xref: /freebsd/sys/dev/nvme/nvme_qpair.c (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/domainset.h>
36 #include <sys/proc.h>
37 
38 #include <dev/pci/pcivar.h>
39 
40 #include "nvme_private.h"
41 
42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
43 #define DO_NOT_RETRY	1
44 
45 static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
46 					   struct nvme_request *req);
47 static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
48 
49 struct nvme_opcode_string {
50 	uint16_t	opc;
51 	const char *	str;
52 };
53 
54 static struct nvme_opcode_string admin_opcode[] = {
55 	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56 	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57 	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58 	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59 	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60 	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
61 	{ NVME_OPC_ABORT, "ABORT" },
62 	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
63 	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
64 	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65 	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66 	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67 	{ NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68 	{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69 	{ NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70 	{ NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71 	{ NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72 	{ NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73 	{ NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74 	{ NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75 	{ NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76 	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77 	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78 	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79 	{ NVME_OPC_SANITIZE, "SANITIZE" },
80 	{ NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
81 	{ 0xFFFF, "ADMIN COMMAND" }
82 };
83 
84 static struct nvme_opcode_string io_opcode[] = {
85 	{ NVME_OPC_FLUSH, "FLUSH" },
86 	{ NVME_OPC_WRITE, "WRITE" },
87 	{ NVME_OPC_READ, "READ" },
88 	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
89 	{ NVME_OPC_COMPARE, "COMPARE" },
90 	{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
91 	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
92 	{ NVME_OPC_VERIFY, "VERIFY" },
93 	{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
94 	{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
95 	{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
96 	{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
97 	{ 0xFFFF, "IO COMMAND" }
98 };
99 
100 static const char *
101 get_admin_opcode_string(uint16_t opc)
102 {
103 	struct nvme_opcode_string *entry;
104 
105 	entry = admin_opcode;
106 
107 	while (entry->opc != 0xFFFF) {
108 		if (entry->opc == opc)
109 			return (entry->str);
110 		entry++;
111 	}
112 	return (entry->str);
113 }
114 
115 static const char *
116 get_io_opcode_string(uint16_t opc)
117 {
118 	struct nvme_opcode_string *entry;
119 
120 	entry = io_opcode;
121 
122 	while (entry->opc != 0xFFFF) {
123 		if (entry->opc == opc)
124 			return (entry->str);
125 		entry++;
126 	}
127 	return (entry->str);
128 }
129 
130 static void
131 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
132     struct nvme_command *cmd)
133 {
134 
135 	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
136 	    "cdw10:%08x cdw11:%08x\n",
137 	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
138 	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
139 }
140 
141 static void
142 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
143     struct nvme_command *cmd)
144 {
145 
146 	switch (cmd->opc) {
147 	case NVME_OPC_WRITE:
148 	case NVME_OPC_READ:
149 	case NVME_OPC_WRITE_UNCORRECTABLE:
150 	case NVME_OPC_COMPARE:
151 	case NVME_OPC_WRITE_ZEROES:
152 	case NVME_OPC_VERIFY:
153 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
154 		    "lba:%llu len:%d\n",
155 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
156 		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
157 		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
158 		break;
159 	case NVME_OPC_FLUSH:
160 	case NVME_OPC_DATASET_MANAGEMENT:
161 	case NVME_OPC_RESERVATION_REGISTER:
162 	case NVME_OPC_RESERVATION_REPORT:
163 	case NVME_OPC_RESERVATION_ACQUIRE:
164 	case NVME_OPC_RESERVATION_RELEASE:
165 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
166 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
167 		break;
168 	default:
169 		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
170 		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
171 		    cmd->cid, le32toh(cmd->nsid));
172 		break;
173 	}
174 }
175 
176 static void
177 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
178 {
179 	if (qpair->id == 0)
180 		nvme_admin_qpair_print_command(qpair, cmd);
181 	else
182 		nvme_io_qpair_print_command(qpair, cmd);
183 	if (nvme_verbose_cmd_dump) {
184 		nvme_printf(qpair->ctrlr,
185 		    "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
186 		    cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
187 		    (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
188 		nvme_printf(qpair->ctrlr,
189 		    "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
190 		    cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
191 		    cmd->cdw15);
192 	}
193 }
194 
195 struct nvme_status_string {
196 	uint16_t	sc;
197 	const char *	str;
198 };
199 
200 static struct nvme_status_string generic_status[] = {
201 	{ NVME_SC_SUCCESS, "SUCCESS" },
202 	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
203 	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
204 	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
205 	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
206 	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
207 	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
208 	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
209 	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
210 	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
211 	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
212 	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
213 	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
214 	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
215 	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
216 	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
217 	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
218 	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
219 	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
220 	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
221 	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
222 	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
223 	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
224 	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
225 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
226 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
227 	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
228 	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
229 	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
230 	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
231 	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
232 	{ NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
233 	{ NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
234 	{ NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
235 
236 	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
237 	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
238 	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
239 	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
240 	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
241 	{ 0xFFFF, "GENERIC" }
242 };
243 
244 static struct nvme_status_string command_specific_status[] = {
245 	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
246 	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
247 	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
