xref: /freebsd/sys/dev/nvme/nvme_ns.c (revision d316de24faa7453118a90fb0e9839e8026e36a4e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2013 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/bio.h>
31 #include <sys/bus.h>
32 #include <sys/conf.h>
33 #include <sys/disk.h>
34 #include <sys/fcntl.h>
35 #include <sys/ioccom.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/proc.h>
39 #include <sys/systm.h>
40 
41 #include <dev/pci/pcivar.h>
42 
43 #include <geom/geom.h>
44 
45 #include "nvme_private.h"
46 
47 static void		nvme_bio_child_inbed(struct bio *parent, int bio_error);
48 static void		nvme_bio_child_done(void *arg,
49 					    const struct nvme_completion *cpl);
50 static uint32_t		nvme_get_num_segments(uint64_t addr, uint64_t size,
51 					      uint32_t alignment);
52 static void		nvme_free_child_bios(int num_bios,
53 					     struct bio **child_bios);
54 static struct bio **	nvme_allocate_child_bios(int num_bios);
55 static struct bio **	nvme_construct_child_bios(struct bio *bp,
56 						  uint32_t alignment,
57 						  int *num_bios);
58 static int		nvme_ns_split_bio(struct nvme_namespace *ns,
59 					  struct bio *bp,
60 					  uint32_t alignment);
61 
62 static int
63 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
64     struct thread *td)
65 {
66 	struct nvme_namespace			*ns;
67 	struct nvme_controller			*ctrlr;
68 	struct nvme_pt_command			*pt;
69 
70 	ns = cdev->si_drv1;
71 	ctrlr = ns->ctrlr;
72 
73 	switch (cmd) {
74 	case NVME_IO_TEST:
75 	case NVME_BIO_TEST:
76 		nvme_ns_test(ns, cmd, arg);
77 		break;
78 	case NVME_PASSTHROUGH_CMD:
79 		pt = (struct nvme_pt_command *)arg;
80 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id,
81 		    1 /* is_user_buffer */, 0 /* is_admin_cmd */));
82 	case NVME_GET_NSID:
83 	{
84 		struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
85 		strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
86 		    sizeof(gnsid->cdev));
87 		gnsid->nsid = ns->id;
88 		break;
89 	}
90 	case DIOCGMEDIASIZE:
91 		*(off_t *)arg = (off_t)nvme_ns_get_size(ns);
92 		break;
93 	case DIOCGSECTORSIZE:
94 		*(u_int *)arg = nvme_ns_get_sector_size(ns);
95 		break;
96 	default:
97 		return (ENOTTY);
98 	}
99 
100 	return (0);
101 }
102 
103 static int
104 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused,
105     struct thread *td)
106 {
107 	int error = 0;
108 
109 	if (flags & FWRITE)
110 		error = securelevel_gt(td->td_ucred, 0);
111 
112 	return (error);
113 }
114 
115 static int
116 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused,
117     struct thread *td)
118 {
119 
120 	return (0);
121 }
122 
123 static void
124 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl)
125 {
126 	struct bio *bp = arg;
127 
128 	/*
129 	 * TODO: add more extensive translation of NVMe status codes
130 	 *  to different bio error codes (i.e. EIO, EINVAL, etc.)
