xref: /freebsd/sys/dev/nvme/nvme_qpair.c (revision 137a344c6341d1469432e9deb3a25593f96672ad)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 
35 #include <dev/pci/pcivar.h>
36 
37 #include "nvme_private.h"
38 
39 static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
40 					   struct nvme_request *req);
41 static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
42 
43 struct nvme_opcode_string {
44 
45 	uint16_t	opc;
46 	const char *	str;
47 };
48 
49 static struct nvme_opcode_string admin_opcode[] = {
50 	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
51 	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
52 	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
53 	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
54 	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
55 	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
56 	{ NVME_OPC_ABORT, "ABORT" },
57 	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
58 	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
59 	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
60 	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
61 	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
62 	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
63 	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
64 	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
65 	{ 0xFFFF, "ADMIN COMMAND" }
66 };
67 
68 static struct nvme_opcode_string io_opcode[] = {
69 	{ NVME_OPC_FLUSH, "FLUSH" },
70 	{ NVME_OPC_WRITE, "WRITE" },
71 	{ NVME_OPC_READ, "READ" },
72 	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
73 	{ NVME_OPC_COMPARE, "COMPARE" },
74 	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
75 	{ 0xFFFF, "IO COMMAND" }
76 };
77 
78 static const char *
79 get_admin_opcode_string(uint16_t opc)
80 {
81 	struct nvme_opcode_string *entry;
82 
83 	entry = admin_opcode;
84 
85 	while (entry->opc != 0xFFFF) {
86 		if (entry->opc == opc)
87 			return (entry->str);
88 		entry++;
89 	}
90 	return (entry->str);
91 }
92 
93 static const char *
94 get_io_opcode_string(uint16_t opc)
95 {
96 	struct nvme_opcode_string *entry;
97 
98 	entry = io_opcode;
99 
100 	while (entry->opc != 0xFFFF) {
101 		if (entry->opc == opc)
102 			return (entry->str);
103 		entry++;
104 	}
105 	return (entry->str);
106 }
107 
108 
109 static void
110 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
111     struct nvme_command *cmd)
112 {
113 
114 	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
115 	    "cdw10:%08x cdw11:%08x\n",
116 	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
117 	    cmd->nsid, cmd->cdw10, cmd->cdw11);
118 }
119 
120 static void
121 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
122     struct nvme_command *cmd)
123 {
124 
125 	switch (cmd->opc) {
126 	case NVME_OPC_WRITE:
127 	case NVME_OPC_READ:
128 	case NVME_OPC_WRITE_UNCORRECTABLE:
129 	case NVME_OPC_COMPARE:
130 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
131 		    "lba:%llu len:%d\n",
132 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
133 		    cmd->nsid,
134 		    ((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
135 		    (cmd->cdw12 & 0xFFFF) + 1);
136 		break;
137 	case NVME_OPC_FLUSH:
138 	case NVME_OPC_DATASET_MANAGEMENT:
139 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
140 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
141 		    cmd->nsid);
142 		break;
143 	default:
144 		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
145 		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
146 		    cmd->cid, cmd->nsid);
147 		break;
148 	}
149 }
150 
151 static void
152 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
153 {
154 	if (qpair->id == 0)
155 		nvme_admin_qpair_print_command(qpair, cmd);
156 	else
157 		nvme_io_qpair_print_command(qpair, cmd);
158 }
159 
160 struct nvme_status_string {
161 
162 	uint16_t	sc;
163 	const char *	str;
164 };
165 
166 static struct nvme_status_string generic_status[] = {
167 	{ NVME_SC_SUCCESS, "SUCCESS" },
168 	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
169 	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
170 	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
171 	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
172 	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
173 	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
174 	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
175 	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
176 	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
177 	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
178 	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
179 	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
180 	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
181 	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
182 	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
183 	{ 0xFFFF, "GENERIC" }
184 };
185 
186 static struct nvme_status_string command_specific_status[] = {