248 	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
249 	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
250 	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
251 	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
252 	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
253 	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
254 	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
255 	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
256 	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
257 	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
258 	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
259 	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
260 	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
261 	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
262 	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
263 	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
264 	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
265 	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
266 	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
267 	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
268 	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
269 	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
270 	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
271 	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
272 	{ NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
273 	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
274 	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
275 	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
276 	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
277 	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
278 	{ NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
279 	{ NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
280 	{ NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
281 
282 	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
283 	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
284 	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
285 	{ 0xFFFF, "COMMAND SPECIFIC" }
286 };
287 
288 static struct nvme_status_string media_error_status[] = {
289 	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
290 	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
291 	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
292 	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
293 	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
294 	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
295 	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
296 	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
297 	{ 0xFFFF, "MEDIA ERROR" }
298 };
299 
300 static struct nvme_status_string path_related_status[] = {
301 	{ NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
302 	{ NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
303 	{ NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
304 	{ NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
305 	{ NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
306 	{ NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
307 	{ NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
308 	{ 0xFFFF, "PATH RELATED" },
309 };
310 
311 static const char *
312 get_status_string(uint16_t sct, uint16_t sc)
313 {
314 	struct nvme_status_string *entry;
315 
316 	switch (sct) {
317 	case NVME_SCT_GENERIC:
318 		entry = generic_status;
319 		break;
320 	case NVME_SCT_COMMAND_SPECIFIC:
321 		entry = command_specific_status;
322 		break;
323 	case NVME_SCT_MEDIA_ERROR:
324 		entry = media_error_status;
325 		break;
326 	case NVME_SCT_PATH_RELATED:
327 		entry = path_related_status;
328 		break;
329 	case NVME_SCT_VENDOR_SPECIFIC:
330 		return ("VENDOR SPECIFIC");
331 	default:
332 		return ("RESERVED");
333 	}
334 
335 	while (entry->sc != 0xFFFF) {
336 		if (entry->sc == sc)
337 			return (entry->str);
338 		entry++;
339 	}
340 	return (entry->str);
341 }
342 
343 static void
344 nvme_qpair_print_completion(struct nvme_qpair *qpair,
345     struct nvme_completion *cpl)
346 {
347 	uint8_t sct, sc, crd, m, dnr;
348 
349 	sct = NVME_STATUS_GET_SCT(cpl->status);
350 	sc = NVME_STATUS_GET_SC(cpl->status);
351 	crd = NVME_STATUS_GET_CRD(cpl->status);
352 	m = NVME_STATUS_GET_M(cpl->status);
353 	dnr = NVME_STATUS_GET_DNR(cpl->status);
354 
355 	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) crd:%x m:%x dnr:%x "
356 	    "sqid:%d cid:%d cdw0:%x\n",
357 	    get_status_string(sct, sc), sct, sc, crd, m, dnr,
358 	    cpl->sqid, cpl->cid, cpl->cdw0);
359 }
360 
361 static bool
362 nvme_completion_is_retry(const struct nvme_completion *cpl)
363 {
364 	uint8_t sct, sc, dnr;
365 
366 	sct = NVME_STATUS_GET_SCT(cpl->status);
367 	sc = NVME_STATUS_GET_SC(cpl->status);
368 	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */
369 
370 	/*
371 	 * TODO: spec is not clear how commands that are aborted due
372 	 *  to TLER will be marked.  So for now, it seems
373 	 *  NAMESPACE_NOT_READY is the only case where we should
374 	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
375 	 *  set the DNR bit correctly since the driver controls that.
376 	 */
377 	switch (sct) {
378 	case NVME_SCT_GENERIC:
379 		switch (sc) {
380 		case NVME_SC_ABORTED_BY_REQUEST:
381 		case NVME_SC_NAMESPACE_NOT_READY:
382 			if (dnr)
383 				return (0);
384 			else
385 				return (1);
386 		case NVME_SC_INVALID_OPCODE:
387 		case NVME_SC_INVALID_FIELD:
388 		case NVME_SC_COMMAND_ID_CONFLICT:
389 		case NVME_SC_DATA_TRANSFER_ERROR:
390 		case NVME_SC_ABORTED_POWER_LOSS:
391 		case NVME_SC_INTERNAL_DEVICE_ERROR:
392 		case NVME_SC_ABORTED_SQ_DELETION:
393 		case NVME_SC_ABORTED_FAILED_FUSED:
394 		case NVME_SC_ABORTED_MISSING_FUSED:
395 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
396 		case NVME_SC_COMMAND_SEQUENCE_ERROR:
397 		case NVME_SC_LBA_OUT_OF_RANGE:
398 		case NVME_SC_CAPACITY_EXCEEDED:
399 		default:
400 			return (0);
401 		}
402 	case NVME_SCT_COMMAND_SPECIFIC:
403 	case NVME_SCT_MEDIA_ERROR:
404 		return (0);
405 	case NVME_SCT_PATH_RELATED:
406 		switch (sc) {
407 		case NVME_SC_INTERNAL_PATH_ERROR:
408 			if (dnr)
409 				return (0);
410 			else
411 				return (1);
412 		default:
413 			return (0);
414 		}
415 	case NVME_SCT_VENDOR_SPECIFIC:
416 	default:
417 		return (0);
418 	}
419 }
420 
421 static void
422 nvme_qpair_complete_tracker(struct nvme_tracker *tr,
423     struct nvme_completion *cpl, error_print_t print_on_error)
424 {
425 	struct nvme_qpair * qpair = tr->qpair;
426 	struct nvme_request	*req;
427 	bool			retry, error, retriable;
428 
429 	req = tr->req;
430 	error = nvme_completion_is_error(cpl);
431 	retriable = nvme_completion_is_retry(cpl);
432 	retry = error && retriable && req->retries < nvme_retry_count;
433 	if (retry)
434 		qpair->num_retries++;
435 	if (error && req->retries >= nvme_retry_count && retriable)
436 		qpair->num_failures++;
437 
438 	if (error && (print_on_error == ERROR_PRINT_ALL ||
439 		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
440 		nvme_qpair_print_command(qpair, &req->cmd);
441 		nvme_qpair_print_completion(qpair, cpl);
442 	}
443 
444 	qpair->act_tr[cpl->cid] = NULL;
445 
446 	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
447 
448 	if (!retry) {
449 		if (req->type != NVME_REQUEST_NULL) {
450 			bus_dmamap_sync(qpair->dma_tag_payload,
451 			    tr->payload_dma_map,
452 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
453 		}
454 		if (req->cb_fn)
455 			req->cb_fn(req->cb_arg, cpl);
456 	}
457 
458 	mtx_lock(&qpair->lock);
459 
460 	if (retry) {
461 		req->retries++;
462 		nvme_qpair_submit_tracker(qpair, tr);
463 	} else {
464 		if (req->type != NVME_REQUEST_NULL) {
465 			bus_dmamap_unload(qpair->dma_tag_payload,
466 			    tr->payload_dma_map);
467 		}
468 
469 		nvme_free_request(req);
470 		tr->req = NULL;
471 
472 		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
473 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
474 
475 		/*
476 		 * If the controller is in the middle of resetting, don't
477 		 *  try to submit queued requests here - let the reset logic
478 		 *  handle that instead.
