xref: /freebsd/sys/dev/nvme/nvme_qpair.c (revision 0705bb9de50b128540428cb7f0e0b0ba8be77d55)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/domainset.h>
36 #include <sys/proc.h>
37 
38 #include <dev/pci/pcivar.h>
39 
40 #include "nvme_private.h"
41 
42 typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
43 #define DO_NOT_RETRY	1
44 
45 static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
46 					   struct nvme_request *req);
47 static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
48 
49 struct nvme_opcode_string {
50 
51 	uint16_t	opc;
52 	const char *	str;
53 };
54 
55 static struct nvme_opcode_string admin_opcode[] = {
56 	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
57 	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
58 	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
59 	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
60 	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
61 	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
62 	{ NVME_OPC_ABORT, "ABORT" },
63 	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
64 	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
65 	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
66 	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
67 	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
68 	{ NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
69 	{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
70 	{ NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
71 	{ NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
72 	{ NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
73 	{ NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
74 	{ NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
75 	{ NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
76 	{ NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
77 	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
78 	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
79 	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
80 	{ NVME_OPC_SANITIZE, "SANITIZE" },
81 	{ NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
82 	{ 0xFFFF, "ADMIN COMMAND" }
83 };
84 
85 static struct nvme_opcode_string io_opcode[] = {
86 	{ NVME_OPC_FLUSH, "FLUSH" },
87 	{ NVME_OPC_WRITE, "WRITE" },
88 	{ NVME_OPC_READ, "READ" },
89 	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
90 	{ NVME_OPC_COMPARE, "COMPARE" },
91 	{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
92 	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
93 	{ NVME_OPC_VERIFY, "VERIFY" },
94 	{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
95 	{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
96 	{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
97 	{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
98 	{ 0xFFFF, "IO COMMAND" }
99 };
100 
101 static const char *
102 get_admin_opcode_string(uint16_t opc)
103 {
104 	struct nvme_opcode_string *entry;
105 
106 	entry = admin_opcode;
107 
108 	while (entry->opc != 0xFFFF) {
109 		if (entry->opc == opc)
110 			return (entry->str);
111 		entry++;
112 	}
113 	return (entry->str);
114 }
115 
116 static const char *
117 get_io_opcode_string(uint16_t opc)
118 {
119 	struct nvme_opcode_string *entry;
120 
121 	entry = io_opcode;
122 
123 	while (entry->opc != 0xFFFF) {
124 		if (entry->opc == opc)
125 			return (entry->str);
126 		entry++;
127 	}
128 	return (entry->str);
129 }
130 
131 
132 static void
133 nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
134     struct nvme_command *cmd)
135 {
136 
137 	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
138 	    "cdw10:%08x cdw11:%08x\n",
139 	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
140 	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
141 }
142 
143 static void
144 nvme_io_qpair_print_command(struct nvme_qpair *qpair,
145     struct nvme_command *cmd)
146 {
147 
148 	switch (cmd->opc) {
149 	case NVME_OPC_WRITE:
150 	case NVME_OPC_READ:
151 	case NVME_OPC_WRITE_UNCORRECTABLE:
152 	case NVME_OPC_COMPARE:
153 	case NVME_OPC_WRITE_ZEROES:
154 	case NVME_OPC_VERIFY:
155 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
156 		    "lba:%llu len:%d\n",
157 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
158 		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
159 		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
160 		break;
161 	case NVME_OPC_FLUSH:
162 	case NVME_OPC_DATASET_MANAGEMENT:
163 	case NVME_OPC_RESERVATION_REGISTER:
164 	case NVME_OPC_RESERVATION_REPORT:
165 	case NVME_OPC_RESERVATION_ACQUIRE:
166 	case NVME_OPC_RESERVATION_RELEASE:
167 		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
168 		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
169 		break;
170 	default:
171 		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
172 		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
173 		    cmd->cid, le32toh(cmd->nsid));
174 		break;
175 	}
176 }
177 
178 static void
179 nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
180 {
181 	if (qpair->id == 0)
182 		nvme_admin_qpair_print_command(qpair, cmd);
183 	else
184 		nvme_io_qpair_print_command(qpair, cmd);
185 	if (nvme_verbose_cmd_dump) {
186 		nvme_printf(qpair->ctrlr,
187 		    "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
188 		    cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
189 		    (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
190 		nvme_printf(qpair->ctrlr,
191 		    "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
192 		    cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
193 		    cmd->cdw15);
194 	}
195 }
196 
197 struct nvme_status_string {
198 
199 	uint16_t	sc;
200 	const char *	str;
201 };
202 
203 static struct nvme_status_string generic_status[] = {
204 	{ NVME_SC_SUCCESS, "SUCCESS" },
205 	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
206 	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
207 	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
208 	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
209 	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
210 	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
211 	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
212 	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
213 	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
214 	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
215 	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
216 	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
217 	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
218 	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
219 	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
