xref: /freebsd/sys/dev/nvme/nvme_private.h (revision 535af610a4fdace6d50960c0ad9be0597eea7a1b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2014 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #ifndef __NVME_PRIVATE_H__
32 #define __NVME_PRIVATE_H__
33 
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/memdesc.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/systm.h>
45 #include <sys/taskqueue.h>
46 
47 #include <vm/uma.h>
48 
49 #include <machine/bus.h>
50 
51 #include "nvme.h"
52 
53 #define DEVICE2SOFTC(dev) ((struct nvme_controller *) device_get_softc(dev))
54 
55 MALLOC_DECLARE(M_NVME);
56 
57 #define IDT32_PCI_ID		0x80d0111d /* 32 channel board */
58 #define IDT8_PCI_ID		0x80d2111d /* 8 channel board */
59 
60 #define NVME_ADMIN_TRACKERS	(16)
61 #define NVME_ADMIN_ENTRIES	(128)
62 /* min and max are defined in admin queue attributes section of spec */
63 #define NVME_MIN_ADMIN_ENTRIES	(2)
64 #define NVME_MAX_ADMIN_ENTRIES	(4096)
65 
66 /*
67  * NVME_IO_ENTRIES defines the size of an I/O qpair's submission and completion
68  *  queues, while NVME_IO_TRACKERS defines the maximum number of I/O that we
69  *  will allow outstanding on an I/O qpair at any time.  The only advantage in
70  *  having IO_ENTRIES > IO_TRACKERS is for debugging purposes - when dumping
71  *  the contents of the submission and completion queues, it will show a longer
72  *  history of data.
73  */
74 #define NVME_IO_ENTRIES		(256)
75 #define NVME_IO_TRACKERS	(128)
76 #define NVME_MIN_IO_TRACKERS	(4)
77 #define NVME_MAX_IO_TRACKERS	(1024)
78 
79 /*
80  * NVME_MAX_IO_ENTRIES is not defined, since it is specified in CC.MQES
81  *  for each controller.
82  */
83 
84 #define NVME_INT_COAL_TIME	(0)	/* disabled */
85 #define NVME_INT_COAL_THRESHOLD (0)	/* 0-based */
86 
87 #define NVME_MAX_NAMESPACES	(16)
88 #define NVME_MAX_CONSUMERS	(2)
89 #define NVME_MAX_ASYNC_EVENTS	(8)
90 
91 #define NVME_DEFAULT_TIMEOUT_PERIOD	(30)    /* in seconds */
92 #define NVME_MIN_TIMEOUT_PERIOD		(5)
93 #define NVME_MAX_TIMEOUT_PERIOD		(120)
94 
95 #define NVME_DEFAULT_RETRY_COUNT	(4)
96 
97 /* Maximum log page size to fetch for AERs. */
98 #define NVME_MAX_AER_LOG_SIZE		(4096)
99 
100 /*
101  * Define CACHE_LINE_SIZE here for older FreeBSD versions that do not define
102  *  it.
