1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2014 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 #include <sys/conf.h> 35 #include <sys/domainset.h> 36 #include <sys/proc.h> 37 38 #include <dev/pci/pcivar.h> 39 40 #include "nvme_private.h" 41 42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t; 43 #define DO_NOT_RETRY 1 44 45 static void _nvme_qpair_submit_request(struct nvme_qpair *qpair, 46 struct nvme_request *req); 47 static void nvme_qpair_destroy(struct nvme_qpair *qpair); 48 49 struct nvme_opcode_string { 50 uint16_t opc; 51 const char * str; 52 }; 53 54 static struct nvme_opcode_string admin_opcode[] = { 55 { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" }, 56 { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" }, 57 { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" }, 58 { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" }, 59 { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" }, 60 { NVME_OPC_IDENTIFY, "IDENTIFY" }, 61 { NVME_OPC_ABORT, "ABORT" }, 62 { NVME_OPC_SET_FEATURES, "SET FEATURES" }, 63 { NVME_OPC_GET_FEATURES, "GET FEATURES" }, 64 { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" }, 65 { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" }, 66 { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" }, 67 { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" }, 68 { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" }, 69 { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" }, 70 { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" }, 71 { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" }, 72 { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" }, 73 { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" }, 74 { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" }, 75 { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" }, 76 { NVME_OPC_FORMAT_NVM, "FORMAT NVM" }, 77 { NVME_OPC_SECURITY_SEND, "SECURITY SEND" }, 78 { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" }, 79 { NVME_OPC_SANITIZE, "SANITIZE" }, 80 { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" }, 81 { 0xFFFF, "ADMIN COMMAND" } 82 }; 83 84 static struct nvme_opcode_string io_opcode[] = { 85 { NVME_OPC_FLUSH, "FLUSH" }, 86 { NVME_OPC_WRITE, "WRITE" }, 87 { NVME_OPC_READ, "READ" }, 88 { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" }, 89 { NVME_OPC_COMPARE, "COMPARE" }, 90 { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" }, 91 { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" }, 92 { NVME_OPC_VERIFY, "VERIFY" }, 93 { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" }, 94 { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" }, 95 { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" }, 96 { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" }, 97 { 0xFFFF, "IO COMMAND" } 98 }; 99 100 static const char * 101 get_admin_opcode_string(uint16_t opc) 102 { 103 struct nvme_opcode_string *entry; 104 105 entry = admin_opcode; 106 107 while (entry->opc != 0xFFFF) { 108 if (entry->opc == opc) 109 return (entry->str); 110 entry++; 111 } 112 return (entry->str); 113 } 114 115 static const char * 116 get_io_opcode_string(uint16_t opc) 117 { 118 struct nvme_opcode_string *entry; 119 120 entry = io_opcode; 121 122 while (entry->opc != 0xFFFF) { 123 if (entry->opc == opc) 124 return (entry->str); 125 entry++; 126 } 127 return (entry->str); 128 } 129 130 static void 131 nvme_admin_qpair_print_command(struct nvme_qpair *qpair, 132 struct nvme_command *cmd) 133 { 134 135 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x " 136 "cdw10:%08x cdw11:%08x\n", 137 get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid, 138 le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11)); 139 } 140 141 static void 142 nvme_io_qpair_print_command(struct nvme_qpair *qpair, 143 struct nvme_command *cmd) 144 { 145 146 switch (cmd->opc) { 147 case NVME_OPC_WRITE: 148 case NVME_OPC_READ: 149 case NVME_OPC_WRITE_UNCORRECTABLE: 150 case NVME_OPC_COMPARE: 151 case NVME_OPC_WRITE_ZEROES: 152 case NVME_OPC_VERIFY: 153 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d " 154 "lba:%llu len:%d\n", 155 get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid), 156 ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10), 157 (le32toh(cmd->cdw12) & 0xFFFF) + 1); 158 break; 159 case NVME_OPC_FLUSH: 160 case NVME_OPC_DATASET_MANAGEMENT: 161 case NVME_OPC_RESERVATION_REGISTER: 162 case NVME_OPC_RESERVATION_REPORT: 163 case NVME_OPC_RESERVATION_ACQUIRE: 164 case NVME_OPC_RESERVATION_RELEASE: 165 nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n", 166 get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid)); 167 break; 168 default: 169 nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n", 170 get_io_opcode_string(cmd->opc), cmd->opc, qpair->id, 171 cmd->cid, le32toh(cmd->nsid)); 172 break; 173 } 174 } 175 176 static void 177 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) 178 { 179 if (qpair->id == 0) 180 nvme_admin_qpair_print_command(qpair, cmd); 181 else 182 nvme_io_qpair_print_command(qpair, cmd); 183 if (nvme_verbose_cmd_dump) { 184 nvme_printf(qpair->ctrlr, 185 "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n", 