1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2014 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #ifndef __NVME_PRIVATE_H__ 30 #define __NVME_PRIVATE_H__ 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/bus.h> 35 #include <sys/counter.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/memdesc.h> 40 #include <sys/module.h> 41 #include <sys/mutex.h> 42 #include <sys/rman.h> 43 #include <sys/systm.h> 44 #include <sys/taskqueue.h> 45 46 #include <vm/uma.h> 47 48 #include <machine/bus.h> 49 50 #include "nvme.h" 51 52 #define DEVICE2SOFTC(dev) ((struct nvme_controller *) device_get_softc(dev)) 53 54 MALLOC_DECLARE(M_NVME); 55 56 #define IDT32_PCI_ID 0x80d0111d /* 32 channel board */ 57 #define IDT8_PCI_ID 0x80d2111d /* 8 channel board */ 58 59 #define NVME_ADMIN_TRACKERS (16) 60 #define NVME_ADMIN_ENTRIES (128) 61 62 /* 63 * NVME_IO_ENTRIES defines the size of an I/O qpair's submission and completion 64 * queues, while NVME_IO_TRACKERS defines the maximum number of I/O that we 65 * will allow outstanding on an I/O qpair at any time. The only advantage in 66 * having IO_ENTRIES > IO_TRACKERS is for debugging purposes - when dumping 67 * the contents of the submission and completion queues, it will show a longer 68 * history of data. 69 */ 70 #define NVME_IO_ENTRIES (256) 71 #define NVME_IO_TRACKERS (128) 72 #define NVME_MIN_IO_TRACKERS (4) 73 #define NVME_MAX_IO_TRACKERS (1024) 74 75 #define NVME_INT_COAL_TIME (0) /* disabled */ 76 #define NVME_INT_COAL_THRESHOLD (0) /* 0-based */ 77 78 #define NVME_MAX_NAMESPACES (16) 79 #define NVME_MAX_CONSUMERS (2) 80 #define NVME_MAX_ASYNC_EVENTS (8) 81 82 #define NVME_ADMIN_TIMEOUT_PERIOD (60) /* in seconds */ 83 #define NVME_DEFAULT_TIMEOUT_PERIOD (30) /* in seconds */ 84 #define NVME_MIN_TIMEOUT_PERIOD (5) 85 #define NVME_MAX_TIMEOUT_PERIOD (120) 86 87 #define NVME_DEFAULT_RETRY_COUNT (4) 88 89 /* Maximum log page size to fetch for AERs. */ 90 #define NVME_MAX_AER_LOG_SIZE (4096) 91 92 /* 93 * Define CACHE_LINE_SIZE here for older FreeBSD versions that do not define 94 * it. 95 */ 96 #ifndef CACHE_LINE_SIZE 97 #define CACHE_LINE_SIZE (64) 98 #endif 99 100 #define NVME_GONE 0xfffffffful 101 102 extern int32_t nvme_retry_count; 103 extern bool nvme_verbose_cmd_dump; 104 105 struct nvme_completion_poll_status { 106 struct nvme_completion cpl; 107 int done; 108 }; 109 110 struct nvme_request { 111 struct nvme_command cmd; 112 struct nvme_qpair *qpair; 113 struct memdesc payload; 114 nvme_cb_fn_t cb_fn; 115 void *cb_arg; 116 int32_t retries; 117 bool payload_valid; 118 bool timeout; 119 bool spare[2]; /* Future use */ 120 STAILQ_ENTRY(nvme_request) stailq; 121 }; 122 123 struct nvme_async_event_request { 124 struct nvme_controller *ctrlr; 125 struct nvme_request *req; 126 struct nvme_completion cpl; 127 uint32_t log_page_id; 128 uint32_t log_page_size; 129 uint8_t log_page_buffer[NVME_MAX_AER_LOG_SIZE]; 130 }; 131 132 struct nvme_tracker { 133 TAILQ_ENTRY(nvme_tracker) tailq; 134 struct nvme_request *req; 135 struct nvme_qpair *qpair; 136 sbintime_t deadline; 137 bus_dmamap_t payload_dma_map; 138 uint16_t cid; 139 140 uint64_t *prp; 141 bus_addr_t prp_bus_addr; 142 }; 143 144 enum nvme_recovery { 145 RECOVERY_NONE = 0, /* Normal operations */ 146 RECOVERY_WAITING, /* waiting for the reset to complete */ 147 }; 148 