220 	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
221 	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
222 	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
223 	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
224 	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
225 	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
226 	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
227 	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
228 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
229 	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
230 	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
231 	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
232 	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
233 	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
234 	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
235 	{ NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
236 	{ NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
237 	{ NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
238 
239 	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
240 	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
241 	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
242 	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
243 	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
244 	{ 0xFFFF, "GENERIC" }
245 };
246 
247 static struct nvme_status_string command_specific_status[] = {
248 	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
249 	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
250 	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
251 	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
252 	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
253 	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
254 	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
255 	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
256 	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
257 	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
258 	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
259 	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
260 	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
261 	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
262 	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
263 	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
264 	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
265 	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
266 	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
267 	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
268 	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
269 	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
270 	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
271 	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
272 	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
273 	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
274 	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
275 	{ NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
276 	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
277 	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
278 	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
279 	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
280 	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
281 	{ NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
282 	{ NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
283 	{ NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
284 
285 	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
286 	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
287 	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
288 	{ 0xFFFF, "COMMAND SPECIFIC" }
289 };
290 
291 static struct nvme_status_string media_error_status[] = {
292 	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
293 	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
294 	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
295 	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
296 	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
297 	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
298 	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
299 	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
300 	{ 0xFFFF, "MEDIA ERROR" }
301 };
302 
303 static struct nvme_status_string path_related_status[] = {
304 	{ NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
305 	{ NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
306 	{ NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
307 	{ NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
308 	{ NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
309 	{ NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
310 	{ NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
311 	{ 0xFFFF, "PATH RELATED" },
312 };
313 
314 static const char *
315 get_status_string(uint16_t sct, uint16_t sc)
316 {
317 	struct nvme_status_string *entry;
318 
319 	switch (sct) {
320 	case NVME_SCT_GENERIC:
321 		entry = generic_status;
322 		break;
323 	case NVME_SCT_COMMAND_SPECIFIC:
324 		entry = command_specific_status;
325 		break;
326 	case NVME_SCT_MEDIA_ERROR:
327 		entry = media_error_status;
328 		break;
329 	case NVME_SCT_PATH_RELATED:
330 		entry = path_related_status;
331 		break;
332 	case NVME_SCT_VENDOR_SPECIFIC:
333 		return ("VENDOR SPECIFIC");
334 	default:
335 		return ("RESERVED");
336 	}
337 
338 	while (entry->sc != 0xFFFF) {
339 		if (entry->sc == sc)
340 			return (entry->str);
341 		entry++;
342 	}
343 	return (entry->str);
344 }
345 
346 static void
347 nvme_qpair_print_completion(struct nvme_qpair *qpair,
348     struct nvme_completion *cpl)
349 {
350 	uint16_t sct, sc;
351 
352 	sct = NVME_STATUS_GET_SCT(cpl->status);
353 	sc = NVME_STATUS_GET_SC(cpl->status);
354 
355 	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
356 	    get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
357 	    cpl->cdw0);
358 }
359 
360 static boolean_t
361 nvme_completion_is_retry(const struct nvme_completion *cpl)
362 {
363 	uint8_t sct, sc, dnr;
364 
365 	sct = NVME_STATUS_GET_SCT(cpl->status);
366 	sc = NVME_STATUS_GET_SC(cpl->status);
367 	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */
368 
369 	/*
370 	 * TODO: spec is not clear how commands that are aborted due
371 	 *  to TLER will be marked.  So for now, it seems
372 	 *  NAMESPACE_NOT_READY is the only case where we should
373 	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
374 	 *  set the DNR bit correctly since the driver controls that.