186 cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr, 187 (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2); 188 nvme_printf(qpair->ctrlr, 189 "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n", 190 cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14, 191 cmd->cdw15); 192 } 193 } 194 195 struct nvme_status_string { 196 uint16_t sc; 197 const char * str; 198 }; 199 200 static struct nvme_status_string generic_status[] = { 201 { NVME_SC_SUCCESS, "SUCCESS" }, 202 { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" }, 203 { NVME_SC_INVALID_FIELD, "INVALID_FIELD" }, 204 { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" }, 205 { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" }, 206 { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" }, 207 { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" }, 208 { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" }, 209 { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" }, 210 { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" }, 211 { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" }, 212 { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" }, 213 { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" }, 214 { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" }, 215 { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" }, 216 { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" }, 217 { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" }, 218 { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" }, 219 { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" }, 220 { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" }, 221 { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" }, 222 { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" }, 223 { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" }, 224 { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" }, 225 { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" }, 226 { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" }, 227 { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" }, 228 { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" }, 229 { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" }, 230 { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" }, 231 { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" }, 232 { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" }, 233 { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" }, 234 { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" }, 235 236 { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" }, 237 { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" }, 238 { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" }, 239 { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" }, 240 { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" }, 241 { 0xFFFF, "GENERIC" } 242 }; 243 244 static struct nvme_status_string command_specific_status[] = { 245 { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" }, 246 { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" }, 247 { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" }, 248 { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" }, 249 { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" }, 250 { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" }, 251 { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" }, 252 { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" }, 253 { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" }, 254 { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" }, 255 { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" }, 256 { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" }, 257 { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" }, 258 { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" }, 259 { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" }, 260 { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" }, 261 { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" }, 262 { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" }, 263 { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" }, 264 { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" }, 265 { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" }, 266 { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" }, 267 { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" }, 268 { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" }, 269 { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" }, 270 { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" }, 271 { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" }, 272 { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" }, 273 { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" }, 274 { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" }, 275 { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" }, 276 { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" }, 277 { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" }, 278 { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" }, 279 { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" }, 