struct nvme_qpair { 149 struct nvme_controller *ctrlr; 150 uint32_t id; 151 int domain; 152 int cpu; 153 154 uint16_t vector; 155 int rid; 156 struct resource *res; 157 void *tag; 158 159 struct callout timer; /* recovery lock */ 160 bool timer_armed; /* recovery lock */ 161 enum nvme_recovery recovery_state; /* recovery lock */ 162 163 uint32_t num_entries; 164 uint32_t num_trackers; 165 uint32_t sq_tdbl_off; 166 uint32_t cq_hdbl_off; 167 168 uint32_t phase; 169 uint32_t sq_head; 170 uint32_t sq_tail; 171 uint32_t cq_head; 172 173 int64_t num_cmds; 174 int64_t num_intr_handler_calls; 175 int64_t num_retries; 176 int64_t num_failures; 177 int64_t num_ignored; 178 int64_t num_recovery_nolock; 179 180 struct nvme_command *cmd; 181 struct nvme_completion *cpl; 182 183 bus_dma_tag_t dma_tag; 184 bus_dma_tag_t dma_tag_payload; 185 186 bus_dmamap_t queuemem_map; 187 uint64_t cmd_bus_addr; 188 uint64_t cpl_bus_addr; 189 190 TAILQ_HEAD(, nvme_tracker) free_tr; 191 TAILQ_HEAD(, nvme_tracker) outstanding_tr; 192 STAILQ_HEAD(, nvme_request) queued_req; 193 194 struct nvme_tracker **act_tr; 195 196 struct mtx_padalign lock; 197 struct mtx_padalign recovery; 198 } __aligned(CACHE_LINE_SIZE); 199 200 struct nvme_namespace { 201 struct nvme_controller *ctrlr; 202 struct nvme_namespace_data data; 203 uint32_t id; 204 uint32_t flags; 205 struct cdev *cdev; 206 void *cons_cookie[NVME_MAX_CONSUMERS]; 207 uint32_t boundary; 208 struct mtx lock; 209 }; 210 211 /* 212 * One of these per allocated PCI device. 213 */ 214 struct nvme_controller { 215 device_t dev; 216 217 struct mtx lock; 218 int domain; 219 uint32_t ready_timeout_in_ms; 220 uint32_t quirks; 221 #define QUIRK_DELAY_B4_CHK_RDY 1 /* Can't touch MMIO on disable */ 222 #define QUIRK_DISABLE_TIMEOUT 2 /* Disable broken completion timeout feature */ 223 #define QUIRK_INTEL_ALIGNMENT 4 /* Pre NVMe 1.3 performance alignment */ 224 #define QUIRK_AHCI 8 /* Attached via AHCI redirect */ 225 226 bus_space_tag_t bus_tag; 227 bus_space_handle_t bus_handle; 228 int resource_id; 229 struct resource *resource; 230 231 /* 232 * The NVMe spec allows for the MSI-X table to be placed in BAR 4/5, 233 * separate from the control registers which are in BAR 0/1. These 234 * members track the mapping of BAR 4/5 for that reason. 235 */ 236 int bar4_resource_id; 237 struct resource *bar4_resource; 238 239 int msi_count; 240 uint32_t enable_aborts; 241 242 uint32_t num_io_queues; 243 uint32_t max_hw_pend_io; 244 245 /* Fields for tracking progress during controller initialization. */ 246 struct intr_config_hook config_hook; 247 uint32_t ns_identified; 248 uint32_t queues_created; 249 250 struct task reset_task; 251 struct taskqueue *taskqueue; 252 253 /* For shared legacy interrupt. */ 254 int rid; 255 struct resource *res; 256 void *tag; 257 258 /** maximum i/o size in bytes */ 259 uint32_t max_xfer_size; 260 261 /** LO and HI capacity mask */ 262 uint32_t cap_lo; 263 uint32_t cap_hi; 264 265 /** Page size and log2(page_size) - 12 that we're currently using */ 266 uint32_t page_size; 267 uint32_t mps; 268 269 /** interrupt coalescing time period (in microseconds) */ 270 uint32_t int_coal_time; 271 272 /** interrupt coalescing threshold */ 273 uint32_t int_coal_threshold; 274 275 /** timeout period in seconds */ 276 uint32_t admin_timeout_period; 277 uint32_t