1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2013 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/bio.h> 31 #include <sys/bus.h> 32 #include <sys/conf.h> 33 #include <sys/disk.h> 34 #include <sys/fcntl.h> 35 #include <sys/ioccom.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/proc.h> 39 #include <sys/systm.h> 40 41 #include <dev/pci/pcivar.h> 42 43 #include <geom/geom.h> 44 45 #include "nvme_private.h" 46 47 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 48 static void nvme_bio_child_done(void *arg, 49 const struct nvme_completion *cpl); 50 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 51 uint32_t alignment); 52 static void nvme_free_child_bios(int num_bios, 53 struct bio **child_bios); 54 static struct bio ** nvme_allocate_child_bios(int num_bios); 55 static struct bio ** nvme_construct_child_bios(struct bio *bp, 56 uint32_t alignment, 57 int *num_bios); 58 static int nvme_ns_split_bio(struct nvme_namespace *ns, 59 struct bio *bp, 60 uint32_t alignment); 61 62 static int 63 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 64 struct thread *td) 65 { 66 struct nvme_namespace *ns; 67 struct nvme_controller *ctrlr; 68 struct nvme_pt_command *pt; 69 70 ns = cdev->si_drv1; 71 ctrlr = ns->ctrlr; 72 73 switch (cmd) { 74 case NVME_IO_TEST: 75 case NVME_BIO_TEST: 76 nvme_ns_test(ns, cmd, arg); 77 break; 78 case NVME_PASSTHROUGH_CMD: 79 pt = (struct nvme_pt_command *)arg; 80 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 81 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 82 case NVME_GET_NSID: 83 { 84 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 85 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 86 sizeof(gnsid->cdev)); 87 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 88 gnsid->nsid = ns->id; 89 break; 90 } 91 case DIOCGMEDIASIZE: 92 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 93 break; 94 case DIOCGSECTORSIZE: 95 *(u_int *)arg = nvme_ns_get_sector_size(ns); 96 break; 97 default: 98 return (ENOTTY); 99 } 100 101 return (0); 102 } 103 104 static int 105 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 106 struct thread *td) 107 { 108 int error = 0; 109 110 if (flags & FWRITE) 111 error = securelevel_gt(td->td_ucred, 0); 112 113 return (error); 114 } 115 116 static int 117 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 118 struct thread *td) 119 { 120 121 return (0); 122 } 123 124 static void 125 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 126 { 127 struct bio *bp = arg; 128 129 /* 130 * TODO: add more extensive translation of NVMe status codes 131 * to different bio error codes (i.e. EIO, EINVAL, etc.) 132 */ 133 if (nvme_completion_is_error(cpl)) { 134 bp->bio_error = EIO; 135 bp->bio_flags |= BIO_ERROR; 136 bp->bio_resid = bp->bio_bcount; 137 } else 138 bp->bio_resid = 0; 139 140 biodone(bp); 141 } 142 143 static void 144 nvme_ns_strategy(struct bio *bp) 145 { 146 struct nvme_namespace *ns; 147 int err; 148 149 ns = bp->bio_dev->si_drv1; 150 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 151 152 if (err) { 153 bp->bio_error = err; 154 bp->bio_flags |= BIO_ERROR; 155 bp->bio_resid = bp->bio_bcount; 156 biodone(bp); 157 } 158 159 } 160 161 static struct cdevsw nvme_ns_cdevsw = { 162 .d_version = D_VERSION, 163 .d_flags = D_DISK, 164 .d_read = physread, 165 .d_write = physwrite, 166 .d_open = nvme_ns_open, 167 .d_close = nvme_ns_close, 168 .d_strategy = nvme_ns_strategy, 169 .d_ioctl = nvme_ns_ioctl 170 }; 171 172 uint32_t 173 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 174 { 175 return ns->ctrlr->max_xfer_size; 176 } 177 178 uint32_t 179 nvme_ns_get_sector_size(struct nvme_namespace *ns) 180 { 181 uint8_t flbas_fmt, lbads; 182 183 flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & 184 NVME_NS_DATA_FLBAS_FORMAT_MASK; 185 lbads = (ns->data.lbaf[flbas_fmt] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) & 186 NVME_NS_DATA_LBAF_LBADS_MASK; 187 188 return (1 << lbads); 189 } 190 191 uint64_t 192 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 193 { 194 return (ns->data.nsze); 195 } 196 197 uint64_t 198 nvme_ns_get_size(struct nvme_namespace *ns) 199 { 200 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 201 } 202 203 uint32_t 204 nvme_ns_get_flags(struct nvme_namespace *ns) 205 { 206 return (ns->flags); 207 } 208 209 const char * 210 nvme_ns_get_serial_number(struct nvme_namespace *ns) 211 { 212 return ((const char *)ns->ctrlr->cdata.sn); 213 } 214 215 const char * 216 nvme_ns_get_model_number(struct nvme_namespace *ns) 217 { 218 return ((const char *)ns->ctrlr->cdata.mn); 219 } 220 221 const struct nvme_namespace_data * 222 nvme_ns_get_data(struct nvme_namespace *ns) 223 { 224 225 return (&ns->data); 226 } 227 228 uint32_t 229 nvme_ns_get_stripesize(struct nvme_namespace *ns) 230 { 231 uint32_t ss; 232 233 if (((ns->data.nsfeat >> NVME_NS_DATA_NSFEAT_NPVALID_SHIFT) & 234 NVME_NS_DATA_NSFEAT_NPVALID_MASK) != 0) { 235 ss = nvme_ns_get_sector_size(ns); 236 if (ns->data.npwa != 0) 237 return ((ns->data.npwa + 1) * ss); 238 else if (ns->data.npwg != 0) 239 return ((ns->data.npwg + 1) * ss); 240 } 241 return (ns->boundary); 242 } 243 244 static void 245 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 246 { 247 struct bio *bp = arg; 248 nvme_cb_fn_t bp_cb_fn; 249 250 bp_cb_fn = bp->bio_driver1; 251 252 if (bp->bio_driver2) 253 free(bp->bio_driver2, M_NVME); 254 255 if (nvme_completion_is_error(status)) { 256 bp->bio_flags |= BIO_ERROR; 257 if (bp->bio_error == 0) 258 bp->bio_error = EIO; 259 } 260 261 if ((bp->bio_flags & BIO_ERROR) == 0) 262 bp->bio_resid = 0; 263 else 264 bp->bio_resid = bp->bio_bcount; 265 266 bp_cb_fn(bp, status); 267 } 268 269 static void 270 nvme_bio_child_inbed(struct bio *parent, int bio_error) 271 { 272 struct nvme_completion parent_cpl; 273 int children, inbed; 274 275 if (bio_error != 0) { 276 parent->bio_flags |= BIO_ERROR; 277 parent->bio_error = bio_error; 278 } 279 280 /* 281 * atomic_fetchadd will return value before adding 1, so we still 282 * must add 1 to get the updated inbed number. Save bio_children 283 * before incrementing to guard against race conditions when 284 * two children bios complete on different queues. 285 */ 286 children = atomic_load_acq_int(&parent->bio_children); 287 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 288 if (inbed == children) { 289 bzero(&parent_cpl, sizeof(parent_cpl)); 290 if (parent->bio_flags & BIO_ERROR) { 291 parent_cpl.status &= ~(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT); 292 parent_cpl.status |= (NVME_SC_DATA_TRANSFER_ERROR) << NVME_STATUS_SC_SHIFT; 293 } 294 nvme_ns_bio_done(parent, &parent_cpl); 295 } 296 } 297 298 static void 299 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 300 { 301 struct bio *child = arg; 302 struct bio *parent; 303 int bio_error; 304 305 parent = child->bio_parent; 306 g_destroy_bio(child); 307 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 308 nvme_bio_child_inbed(parent, bio_error); 309 } 310 311 static uint32_t 312 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 313 { 314 uint32_t num_segs, offset, remainder; 315 316 if (align == 0) 317 return (1); 318 319 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 320 321 num_segs = size / align; 322 remainder = size & (align - 1); 323 offset = addr & (align - 1); 324 if (remainder > 0 || offset > 0) 325 num_segs += 1 + (remainder + offset - 1) / align; 326 return (num_segs); 327 } 328 329 static void 330 nvme_free_child_bios(int num_bios, struct bio **child_bios) 331 { 332 int i; 333 334 for (i = 0; i < num_bios; i++) { 335 if (child_bios[i] != NULL) 336 g_destroy_bio(child_bios[i]); 337 } 338 339 