xref: /freebsd/sys/dev/nvme/nvme_private.h (revision b3e7694832e81d7a904a10f525f8797b753bf0d3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #ifndef __NVME_PRIVATE_H__
30 #define __NVME_PRIVATE_H__
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/memdesc.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/rman.h>
42 #include <sys/systm.h>
43 #include <sys/taskqueue.h>
44 
45 #include <vm/uma.h>
46 
47 #include <machine/bus.h>
48 
49 #include "nvme.h"
50 
51 #define DEVICE2SOFTC(dev) ((struct nvme_controller *) device_get_softc(dev))
52 
53 MALLOC_DECLARE(M_NVME);
54 
55 #define IDT32_PCI_ID		0x80d0111d /* 32 channel board */
56 #define IDT8_PCI_ID		0x80d2111d /* 8 channel board */
57 
58 #define NVME_ADMIN_TRACKERS	(16)
59 #define NVME_ADMIN_ENTRIES	(128)
60 /* min and max are defined in admin queue attributes section of spec */
61 #define NVME_MIN_ADMIN_ENTRIES	(2)
62 #define NVME_MAX_ADMIN_ENTRIES	(4096)
63 
64 /*
65  * NVME_IO_ENTRIES defines the size of an I/O qpair's submission and completion
66  *  queues, while NVME_IO_TRACKERS defines the maximum number of I/O that we
67  *  will allow outstanding on an I/O qpair at any time.  The only advantage in
68  *  having IO_ENTRIES > IO_TRACKERS is for debugging purposes - when dumping
69  *  the contents of the submission and completion queues, it will show a longer
70  *  history of data.
71  */
72 #define NVME_IO_ENTRIES		(256)
73 #define NVME_IO_TRACKERS	(128)
74 #define NVME_MIN_IO_TRACKERS	(4)
75 #define NVME_MAX_IO_TRACKERS	(1024)
76 
77 /*
78  * NVME_MAX_IO_ENTRIES is not defined, since it is specified in CC.MQES
79  *  for each controller.
80  */
81 
82 #define NVME_INT_COAL_TIME	(0)	/* disabled */
83 #define NVME_INT_COAL_THRESHOLD (0)	/* 0-based */
84 
85 #define NVME_MAX_NAMESPACES	(16)
86 #define NVME_MAX_CONSUMERS	(2)
87 #define NVME_MAX_ASYNC_EVENTS	(8)
88 
89 #define NVME_DEFAULT_TIMEOUT_PERIOD	(30)    /* in seconds */
90 #define NVME_MIN_TIMEOUT_PERIOD		(5)
91 #define NVME_MAX_TIMEOUT_PERIOD		(120)
92 
93 #define NVME_DEFAULT_RETRY_COUNT	(4)
94 
95 /* Maximum log page size to fetch for AERs. */
96 #define NVME_MAX_AER_LOG_SIZE		(4096)
97 
98 /*
99  * Define CACHE_LINE_SIZE here for older FreeBSD versions that do not define
100  *  it.