187 	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
188 	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
189 	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
190 	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
191 	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
192 	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
193 	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
194 	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
195 	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
196 	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
197 	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
198 	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
199 	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
200 	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
201 	{ 0xFFFF, "COMMAND SPECIFIC" }
202 };
203 
204 static struct nvme_status_string media_error_status[] = {
205 	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
206 	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
207 	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
208 	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
209 	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
210 	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
211 	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
212 	{ 0xFFFF, "MEDIA ERROR" }
213 };
214 
215 static const char *
216 get_status_string(uint16_t sct, uint16_t sc)
217 {
218 	struct nvme_status_string *entry;
219 
220 	switch (sct) {
221 	case NVME_SCT_GENERIC:
222 		entry = generic_status;
223 		break;
224 	case NVME_SCT_COMMAND_SPECIFIC:
225 		entry = command_specific_status;
226 		break;
227 	case NVME_SCT_MEDIA_ERROR:
228 		entry = media_error_status;
229 		break;
230 	case NVME_SCT_VENDOR_SPECIFIC:
231 		return ("VENDOR SPECIFIC");
232 	default:
233 		return ("RESERVED");
234 	}
235 
236 	while (entry->sc != 0xFFFF) {
237 		if (entry->sc == sc)
238 			return (entry->str);
239 		entry++;
240 	}
241 	return (entry->str);
242 }
243 
244 static void
245 nvme_qpair_print_completion(struct nvme_qpair *qpair,
246     struct nvme_completion *cpl)
247 {
248 	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
249 	    get_status_string(cpl->status.sct, cpl->status.sc),
250 	    cpl->status.sct, cpl->status.sc, cpl->sqid, cpl->cid, cpl->cdw0);
251 }
252 
253 static boolean_t
254 nvme_completion_is_retry(const struct nvme_completion *cpl)
255 {
256 	/*
257 	 * TODO: spec is not clear how commands that are aborted due
258 	 *  to TLER will be marked.  So for now, it seems
259 	 *  NAMESPACE_NOT_READY is the only case where we should
260 	 *  look at the DNR bit.
261 	 */
262 	switch (cpl->status.sct) {
263 	case NVME_SCT_GENERIC:
264 		switch (cpl->status.sc) {
265 		case NVME_SC_ABORTED_BY_REQUEST:
266 		case NVME_SC_NAMESPACE_NOT_READY:
267 			if (cpl->status.dnr)
268 				return (0);
269 			else
270 				return (1);
271 		case NVME_SC_INVALID_OPCODE:
272 		case NVME_SC_INVALID_FIELD:
273 		case NVME_SC_COMMAND_ID_CONFLICT:
274 		case NVME_SC_DATA_TRANSFER_ERROR:
275 		case NVME_SC_ABORTED_POWER_LOSS:
276 		case NVME_SC_INTERNAL_DEVICE_ERROR:
277 		case NVME_SC_ABORTED_SQ_DELETION:
278 		case NVME_SC_ABORTED_FAILED_FUSED:
279 		case NVME_SC_ABORTED_MISSING_FUSED:
280 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
281 		case NVME_SC_COMMAND_SEQUENCE_ERROR:
282 		case NVME_SC_LBA_OUT_OF_RANGE:
283 		case NVME_SC_CAPACITY_EXCEEDED:
284 		default:
285 			return (0);
286 		}
287 	case NVME_SCT_COMMAND_SPECIFIC:
288 	case NVME_SCT_MEDIA_ERROR:
289 	case NVME_SCT_VENDOR_SPECIFIC:
290 	default:
291 		return (0);
292 	}
293 }
294 
295 static void
296 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
297     struct nvme_completion *cpl, boolean_t print_on_error)
298 {
299 	struct nvme_request	*req;
300 	boolean_t		retry, error;
301 
302 	req = tr->req;
303 	error = nvme_completion_is_error(cpl);
304 	retry = error && nvme_completion_is_retry(cpl) &&
305 	   req->retries < nvme_retry_count;
306 
307 	if (error && print_on_error) {
308 		nvme_qpair_print_command(qpair, &req->cmd);
309 		nvme_qpair_print_completion(qpair, cpl);
310 	}
311 
312 	qpair->act_tr[cpl->cid] = NULL;
313 
314 	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
315 
316 	if (req->cb_fn && !retry)
317 		req->cb_fn(req->cb_arg, cpl);
318 
319 	mtx_lock(&qpair->lock);
320 	callout_stop(&tr->timer);
321 
322 	if (retry) {
323 		req->retries++;
324 		nvme_qpair_submit_tracker(qpair, tr);
325 	} else {
326 		if (req->type != NVME_REQUEST_NULL)
327 			bus_dmamap_unload(qpair->dma_tag_payload,
328 			    tr->payload_dma_map);
329 
330 		nvme_free_request(req);
331 		tr->req = NULL;
332 
333 		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
334 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
335 
336 		/*
337 		 * If the controller is in the middle of resetting, don't
338 		 *  try to submit queued requests here - let the reset logic
339 		 *  handle that instead.
