1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2013 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/disk.h> 37 #include <sys/fcntl.h> 38 #include <sys/ioccom.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/proc.h> 42 #include <sys/systm.h> 43 44 #include <dev/pci/pcivar.h> 45 46 #include <geom/geom.h> 47 48 #include "nvme_private.h" 49 50 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 51 static void nvme_bio_child_done(void *arg, 52 const struct nvme_completion *cpl); 53 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 54 uint32_t alignment); 55 static void nvme_free_child_bios(int num_bios, 56 struct bio **child_bios); 57 static struct bio ** nvme_allocate_child_bios(int num_bios); 58 static struct bio ** nvme_construct_child_bios(struct bio *bp, 59 uint32_t alignment, 60 int *num_bios); 61 static int nvme_ns_split_bio(struct nvme_namespace *ns, 62 struct bio *bp, 63 uint32_t alignment); 64 65 static int 66 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 67 struct thread *td) 68 { 69 struct nvme_namespace *ns; 70 struct nvme_controller *ctrlr; 71 struct nvme_pt_command *pt; 72 73 ns = cdev->si_drv1; 74 ctrlr = ns->ctrlr; 75 76 switch (cmd) { 77 case NVME_IO_TEST: 78 case NVME_BIO_TEST: 79 nvme_ns_test(ns, cmd, arg); 80 break; 81 case NVME_PASSTHROUGH_CMD: 82 pt = (struct nvme_pt_command *)arg; 83 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 84 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 85 case DIOCGMEDIASIZE: 86 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 87 break; 88 case DIOCGSECTORSIZE: 89 *(u_int *)arg = nvme_ns_get_sector_size(ns); 90 break; 91 default: 92 return (ENOTTY); 93 } 94 95 return (0); 96 } 97 98 static int 99 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 100 struct thread *td) 101 { 102 int error = 0; 103 104 if (flags & FWRITE) 105 error = securelevel_gt(td->td_ucred, 0); 106 107 return (error); 108 } 109 110 static int 111 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 112 struct thread *td) 113 { 114 115 return (0); 116 } 117 118 static void 119 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 120 { 121 struct bio *bp = arg; 122 123 /* 124 * TODO: add more extensive translation of NVMe status codes 125 * to different bio error codes (i.e. EIO, EINVAL, etc.) 126 */ 127 if (nvme_completion_is_error(cpl)) { 128 bp->bio_error = EIO; 129 bp->bio_flags |= BIO_ERROR; 130 bp->bio_resid = bp->bio_bcount; 131 } else 132 bp->bio_resid = 0; 133 134 biodone(bp); 135 } 136 137 static void 138 nvme_ns_strategy(struct bio *bp) 139 { 140 struct nvme_namespace *ns; 141 int err; 142 143 ns = bp->bio_dev->si_drv1; 144 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 145 146 if (err) { 147 bp->bio_error = err; 148 bp->bio_flags |= BIO_ERROR; 149 bp->bio_resid = bp->bio_bcount; 150 biodone(bp); 151 } 152 153 } 154 155 static struct cdevsw nvme_ns_cdevsw = { 156 .d_version = D_VERSION, 157 .d_flags = D_DISK, 158 .d_read = physread, 159 .d_write = physwrite, 160 .d_open = nvme_ns_open, 161 .d_close = nvme_ns_close, 162 .d_strategy = nvme_ns_strategy, 163 .d_ioctl = nvme_ns_ioctl 164 }; 165 166 uint32_t 167 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 168 { 169 return ns->ctrlr->max_xfer_size; 170 } 171 172 uint32_t 173 nvme_ns_get_sector_size(struct nvme_namespace *ns) 174 { 175 return (1 << ns->data.lbaf[ns->data.flbas.format].lbads); 176 } 177 178 uint64_t 179 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 