479 		 */
480 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
481 		    !qpair->ctrlr->is_resetting) {
482 			req = STAILQ_FIRST(&qpair->queued_req);
483 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
484 			_nvme_qpair_submit_request(qpair, req);
485 		}
486 	}
487 
488 	mtx_unlock(&qpair->lock);
489 }
490 
491 static void
492 nvme_qpair_manual_complete_tracker(
493     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
494     error_print_t print_on_error)
495 {
496 	struct nvme_completion	cpl;
497 
498 	memset(&cpl, 0, sizeof(cpl));
499 
500 	struct nvme_qpair * qpair = tr->qpair;
501 
502 	cpl.sqid = qpair->id;
503 	cpl.cid = tr->cid;
504 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
505 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
506 	cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
507 	nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
508 }
509 
510 void
511 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
512     struct nvme_request *req, uint32_t sct, uint32_t sc)
513 {
514 	struct nvme_completion	cpl;
515 	bool			error;
516 
517 	memset(&cpl, 0, sizeof(cpl));
518 	cpl.sqid = qpair->id;
519 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
520 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
521 
522 	error = nvme_completion_is_error(&cpl);
523 
524 	if (error) {
525 		nvme_qpair_print_command(qpair, &req->cmd);
526 		nvme_qpair_print_completion(qpair, &cpl);
527 	}
528 
529 	if (req->cb_fn)
530 		req->cb_fn(req->cb_arg, &cpl);
531 
532 	nvme_free_request(req);
533 }
534 
535 bool
536 nvme_qpair_process_completions(struct nvme_qpair *qpair)
537 {
538 	struct nvme_tracker	*tr;
539 	struct nvme_completion	cpl;
540 	int done = 0;
541 	bool in_panic = dumping || SCHEDULER_STOPPED();
542 
543 	/*
544 	 * qpair is not enabled, likely because a controller reset is in
545 	 * progress.  Ignore the interrupt - any I/O that was associated with
546 	 * this interrupt will get retried when the reset is complete. Any
547 	 * pending completions for when we're in startup will be completed
548 	 * as soon as initialization is complete and we start sending commands
549 	 * to the device.
550 	 */
551 	if (qpair->recovery_state != RECOVERY_NONE) {
552 		qpair->num_ignored++;
553 		return (false);
554 	}
555 
556 	/*
557 	 * Sanity check initialization. After we reset the hardware, the phase
558 	 * is defined to be 1. So if we get here with zero prior calls and the
559 	 * phase is 0, it means that we've lost a race between the
560 	 * initialization and the ISR running. With the phase wrong, we'll
561 	 * process a bunch of completions that aren't really completions leading
562 	 * to a KASSERT below.
563 	 */
564 	KASSERT(!(qpair->num_intr_handler_calls == 0 && qpair->phase == 0),
565 	    ("%s: Phase wrong for first interrupt call.",
566 		device_get_nameunit(qpair->ctrlr->dev)));
567 
568 	qpair->num_intr_handler_calls++;
569 
570 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
571 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
572 	/*
573 	 * A panic can stop the CPU this routine is running on at any point.  If
574 	 * we're called during a panic, complete the sq_head wrap protocol for
575 	 * the case where we are interrupted just after the increment at 1
576 	 * below, but before we can reset cq_head to zero at 2. Also cope with
577 	 * the case where we do the zero at 2, but may or may not have done the
578 	 * phase adjustment at step 3. The panic machinery flushes all pending
579 	 * memory writes, so we can make these strong ordering assumptions
580 	 * that would otherwise be unwise if we were racing in real time.
581 	 */
582 	if (__predict_false(in_panic)) {
583 		if (qpair->cq_head == qpair->num_entries) {
584 			/*
585 			 * Here we know that we need to zero cq_head and then negate
586 			 * the phase, which hasn't been assigned if cq_head isn't
587 			 * zero due to the atomic_store_rel.