103  */
104 #ifndef CACHE_LINE_SIZE
105 #define CACHE_LINE_SIZE		(64)
106 #endif
107 
108 #define NVME_GONE		0xfffffffful
109 
110 extern int32_t		nvme_retry_count;
111 extern bool		nvme_verbose_cmd_dump;
112 
113 struct nvme_completion_poll_status {
114 	struct nvme_completion	cpl;
115 	int			done;
116 };
117 
118 struct nvme_request {
119 	struct nvme_command		cmd;
120 	struct nvme_qpair		*qpair;
121 	struct memdesc			payload;
122 	nvme_cb_fn_t			cb_fn;
123 	void				*cb_arg;
124 	int32_t				retries;
125 	bool				payload_valid;
126 	bool				timeout;
127 	bool				spare[2];		/* Future use */
128 	STAILQ_ENTRY(nvme_request)	stailq;
129 };
130 
131 struct nvme_async_event_request {
132 	struct nvme_controller		*ctrlr;
133 	struct nvme_request		*req;
134 	struct nvme_completion		cpl;
135 	uint32_t			log_page_id;
136 	uint32_t			log_page_size;
137 	uint8_t				log_page_buffer[NVME_MAX_AER_LOG_SIZE];
138 };
139 
140 struct nvme_tracker {
141 	TAILQ_ENTRY(nvme_tracker)	tailq;
142 	struct nvme_request		*req;
143 	struct nvme_qpair		*qpair;
144 	sbintime_t			deadline;
145 	bus_dmamap_t			payload_dma_map;
146 	uint16_t			cid;
147 
148 	uint64_t			*prp;
149 	bus_addr_t			prp_bus_addr;
150 };
151 
152 enum nvme_recovery {
153 	RECOVERY_NONE = 0,		/* Normal operations */
154 	RECOVERY_START,			/* Deadline has passed, start recovering */
155 	RECOVERY_RESET,			/* This pass, initiate reset of controller */
156 	RECOVERY_WAITING,		/* waiting for the reset to complete */
157 };
158 struct nvme_qpair {
159 	struct nvme_controller	*ctrlr;
160 	uint32_t		id;
161 	int			domain;
162 	int			cpu;
163 
164 	uint16_t		vector;
165 	int			rid;
166 	struct resource		*res;
167 	void 			*tag;
168 
169 	struct callout		timer;
170 	sbintime_t		deadline;
171 	bool			timer_armed;
172 	enum nvme_recovery	recovery_state;
173 
174 	uint32_t		num_entries;
175 	uint32_t		num_trackers;
176 	uint32_t		sq_tdbl_off;
177 	uint32_t		cq_hdbl_off;
178 
179 	uint32_t		phase;
180 	uint32_t		sq_head;
181 	uint32_t		sq_tail;
182 	uint32_t		cq_head;
183 
184 	int64_t			num_cmds;
185 	int64_t			num_intr_handler_calls;
186 	int64_t			num_retries;
187 	int64_t			num_failures;
188 	int64_t			num_ignored;
189 
190 	struct nvme_command	*cmd;
191 	struct nvme_completion	*cpl;
192 
193 	bus_dma_tag_t		dma_tag;
194 	bus_dma_tag_t		dma_tag_payload;
195 
196 	bus_dmamap_t		queuemem_map;
197 	uint64_t		cmd_bus_addr;
198 	uint64_t		cpl_bus_addr;
199 
200 	TAILQ_HEAD(, nvme_tracker)	free_tr;
201 	TAILQ_HEAD(, nvme_tracker)	outstanding_tr;
202 	STAILQ_HEAD(, nvme_request)	queued_req;
203 
204 	struct nvme_tracker	**act_tr;
205 
206 	struct mtx		lock __aligned(CACHE_LINE_SIZE);
207 
208 } __aligned(CACHE_LINE_SIZE);
209 
210 struct nvme_namespace {
211 	struct nvme_controller		*ctrlr;
212 	struct nvme_namespace_data	data;
213 	uint32_t			id;
214 	uint32_t			flags;
215 	struct cdev			*cdev;
216 	void				*cons_cookie[NVME_MAX_CONSUMERS];
217 	uint32_t			boundary;
218 	struct mtx			lock;
219 };
220 
221 /*
222  * One of these per allocated PCI device.