340 		 */
341 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
342 		    !qpair->ctrlr->is_resetting) {
343 			req = STAILQ_FIRST(&qpair->queued_req);
344 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
345 			_nvme_qpair_submit_request(qpair, req);
346 		}
347 	}
348 
349 	mtx_unlock(&qpair->lock);
350 }
351 
352 static void
353 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
354     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
355     boolean_t print_on_error)
356 {
357 	struct nvme_completion	cpl;
358 
359 	memset(&cpl, 0, sizeof(cpl));
360 	cpl.sqid = qpair->id;
361 	cpl.cid = tr->cid;
362 	cpl.status.sct = sct;
363 	cpl.status.sc = sc;
364 	cpl.status.dnr = dnr;
365 	nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
366 }
367 
368 void
369 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
370     struct nvme_request *req, uint32_t sct, uint32_t sc,
371     boolean_t print_on_error)
372 {
373 	struct nvme_completion	cpl;
374 	boolean_t		error;
375 
376 	memset(&cpl, 0, sizeof(cpl));
377 	cpl.sqid = qpair->id;
378 	cpl.status.sct = sct;
379 	cpl.status.sc = sc;
380 
381 	error = nvme_completion_is_error(&cpl);
382 
383 	if (error && print_on_error) {
384 		nvme_qpair_print_command(qpair, &req->cmd);
385 		nvme_qpair_print_completion(qpair, &cpl);
386 	}
387 
388 	if (req->cb_fn)
389 		req->cb_fn(req->cb_arg, &cpl);
390 
391 	nvme_free_request(req);
392 }
393 
394 void
395 nvme_qpair_process_completions(struct nvme_qpair *qpair)
396 {
397 	struct nvme_tracker	*tr;
398 	struct nvme_completion	*cpl;
399 
400 	qpair->num_intr_handler_calls++;
401 
402 	if (!qpair->is_enabled)
403 		/*
404 		 * qpair is not enabled, likely because a controller reset is
405 		 *  is in progress.  Ignore the interrupt - any I/O that was
406 		 *  associated with this interrupt will get retried when the
407 		 *  reset is complete.
408 		 */
409 		return;
410 
411 	while (1) {
412 		cpl = &qpair->cpl[qpair->cq_head];
413 
414 		if (cpl->status.p != qpair->phase)
415 			break;
416 
417 		tr = qpair->act_tr[cpl->cid];
418 
419 		if (tr != NULL) {
420 			nvme_qpair_complete_tracker(qpair, tr, cpl, TRUE);
421 			qpair->sq_head = cpl->sqhd;
422 		} else {
423 			nvme_printf(qpair->ctrlr,
424 			    "cpl does not map to outstanding cmd\n");
425 			nvme_dump_completion(cpl);
426 			KASSERT(0, ("received completion for unknown cmd\n"));
427 		}
428 
429 		if (++qpair->cq_head == qpair->num_entries) {
430 			qpair->cq_head = 0;
431 			qpair->phase = !qpair->phase;
432 		}
433 
434 		nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
435 		    qpair->cq_head);
436 	}
437 }
438 
439 static void
440 nvme_qpair_msix_handler(void *arg)
441 {
442 	struct nvme_qpair *qpair = arg;
443 
444 	nvme_qpair_process_completions(qpair);
445 }
446 
447 int
448 nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
449     uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
450     struct nvme_controller *ctrlr)
451 {
452 	struct nvme_tracker	*tr;
453 	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
454 	uint64_t		queuemem_phys, prpmem_phys, list_phys;
455 	uint8_t			*queuemem, *prpmem, *prp_list;
456 	int			i, err;
457 
458 	qpair->id = id;
459 	qpair->vector = vector;
460 	qpair->num_entries = num_entries;
461 	qpair->num_trackers = num_trackers;
462 	qpair->ctrlr = ctrlr;
463 
464 	if (ctrlr->msix_enabled) {
465 
466 		/*
467 		 * MSI-X vector resource IDs start at 1, so we add one to
468 		 *  the queue's vector to get the corresponding rid to use.