588 			 */
589 			qpair->cq_head = 0;
590 			qpair->phase = !qpair->phase;
591 		} else if (qpair->cq_head == 0) {
592 			/*
593 			 * In this case, we know that the assignment at 2
594 			 * happened below, but we don't know if it 3 happened or
595 			 * not. To do this, we look at the last completion
596 			 * entry and set the phase to the opposite phase
597 			 * that it has. This gets us back in sync
598 			 */
599 			cpl = qpair->cpl[qpair->num_entries - 1];
600 			nvme_completion_swapbytes(&cpl);
601 			qpair->phase = !NVME_STATUS_GET_P(cpl.status);
602 		}
603 	}
604 
605 	while (1) {
606 		uint16_t status;
607 
608 		/*
609 		 * We need to do this dance to avoid a race between the host and
610 		 * the device where the device overtakes the host while the host
611 		 * is reading this record, leaving the status field 'new' and
612 		 * the sqhd and cid fields potentially stale. If the phase
613 		 * doesn't match, that means status hasn't yet been updated and
614 		 * we'll get any pending changes next time. It also means that
615 		 * the phase must be the same the second time. We have to sync
616 		 * before reading to ensure any bouncing completes.
617 		 */
618 		status = le16toh(qpair->cpl[qpair->cq_head].status);
619 		if (NVME_STATUS_GET_P(status) != qpair->phase)
620 			break;
621 
622 		bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
623 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
624 		cpl = qpair->cpl[qpair->cq_head];
625 		nvme_completion_swapbytes(&cpl);
626 
627 		KASSERT(
628 		    NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status),
629 		    ("Phase unexpectedly inconsistent"));
630 
631 		if (cpl.cid < qpair->num_trackers)
632 			tr = qpair->act_tr[cpl.cid];
633 		else
634 			tr = NULL;
635 
636 		done++;
637 		if (tr != NULL) {
638 			nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
639 			qpair->sq_head = cpl.sqhd;
640 		} else if (!in_panic) {
641 			/*
642 			 * A missing tracker is normally an error.  However, a
643 			 * panic can stop the CPU this routine is running on
644 			 * after completing an I/O but before updating
645 			 * qpair->cq_head at 1 below.  Later, we re-enter this
646 			 * routine to poll I/O associated with the kernel
647 			 * dump. We find that the tr has been set to null before
648 			 * calling the completion routine.  If it hasn't
649 			 * completed (or it triggers a panic), then '1' below
650 			 * won't have updated cq_head. Rather than panic again,
651 			 * ignore this condition because it's not unexpected.
652 			 */
653 			nvme_printf(qpair->ctrlr,
654 			    "cpl (cid = %u) does not map to outstanding cmd\n",
655 				cpl.cid);
656 			/* nvme_dump_completion expects device endianess */
657 			nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
658 			KASSERT(0, ("received completion for unknown cmd"));
659 		}
660 
661 		/*
662 		 * There's a number of races with the following (see above) when
663 		 * the system panics. We compensate for each one of them by
664 		 * using the atomic store to force strong ordering (at least when
665 		 * viewed in the aftermath of a panic).
666 		 */
667 		if (++qpair->cq_head == qpair->num_entries) {		/* 1 */
668 			atomic_store_rel_int(&qpair->cq_head, 0);	/* 2 */
669 			qpair->phase = !qpair->phase;			/* 3 */
670 		}
671 	}
672 
673 	if (done != 0) {
674 		bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
675 		    qpair->cq_hdbl_off, qpair->cq_head);
676 	}
677 
678 	return (done != 0);
679 }
680 
681 static void
682 nvme_qpair_msi_handler(void *arg)
683 {
684 	struct nvme_qpair *qpair = arg;
685 
686 	nvme_qpair_process_completions(qpair);
687 }
688 
689 int
690 nvme_qpair_construct(struct nvme_qpair *qpair,
691     uint32_t num_entries, uint32_t num_trackers,
692     struct nvme_controller *ctrlr)
693 {
694 	struct nvme_tracker	*tr;
695 	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
696 	uint64_t		queuemem_phys, prpmem_phys, list_phys;
697 	uint8_t			*queuemem, *prpmem, *prp_list;
698 	int			i, err;
699 
700 	qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0;
701 	qpair->num_entries = num_entries;
702 	qpair->num_trackers = num_trackers;
703 	qpair->ctrlr = ctrlr;
704 
705 	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
706 
707 	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
708 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
709 	    4, ctrlr->page_size, BUS_SPACE_MAXADDR,
710 	    BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
711 	    howmany(ctrlr->max_xfer_size, ctrlr->page_size) + 1,
712 	    ctrlr->page_size, 0,
713 	    NULL, NULL, &qpair->dma_tag_payload);
714 	if (err != 0) {
715 		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
716 		goto out;
717 	}
718 
719 	/*
720 	 * Each component must be page aligned, and individual PRP lists
721 	 * cannot cross a page boundary.
722 	 */
723 	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
724 	cmdsz = roundup2(cmdsz, ctrlr->page_size);
725 	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
726 	cplsz = roundup2(cplsz, ctrlr->page_size);
727 	/*
728 	 * For commands requiring more than 2 PRP entries, one PRP will be
729 	 * embedded in the command (prp1), and the rest of the PRP entries
730 	 * will be in a list pointed to by the command (prp2).