timeout_period; 278 279 /** doorbell stride */ 280 uint32_t dstrd; 281 282 struct nvme_qpair adminq; 283 struct nvme_qpair *ioq; 284 285 struct nvme_registers *regs; 286 287 struct nvme_controller_data cdata; 288 struct nvme_namespace ns[NVME_MAX_NAMESPACES]; 289 290 struct cdev *cdev; 291 292 /** bit mask of event types currently enabled for async events */ 293 uint32_t async_event_config; 294 295 uint32_t num_aers; 296 struct nvme_async_event_request aer[NVME_MAX_ASYNC_EVENTS]; 297 298 void *cons_cookie[NVME_MAX_CONSUMERS]; 299 300 uint32_t is_resetting; 301 uint32_t is_initialized; 302 uint32_t notification_sent; 303 304 bool is_failed; 305 bool is_dying; 306 bool isr_warned; 307 STAILQ_HEAD(, nvme_request) fail_req; 308 309 /* Host Memory Buffer */ 310 int hmb_nchunks; 311 size_t hmb_chunk; 312 bus_dma_tag_t hmb_tag; 313 struct nvme_hmb_chunk { 314 bus_dmamap_t hmbc_map; 315 void *hmbc_vaddr; 316 uint64_t hmbc_paddr; 317 } *hmb_chunks; 318 bus_dma_tag_t hmb_desc_tag; 319 bus_dmamap_t hmb_desc_map; 320 struct nvme_hmb_desc *hmb_desc_vaddr; 321 uint64_t hmb_desc_paddr; 322 323 /* Statistics */ 324 counter_u64_t alignment_splits; 325 }; 326 327 #define nvme_mmio_offsetof(reg) \ 328 offsetof(struct nvme_registers, reg) 329 330 #define nvme_mmio_read_4(sc, reg) \ 331 bus_space_read_4((sc)->bus_tag, (sc)->bus_handle, \ 332 nvme_mmio_offsetof(reg)) 333 334 #define nvme_mmio_write_4(sc, reg, val) \ 335 bus_space_write_4((sc)->bus_tag, (sc)->bus_handle, \ 336 nvme_mmio_offsetof(reg), val) 337 338 #define nvme_mmio_write_8(sc, reg, val) \ 339 do { \ 340 bus_space_write_4((sc)->bus_tag, (sc)->bus_handle, \ 341 nvme_mmio_offsetof(reg), val & 0xFFFFFFFF); \ 342 bus_space_write_4((sc)->bus_tag, (sc)->bus_handle, \ 343 nvme_mmio_offsetof(reg)+4, \ 344 (val & 0xFFFFFFFF00000000ULL) >> 32); \ 345 } while (0); 346 347 #define nvme_printf(ctrlr, fmt, args...) \ 348 device_printf(ctrlr->dev, fmt, ##args) 349 350 void nvme_ns_test(struct nvme_namespace *ns, u_long cmd, caddr_t arg); 351 352 void nvme_ctrlr_cmd_identify_controller(struct nvme_controller *ctrlr, 353 void *payload, 354 nvme_cb_fn_t cb_fn, void *cb_arg); 355 void nvme_ctrlr_cmd_identify_namespace(struct nvme_controller *ctrlr, 356 uint32_t nsid, void *payload, 357 nvme_cb_fn_t cb_fn, void *cb_arg); 358 void nvme_ctrlr_cmd_set_interrupt_coalescing(struct nvme_controller *ctrlr, 359 uint32_t microseconds, 360 uint32_t threshold, 361 nvme_cb_fn_t cb_fn, 362 void *cb_arg); 363 void nvme_ctrlr_cmd_get_error_page(struct nvme_controller *ctrlr, 364 struct nvme_error_information_entry *payload, 365 uint32_t num_entries, /* 0 = max */ 366 nvme_cb_fn_t cb_fn, 367 void *cb_arg); 368 void nvme_ctrlr_cmd_get_health_information_page(struct nvme_controller *ctrlr, 369 uint32_t nsid, 370 struct nvme_health_information_page *payload, 371 nvme_cb_fn_t cb_fn, 372 void *cb_arg); 373 void nvme_ctrlr_cmd_get_firmware_page(struct nvme_controller *ctrlr, 374 struct nvme_firmware_page *payload, 375 nvme_cb_fn_t cb_fn, 376 void *cb_arg); 377 void nvme_ctrlr_cmd_create_io_cq(struct nvme_controller *ctrlr, 378 struct nvme_qpair *io_que, 379 nvme_cb_fn_t cb_fn, void *cb_arg); 380 void nvme_ctrlr_cmd_create_io_sq(struct nvme_controller *ctrlr, 381 struct nvme_qpair *io_que, 382 nvme_cb_fn_t cb_fn, void *cb_arg); 383 void nvme_ctrlr_cmd_delete_io_cq(struct