131 	 */
132 	if (nvme_completion_is_error(cpl)) {
133 		bp->bio_error = EIO;
134 		bp->bio_flags |= BIO_ERROR;
135 		bp->bio_resid = bp->bio_bcount;
136 	} else
137 		bp->bio_resid = 0;
138 
139 	biodone(bp);
140 }
141 
142 static void
143 nvme_ns_strategy(struct bio *bp)
144 {
145 	struct nvme_namespace	*ns;
146 	int			err;
147 
148 	ns = bp->bio_dev->si_drv1;
149 	err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done);
150 
151 	if (err) {
152 		bp->bio_error = err;
153 		bp->bio_flags |= BIO_ERROR;
154 		bp->bio_resid = bp->bio_bcount;
155 		biodone(bp);
156 	}
157 
158 }
159 
160 static struct cdevsw nvme_ns_cdevsw = {
161 	.d_version =	D_VERSION,
162 	.d_flags =	D_DISK,
163 	.d_read =	physread,
164 	.d_write =	physwrite,
165 	.d_open =	nvme_ns_open,
166 	.d_close =	nvme_ns_close,
167 	.d_strategy =	nvme_ns_strategy,
168 	.d_ioctl =	nvme_ns_ioctl
169 };
170 
171 uint32_t
172 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns)
173 {
174 	return ns->ctrlr->max_xfer_size;
175 }
176 
177 uint32_t
178 nvme_ns_get_sector_size(struct nvme_namespace *ns)
179 {
180 	uint8_t flbas_fmt, lbads;
181 
182 	flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas);
183 	lbads = NVMEV(NVME_NS_DATA_LBAF_LBADS, ns->data.lbaf[flbas_fmt]);
184 
185 	return (1 << lbads);
186 }
187 
188 uint64_t
189 nvme_ns_get_num_sectors(struct nvme_namespace *ns)
190 {
191 	return (ns->data.nsze);
192 }
193 
194 uint64_t
195 nvme_ns_get_size(struct nvme_namespace *ns)
196 {
197 	return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns));
198 }
199 
200 uint32_t
201 nvme_ns_get_flags(struct nvme_namespace *ns)
202 {
203 	return (ns->flags);
204 }
205 
206 const char *
207 nvme_ns_get_serial_number(struct nvme_namespace *ns)
208 {
209 	return ((const char *)ns->ctrlr->cdata.sn);
210 }
211 
212 const char *
213 nvme_ns_get_model_number(struct nvme_namespace *ns)
214 {
215 	return ((const char *)ns->ctrlr->cdata.mn);
216 }
217 
218 const struct nvme_namespace_data *
219 nvme_ns_get_data(struct nvme_namespace *ns)
220 {
221 
222 	return (&ns->data);
223 }
224 
225 uint32_t
226 nvme_ns_get_stripesize(struct nvme_namespace *ns)
227 {
228 	uint32_t ss;
229 
230 	if (NVMEV(NVME_NS_DATA_NSFEAT_NPVALID, ns->data.nsfeat) != 0) {
231 		ss = nvme_ns_get_sector_size(ns);
232 		if (ns->data.npwa != 0)
233 			return ((ns->data.npwa + 1) * ss);
234 		else if (ns->data.npwg != 0)
235 			return ((ns->data.npwg + 1) * ss);
236 	}
237 	return (ns->boundary);
238 }
239 
240 static void
241 nvme_ns_bio_done(void *arg, const struct nvme_completion *status)
242 {
243 	struct bio	*bp = arg;
244 	nvme_cb_fn_t	bp_cb_fn;
245 
246 	bp_cb_fn = bp->bio_driver1;
247 
248 	if (bp->bio_driver2)
249 		free(bp->bio_driver2, M_NVME);
250 
251 	if (nvme_completion_is_error(status)) {
252 		bp->bio_flags |= BIO_ERROR;
253 		if (bp->bio_error == 0)
254 			bp->bio_error = EIO;
255 	}
256 
257 	if ((bp->bio_flags & BIO_ERROR) == 0)
258 		bp->bio_resid = 0;
259 	else
260 		bp->bio_resid = bp->bio_bcount;
261 
262 	bp_cb_fn(bp, status);
263 }
264 
265 static void
266 nvme_bio_child_inbed(struct bio *parent, int bio_error)
267 {
268 	struct nvme_completion	parent_cpl;
269 	int			children, inbed;
270 
271 	if (bio_error != 0) {
272 		parent->bio_flags |= BIO_ERROR;
273 		parent->bio_error = bio_error;
274 	}
275 
276 	/*
277 	 * atomic_fetchadd will return value before adding 1, so we still
278 	 *  must add 1 to get the updated inbed number.  Save bio_children
279 	 *  before incrementing to guard against race conditions when
280 	 *  two children bios complete on different queues.
