1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2013 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/bio.h> 31 #include <sys/bus.h> 32 #include <sys/conf.h> 33 #include <sys/disk.h> 34 #include <sys/fcntl.h> 35 #include <sys/ioccom.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/proc.h> 39 #include <sys/systm.h> 40 41 #include <dev/pci/pcivar.h> 42 43 #include <geom/geom.h> 44 45 #include "nvme_private.h" 46 #include "nvme_linux.h" 47 48 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 49 static void nvme_bio_child_done(void *arg, 50 const struct nvme_completion *cpl); 51 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 52 uint32_t alignment); 53 static void nvme_free_child_bios(int num_bios, 54 struct bio **child_bios); 55 static struct bio ** nvme_allocate_child_bios(int num_bios); 56 static struct bio ** nvme_construct_child_bios(struct bio *bp, 57 uint32_t alignment, 58 int *num_bios); 59 static int nvme_ns_split_bio(struct nvme_namespace *ns, 60 struct bio *bp, 61 uint32_t alignment); 62 63 static int 64 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 65 struct thread *td) 66 { 67 struct nvme_namespace *ns; 68 struct nvme_controller *ctrlr; 69 struct nvme_pt_command *pt; 70 71 ns = cdev->si_drv1; 72 ctrlr = ns->ctrlr; 73 74 switch (cmd) { 75 case NVME_IO_TEST: 76 case NVME_BIO_TEST: 77 nvme_ns_test(ns, cmd, arg); 78 break; 79 case NVME_PASSTHROUGH_CMD: 80 pt = (struct nvme_pt_command *)arg; 81 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 82 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 83 case NVME_GET_NSID: 84 { 85 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 86 strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 87 sizeof(gnsid->cdev)); 88 gnsid->nsid = ns->id; 89 break; 90 } 91 case DIOCGMEDIASIZE: 92 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 93 break; 94 case DIOCGSECTORSIZE: 95 *(u_int *)arg = nvme_ns_get_sector_size(ns); 96 break; 97 /* Linux Compatible (see nvme_linux.h) */ 98 case NVME_IOCTL_ID: 99 td->td_retval[0] = ns->id; 100 return (0); 101 102 case NVME_IOCTL_ADMIN_CMD: 103 case NVME_IOCTL_IO_CMD: { 104 struct nvme_passthru_cmd *npc = (struct nvme_passthru_cmd *)arg; 105 106 return (nvme_ctrlr_linux_passthru_cmd(ctrlr, npc, ns->id, true, 107 cmd == NVME_IOCTL_ADMIN_CMD)); 108 } 109 default: 110 return (ENOTTY); 111 } 112 113 return (0); 114 } 115 116 static int 117 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 118 struct thread *td) 119 { 120 int error = 0; 121 122 if (flags & FWRITE) 123 error = securelevel_gt(td->td_ucred, 0); 124 125 return (error); 126 } 127 128 static int 129 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 130 struct thread *td) 131 { 132 133 return (0); 134 } 135 136 static void 137 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 138 { 139 struct bio *bp = arg; 140 141 /* 142 * TODO: add more extensive translation of NVMe status codes 143 * to different bio error codes (i.e. EIO, EINVAL, etc.) 144 */ 145 if (nvme_completion_is_error(cpl)) { 146 bp->bio_error = EIO; 147 bp->bio_flags |= BIO_ERROR; 148 bp->bio_resid = bp->bio_bcount; 149 } else 150 bp->bio_resid = 0; 151 152 biodone(bp); 153 } 154 155 static void 156 nvme_ns_strategy(struct bio *bp) 157 { 158 struct nvme_namespace *ns; 159 int err; 160 161 ns = bp->bio_dev->si_drv1; 162 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 163 164 if (err) { 165 bp->bio_error = err; 166 bp->bio_flags |= BIO_ERROR; 167 bp->bio_resid = bp->bio_bcount; 168 biodone(bp); 169 } 170 171 } 172 173 static struct cdevsw nvme_ns_cdevsw = { 174 .d_version = D_VERSION, 175 .d_flags = D_DISK, 176 .d_read = physread, 177 .d_write = physwrite, 178 .d_open = nvme_ns_open, 179 .d_close = nvme_ns_close, 180 .d_strategy = nvme_ns_strategy, 181 .d_ioctl = nvme_ns_ioctl 182 }; 183 184 uint32_t 185 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 186 { 187 return ns->ctrlr->max_xfer_size; 