101  */
102 #ifndef CACHE_LINE_SIZE
103 #define CACHE_LINE_SIZE		(64)
104 #endif
105 
106 #define NVME_GONE		0xfffffffful
107 
108 extern int32_t		nvme_retry_count;
109 extern bool		nvme_verbose_cmd_dump;
110 
111 struct nvme_completion_poll_status {
112 	struct nvme_completion	cpl;
113 	int			done;
114 };
115 
116 struct nvme_request {
117 	struct nvme_command		cmd;
118 	struct nvme_qpair		*qpair;
119 	struct memdesc			payload;
120 	nvme_cb_fn_t			cb_fn;
121 	void				*cb_arg;
122 	int32_t				retries;
123 	bool				payload_valid;
124 	bool				timeout;
125 	bool				spare[2];		/* Future use */
126 	STAILQ_ENTRY(nvme_request)	stailq;
127 };
128 
129 struct nvme_async_event_request {
130 	struct nvme_controller		*ctrlr;
131 	struct nvme_request		*req;
132 	struct nvme_completion		cpl;
133 	uint32_t			log_page_id;
134 	uint32_t			log_page_size;
135 	uint8_t				log_page_buffer[NVME_MAX_AER_LOG_SIZE];
136 };
137 
138 struct nvme_tracker {
139 	TAILQ_ENTRY(nvme_tracker)	tailq;
140 	struct nvme_request		*req;
141 	struct nvme_qpair		*qpair;
142 	sbintime_t			deadline;
143 	bus_dmamap_t			payload_dma_map;
144 	uint16_t			cid;
145 
146 	uint64_t			*prp;
147 	bus_addr_t			prp_bus_addr;
148 };
149 
150 enum nvme_recovery {
151 	RECOVERY_NONE = 0,		/* Normal operations */
152 	RECOVERY_START,			/* Deadline has passed, start recovering */
153 	RECOVERY_RESET,			/* This pass, initiate reset of controller */
154 	RECOVERY_WAITING,		/* waiting for the reset to complete */
155 };
156 struct nvme_qpair {
157 	struct nvme_controller	*ctrlr;
158 	uint32_t		id;
159 	int			domain;
160 	int			cpu;
161 
162 	uint16_t		vector;
163 	int			rid;
164 	struct resource		*res;
165 	void 			*tag;
166 
167 	struct callout		timer;
168 	sbintime_t		deadline;
169 	bool			timer_armed;
170 	enum nvme_recovery	recovery_state;
171 
172 	uint32_t		num_entries;
173 	uint32_t		num_trackers;
174 	uint32_t		sq_tdbl_off;
175 	uint32_t		cq_hdbl_off;
176 
177 	uint32_t		phase;
178 	uint32_t		sq_head;
179 	uint32_t		sq_tail;
180 	uint32_t		cq_head;
181 
182 	int64_t			num_cmds;
183 	int64_t			num_intr_handler_calls;
184 	int64_t			num_retries;
185 	int64_t			num_failures;
186 	int64_t			num_ignored;
187 
188 	struct nvme_command	*cmd;
189 	struct nvme_completion	*cpl;
190 
191 	bus_dma_tag_t		dma_tag;
192 	bus_dma_tag_t		dma_tag_payload;
193 
194 	bus_dmamap_t		queuemem_map;
195 	uint64_t		cmd_bus_addr;
196 	uint64_t		cpl_bus_addr;
197 
198 	TAILQ_HEAD(, nvme_tracker)	free_tr;
199 	TAILQ_HEAD(, nvme_tracker)	outstanding_tr;
200 	STAILQ_HEAD(, nvme_request)	queued_req;
201 
202 	struct nvme_tracker	**act_tr;
203 
204 	struct mtx_padalign	lock;
205 
206 } __aligned(CACHE_LINE_SIZE);
207 
208 struct nvme_namespace {
209 	struct nvme_controller		*ctrlr;
210 	struct nvme_namespace_data	data;
211 	uint32_t			id;
212 	uint32_t			flags;
213 	struct cdev			*cdev;
214 	void				*cons_cookie[NVME_MAX_CONSUMERS];
215 	uint32_t			boundary;
216 	struct mtx			lock;
217 };
218 
219 /*
220  * One of these per allocated PCI device.
