1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2013 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/bio.h> 31 #include <sys/bus.h> 32 #include <sys/conf.h> 33 #include <sys/disk.h> 34 #include <sys/fcntl.h> 35 #include <sys/ioccom.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/proc.h> 39 #include <sys/systm.h> 40 41 #include <dev/pci/pcivar.h> 42 43 #include <geom/geom.h> 44 45 #include "nvme_private.h" 46 47 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 48 static void nvme_bio_child_done(void *arg, 49 const struct nvme_completion *cpl); 50 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 51 uint32_t alignment); 52 static void nvme_free_child_bios(int num_bios, 53 struct bio **child_bios); 54 static struct bio ** nvme_allocate_child_bios(int num_bios); 55 static struct bio ** nvme_construct_child_bios(struct bio *bp, 56 uint32_t alignment, 57 int *num_bios); 58 static int nvme_ns_split_bio(struct nvme_namespace *ns, 59 struct bio *bp, 60 uint32_t alignment); 61 62 static int 63 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 64 struct thread *td) 65 { 66 struct nvme_namespace *ns; 67 struct nvme_controller *ctrlr; 68 struct nvme_pt_command *pt; 69 70 ns = cdev->si_drv1; 71 ctrlr = ns->ctrlr; 72 73 switch (cmd) { 74 case NVME_IO_TEST: 75 case NVME_BIO_TEST: 76 nvme_ns_test(ns, cmd, arg); 77 break; 78 case NVME_PASSTHROUGH_CMD: 79 pt = (struct nvme_pt_command *)arg; 80 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 81 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 82 case NVME_GET_NSID: 83 { 84 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 85 strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 86 sizeof(gnsid->cdev)); 87 gnsid->nsid = ns->id; 88 break; 89 } 90 case DIOCGMEDIASIZE: 91 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 92 break; 93 case DIOCGSECTORSIZE: 94 *(u_int *)arg = nvme_ns_get_sector_size(ns); 95 break; 96 default: 97 return (ENOTTY); 98 } 99 100 return (0); 101 } 102 103 static int 104 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 105 struct thread *td) 106 { 107 int error = 0; 108 109 if (flags & FWRITE) 110 error = securelevel_gt(td->td_ucred, 0); 111 112 return (error); 113 } 114 115 static int 116 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 117 struct thread *td) 118 { 119 120 return (0); 121 } 122 123 static void 124 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 125 { 126 struct bio *bp = arg; 127 128 /* 129 * TODO: add more extensive translation of NVMe status codes 130 * to different bio error codes (i.e. EIO, EINVAL, etc.) 131 */ 132 if (nvme_completion_is_error(cpl)) { 133 bp->bio_error = EIO; 134 bp->bio_flags |= BIO_ERROR; 135 bp->bio_resid = bp->bio_bcount; 136 } else 137 bp->bio_resid = 0; 138 139 biodone(bp); 140 } 141 142 static void 143 nvme_ns_strategy(struct bio *bp) 144 { 145 struct nvme_namespace *ns; 146 int err; 147 148 ns = bp->bio_dev->si_drv1; 149 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 150 151 if (err) { 152 bp->bio_error = err; 153 bp->bio_flags |= BIO_ERROR; 154 bp->bio_resid = bp->bio_bcount; 155 biodone(bp); 156 } 157 158 } 159 160 static struct cdevsw nvme_ns_cdevsw = { 161 .d_version = D_VERSION, 162 .d_flags = D_DISK, 163 .d_read = physread, 164 .d_write = physwrite, 165 .d_open = nvme_ns_open, 166 .d_close = nvme_ns_close, 167 .d_strategy = nvme_ns_strategy, 168 .d_ioctl = nvme_ns_ioctl 169 }; 170 171 uint32_t 172 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 173 { 174 return ns->ctrlr->max_xfer_size; 175 } 176 177 uint32_t 178 nvme_ns_get_sector_size(struct nvme_namespace *ns) 179 { 180 uint8_t flbas_fmt, lbads; 181 182 flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas); 183 lbads = NVMEV(NVME_NS_DATA_LBAF_LBADS, ns->data.lbaf[flbas_fmt]); 