180 { 181 return (ns->data.nsze); 182 } 183 184 uint64_t 185 nvme_ns_get_size(struct nvme_namespace *ns) 186 { 187 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 188 } 189 190 uint32_t 191 nvme_ns_get_flags(struct nvme_namespace *ns) 192 { 193 return (ns->flags); 194 } 195 196 const char * 197 nvme_ns_get_serial_number(struct nvme_namespace *ns) 198 { 199 return ((const char *)ns->ctrlr->cdata.sn); 200 } 201 202 const char * 203 nvme_ns_get_model_number(struct nvme_namespace *ns) 204 { 205 return ((const char *)ns->ctrlr->cdata.mn); 206 } 207 208 const struct nvme_namespace_data * 209 nvme_ns_get_data(struct nvme_namespace *ns) 210 { 211 212 return (&ns->data); 213 } 214 215 uint32_t 216 nvme_ns_get_stripesize(struct nvme_namespace *ns) 217 { 218 219 return (ns->stripesize); 220 } 221 222 static void 223 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 224 { 225 struct bio *bp = arg; 226 nvme_cb_fn_t bp_cb_fn; 227 228 bp_cb_fn = bp->bio_driver1; 229 230 if (bp->bio_driver2) 231 free(bp->bio_driver2, M_NVME); 232 233 if (nvme_completion_is_error(status)) { 234 bp->bio_flags |= BIO_ERROR; 235 if (bp->bio_error == 0) 236 bp->bio_error = EIO; 237 } 238 239 if ((bp->bio_flags & BIO_ERROR) == 0) 240 bp->bio_resid = 0; 241 else 242 bp->bio_resid = bp->bio_bcount; 243 244 bp_cb_fn(bp, status); 245 } 246 247 static void 248 nvme_bio_child_inbed(struct bio *parent, int bio_error) 249 { 250 struct nvme_completion parent_cpl; 251 int children, inbed; 252 253 if (bio_error != 0) { 254 parent->bio_flags |= BIO_ERROR; 255 parent->bio_error = bio_error; 256 } 257 258 /* 259 * atomic_fetchadd will return value before adding 1, so we still 260 * must add 1 to get the updated inbed number. Save bio_children 261 * before incrementing to guard against race conditions when 262 * two children bios complete on different queues. 263 */ 264 children = atomic_load_acq_int(&parent->bio_children); 265 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 266 if (inbed == children) { 267 bzero(&parent_cpl, sizeof(parent_cpl)); 268 if (parent->bio_flags & BIO_ERROR) 269 parent_cpl.status.sc = NVME_SC_DATA_TRANSFER_ERROR; 270 nvme_ns_bio_done(parent, &parent_cpl); 271 } 272 } 273 274 static void 275 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 276 { 277 struct bio *child = arg; 278 struct bio *parent; 279 int bio_error; 280 281 parent = child->bio_parent; 282 g_destroy_bio(child); 283 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 284 nvme_bio_child_inbed(parent, bio_error); 285 } 286 287 static uint32_t 288 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 289 { 290 uint32_t num_segs, offset, remainder; 291 292 if (align == 0) 293 return (1); 294 295 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 296 297 num_segs = size / align; 298 remainder = size & (align - 1); 299 offset = addr & (align - 1); 300 if (remainder > 0 || offset > 0) 301 num_segs += 1 + (remainder + offset - 1) / align; 302 return (num_segs); 303 } 304 305 static void 306 nvme_free_child_bios(int num_bios, struct bio **child_bios) 307 { 308 int i; 309 310 for (i = 0; i < num_bios; i++) { 311 if (child_bios[i] != NULL) 312 g_destroy_bio(child_bios[i]); 313 } 314 315 free(child_bios, M_NVME); 316 } 317 318 static struct bio ** 319 nvme_allocate_child_bios(int num_bios) 320 { 321 struct bio **child_bios; 322 int err = 0, i; 323 324 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 325 if (child_bios == NULL) 326 return (NULL); 327 328 for (i = 0; i < num_bios; i++) { 329 child_bios[i] = g_new_bio(); 330 if (child_bios[i] == NULL) 331 err = ENOMEM; 332 } 333 334 if (err == ENOMEM) { 335 nvme_free_child_bios(num_bios, child_bios); 336 return (NULL); 337 } 338 339 return (child_bios); 340 } 341 342 static struct bio ** 343 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 344 { 345 struct bio **child_bios; 346 struct bio *child; 347 uint64_t cur_offset; 348 caddr_t data; 349 uint32_t rem_bcount; 350 int i; 351 #ifdef NVME_UNMAPPED_BIO_SUPPORT 352 struct vm_page **ma; 353 uint32_t ma_offset; 354 #endif 355 356 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 357 alignment); 358 child_bios = nvme_allocate_child_bios(*num_bios); 359 if (child_bios == NULL) 360 return (NULL); 361 362 bp->bio_children = *num_bios; 363 bp->bio_inbed = 0; 364 cur_offset = bp->bio_offset; 365 rem_bcount = bp->bio_bcount; 366 data = bp->bio_data; 367 #ifdef NVME_UNMAPPED_BIO_SUPPORT 368 ma_offset = bp->bio_ma_offset; 369 ma = bp->bio_ma; 370 #endif 371 372 for (i = 0; i < *num_bios; i++) { 373 child = child_bios[i]; 374 child->bio_parent = bp; 375 child->bio_cmd = bp->bio_cmd; 376 child->bio_offset = cur_offset; 377 child->bio_bcount = min(rem_bcount, 378 alignment - (cur_offset & (alignment - 1))); 379 child->bio_flags = bp->bio_flags; 380 #ifdef NVME_UNMAPPED_BIO_SUPPORT 381 if (bp->bio_flags & BIO_UNMAPPED) { 382 child->bio_ma_offset = ma_offset; 383 child->bio_ma = ma; 384 child->bio_ma_n = 385 nvme_get_num_segments(child->bio_ma_offset, 386 child->bio_bcount, PAGE_SIZE); 387 ma_offset = (ma_offset + child->bio_bcount) & 388 PAGE_MASK; 389 ma += child->bio_ma_n; 390 if (ma_offset != 0) 391 ma -= 1; 392 } else 393 #endif 394 { 395 child->bio_data = data; 396 data += child->bio_bcount; 397 } 398 cur_offset += child->bio_bcount; 399 rem_bcount -= child->bio_bcount; 400 } 401 402 return (child_bios); 403 } 404 405 static int 406 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 407 uint32_t alignment) 408 { 409 struct bio *child; 410 struct bio **child_bios; 411 int err, i, num_bios; 412 413 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 414 if (child_bios == NULL) 415 return (ENOMEM); 416 417 for (i = 0; i < num_bios; i++) { 418 child = child_bios[i]; 419 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 420 if (err != 0) { 421 nvme_bio_child_inbed(bp, err); 422 g_destroy_bio(child); 423 } 424 } 425 426 free(child_bios, M_NVME); 427 return (0); 428 } 429 430 int 431 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 432 nvme_cb_fn_t cb_fn) 433 { 434 struct nvme_dsm_range *dsm_range; 435 uint32_t num_bios; 436 int err; 437 438 bp->bio_driver1 = cb_fn; 439 440 if (ns->stripesize > 0 && 441 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 442 num_bios = nvme_get_num_segments(bp->bio_offset, 443 bp->bio_bcount, ns->stripesize); 444 if (num_bios > 1) 445 return (nvme_ns_split_bio(ns, bp, ns->stripesize)); 446 } 447 448 switch (bp->bio_cmd) { 449 case BIO_READ: 450 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 451 break; 452 case BIO_WRITE: 453 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 454 break; 455 case BIO_FLUSH: 456 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 457 break; 458 case BIO_DELETE: 459 dsm_range = 460 malloc(sizeof(struct nvme_dsm_range), M_NVME, 461 M_ZERO | M_WAITOK); 462 dsm_range->length = 463 bp->bio_bcount/nvme_ns_get_sector_size(ns); 464 dsm_range->starting_lba = 465 