free(child_bios, M_NVME); 340 } 341 342 static struct bio ** 343 nvme_allocate_child_bios(int num_bios) 344 { 345 struct bio **child_bios; 346 int err = 0, i; 347 348 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 349 if (child_bios == NULL) 350 return (NULL); 351 352 for (i = 0; i < num_bios; i++) { 353 child_bios[i] = g_new_bio(); 354 if (child_bios[i] == NULL) 355 err = ENOMEM; 356 } 357 358 if (err == ENOMEM) { 359 nvme_free_child_bios(num_bios, child_bios); 360 return (NULL); 361 } 362 363 return (child_bios); 364 } 365 366 static struct bio ** 367 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 368 { 369 struct bio **child_bios; 370 struct bio *child; 371 uint64_t cur_offset; 372 caddr_t data; 373 uint32_t rem_bcount; 374 int i; 375 struct vm_page **ma; 376 uint32_t ma_offset; 377 378 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 379 alignment); 380 child_bios = nvme_allocate_child_bios(*num_bios); 381 if (child_bios == NULL) 382 return (NULL); 383 384 bp->bio_children = *num_bios; 385 bp->bio_inbed = 0; 386 cur_offset = bp->bio_offset; 387 rem_bcount = bp->bio_bcount; 388 data = bp->bio_data; 389 ma_offset = bp->bio_ma_offset; 390 ma = bp->bio_ma; 391 392 for (i = 0; i < *num_bios; i++) { 393 child = child_bios[i]; 394 child->bio_parent = bp; 395 child->bio_cmd = bp->bio_cmd; 396 child->bio_offset = cur_offset; 397 child->bio_bcount = min(rem_bcount, 398 alignment - (cur_offset & (alignment - 1))); 399 child->bio_flags = bp->bio_flags; 400 if (bp->bio_flags & BIO_UNMAPPED) { 401 child->bio_ma_offset = ma_offset; 402 child->bio_ma = ma; 403 child->bio_ma_n = 404 nvme_get_num_segments(child->bio_ma_offset, 405 child->bio_bcount, PAGE_SIZE); 406 ma_offset = (ma_offset + child->bio_bcount) & 407 PAGE_MASK; 408 ma += child->bio_ma_n; 409 if (ma_offset != 0) 410 ma -= 1; 411 } else { 412 child->bio_data = data; 413 data += child->bio_bcount; 414 } 415 cur_offset += child->bio_bcount; 416 rem_bcount -= child->bio_bcount; 417 } 418 419 return (child_bios); 420 } 421 422 static int 423 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 424 uint32_t alignment) 425 { 426 struct bio *child; 427 struct bio **child_bios; 428 int err, i, num_bios; 429 430 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 431 if (child_bios == NULL) 432 return (ENOMEM); 433 434 for (i = 0; i < num_bios; i++) { 435 child = child_bios[i]; 436 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 437 if (err != 0) { 438 nvme_bio_child_inbed(bp, err); 439 g_destroy_bio(child); 440 } 441 } 442 443 free(child_bios, M_NVME); 444 return (0); 445 } 446 447 int 448 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 449 nvme_cb_fn_t cb_fn) 450 { 451 struct nvme_dsm_range *dsm_range; 452 uint32_t num_bios; 453 int err; 454 455 bp->bio_driver1 = cb_fn; 456 457 if (ns->boundary > 0 && 458 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 459 num_bios = nvme_get_num_segments(bp->bio_offset, 460 bp->bio_bcount, ns->boundary); 461 if (num_bios > 1) 462 return (nvme_ns_split_bio(ns, bp, ns->boundary)); 463 } 464 465 switch (bp->bio_cmd) { 466 case BIO_READ: 467 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 468 break; 469 case BIO_WRITE: 470 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 471 break; 472 case BIO_FLUSH: 473 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 474 break; 475 case BIO_DELETE: 476 dsm_range = 477 malloc(sizeof(struct nvme_dsm_range), M_NVME, 478 M_ZERO | M_NOWAIT); 479 if (!dsm_range) { 480 err = ENOMEM; 481 break; 482 } 483 dsm_range->length = 484 htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); 485 dsm_range->starting_lba = 486 htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); 487 bp->bio_driver2 = dsm_range; 488 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 489 nvme_ns_bio_done, bp); 490 if (err != 0) 491 