184 185 return (1 << lbads); 186 } 187 188 uint64_t 189 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 190 { 191 return (ns->data.nsze); 192 } 193 194 uint64_t 195 nvme_ns_get_size(struct nvme_namespace *ns) 196 { 197 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 198 } 199 200 uint32_t 201 nvme_ns_get_flags(struct nvme_namespace *ns) 202 { 203 return (ns->flags); 204 } 205 206 const char * 207 nvme_ns_get_serial_number(struct nvme_namespace *ns) 208 { 209 return ((const char *)ns->ctrlr->cdata.sn); 210 } 211 212 const char * 213 nvme_ns_get_model_number(struct nvme_namespace *ns) 214 { 215 return ((const char *)ns->ctrlr->cdata.mn); 216 } 217 218 const struct nvme_namespace_data * 219 nvme_ns_get_data(struct nvme_namespace *ns) 220 { 221 222 return (&ns->data); 223 } 224 225 uint32_t 226 nvme_ns_get_stripesize(struct nvme_namespace *ns) 227 { 228 uint32_t ss; 229 230 if (NVMEV(NVME_NS_DATA_NSFEAT_NPVALID, ns->data.nsfeat) != 0) { 231 ss = nvme_ns_get_sector_size(ns); 232 if (ns->data.npwa != 0) 233 return ((ns->data.npwa + 1) * ss); 234 else if (ns->data.npwg != 0) 235 return ((ns->data.npwg + 1) * ss); 236 } 237 return (ns->boundary); 238 } 239 240 static void 241 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 242 { 243 struct bio *bp = arg; 244 nvme_cb_fn_t bp_cb_fn; 245 246 bp_cb_fn = bp->bio_driver1; 247 248 if (bp->bio_driver2) 249 free(bp->bio_driver2, M_NVME); 250 251 if (nvme_completion_is_error(status)) { 252 bp->bio_flags |= BIO_ERROR; 253 if (bp->bio_error == 0) 254 bp->bio_error = EIO; 255 } 256 257 if ((bp->bio_flags & BIO_ERROR) == 0) 258 bp->bio_resid = 0; 259 else 260 bp->bio_resid = bp->bio_bcount; 261 262 bp_cb_fn(bp, status); 263 } 264 265 static void 266 nvme_bio_child_inbed(struct bio *parent, int bio_error) 267 { 268 struct nvme_completion parent_cpl; 269 int children, inbed; 270 271 if (bio_error != 0) { 272 parent->bio_flags |= BIO_ERROR; 273 parent->bio_error = bio_error; 274 } 275 276 /* 277 * atomic_fetchadd will return value before adding 1, so we still 278 * must add 1 to get the updated inbed number. Save bio_children 279 * before incrementing to guard against race conditions when 280 * two children bios complete on different queues. 281 */ 282 children = atomic_load_acq_int(&parent->bio_children); 283 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 284 if (inbed == children) { 285 bzero(&parent_cpl, sizeof(parent_cpl)); 286 if (parent->bio_flags & BIO_ERROR) { 287 parent_cpl.status &= ~NVMEM(NVME_STATUS_SC); 288 parent_cpl.status |= NVMEF(NVME_STATUS_SC, 289 NVME_SC_DATA_TRANSFER_ERROR); 290 } 291 nvme_ns_bio_done(parent, &parent_cpl); 292 } 293 } 294 295 static void 296 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 297 { 298 struct bio *child = arg; 299 struct bio *parent; 300 int bio_error; 301 302 parent = child->bio_parent; 303 g_destroy_bio(child); 304 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 305 nvme_bio_child_inbed(parent, bio_error); 306 } 307 308 static uint32_t 309 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 310 { 311 uint32_t num_segs, offset, remainder; 312 313 if (align == 0) 314 return (1); 315 316 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 317 318 num_segs = size / align; 319 remainder = size & (align - 1); 320 offset = addr & (align - 1); 321 if (remainder > 0 || offset > 0) 322 num_segs += 1 + (remainder + offset - 1) / align; 323 return (num_segs); 324 } 325 326 static void 327 nvme_free_child_bios(int num_bios, struct bio **child_bios) 328 { 329 int i; 330 331 for (i = 0; i < num_bios; i++) { 332 if (child_bios[i] != NULL) 333 g_destroy_bio(child_bios[i]); 334 } 335 336 free(child_bios, M_NVME); 337 } 338 339 static struct bio ** 340 nvme_allocate_child_bios(int num_bios) 341 { 342 struct bio **child_bios; 343 int err = 0, i; 344 345 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 346 if (child_bios == NULL) 347 return (NULL); 348 349 for (i = 0; i < num_bios; i++) { 350 child_bios[i] = g_new_bio(); 351 if (child_bios[i] == NULL) 352 err = ENOMEM; 353 } 354 355 if (err == ENOMEM) { 356 nvme_free_child_bios(num_bios, child_bios); 357 return (NULL); 358 } 359 360 return (child_bios); 361 } 362 363 static struct bio ** 364 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 365 { 366 struct bio **child_bios; 367 struct bio *child; 368 uint64_t cur_offset; 369 caddr_t data; 370 uint32_t rem_bcount; 371 int i; 372 struct vm_page **ma; 373 uint32_t ma_offset; 374 375 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 376 alignment); 377 child_bios = nvme_allocate_child_bios(*num_bios); 378 if (child_bios == NULL) 379 return (NULL); 380 381 bp->bio_children = *num_bios; 382 bp->bio_inbed = 0; 383 cur_offset = bp->bio_offset; 384 rem_bcount = bp->bio_bcount; 385 data = bp->bio_data; 386 ma_offset = bp->bio_ma_offset; 387 ma = bp->bio_ma; 388 389 for (i = 0; i < *num_bios; i++) { 390 child = child_bios[i]; 391 child->bio_parent = bp; 392 child->bio_cmd = bp->bio_cmd; 393 child->bio_offset = cur_offset; 394 child->bio_bcount = min(rem_bcount, 395 alignment - (cur_offset & (alignment - 1))); 396 child->bio_flags = bp->bio_flags; 397 if (bp->bio_flags & BIO_UNMAPPED) { 398 child->bio_ma_offset = ma_offset; 399 child->bio_ma = ma; 400 child->bio_ma_n = 401 nvme_get_num_segments(child->bio_ma_offset, 402 child->bio_bcount, PAGE_SIZE); 403 ma_offset = (ma_offset + child->bio_bcount) & 404 PAGE_MASK; 405 ma += child->bio_ma_n; 406 if (ma_offset != 0) 407 ma -= 1; 408 } else { 409 child->bio_data = data; 410 data += child->bio_bcount; 411 } 412 cur_offset += child->bio_bcount; 413 rem_bcount -= child->bio_bcount; 414 } 415 416 return (child_bios); 417 } 418 419 static int 420 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 421 uint32_t alignment) 422 { 423 struct bio *child; 424 struct bio **child_bios; 425 int err, i, num_bios; 426 427 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 428 if (child_bios == NULL) 429 return (ENOMEM); 430 431 counter_u64_add(ns->ctrlr->alignment_splits, 1); 432 for (i = 0; i < num_bios; i++) { 433 child = child_bios[i]; 434 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 435 if (err != 0) { 436 nvme_bio_child_inbed(bp, err); 437 g_destroy_bio(child); 438 } 439 } 440 441 free(child_bios, M_NVME); 442 return (0); 443 } 444 445 int 446 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 447 nvme_cb_fn_t cb_fn) 448 { 449 struct nvme_dsm_range *dsm_range; 450 uint32_t num_bios; 451 int err; 452 453 bp->bio_driver1 = cb_fn; 454 455 if (ns->boundary > 0 && 456 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 457 num_bios = nvme_get_num_segments(bp->bio_offset, 458 bp->bio_bcount, ns->boundary); 459 if (num_bios > 1) 460 return (nvme_ns_split_bio(ns, bp, ns->boundary)); 461 } 462 463 switch (bp->bio_cmd) { 464 case BIO_READ: 465 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 466 break; 467 case BIO_WRITE: 468 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 469 break; 470 case BIO_FLUSH: 471 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 472 break; 473 case BIO_DELETE: 474 dsm_range = 475 malloc(sizeof(struct nvme_dsm_range), M_NVME, 476 M_ZERO | M_NOWAIT); 477 if (!dsm_range) { 478 err = ENOMEM; 479 break; 480 } 481 dsm_range->length = 482 htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); 483 dsm_range->starting_lba = 484 htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); 485 bp->bio_driver2 = dsm_range; 486 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 487 nvme_ns_bio_done, bp); 488 if (err != 