281 	 */
282 	children = atomic_load_acq_int(&parent->bio_children);
283 	inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1;
284 	if (inbed == children) {
285 		bzero(&parent_cpl, sizeof(parent_cpl));
286 		if (parent->bio_flags & BIO_ERROR) {
287 			parent_cpl.status &= ~NVMEM(NVME_STATUS_SC);
288 			parent_cpl.status |= NVMEF(NVME_STATUS_SC,
289 			    NVME_SC_DATA_TRANSFER_ERROR);
290 		}
291 		nvme_ns_bio_done(parent, &parent_cpl);
292 	}
293 }
294 
295 static void
296 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl)
297 {
298 	struct bio		*child = arg;
299 	struct bio		*parent;
300 	int			bio_error;
301 
302 	parent = child->bio_parent;
303 	g_destroy_bio(child);
304 	bio_error = nvme_completion_is_error(cpl) ? EIO : 0;
305 	nvme_bio_child_inbed(parent, bio_error);
306 }
307 
308 static uint32_t
309 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align)
310 {
311 	uint32_t	num_segs, offset, remainder;
312 
313 	if (align == 0)
314 		return (1);
315 
316 	KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n"));
317 
318 	num_segs = size / align;
319 	remainder = size & (align - 1);
320 	offset = addr & (align - 1);
321 	if (remainder > 0 || offset > 0)
322 		num_segs += 1 + (remainder + offset - 1) / align;
323 	return (num_segs);
324 }
325 
326 static void
327 nvme_free_child_bios(int num_bios, struct bio **child_bios)
328 {
329 	int i;
330 
331 	for (i = 0; i < num_bios; i++) {
332 		if (child_bios[i] != NULL)
333 			g_destroy_bio(child_bios[i]);
334 	}
335 
336 	free(child_bios, M_NVME);
337 }
338 
339 static struct bio **
340 nvme_allocate_child_bios(int num_bios)
341 {
342 	struct bio **child_bios;
343 	int err = 0, i;
344 
345 	child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT);
346 	if (child_bios == NULL)
347 		return (NULL);
348 
349 	for (i = 0; i < num_bios; i++) {
350 		child_bios[i] = g_new_bio();
351 		if (child_bios[i] == NULL)
352 			err = ENOMEM;
353 	}
354 
355 	if (err == ENOMEM) {
356 		nvme_free_child_bios(num_bios, child_bios);
357 		return (NULL);
358 	}
359 
360 	return (child_bios);
361 }
362 
363 static struct bio **
364 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios)
365 {
366 	struct bio	**child_bios;
367 	struct bio	*child;
368 	uint64_t	cur_offset;
369 	caddr_t		data;
370 	uint32_t	rem_bcount;
371 	int		i;
372 	struct vm_page	**ma;
373 	uint32_t	ma_offset;
374 
375 	*num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount,
376 	    alignment);
377 	child_bios = nvme_allocate_child_bios(*num_bios);
378 	if (child_bios == NULL)
379 		return (NULL);
380 
381 	bp->bio_children = *num_bios;
382 	bp->bio_inbed = 0;
383 	cur_offset = bp->bio_offset;
384 	rem_bcount = bp->bio_bcount;
385 	data = bp->bio_data;
386 	ma_offset = bp->bio_ma_offset;
387 	ma = bp->bio_ma;
388 
389 	for (i = 0; i < *num_bios; i++) {
390 		child = child_bios[i];
391 		child->bio_parent = bp;
392 		child->bio_cmd = bp->bio_cmd;
393 		child->bio_offset = cur_offset;
394 		child->bio_bcount = min(rem_bcount,
395 		    alignment - (cur_offset & (alignment - 1)));
396 		child->bio_flags = bp->bio_flags;
397 		if (bp->bio_flags & BIO_UNMAPPED) {
398 			child->bio_ma_offset = ma_offset;
399 			child->bio_ma = ma;
400 			child->bio_ma_n =
401 			    nvme_get_num_segments(child->bio_ma_offset,