731 	 */
732 	prpsz = sizeof(uint64_t) *
733 	    howmany(ctrlr->max_xfer_size, ctrlr->page_size);
734 	prpmemsz = qpair->num_trackers * prpsz;
735 	allocsz = cmdsz + cplsz + prpmemsz;
736 
737 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
738 	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
739 	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
740 	if (err != 0) {
741 		nvme_printf(ctrlr, "tag create failed %d\n", err);
742 		goto out;
743 	}
744 	bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
745 
746 	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
747 	     BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
748 		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
749 		goto out;
750 	}
751 
752 	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
753 	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
754 		nvme_printf(ctrlr, "failed to load qpair memory\n");
755 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
756 		    qpair->queuemem_map);
757 		goto out;
758 	}
759 
760 	qpair->num_cmds = 0;
761 	qpair->num_intr_handler_calls = 0;
762 	qpair->num_retries = 0;
763 	qpair->num_failures = 0;
764 	qpair->num_ignored = 0;
765 	qpair->cmd = (struct nvme_command *)queuemem;
766 	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
767 	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
768 	qpair->cmd_bus_addr = queuemem_phys;
769 	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
770 	prpmem_phys = queuemem_phys + cmdsz + cplsz;
771 
772 	callout_init(&qpair->timer, 1);
773 	qpair->timer_armed = false;
774 	qpair->recovery_state = RECOVERY_WAITING;
775 
776 	/*
777 	 * Calcuate the stride of the doorbell register. Many emulators set this
778 	 * value to correspond to a cache line. However, some hardware has set
779 	 * it to various small values.
780 	 */
781 	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
782 	    (qpair->id << (ctrlr->dstrd + 1));
783 	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
784 	    (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
785 
786 	TAILQ_INIT(&qpair->free_tr);
787 	TAILQ_INIT(&qpair->outstanding_tr);
788 	STAILQ_INIT(&qpair->queued_req);
789 
790 	list_phys = prpmem_phys;
791 	prp_list = prpmem;
792 	for (i = 0; i < qpair->num_trackers; i++) {
793 		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
794 			qpair->num_trackers = i;
795 			break;
796 		}
797 
798 		/*
799 		 * Make sure that the PRP list for this tracker doesn't
800 		 * overflow to another nvme page.
801 		 */
802 		if (trunc_page(list_phys) !=
803 		    trunc_page(list_phys + prpsz - 1)) {
804 			list_phys = roundup2(list_phys, ctrlr->page_size);
805 			prp_list =
806 			    (uint8_t *)roundup2((uintptr_t)prp_list, ctrlr->page_size);
807 		}
808 
809 		tr = malloc_domainset(sizeof(*tr), M_NVME,
810 		    DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
811 		bus_dmamap_create(qpair->dma_tag_payload, 0,
812 		    &tr->payload_dma_map);
813 		tr->cid = i;
814 		tr->qpair = qpair;
815 		tr->prp = (uint64_t *)prp_list;
816 		tr->prp_bus_addr = list_phys;
817 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
818 		list_phys += prpsz;
819 		prp_list += prpsz;
820 	}
821 
822 	if (qpair->num_trackers == 0) {
823 		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
824 		goto out;
825 	}
826 
827 	qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
828 	    qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
829 	    M_ZERO | M_WAITOK);
830 
831 	if (ctrlr->msi_count > 1) {
832 		/*
833 		 * MSI-X vector resource IDs start at 1, so we add one to
834 		 *  the queue's vector to get the corresponding rid to use.
835 		 */
836 		qpair->rid = qpair->vector + 1;
837 
838 		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
839 		    &qpair->rid, RF_ACTIVE);
840 		if (qpair->res == NULL) {
841 			nvme_printf(ctrlr, "unable to allocate MSI\n");
842 			goto out;
843 		}
844 		if (bus_setup_intr(ctrlr->dev, qpair->res,
845 		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
846 		    nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) {
847 			nvme_printf(ctrlr, "unable to setup MSI\n");
848 			goto out;
849 		}
850 		if (qpair->id == 0) {
851 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
852 			    "admin");
853 		} else {
854 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
855 			    "io%d", qpair->id - 1);
856 		}
857 	}
858 
859 	return (0);
860 
861 out:
862 	nvme_qpair_destroy(qpair);
863 	return (ENOMEM);
864 }
865 
866 static void
867 nvme_qpair_destroy(struct nvme_qpair *qpair)
868 {
869 	struct nvme_tracker	*tr;
870 
871 	callout_drain(&qpair->timer);
872 
873 	if (qpair->tag) {
874 		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
875 		qpair->tag = NULL;
876 	}
877 
878 	if (qpair->act_tr) {
879 		free(qpair->act_tr, M_NVME);
880 		qpair->act_tr = NULL;
881 	}
882 
883 	while (!TAILQ_EMPTY(&qpair->free_tr)) {
884 		tr = TAILQ_FIRST(&qpair->free_tr);