free(dsm_range, M_NVME); 492 break; 493 default: 494 err = EOPNOTSUPP; 495 break; 496 } 497 498 return (err); 499 } 500 501 int 502 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, 503 int flag, struct thread *td) 504 { 505 return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td)); 506 } 507 508 int 509 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 510 struct nvme_controller *ctrlr) 511 { 512 struct make_dev_args md_args; 513 struct nvme_completion_poll_status status; 514 int res; 515 int unit; 516 uint8_t flbas_fmt; 517 uint8_t vwc_present; 518 519 ns->ctrlr = ctrlr; 520 ns->id = id; 521 522 /* 523 * Namespaces are reconstructed after a controller reset, so check 524 * to make sure we only call mtx_init once on each mtx. 525 * 526 * TODO: Move this somewhere where it gets called at controller 527 * construction time, which is not invoked as part of each 528 * controller reset. 529 */ 530 if (!mtx_initialized(&ns->lock)) 531 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 532 533 status.done = 0; 534 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 535 nvme_completion_poll_cb, &status); 536 nvme_completion_poll(&status); 537 if (nvme_completion_is_error(&status.cpl)) { 538 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 539 return (ENXIO); 540 } 541 542 /* Convert data to host endian */ 543 nvme_namespace_data_swapbytes(&ns->data); 544 545 /* 546 * If the size of is zero, chances are this isn't a valid 547 * namespace (eg one that's not been configured yet). The 548 * standard says the entire id will be zeros, so this is a 549 * cheap way to test for that. 550 */ 551 if (ns->data.nsze == 0) 552 return (ENXIO); 553 554 flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & 555 NVME_NS_DATA_FLBAS_FORMAT_MASK; 556 /* 557 * Note: format is a 0-based value, so > is appropriate here, 558 * not >=. 559 */ 560 if (flbas_fmt > ns->data.nlbaf) { 561 nvme_printf(ctrlr, 562 "lba format %d exceeds number supported (%d)\n", 563 flbas_fmt, ns->data.nlbaf + 1); 564 return (ENXIO); 565 } 566 567 /* 568 * Older Intel devices (like the PC35xxx and P45xx series) advertise in 569 * vendor specific space an alignment that improves performance. If 570 * present use for the stripe size. NVMe 1.3 standardized this as 571 * NOIOB, and newer Intel drives use that. 572 */ 573 if ((ctrlr->quirks & QUIRK_INTEL_ALIGNMENT) != 0) { 574 if (ctrlr->cdata.vs[3] != 0) 575 ns->boundary = 576 1 << (ctrlr->cdata.vs[3] + NVME_MPS_SHIFT + 577 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)); 578 else 579 ns->boundary = 0; 580 } else { 581 ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns); 582 } 583 584 if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) 585 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 586 587 vwc_present = (ctrlr->cdata.vwc >> NVME_CTRLR_DATA_VWC_PRESENT_SHIFT) & 588 NVME_CTRLR_DATA_VWC_PRESENT_MASK; 589 if (vwc_present) 590 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 591 592 /* 593 * cdev may have already been created, if we are reconstructing the 594 * namespace after a controller-level reset. 595 */ 596 if (ns->cdev != NULL) 597 return (0); 598 599 /* 600 * Namespace IDs start at 1, so we need to subtract 1 to create a 601 * correct unit number. 602 */ 603 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 604 605 make_dev_args_init(&md_args); 606 md_args.mda_devsw = &nvme_ns_cdevsw; 607 md_args.mda_unit = unit; 608 md_args.mda_mode = 0600; 609 md_args.mda_si_drv1 = ns; 610 res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d", 611 device_get_unit(ctrlr->dev), ns->id); 612 if (res != 0) 613 return (ENXIO); 614 615 ns->cdev->si_flags |= SI_UNMAPPED; 616 617 return (0); 618 } 619 620 void 621 nvme_ns_destruct(struct nvme_namespace *ns) 622 { 623 624 if (ns->cdev != NULL) 625 destroy_dev(ns->cdev); 626 } 627