375 	 */
376 	switch (sct) {
377 	case NVME_SCT_GENERIC:
378 		switch (sc) {
379 		case NVME_SC_ABORTED_BY_REQUEST:
380 		case NVME_SC_NAMESPACE_NOT_READY:
381 			if (dnr)
382 				return (0);
383 			else
384 				return (1);
385 		case NVME_SC_INVALID_OPCODE:
386 		case NVME_SC_INVALID_FIELD:
387 		case NVME_SC_COMMAND_ID_CONFLICT:
388 		case NVME_SC_DATA_TRANSFER_ERROR:
389 		case NVME_SC_ABORTED_POWER_LOSS:
390 		case NVME_SC_INTERNAL_DEVICE_ERROR:
391 		case NVME_SC_ABORTED_SQ_DELETION:
392 		case NVME_SC_ABORTED_FAILED_FUSED:
393 		case NVME_SC_ABORTED_MISSING_FUSED:
394 		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
395 		case NVME_SC_COMMAND_SEQUENCE_ERROR:
396 		case NVME_SC_LBA_OUT_OF_RANGE:
397 		case NVME_SC_CAPACITY_EXCEEDED:
398 		default:
399 			return (0);
400 		}
401 	case NVME_SCT_COMMAND_SPECIFIC:
402 	case NVME_SCT_MEDIA_ERROR:
403 		return (0);
404 	case NVME_SCT_PATH_RELATED:
405 		switch (sc) {
406 		case NVME_SC_INTERNAL_PATH_ERROR:
407 			if (dnr)
408 				return (0);
409 			else
410 				return (1);
411 		default:
412 			return (0);
413 		}
414 	case NVME_SCT_VENDOR_SPECIFIC:
415 	default:
416 		return (0);
417 	}
418 }
419 
420 static void
421 nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
422     struct nvme_completion *cpl, error_print_t print_on_error)
423 {
424 	struct nvme_request	*req;
425 	boolean_t		retry, error, retriable;
426 
427 	req = tr->req;
428 	error = nvme_completion_is_error(cpl);
429 	retriable = nvme_completion_is_retry(cpl);
430 	retry = error && retriable && req->retries < nvme_retry_count;
431 	if (retry)
432 		qpair->num_retries++;
433 	if (error && req->retries >= nvme_retry_count && retriable)
434 		qpair->num_failures++;
435 
436 	if (error && (print_on_error == ERROR_PRINT_ALL ||
437 		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
438 		nvme_qpair_print_command(qpair, &req->cmd);
439 		nvme_qpair_print_completion(qpair, cpl);
440 	}
441 
442 	qpair->act_tr[cpl->cid] = NULL;
443 
444 	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
445 
446 	if (req->cb_fn && !retry)
447 		req->cb_fn(req->cb_arg, cpl);
448 
449 	mtx_lock(&qpair->lock);
450 	callout_stop(&tr->timer);
451 
452 	if (retry) {
453 		req->retries++;
454 		nvme_qpair_submit_tracker(qpair, tr);
455 	} else {
456 		if (req->type != NVME_REQUEST_NULL) {
457 			bus_dmamap_sync(qpair->dma_tag_payload,
458 			    tr->payload_dma_map,
459 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
460 			bus_dmamap_unload(qpair->dma_tag_payload,
461 			    tr->payload_dma_map);
462 		}
463 
464 		nvme_free_request(req);
465 		tr->req = NULL;
466 
467 		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
468 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
469 
470 		/*
471 		 * If the controller is in the middle of resetting, don't
472 		 *  try to submit queued requests here - let the reset logic
473 		 *  handle that instead.
474 		 */
475 		if (!STAILQ_EMPTY(&qpair->queued_req) &&
476 		    !qpair->ctrlr->is_resetting) {
477 			req = STAILQ_FIRST(&qpair->queued_req);
478 			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
479 			_nvme_qpair_submit_request(qpair, req);
480 		}
481 	}
482 
483 	mtx_unlock(&qpair->lock);
484 }
485 
486 static void
487 nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
488     struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
489     error_print_t print_on_error)
490 {
491 	struct nvme_completion	cpl;
492 
493 	memset(&cpl, 0, sizeof(cpl));
494 	cpl.sqid = qpair->id;
495 	cpl.cid = tr->cid;
496 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
497 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
498 	cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
499 	nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
500 }
501 
502 void
503 nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
504     struct nvme_request *req, uint32_t sct, uint32_t sc)
505 {
506 	struct nvme_completion	cpl;
507 	boolean_t		error;
508 
509 	memset(&cpl, 0, sizeof(cpl));
510 	cpl.sqid = qpair->id;
511 	cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
512 	cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
513 
514 	error = nvme_completion_is_error(&cpl);
515 
516 	if (error) {
517 		nvme_qpair_print_command(qpair, &req->cmd);
518 		nvme_qpair_print_completion(qpair, &cpl);
519 	}
520 
521 	if (req->cb_fn)
522 		req->cb_fn(req->cb_arg, &cpl);
523 
524 	nvme_free_request(req);
525 }
526 
527 bool
528 nvme_qpair_process_completions(struct nvme_qpair *qpair)
529 {
530 	struct nvme_tracker	*tr;
531 	struct nvme_completion	cpl;
532 	int done = 0;
533 	bool in_panic = dumping || SCHEDULER_STOPPED();
534 
535 	qpair->num_intr_handler_calls++;
536 
537 	/*
538 	 * qpair is not enabled, likely because a controller reset is is in
539 	 * progress.  Ignore the interrupt - any I/O that was associated with
540 	 * this interrupt will get retried when the reset is complete.