0) 489 free(dsm_range, M_NVME); 490 break; 491 default: 492 err = EOPNOTSUPP; 493 break; 494 } 495 496 return (err); 497 } 498 499 int 500 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, 501 int flag, struct thread *td) 502 { 503 return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td)); 504 } 505 506 int 507 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 508 struct nvme_controller *ctrlr) 509 { 510 struct make_dev_args md_args; 511 struct nvme_completion_poll_status status; 512 int res; 513 int unit; 514 uint8_t flbas_fmt; 515 uint8_t vwc_present; 516 517 ns->ctrlr = ctrlr; 518 ns->id = id; 519 520 /* 521 * Namespaces are reconstructed after a controller reset, so check 522 * to make sure we only call mtx_init once on each mtx. 523 * 524 * TODO: Move this somewhere where it gets called at controller 525 * construction time, which is not invoked as part of each 526 * controller reset. 527 */ 528 if (!mtx_initialized(&ns->lock)) 529 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 530 531 status.done = 0; 532 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 533 nvme_completion_poll_cb, &status); 534 nvme_completion_poll(&status); 535 if (nvme_completion_is_error(&status.cpl)) { 536 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 537 return (ENXIO); 538 } 539 540 /* Convert data to host endian */ 541 nvme_namespace_data_swapbytes(&ns->data); 542 543 /* 544 * If the size of is zero, chances are this isn't a valid 545 * namespace (eg one that's not been configured yet). The 546 * standard says the entire id will be zeros, so this is a 547 * cheap way to test for that. 548 */ 549 if (ns->data.nsze == 0) 550 return (ENXIO); 551 552 flbas_fmt = NVMEV(NVME_NS_DATA_FLBAS_FORMAT, ns->data.flbas); 553 554 /* 555 * Note: format is a 0-based value, so > is appropriate here, 556 * not >=. 557 */ 558 if (flbas_fmt > ns->data.nlbaf) { 559 nvme_printf(ctrlr, 560 "lba format %d exceeds number supported (%d)\n", 561 flbas_fmt, ns->data.nlbaf + 1); 562 return (ENXIO); 563 } 564 565 /* 566 * Older Intel devices (like the PC35xxx and P45xx series) advertise in 567 * vendor specific space an alignment that improves performance. If 568 * present use for the stripe size. NVMe 1.3 standardized this as 569 * NOIOB, and newer Intel drives use that. 570 */ 571 if ((ctrlr->quirks & QUIRK_INTEL_ALIGNMENT) != 0) { 572 if (ctrlr->cdata.vs[3] != 0) 573 ns->boundary = 574 1 << (ctrlr->cdata.vs[3] + NVME_MPS_SHIFT + 575 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)); 576 else 577 ns->boundary = 0; 578 } else { 579 ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns); 580 } 581 582 if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) 583 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 584 585 vwc_present = NVMEV(NVME_CTRLR_DATA_VWC_PRESENT, ctrlr->cdata.vwc); 586 if (vwc_present) 587 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 588 589 /* 590 * cdev may have already been created, if we are reconstructing the 591 * namespace after a controller-level reset. 592 */ 593 if (ns->cdev != NULL) 594 return (0); 595 596 /* 597 * Namespace IDs start at 1, so we need to subtract 1 to create a 598 * correct unit number. 599 */ 600 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 601 602 make_dev_args_init(&md_args); 603 md_args.mda_devsw = &nvme_ns_cdevsw; 604 md_args.mda_unit = unit; 605 md_args.mda_mode = 0600; 606 md_args.mda_si_drv1 = ns; 607 res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d", 608 device_get_unit(ctrlr->dev), ns->id); 609 if (res != 0) 610 return (ENXIO); 611 612 ns->cdev->si_flags |= SI_UNMAPPED; 613 614 return (0); 615 } 616 617 void 618 nvme_ns_destruct(struct nvme_namespace *ns) 619 { 620 621 if (ns->cdev != NULL) 622 destroy_dev(ns->cdev); 623 } 624