bp->bio_offset/nvme_ns_get_sector_size(ns); 466 bp->bio_driver2 = dsm_range; 467 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 468 nvme_ns_bio_done, bp); 469 if (err != 0) 470 free(dsm_range, M_NVME); 471 break; 472 default: 473 err = EIO; 474 break; 475 } 476 477 return (err); 478 } 479 480 int 481 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 482 struct nvme_controller *ctrlr) 483 { 484 struct nvme_completion_poll_status status; 485 int unit; 486 487 ns->ctrlr = ctrlr; 488 ns->id = id; 489 ns->stripesize = 0; 490 491 if (pci_get_devid(ctrlr->dev) == 0x09538086 && ctrlr->cdata.vs[3] != 0) 492 ns->stripesize = 493 (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size; 494 495 /* 496 * Namespaces are reconstructed after a controller reset, so check 497 * to make sure we only call mtx_init once on each mtx. 498 * 499 * TODO: Move this somewhere where it gets called at controller 500 * construction time, which is not invoked as part of each 501 * controller reset. 502 */ 503 if (!mtx_initialized(&ns->lock)) 504 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 505 506 status.done = FALSE; 507 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 508 nvme_completion_poll_cb, &status); 509 while (status.done == FALSE) 510 DELAY(5); 511 if (nvme_completion_is_error(&status.cpl)) { 512 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 513 return (ENXIO); 514 } 515 516 /* 517 * If the size of is zero, chances are this isn't a valid 518 * namespace (eg one that's not been configured yet). The 519 * standard says the entire id will be zeros, so this is a 520 * cheap way to test for that. 521 */ 522 if (ns->data.nsze == 0) 523 return (ENXIO); 524 525 /* 526 * Note: format is a 0-based value, so > is appropriate here, 527 * not >=. 528 */ 529 if (ns->data.flbas.format > ns->data.nlbaf) { 530 printf("lba format %d exceeds number supported (%d)\n", 531 ns->data.flbas.format, ns->data.nlbaf+1); 532 return (ENXIO); 533 } 534 535 if (ctrlr->cdata.oncs.dsm) 536 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 537 538 if (ctrlr->cdata.vwc.present) 539 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 540 541 /* 542 * cdev may have already been created, if we are reconstructing the 543 * namespace after a controller-level reset. 544 */ 545 if (ns->cdev != NULL) 546 return (0); 547 548 /* 549 * Namespace IDs start at 1, so we need to subtract 1 to create a 550 * correct unit number. 551 */ 552 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 553 554 /* 555 * MAKEDEV_ETERNAL was added in r210923, for cdevs that will never 556 * be destroyed. This avoids refcounting on the cdev object. 557 * That should be OK case here, as long as we're not supporting PCIe 558 * surprise removal nor namespace deletion. 559 */ 560 #ifdef MAKEDEV_ETERNAL_KLD 561 ns->cdev = make_dev_credf(MAKEDEV_ETERNAL_KLD, &nvme_ns_cdevsw, unit, 562 NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d", 563 device_get_unit(ctrlr->dev), ns->id); 564 #else 565 ns->cdev = make_dev_credf(0, &nvme_ns_cdevsw, unit, 566 NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d", 567 device_get_unit(ctrlr->dev), ns->id); 568 #endif 569 #ifdef NVME_UNMAPPED_BIO_SUPPORT 570 ns->cdev->si_flags |= SI_UNMAPPED; 571 #endif 572 573 if (ns->cdev != NULL) 574 ns->cdev->si_drv1 = ns; 575 576 return (0); 577 } 578 579 void nvme_ns_destruct(struct nvme_namespace *ns) 580 { 581 582 if (ns->cdev != NULL) 583 destroy_dev(ns->cdev); 584 } 585