541 	 */
542 	if (!qpair->is_enabled)
543 		return (false);
544 
545 	/*
546 	 * A panic can stop the CPU this routine is running on at any point.  If
547 	 * we're called during a panic, complete the sq_head wrap protocol for
548 	 * the case where we are interrupted just after the increment at 1
549 	 * below, but before we can reset cq_head to zero at 2. Also cope with
550 	 * the case where we do the zero at 2, but may or may not have done the
551 	 * phase adjustment at step 3. The panic machinery flushes all pending
552 	 * memory writes, so we can make these strong ordering assumptions
553 	 * that would otherwise be unwise if we were racing in real time.
554 	 */
555 	if (__predict_false(in_panic)) {
556 		if (qpair->cq_head == qpair->num_entries) {
557 			/*
558 			 * Here we know that we need to zero cq_head and then negate
559 			 * the phase, which hasn't been assigned if cq_head isn't
560 			 * zero due to the atomic_store_rel.
561 			 */
562 			qpair->cq_head = 0;
563 			qpair->phase = !qpair->phase;
564 		} else if (qpair->cq_head == 0) {
565 			/*
566 			 * In this case, we know that the assignment at 2
567 			 * happened below, but we don't know if it 3 happened or
568 			 * not. To do this, we look at the last completion
569 			 * entry and set the phase to the opposite phase
570 			 * that it has. This gets us back in sync
571 			 */
572 			cpl = qpair->cpl[qpair->num_entries - 1];
573 			nvme_completion_swapbytes(&cpl);
574 			qpair->phase = !NVME_STATUS_GET_P(cpl.status);
575 		}
576 	}
577 
578 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
579 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
580 	while (1) {
581 		cpl = qpair->cpl[qpair->cq_head];
582 
583 		/* Convert to host endian */
584 		nvme_completion_swapbytes(&cpl);
585 
586 		if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
587 			break;
588 
589 		tr = qpair->act_tr[cpl.cid];
590 
591 		if (tr != NULL) {
592 			nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
593 			qpair->sq_head = cpl.sqhd;
594 			done++;
595 		} else if (!in_panic) {
596 			/*
597 			 * A missing tracker is normally an error.  However, a
598 			 * panic can stop the CPU this routine is running on
599 			 * after completing an I/O but before updating
600 			 * qpair->cq_head at 1 below.  Later, we re-enter this
601 			 * routine to poll I/O associated with the kernel
602 			 * dump. We find that the tr has been set to null before
603 			 * calling the completion routine.  If it hasn't
604 			 * completed (or it triggers a panic), then '1' below
605 			 * won't have updated cq_head. Rather than panic again,
606 			 * ignore this condition because it's not unexpected.
607 			 */
608 			nvme_printf(qpair->ctrlr,
609 			    "cpl does not map to outstanding cmd\n");
610 			/* nvme_dump_completion expects device endianess */
611 			nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
612 			KASSERT(0, ("received completion for unknown cmd"));
613 		}
614 
615 		/*
616 		 * There's a number of races with the following (see above) when
617 		 * the system panics. We compensate for each one of them by
618 		 * using the atomic store to force strong ordering (at least when
619 		 * viewed in the aftermath of a panic).
620 		 */
621 		if (++qpair->cq_head == qpair->num_entries) {		/* 1 */
622 			atomic_store_rel_int(&qpair->cq_head, 0);	/* 2 */
623 			qpair->phase = !qpair->phase;			/* 3 */
624 		}
625 
626 		bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
627 		    qpair->cq_hdbl_off, qpair->cq_head);
628 	}
629 	return (done != 0);
630 }
631 
632 static void
633 nvme_qpair_msix_handler(void *arg)
634 {
635 	struct nvme_qpair *qpair = arg;
636 
637 	nvme_qpair_process_completions(qpair);
638 }
639 
640 int
641 nvme_qpair_construct(struct nvme_qpair *qpair,
642     uint32_t num_entries, uint32_t num_trackers,
643     struct nvme_controller *ctrlr)
644 {
645 	struct nvme_tracker	*tr;
646 	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
647 	uint64_t		queuemem_phys, prpmem_phys, list_phys;
648 	uint8_t			*queuemem, *prpmem, *prp_list;
649 	int			i, err;
650 
651 	qpair->vector = ctrlr->msix_enabled ? qpair->id : 0;
652 	qpair->num_entries = num_entries;
653 	qpair->num_trackers = num_trackers;
654 	qpair->ctrlr = ctrlr;
655 
656 	if (ctrlr->msix_enabled) {
657 
658 		/*
659 		 * MSI-X vector resource IDs start at 1, so we add one to
660 		 *  the queue's vector to get the corresponding rid to use.