885 		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
886 		bus_dmamap_destroy(qpair->dma_tag_payload,
887 		    tr->payload_dma_map);
888 		free(tr, M_NVME);
889 	}
890 
891 	if (qpair->cmd != NULL) {
892 		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
893 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
894 		    qpair->queuemem_map);
895 		qpair->cmd = NULL;
896 	}
897 
898 	if (qpair->dma_tag) {
899 		bus_dma_tag_destroy(qpair->dma_tag);
900 		qpair->dma_tag = NULL;
901 	}
902 
903 	if (qpair->dma_tag_payload) {
904 		bus_dma_tag_destroy(qpair->dma_tag_payload);
905 		qpair->dma_tag_payload = NULL;
906 	}
907 
908 	if (mtx_initialized(&qpair->lock))
909 		mtx_destroy(&qpair->lock);
910 
911 	if (qpair->res) {
912 		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
913 		    rman_get_rid(qpair->res), qpair->res);
914 		qpair->res = NULL;
915 	}
916 }
917 
918 static void
919 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
920 {
921 	struct nvme_tracker	*tr;
922 
923 	tr = TAILQ_FIRST(&qpair->outstanding_tr);
924 	while (tr != NULL) {
925 		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
926 			nvme_qpair_manual_complete_tracker(tr,
927 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
928 			    ERROR_PRINT_NONE);
929 			tr = TAILQ_FIRST(&qpair->outstanding_tr);
930 		} else {
931 			tr = TAILQ_NEXT(tr, tailq);
932 		}
933 	}
934 }
935 
936 void
937 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
938 {
939 
940 	nvme_admin_qpair_abort_aers(qpair);
941 	nvme_qpair_destroy(qpair);
942 }
943 
944 void
945 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
946 {
947 
948 	nvme_qpair_destroy(qpair);
949 }
950 
951 static void
952 nvme_qpair_timeout(void *arg)
953 {
954 	struct nvme_qpair	*qpair = arg;
955 	struct nvme_controller	*ctrlr = qpair->ctrlr;
956 	struct nvme_tracker	*tr;
957 	sbintime_t		now;
958 	bool			idle;
959 	uint32_t		csts;
960 	uint8_t			cfs;
961 
962 	mtx_lock(&qpair->lock);
963 	idle = TAILQ_EMPTY(&qpair->outstanding_tr);
964 again:
965 	switch (qpair->recovery_state) {
966 	case RECOVERY_NONE:
967 		if (idle)
968 			break;
969 		now = getsbinuptime();
970 		idle = true;
971 		TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) {
972 			if (tr->deadline == SBT_MAX)
973 				continue;
974 			idle = false;
975 			if (now > tr->deadline) {
976 				/*
977 				 * We're now passed our earliest deadline. We
978 				 * need to do expensive things to cope, but next
979 				 * time. Flag that and close the door to any
980 				 * further processing.
981 				 */
982 				qpair->recovery_state = RECOVERY_START;
983 				nvme_printf(ctrlr, "RECOVERY_START %jd vs %jd\n",
984 				    (uintmax_t)now, (uintmax_t)tr->deadline);
985 				break;
986 			}
987 		}
988 		break;
989 	case RECOVERY_START:
990 		/*
991 		 * Read csts to get value of cfs - controller fatal status.
992 		 * If no fatal status, try to call the completion routine, and
993 		 * if completes transactions, report a missed interrupt and
994 		 * return (this may need to be rate limited). Otherwise, if
995 		 * aborts are enabled and the controller is not reporting
996 		 * fatal status, abort the command. Otherwise, just reset the
997 		 * controller and hope for the best.
998 		 */
999 		csts = nvme_mmio_read_4(ctrlr, csts);
1000 		cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
1001 		if (cfs) {
1002 			nvme_printf(ctrlr, "Controller in fatal status, resetting\n");
1003 			qpair->recovery_state = RECOVERY_RESET;
1004 			goto again;
1005 		}
1006 		mtx_unlock(&qpair->lock);
1007 		if (nvme_qpair_process_completions(qpair)) {
1008 			nvme_printf(ctrlr, "Completions present in output without an interrupt\n");
1009 			qpair->recovery_state = RECOVERY_NONE;
1010 		} else {
1011 			nvme_printf(ctrlr, "timeout with nothing complete, resetting\n");
1012 			qpair->recovery_state = RECOVERY_RESET;
1013 			mtx_lock(&qpair->lock);
1014 			goto again;
1015 		}
1016 		mtx_lock(&qpair->lock);
1017 		break;
1018 	case RECOVERY_RESET:
1019 		/*
1020 		 * If we get here due to a possible surprise hot-unplug event,
1021 		 * then we let nvme_ctrlr_reset confirm and fail the
1022 		 * controller.
1023 		 */
1024 		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
1025 		    (csts == 0xffffffff) ? " and possible hot unplug" :
1026 		    (cfs ? " and fatal error status" : ""));
1027 		nvme_printf(ctrlr, "RECOVERY_WAITING\n");
1028 		qpair->recovery_state = RECOVERY_WAITING;
1029 		nvme_ctrlr_reset(ctrlr);
1030 		break;
1031 	case RECOVERY_WAITING:
1032 		nvme_printf(ctrlr, "waiting\n");
1033 		break;
1034 	}
1035 
1036 	/*
1037 	 * Rearm the timeout.
1038 	 */
1039 	if (!idle) {
1040 		callout_schedule_sbt(&qpair->timer, SBT_1S / 2, SBT_1S / 2, 0);
1041 	} else {
1042 		qpair->timer_armed = false;
1043 	}
1044 	mtx_unlock(&qpair->lock);
1045 }
1046 
1047 /*
1048  * Submit the tracker to the hardware. Must already be in the
1049  * outstanding queue when called.