402 				child->bio_bcount, PAGE_SIZE);
403 			ma_offset = (ma_offset + child->bio_bcount) &
404 			    PAGE_MASK;
405 			ma += child->bio_ma_n;
406 			if (ma_offset != 0)
407 				ma -= 1;
408 		} else {
409 			child->bio_data = data;
410 			data += child->bio_bcount;
411 		}
412 		cur_offset += child->bio_bcount;
413 		rem_bcount -= child->bio_bcount;
414 	}
415 
416 	return (child_bios);
417 }
418 
419 static int
420 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp,
421     uint32_t alignment)
422 {
423 	struct bio	*child;
424 	struct bio	**child_bios;
425 	int		err, i, num_bios;
426 
427 	child_bios = nvme_construct_child_bios(bp, alignment, &num_bios);
428 	if (child_bios == NULL)
429 		return (ENOMEM);
430 
431 	for (i = 0; i < num_bios; i++) {
432 		child = child_bios[i];
433 		err = nvme_ns_bio_process(ns, child, nvme_bio_child_done);
434 		if (err != 0) {
435 			nvme_bio_child_inbed(bp, err);
436 			g_destroy_bio(child);
437 		}
438 	}
439 
440 	free(child_bios, M_NVME);
441 	return (0);
442 }
443 
444 int
445 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp,
446 	nvme_cb_fn_t cb_fn)
447 {
448 	struct nvme_dsm_range	*dsm_range;
449 	uint32_t		num_bios;
450 	int			err;
451 
452 	bp->bio_driver1 = cb_fn;
453 
454 	if (ns->boundary > 0 &&
455 	    (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) {
456 		num_bios = nvme_get_num_segments(bp->bio_offset,
457 		    bp->bio_bcount, ns->boundary);
458 		if (num_bios > 1)
459 			return (nvme_ns_split_bio(ns, bp, ns->boundary));
460 	}
461 
462 	switch (bp->bio_cmd) {
463 	case BIO_READ:
464 		err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp);
465 		break;
466 	case BIO_WRITE:
467 		err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp);
468 		break;
469 	case BIO_FLUSH:
470 		err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp);
471 		break;
472 	case BIO_DELETE:
473 		dsm_range =
474 		    malloc(sizeof(struct nvme_dsm_range), M_NVME,
475 		    M_ZERO | M_NOWAIT);
476 		if (!dsm_range) {
477 			err = ENOMEM;
478 			break;
479 		}
480 		dsm_range->length =
481 		    htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns));
482 		dsm_range->starting_lba =
483 		    htole64(bp->bio_offset/nvme_ns_get_sector_size(ns));
484 		bp->bio_driver2 = dsm_range;
485 		err = nvme_ns_cmd_deallocate(ns, dsm_range, 1,
486 			nvme_ns_bio_done, bp);
487 		if (err != 0)
488 			free(dsm_range, M_NVME);
489 		break;
490 	default:
491 		err = EOPNOTSUPP;
492 		break;
493 	}
494 
495 	return (err);
496 }
497 
498 int
499 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg,
500     int flag, struct thread *td)
501 {
502 	return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td));
503 }
504 
505 int
506 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id,
507     struct nvme_controller *ctrlr)
508 {
509 	struct make_dev_args                    md_args;
510 	struct nvme_completion_poll_status	status;
511 	int                                     res;
512 	int					unit;
513 	uint8_t					flbas_fmt;
514 	uint8_t					vwc_present;
515 
516 	ns->ctrlr = ctrlr;
517 	ns->id = id;
518 
519 	/*
520 	 * Namespaces are reconstructed after a controller reset, so check
521 	 *  to make sure we only call mtx_init once on each mtx.