661 		 */
662 		qpair->rid = qpair->vector + 1;
663 
664 		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
665 		    &qpair->rid, RF_ACTIVE);
666 		bus_setup_intr(ctrlr->dev, qpair->res,
667 		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
668 		    nvme_qpair_msix_handler, qpair, &qpair->tag);
669 		if (qpair->id == 0) {
670 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
671 			    "admin");
672 		} else {
673 			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
674 			    "io%d", qpair->id - 1);
675 		}
676 	}
677 
678 	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
679 
680 	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
681 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
682 	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
683 	    BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
684 	    (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
685 	    NULL, NULL, &qpair->dma_tag_payload);
686 	if (err != 0) {
687 		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
688 		goto out;
689 	}
690 
691 	/*
692 	 * Each component must be page aligned, and individual PRP lists
693 	 * cannot cross a page boundary.
694 	 */
695 	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
696 	cmdsz = roundup2(cmdsz, PAGE_SIZE);
697 	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
698 	cplsz = roundup2(cplsz, PAGE_SIZE);
699 	prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
700 	prpmemsz = qpair->num_trackers * prpsz;
701 	allocsz = cmdsz + cplsz + prpmemsz;
702 
703 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
704 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
705 	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
706 	if (err != 0) {
707 		nvme_printf(ctrlr, "tag create failed %d\n", err);
708 		goto out;
709 	}
710 	bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
711 
712 	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
713 	    BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
714 		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
715 		goto out;
716 	}
717 
718 	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
719 	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
720 		nvme_printf(ctrlr, "failed to load qpair memory\n");
721 		goto out;
722 	}
723 
724 	qpair->num_cmds = 0;
725 	qpair->num_intr_handler_calls = 0;
726 	qpair->num_retries = 0;
727 	qpair->num_failures = 0;
728 	qpair->cmd = (struct nvme_command *)queuemem;
729 	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
730 	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
731 	qpair->cmd_bus_addr = queuemem_phys;
732 	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
733 	prpmem_phys = queuemem_phys + cmdsz + cplsz;
734 
735 	/*
736 	 * Calcuate the stride of the doorbell register. Many emulators set this
737 	 * value to correspond to a cache line. However, some hardware has set
738 	 * it to various small values.
739 	 */
740 	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
741 	    (qpair->id << (ctrlr->dstrd + 1));
742 	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
743 	    (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
744 
745 	TAILQ_INIT(&qpair->free_tr);
746 	TAILQ_INIT(&qpair->outstanding_tr);
747 	STAILQ_INIT(&qpair->queued_req);
748 
749 	list_phys = prpmem_phys;
750 	prp_list = prpmem;
751 	for (i = 0; i < qpair->num_trackers; i++) {
752 
753 		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
754 			qpair->num_trackers = i;
755 			break;
756 		}
757 
758 		/*
759 		 * Make sure that the PRP list for this tracker doesn't
760 		 * overflow to another page.
761 		 */
762 		if (trunc_page(list_phys) !=
763 		    trunc_page(list_phys + prpsz - 1)) {
764 			list_phys = roundup2(list_phys, PAGE_SIZE);
765 			prp_list =
766 			    (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
767 		}
768 
769 		tr = malloc_domainset(sizeof(*tr), M_NVME,
770 		    DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
771 		bus_dmamap_create(qpair->dma_tag_payload, 0,
772 		    &tr->payload_dma_map);
773 		callout_init(&tr->timer, 1);
774 		tr->cid = i;
775 		tr->qpair = qpair;
776 		tr->prp = (uint64_t *)prp_list;
777 		tr->prp_bus_addr = list_phys;
778 		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
779 		list_phys += prpsz;
780 		prp_list += prpsz;
781 	}
782 
783 	if (qpair->num_trackers == 0) {
784 		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
785 		goto out;
786 	}
787 
788 	qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
789 	    qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
790 	    M_ZERO | M_WAITOK);
791 	return (0);
792 
793 out:
794 	nvme_qpair_destroy(qpair);
795 	return (ENOMEM);
796 }
797 
798 static void
799 nvme_qpair_destroy(struct nvme_qpair *qpair)
800 {
801 	struct nvme_tracker	*tr;
802 
803 	if (qpair->tag)
804 		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
805 
806 	if (mtx_initialized(&qpair->lock))
807 		mtx_destroy(&qpair->lock);
808 
809 	if (qpair->res)
810 		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
811 		    rman_get_rid(qpair->res), qpair->res);
812 
