xref: /freebsd/sys/dev/nvme/nvme_qpair.c (revision 1d954fed61a0fd99ac40a401764b23e188610d4e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/proc.h>
36 
37 #include <dev/pci/pcivar.h>
38 
39 #include "nvme_private.h"
40 
41 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
42 #define DO_NOT_RETRY	1
43 
44 static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
45 					   struct nvme_request *req);
46 static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
47 
48 struct nvme_opcode_string {
49 
50 	uint16_t	opc;
51 	const char *	str;
52 };
53 
54 static struct nvme_opcode_string admin_opcode[] = {
55 	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
56 	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
57 	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
58 	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
59 	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
60 	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
61 	{ NVME_OPC_ABORT, "ABORT" },
62 	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
63 	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
64 	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
65 	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
66 	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
67 	{ NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
68 	{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
69 	{ NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
70 	{ NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
71 	{ NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
72 	{ NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
73 	{ NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
74 	{ NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
75 	{ NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
76 	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
77 	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
78 	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
79 	{ NVME_OPC_SANITIZE, "SANITIZE" },
80 	{ 0xFFFF, "ADMIN COMMAND" }
81 };
82 
83 static struct nvme_opcode_string io_opcode[] = {
84 	{ NVME_OPC_FLUSH, "FLUSH" },
85 	{ NVME_OPC_WRITE, "WRITE" },
86 	{ NVME_OPC_READ, "READ" },
87 	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
88 	{ NVME_OPC_COMPARE, "COMPARE" },
89 	{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
90 	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
91 	{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
92 	{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
93 	{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
94 	{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
95 	{ 0xFFFF, "IO COMMAND" }
96 };
97 
98 static const char *
99 get_admin_opcode_string(uint16_t opc)
100 {
101 	struct nvme_opcode_string *entry;
102 
103 	entry = admin_opcode;
104 
105 	while (entry->opc != 0xFFFF) {
106 		if (entry->opc == opc)
107 			return (entry->str);
108 		entry++;
109 	}
110 	return (entry->str);
111 }
112 
113 static const char *
114 get_io_opcode_string(uint16_t opc)
115 {
116 	struct nvme_opcode_string *entry;
117 
118 	entry = io_opcode;
119 
120 	while (entry->opc != 0xFFFF) {
121 		if (entry->opc == opc)
122 			return (entry->str);
123 		entry++;
124 	}
125 	return (entry->str);
126 }
127 
128 
129 static void
130 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
131     struct nvme_command *cmd)
132 {
133 
134 	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
135 	    "cdw10:%08x cdw11:%08x\n",
136 	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
137 	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
138 }
139 
140 static void
141 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
142     struct nvme_command *cmd)
143 {
144 
145 	switch (cmd->opc) {
146 	case NVME_OPC_WRITE:
147 	case NVME_OPC_READ:
148 	case NVME_OPC_WRITE_UNCORRECTABLE:
149 	case NVME_OPC_COMPARE:
150 	case NVME_OPC_WRITE_ZEROES:
151 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
152 		    "lba:%llu len:%d\n",
153 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
154 		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
155 		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
156 		break;
157 	case NVME_OPC_FLUSH:
158 	case NVME_OPC_DATASET_MANAGEMENT:
159 	case NVME_OPC_RESERVATION_REGISTER:
160 	case NVME_OPC_RESERVATION_REPORT:
161 	case NVME_OPC_RESERVATION_ACQUIRE:
162 	case NVME_OPC_RESERVATION_RELEASE:
163 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
164 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
165 		break;
166 	default:
167 		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
168 		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
169 		    cmd->cid, le32toh(cmd->nsid));
170 		break;
171 	}
172 }
173 
174 static void
175 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
176 {
177 	if (qpair->id == 0)
178 		nvme_admin_qpair_print_command(qpair, cmd);
179 	else
180 		nvme_io_qpair_print_command(qpair, cmd);
181 	if (nvme_verbose_cmd_dump) {
182 		nvme_printf(qpair->ctrlr,
183 		    "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
184 		    cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
185 		    (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
186 		nvme_printf(qpair->ctrlr,
187 		    "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
188 		    cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
189 		    cmd->cdw15);
190 	}
191 }
192 
193 struct nvme_status_string {
194 
195 	uint16_t	sc;
196 	const char *	str;
197 };
198 
199 static struct nvme_status_string generic_status[] = {
200 	{ NVME_SC_SUCCESS, "SUCCESS" },
201 	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
202 	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
203 	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
204 	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
205 	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
206 	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
207 	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
208 	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
