1 /*- 2 * Copyright (C) 2012-2013 Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/bus.h> 33 #include <sys/conf.h> 34 #include <sys/disk.h> 35 #include <sys/fcntl.h> 36 #include <sys/ioccom.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/proc.h> 40 #include <sys/systm.h> 41 42 #include <dev/pci/pcivar.h> 43 44 #include <geom/geom.h> 45 46 #include "nvme_private.h" 47 48 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 49 static void nvme_bio_child_done(void *arg, 50 const struct nvme_completion *cpl); 51 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 52 uint32_t alignment); 53 static void nvme_free_child_bios(int num_bios, 54 struct bio **child_bios); 55 static struct bio ** nvme_allocate_child_bios(int num_bios); 56 static struct bio ** nvme_construct_child_bios(struct bio *bp, 57 uint32_t alignment, 58 int *num_bios); 59 static int nvme_ns_split_bio(struct nvme_namespace *ns, 60 struct bio *bp, 61 uint32_t alignment); 62 63 static int 64 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 65 struct thread *td) 66 { 67 struct nvme_namespace *ns; 68 struct nvme_controller *ctrlr; 69 struct nvme_pt_command *pt; 70 71 ns = cdev->si_drv1; 72 ctrlr = ns->ctrlr; 73 74 switch (cmd) { 75 case NVME_IO_TEST: 76 case NVME_BIO_TEST: 77 nvme_ns_test(ns, cmd, arg); 78 break; 79 case NVME_PASSTHROUGH_CMD: 80 pt = (struct nvme_pt_command *)arg; 81 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 82 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 83 case DIOCGMEDIASIZE: 84 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 85 break; 86 case DIOCGSECTORSIZE: 87 *(u_int *)arg = nvme_ns_get_sector_size(ns); 88 break; 89 default: 90 return (ENOTTY); 91 } 92 93 return (0); 94 } 95 96 static int 97 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 98 struct thread *td) 99 { 100 int error = 0; 101 102 if (flags & FWRITE) 103 error = securelevel_gt(td->td_ucred, 0); 104 105 return (error); 106 } 107 108 static int 109 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 110 struct thread *td) 111 { 112 113 return (0); 114 } 115 116 static void 117 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 118 { 119 struct bio *bp = arg; 120 121 /* 122 * TODO: add more extensive translation of NVMe status codes 123 * to different bio error codes (i.e. EIO, EINVAL, etc.) 124 */ 125 if (nvme_completion_is_error(cpl)) { 126 bp->bio_error = EIO; 127 bp->bio_flags |= BIO_ERROR; 128 bp->bio_resid = bp->bio_bcount; 129 } else 130 bp->bio_resid = 0; 131 132 biodone(bp); 133 } 134 135 static void 136 nvme_ns_strategy(struct bio *bp) 137 { 138 struct nvme_namespace *ns; 139 int err; 140 141 ns = bp->bio_dev->si_drv1; 142 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 143 144 if (err) { 145 bp->bio_error = err; 146 bp->bio_flags |= BIO_ERROR; 147 bp->bio_resid = bp->bio_bcount; 148 biodone(bp); 149 } 150 151 } 152 153 static struct cdevsw nvme_ns_cdevsw = { 154 .d_version = D_VERSION, 155 .d_flags = D_DISK, 156 .d_read = physread, 157 .d_write = physwrite, 158 .d_open = nvme_ns_open, 159 .d_close = nvme_ns_close, 160 .d_strategy = nvme_ns_strategy, 161 .d_ioctl = nvme_ns_ioctl 162 }; 163 164 uint32_t 165 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 166 { 167 return ns->ctrlr->max_xfer_size; 168 } 169 170 uint32_t 171 nvme_ns_get_sector_size(struct nvme_namespace *ns) 172 { 173 return (1 << ns->data.lbaf[ns->data.flbas.format].lbads); 174 } 175 176 uint64_t 177 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 