280 { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" }, 281 282 { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" }, 283 { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" }, 284 { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" }, 285 { 0xFFFF, "COMMAND SPECIFIC" } 286 }; 287 288 static struct nvme_status_string media_error_status[] = { 289 { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" }, 290 { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" }, 291 { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" }, 292 { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" }, 293 { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" }, 294 { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" }, 295 { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" }, 296 { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" }, 297 { 0xFFFF, "MEDIA ERROR" } 298 }; 299 300 static struct nvme_status_string path_related_status[] = { 301 { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" }, 302 { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" }, 303 { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" }, 304 { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" }, 305 { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" }, 306 { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" }, 307 { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" }, 308 { 0xFFFF, "PATH RELATED" }, 309 }; 310 311 static const char * 312 get_status_string(uint16_t sct, uint16_t sc) 313 { 314 struct nvme_status_string *entry; 315 316 switch (sct) { 317 case NVME_SCT_GENERIC: 318 entry = generic_status; 319 break; 320 case NVME_SCT_COMMAND_SPECIFIC: 321 entry = command_specific_status; 322 break; 323 case NVME_SCT_MEDIA_ERROR: 324 entry = media_error_status; 325 break; 326 case NVME_SCT_PATH_RELATED: 327 entry = path_related_status; 328 break; 329 case NVME_SCT_VENDOR_SPECIFIC: 330 return ("VENDOR SPECIFIC"); 331 default: 332 return ("RESERVED"); 333 } 334 335 while (entry->sc != 0xFFFF) { 336 if (entry->sc == sc) 337 return (entry->str); 338 entry++; 339 } 340 return (entry->str); 341 } 342 343 static void 344 nvme_qpair_print_completion(struct nvme_qpair *qpair, 345 struct nvme_completion *cpl) 346 { 347 uint16_t sct, sc; 348 349 sct = NVME_STATUS_GET_SCT(cpl->status); 350 sc = NVME_STATUS_GET_SC(cpl->status); 351 352 nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n", 353 get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid, 354 cpl->cdw0); 355 } 356 357 static bool 358 nvme_completion_is_retry(const struct nvme_completion *cpl) 359 { 360 uint8_t sct, sc, dnr; 361 362 sct = NVME_STATUS_GET_SCT(cpl->status); 363 sc = NVME_STATUS_GET_SC(cpl->status); 364 dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */ 365 366 /* 367 * TODO: spec is not clear how commands that are aborted due 368 * to TLER will be marked. So for now, it seems 369 * NAMESPACE_NOT_READY is the only case where we should 370 * look at the DNR bit. Requests failed with ABORTED_BY_REQUEST 371 * set the DNR bit correctly since the driver controls that. 372 */ 373 switch (sct) { 374 case NVME_SCT_GENERIC: 375 switch (sc) { 376 case NVME_SC_ABORTED_BY_REQUEST: 377 case NVME_SC_NAMESPACE_NOT_READY: 378 if (dnr) 379 return (0); 380 else 381 return (1); 382 case NVME_SC_INVALID_OPCODE: 383 case NVME_SC_INVALID_FIELD: 384 case NVME_SC_COMMAND_ID_CONFLICT: 385 case NVME_SC_DATA_TRANSFER_ERROR: 386 case NVME_SC_ABORTED_POWER_LOSS: 387 case NVME_SC_INTERNAL_DEVICE_ERROR: 388 case NVME_SC_ABORTED_SQ_DELETION: 389 case NVME_SC_ABORTED_FAILED_FUSED: 390 case NVME_SC_ABORTED_MISSING_FUSED: 391 case NVME_SC_INVALID_NAMESPACE_OR_FORMAT: 392 case NVME_SC_COMMAND_SEQUENCE_ERROR: 393 case NVME_SC_LBA_OUT_OF_RANGE: 394 case NVME_SC_CAPACITY_EXCEEDED: 395 default: 396 return (0); 397 } 398 case NVME_SCT_COMMAND_SPECIFIC: 399 case NVME_SCT_MEDIA_ERROR: 400 return (0); 401 case NVME_SCT_PATH_RELATED: 402 switch (sc) { 403 case NVME_SC_INTERNAL_PATH_ERROR: 404 if (dnr) 405 return (0); 406 else 407 return (1); 408 default: 409 return (0); 410 } 411 case NVME_SCT_VENDOR_SPECIFIC: 412 default: 413 return (0); 414 } 415 } 416 417 static void 418 nvme_qpair_complete_tracker(struct nvme_tracker *tr, 419 struct nvme_completion *cpl, error_print_t print_on_error) 420 { 421 struct nvme_qpair * qpair = tr->qpair; 422 struct nvme_request *req; 423 bool retry, error, retriable; 424 425 req = tr->req; 426 error = nvme_completion_is_error(cpl); 427 retriable = nvme_completion_is_retry(cpl); 428 retry = error && retriable && req->retries < nvme_retry_count; 429 if (retry) 430 qpair->num_retries++; 431 if (error && req->retries >= nvme_retry_count && retriable) 432 qpair->num_failures++; 433 434 if (error && (print_on_error == ERROR_PRINT_ALL || 435 (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) { 436 nvme_qpair_print_command(qpair, &req->cmd); 437 nvme_qpair_print_completion(qpair, cpl); 438 } 439 440 qpair->act_tr[cpl->cid] = NULL; 441 442 KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n")); 443 444 if (!retry) { 445 if (req->type != NVME_REQUEST_NULL) { 446 bus_dmamap_sync(qpair->dma_tag_payload, 