469 		 */
470 		qpair->rid = vector + 1;
471 
472 		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
473 		    &qpair->rid, RF_ACTIVE);
474 		bus_setup_intr(ctrlr->dev, qpair->res,
475 		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
476 		    nvme_qpair_msix_handler, qpair, &qpair->tag);
477 	}
478 
479 	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
480 
481 	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
482 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
483 	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
484 	    BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
485 	    (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
486 	    NULL, NULL, &qpair->dma_tag_payload);
487 	if (err != 0) {
488 		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
489 		goto out;
490 	}
491 
492 	/*
493 	 * Each component must be page aligned, and individual PRP lists
494 	 * cannot cross a page boundary.
495 	 */
496 	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
497 	cmdsz = roundup2(cmdsz, PAGE_SIZE);
498 	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
499 	cplsz = roundup2(cplsz, PAGE_SIZE);
500 	prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
501 	prpmemsz = qpair->num_trackers * prpsz;
502 	allocsz = cmdsz + cplsz + prpmemsz;
503 
504 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
505 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
506 	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
507 	if (err != 0) {
508 		nvme_printf(ctrlr, "tag create failed %d\n", err);
509 		goto out;
510 	}
511 
512 	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
513 	    BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
514 		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
515 		goto out;
516 	}
517 
518 	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
519 	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
520 		nvme_printf(ctrlr, "failed to load qpair memory\n");
521 		goto out;
522 	}
523 
524 	qpair->num_cmds = 0;
525 	qpair->num_intr_handler_calls = 0;
526 	qpair->cmd = (struct nvme_command *)queuemem;
527 	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
528 	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
529 	qpair->cmd_bus_addr = queuemem_phys;
530 	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
531 	prpmem_phys = queuemem_phys + cmdsz + cplsz;
532 
533 	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
534 	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
535 
536 	TAILQ_INIT(&qpair->free_tr);
537 	TAILQ_INIT(&qpair->outstanding_tr);
538 	STAILQ_INIT(&qpair->queued_req);
539 
540 	list_phys = prpmem_phys;
541 	prp_list = prpmem;
542 	for (i = 0; i < qpair->num_trackers; i++) {
543 
544 		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
545 			qpair->num_trackers = i;
546 			break;
547 		}
548 
549 		/*
550 		 * Make sure that the PRP list for this tracker doesn't
551 		 * overflow to another page.
552 		 */
553 		if (trunc_page(list_phys) !=
554 		    trunc_page(list_phys + prpsz - 1)) {
555 			list_phys = roundup2(list_phys, PAGE_SIZE);
556 			prp_list =
557 			    (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
558 		}
559 
560 		tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
561 		bus_dmamap_create(qpair->dma_tag_payload, 0,
562 		    &tr->payload_dma_map);
563 		callout_init(&tr->timer, 1);
564 		tr->cid = i;
565 		tr->qpair = qpair;
566 		tr->prp = (uint64_t *)prp_list;
567 		tr->prp_bus_addr = list_phys;
568 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
569 		list_phys += prpsz;
570 		prp_list += prpsz;
571 	}
572 
573 	if (qpair->num_trackers == 0) {
574 		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
575 		goto out;
576 	}
577 
578 	qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
579 	    qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
580 	return (0);
581 
582 out:
583 	nvme_qpair_destroy(qpair);
584 	return (ENOMEM);
585 }
586 
587 static void
588 nvme_qpair_destroy(struct nvme_qpair *qpair)
589 {
590 	struct nvme_tracker	*tr;
591 
592 	if (qpair->tag)
593 		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
594 
595 	if (mtx_initialized(&qpair->lock))
596 		mtx_destroy(&qpair->lock);
597 
598 	if (qpair->res)
599 		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
600 		    rman_get_rid(qpair->res), qpair->res);
601 
602 	if (qpair->cmd != NULL) {
603 		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
604 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
