (err != 0) 1110 nvme_printf(qpair->ctrlr, 1111 "bus_dmamap_load returned 0x%x!\n", err); 1112 break; 1113 case NVME_REQUEST_NULL: 1114 nvme_qpair_submit_tracker(tr->qpair, tr); 1115 break; 1116 case NVME_REQUEST_BIO: 1117 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size, 1118 ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n", 1119 (intmax_t)req->u.bio->bio_bcount, 1120 qpair->ctrlr->max_xfer_size)); 1121 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload, 1122 tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0); 1123 if (err != 0) 1124 nvme_printf(qpair->ctrlr, 1125 "bus_dmamap_load_bio returned 0x%x!\n", err); 1126 break; 1127 case NVME_REQUEST_CCB: 1128 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload, 1129 tr->payload_dma_map, req->u.payload, 1130 nvme_payload_map, tr, 0); 1131 if (err != 0) 1132 nvme_printf(qpair->ctrlr, 1133 "bus_dmamap_load_ccb returned 0x%x!\n", err); 1134 break; 1135 default: 1136 panic("unknown nvme request type 0x%x\n", req->type); 1137 break; 1138 } 1139 1140 if (err != 0) { 1141 /* 1142 * The dmamap operation failed, so we manually fail the 1143 * tracker here with DATA_TRANSFER_ERROR status. 1144 * 1145 * nvme_qpair_manual_complete_tracker must not be called 1146 * with the qpair lock held. 1147 */ 1148 mtx_unlock(&qpair->lock); 1149 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1150 NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL); 1151 mtx_lock(&qpair->lock); 1152 } 1153 } 1154 1155 void 1156 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) 1157 { 1158 1159 mtx_lock(&qpair->lock); 1160 _nvme_qpair_submit_request(qpair, req); 1161 mtx_unlock(&qpair->lock); 1162 } 1163 1164 static void 1165 nvme_qpair_enable(struct nvme_qpair *qpair) 1166 { 1167 1168 qpair->is_enabled = true; 1169 } 1170 1171 void 1172 nvme_qpair_reset(struct nvme_qpair *qpair) 1173 { 1174 1175 qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0; 1176 1177 /* 1178 * First time through the completion queue, HW will set phase 1179 * bit on completions to 1. So set this to 1 here, indicating 1180 * we're looking for a 1 to know which entries have completed. 1181 * we'll toggle the bit each time when the completion queue 1182 * rolls over. 1183 */ 1184 qpair->phase = 1; 1185 1186 memset(qpair->cmd, 0, 1187 qpair->num_entries * sizeof(struct nvme_command)); 1188 memset(qpair->cpl, 0, 1189 qpair->num_entries * sizeof(struct nvme_completion)); 1190 } 1191 1192 void 1193 nvme_admin_qpair_enable(struct nvme_qpair *qpair) 1194 { 1195 struct nvme_tracker *tr; 1196 struct nvme_tracker *tr_temp; 1197 1198 /* 1199 * Manually abort each outstanding admin command. Do not retry 1200 * admin commands found here, since they will be left over from 1201 * a controller reset and its likely the context in which the 1202 * command was issued no longer applies. 1203 */ 1204 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1205 nvme_printf(qpair->ctrlr, 1206 "aborting outstanding admin command\n"); 1207 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1208 NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); 1209 } 1210 1211 nvme_qpair_enable(qpair); 1212 } 1213 1214 void 1215 nvme_io_qpair_enable(struct nvme_qpair *qpair) 1216 { 1217 STAILQ_HEAD(, nvme_request) temp; 1218 struct nvme_tracker *tr; 1219 struct nvme_tracker *tr_temp; 1220 struct nvme_request *req; 1221 1222 /* 1223 * Manually abort each outstanding I/O. This normally results in a 1224 * retry, unless the retry count on the associated request has 1225 * reached its limit. 1226 */ 1227 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1228 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n"); 1229 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1230 NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY); 1231 } 1232 1233 mtx_lock(&qpair->lock); 1234 1235 nvme_qpair_enable(qpair); 1236 1237 STAILQ_INIT(&temp); 1238 STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request); 1239 1240 while (!STAILQ_EMPTY(&temp)) { 1241 req = STAILQ_FIRST(&temp); 1242 STAILQ_REMOVE_HEAD(&temp, stailq); 1243 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n"); 1244 nvme_qpair_print_command(qpair, &req->cmd); 1245 _nvme_qpair_submit_request(qpair, req); 1246 } 1247 1248 mtx_unlock(&qpair->lock); 1249 } 1250 1251 static void 1252 nvme_qpair_disable(struct nvme_qpair *qpair) 1253 { 1254 struct nvme_tracker *tr; 1255 1256 qpair->is_enabled = false; 1257 mtx_lock(&qpair->lock); 1258 TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) 1259 callout_stop(&tr->timer); 1260 mtx_unlock(&qpair->lock); 1261 } 1262 1263 void 1264 nvme_admin_qpair_disable(struct nvme_qpair *qpair) 1265 { 1266 1267 nvme_qpair_disable(qpair); 1268 nvme_admin_qpair_abort_aers(qpair); 1269 } 1270 1271 void 1272 nvme_io_qpair_disable(struct nvme_qpair *qpair) 1273 { 1274 1275 nvme_qpair_disable(qpair); 1276 } 1277 1278 void 1279 nvme_qpair_fail(struct nvme_qpair *qpair) 1280 { 1281 struct nvme_tracker *tr; 1282 struct nvme_request *req; 1283 1284 if (!mtx_initialized(&qpair->lock)) 1285 return; 1286 1287 mtx_lock(&qpair->lock); 1288 1289 while (!STAILQ_EMPTY(&qpair->queued_req)) { 1290 req = STAILQ_FIRST(&qpair->queued_req); 1291 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 1292 nvme_printf(qpair->ctrlr, "failing queued i/o\n"); 1293 mtx_unlock(&qpair->lock); 1294 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC, 1295 NVME_SC_ABORTED_BY_REQUEST); 1296 mtx_lock(&qpair->lock); 1297 } 1298 1299 /* Manually abort each outstanding I/O. */ 1300 while (!TAILQ_EMPTY(&qpair->outstanding_tr)) { 1301 tr = TAILQ_FIRST(&qpair->outstanding_tr); 1302 /* 1303 * Do not remove the tracker. The abort_tracker path will 1304 * do that for us. 1305 */ 1306 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n"); 1307 mtx_unlock(&qpair->lock); 1308 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1309 NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); 1310 mtx_lock(&qpair->lock); 1311 } 1312 1313 mtx_unlock(&qpair->lock); 1314 } 1315