223  */
224 struct nvme_controller {
225 	device_t		dev;
226 
227 	struct mtx		lock;
228 	int			domain;
229 	uint32_t		ready_timeout_in_ms;
230 	uint32_t		quirks;
231 #define	QUIRK_DELAY_B4_CHK_RDY	1		/* Can't touch MMIO on disable */
232 #define	QUIRK_DISABLE_TIMEOUT	2		/* Disable broken completion timeout feature */
233 #define	QUIRK_INTEL_ALIGNMENT	4		/* Pre NVMe 1.3 performance alignment */
234 #define QUIRK_AHCI		8		/* Attached via AHCI redirect */
235 
236 	bus_space_tag_t		bus_tag;
237 	bus_space_handle_t	bus_handle;
238 	int			resource_id;
239 	struct resource		*resource;
240 
241 	/*
242 	 * The NVMe spec allows for the MSI-X table to be placed in BAR 4/5,
243 	 *  separate from the control registers which are in BAR 0/1.  These
244 	 *  members track the mapping of BAR 4/5 for that reason.
245 	 */
246 	int			bar4_resource_id;
247 	struct resource		*bar4_resource;
248 
249 	int			msi_count;
250 	uint32_t		enable_aborts;
251 
252 	uint32_t		num_io_queues;
253 	uint32_t		max_hw_pend_io;
254 
255 	/* Fields for tracking progress during controller initialization. */
256 	struct intr_config_hook	config_hook;
257 	uint32_t		ns_identified;
258 	uint32_t		queues_created;
259 
260 	struct task		reset_task;
261 	struct task		fail_req_task;
262 	struct taskqueue	*taskqueue;
263 
264 	/* For shared legacy interrupt. */
265 	int			rid;
266 	struct resource		*res;
267 	void			*tag;
268 
269 	/** maximum i/o size in bytes */
270 	uint32_t		max_xfer_size;
271 
272 	/** LO and HI capacity mask */
273 	uint32_t		cap_lo;
274 	uint32_t		cap_hi;
275 
276 	/** Page size and log2(page_size) - 12 that we're currently using */
277 	uint32_t		page_size;
278 	uint32_t		mps;
279 
280 	/** interrupt coalescing time period (in microseconds) */
281 	uint32_t		int_coal_time;
282 
283 	/** interrupt coalescing threshold */
284 	uint32_t		int_coal_threshold;
285 
286 	/** timeout period in seconds */
287 	uint32_t		timeout_period;
288 
289 	/** doorbell stride */
290 	uint32_t		dstrd;
291 
292 	struct nvme_qpair	adminq;
293 	struct nvme_qpair	*ioq;
294 
295 	struct nvme_registers		*regs;
296 
297 	struct nvme_controller_data	cdata;
298 	struct nvme_namespace		ns[NVME_MAX_NAMESPACES];
299 
300 	struct cdev			*cdev;
301 
302 	/** bit mask of event types currently enabled for async events */
303 	uint32_t			async_event_config;
304 
305 	uint32_t			num_aers;
306 	struct nvme_async_event_request	aer[NVME_MAX_ASYNC_EVENTS];
307 
308 	void				*cons_cookie[NVME_MAX_CONSUMERS];
309 
310 	uint32_t			is_resetting;
311 	uint32_t			is_initialized;
312 	uint32_t			notification_sent;
313 
314 	bool				is_failed;
315 	bool				is_dying;
316 	STAILQ_HEAD(, nvme_request)	fail_req;
317 
318 	/* Host Memory Buffer */
319 	int				hmb_nchunks;
320 	size_t				hmb_chunk;
321 	bus_dma_tag_t			hmb_tag;
322 	struct nvme_hmb_chunk {
323 		bus_dmamap_t		hmbc_map;
324 		void			*hmbc_vaddr;
325 		uint64_t		hmbc_paddr;
326 	} *hmb_chunks;
327 	bus_dma_tag_t			hmb_desc_tag;
328 	bus_dmamap_t			hmb_desc_map;
329 	struct nvme_hmb_desc		*hmb_desc_vaddr;
330 	uint64_t			hmb_desc_paddr;
331 };
332 
333 #define nvme_mmio_offsetof(reg)						       \
334 	offsetof(struct nvme_registers, reg)
335 