178 { 179 return (ns->data.nsze); 180 } 181 182 uint64_t 183 nvme_ns_get_size(struct nvme_namespace *ns) 184 { 185 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 186 } 187 188 uint32_t 189 nvme_ns_get_flags(struct nvme_namespace *ns) 190 { 191 return (ns->flags); 192 } 193 194 const char * 195 nvme_ns_get_serial_number(struct nvme_namespace *ns) 196 { 197 return ((const char *)ns->ctrlr->cdata.sn); 198 } 199 200 const char * 201 nvme_ns_get_model_number(struct nvme_namespace *ns) 202 { 203 return ((const char *)ns->ctrlr->cdata.mn); 204 } 205 206 const struct nvme_namespace_data * 207 nvme_ns_get_data(struct nvme_namespace *ns) 208 { 209 210 return (&ns->data); 211 } 212 213 uint32_t 214 nvme_ns_get_stripesize(struct nvme_namespace *ns) 215 { 216 217 return (ns->stripesize); 218 } 219 220 static void 221 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 222 { 223 struct bio *bp = arg; 224 nvme_cb_fn_t bp_cb_fn; 225 226 bp_cb_fn = bp->bio_driver1; 227 228 if (bp->bio_driver2) 229 free(bp->bio_driver2, M_NVME); 230 231 if (nvme_completion_is_error(status)) { 232 bp->bio_flags |= BIO_ERROR; 233 if (bp->bio_error == 0) 234 bp->bio_error = EIO; 235 } 236 237 if ((bp->bio_flags & BIO_ERROR) == 0) 238 bp->bio_resid = 0; 239 else 240 bp->bio_resid = bp->bio_bcount; 241 242 bp_cb_fn(bp, status); 243 } 244 245 static void 246 nvme_bio_child_inbed(struct bio *parent, int bio_error) 247 { 248 struct nvme_completion parent_cpl; 249 int children, inbed; 250 251 if (bio_error != 0) { 252 parent->bio_flags |= BIO_ERROR; 253 parent->bio_error = bio_error; 254 } 255 256 /* 257 * atomic_fetchadd will return value before adding 1, so we still 258 * must add 1 to get the updated inbed number. Save bio_children 259 * before incrementing to guard against race conditions when 260 * two children bios complete on different queues. 261 */ 262 children = atomic_load_acq_int(&parent->bio_children); 263 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 264 if (inbed == children) { 265 bzero(&parent_cpl, sizeof(parent_cpl)); 266 if (parent->bio_flags & BIO_ERROR) 267 parent_cpl.status.sc = NVME_SC_DATA_TRANSFER_ERROR; 268 nvme_ns_bio_done(parent, &parent_cpl); 269 } 270 } 271 272 static void 273 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 274 { 275 struct bio *child = arg; 276 struct bio *parent; 277 int bio_error; 278 279 parent = child->bio_parent; 280 g_destroy_bio(child); 281 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 282 nvme_bio_child_inbed(parent, bio_error); 283 } 284 285 static uint32_t 286 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 287 { 288 uint32_t num_segs, offset, remainder; 289 290 if (align == 0) 291 return (1); 292 293 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 294 295 num_segs = size / align; 296 remainder = size & (align - 1); 297 offset = addr & (align - 1); 298 if (remainder > 0 || offset > 0) 299 num_segs += 1 + (remainder + offset - 1) / align; 300 return (num_segs); 301 } 302 303 static void 304 nvme_free_child_bios(int num_bios, struct bio **child_bios) 305 { 306 int i; 307 308 for (i = 0; i < num_bios; i++) { 309 if (child_bios[i] != NULL) 310 g_destroy_bio(child_bios[i]); 311 } 312 313 free(child_bios, M_NVME); 314 } 315 316 static struct bio ** 317 nvme_allocate_child_bios(int num_bios) 318 { 319 struct bio **child_bios; 320 int err = 0, i; 321 322 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 323 if (child_bios == NULL) 324 