1050  */
1051 void
1052 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
1053 {
1054 	struct nvme_request	*req;
1055 	struct nvme_controller	*ctrlr;
1056 	int timeout;
1057 
1058 	mtx_assert(&qpair->lock, MA_OWNED);
1059 
1060 	req = tr->req;
1061 	req->cmd.cid = tr->cid;
1062 	qpair->act_tr[tr->cid] = tr;
1063 	ctrlr = qpair->ctrlr;
1064 
1065 	if (req->timeout) {
1066 		if (req->cb_fn == nvme_completion_poll_cb)
1067 			timeout = 1;
1068 		else
1069 			timeout = ctrlr->timeout_period;
1070 		tr->deadline = getsbinuptime() + timeout * SBT_1S;
1071 		if (!qpair->timer_armed) {
1072 			qpair->timer_armed = true;
1073 			callout_reset_sbt_on(&qpair->timer, SBT_1S / 2, SBT_1S / 2,
1074 			    nvme_qpair_timeout, qpair, qpair->cpu, 0);
1075 		}
1076 	} else
1077 		tr->deadline = SBT_MAX;
1078 
1079 	/* Copy the command from the tracker to the submission queue. */
1080 	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
1081 
1082 	if (++qpair->sq_tail == qpair->num_entries)
1083 		qpair->sq_tail = 0;
1084 
1085 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
1086 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1087 	bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
1088 	    qpair->sq_tdbl_off, qpair->sq_tail);
1089 	qpair->num_cmds++;
1090 }
1091 
1092 static void
1093 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1094 {
1095 	struct nvme_tracker 	*tr = arg;
1096 	uint32_t		cur_nseg;
1097 
1098 	/*
1099 	 * If the mapping operation failed, return immediately.  The caller
1100 	 *  is responsible for detecting the error status and failing the
1101 	 *  tracker manually.
1102 	 */
1103 	if (error != 0) {
1104 		nvme_printf(tr->qpair->ctrlr,
1105 		    "nvme_payload_map err %d\n", error);
1106 		return;
1107 	}
1108 
1109 	/*
1110 	 * Note that we specified ctrlr->page_size for alignment and max
1111 	 * segment size when creating the bus dma tags.  So here we can safely
1112 	 * just transfer each segment to its associated PRP entry.
1113 	 */
1114 	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
1115 
1116 	if (nseg == 2) {
1117 		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
1118 	} else if (nseg > 2) {
1119 		cur_nseg = 1;
1120 		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
1121 		while (cur_nseg < nseg) {
1122 			tr->prp[cur_nseg-1] =
1123 			    htole64((uint64_t)seg[cur_nseg].ds_addr);
1124 			cur_nseg++;
1125 		}
1126 	} else {
1127 		/*
1128 		 * prp2 should not be used by the controller
1129 		 *  since there is only one segment, but set
1130 		 *  to 0 just to be safe.
1131 		 */
1132 		tr->req->cmd.prp2 = 0;
1133 	}
1134 
1135 	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1136 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1137 	nvme_qpair_submit_tracker(tr->qpair, tr);
1138 }
1139 
1140 static void
1141 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1142 {
1143 	struct nvme_tracker	*tr;
1144 	int			err = 0;
1145 
1146 	mtx_assert(&qpair->lock, MA_OWNED);
1147 
1148 	tr = TAILQ_FIRST(&qpair->free_tr);
1149 	req->qpair = qpair;
1150 
1151 	if (tr == NULL || qpair->recovery_state != RECOVERY_NONE) {
1152 		/*
1153 		 * No tracker is available, or the qpair is disabled due to
1154 		 *  an in-progress controller-level reset or controller
1155 		 *  failure.
1156 		 */
1157 
1158 		if (qpair->ctrlr->is_failed) {
1159 			/*
1160 			 * The controller has failed, so fail the request.
1161 			 */
1162 			nvme_qpair_manual_complete_request(qpair, req,
1163 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
1164 		} else {
1165 			/*
1166 			 * Put the request on the qpair's request queue to be
1167 			 *  processed when a tracker frees up via a command
1168 			 *  completion or when the controller reset is
1169 			 *  completed.
1170 			 */
1171 			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1172 		}
1173 		return;
1174 	}
1175 
1176 	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1177 	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1178 	tr->deadline = SBT_MAX;
1179 	tr->req = req;
1180 
1181 	switch (req->type) {
1182 	case NVME_REQUEST_VADDR:
1183 		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1184 		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1185 		    req->payload_size, qpair->ctrlr->max_xfer_size));
1186 		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1187 		    tr->payload_dma_map, req->u.payload, req->payload_size,
1188 		    nvme_payload_map, tr, 0);
1189 		if (err != 0)
1190 			nvme_printf(qpair->ctrlr,
1191 			    "bus_dmamap_load returned 0x%x!\n", err);
1192 		break;
1193 	case NVME_REQUEST_NULL:
1194 		nvme_qpair_submit_tracker(tr->qpair, tr);
1195 		break;
1196 	case NVME_REQUEST_BIO:
1197 		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1198 		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1199 		    (intmax_t)req->u.bio->bio_bcount,
1200 		    qpair->ctrlr->max_xfer_size));
1201 		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1202 		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1203 		if (err != 0)
1204 			nvme_printf(qpair->ctrlr,
1205 			    "bus_dmamap_load_bio returned 0x%x!\n", err);
1206 		break;
1207 	case NVME_REQUEST_CCB:
1208 		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1209 		    tr->payload_dma_map, req->u.payload,
1210 		    nvme_payload_map, tr, 0);
1211 		if (err != 0)
1212 			nvme_printf(qpair->ctrlr,
1213 			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
1214 		break;
1215 	default:
1216 		panic("unknown nvme request type 0x%x\n", req->type);
1217 		break;
1218 	}
1219 
1220 	if (err != 0) {
1221 		/*
1222 		 * The dmamap operation failed, so we manually fail the
1223 		 *  tracker here with DATA_TRANSFER_ERROR status.