336 #define nvme_mmio_read_4(sc, reg)					       \
337 	bus_space_read_4((sc)->bus_tag, (sc)->bus_handle,		       \
338 	    nvme_mmio_offsetof(reg))
339 
340 #define nvme_mmio_write_4(sc, reg, val)					       \
341 	bus_space_write_4((sc)->bus_tag, (sc)->bus_handle,		       \
342 	    nvme_mmio_offsetof(reg), val)
343 
344 #define nvme_mmio_write_8(sc, reg, val)					       \
345 	do {								       \
346 		bus_space_write_4((sc)->bus_tag, (sc)->bus_handle,	       \
347 		    nvme_mmio_offsetof(reg), val & 0xFFFFFFFF); 	       \
348 		bus_space_write_4((sc)->bus_tag, (sc)->bus_handle,	       \
349 		    nvme_mmio_offsetof(reg)+4,				       \
350 		    (val & 0xFFFFFFFF00000000ULL) >> 32);		       \
351 	} while (0);
352 
353 #define nvme_printf(ctrlr, fmt, args...)	\
354     device_printf(ctrlr->dev, fmt, ##args)
355 
356 void	nvme_ns_test(struct nvme_namespace *ns, u_long cmd, caddr_t arg);
357 
358 void	nvme_ctrlr_cmd_identify_controller(struct nvme_controller *ctrlr,
359 					   void *payload,
360 					   nvme_cb_fn_t cb_fn, void *cb_arg);
361 void	nvme_ctrlr_cmd_identify_namespace(struct nvme_controller *ctrlr,
362 					  uint32_t nsid, void *payload,
363 					  nvme_cb_fn_t cb_fn, void *cb_arg);
364 void	nvme_ctrlr_cmd_set_interrupt_coalescing(struct nvme_controller *ctrlr,
365 						uint32_t microseconds,
366 						uint32_t threshold,
367 						nvme_cb_fn_t cb_fn,
368 						void *cb_arg);
369 void	nvme_ctrlr_cmd_get_error_page(struct nvme_controller *ctrlr,
370 				      struct nvme_error_information_entry *payload,
371 				      uint32_t num_entries, /* 0 = max */
372 				      nvme_cb_fn_t cb_fn,
373 				      void *cb_arg);
374 void	nvme_ctrlr_cmd_get_health_information_page(struct nvme_controller *ctrlr,
375 						   uint32_t nsid,
376 						   struct nvme_health_information_page *payload,
377 						   nvme_cb_fn_t cb_fn,
378 						   void *cb_arg);
379 void	nvme_ctrlr_cmd_get_firmware_page(struct nvme_controller *ctrlr,
380 					 struct nvme_firmware_page *payload,
381 					 nvme_cb_fn_t cb_fn,
382 					 void *cb_arg);
383 void	nvme_ctrlr_cmd_create_io_cq(struct nvme_controller *ctrlr,
384 				    struct nvme_qpair *io_que,
385 				    nvme_cb_fn_t cb_fn, void *cb_arg);
386 void	nvme_ctrlr_cmd_create_io_sq(struct nvme_controller *ctrlr,
387 				    struct nvme_qpair *io_que,
388 				    nvme_cb_fn_t cb_fn, void *cb_arg);
389 void	nvme_ctrlr_cmd_delete_io_cq(struct nvme_controller *ctrlr,
390 				    struct nvme_qpair *io_que,
391 				    nvme_cb_fn_t cb_fn, void *cb_arg);
392 void	nvme_ctrlr_cmd_delete_io_sq(struct nvme_controller *ctrlr,
393 				    struct nvme_qpair *io_que,
394 				    nvme_cb_fn_t cb_fn, void *cb_arg);
395 void	nvme_ctrlr_cmd_set_num_queues(struct nvme_controller *ctrlr,
396 				      uint32_t num_queues, nvme_cb_fn_t cb_fn,
397 				      void *cb_arg);
398 void	nvme_ctrlr_cmd_set_async_event_config(struct nvme_controller *ctrlr,
399 					      uint32_t state,
400 					      nvme_cb_fn_t cb_fn, void *cb_arg);
401 void	nvme_ctrlr_cmd_abort(struct nvme_controller *ctrlr, uint16_t cid,
402 			     uint16_t sqid, nvme_cb_fn_t cb_fn, void *cb_arg);
403 
404 void	nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl);
405 