221  */
222 struct nvme_controller {
223 	device_t		dev;
224 
225 	struct mtx		lock;
226 	int			domain;
227 	uint32_t		ready_timeout_in_ms;
228 	uint32_t		quirks;
229 #define	QUIRK_DELAY_B4_CHK_RDY	1		/* Can't touch MMIO on disable */
230 #define	QUIRK_DISABLE_TIMEOUT	2		/* Disable broken completion timeout feature */
231 #define	QUIRK_INTEL_ALIGNMENT	4		/* Pre NVMe 1.3 performance alignment */
232 #define QUIRK_AHCI		8		/* Attached via AHCI redirect */
233 
234 	bus_space_tag_t		bus_tag;
235 	bus_space_handle_t	bus_handle;
236 	int			resource_id;
237 	struct resource		*resource;
238 
239 	/*
240 	 * The NVMe spec allows for the MSI-X table to be placed in BAR 4/5,
241 	 *  separate from the control registers which are in BAR 0/1.  These
242 	 *  members track the mapping of BAR 4/5 for that reason.
243 	 */
244 	int			bar4_resource_id;
245 	struct resource		*bar4_resource;
246 
247 	int			msi_count;
248 	uint32_t		enable_aborts;
249 
250 	uint32_t		num_io_queues;
251 	uint32_t		max_hw_pend_io;
252 
253 	/* Fields for tracking progress during controller initialization. */
254 	struct intr_config_hook	config_hook;
255 	uint32_t		ns_identified;
256 	uint32_t		queues_created;
257 
258 	struct task		reset_task;
259 	struct task		fail_req_task;
260 	struct taskqueue	*taskqueue;
261 
262 	/* For shared legacy interrupt. */
263 	int			rid;
264 	struct resource		*res;
265 	void			*tag;
266 
267 	/** maximum i/o size in bytes */
268 	uint32_t		max_xfer_size;
269 
270 	/** LO and HI capacity mask */
271 	uint32_t		cap_lo;
272 	uint32_t		cap_hi;
273 
274 	/** Page size and log2(page_size) - 12 that we're currently using */
275 	uint32_t		page_size;
276 	uint32_t		mps;
277 
278 	/** interrupt coalescing time period (in microseconds) */
279 	uint32_t		int_coal_time;
280 
281 	/** interrupt coalescing threshold */
282 	uint32_t		int_coal_threshold;
283 
284 	/** timeout period in seconds */
285 	uint32_t		timeout_period;
286 
287 	/** doorbell stride */
288 	uint32_t		dstrd;
289 
290 	struct nvme_qpair	adminq;
291 	struct nvme_qpair	*ioq;
292 
293 	struct nvme_registers		*regs;
294 
295 	struct nvme_controller_data	cdata;
296 	struct nvme_namespace		ns[NVME_MAX_NAMESPACES];
297 
298 	struct cdev			*cdev;
299 
300 	/** bit mask of event types currently enabled for async events */
301 	uint32_t			async_event_config;
302 
303 	uint32_t			num_aers;
304 	struct nvme_async_event_request	aer[NVME_MAX_ASYNC_EVENTS];
305 
306 	void				*cons_cookie[NVME_MAX_CONSUMERS];
307 
308 	uint32_t			is_resetting;
309 	uint32_t			is_initialized;
310 	uint32_t			notification_sent;
311 
312 	bool				is_failed;
313 	bool				is_dying;
314 	STAILQ_HEAD(, nvme_request)	fail_req;
315 
316 	/* Host Memory Buffer */
317 	int				hmb_nchunks;
318 	size_t				hmb_chunk;
319 	bus_dma_tag_t			hmb_tag;
320 	struct nvme_hmb_chunk {
321 		bus_dmamap_t		hmbc_map;
322 		void			*hmbc_vaddr;
323 		uint64_t		hmbc_paddr;
324 	} *hmb_chunks;
325 	bus_dma_tag_t			hmb_desc_tag;
326 	bus_dmamap_t			hmb_desc_map;
327 	struct nvme_hmb_desc		*hmb_desc_vaddr;
328 	uint64_t			hmb_desc_paddr;
329 };
330 
331 #define nvme_mmio_offsetof(reg)						       \
332 	offsetof(struct nvme_registers, reg)
333 