209 	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
210 	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
211 	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
212 	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
213 	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
214 	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
215 	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
216 	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
217 	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
218 	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
219 	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
220 	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
221 	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
222 	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
223 	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
224 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
225 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
226 	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
227 	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
228 	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
229 	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
230 	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
231 
232 	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
233 	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
234 	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
235 	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
236 	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
237 	{ 0xFFFF, "GENERIC" }
238 };
239 
240 static struct nvme_status_string command_specific_status[] = {
241 	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
242 	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
243 	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
244 	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
245 	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
246 	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
247 	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
248 	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
249 	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
250 	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
251 	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
252 	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
253 	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
254 	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
255 	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
256 	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
257 	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
258 	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
259 	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
260 	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
261 	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
262 	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
263 	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
264 	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
265 	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
266 	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
267 	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
268 	{ NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
269 	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
270 	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
271 	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
272 	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
273 	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
274 
275 	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
276 	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
277 	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
278 	{ 0xFFFF, "COMMAND SPECIFIC" }
279 };
280 
281 static struct nvme_status_string media_error_status[] = {
282 	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
283 	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
284 	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
285 	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
286 	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
287 	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
288 	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
289 	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
290 	{ 0xFFFF, "MEDIA ERROR" }
291 };
292 
293 static const char *
294 get_status_string(uint16_t sct, uint16_t sc)
295 {
296 	struct nvme_status_string *entry;
297 
298 	switch (sct) {
299 	case NVME_SCT_GENERIC:
300 		entry = generic_status;
301 		break;
302 	case NVME_SCT_COMMAND_SPECIFIC:
303 		entry = command_specific_status;
304 		break;
305 	case NVME_SCT_MEDIA_ERROR:
306 		entry = media_error_status;
307 		break;
308 	case NVME_SCT_VENDOR_SPECIFIC:
309 		return ("VENDOR SPECIFIC");
310 	default:
311 		return ("RESERVED");
312 	}
313 
314 	while (entry->sc != 0xFFFF) {
315 		if (entry->sc == sc)
316 			return (entry->str);
317 		entry++;
318 	}
319 	return (entry->str);
320 }
321 
322 static void
323 nvme_qpair_print_completion(struct nvme_qpair *qpair,
324     struct nvme_completion *cpl)
325 {
326 	uint16_t sct, sc;
327 
328 	sct = NVME_STATUS_GET_SCT(cpl->status);
329 	sc = NVME_STATUS_GET_SC(cpl->status);
330 
331 	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
332 	    get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
333 	    cpl->cdw0);
334 }
335 
336 static boolean_t
337 nvme_completion_is_retry(const struct nvme_completion *cpl)
338 {
339 	uint8_t sct, sc, dnr;
340 
341 	sct = NVME_STATUS_GET_SCT(cpl->status);
342 	sc = NVME_STATUS_GET_SC(cpl->status);
343 	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */
344 
345 	/*
346 	 * TODO: spec is not clear how commands that are aborted due
347 	 *  to TLER will be marked.  So for now, it seems
348 	 *  NAMESPACE_NOT_READY is the only case where we should
349 	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
350 	 *  set the DNR bit correctly since the driver controls that.