return (NULL); 325 326 for (i = 0; i < num_bios; i++) { 327 child_bios[i] = g_new_bio(); 328 if (child_bios[i] == NULL) 329 err = ENOMEM; 330 } 331 332 if (err == ENOMEM) { 333 nvme_free_child_bios(num_bios, child_bios); 334 return (NULL); 335 } 336 337 return (child_bios); 338 } 339 340 static struct bio ** 341 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 342 { 343 struct bio **child_bios; 344 struct bio *child; 345 uint64_t cur_offset; 346 caddr_t data; 347 uint32_t rem_bcount; 348 int i; 349 #ifdef NVME_UNMAPPED_BIO_SUPPORT 350 struct vm_page **ma; 351 uint32_t ma_offset; 352 #endif 353 354 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 355 alignment); 356 child_bios = nvme_allocate_child_bios(*num_bios); 357 if (child_bios == NULL) 358 return (NULL); 359 360 bp->bio_children = *num_bios; 361 bp->bio_inbed = 0; 362 cur_offset = bp->bio_offset; 363 rem_bcount = bp->bio_bcount; 364 data = bp->bio_data; 365 #ifdef NVME_UNMAPPED_BIO_SUPPORT 366 ma_offset = bp->bio_ma_offset; 367 ma = bp->bio_ma; 368 #endif 369 370 for (i = 0; i < *num_bios; i++) { 371 child = child_bios[i]; 372 child->bio_parent = bp; 373 child->bio_cmd = bp->bio_cmd; 374 child->bio_offset = cur_offset; 375 child->bio_bcount = min(rem_bcount, 376 alignment - (cur_offset & (alignment - 1))); 377 child->bio_flags = bp->bio_flags; 378 #ifdef NVME_UNMAPPED_BIO_SUPPORT 379 if (bp->bio_flags & BIO_UNMAPPED) { 380 child->bio_ma_offset = ma_offset; 381 child->bio_ma = ma; 382 child->bio_ma_n = 383 nvme_get_num_segments(child->bio_ma_offset, 384 child->bio_bcount, PAGE_SIZE); 385 ma_offset = (ma_offset + child->bio_bcount) & 386 PAGE_MASK; 387 ma += child->bio_ma_n; 388 if (ma_offset != 0) 389 ma -= 1; 390 } else 391 #endif 392 { 393 child->bio_data = data; 394 data += child->bio_bcount; 395 } 396 cur_offset += child->bio_bcount; 397 rem_bcount -= child->bio_bcount; 398 } 399 400 return (child_bios); 401 } 402 403 static int 404 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 405 uint32_t alignment) 406 { 407 struct bio *child; 408 struct bio **child_bios; 409 int err, i, num_bios; 410 411 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 412 if (child_bios == NULL) 413 return (ENOMEM); 414 415 for (i = 0; i < num_bios; i++) { 416 child = child_bios[i]; 417 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 418 if (err != 0) { 419 nvme_bio_child_inbed(bp, err); 420 g_destroy_bio(child); 421 } 422 } 423 424 free(child_bios, M_NVME); 425 return (0); 426 } 427 428 int 429 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 430 nvme_cb_fn_t cb_fn) 431 { 432 struct nvme_dsm_range *dsm_range; 433 uint32_t num_bios; 434 int err; 435 436 bp->bio_driver1 = cb_fn; 437 438 if (ns->stripesize > 0 && 439 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 440 num_bios = nvme_get_num_segments(bp->bio_offset, 441 bp->bio_bcount, ns->stripesize); 442 if (num_bios > 1) 443 return (nvme_ns_split_bio(ns, bp, ns->stripesize)); 444 } 445 446 switch (bp->bio_cmd) { 447 case BIO_READ: 448 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 449 break; 450 case BIO_WRITE: 451 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 452 break; 453 case BIO_FLUSH: 454 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 455 break; 456 case BIO_DELETE: 457 dsm_range = 458 malloc(sizeof(struct nvme_dsm_range), M_NVME, 459 M_ZERO | M_WAITOK); 460 dsm_range->length = 461 bp->bio_bcount/nvme_ns_get_sector_size(ns); 462 dsm_range->starting_lba = 463 