188 } 189 190 uint32_t 191 nvme_ns_get_sector_size(struct nvme_namespace *ns) 192 { 193 uint8_t flbas_fmt, lbads; 194 195 flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas); 196 lbads = NVMEV(NVME_NS_DATA_LBAF_LBADS, ns->data.lbaf[flbas_fmt]); 197 198 return (1 << lbads); 199 } 200 201 uint64_t 202 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 203 { 204 return (ns->data.nsze); 205 } 206 207 uint64_t 208 nvme_ns_get_size(struct nvme_namespace *ns) 209 { 210 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 211 } 212 213 uint32_t 214 nvme_ns_get_flags(struct nvme_namespace *ns) 215 { 216 return (ns->flags); 217 } 218 219 const char * 220 nvme_ns_get_serial_number(struct nvme_namespace *ns) 221 { 222 return ((const char *)ns->ctrlr->cdata.sn); 223 } 224 225 const char * 226 nvme_ns_get_model_number(struct nvme_namespace *ns) 227 { 228 return ((const char *)ns->ctrlr->cdata.mn); 229 } 230 231 const struct nvme_namespace_data * 232 nvme_ns_get_data(struct nvme_namespace *ns) 233 { 234 235 return (&ns->data); 236 } 237 238 uint32_t 239 nvme_ns_get_stripesize(struct nvme_namespace *ns) 240 { 241 uint32_t ss; 242 243 if (NVMEV(NVME_NS_DATA_NSFEAT_NPVALID, ns->data.nsfeat) != 0) { 244 ss = nvme_ns_get_sector_size(ns); 245 if (ns->data.npwa != 0) 246 return ((ns->data.npwa + 1) * ss); 247 else if (ns->data.npwg != 0) 248 return ((ns->data.npwg + 1) * ss); 249 } 250 return (ns->boundary); 251 } 252 253 static void 254 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 255 { 256 struct bio *bp = arg; 257 nvme_cb_fn_t bp_cb_fn; 258 259 bp_cb_fn = bp->bio_driver1; 260 261 if (bp->bio_driver2) 262 free(bp->bio_driver2, M_NVME); 263 264 if (nvme_completion_is_error(status)) { 265 bp->bio_flags |= BIO_ERROR; 266 if (bp->bio_error == 0) 267 bp->bio_error = EIO; 268 } 269 270 if ((bp->bio_flags & BIO_ERROR) == 0) 271 bp->bio_resid = 0; 272 else 273 bp->bio_resid = bp->bio_bcount; 274 275 bp_cb_fn(bp, status); 276 } 277 278 static void 279 nvme_bio_child_inbed(struct bio *parent, int bio_error) 280 { 281 struct nvme_completion parent_cpl; 282 int children, inbed; 283 284 if (bio_error != 0) { 285 parent->bio_flags |= BIO_ERROR; 286 parent->bio_error = bio_error; 287 } 288 289 /* 290 * atomic_fetchadd will return value before adding 1, so we still 291 * must add 1 to get the updated inbed number. Save bio_children 292 * before incrementing to guard against race conditions when 293 * two children bios complete on different queues. 294 */ 295 children = atomic_load_acq_int(&parent->bio_children); 296 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 297 if (inbed == children) { 298 bzero(&parent_cpl, sizeof(parent_cpl)); 299 if (parent->bio_flags & BIO_ERROR) { 300 parent_cpl.status &= ~NVMEM(NVME_STATUS_SC); 301 parent_cpl.status |= NVMEF(NVME_STATUS_SC, 302 NVME_SC_DATA_TRANSFER_ERROR); 303 } 304 nvme_ns_bio_done(parent, &parent_cpl); 305 } 306 } 307 308 static void 309 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 310 { 311 struct bio *child = arg; 312 struct bio *parent; 313 int bio_error; 314 315 parent = child->bio_parent; 316 g_destroy_bio(child); 317 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 318 nvme_bio_child_inbed(parent, bio_error); 319 } 320 321 static uint32_t 322 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 323 { 324 uint32_t num_segs, offset, remainder; 325 326 if (align == 0) 327 return (1); 328 329 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 330 331 num_segs = size / align; 332 remainder = size & (align - 1); 333 offset = addr & (align - 1); 334 if (remainder > 0 || offset > 0) 335 num_segs += 1 + (remainder + offset - 1) / align; 336 return (num_segs); 337 } 338 339 static void 340 nvme_free_child_bios(int num_bios, struct bio **child_bios) 341 { 342 int i; 343 344 for (i = 0; i < num_bios; i++) { 345 if (child_bios[i] != NULL) 346 g_destroy_bio(child_bios[i]); 347 } 348 