406 int	nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev);
407 void	nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev);
408 void	nvme_ctrlr_shutdown(struct nvme_controller *ctrlr);
409 void	nvme_ctrlr_reset(struct nvme_controller *ctrlr);
410 /* ctrlr defined as void * to allow use with config_intrhook. */
411 void	nvme_ctrlr_start_config_hook(void *ctrlr_arg);
412 void	nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
413 					struct nvme_request *req);
414 void	nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
415 				     struct nvme_request *req);
416 void	nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
417 				       struct nvme_request *req);
418 
419 int	nvme_qpair_construct(struct nvme_qpair *qpair,
420 			     uint32_t num_entries, uint32_t num_trackers,
421 			     struct nvme_controller *ctrlr);
422 void	nvme_qpair_submit_tracker(struct nvme_qpair *qpair,
423 				  struct nvme_tracker *tr);
424 bool	nvme_qpair_process_completions(struct nvme_qpair *qpair);
425 void	nvme_qpair_submit_request(struct nvme_qpair *qpair,
426 				  struct nvme_request *req);
427 void	nvme_qpair_reset(struct nvme_qpair *qpair);
428 void	nvme_qpair_fail(struct nvme_qpair *qpair);
429 void	nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
430 					   struct nvme_request *req,
431                                            uint32_t sct, uint32_t sc);
432 
433 void	nvme_admin_qpair_enable(struct nvme_qpair *qpair);
434 void	nvme_admin_qpair_disable(struct nvme_qpair *qpair);
435 void	nvme_admin_qpair_destroy(struct nvme_qpair *qpair);
436 
437 void	nvme_io_qpair_enable(struct nvme_qpair *qpair);
438 void	nvme_io_qpair_disable(struct nvme_qpair *qpair);
439 void	nvme_io_qpair_destroy(struct nvme_qpair *qpair);
440 
441 int	nvme_ns_construct(struct nvme_namespace *ns, uint32_t id,
442 			  struct nvme_controller *ctrlr);
443 void	nvme_ns_destruct(struct nvme_namespace *ns);
444 
445 void	nvme_sysctl_initialize_ctrlr(struct nvme_controller *ctrlr);
446 
447 void	nvme_qpair_print_command(struct nvme_qpair *qpair,
448 	    struct nvme_command *cmd);
449 void	nvme_qpair_print_completion(struct nvme_qpair *qpair,
450 	    struct nvme_completion *cpl);
451 
452 int	nvme_attach(device_t dev);
453 int	nvme_shutdown(device_t dev);
454 int	nvme_detach(device_t dev);
455 
456 /*
457  * Wait for a command to complete using the nvme_completion_poll_cb.  Used in
458  * limited contexts where the caller knows it's OK to block briefly while the
459  * command runs. The ISR will run the callback which will set status->done to
460  * true, usually within microseconds. If not, then after one second timeout
461  * handler should reset the controller and abort all outstanding requests
462  * including this polled one. If still not after ten seconds, then something is
463  * wrong with the driver, and panic is the only way to recover.
464  *
465  * Most commands using this interface aren't actual I/O to the drive's media so
466  * complete within a few microseconds. Adaptively spin for one tick to catch the
467  * vast majority of these without waiting for a tick plus scheduling delays. Since
468  * these are on startup, this drastically reduces startup time.