334 #define nvme_mmio_read_4(sc, reg)					       \
335 	bus_space_read_4((sc)->bus_tag, (sc)->bus_handle,		       \
336 	    nvme_mmio_offsetof(reg))
337 
338 #define nvme_mmio_write_4(sc, reg, val)					       \
339 	bus_space_write_4((sc)->bus_tag, (sc)->bus_handle,		       \
340 	    nvme_mmio_offsetof(reg), val)
341 
342 #define nvme_mmio_write_8(sc, reg, val)					       \
343 	do {								       \
344 		bus_space_write_4((sc)->bus_tag, (sc)->bus_handle,	       \
345 		    nvme_mmio_offsetof(reg), val & 0xFFFFFFFF); 	       \
346 		bus_space_write_4((sc)->bus_tag, (sc)->bus_handle,	       \
347 		    nvme_mmio_offsetof(reg)+4,				       \
348 		    (val & 0xFFFFFFFF00000000ULL) >> 32);		       \
349 	} while (0);
350 
351 #define nvme_printf(ctrlr, fmt, args...)	\
352     device_printf(ctrlr->dev, fmt, ##args)
353 
354 void	nvme_ns_test(struct nvme_namespace *ns, u_long cmd, caddr_t arg);
355 
356 void	nvme_ctrlr_cmd_identify_controller(struct nvme_controller *ctrlr,
357 					   void *payload,
358 					   nvme_cb_fn_t cb_fn, void *cb_arg);
359 void	nvme_ctrlr_cmd_identify_namespace(struct nvme_controller *ctrlr,
360 					  uint32_t nsid, void *payload,
361 					  nvme_cb_fn_t cb_fn, void *cb_arg);
362 void	nvme_ctrlr_cmd_set_interrupt_coalescing(struct nvme_controller *ctrlr,
363 						uint32_t microseconds,
364 						uint32_t threshold,
365 						nvme_cb_fn_t cb_fn,
366 						void *cb_arg);
367 void	nvme_ctrlr_cmd_get_error_page(struct nvme_controller *ctrlr,
368 				      struct nvme_error_information_entry *payload,
369 				      uint32_t num_entries, /* 0 = max */
370 				      nvme_cb_fn_t cb_fn,
371 				      void *cb_arg);
372 void	nvme_ctrlr_cmd_get_health_information_page(struct nvme_controller *ctrlr,
373 						   uint32_t nsid,
374 						   struct nvme_health_information_page *payload,
375 						   nvme_cb_fn_t cb_fn,
376 						   void *cb_arg);
377 void	nvme_ctrlr_cmd_get_firmware_page(struct nvme_controller *ctrlr,
378 					 struct nvme_firmware_page *payload,
379 					 nvme_cb_fn_t cb_fn,
380 					 void *cb_arg);
381 void	nvme_ctrlr_cmd_create_io_cq(struct nvme_controller *ctrlr,
382 				    struct nvme_qpair *io_que,
383 				    nvme_cb_fn_t cb_fn, void *cb_arg);
384 void	nvme_ctrlr_cmd_create_io_sq(struct nvme_controller *ctrlr,
385 				    struct nvme_qpair *io_que,
386 				    nvme_cb_fn_t cb_fn, void *cb_arg);
387 void	nvme_ctrlr_cmd_delete_io_cq(struct nvme_controller *ctrlr,
388 				    struct nvme_qpair *io_que,
389 				    nvme_cb_fn_t cb_fn, void *cb_arg);
390 void	nvme_ctrlr_cmd_delete_io_sq(struct nvme_controller *ctrlr,
391 				    struct nvme_qpair *io_que,
392 				    nvme_cb_fn_t cb_fn, void *cb_arg);
393 void	nvme_ctrlr_cmd_set_num_queues(struct nvme_controller *ctrlr,
394 				      uint32_t num_queues, nvme_cb_fn_t cb_fn,
395 				      void *cb_arg);
396 void	nvme_ctrlr_cmd_set_async_event_config(struct nvme_controller *ctrlr,
397 					      uint32_t state,
398 					      nvme_cb_fn_t cb_fn, void *cb_arg);
399 void	nvme_ctrlr_cmd_abort(struct nvme_controller *ctrlr, uint16_t cid,
400 			     uint16_t sqid, nvme_cb_fn_t cb_fn, void *cb_arg);
401 
402 void	nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl);
403 