605 		    qpair->queuemem_map);
606 	}
607 
608 	if (qpair->dma_tag)
609 		bus_dma_tag_destroy(qpair->dma_tag);
610 
611 	if (qpair->dma_tag_payload)
612 		bus_dma_tag_destroy(qpair->dma_tag_payload);
613 
614 	if (qpair->act_tr)
615 		free(qpair->act_tr, M_NVME);
616 
617 	while (!TAILQ_EMPTY(&qpair->free_tr)) {
618 		tr = TAILQ_FIRST(&qpair->free_tr);
619 		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
620 		bus_dmamap_destroy(qpair->dma_tag, tr->payload_dma_map);
621 		free(tr, M_NVME);
622 	}
623 }
624 
625 static void
626 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
627 {
628 	struct nvme_tracker	*tr;
629 
630 	tr = TAILQ_FIRST(&qpair->outstanding_tr);
631 	while (tr != NULL) {
632 		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
633 			nvme_qpair_manual_complete_tracker(qpair, tr,
634 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
635 			    FALSE);
636 			tr = TAILQ_FIRST(&qpair->outstanding_tr);
637 		} else {
638 			tr = TAILQ_NEXT(tr, tailq);
639 		}
640 	}
641 }
642 
643 void
644 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
645 {
646 
647 	nvme_admin_qpair_abort_aers(qpair);
648 	nvme_qpair_destroy(qpair);
649 }
650 
651 void
652 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
653 {
654 
655 	nvme_qpair_destroy(qpair);
656 }
657 
658 static void
659 nvme_abort_complete(void *arg, const struct nvme_completion *status)
660 {
661 	struct nvme_tracker	*tr = arg;
662 
663 	/*
664 	 * If cdw0 == 1, the controller was not able to abort the command
665 	 *  we requested.  We still need to check the active tracker array,
666 	 *  to cover race where I/O timed out at same time controller was
667 	 *  completing the I/O.
668 	 */
669 	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
670 		/*
671 		 * An I/O has timed out, and the controller was unable to
672 		 *  abort it for some reason.  Construct a fake completion
673 		 *  status, and then complete the I/O's tracker manually.
674 		 */
675 		nvme_printf(tr->qpair->ctrlr,
676 		    "abort command failed, aborting command manually\n");
677 		nvme_qpair_manual_complete_tracker(tr->qpair, tr,
678 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
679 	}
680 }
681 
682 static void
683 nvme_timeout(void *arg)
684 {
685 	struct nvme_tracker	*tr = arg;
686 	struct nvme_qpair	*qpair = tr->qpair;
687 	struct nvme_controller	*ctrlr = qpair->ctrlr;
688 	union csts_register	csts;
689 
690 	/* Read csts to get value of cfs - controller fatal status. */
691 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
692 
693 	if (ctrlr->enable_aborts && csts.bits.cfs == 0) {
694 		/*
695 		 * If aborts are enabled, only use them if the controller is
696 		 *  not reporting fatal status.
697 		 */
698 		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
699 		    nvme_abort_complete, tr);
700 	} else
701 		nvme_ctrlr_reset(ctrlr);
702 }
703 
704 void
705 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
706 {
707 	struct nvme_request	*req;
708 	struct nvme_controller	*ctrlr;
709 
710 	mtx_assert(&qpair->lock, MA_OWNED);
711 
712 	req = tr->req;
713 	req->cmd.cid = tr->cid;
714 	qpair->act_tr[tr->cid] = tr;
715 	ctrlr = qpair->ctrlr;
716 
717 	if (req->timeout)
718 #if __FreeBSD_version >= 800030
719 		callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
720 		    nvme_timeout, tr);
721 #else
722 		callout_reset(&tr->timer, ctrlr->timeout_period * hz,
723 		    nvme_timeout, tr);
724 #endif
725 
726 	/* Copy the command from the tracker to the submission queue. */
727 	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
728 
729 	if (++qpair->sq_tail == qpair->num_entries)
730 		qpair->sq_tail = 0;
731 
732 	wmb();
733 	nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
734 	    qpair->sq_tail);
735 
736 	qpair->num_cmds++;
737 }
738 
739 static void
740 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
741 {
742 	struct nvme_tracker 	*tr = arg;
743 	uint32_t		cur_nseg;
744 
745 	/*
746 	 * If the mapping operation failed, return immediately.  The caller
747 	 *  is responsible for detecting the error status and failing the
748 	 *  tracker manually.
749 	 */
750 	if (error != 0) {
751 		nvme_printf(tr->qpair->ctrlr,
752 		    "nvme_payload_map err %d\n", error);
753 		return;
754 	}
755 
756 	/*
757 	 * Note that we specified PAGE_SIZE for alignment and max
758 	 *  segment size when creating the bus dma tags.  So here
759 	 *  we can safely just transfer each segment to its
760 	 *  associated PRP entry.