351 	 */
352 	switch (sct) {
353 	case NVME_SCT_GENERIC:
354 		switch (sc) {
355 		case NVME_SC_ABORTED_BY_REQUEST:
356 		case NVME_SC_NAMESPACE_NOT_READY:
357 			if (dnr)
358 				return (0);
359 			else
360 				return (1);
361 		case NVME_SC_INVALID_OPCODE:
362 		case NVME_SC_INVALID_FIELD:
363 		case NVME_SC_COMMAND_ID_CONFLICT:
364 		case NVME_SC_DATA_TRANSFER_ERROR:
365 		case NVME_SC_ABORTED_POWER_LOSS:
366 		case NVME_SC_INTERNAL_DEVICE_ERROR:
367 		case NVME_SC_ABORTED_SQ_DELETION:
368 		case NVME_SC_ABORTED_FAILED_FUSED:
369 		case NVME_SC_ABORTED_MISSING_FUSED:
370 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
371 		case NVME_SC_COMMAND_SEQUENCE_ERROR:
372 		case NVME_SC_LBA_OUT_OF_RANGE:
373 		case NVME_SC_CAPACITY_EXCEEDED:
374 		default:
375 			return (0);
376 		}
377 	case NVME_SCT_COMMAND_SPECIFIC:
378 	case NVME_SCT_MEDIA_ERROR:
379 	case NVME_SCT_VENDOR_SPECIFIC:
380 	default:
381 		return (0);
382 	}
383 }
384 
385 static void
386 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
387     struct nvme_completion *cpl, error_print_t print_on_error)
388 {
389 	struct nvme_request	*req;
390 	boolean_t		retry, error, retriable;
391 
392 	req = tr->req;
393 	error = nvme_completion_is_error(cpl);
394 	retriable = nvme_completion_is_retry(cpl);
395 	retry = error && retriable && req->retries < nvme_retry_count;
396 	if (retry)
397 		qpair->num_retries++;
398 	if (error && req->retries >= nvme_retry_count && retriable)
399 		qpair->num_failures++;
400 
401 	if (error && (print_on_error == ERROR_PRINT_ALL ||
402 		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
403 		nvme_qpair_print_command(qpair, &req->cmd);
404 		nvme_qpair_print_completion(qpair, cpl);
405 	}
406 
407 	qpair->act_tr[cpl->cid] = NULL;
408 
409 	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
410 
411 	if (req->cb_fn && !retry)
412 		req->cb_fn(req->cb_arg, cpl);
413 
414 	mtx_lock(&qpair->lock);
415 	callout_stop(&tr->timer);
416 
417 	if (retry) {
418 		req->retries++;
419 		nvme_qpair_submit_tracker(qpair, tr);
420 	} else {
421 		if (req->type != NVME_REQUEST_NULL) {
422 			bus_dmamap_sync(qpair->dma_tag_payload,
423 			    tr->payload_dma_map,
424 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
425 			bus_dmamap_unload(qpair->dma_tag_payload,
426 			    tr->payload_dma_map);
427 		}
428 
429 		nvme_free_request(req);
430 		tr->req = NULL;
431 
432 		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
433 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
434 
435 		/*
436 		 * If the controller is in the middle of resetting, don't
437 		 *  try to submit queued requests here - let the reset logic
438 		 *  handle that instead.
439 		 */
440 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
441 		    !qpair->ctrlr->is_resetting) {
442 			req = STAILQ_FIRST(&qpair->queued_req);
443 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
444 			_nvme_qpair_submit_request(qpair, req);
445 		}
446 	}
447 
448 	mtx_unlock(&qpair->lock);
449 }
450 
451 static void
452 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
453     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
454     error_print_t print_on_error)
455 {
456 	struct nvme_completion	cpl;
457 
458 	memset(&cpl, 0, sizeof(cpl));
459 	cpl.sqid = qpair->id;
460 	cpl.cid = tr->cid;
461 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
462 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
463 	cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
464 	nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
465 }
466 
467 void
468 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
469     struct nvme_request *req, uint32_t sct, uint32_t sc)
470 {
471 	struct nvme_completion	cpl;
472 	boolean_t		error;
473 
474 	memset(&cpl, 0, sizeof(cpl));
475 	cpl.sqid = qpair->id;
476 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
477 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
478 
479 	error = nvme_completion_is_error(&cpl);
480 
481 	if (error) {
482 		nvme_qpair_print_command(qpair, &req->cmd);
483 		nvme_qpair_print_completion(qpair, &cpl);
484 	}
485 
486 	if (req->cb_fn)
487 		req->cb_fn(req->cb_arg, &cpl);
488 
489 	nvme_free_request(req);
490 }
491 
492 bool
493 nvme_qpair_process_completions(struct nvme_qpair *qpair)
494 {
495 	struct nvme_tracker	*tr;
496 	struct nvme_completion	cpl;
497 	int done = 0;
498 	bool in_panic = dumping || SCHEDULER_STOPPED();
499 
500 	qpair->num_intr_handler_calls++;
501 
502 	/*
503 	 * qpair is not enabled, likely because a controller reset is is in
504 	 * progress.  Ignore the interrupt - any I/O that was associated with
505 	 * this interrupt will get retried when the reset is complete.
506 	 */
507 	if (!qpair->is_enabled)
508 		return (false);
509 
510 	/*
511 	 * A panic can stop the CPU this routine is running on at any point.  If
512 	 * we're called during a panic, complete the sq_head wrap protocol for
513 	 * the case where we are interrupted just after the increment at 1
514 	 * below, but before we can reset cq_head to zero at 2. Also cope with
515 	 * the case where we do the zero at 2, but may or may not have done the
516 	 * phase adjustment at step 3. The panic machinery flushes all pending
517 	 * memory writes, so we can make these strong ordering assumptions
518 	 * that would otherwise be unwise if we were racing in real time.