447 tr->payload_dma_map, 448 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 449 } 450 if (req->cb_fn) 451 req->cb_fn(req->cb_arg, cpl); 452 } 453 454 mtx_lock(&qpair->lock); 455 callout_stop(&tr->timer); 456 457 if (retry) { 458 req->retries++; 459 nvme_qpair_submit_tracker(qpair, tr); 460 } else { 461 if (req->type != NVME_REQUEST_NULL) { 462 bus_dmamap_unload(qpair->dma_tag_payload, 463 tr->payload_dma_map); 464 } 465 466 nvme_free_request(req); 467 tr->req = NULL; 468 469 TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq); 470 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); 471 472 /* 473 * If the controller is in the middle of resetting, don't 474 * try to submit queued requests here - let the reset logic 475 * handle that instead. 476 */ 477 if (!STAILQ_EMPTY(&qpair->queued_req) && 478 !qpair->ctrlr->is_resetting) { 479 req = STAILQ_FIRST(&qpair->queued_req); 480 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 481 _nvme_qpair_submit_request(qpair, req); 482 } 483 } 484 485 mtx_unlock(&qpair->lock); 486 } 487 488 static void 489 nvme_qpair_manual_complete_tracker( 490 struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, 491 error_print_t print_on_error) 492 { 493 struct nvme_completion cpl; 494 495 memset(&cpl, 0, sizeof(cpl)); 496 497 struct nvme_qpair * qpair = tr->qpair; 498 499 cpl.sqid = qpair->id; 500 cpl.cid = tr->cid; 501 cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT; 502 cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; 503 cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT; 504 nvme_qpair_complete_tracker(tr, &cpl, print_on_error); 505 } 506 507 void 508 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair, 509 struct nvme_request *req, uint32_t sct, uint32_t sc) 510 { 511 struct nvme_completion cpl; 512 bool error; 513 514 memset(&cpl, 0, sizeof(cpl)); 515 cpl.sqid = qpair->id; 516 cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT; 517 cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; 518 519 error = nvme_completion_is_error(&cpl); 520 521 if (error) { 522 nvme_qpair_print_command(qpair, &req->cmd); 523 nvme_qpair_print_completion(qpair, &cpl); 524 } 525 526 if (req->cb_fn) 527 req->cb_fn(req->cb_arg, &cpl); 528 529 nvme_free_request(req); 530 } 531 532 bool 533 nvme_qpair_process_completions(struct nvme_qpair *qpair) 534 { 535 struct nvme_tracker *tr; 536 struct nvme_completion cpl; 537 int done = 0; 538 bool in_panic = dumping || SCHEDULER_STOPPED(); 539 540 qpair->num_intr_handler_calls++; 541 542 /* 543 * qpair is not enabled, likely because a controller reset is is in 544 * progress. Ignore the interrupt - any I/O that was associated with 545 * this interrupt will get retried when the reset is complete. 546 */ 547 if (!qpair->is_enabled) 548 return (false); 549 550 /* 551 * A panic can stop the CPU this routine is running on at any point. If 552 * we're called during a panic, complete the sq_head wrap protocol for 553 * the case where we are interrupted just after the increment at 1 554 * below, but before we can reset cq_head to zero at 2. Also cope with 555 * the case where we do the zero at 2, but may or may not have done the 556 * phase adjustment at step 3. The panic machinery flushes all pending 557 * memory writes, so we can make these strong ordering assumptions 558 * that would otherwise be unwise if we were racing in real time. 559 */ 560 if (__predict_false(in_panic)) { 561 if (qpair->cq_head == qpair->num_entries) { 562 /* 563 * Here we know that we need to zero cq_head and then negate 564 * the phase, which hasn't been assigned if cq_head isn't 565 * zero due to the atomic_store_rel. 566 */ 567 qpair->cq_head = 0; 568 qpair->phase = !qpair->phase; 569 } else if (qpair->cq_head == 0) { 570 /* 571 * In this case, we know that the assignment at 2 572 * happened below, but we don't know if it 3 happened or 573 * not. To do this, we look at the last completion 574 * entry and set the phase to the opposite phase 575 * that it has. This gets us back in sync 576 */ 577 cpl = qpair->cpl[qpair->num_entries - 1]; 578 nvme_completion_swapbytes(&cpl); 579 qpair->phase = !NVME_STATUS_GET_P(cpl.status); 580 } 581 } 582 583 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, 584 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 585 while (1) { 586 cpl = qpair->cpl[qpair->cq_head]; 587 588 /* Convert to host endian */ 589 nvme_completion_swapbytes(&cpl); 590 591 if (NVME_STATUS_GET_P(cpl.status) != qpair->phase) 592 break; 593 594 tr = qpair->act_tr[cpl.cid]; 595 596 if (tr != NULL) { 597 nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL); 598 qpair->sq_head = cpl.sqhd; 599 done++; 600 } else if (!in_panic) { 601 /* 602 * A missing tracker is normally an error. However, a 603 * panic can stop the CPU this routine is running on 604 * after completing an I/O but before updating 605 * qpair->cq_head at 1 below. Later, we re-enter this 606 * routine to poll I/O associated with the kernel 607 * dump. We find that the tr has been set to null before 608 * calling the completion routine. If it hasn't 609 * completed (or it triggers a panic), then '1' below 610 * won't have updated cq_head. Rather than panic again, 611 * ignore this condition because it's not unexpected. 