813 	if (qpair->cmd != NULL) {
814 		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
815 		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
816 		    qpair->queuemem_map);
817 	}
818 
819 	if (qpair->act_tr)
820 		free_domain(qpair->act_tr, M_NVME);
821 
822 	while (!TAILQ_EMPTY(&qpair->free_tr)) {
823 		tr = TAILQ_FIRST(&qpair->free_tr);
824 		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
825 		bus_dmamap_destroy(qpair->dma_tag_payload,
826 		    tr->payload_dma_map);
827 		free_domain(tr, M_NVME);
828 	}
829 
830 	if (qpair->dma_tag)
831 		bus_dma_tag_destroy(qpair->dma_tag);
832 
833 	if (qpair->dma_tag_payload)
834 		bus_dma_tag_destroy(qpair->dma_tag_payload);
835 }
836 
837 static void
838 nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
839 {
840 	struct nvme_tracker	*tr;
841 
842 	tr = TAILQ_FIRST(&qpair->outstanding_tr);
843 	while (tr != NULL) {
844 		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
845 			nvme_qpair_manual_complete_tracker(qpair, tr,
846 			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
847 			    ERROR_PRINT_NONE);
848 			tr = TAILQ_FIRST(&qpair->outstanding_tr);
849 		} else {
850 			tr = TAILQ_NEXT(tr, tailq);
851 		}
852 	}
853 }
854 
855 void
856 nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
857 {
858 
859 	nvme_admin_qpair_abort_aers(qpair);
860 	nvme_qpair_destroy(qpair);
861 }
862 
863 void
864 nvme_io_qpair_destroy(struct nvme_qpair *qpair)
865 {
866 
867 	nvme_qpair_destroy(qpair);
868 }
869 
870 static void
871 nvme_abort_complete(void *arg, const struct nvme_completion *status)
872 {
873 	struct nvme_tracker	*tr = arg;
874 
875 	/*
876 	 * If cdw0 == 1, the controller was not able to abort the command
877 	 *  we requested.  We still need to check the active tracker array,
878 	 *  to cover race where I/O timed out at same time controller was
879 	 *  completing the I/O.
880 	 */
881 	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
882 		/*
883 		 * An I/O has timed out, and the controller was unable to
884 		 *  abort it for some reason.  Construct a fake completion
885 		 *  status, and then complete the I/O's tracker manually.
886 		 */
887 		nvme_printf(tr->qpair->ctrlr,
888 		    "abort command failed, aborting command manually\n");
889 		nvme_qpair_manual_complete_tracker(tr->qpair, tr,
890 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
891 	}
892 }
893 
894 static void
895 nvme_timeout(void *arg)
896 {
897 	struct nvme_tracker	*tr = arg;
898 	struct nvme_qpair	*qpair = tr->qpair;
899 	struct nvme_controller	*ctrlr = qpair->ctrlr;
900 	uint32_t		csts;
901 	uint8_t			cfs;
902 
903 	/*
904 	 * Read csts to get value of cfs - controller fatal status.
905 	 * If no fatal status, try to call the completion routine, and
906 	 * if completes transactions, report a missed interrupt and
907 	 * return (this may need to be rate limited). Otherwise, if
908 	 * aborts are enabled and the controller is not reporting
909 	 * fatal status, abort the command. Otherwise, just reset the
910 	 * controller and hope for the best.
911 	 */
912 	csts = nvme_mmio_read_4(ctrlr, csts);
913 	cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
914 	if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
915 		nvme_printf(ctrlr, "Missing interrupt\n");
916 		return;
917 	}
918 	if (ctrlr->enable_aborts && cfs == 0) {
919 		nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
920 		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
921 		    nvme_abort_complete, tr);
922 	} else {
923 		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
924 		    (csts == 0xffffffff) ? " and possible hot unplug" :
925 		    (cfs ? " and fatal error status" : ""));
926 		nvme_ctrlr_reset(ctrlr);
927 	}
928 }
929 
930 void
931 nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
932 {
933 	struct nvme_request	*req;
934 	struct nvme_controller	*ctrlr;
935 
936 	mtx_assert(&qpair->lock, MA_OWNED);
937 
938 	req = tr->req;
939 	req->cmd.cid = tr->cid;
940 	qpair->act_tr[tr->cid] = tr;
941 	ctrlr = qpair->ctrlr;
942 
943 	if (req->timeout)
944 		callout_reset_on(&tr->timer, ctrlr->timeout_period * hz,
945 		    nvme_timeout, tr, qpair->cpu);
946 
947 	/* Copy the command from the tracker to the submission queue. */
948 	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
949 
950 	if (++qpair->sq_tail == qpair->num_entries)
951 		qpair->sq_tail = 0;
952 
953 	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
954 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
955 #ifndef __powerpc__
956 	/*
957 	 * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
958 	 * no other archs do.
959 	 */
960 	wmb();
961 #endif
962 
963 	bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
964 	    qpair->sq_tdbl_off, qpair->sq_tail);
965 	qpair->num_cmds++;
966 }
967 
968 static void
969 nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
970 {
971 	struct nvme_tracker 	*tr = arg;
972 	uint32_t		cur_nseg;
973 
974 	/*
975 	 * If the mapping operation failed, return immediately.  The caller
976 	 *  is responsible for detecting the error status and failing the
977 	 *  tracker manually.