519 	 */
520 	if (__predict_false(in_panic)) {
521 		if (qpair->cq_head == qpair->num_entries) {
522 			/*
523 			 * Here we know that we need to zero cq_head and then negate
524 			 * the phase, which hasn't been assigned if cq_head isn't
525 			 * zero due to the atomic_store_rel.
526 			 */
527 			qpair->cq_head = 0;
528 			qpair->phase = !qpair->phase;
529 		} else if (qpair->cq_head == 0) {
530 			/*
531 			 * In this case, we know that the assignment at 2
532 			 * happened below, but we don't know if it 3 happened or
533 			 * not. To do this, we look at the last completion
534 			 * entry and set the phase to the opposite phase
535 			 * that it has. This gets us back in sync
536 			 */
537 			cpl = qpair->cpl[qpair->num_entries - 1];
538 			nvme_completion_swapbytes(&cpl);
539 			qpair->phase = !NVME_STATUS_GET_P(cpl.status);
540 		}
541 	}
542 
543 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
544 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
545 	while (1) {
546 		cpl = qpair->cpl[qpair->cq_head];
547 
548 		/* Convert to host endian */
549 		nvme_completion_swapbytes(&cpl);
550 
551 		if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
552 			break;
553 
554 		tr = qpair->act_tr[cpl.cid];
555 
556 		if (tr != NULL) {
557 			nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
558 			qpair->sq_head = cpl.sqhd;
559 			done++;
560 		} else if (!in_panic) {
561 			/*
562 			 * A missing tracker is normally an error.  However, a
563 			 * panic can stop the CPU this routine is running on
564 			 * after completing an I/O but before updating
565 			 * qpair->cq_head at 1 below.  Later, we re-enter this
566 			 * routine to poll I/O associated with the kernel
567 			 * dump. We find that the tr has been set to null before
568 			 * calling the completion routine.  If it hasn't
569 			 * completed (or it triggers a panic), then '1' below
570 			 * won't have updated cq_head. Rather than panic again,
571 			 * ignore this condition because it's not unexpected.
572 			 */
573 			nvme_printf(qpair->ctrlr,
574 			    "cpl does not map to outstanding cmd\n");
575 			/* nvme_dump_completion expects device endianess */
576 			nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
577 			KASSERT(0, ("received completion for unknown cmd"));
578 		}
579 
580 		/*
581 		 * There's a number of races with the following (see above) when
582 		 * the system panics. We compensate for each one of them by
583 		 * using the atomic store to force strong ordering (at least when
584 		 * viewed in the aftermath of a panic).
585 		 */
586 		if (++qpair->cq_head == qpair->num_entries) {		/* 1 */
587 			atomic_store_rel_int(&qpair->cq_head, 0);	/* 2 */
588 			qpair->phase = !qpair->phase;			/* 3 */
589 		}
590 
591 		nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
592 		    qpair->cq_head);
593 	}
594 	return (done != 0);
595 }
596 
597 static void
598 nvme_qpair_msix_handler(void *arg)
599 {
600 	struct nvme_qpair *qpair = arg;
601 
602 	nvme_qpair_process_completions(qpair);
603 }
604 
605 int
606 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
607     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
608     struct nvme_controller *ctrlr)
609 {
610 	struct nvme_tracker	*tr;
611 	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
612 	uint64_t		queuemem_phys, prpmem_phys, list_phys;
613 	uint8_t			*queuemem, *prpmem, *prp_list;
614 	int			i, err;
615 
616 	qpair->id = id;
617 	qpair->vector = vector;
618 	qpair->num_entries = num_entries;
619 	qpair->num_trackers = num_trackers;
620 	qpair->ctrlr = ctrlr;
621 
622 	if (ctrlr->msix_enabled) {
623 
624 		/*
625 		 * MSI-X vector resource IDs start at 1, so we add one to
626 		 *  the queue's vector to get the corresponding rid to use.