761 	 */
762 	tr->req->cmd.prp1 = seg[0].ds_addr;
763 
764 	if (nseg == 2) {
765 		tr->req->cmd.prp2 = seg[1].ds_addr;
766 	} else if (nseg > 2) {
767 		cur_nseg = 1;
768 		tr->req->cmd.prp2 = (uint64_t)tr->prp_bus_addr;
769 		while (cur_nseg < nseg) {
770 			tr->prp[cur_nseg-1] =
771 			    (uint64_t)seg[cur_nseg].ds_addr;
772 			cur_nseg++;
773 		}
774 	} else {
775 		/*
776 		 * prp2 should not be used by the controller
777 		 *  since there is only one segment, but set
778 		 *  to 0 just to be safe.
779 		 */
780 		tr->req->cmd.prp2 = 0;
781 	}
782 
783 	nvme_qpair_submit_tracker(tr->qpair, tr);
784 }
785 
786 static void
787 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
788 {
789 	struct nvme_tracker	*tr;
790 	int			err = 0;
791 
792 	mtx_assert(&qpair->lock, MA_OWNED);
793 
794 	tr = TAILQ_FIRST(&qpair->free_tr);
795 	req->qpair = qpair;
796 
797 	if (tr == NULL || !qpair->is_enabled) {
798 		/*
799 		 * No tracker is available, or the qpair is disabled due to
800 		 *  an in-progress controller-level reset or controller
801 		 *  failure.
802 		 */
803 
804 		if (qpair->ctrlr->is_failed) {
805 			/*
806 			 * The controller has failed.  Post the request to a
807 			 *  task where it will be aborted, so that we do not
808 			 *  invoke the request's callback in the context
809 			 *  of the submission.
810 			 */
811 			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
812 		} else {
813 			/*
814 			 * Put the request on the qpair's request queue to be
815 			 *  processed when a tracker frees up via a command
816 			 *  completion or when the controller reset is
817 			 *  completed.
818 			 */
819 			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
820 		}
821 		return;
822 	}
823 
824 	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
825 	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
826 	tr->req = req;
827 
828 	switch (req->type) {
829 	case NVME_REQUEST_VADDR:
830 		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
831 		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
832 		    req->payload_size, qpair->ctrlr->max_xfer_size));
833 		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
834 		    tr->payload_dma_map, req->u.payload, req->payload_size,
835 		    nvme_payload_map, tr, 0);
836 		if (err != 0)
837 			nvme_printf(qpair->ctrlr,
838 			    "bus_dmamap_load returned 0x%x!\n", err);
839 		break;
840 	case NVME_REQUEST_NULL:
841 		nvme_qpair_submit_tracker(tr->qpair, tr);
842 		break;
843 #ifdef NVME_UNMAPPED_BIO_SUPPORT
844 	case NVME_REQUEST_BIO:
845 		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
846 		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
847 		    (intmax_t)req->u.bio->bio_bcount,
848 		    qpair->ctrlr->max_xfer_size));
849 		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
850 		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
851 		if (err != 0)
852 			nvme_printf(qpair->ctrlr,
853 			    "bus_dmamap_load_bio returned 0x%x!\n", err);
854 		break;
855 #endif
856 	case NVME_REQUEST_CCB:
857 		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
858 		    tr->payload_dma_map, req->u.payload,
859 		    nvme_payload_map, tr, 0);
860 		if (err != 0)
861 			nvme_printf(qpair->ctrlr,
862 			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
863 		break;
864 	default:
865 		panic("unknown nvme request type 0x%x\n", req->type);
866 		break;
867 	}
868 
869 	if (err != 0) {
870 		/*
871 		 * The dmamap operation failed, so we manually fail the
872 		 *  tracker here with DATA_TRANSFER_ERROR status.
873 		 *
874 		 * nvme_qpair_manual_complete_tracker must not be called
875 		 *  with the qpair lock held.
876 		 */
877 		mtx_unlock(&qpair->lock);
878 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
879 		    NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE);
880 		mtx_lock(&qpair->lock);
881 	}
882 }
883 
884 void
885 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
886 {
887 
888 	mtx_lock(&qpair->lock);
889 	_nvme_qpair_submit_request(qpair, req);
890 	mtx_unlock(&qpair->lock);
891 }
892 
893 static void
894 nvme_qpair_enable(struct nvme_qpair *qpair)
895 {
896 
897 	qpair->is_enabled = TRUE;
898 }
899 
900 void
901 nvme_qpair_reset(struct nvme_qpair *qpair)
902 {
903 
904 	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
905 
906 	/*
907 	 * First time through the completion queue, HW will set phase
908 	 *  bit on completions to 1.  So set this to 1 here, indicating
909 	 *  we're looking for a 1 to know which entries have completed.