612 */ 613 nvme_printf(qpair->ctrlr, 614 "cpl does not map to outstanding cmd\n"); 615 /* nvme_dump_completion expects device endianess */ 616 nvme_dump_completion(&qpair->cpl[qpair->cq_head]); 617 KASSERT(0, ("received completion for unknown cmd")); 618 } 619 620 /* 621 * There's a number of races with the following (see above) when 622 * the system panics. We compensate for each one of them by 623 * using the atomic store to force strong ordering (at least when 624 * viewed in the aftermath of a panic). 625 */ 626 if (++qpair->cq_head == qpair->num_entries) { /* 1 */ 627 atomic_store_rel_int(&qpair->cq_head, 0); /* 2 */ 628 qpair->phase = !qpair->phase; /* 3 */ 629 } 630 631 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle, 632 qpair->cq_hdbl_off, qpair->cq_head); 633 } 634 return (done != 0); 635 } 636 637 static void 638 nvme_qpair_msix_handler(void *arg) 639 { 640 struct nvme_qpair *qpair = arg; 641 642 nvme_qpair_process_completions(qpair); 643 } 644 645 int 646 nvme_qpair_construct(struct nvme_qpair *qpair, 647 uint32_t num_entries, uint32_t num_trackers, 648 struct nvme_controller *ctrlr) 649 { 650 struct nvme_tracker *tr; 651 size_t cmdsz, cplsz, prpsz, allocsz, prpmemsz; 652 uint64_t queuemem_phys, prpmem_phys, list_phys; 653 uint8_t *queuemem, *prpmem, *prp_list; 654 int i, err; 655 656 qpair->vector = ctrlr->msix_enabled ? qpair->id : 0; 657 qpair->num_entries = num_entries; 658 qpair->num_trackers = num_trackers; 659 qpair->ctrlr = ctrlr; 660 661 if (ctrlr->msix_enabled) { 662 /* 663 * MSI-X vector resource IDs start at 1, so we add one to 664 * the queue's vector to get the corresponding rid to use. 665 */ 666 qpair->rid = qpair->vector + 1; 667 668 qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 669 &qpair->rid, RF_ACTIVE); 670 if (bus_setup_intr(ctrlr->dev, qpair->res, 671 INTR_TYPE_MISC | INTR_MPSAFE, NULL, 672 nvme_qpair_msix_handler, qpair, &qpair->tag) != 0) { 673 nvme_printf(ctrlr, "unable to setup intx handler\n"); 674 goto out; 675 } 676 if (qpair->id == 0) { 677 bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, 678 "admin"); 679 } else { 680 bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, 681 "io%d", qpair->id - 1); 682 } 683 } 684 685 mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF); 686 687 /* Note: NVMe PRP format is restricted to 4-byte alignment. */ 688 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 689 4, PAGE_SIZE, BUS_SPACE_MAXADDR, 690 BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE, 691 (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0, 692 NULL, NULL, &qpair->dma_tag_payload); 693 if (err != 0) { 694 nvme_printf(ctrlr, "payload tag create failed %d\n", err); 695 goto out; 696 } 697 698 /* 699 * Each component must be page aligned, and individual PRP lists 700 * cannot cross a page boundary. 701 */ 702 cmdsz = qpair->num_entries * sizeof(struct nvme_command); 703 cmdsz = roundup2(cmdsz, PAGE_SIZE); 704 cplsz = qpair->num_entries * sizeof(struct nvme_completion); 705 cplsz = roundup2(cplsz, PAGE_SIZE); 706 prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES; 707 prpmemsz = qpair->num_trackers * prpsz; 708 allocsz = cmdsz + cplsz + prpmemsz; 709 710 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 711 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 712 allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag); 713 if (err != 0) { 714 nvme_printf(ctrlr, "tag create failed %d\n", err); 715 goto out; 716 } 717 bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain); 718 719 if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem, 720 BUS_DMA_NOWAIT, &qpair->queuemem_map)) { 721 nvme_printf(ctrlr, "failed to alloc qpair memory\n"); 722 goto out; 723 } 724 725 if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map, 726 queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) { 727 nvme_printf(ctrlr, "failed to load qpair memory\n"); 728 bus_dmamem_free(qpair->dma_tag, qpair->cmd, 729 qpair->queuemem_map); 730 goto out; 731 } 732 733 qpair->num_cmds = 0; 734 qpair->num_intr_handler_calls = 0; 735 qpair->num_retries = 0; 736 qpair->num_failures = 0; 737 qpair->cmd = (struct nvme_command *)queuemem; 738 qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz); 739 prpmem = (uint8_t *)(queuemem + cmdsz + cplsz); 740 qpair->cmd_bus_addr = queuemem_phys; 741 qpair->cpl_bus_addr = queuemem_phys + cmdsz; 742 prpmem_phys = queuemem_phys + cmdsz + cplsz; 743 744 /* 745 * Calcuate the stride of the doorbell register. Many emulators set this 746 * value to correspond to a cache line. However, some hardware has set 747 * it to various small values. 