404 int	nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev);
405 void	nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev);
406 void	nvme_ctrlr_shutdown(struct nvme_controller *ctrlr);
407 void	nvme_ctrlr_reset(struct nvme_controller *ctrlr);
408 /* ctrlr defined as void * to allow use with config_intrhook. */
409 void	nvme_ctrlr_start_config_hook(void *ctrlr_arg);
410 void	nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
411 					struct nvme_request *req);
412 void	nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
413 				     struct nvme_request *req);
414 void	nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
415 				       struct nvme_request *req);
416 
417 int	nvme_qpair_construct(struct nvme_qpair *qpair,
418 			     uint32_t num_entries, uint32_t num_trackers,
419 			     struct nvme_controller *ctrlr);
420 void	nvme_qpair_submit_tracker(struct nvme_qpair *qpair,
421 				  struct nvme_tracker *tr);
422 bool	nvme_qpair_process_completions(struct nvme_qpair *qpair);
423 void	nvme_qpair_submit_request(struct nvme_qpair *qpair,
424 				  struct nvme_request *req);
425 void	nvme_qpair_reset(struct nvme_qpair *qpair);
426 void	nvme_qpair_fail(struct nvme_qpair *qpair);
427 void	nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
428 					   struct nvme_request *req,
429                                            uint32_t sct, uint32_t sc);
430 
431 void	nvme_admin_qpair_enable(struct nvme_qpair *qpair);
432 void	nvme_admin_qpair_disable(struct nvme_qpair *qpair);
433 void	nvme_admin_qpair_destroy(struct nvme_qpair *qpair);
434 
435 void	nvme_io_qpair_enable(struct nvme_qpair *qpair);
436 void	nvme_io_qpair_disable(struct nvme_qpair *qpair);
437 void	nvme_io_qpair_destroy(struct nvme_qpair *qpair);
438 
439 int	nvme_ns_construct(struct nvme_namespace *ns, uint32_t id,
440 			  struct nvme_controller *ctrlr);
441 void	nvme_ns_destruct(struct nvme_namespace *ns);
442 
443 void	nvme_sysctl_initialize_ctrlr(struct nvme_controller *ctrlr);
444 
445 void	nvme_qpair_print_command(struct nvme_qpair *qpair,
446 	    struct nvme_command *cmd);
447 void	nvme_qpair_print_completion(struct nvme_qpair *qpair,
448 	    struct nvme_completion *cpl);
449 
450 int	nvme_attach(device_t dev);
451 int	nvme_shutdown(device_t dev);
452 int	nvme_detach(device_t dev);
453 
454 /*
455  * Wait for a command to complete using the nvme_completion_poll_cb.  Used in
456  * limited contexts where the caller knows it's OK to block briefly while the
457  * command runs. The ISR will run the callback which will set status->done to
458  * true, usually within microseconds. If not, then after one second timeout
459  * handler should reset the controller and abort all outstanding requests
460  * including this polled one. If still not after ten seconds, then something is
461  * wrong with the driver, and panic is the only way to recover.
462  *
463  * Most commands using this interface aren't actual I/O to the drive's media so
464  * complete within a few microseconds. Adaptively spin for one tick to catch the
465  * vast majority of these without waiting for a tick plus scheduling delays. Since
466  * these are on startup, this drastically reduces startup time.