627 		 */
628 		qpair->rid = vector + 1;
629 
630 		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
631 		    &qpair->rid, RF_ACTIVE);
632 		bus_setup_intr(ctrlr->dev, qpair->res,
633 		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
634 		    nvme_qpair_msix_handler, qpair, &qpair->tag);
635 		if (id == 0) {
636 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
637 			    "admin");
638 		} else {
639 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
640 			    "io%d", id - 1);
641 		}
642 	}
643 
644 	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
645 
646 	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
647 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
648 	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
649 	    BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
650 	    (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
651 	    NULL, NULL, &qpair->dma_tag_payload);
652 	if (err != 0) {
653 		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
654 		goto out;
655 	}
656 
657 	/*
658 	 * Each component must be page aligned, and individual PRP lists
659 	 * cannot cross a page boundary.
660 	 */
661 	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
662 	cmdsz = roundup2(cmdsz, PAGE_SIZE);
663 	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
664 	cplsz = roundup2(cplsz, PAGE_SIZE);
665 	prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
666 	prpmemsz = qpair->num_trackers * prpsz;
667 	allocsz = cmdsz + cplsz + prpmemsz;
668 
669 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
670 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
671 	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
672 	if (err != 0) {
673 		nvme_printf(ctrlr, "tag create failed %d\n", err);
674 		goto out;
675 	}
676 
677 	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
678 	    BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
679 		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
680 		goto out;
681 	}
682 
683 	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
684 	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
685 		nvme_printf(ctrlr, "failed to load qpair memory\n");
686 		goto out;
687 	}
688 
689 	qpair->num_cmds = 0;
690 	qpair->num_intr_handler_calls = 0;
691 	qpair->num_retries = 0;
692 	qpair->num_failures = 0;
693 	qpair->cmd = (struct nvme_command *)queuemem;
694 	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
695 	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
696 	qpair->cmd_bus_addr = queuemem_phys;
697 	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
698 	prpmem_phys = queuemem_phys + cmdsz + cplsz;
699 
700 	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
701 	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
702 
703 	TAILQ_INIT(&qpair->free_tr);
704 	TAILQ_INIT(&qpair->outstanding_tr);
705 	STAILQ_INIT(&qpair->queued_req);
706 
707 	list_phys = prpmem_phys;
708 	prp_list = prpmem;
709 	for (i = 0; i < qpair->num_trackers; i++) {
710 
711 		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
712 			qpair->num_trackers = i;
713 			break;
714 		}
715 
716 		/*
717 		 * Make sure that the PRP list for this tracker doesn't
718 		 * overflow to another page.
719 		 */
720 		if (trunc_page(list_phys) !=
721 		    trunc_page(list_phys + prpsz - 1)) {
722 			list_phys = roundup2(list_phys, PAGE_SIZE);
723 			prp_list =
724 			    (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
725 		}
726 
727 		tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
728 		bus_dmamap_create(qpair->dma_tag_payload, 0,
729 		    &tr->payload_dma_map);
730 		callout_init(&tr->timer, 1);
731 		tr->cid = i;
732 		tr->qpair = qpair;
733 		tr->prp = (uint64_t *)prp_list;
734 		tr->prp_bus_addr = list_phys;
735 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
736 		list_phys += prpsz;
737 		prp_list += prpsz;
738 	}
739 
740 	if (qpair->num_trackers == 0) {
741 		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
742 		goto out;
743 	}
744 
745 	qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
746 	    qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
747 	return (0);
748 
749 out:
750 	nvme_qpair_destroy(qpair);
751 	return (ENOMEM);
752 }
753 
754 static void
755 nvme_qpair_destroy(struct nvme_qpair *qpair)
756 {
757 	struct nvme_tracker	*tr;
758 
759 	if (qpair->tag)
760 		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
761 
762 	if (mtx_initialized(&qpair->lock))
763 		mtx_destroy(&qpair->lock);
764 
765 	if (qpair->res)
766 		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
767 		    rman_get_rid(qpair->res), qpair->res);
768 
769 	if (qpair->cmd != NULL) {
770 		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
771 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
772 		    qpair->queuemem_map);
773 	}
774 
775 	if (qpair->act_tr)
776 		free(qpair->act_tr, M_NVME);
777 
778 	while (!TAILQ_EMPTY(&qpair->free_tr)) {
779 		tr = TAILQ_FIRST(&qpair->free_tr);
780 		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
781 		bus_dmamap_destroy(qpair->dma_tag_payload,
782 		    tr->payload_dma_map);
783 		free(tr, M_NVME);
784 	}
785 
786 	if (qpair->dma_tag)
787 		bus_dma_tag_destroy(qpair->dma_tag);
788 
789 	if (qpair->dma_tag_payload)
790 		bus_dma_tag_destroy(qpair->dma_tag_payload);
791 }
792 
793 static void
794 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
795 {
796 	struct nvme_tracker	*tr;
797 
798 	tr = TAILQ_FIRST(&qpair->outstanding_tr);
799 	while (tr != NULL) {
800 		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
801 			nvme_qpair_manual_complete_tracker(qpair, tr,
802 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
803 			    ERROR_PRINT_NONE);
804 			tr = TAILQ_FIRST(&qpair->outstanding_tr);
805 		} else {
806 			tr = TAILQ_NEXT(tr, tailq);
807 		}
808 	}
809 }
810 
811 void
812 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
813 {
814 
815 	nvme_admin_qpair_abort_aers(qpair);
816 	nvme_qpair_destroy(qpair);
817 }
818 
819 void
820 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
821 {
822 
823 	nvme_qpair_destroy(qpair);
824 }
825 
826 static void
827 nvme_abort_complete(void *arg, const struct nvme_completion *status)
828 {
829 	struct nvme_tracker	*tr = arg;
830 
831 	/*
832 	 * If cdw0 == 1, the controller was not able to abort the command
833 	 *  we requested.  We still need to check the active tracker array,
834 	 *  to cover race where I/O timed out at same time controller was
835 	 *  completing the I/O.