748 */ 749 qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) + 750 (qpair->id << (ctrlr->dstrd + 1)); 751 qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) + 752 (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd); 753 754 TAILQ_INIT(&qpair->free_tr); 755 TAILQ_INIT(&qpair->outstanding_tr); 756 STAILQ_INIT(&qpair->queued_req); 757 758 list_phys = prpmem_phys; 759 prp_list = prpmem; 760 for (i = 0; i < qpair->num_trackers; i++) { 761 if (list_phys + prpsz > prpmem_phys + prpmemsz) { 762 qpair->num_trackers = i; 763 break; 764 } 765 766 /* 767 * Make sure that the PRP list for this tracker doesn't 768 * overflow to another page. 769 */ 770 if (trunc_page(list_phys) != 771 trunc_page(list_phys + prpsz - 1)) { 772 list_phys = roundup2(list_phys, PAGE_SIZE); 773 prp_list = 774 (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE); 775 } 776 777 tr = malloc_domainset(sizeof(*tr), M_NVME, 778 DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK); 779 bus_dmamap_create(qpair->dma_tag_payload, 0, 780 &tr->payload_dma_map); 781 callout_init(&tr->timer, 1); 782 tr->cid = i; 783 tr->qpair = qpair; 784 tr->prp = (uint64_t *)prp_list; 785 tr->prp_bus_addr = list_phys; 786 TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); 787 list_phys += prpsz; 788 prp_list += prpsz; 789 } 790 791 if (qpair->num_trackers == 0) { 792 nvme_printf(ctrlr, "failed to allocate enough trackers\n"); 793 goto out; 794 } 795 796 qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) * 797 qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain), 798 M_ZERO | M_WAITOK); 799 return (0); 800 801 out: 802 nvme_qpair_destroy(qpair); 803 return (ENOMEM); 804 } 805 806 static void 807 nvme_qpair_destroy(struct nvme_qpair *qpair) 808 { 809 struct nvme_tracker *tr; 810 811 if (qpair->tag) { 812 bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag); 813 qpair->tag = NULL; 814 } 815 816 if (qpair->act_tr) { 817 free(qpair->act_tr, M_NVME); 818 qpair->act_tr = NULL; 819 } 820 821 while (!TAILQ_EMPTY(&qpair->free_tr)) { 822 tr = TAILQ_FIRST(&qpair->free_tr); 823 TAILQ_REMOVE(&qpair->free_tr, tr, tailq); 824 bus_dmamap_destroy(qpair->dma_tag_payload, 825 tr->payload_dma_map); 826 free(tr, M_NVME); 827 } 828 829 if (qpair->cmd != NULL) { 830 bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map); 831 bus_dmamem_free(qpair->dma_tag, qpair->cmd, 832 qpair->queuemem_map); 833 qpair->cmd = NULL; 834 } 835 836 if (qpair->dma_tag) { 837 bus_dma_tag_destroy(qpair->dma_tag); 838 qpair->dma_tag = NULL; 839 } 840 841 if (qpair->dma_tag_payload) { 842 bus_dma_tag_destroy(qpair->dma_tag_payload); 843 qpair->dma_tag_payload = NULL; 844 } 845 846 if (mtx_initialized(&qpair->lock)) 847 mtx_destroy(&qpair->lock); 848 849 if (qpair->res) { 850 bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ, 851 rman_get_rid(qpair->res), qpair->res); 852 qpair->res = NULL; 853 } 854 } 855 856 static void 857 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair) 858 { 859 struct nvme_tracker *tr; 860 861 tr = TAILQ_FIRST(&qpair->outstanding_tr); 862 while (tr != NULL) { 863 if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) { 864 nvme_qpair_manual_complete_tracker(tr, 865 NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0, 866 ERROR_PRINT_NONE); 867 tr = TAILQ_FIRST(&qpair->outstanding_tr); 868 } else { 869 tr = TAILQ_NEXT(tr, tailq); 870 } 871 } 872 } 873 874 void 875 nvme_admin_qpair_destroy(struct nvme_qpair *qpair) 876 { 877 878 nvme_admin_qpair_abort_aers(qpair); 879 nvme_qpair_destroy(qpair); 880 } 881 882 void 883 nvme_io_qpair_destroy(struct nvme_qpair *qpair) 884 { 885 886 nvme_qpair_destroy(qpair); 887 } 888 889 static void 890 nvme_abort_complete(void *arg, const struct nvme_completion *status) 891 { 892 struct nvme_tracker *tr = arg; 893 894 /* 895 * If cdw0 == 1, the controller was not able to abort the command 896 * we requested. We still need to check the active tracker array, 897 * to cover race where I/O timed out at same time controller was 898 * completing the I/O. 899 */ 900 if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) { 901 /* 902 * An I/O has timed out, and the controller was unable to 903 * abort it for some reason. Construct a fake completion 904 * status, and then complete the I/O's tracker manually. 905 */ 906 nvme_printf(tr->qpair->ctrlr, 907 "abort command failed, aborting command manually\n"); 908 nvme_qpair_manual_complete_tracker(tr, 909 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL); 910 } 911 } 912 913 static void 914 nvme_timeout(void *arg) 915 { 916 struct nvme_tracker *tr = arg; 917 struct nvme_qpair *qpair = tr->qpair; 918 struct nvme_controller *ctrlr = qpair->ctrlr; 919 uint32_t csts; 920 uint8_t cfs; 921 922 /* 923 * Read csts to get value of cfs - controller fatal status. 924 * If no fatal status, try to call the completion routine, and 925 * if completes transactions, report a missed interrupt and 926 * return (this may need to be rate limited). Otherwise, if 927 * aborts are enabled and the controller is not reporting 928 * fatal status, abort the command. Otherwise, just reset the 929 * controller and hope for the best. 930 */ 931 csts = nvme_mmio_read_4(ctrlr, csts); 932 cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK; 933 if (cfs == 0 && nvme_qpair_process_completions(qpair)) { 934 nvme_printf(ctrlr, "Missing interrupt\n"); 935 return; 936 } 937 if (ctrlr->enable_aborts && cfs == 0) { 938 nvme_printf(ctrlr, "Aborting command due to a timeout.