349 free(child_bios, M_NVME); 350 } 351 352 static struct bio ** 353 nvme_allocate_child_bios(int num_bios) 354 { 355 struct bio **child_bios; 356 int err = 0, i; 357 358 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 359 if (child_bios == NULL) 360 return (NULL); 361 362 for (i = 0; i < num_bios; i++) { 363 child_bios[i] = g_new_bio(); 364 if (child_bios[i] == NULL) 365 err = ENOMEM; 366 } 367 368 if (err == ENOMEM) { 369 nvme_free_child_bios(num_bios, child_bios); 370 return (NULL); 371 } 372 373 return (child_bios); 374 } 375 376 static struct bio ** 377 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 378 { 379 struct bio **child_bios; 380 struct bio *child; 381 uint64_t cur_offset; 382 caddr_t data; 383 uint32_t rem_bcount; 384 int i; 385 struct vm_page **ma; 386 uint32_t ma_offset; 387 388 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 389 alignment); 390 child_bios = nvme_allocate_child_bios(*num_bios); 391 if (child_bios == NULL) 392 return (NULL); 393 394 bp->bio_children = *num_bios; 395 bp->bio_inbed = 0; 396 cur_offset = bp->bio_offset; 397 rem_bcount = bp->bio_bcount; 398 data = bp->bio_data; 399 ma_offset = bp->bio_ma_offset; 400 ma = bp->bio_ma; 401 402 for (i = 0; i < *num_bios; i++) { 403 child = child_bios[i]; 404 child->bio_parent = bp; 405 child->bio_cmd = bp->bio_cmd; 406 child->bio_offset = cur_offset; 407 child->bio_bcount = min(rem_bcount, 408 alignment - (cur_offset & (alignment - 1))); 409 child->bio_flags = bp->bio_flags; 410 if (bp->bio_flags & BIO_UNMAPPED) { 411 child->bio_ma_offset = ma_offset; 412 child->bio_ma = ma; 413 child->bio_ma_n = 414 nvme_get_num_segments(child->bio_ma_offset, 415 child->bio_bcount, PAGE_SIZE); 416 ma_offset = (ma_offset + child->bio_bcount) & 417 PAGE_MASK; 418 ma += child->bio_ma_n; 419 if (ma_offset != 0) 420 ma -= 1; 421 } else { 422 child->bio_data = data; 423 data += child->bio_bcount; 424 } 425 cur_offset += child->bio_bcount; 426 rem_bcount -= child->bio_bcount; 427 } 428 429 return (child_bios); 430 } 431 432 static int 433 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 434 uint32_t alignment) 435 { 436 struct bio *child; 437 struct bio **child_bios; 438 int err, i, num_bios; 439 440 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 441 if (child_bios == NULL) 442 return (ENOMEM); 443 444 counter_u64_add(ns->ctrlr->alignment_splits, 1); 445 for (i = 0; i < num_bios; i++) { 446 child = child_bios[i]; 447 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 448 if (err != 0) { 449 nvme_bio_child_inbed(bp, err); 450 g_destroy_bio(child); 451 } 452 } 453 454 free(child_bios, M_NVME); 455 return (0); 456 } 457 458 int 459 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 460 nvme_cb_fn_t cb_fn) 461 { 462 struct nvme_dsm_range *dsm_range; 463 uint32_t num_bios; 464 int err; 465 466 bp->bio_driver1 = cb_fn; 467 468 if (ns->boundary > 0 && 469 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 470 num_bios = nvme_get_num_segments(bp->bio_offset, 471 bp->bio_bcount, ns->boundary); 472 if (num_bios > 1) 473 return (nvme_ns_split_bio(ns, bp, ns->boundary)); 474 } 475 476 switch (bp->bio_cmd) { 477 case BIO_READ: 478 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 479 break; 480 case BIO_WRITE: 481 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 482 break; 483 case BIO_FLUSH: 484 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 485 break; 486 case BIO_DELETE: 487 dsm_range = 488 malloc(sizeof(struct nvme_dsm_range), M_NVME, 489 M_ZERO | M_NOWAIT); 490 if (!dsm_range) { 491 err = ENOMEM; 492 break; 493 } 494 dsm_range->length = 495 htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); 496 dsm_range->starting_lba = 497 htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); 498 bp->bio_driver2 = dsm_range; 499 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 500 nvme_ns_bio_done, bp); 501 if (err != 0) 502 free(dsm_range, M_NVME); 