1224 		 *
1225 		 * nvme_qpair_manual_complete_tracker must not be called
1226 		 *  with the qpair lock held.
1227 		 */
1228 		mtx_unlock(&qpair->lock);
1229 		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1230 		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1231 		mtx_lock(&qpair->lock);
1232 	}
1233 }
1234 
1235 void
1236 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1237 {
1238 
1239 	mtx_lock(&qpair->lock);
1240 	_nvme_qpair_submit_request(qpair, req);
1241 	mtx_unlock(&qpair->lock);
1242 }
1243 
1244 static void
1245 nvme_qpair_enable(struct nvme_qpair *qpair)
1246 {
1247 	mtx_assert(&qpair->lock, MA_OWNED);
1248 
1249 	qpair->recovery_state = RECOVERY_NONE;
1250 }
1251 
1252 void
1253 nvme_qpair_reset(struct nvme_qpair *qpair)
1254 {
1255 
1256 	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1257 
1258 	/*
1259 	 * First time through the completion queue, HW will set phase
1260 	 *  bit on completions to 1.  So set this to 1 here, indicating
1261 	 *  we're looking for a 1 to know which entries have completed.
1262 	 *  we'll toggle the bit each time when the completion queue
1263 	 *  rolls over.
1264 	 */
1265 	qpair->phase = 1;
1266 
1267 	memset(qpair->cmd, 0,
1268 	    qpair->num_entries * sizeof(struct nvme_command));
1269 	memset(qpair->cpl, 0,
1270 	    qpair->num_entries * sizeof(struct nvme_completion));
1271 }
1272 
1273 void
1274 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1275 {
1276 	struct nvme_tracker		*tr;
1277 	struct nvme_tracker		*tr_temp;
1278 
1279 	/*
1280 	 * Manually abort each outstanding admin command.  Do not retry
1281 	 *  admin commands found here, since they will be left over from
1282 	 *  a controller reset and its likely the context in which the
1283 	 *  command was issued no longer applies.
1284 	 */
1285 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1286 		nvme_printf(qpair->ctrlr,
1287 		    "aborting outstanding admin command\n");
1288 		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1289 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1290 	}
1291 
1292 	mtx_lock(&qpair->lock);
1293 	nvme_qpair_enable(qpair);
1294 	mtx_unlock(&qpair->lock);
1295 }
1296 
1297 void
1298 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1299 {
1300 	STAILQ_HEAD(, nvme_request)	temp;
1301 	struct nvme_tracker		*tr;
1302 	struct nvme_tracker		*tr_temp;
1303 	struct nvme_request		*req;
1304 
1305 	/*
1306 	 * Manually abort each outstanding I/O.  This normally results in a
1307 	 *  retry, unless the retry count on the associated request has
1308 	 *  reached its limit.
1309 	 */
1310 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1311 		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1312 		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1313 		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1314 	}
1315 
1316 	mtx_lock(&qpair->lock);
1317 
1318 	nvme_qpair_enable(qpair);
1319 
1320 	STAILQ_INIT(&temp);
1321 	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1322 
1323 	while (!STAILQ_EMPTY(&temp)) {
1324 		req = STAILQ_FIRST(&temp);
1325 		STAILQ_REMOVE_HEAD(&temp, stailq);
1326 		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1327 		nvme_qpair_print_command(qpair, &req->cmd);
1328 		_nvme_qpair_submit_request(qpair, req);
1329 	}
1330 
1331 	mtx_unlock(&qpair->lock);
1332 }
1333 
1334 static void
1335 nvme_qpair_disable(struct nvme_qpair *qpair)
1336 {
1337 	struct nvme_tracker	*tr, *tr_temp;
1338 
1339 	mtx_lock(&qpair->lock);
1340 	qpair->recovery_state = RECOVERY_WAITING;
1341 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1342 		tr->deadline = SBT_MAX;
1343 	}
1344 	mtx_unlock(&qpair->lock);
1345 }
1346 
1347 void
1348 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1349 {
1350 
1351 	nvme_qpair_disable(qpair);
1352 	nvme_admin_qpair_abort_aers(qpair);
1353 }
1354 
1355 void
1356 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1357 {
1358 
1359 	nvme_qpair_disable(qpair);
1360 }
1361 
1362 void
1363 nvme_qpair_fail(struct nvme_qpair *qpair)
1364 {
1365 	struct nvme_tracker		*tr;
1366 	struct nvme_request		*req;
1367 
1368 	if (!mtx_initialized(&qpair->lock))
1369 		return;
1370 
1371 	mtx_lock(&qpair->lock);
1372 
1373 	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1374 		req = STAILQ_FIRST(&qpair->queued_req);
1375 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1376 		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1377 		mtx_unlock(&qpair->lock);
1378 		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1379 		    NVME_SC_ABORTED_BY_REQUEST);
1380 		mtx_lock(&qpair->lock);
1381 	}
1382 
1383 	/* Manually abort each outstanding I/O. */
1384 	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1385 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1386 		/*
1387 		 * Do not remove the tracker.  The abort_tracker path will
1388 		 *  do that for us.
1389 		 */
1390 		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1391 		mtx_unlock(&qpair->lock);
1392 		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1393 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1394 		mtx_lock(&qpair->lock);
1395 	}
1396 
1397 	mtx_unlock(&qpair->lock);
1398 }
1399