\n"); 939 nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id, 940 nvme_abort_complete, tr); 941 } else { 942 nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n", 943 (csts == 0xffffffff) ? " and possible hot unplug" : 944 (cfs ? " and fatal error status" : "")); 945 nvme_ctrlr_reset(ctrlr); 946 } 947 } 948 949 void 950 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr) 951 { 952 struct nvme_request *req; 953 struct nvme_controller *ctrlr; 954 int timeout; 955 956 mtx_assert(&qpair->lock, MA_OWNED); 957 958 req = tr->req; 959 req->cmd.cid = tr->cid; 960 qpair->act_tr[tr->cid] = tr; 961 ctrlr = qpair->ctrlr; 962 963 if (req->timeout) { 964 if (req->cb_fn == nvme_completion_poll_cb) 965 timeout = hz; 966 else 967 timeout = ctrlr->timeout_period * hz; 968 callout_reset_on(&tr->timer, timeout, nvme_timeout, tr, 969 qpair->cpu); 970 } 971 972 /* Copy the command from the tracker to the submission queue. */ 973 memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd)); 974 975 if (++qpair->sq_tail == qpair->num_entries) 976 qpair->sq_tail = 0; 977 978 bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, 979 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 980 #ifndef __powerpc__ 981 /* 982 * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but 983 * no other archs do. 984 */ 985 wmb(); 986 #endif 987 988 bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle, 989 qpair->sq_tdbl_off, qpair->sq_tail); 990 qpair->num_cmds++; 991 } 992 993 static void 994 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 995 { 996 struct nvme_tracker *tr = arg; 997 uint32_t cur_nseg; 998 999 /* 1000 * If the mapping operation failed, return immediately. The caller 1001 * is responsible for detecting the error status and failing the 1002 * tracker manually. 1003 */ 1004 if (error != 0) { 1005 nvme_printf(tr->qpair->ctrlr, 1006 "nvme_payload_map err %d\n", error); 1007 return; 1008 } 1009 1010 /* 1011 * Note that we specified PAGE_SIZE for alignment and max 1012 * segment size when creating the bus dma tags. So here 1013 * we can safely just transfer each segment to its 1014 * associated PRP entry. 1015 */ 1016 tr->req->cmd.prp1 = htole64(seg[0].ds_addr); 1017 1018 if (nseg == 2) { 1019 tr->req->cmd.prp2 = htole64(seg[1].ds_addr); 1020 } else if (nseg > 2) { 1021 cur_nseg = 1; 1022 tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr); 1023 while (cur_nseg < nseg) { 1024 tr->prp[cur_nseg-1] = 1025 htole64((uint64_t)seg[cur_nseg].ds_addr); 1026 cur_nseg++; 1027 } 1028 } else { 1029 /* 1030 * prp2 should not be used by the controller 1031 * since there is only one segment, but set 1032 * to 0 just to be safe. 1033 */ 1034 tr->req->cmd.prp2 = 0; 1035 } 1036 1037 bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map, 1038 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1039 nvme_qpair_submit_tracker(tr->qpair, tr); 1040 } 1041 1042 static void 1043 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) 1044 { 1045 struct nvme_tracker *tr; 1046 int err = 0; 1047 1048 mtx_assert(&qpair->lock, MA_OWNED); 1049 1050 tr = TAILQ_FIRST(&qpair->free_tr); 1051 req->qpair = qpair; 1052 1053 if (tr == NULL || !qpair->is_enabled) { 1054 /* 1055 * No tracker is available, or the qpair is disabled due to 1056 * an in-progress controller-level reset or controller 1057 * failure. 1058 */ 1059 1060 if (qpair->ctrlr->is_failed) { 1061 /* 1062 * The controller has failed. Post the request to a 1063 * task where it will be aborted, so that we do not 1064 * invoke the request's callback in the context 1065 * of the submission. 1066 */ 1067 nvme_ctrlr_post_failed_request(qpair->ctrlr, req); 1068 } else { 1069 /* 1070 * Put the request on the qpair's request queue to be 1071 * processed when a tracker frees up via a command 1072 * completion or when the controller reset is 1073 * completed. 1074 */ 1075 STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); 1076 } 1077 return; 1078 } 1079 1080 TAILQ_REMOVE(&qpair->free_tr, tr, tailq); 1081 TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq); 1082 tr->req = req; 1083 1084 switch (req->type) { 1085 case NVME_REQUEST_VADDR: 1086 KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size, 1087 ("payload_size (%d) exceeds max_xfer_size (%d)\n", 1088 req->payload_size, qpair->ctrlr->max_xfer_size)); 1089 err = bus_dmamap_load(tr->qpair->dma_tag_payload, 1090 tr->payload_dma_map, req->u.payload, req->payload_size, 1091 nvme_payload_map, tr, 0); 1092 if (err != 0) 1093 nvme_printf(qpair->ctrlr, 1094 "bus_dmamap_load returned 0x%x!\n", err); 1095 break; 1096 case NVME_REQUEST_NULL: 1097 nvme_qpair_submit_tracker(tr->qpair, tr); 1098 break; 1099 case NVME_REQUEST_BIO: 1100 KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size, 1101 ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n", 1102 (intmax_t)req->u.bio->bio_bcount, 1103 qpair->ctrlr->max_xfer_size)); 1104 err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload, 1105 tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0); 1106 if (err != 0) 1107 nvme_printf(qpair->ctrlr, 1108 "bus_dmamap_load_bio returned 0x%x!\n", err); 1109 break; 1110 case NVME_REQUEST_CCB: 1111 err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload, 1112 tr->payload_dma_map, req->u.payload, 1113 nvme_payload_map, tr, 0); 1114 if (err != 0) 1115 nvme_printf(qpair->ctrlr, 1116 "bus_dmamap_load_ccb returned 0x%x!