910 	 *  we'll toggle the bit each time when the completion queue
911 	 *  rolls over.
912 	 */
913 	qpair->phase = 1;
914 
915 	memset(qpair->cmd, 0,
916 	    qpair->num_entries * sizeof(struct nvme_command));
917 	memset(qpair->cpl, 0,
918 	    qpair->num_entries * sizeof(struct nvme_completion));
919 }
920 
921 void
922 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
923 {
924 	struct nvme_tracker		*tr;
925 	struct nvme_tracker		*tr_temp;
926 
927 	/*
928 	 * Manually abort each outstanding admin command.  Do not retry
929 	 *  admin commands found here, since they will be left over from
930 	 *  a controller reset and its likely the context in which the
931 	 *  command was issued no longer applies.
932 	 */
933 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
934 		nvme_printf(qpair->ctrlr,
935 		    "aborting outstanding admin command\n");
936 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
937 		    NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
938 	}
939 
940 	nvme_qpair_enable(qpair);
941 }
942 
943 void
944 nvme_io_qpair_enable(struct nvme_qpair *qpair)
945 {
946 	STAILQ_HEAD(, nvme_request)	temp;
947 	struct nvme_tracker		*tr;
948 	struct nvme_tracker		*tr_temp;
949 	struct nvme_request		*req;
950 
951 	/*
952 	 * Manually abort each outstanding I/O.  This normally results in a
953 	 *  retry, unless the retry count on the associated request has
954 	 *  reached its limit.
955 	 */
956 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
957 		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
958 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
959 		    NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
960 	}
961 
962 	mtx_lock(&qpair->lock);
963 
964 	nvme_qpair_enable(qpair);
965 
966 	STAILQ_INIT(&temp);
967 	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
968 
969 	while (!STAILQ_EMPTY(&temp)) {
970 		req = STAILQ_FIRST(&temp);
971 		STAILQ_REMOVE_HEAD(&temp, stailq);
972 		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
973 		nvme_qpair_print_command(qpair, &req->cmd);
974 		_nvme_qpair_submit_request(qpair, req);
975 	}
976 
977 	mtx_unlock(&qpair->lock);
978 }
979 
980 static void
981 nvme_qpair_disable(struct nvme_qpair *qpair)
982 {
983 	struct nvme_tracker *tr;
984 
985 	qpair->is_enabled = FALSE;
986 	mtx_lock(&qpair->lock);
987 	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
988 		callout_stop(&tr->timer);
989 	mtx_unlock(&qpair->lock);
990 }
991 
992 void
993 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
994 {
995 
996 	nvme_qpair_disable(qpair);
997 	nvme_admin_qpair_abort_aers(qpair);
998 }
999 
1000 void
1001 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1002 {
1003 
1004 	nvme_qpair_disable(qpair);
1005 }
1006 
1007 void
1008 nvme_qpair_fail(struct nvme_qpair *qpair)
1009 {
1010 	struct nvme_tracker		*tr;
1011 	struct nvme_request		*req;
1012 
1013 	if (!mtx_initialized(&qpair->lock))
1014 		return;
1015 
1016 	mtx_lock(&qpair->lock);
1017 
1018 	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1019 		req = STAILQ_FIRST(&qpair->queued_req);
1020 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1021 		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1022 		mtx_unlock(&qpair->lock);
1023 		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1024 		    NVME_SC_ABORTED_BY_REQUEST, TRUE);
1025 		mtx_lock(&qpair->lock);
1026 	}
1027 
1028 	/* Manually abort each outstanding I/O. */
1029 	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1030 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1031 		/*
1032 		 * Do not remove the tracker.  The abort_tracker path will
1033 		 *  do that for us.
1034 		 */
1035 		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1036 		mtx_unlock(&qpair->lock);
1037 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1038 		    NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
1039 		mtx_lock(&qpair->lock);
1040 	}
1041 
1042 	mtx_unlock(&qpair->lock);
1043 }
1044 
1045