503 break; 504 default: 505 err = EOPNOTSUPP; 506 break; 507 } 508 509 return (err); 510 } 511 512 int 513 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, 514 int flag, struct thread *td) 515 { 516 return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td)); 517 } 518 519 int 520 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 521 struct nvme_controller *ctrlr) 522 { 523 struct make_dev_args md_args; 524 struct nvme_completion_poll_status status; 525 int res; 526 int unit; 527 uint8_t flbas_fmt; 528 uint8_t vwc_present; 529 530 ns->ctrlr = ctrlr; 531 ns->id = id; 532 533 /* 534 * Namespaces are reconstructed after a controller reset, so check 535 * to make sure we only call mtx_init once on each mtx. 536 * 537 * TODO: Move this somewhere where it gets called at controller 538 * construction time, which is not invoked as part of each 539 * controller reset. 540 */ 541 if (!mtx_initialized(&ns->lock)) 542 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 543 544 status.done = 0; 545 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 546 nvme_completion_poll_cb, &status); 547 nvme_completion_poll(&status); 548 if (nvme_completion_is_error(&status.cpl)) { 549 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 550 return (ENXIO); 551 } 552 553 /* Convert data to host endian */ 554 nvme_namespace_data_swapbytes(&ns->data); 555 556 /* 557 * If the size of is zero, chances are this isn't a valid 558 * namespace (eg one that's not been configured yet). The 559 * standard says the entire id will be zeros, so this is a 560 * cheap way to test for that. 561 */ 562 if (ns->data.nsze == 0) 563 return (ENXIO); 564 565 flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas); 566 567 /* 568 * Note: format is a 0-based value, so > is appropriate here, 569 * not >=. 570 */ 571 if (flbas_fmt > ns->data.nlbaf) { 572 nvme_printf(ctrlr, 573 "lba format %d exceeds number supported (%d)\n", 574 flbas_fmt, ns->data.nlbaf + 1); 575 return (ENXIO); 576 } 577 578 /* 579 * Older Intel devices (like the PC35xxx and P45xx series) advertise in 580 * vendor specific space an alignment that improves performance. If 581 * present use for the stripe size. NVMe 1.3 standardized this as 582 * NOIOB, and newer Intel drives use that. 583 */ 584 if ((ctrlr->quirks & QUIRK_INTEL_ALIGNMENT) != 0) { 585 if (ctrlr->cdata.vs[3] != 0) 586 ns->boundary = 587 1 << (ctrlr->cdata.vs[3] + NVME_MPS_SHIFT + 588 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)); 589 else 590 ns->boundary = 0; 591 } else { 592 ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns); 593 } 594 595 if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) 596 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 597 598 vwc_present = NVMEV(NVME_CTRLR_DATA_VWC_PRESENT, ctrlr->cdata.vwc); 599 if (vwc_present) 600 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 601 602 /* 603 * cdev may have already been created, if we are reconstructing the 604 * namespace after a controller-level reset. 605 */ 606 if (ns->cdev != NULL) 607 return (0); 608 609 /* 610 * Namespace IDs start at 1, so we need to subtract 1 to create a 611 * correct unit number. 612 */ 613 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 614 615 make_dev_args_init(&md_args); 616 md_args.mda_devsw = &nvme_ns_cdevsw; 617 md_args.mda_unit = unit; 618 md_args.mda_mode = 0600; 619 md_args.mda_si_drv1 = ns; 620 res = make_dev_s(&md_args, &ns->cdev, "%sn%d", 621 device_get_nameunit(ctrlr->dev), ns->id); 622 if (res != 0) 623 return (ENXIO); 624 ns->cdev->si_drv2 = make_dev_alias(ns->cdev, "%sns%d", 625 device_get_nameunit(ctrlr->dev), ns->id); 626 ns->cdev->si_flags |= SI_UNMAPPED; 627 628 return (0); 629 } 630 631 void 632 nvme_ns_destruct(struct nvme_namespace *ns) 633 { 634 635 if (ns->cdev != NULL) { 636 if (ns->cdev->si_drv2 != NULL) 637 destroy_dev(ns->cdev->si_drv2); 638 destroy_dev(ns->cdev); 639 } 640 } 641