836 	 */
837 	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
838 		/*
839 		 * An I/O has timed out, and the controller was unable to
840 		 *  abort it for some reason.  Construct a fake completion
841 		 *  status, and then complete the I/O's tracker manually.
842 		 */
843 		nvme_printf(tr->qpair->ctrlr,
844 		    "abort command failed, aborting command manually\n");
845 		nvme_qpair_manual_complete_tracker(tr->qpair, tr,
846 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
847 	}
848 }
849 
850 static void
851 nvme_timeout(void *arg)
852 {
853 	struct nvme_tracker	*tr = arg;
854 	struct nvme_qpair	*qpair = tr->qpair;
855 	struct nvme_controller	*ctrlr = qpair->ctrlr;
856 	uint32_t		csts;
857 	uint8_t			cfs;
858 
859 	/*
860 	 * Read csts to get value of cfs - controller fatal status.
861 	 * If no fatal status, try to call the completion routine, and
862 	 * if completes transactions, report a missed interrupt and
863 	 * return (this may need to be rate limited). Otherwise, if
864 	 * aborts are enabled and the controller is not reporting
865 	 * fatal status, abort the command. Otherwise, just reset the
866 	 * controller and hope for the best.
867 	 */
868 	csts = nvme_mmio_read_4(ctrlr, csts);
869 	cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
870 	if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
871 		nvme_printf(ctrlr, "Missing interrupt\n");
872 		return;
873 	}
874 	if (ctrlr->enable_aborts && cfs == 0) {
875 		nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
876 		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
877 		    nvme_abort_complete, tr);
878 	} else {
879 		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
880 		    cfs ? " and fatal error status" : "");
881 		nvme_ctrlr_reset(ctrlr);
882 	}
883 }
884 
885 void
886 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
887 {
888 	struct nvme_request	*req;
889 	struct nvme_controller	*ctrlr;
890 
891 	mtx_assert(&qpair->lock, MA_OWNED);
892 
893 	req = tr->req;
894 	req->cmd.cid = tr->cid;
895 	qpair->act_tr[tr->cid] = tr;
896 	ctrlr = qpair->ctrlr;
897 
898 	if (req->timeout)
899 		callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
900 		    nvme_timeout, tr);
901 
902 	/* Copy the command from the tracker to the submission queue. */
903 	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
904 
905 	if (++qpair->sq_tail == qpair->num_entries)
906 		qpair->sq_tail = 0;
907 
908 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
909 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
910 #ifndef __powerpc__
911 	/*
912 	 * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
913 	 * no other archs do.
914 	 */
915 	wmb();
916 #endif
917 
918 	nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
919 	    qpair->sq_tail);
920 
921 	qpair->num_cmds++;
922 }
923 
924 static void
925 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
926 {
927 	struct nvme_tracker 	*tr = arg;
928 	uint32_t		cur_nseg;
929 
930 	/*
931 	 * If the mapping operation failed, return immediately.  The caller
932 	 *  is responsible for detecting the error status and failing the
933 	 *  tracker manually.
934 	 */
935 	if (error != 0) {
936 		nvme_printf(tr->qpair->ctrlr,
937 		    "nvme_payload_map err %d\n", error);
938 		return;
939 	}
940 
941 	/*
942 	 * Note that we specified PAGE_SIZE for alignment and max
943 	 *  segment size when creating the bus dma tags.  So here
944 	 *  we can safely just transfer each segment to its
945 	 *  associated PRP entry.