978 	 */
979 	if (error != 0) {
980 		nvme_printf(tr->qpair->ctrlr,
981 		    "nvme_payload_map err %d\n", error);
982 		return;
983 	}
984 
985 	/*
986 	 * Note that we specified PAGE_SIZE for alignment and max
987 	 *  segment size when creating the bus dma tags.  So here
988 	 *  we can safely just transfer each segment to its
989 	 *  associated PRP entry.
990 	 */
991 	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
992 
993 	if (nseg == 2) {
994 		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
995 	} else if (nseg > 2) {
996 		cur_nseg = 1;
997 		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
998 		while (cur_nseg < nseg) {
999 			tr->prp[cur_nseg-1] =
1000 			    htole64((uint64_t)seg[cur_nseg].ds_addr);
1001 			cur_nseg++;
1002 		}
1003 	} else {
1004 		/*
1005 		 * prp2 should not be used by the controller
1006 		 *  since there is only one segment, but set
1007 		 *  to 0 just to be safe.
1008 		 */
1009 		tr->req->cmd.prp2 = 0;
1010 	}
1011 
1012 	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1013 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1014 	nvme_qpair_submit_tracker(tr->qpair, tr);
1015 }
1016 
1017 static void
1018 _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1019 {
1020 	struct nvme_tracker	*tr;
1021 	int			err = 0;
1022 
1023 	mtx_assert(&qpair->lock, MA_OWNED);
1024 
1025 	tr = TAILQ_FIRST(&qpair->free_tr);
1026 	req->qpair = qpair;
1027 
1028 	if (tr == NULL || !qpair->is_enabled) {
1029 		/*
1030 		 * No tracker is available, or the qpair is disabled due to
1031 		 *  an in-progress controller-level reset or controller
1032 		 *  failure.
1033 		 */
1034 
1035 		if (qpair->ctrlr->is_failed) {
1036 			/*
1037 			 * The controller has failed.  Post the request to a
1038 			 *  task where it will be aborted, so that we do not
1039 			 *  invoke the request's callback in the context
1040 			 *  of the submission.
1041 			 */
1042 			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
1043 		} else {
1044 			/*
1045 			 * Put the request on the qpair's request queue to be
1046 			 *  processed when a tracker frees up via a command
1047 			 *  completion or when the controller reset is
1048 			 *  completed.
1049 			 */
1050 			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1051 		}
1052 		return;
1053 	}
1054 
1055 	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1056 	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1057 	tr->req = req;
1058 
1059 	switch (req->type) {
1060 	case NVME_REQUEST_VADDR:
1061 		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1062 		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1063 		    req->payload_size, qpair->ctrlr->max_xfer_size));
1064 		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1065 		    tr->payload_dma_map, req->u.payload, req->payload_size,
1066 		    nvme_payload_map, tr, 0);
1067 		if (err != 0)
1068 			nvme_printf(qpair->ctrlr,
1069 			    "bus_dmamap_load returned 0x%x!\n", err);
1070 		break;
1071 	case NVME_REQUEST_NULL:
1072 		nvme_qpair_submit_tracker(tr->qpair, tr);
1073 		break;
1074 	case NVME_REQUEST_BIO:
1075 		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1076 		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1077 		    (intmax_t)req->u.bio->bio_bcount,
1078 		    qpair->ctrlr->max_xfer_size));
1079 		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1080 		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1081 		if (err != 0)
1082 			nvme_printf(qpair->ctrlr,
1083 			    "bus_dmamap_load_bio returned 0x%x!\n", err);
1084 		break;
1085 	case NVME_REQUEST_CCB:
1086 		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1087 		    tr->payload_dma_map, req->u.payload,
1088 		    nvme_payload_map, tr, 0);
1089 		if (err != 0)
1090 			nvme_printf(qpair->ctrlr,
1091 			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
1092 		break;
1093 	default:
1094 		panic("unknown nvme request type 0x%x\n", req->type);
1095 		break;
1096 	}
1097 
1098 	if (err != 0) {
1099 		/*
1100 		 * The dmamap operation failed, so we manually fail the
1101 		 *  tracker here with DATA_TRANSFER_ERROR status.
1102 		 *
1103 		 * nvme_qpair_manual_complete_tracker must not be called
1104 		 *  with the qpair lock held.