bp->bio_offset/nvme_ns_get_sector_size(ns); 464 bp->bio_driver2 = dsm_range; 465 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 466 nvme_ns_bio_done, bp); 467 if (err != 0) 468 free(dsm_range, M_NVME); 469 break; 470 default: 471 err = EIO; 472 break; 473 } 474 475 return (err); 476 } 477 478 int 479 nvme_ns_construct(struct nvme_namespace *ns, uint16_t id, 480 struct nvme_controller *ctrlr) 481 { 482 struct nvme_completion_poll_status status; 483 int unit; 484 485 ns->ctrlr = ctrlr; 486 ns->id = id; 487 ns->stripesize = 0; 488 489 if (pci_get_devid(ctrlr->dev) == 0x09538086 && ctrlr->cdata.vs[3] != 0) 490 ns->stripesize = 491 (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size; 492 493 /* 494 * Namespaces are reconstructed after a controller reset, so check 495 * to make sure we only call mtx_init once on each mtx. 496 * 497 * TODO: Move this somewhere where it gets called at controller 498 * construction time, which is not invoked as part of each 499 * controller reset. 500 */ 501 if (!mtx_initialized(&ns->lock)) 502 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 503 504 status.done = FALSE; 505 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 506 nvme_completion_poll_cb, &status); 507 while (status.done == FALSE) 508 DELAY(5); 509 if (nvme_completion_is_error(&status.cpl)) { 510 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 511 return (ENXIO); 512 } 513 514 /* 515 * If the size of is zero, chances are this isn't a valid 516 * namespace (eg one that's not been configured yet). The 517 * standard says the entire id will be zeros, so this is a 518 * cheap way to test for that. 519 */ 520 if (ns->data.nsze == 0) 521 return (ENXIO); 522 523 /* 524 * Note: format is a 0-based value, so > is appropriate here, 525 * not >=. 526 */ 527 if (ns->data.flbas.format > ns->data.nlbaf) { 528 printf("lba format %d exceeds number supported (%d)\n", 529 ns->data.flbas.format, ns->data.nlbaf+1); 530 return (ENXIO); 531 } 532 533 if (ctrlr->cdata.oncs.dsm) 534 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 535 536 if (ctrlr->cdata.vwc.present) 537 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 538 539 /* 540 * cdev may have already been created, if we are reconstructing the 541 * namespace after a controller-level reset. 542 */ 543 if (ns->cdev != NULL) 544 return (0); 545 546 /* 547 * Namespace IDs start at 1, so we need to subtract 1 to create a 548 * correct unit number. 549 */ 550 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 551 552 /* 553 * MAKEDEV_ETERNAL was added in r210923, for cdevs that will never 554 * be destroyed. This avoids refcounting on the cdev object. 555 * That should be OK case here, as long as we're not supporting PCIe 556 * surprise removal nor namespace deletion. 557 */ 558 #ifdef MAKEDEV_ETERNAL_KLD 559 ns->cdev = make_dev_credf(MAKEDEV_ETERNAL_KLD, &nvme_ns_cdevsw, unit, 560 NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d", 561 device_get_unit(ctrlr->dev), ns->id); 562 #else 563 ns->cdev = make_dev_credf(0, &nvme_ns_cdevsw, unit, 564 NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d", 565 device_get_unit(ctrlr->dev), ns->id); 566 #endif 567 #ifdef NVME_UNMAPPED_BIO_SUPPORT 568 ns->cdev->si_flags |= SI_UNMAPPED; 569 #endif 570 571 if (ns->cdev != NULL) 572 ns->cdev->si_drv1 = ns; 573 574 return (0); 575 } 576 577 void nvme_ns_destruct(struct nvme_namespace *ns) 578 { 579 580 if (ns->cdev != NULL) 581 destroy_dev(ns->cdev); 582 } 583