946 	 */
947 	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
948 
949 	if (nseg == 2) {
950 		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
951 	} else if (nseg > 2) {
952 		cur_nseg = 1;
953 		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
954 		while (cur_nseg < nseg) {
955 			tr->prp[cur_nseg-1] =
956 			    htole64((uint64_t)seg[cur_nseg].ds_addr);
957 			cur_nseg++;
958 		}
959 	} else {
960 		/*
961 		 * prp2 should not be used by the controller
962 		 *  since there is only one segment, but set
963 		 *  to 0 just to be safe.
964 		 */
965 		tr->req->cmd.prp2 = 0;
966 	}
967 
968 	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
969 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
970 	nvme_qpair_submit_tracker(tr->qpair, tr);
971 }
972 
973 static void
974 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
975 {
976 	struct nvme_tracker	*tr;
977 	int			err = 0;
978 
979 	mtx_assert(&qpair->lock, MA_OWNED);
980 
981 	tr = TAILQ_FIRST(&qpair->free_tr);
982 	req->qpair = qpair;
983 
984 	if (tr == NULL || !qpair->is_enabled) {
985 		/*
986 		 * No tracker is available, or the qpair is disabled due to
987 		 *  an in-progress controller-level reset or controller
988 		 *  failure.
989 		 */
990 
991 		if (qpair->ctrlr->is_failed) {
992 			/*
993 			 * The controller has failed.  Post the request to a
994 			 *  task where it will be aborted, so that we do not
995 			 *  invoke the request's callback in the context
996 			 *  of the submission.
997 			 */
998 			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
999 		} else {
1000 			/*
1001 			 * Put the request on the qpair's request queue to be
1002 			 *  processed when a tracker frees up via a command
1003 			 *  completion or when the controller reset is
1004 			 *  completed.
1005 			 */
1006 			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1007 		}
1008 		return;
1009 	}
1010 
1011 	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1012 	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1013 	tr->req = req;
1014 
1015 	switch (req->type) {
1016 	case NVME_REQUEST_VADDR:
1017 		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1018 		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1019 		    req->payload_size, qpair->ctrlr->max_xfer_size));
1020 		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1021 		    tr->payload_dma_map, req->u.payload, req->payload_size,
1022 		    nvme_payload_map, tr, 0);
1023 		if (err != 0)
1024 			nvme_printf(qpair->ctrlr,
1025 			    "bus_dmamap_load returned 0x%x!\n", err);
1026 		break;
1027 	case NVME_REQUEST_NULL:
1028 		nvme_qpair_submit_tracker(tr->qpair, tr);
1029 		break;
1030 	case NVME_REQUEST_BIO:
1031 		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1032 		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1033 		    (intmax_t)req->u.bio->bio_bcount,
1034 		    qpair->ctrlr->max_xfer_size));
1035 		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1036 		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1037 		if (err != 0)
1038 			nvme_printf(qpair->ctrlr,
1039 			    "bus_dmamap_load_bio returned 0x%x!\n", err);
1040 		break;
1041 	case NVME_REQUEST_CCB:
1042 		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1043 		    tr->payload_dma_map, req->u.payload,
1044 		    nvme_payload_map, tr, 0);
1045 		if (err != 0)
1046 			nvme_printf(qpair->ctrlr,
1047 			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
1048 		break;
1049 	default:
1050 		panic("unknown nvme request type 0x%x\n", req->type);
1051 		break;
1052 	}
1053 
1054 	if (err != 0) {
1055 		/*
1056 		 * The dmamap operation failed, so we manually fail the
1057 		 *  tracker here with DATA_TRANSFER_ERROR status.
1058 		 *
1059 		 * nvme_qpair_manual_complete_tracker must not be called
1060 		 *  with the qpair lock held.
1061 		 */
1062 		mtx_unlock(&qpair->lock);
1063 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1064 		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1065 		mtx_lock(&qpair->lock);
1066 	}
1067 }
1068 
1069 void
1070 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1071 {
1072 
1073 	mtx_lock(&qpair->lock);
1074 	_nvme_qpair_submit_request(qpair, req);
1075 	mtx_unlock(&qpair->lock);
1076 }
1077 
1078 static void
1079 nvme_qpair_enable(struct nvme_qpair *qpair)
1080 {
1081 
1082 	qpair->is_enabled = TRUE;
1083 }
1084 
1085 void
1086 nvme_qpair_reset(struct nvme_qpair *qpair)
1087 {
1088 
1089 	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1090 
1091 	/*
1092 	 * First time through the completion queue, HW will set phase
1093 	 *  bit on completions to 1.  So set this to 1 here, indicating
1094 	 *  we're looking for a 1 to know which entries have completed.