nvme_controller *ctrlr, 384 struct nvme_qpair *io_que, 385 nvme_cb_fn_t cb_fn, void *cb_arg); 386 void nvme_ctrlr_cmd_delete_io_sq(struct nvme_controller *ctrlr, 387 struct nvme_qpair *io_que, 388 nvme_cb_fn_t cb_fn, void *cb_arg); 389 void nvme_ctrlr_cmd_set_num_queues(struct nvme_controller *ctrlr, 390 uint32_t num_queues, nvme_cb_fn_t cb_fn, 391 void *cb_arg); 392 void nvme_ctrlr_cmd_set_async_event_config(struct nvme_controller *ctrlr, 393 uint32_t state, 394 nvme_cb_fn_t cb_fn, void *cb_arg); 395 void nvme_ctrlr_cmd_abort(struct nvme_controller *ctrlr, uint16_t cid, 396 uint16_t sqid, nvme_cb_fn_t cb_fn, void *cb_arg); 397 398 void nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl); 399 400 int nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev); 401 void nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev); 402 void nvme_ctrlr_shutdown(struct nvme_controller *ctrlr); 403 void nvme_ctrlr_reset(struct nvme_controller *ctrlr); 404 /* ctrlr defined as void * to allow use with config_intrhook. */ 405 void nvme_ctrlr_start_config_hook(void *ctrlr_arg); 406 void nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 407 struct nvme_request *req); 408 void nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 409 struct nvme_request *req); 410 411 int nvme_qpair_construct(struct nvme_qpair *qpair, 412 uint32_t num_entries, uint32_t num_trackers, 413 struct nvme_controller *ctrlr); 414 void nvme_qpair_submit_tracker(struct nvme_qpair *qpair, 415 struct nvme_tracker *tr); 416 bool nvme_qpair_process_completions(struct nvme_qpair *qpair); 417 void nvme_qpair_submit_request(struct nvme_qpair *qpair, 418 struct nvme_request *req); 419 void nvme_qpair_reset(struct nvme_qpair *qpair); 420 void nvme_qpair_fail(struct nvme_qpair *qpair); 421 422 void nvme_admin_qpair_enable(struct nvme_qpair *qpair); 423 void nvme_admin_qpair_disable(struct nvme_qpair *qpair); 424 void nvme_admin_qpair_destroy(struct nvme_qpair *qpair); 425 426 void nvme_io_qpair_enable(struct nvme_qpair *qpair); 427 void nvme_io_qpair_disable(struct nvme_qpair *qpair); 428 void nvme_io_qpair_destroy(struct nvme_qpair *qpair); 429 430 int nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 431 struct nvme_controller *ctrlr); 432 void nvme_ns_destruct(struct nvme_namespace *ns); 433 434 void nvme_sysctl_initialize_ctrlr(struct nvme_controller *ctrlr); 435 436 void nvme_qpair_print_command(struct nvme_qpair *qpair, 437 struct nvme_command *cmd); 438 void nvme_qpair_print_completion(struct nvme_qpair *qpair, 439 struct nvme_completion *cpl); 440 441 int nvme_attach(device_t dev); 442 int nvme_shutdown(device_t dev); 443 int nvme_detach(device_t dev); 444 445 /* 446 * Wait for a command to complete using the nvme_completion_poll_cb. Used in 447 * limited contexts where the caller knows it's OK to block briefly while the 448 * command runs. The ISR will run the callback which will set status->done to 449 * true, usually within microseconds. If not, then after one second timeout 450 * handler should reset the controller and abort all outstanding requests 451 * including this polled one. If still not after ten seconds, then something is 452 * wrong with the driver, and panic is the only way to recover. 