1105 		 */
1106 		mtx_unlock(&qpair->lock);
1107 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1108 		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1109 		mtx_lock(&qpair->lock);
1110 	}
1111 }
1112 
1113 void
1114 nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1115 {
1116 
1117 	mtx_lock(&qpair->lock);
1118 	_nvme_qpair_submit_request(qpair, req);
1119 	mtx_unlock(&qpair->lock);
1120 }
1121 
1122 static void
1123 nvme_qpair_enable(struct nvme_qpair *qpair)
1124 {
1125 
1126 	qpair->is_enabled = TRUE;
1127 }
1128 
1129 void
1130 nvme_qpair_reset(struct nvme_qpair *qpair)
1131 {
1132 
1133 	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1134 
1135 	/*
1136 	 * First time through the completion queue, HW will set phase
1137 	 *  bit on completions to 1.  So set this to 1 here, indicating
1138 	 *  we're looking for a 1 to know which entries have completed.
1139 	 *  we'll toggle the bit each time when the completion queue
1140 	 *  rolls over.
1141 	 */
1142 	qpair->phase = 1;
1143 
1144 	memset(qpair->cmd, 0,
1145 	    qpair->num_entries * sizeof(struct nvme_command));
1146 	memset(qpair->cpl, 0,
1147 	    qpair->num_entries * sizeof(struct nvme_completion));
1148 }
1149 
1150 void
1151 nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1152 {
1153 	struct nvme_tracker		*tr;
1154 	struct nvme_tracker		*tr_temp;
1155 
1156 	/*
1157 	 * Manually abort each outstanding admin command.  Do not retry
1158 	 *  admin commands found here, since they will be left over from
1159 	 *  a controller reset and its likely the context in which the
1160 	 *  command was issued no longer applies.
1161 	 */
1162 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1163 		nvme_printf(qpair->ctrlr,
1164 		    "aborting outstanding admin command\n");
1165 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1166 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1167 	}
1168 
1169 	nvme_qpair_enable(qpair);
1170 }
1171 
1172 void
1173 nvme_io_qpair_enable(struct nvme_qpair *qpair)
1174 {
1175 	STAILQ_HEAD(, nvme_request)	temp;
1176 	struct nvme_tracker		*tr;
1177 	struct nvme_tracker		*tr_temp;
1178 	struct nvme_request		*req;
1179 
1180 	/*
1181 	 * Manually abort each outstanding I/O.  This normally results in a
1182 	 *  retry, unless the retry count on the associated request has
1183 	 *  reached its limit.
1184 	 */
1185 	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1186 		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1187 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1188 		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1189 	}
1190 
1191 	mtx_lock(&qpair->lock);
1192 
1193 	nvme_qpair_enable(qpair);
1194 
1195 	STAILQ_INIT(&temp);
1196 	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1197 
1198 	while (!STAILQ_EMPTY(&temp)) {
1199 		req = STAILQ_FIRST(&temp);
1200 		STAILQ_REMOVE_HEAD(&temp, stailq);
1201 		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1202 		nvme_qpair_print_command(qpair, &req->cmd);
1203 		_nvme_qpair_submit_request(qpair, req);
1204 	}
1205 
1206 	mtx_unlock(&qpair->lock);
1207 }
1208 
1209 static void
1210 nvme_qpair_disable(struct nvme_qpair *qpair)
1211 {
1212 	struct nvme_tracker *tr;
1213 
1214 	qpair->is_enabled = FALSE;
1215 	mtx_lock(&qpair->lock);
1216 	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1217 		callout_stop(&tr->timer);
1218 	mtx_unlock(&qpair->lock);
1219 }
1220 
1221 void
1222 nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1223 {
1224 
1225 	nvme_qpair_disable(qpair);
1226 	nvme_admin_qpair_abort_aers(qpair);
1227 }
1228 
1229 void
1230 nvme_io_qpair_disable(struct nvme_qpair *qpair)
1231 {
1232 
1233 	nvme_qpair_disable(qpair);
1234 }
1235 
1236 void
1237 nvme_qpair_fail(struct nvme_qpair *qpair)
1238 {
1239 	struct nvme_tracker		*tr;
1240 	struct nvme_request		*req;
1241 
1242 	if (!mtx_initialized(&qpair->lock))
1243 		return;
1244 
1245 	mtx_lock(&qpair->lock);
1246 
1247 	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1248 		req = STAILQ_FIRST(&qpair->queued_req);
1249 		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1250 		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1251 		mtx_unlock(&qpair->lock);
1252 		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1253 		    NVME_SC_ABORTED_BY_REQUEST);
1254 		mtx_lock(&qpair->lock);
1255 	}
1256 
1257 	/* Manually abort each outstanding I/O. */
1258 	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1259 		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1260 		/*
1261 		 * Do not remove the tracker.  The abort_tracker path will
1262 		 *  do that for us.
1263 		 */
1264 		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1265 		mtx_unlock(&qpair->lock);
1266 		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1267 		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1268 		mtx_lock(&qpair->lock);
1269 	}
1270 
1271 	mtx_unlock(&qpair->lock);
1272 }
1273 
1274