467  */
468 static __inline
469 void
470 nvme_completion_poll(struct nvme_completion_poll_status *status)
471 {
472 	int timeout = ticks + 10 * hz;
473 	sbintime_t delta_t = SBT_1US;
474 
475 	while (!atomic_load_acq_int(&status->done)) {
476 		if (timeout - ticks < 0)
477 			panic("NVME polled command failed to complete within 10s.");
478 		pause_sbt("nvme", delta_t, 0, C_PREL(1));
479 		delta_t = min(SBT_1MS, delta_t * 3 / 2);
480 	}
481 }
482 
483 static __inline void
484 nvme_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
485 {
486 	uint64_t *bus_addr = (uint64_t *)arg;
487 
488 	KASSERT(nseg == 1, ("number of segments (%d) is not 1", nseg));
489 	if (error != 0)
490 		printf("nvme_single_map err %d\n", error);
491 	*bus_addr = seg[0].ds_addr;
492 }
493 
494 static __inline struct nvme_request *
495 _nvme_allocate_request(nvme_cb_fn_t cb_fn, void *cb_arg)
496 {
497 	struct nvme_request *req;
498 
499 	req = malloc(sizeof(*req), M_NVME, M_NOWAIT | M_ZERO);
500 	if (req != NULL) {
501 		req->cb_fn = cb_fn;
502 		req->cb_arg = cb_arg;
503 		req->timeout = true;
504 	}
505 	return (req);
506 }
507 
508 static __inline struct nvme_request *
509 nvme_allocate_request_vaddr(void *payload, uint32_t payload_size,
510     nvme_cb_fn_t cb_fn, void *cb_arg)
511 {
512 	struct nvme_request *req;
513 
514 	req = _nvme_allocate_request(cb_fn, cb_arg);
515 	if (req != NULL) {
516 		req->payload = memdesc_vaddr(payload, payload_size);
517 		req->payload_valid = true;
518 	}
519 	return (req);
520 }
521 
522 static __inline struct nvme_request *
523 nvme_allocate_request_null(nvme_cb_fn_t cb_fn, void *cb_arg)
524 {
525 	struct nvme_request *req;
526 
527 	req = _nvme_allocate_request(cb_fn, cb_arg);
528 	return (req);
529 }
530 
531 static __inline struct nvme_request *
532 nvme_allocate_request_bio(struct bio *bio, nvme_cb_fn_t cb_fn, void *cb_arg)
533 {
534 	struct nvme_request *req;
535 
536 	req = _nvme_allocate_request(cb_fn, cb_arg);
537 	if (req != NULL) {
538 		req->payload = memdesc_bio(bio);
539 		req->payload_valid = true;
540 	}
541 	return (req);
542 }
543 
544 static __inline struct nvme_request *
545 nvme_allocate_request_ccb(union ccb *ccb, nvme_cb_fn_t cb_fn, void *cb_arg)
546 {
547 	struct nvme_request *req;
548 
549 	req = _nvme_allocate_request(cb_fn, cb_arg);
550 	if (req != NULL) {
551 		req->payload = memdesc_ccb(ccb);
552 		req->payload_valid = true;
553 	}
554 
555 	return (req);
556 }
557 
558 #define nvme_free_request(req)	free(req, M_NVME)
559 
560 void	nvme_notify_async_consumers(struct nvme_controller *ctrlr,
561 				    const struct nvme_completion *async_cpl,
562 				    uint32_t log_page_id, void *log_page_buffer,
563 				    uint32_t log_page_size);
564 void	nvme_notify_fail_consumers(struct nvme_controller *ctrlr);
565 void	nvme_notify_new_controller(struct nvme_controller *ctrlr);
566 void	nvme_notify_ns(struct nvme_controller *ctrlr, int nsid);
567 
568 void	nvme_ctrlr_shared_handler(void *arg);
569 void	nvme_ctrlr_poll(struct nvme_controller *ctrlr);
570 
571 int	nvme_ctrlr_suspend(struct nvme_controller *ctrlr);
572 int	nvme_ctrlr_resume(struct nvme_controller *ctrlr);
573 
574 #endif /* __NVME_PRIVATE_H__ */
575