453 * 454 * Most commands using this interface aren't actual I/O to the drive's media so 455 * complete within a few microseconds. Adaptively spin for one tick to catch the 456 * vast majority of these without waiting for a tick plus scheduling delays. Since 457 * these are on startup, this drastically reduces startup time. 458 */ 459 static __inline 460 void 461 nvme_completion_poll(struct nvme_completion_poll_status *status) 462 { 463 int timeout = ticks + 10 * hz; 464 sbintime_t delta_t = SBT_1US; 465 466 while (!atomic_load_acq_int(&status->done)) { 467 if (timeout - ticks < 0) 468 panic("NVME polled command failed to complete within 10s."); 469 pause_sbt("nvme", delta_t, 0, C_PREL(1)); 470 delta_t = min(SBT_1MS, delta_t * 3 / 2); 471 } 472 } 473 474 static __inline void 475 nvme_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) 476 { 477 uint64_t *bus_addr = (uint64_t *)arg; 478 479 KASSERT(nseg == 1, ("number of segments (%d) is not 1", nseg)); 480 if (error != 0) 481 printf("nvme_single_map err %d\n", error); 482 *bus_addr = seg[0].ds_addr; 483 } 484 485 static __inline struct nvme_request * 486 _nvme_allocate_request(nvme_cb_fn_t cb_fn, void *cb_arg) 487 { 488 struct nvme_request *req; 489 490 req = malloc(sizeof(*req), M_NVME, M_NOWAIT | M_ZERO); 491 if (req != NULL) { 492 req->cb_fn = cb_fn; 493 req->cb_arg = cb_arg; 494 req->timeout = true; 495 } 496 return (req); 497 } 498 499 static __inline struct nvme_request * 500 nvme_allocate_request_vaddr(void *payload, uint32_t payload_size, 501 nvme_cb_fn_t cb_fn, void *cb_arg) 502 { 503 struct nvme_request *req; 504 505 req = _nvme_allocate_request(cb_fn, cb_arg); 506 if (req != NULL) { 507 req->payload = memdesc_vaddr(payload, payload_size); 508 req->payload_valid = true; 509 } 510 return (req); 511 } 512 513 static __inline struct nvme_request * 514 nvme_allocate_request_null(nvme_cb_fn_t cb_fn, void *cb_arg) 515 { 516 struct nvme_request *req; 517 518 req = _nvme_allocate_request(cb_fn, cb_arg); 519 return (req); 520 } 521 522 static __inline struct nvme_request * 523 nvme_allocate_request_bio(struct bio *bio, nvme_cb_fn_t cb_fn, void *cb_arg) 524 { 525 struct nvme_request *req; 526 527 req = _nvme_allocate_request(cb_fn, cb_arg); 528 if (req != NULL) { 529 req->payload = memdesc_bio(bio); 530 req->payload_valid = true; 531 } 532 return (req); 533 } 534 535 static __inline struct nvme_request * 536 nvme_allocate_request_ccb(union ccb *ccb, nvme_cb_fn_t cb_fn, void *cb_arg) 537 { 538 struct nvme_request *req; 539 540 req = _nvme_allocate_request(cb_fn, cb_arg); 541 if (req != NULL) { 542 req->payload = memdesc_ccb(ccb); 543 req->payload_valid = true; 544 } 545 546 return (req); 547 } 548 549 #define nvme_free_request(req) free(req, M_NVME) 550 551 void nvme_notify_async_consumers(struct nvme_controller *ctrlr, 552 const struct nvme_completion *async_cpl, 553 uint32_t log_page_id, void *log_page_buffer, 554 uint32_t log_page_size); 555 void nvme_notify_fail_consumers(struct nvme_controller *ctrlr); 556 void nvme_notify_new_controller(struct nvme_controller *ctrlr); 557 void nvme_notify_ns(struct nvme_controller *ctrlr, int nsid); 558 559 void nvme_ctrlr_shared_handler(void *arg); 560 void nvme_ctrlr_poll(struct nvme_controller *ctrlr); 561 562 int nvme_ctrlr_suspend(struct nvme_controller *ctrlr); 563 int nvme_ctrlr_resume(struct nvme_controller *ctrlr); 564 565 #endif /* __NVME_PRIVATE_H__ */ 566