522 	 *
523 	 * TODO: Move this somewhere where it gets called at controller
524 	 *  construction time, which is not invoked as part of each
525 	 *  controller reset.
526 	 */
527 	if (!mtx_initialized(&ns->lock))
528 		mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF);
529 
530 	status.done = 0;
531 	nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data,
532 	    nvme_completion_poll_cb, &status);
533 	nvme_completion_poll(&status);
534 	if (nvme_completion_is_error(&status.cpl)) {
535 		nvme_printf(ctrlr, "nvme_identify_namespace failed\n");
536 		return (ENXIO);
537 	}
538 
539 	/* Convert data to host endian */
540 	nvme_namespace_data_swapbytes(&ns->data);
541 
542 	/*
543 	 * If the size of is zero, chances are this isn't a valid
544 	 * namespace (eg one that's not been configured yet). The
545 	 * standard says the entire id will be zeros, so this is a
546 	 * cheap way to test for that.
547 	 */
548 	if (ns->data.nsze == 0)
549 		return (ENXIO);
550 
551 	flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas);
552 
553 	/*
554 	 * Note: format is a 0-based value, so > is appropriate here,
555 	 *  not >=.
556 	 */
557 	if (flbas_fmt > ns->data.nlbaf) {
558 		nvme_printf(ctrlr,
559 		    "lba format %d exceeds number supported (%d)\n",
560 		    flbas_fmt, ns->data.nlbaf + 1);
561 		return (ENXIO);
562 	}
563 
564 	/*
565 	 * Older Intel devices (like the PC35xxx and P45xx series) advertise in
566 	 * vendor specific space an alignment that improves performance.  If
567 	 * present use for the stripe size.  NVMe 1.3 standardized this as
568 	 * NOIOB, and newer Intel drives use that.
569 	 */
570 	if ((ctrlr->quirks & QUIRK_INTEL_ALIGNMENT) != 0) {
571 		if (ctrlr->cdata.vs[3] != 0)
572 			ns->boundary =
573 			    1 << (ctrlr->cdata.vs[3] + NVME_MPS_SHIFT +
574 				NVME_CAP_HI_MPSMIN(ctrlr->cap_hi));
575 		else
576 			ns->boundary = 0;
577 	} else {
578 		ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns);
579 	}
580 
581 	if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata))
582 		ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED;
583 
584 	vwc_present = NVMEV(NVME_CTRLR_DATA_VWC_PRESENT, ctrlr->cdata.vwc);
585 	if (vwc_present)
586 		ns->flags |= NVME_NS_FLUSH_SUPPORTED;
587 
588 	/*
589 	 * cdev may have already been created, if we are reconstructing the
590 	 *  namespace after a controller-level reset.
591 	 */
592 	if (ns->cdev != NULL)
593 		return (0);
594 
595 	/*
596 	 * Namespace IDs start at 1, so we need to subtract 1 to create a
597 	 *  correct unit number.
598 	 */
599 	unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1;
600 
601 	make_dev_args_init(&md_args);
602 	md_args.mda_devsw = &nvme_ns_cdevsw;
603 	md_args.mda_unit = unit;
604 	md_args.mda_mode = 0600;
605 	md_args.mda_si_drv1 = ns;
606 	res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d",
607 	    device_get_unit(ctrlr->dev), ns->id);
608 	if (res != 0)
609 		return (ENXIO);
610 
611 	ns->cdev->si_flags |= SI_UNMAPPED;
612 
613 	return (0);
614 }
615 
616 void
617 nvme_ns_destruct(struct nvme_namespace *ns)
618 {
619 
620 	if (ns->cdev != NULL)
621 		destroy_dev(ns->cdev);
622 }
623