\n", err); 1117 break; 1118 default: 1119 panic("unknown nvme request type 0x%x\n", req->type); 1120 break; 1121 } 1122 1123 if (err != 0) { 1124 /* 1125 * The dmamap operation failed, so we manually fail the 1126 * tracker here with DATA_TRANSFER_ERROR status. 1127 * 1128 * nvme_qpair_manual_complete_tracker must not be called 1129 * with the qpair lock held. 1130 */ 1131 mtx_unlock(&qpair->lock); 1132 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1133 NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL); 1134 mtx_lock(&qpair->lock); 1135 } 1136 } 1137 1138 void 1139 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) 1140 { 1141 1142 mtx_lock(&qpair->lock); 1143 _nvme_qpair_submit_request(qpair, req); 1144 mtx_unlock(&qpair->lock); 1145 } 1146 1147 static void 1148 nvme_qpair_enable(struct nvme_qpair *qpair) 1149 { 1150 1151 qpair->is_enabled = true; 1152 } 1153 1154 void 1155 nvme_qpair_reset(struct nvme_qpair *qpair) 1156 { 1157 1158 qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0; 1159 1160 /* 1161 * First time through the completion queue, HW will set phase 1162 * bit on completions to 1. So set this to 1 here, indicating 1163 * we're looking for a 1 to know which entries have completed. 1164 * we'll toggle the bit each time when the completion queue 1165 * rolls over. 1166 */ 1167 qpair->phase = 1; 1168 1169 memset(qpair->cmd, 0, 1170 qpair->num_entries * sizeof(struct nvme_command)); 1171 memset(qpair->cpl, 0, 1172 qpair->num_entries * sizeof(struct nvme_completion)); 1173 } 1174 1175 void 1176 nvme_admin_qpair_enable(struct nvme_qpair *qpair) 1177 { 1178 struct nvme_tracker *tr; 1179 struct nvme_tracker *tr_temp; 1180 1181 /* 1182 * Manually abort each outstanding admin command. Do not retry 1183 * admin commands found here, since they will be left over from 1184 * a controller reset and its likely the context in which the 1185 * command was issued no longer applies. 1186 */ 1187 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1188 nvme_printf(qpair->ctrlr, 1189 "aborting outstanding admin command\n"); 1190 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1191 NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); 1192 } 1193 1194 nvme_qpair_enable(qpair); 1195 } 1196 1197 void 1198 nvme_io_qpair_enable(struct nvme_qpair *qpair) 1199 { 1200 STAILQ_HEAD(, nvme_request) temp; 1201 struct nvme_tracker *tr; 1202 struct nvme_tracker *tr_temp; 1203 struct nvme_request *req; 1204 1205 /* 1206 * Manually abort each outstanding I/O. This normally results in a 1207 * retry, unless the retry count on the associated request has 1208 * reached its limit. 1209 */ 1210 TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { 1211 nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n"); 1212 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1213 NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY); 1214 } 1215 1216 mtx_lock(&qpair->lock); 1217 1218 nvme_qpair_enable(qpair); 1219 1220 STAILQ_INIT(&temp); 1221 STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request); 1222 1223 while (!STAILQ_EMPTY(&temp)) { 1224 req = STAILQ_FIRST(&temp); 1225 STAILQ_REMOVE_HEAD(&temp, stailq); 1226 nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n"); 1227 nvme_qpair_print_command(qpair, &req->cmd); 1228 _nvme_qpair_submit_request(qpair, req); 1229 } 1230 1231 mtx_unlock(&qpair->lock); 1232 } 1233 1234 static void 1235 nvme_qpair_disable(struct nvme_qpair *qpair) 1236 { 1237 struct nvme_tracker *tr; 1238 1239 qpair->is_enabled = false; 1240 mtx_lock(&qpair->lock); 1241 TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) 1242 callout_stop(&tr->timer); 1243 mtx_unlock(&qpair->lock); 1244 } 1245 1246 void 1247 nvme_admin_qpair_disable(struct nvme_qpair *qpair) 1248 { 1249 1250 nvme_qpair_disable(qpair); 1251 nvme_admin_qpair_abort_aers(qpair); 1252 } 1253 1254 void 1255 nvme_io_qpair_disable(struct nvme_qpair *qpair) 1256 { 1257 1258 nvme_qpair_disable(qpair); 1259 } 1260 1261 void 1262 nvme_qpair_fail(struct nvme_qpair *qpair) 1263 { 1264 struct nvme_tracker *tr; 1265 struct nvme_request *req; 1266 1267 if (!mtx_initialized(&qpair->lock)) 1268 return; 1269 1270 mtx_lock(&qpair->lock); 1271 1272 while (!STAILQ_EMPTY(&qpair->queued_req)) { 1273 req = STAILQ_FIRST(&qpair->queued_req); 1274 STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); 1275 nvme_printf(qpair->ctrlr, "failing queued i/o\n"); 1276 mtx_unlock(&qpair->lock); 1277 nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC, 1278 NVME_SC_ABORTED_BY_REQUEST); 1279 mtx_lock(&qpair->lock); 1280 } 1281 1282 /* Manually abort each outstanding I/O. */ 1283 while (!TAILQ_EMPTY(&qpair->outstanding_tr)) { 1284 tr = TAILQ_FIRST(&qpair->outstanding_tr); 1285 /* 1286 * Do not remove the tracker. The abort_tracker path will 1287 * do that for us. 1288 */ 1289 nvme_printf(qpair->ctrlr, "failing outstanding i/o\n"); 1290 mtx_unlock(&qpair->lock); 1291 nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, 1292 NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); 1293 mtx_lock(&qpair->lock); 1294 } 1295 1296 mtx_unlock(&qpair->lock); 1297 } 1298