469  */
470 static __inline
471 void
472 nvme_completion_poll(struct nvme_completion_poll_status *status)
473 {
474 	int timeout = ticks + 10 * hz;
475 	sbintime_t delta_t = SBT_1US;
476 
477 	while (!atomic_load_acq_int(&status->done)) {
478 		if (timeout - ticks < 0)
479 			panic("NVME polled command failed to complete within 10s.");
480 		pause_sbt("nvme", delta_t, 0, C_PREL(1));
481 		delta_t = min(SBT_1MS, delta_t * 3 / 2);
482 	}
483 }
484 
485 static __inline void
486 nvme_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
487 {
488 	uint64_t *bus_addr = (uint64_t *)arg;
489 
490 	KASSERT(nseg == 1, ("number of segments (%d) is not 1", nseg));
491 	if (error != 0)
492 		printf("nvme_single_map err %d\n", error);
493 	*bus_addr = seg[0].ds_addr;
494 }
495 
496 static __inline struct nvme_request *
497 _nvme_allocate_request(nvme_cb_fn_t cb_fn, void *cb_arg)
498 {
499 	struct nvme_request *req;
500 
501 	req = malloc(sizeof(*req), M_NVME, M_NOWAIT | M_ZERO);
502 	if (req != NULL) {
503 		req->cb_fn = cb_fn;
504 		req->cb_arg = cb_arg;
505 		req->timeout = true;
506 	}
507 	return (req);
508 }
509 
510 static __inline struct nvme_request *
511 nvme_allocate_request_vaddr(void *payload, uint32_t payload_size,
512     nvme_cb_fn_t cb_fn, void *cb_arg)
513 {
514 	struct nvme_request *req;
515 
516 	req = _nvme_allocate_request(cb_fn, cb_arg);
517 	if (req != NULL) {
518 		req->payload = memdesc_vaddr(payload, payload_size);
519 		req->payload_valid = true;
520 	}
521 	return (req);
522 }
523 
524 static __inline struct nvme_request *
525 nvme_allocate_request_null(nvme_cb_fn_t cb_fn, void *cb_arg)
526 {
527 	struct nvme_request *req;
528 
529 	req = _nvme_allocate_request(cb_fn, cb_arg);
530 	return (req);
531 }
532 
533 static __inline struct nvme_request *
534 nvme_allocate_request_bio(struct bio *bio, nvme_cb_fn_t cb_fn, void *cb_arg)
535 {
536 	struct nvme_request *req;
537 
538 	req = _nvme_allocate_request(cb_fn, cb_arg);
539 	if (req != NULL) {
540 		req->payload = memdesc_bio(bio);
541 		req->payload_valid = true;
542 	}
543 	return (req);
544 }
545 
546 static __inline struct nvme_request *
547 nvme_allocate_request_ccb(union ccb *ccb, nvme_cb_fn_t cb_fn, void *cb_arg)
548 {
549 	struct nvme_request *req;
550 
551 	req = _nvme_allocate_request(cb_fn, cb_arg);
552 	if (req != NULL) {
553 		req->payload = memdesc_ccb(ccb);
554 		req->payload_valid = true;
555 	}
556 
557 	return (req);
558 }
559 
560 #define nvme_free_request(req)	free(req, M_NVME)
561 
562 void	nvme_notify_async_consumers(struct nvme_controller *ctrlr,
563 				    const struct nvme_completion *async_cpl,
564 				    uint32_t log_page_id, void *log_page_buffer,
565 				    uint32_t log_page_size);
566 void	nvme_notify_fail_consumers(struct nvme_controller *ctrlr);
567 void	nvme_notify_new_controller(struct nvme_controller *ctrlr);
568 void	nvme_notify_ns(struct nvme_controller *ctrlr, int nsid);
569 
570 void	nvme_ctrlr_shared_handler(void *arg);
571 void	nvme_ctrlr_poll(struct nvme_controller *ctrlr);
572 
573 int	nvme_ctrlr_suspend(struct nvme_controller *ctrlr);
574 int	nvme_ctrlr_resume(struct nvme_controller *ctrlr);
575 
576 #endif /* __NVME_PRIVATE_H__ */
577