1095 	 *  we'll toggle the bit each time when the completion queue
1096 	 *  rolls over.
1097 	 */
1098 	qpair->phase = 1;
1099 
1100 	memset(qpair->cmd, 0,
1101 	    qpair->num_entries * sizeof(struct nvme_command));
1102 	memset(qpair->cpl, 0,
1103 	    qpair->num_entries * sizeof(struct nvme_completion));
1104 }
1105 
1106 void
1107 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1108 {
1109 	struct nvme_tracker		*tr;
1110 	struct nvme_tracker		*tr_temp;
1111 
1112 	/*
1113 	 * Manually abort each outstanding admin command.  Do not retry
1114 	 *  admin commands found here, since they will be left over from
1115 	 *  a controller reset and its likely the context in which the
1116 	 *  command was issued no longer applies.
1117 	 */
1118 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1119 		nvme_printf(qpair->ctrlr,
1120 		    "aborting outstanding admin command\n");
1121 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1122 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1123 	}
1124 
1125 	nvme_qpair_enable(qpair);
1126 }
1127 
1128 void
1129 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1130 {
1131 	STAILQ_HEAD(, nvme_request)	temp;
1132 	struct nvme_tracker		*tr;
1133 	struct nvme_tracker		*tr_temp;
1134 	struct nvme_request		*req;
1135 
1136 	/*
1137 	 * Manually abort each outstanding I/O.  This normally results in a
1138 	 *  retry, unless the retry count on the associated request has
1139 	 *  reached its limit.
1140 	 */
1141 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1142 		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1143 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1144 		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1145 	}
1146 
1147 	mtx_lock(&qpair->lock);
1148 
1149 	nvme_qpair_enable(qpair);
1150 
1151 	STAILQ_INIT(&temp);
1152 	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1153 
1154 	while (!STAILQ_EMPTY(&temp)) {
1155 		req = STAILQ_FIRST(&temp);
1156 		STAILQ_REMOVE_HEAD(&temp, stailq);
1157 		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1158 		nvme_qpair_print_command(qpair, &req->cmd);
1159 		_nvme_qpair_submit_request(qpair, req);
1160 	}
1161 
1162 	mtx_unlock(&qpair->lock);
1163 }
1164 
1165 static void
1166 nvme_qpair_disable(struct nvme_qpair *qpair)
1167 {
1168 	struct nvme_tracker *tr;
1169 
1170 	qpair->is_enabled = FALSE;
1171 	mtx_lock(&qpair->lock);
1172 	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1173 		callout_stop(&tr->timer);
1174 	mtx_unlock(&qpair->lock);
1175 }
1176 
1177 void
1178 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1179 {
1180 
1181 	nvme_qpair_disable(qpair);
1182 	nvme_admin_qpair_abort_aers(qpair);
1183 }
1184 
1185 void
1186 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1187 {
1188 
1189 	nvme_qpair_disable(qpair);
1190 }
1191 
1192 void
1193 nvme_qpair_fail(struct nvme_qpair *qpair)
1194 {
1195 	struct nvme_tracker		*tr;
1196 	struct nvme_request		*req;
1197 
1198 	if (!mtx_initialized(&qpair->lock))
1199 		return;
1200 
1201 	mtx_lock(&qpair->lock);
1202 
1203 	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1204 		req = STAILQ_FIRST(&qpair->queued_req);
1205 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1206 		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1207 		mtx_unlock(&qpair->lock);
1208 		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1209 		    NVME_SC_ABORTED_BY_REQUEST);
1210 		mtx_lock(&qpair->lock);
1211 	}
1212 
1213 	/* Manually abort each outstanding I/O. */
1214 	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1215 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1216 		/*
1217 		 * Do not remove the tracker.  The abort_tracker path will
1218 		 *  do that for us.
1219 		 */
1220 		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1221 		mtx_unlock(&qpair->lock);
1222 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1223 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1224 		mtx_lock(&qpair->lock);
1225 	}
1226 
1227 	mtx_unlock(&qpair->lock);
1228 }
1229 
1230