1 /*- 2 * Copyright (C) 2012-2013 Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/bus.h> 33 #include <sys/conf.h> 34 #include <sys/disk.h> 35 #include <sys/fcntl.h> 36 #include <sys/ioccom.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/proc.h> 40 #include <sys/systm.h> 41 42 #include <dev/pci/pcivar.h> 43 44 #include <geom/geom.h> 45 46 #include "nvme_private.h" 47 48 extern int nvme_max_optimal_sectorsize; 49 50 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 51 static void nvme_bio_child_done(void *arg, 52 const struct nvme_completion *cpl); 53 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 54 uint32_t alignment); 55 static void nvme_free_child_bios(int num_bios, 56 struct bio **child_bios); 57 static struct bio ** nvme_allocate_child_bios(int num_bios); 58 static struct bio ** nvme_construct_child_bios(struct bio *bp, 59 uint32_t alignment, 60 int *num_bios); 61 static int nvme_ns_split_bio(struct nvme_namespace *ns, 62 struct bio *bp, 63 uint32_t alignment); 64 65 static int 66 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 67 struct thread *td) 68 { 69 struct nvme_namespace *ns; 70 struct nvme_controller *ctrlr; 71 struct nvme_pt_command *pt; 72 73 ns = cdev->si_drv1; 74 ctrlr = ns->ctrlr; 75 76 switch (cmd) { 77 case NVME_IO_TEST: 78 case NVME_BIO_TEST: 79 nvme_ns_test(ns, cmd, arg); 80 break; 81 case NVME_PASSTHROUGH_CMD: 82 pt = (struct nvme_pt_command *)arg; 83 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 84 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 85 case DIOCGMEDIASIZE: 86 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 87 break; 88 case DIOCGSECTORSIZE: 89 *(u_int *)arg = nvme_ns_get_sector_size(ns); 90 break; 91 default: 92 return (ENOTTY); 93 } 94 95 return (0); 96 } 97 98 static int 99 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 100 struct thread *td) 101 { 102 int error = 0; 103 104 if (flags & FWRITE) 105 error = securelevel_gt(td->td_ucred, 0); 106 107 return (error); 108 } 109 110 static int 111 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 112 struct thread *td) 113 { 114 115 return (0); 116 } 117 118 static void 119 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 120 { 121 struct bio *bp = arg; 122 123 /* 124 * TODO: add more extensive translation of NVMe status codes 125 * to different bio error codes (i.e. EIO, EINVAL, etc.) 126 */ 127 if (nvme_completion_is_error(cpl)) { 128 bp->bio_error = EIO; 129 bp->bio_flags |= BIO_ERROR; 130 bp->bio_resid = bp->bio_bcount; 131 } else 132 bp->bio_resid = 0; 133 134 biodone(bp); 135 } 136 137 static void 138 nvme_ns_strategy(struct bio *bp) 139 { 140 struct nvme_namespace *ns; 141 int err; 142 143 ns = bp->bio_dev->si_drv1; 144 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 145 146 if (err) { 147 bp->bio_error = err; 148 bp->bio_flags |= BIO_ERROR; 149 bp->bio_resid = bp->bio_bcount; 150 biodone(bp); 151 } 152 153 } 154 155 static struct cdevsw nvme_ns_cdevsw = { 156 .d_version = D_VERSION, 157 .d_flags = D_DISK, 158 .d_read = physread, 159 .d_write = physwrite, 160 .d_open = nvme_ns_open, 161 .d_close = nvme_ns_close, 162 .d_strategy = nvme_ns_strategy, 163 .d_ioctl = nvme_ns_ioctl 164 }; 165 166 uint32_t 167 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 168 { 169 return ns->ctrlr->max_xfer_size; 170 } 171 172 uint32_t 173 nvme_ns_get_sector_size(struct nvme_namespace *ns) 174 { 175 return (1 << ns->data.lbaf[ns->data.flbas.format].lbads); 176 } 177 178 uint64_t 179 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 180 { 181 return (ns->data.nsze); 182 } 183 184 uint64_t 185 nvme_ns_get_size(struct nvme_namespace *ns) 186 { 187 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 188 } 189 190 uint32_t 191 nvme_ns_get_flags(struct nvme_namespace *ns) 192 { 193 return (ns->flags); 194 } 195 196 const char * 197 nvme_ns_get_serial_number(struct nvme_namespace *ns) 198 { 199 return ((const char *)ns->ctrlr->cdata.sn); 200 } 201 202 const char * 203 nvme_ns_get_model_number(struct nvme_namespace *ns) 204 { 205 return ((const char *)ns->ctrlr->cdata.mn); 206 } 207 208 const struct nvme_namespace_data * 209 nvme_ns_get_data(struct nvme_namespace *ns) 210 { 211 212 return (&ns->data); 213 } 214 215 uint32_t 216 nvme_ns_get_stripesize(struct nvme_namespace *ns) 217 { 218 219 return (ns->stripesize); 220 } 221 222 uint32_t 223 nvme_ns_get_optimal_sector_size(struct nvme_namespace *ns) 224 { 225 uint32_t stripesize; 226 227 stripesize = nvme_ns_get_stripesize(ns); 228 229 if (stripesize == 0) 230 return nvme_ns_get_sector_size(ns); 231 232 if (nvme_max_optimal_sectorsize == 0) 233 return (stripesize); 234 235 return (MIN(stripesize, nvme_max_optimal_sectorsize)); 236 } 237 238 static void 239 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 240 { 241 struct bio *bp = arg; 242 nvme_cb_fn_t bp_cb_fn; 243 244 bp_cb_fn = bp->bio_driver1; 245 246 if (bp->bio_driver2) 247 free(bp->bio_driver2, M_NVME); 248 249 if (nvme_completion_is_error(status)) { 250 bp->bio_flags |= BIO_ERROR; 251 if (bp->bio_error == 0) 252 bp->bio_error = EIO; 253 } 254 255 if ((bp->bio_flags & BIO_ERROR) == 0) 256 bp->bio_resid = 0; 257 else 258 bp->bio_resid = bp->bio_bcount; 259 260 bp_cb_fn(bp, status); 261 } 262 263 static void 264 nvme_bio_child_inbed(struct bio *parent, int bio_error) 265 { 266 struct nvme_completion parent_cpl; 267 int children, inbed; 268 269 if (bio_error != 0) { 270 parent->bio_flags |= BIO_ERROR; 271 parent->bio_error = bio_error; 272 } 273 274 /* 275 * atomic_fetchadd will return value before adding 1, so we still 276 * must add 1 to get the updated inbed number. Save bio_children 277 * before incrementing to guard against race conditions when 278 * two children bios complete on different queues. 279 */ 280 children = atomic_load_acq_int(&parent->bio_children); 281 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 282 if (inbed == children) { 283 bzero(&parent_cpl, sizeof(parent_cpl)); 284 if (parent->bio_flags & BIO_ERROR) 285 parent_cpl.status.sc = NVME_SC_DATA_TRANSFER_ERROR; 286 nvme_ns_bio_done(parent, &parent_cpl); 287 } 288 } 289 290 static void 291 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 292 { 293 struct bio *child = arg; 294 struct bio *parent; 295 int bio_error; 296 297 parent = child->bio_parent; 298 g_destroy_bio(child); 299 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 300 nvme_bio_child_inbed(parent, bio_error); 301 } 302 303 static uint32_t 304 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 305 { 306 uint32_t num_segs, offset, remainder; 307 308 if (align == 0) 309 return (1); 310 311 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 312 313 num_segs = size / align; 314 remainder = size & (align - 1); 315 offset = addr & (align - 1); 316 if (remainder > 0 || offset > 0) 317 num_segs += 1 + (remainder + offset - 1) / align; 318 return (num_segs); 319 } 320 321 static void 322 nvme_free_child_bios(int num_bios, struct bio **child_bios) 323 { 324 int i; 325 326 for (i = 0; i < num_bios; i++) { 327 if (child_bios[i] != NULL) 328 g_destroy_bio(child_bios[i]); 329 } 330 331 free(child_bios, M_NVME); 332 } 333 334 static struct bio ** 335 nvme_allocate_child_bios(int num_bios) 336 { 337 struct bio **child_bios; 338 int err = 0, i; 339 340 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 341 if (child_bios == NULL) 342 return (NULL); 343 344 for (i = 0; i < num_bios; i++) { 345 child_bios[i] = g_new_bio(); 346 if (child_bios[i] == NULL) 347 err = ENOMEM; 348 } 349 350 if (err == ENOMEM) { 351 nvme_free_child_bios(num_bios, child_bios); 352 return (NULL); 353 } 354 355 return (child_bios); 356 } 357 358 static struct bio ** 359 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 360 { 361 struct bio **child_bios; 362 struct bio *child; 363 uint64_t cur_offset; 364 caddr_t data; 365 uint32_t rem_bcount; 366 int i; 367 #ifdef NVME_UNMAPPED_BIO_SUPPORT 368 struct vm_page **ma; 369 uint32_t ma_offset; 370 #endif 371 372 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 373 alignment); 374 child_bios = nvme_allocate_child_bios(*num_bios); 375 if (child_bios == NULL) 376 return (NULL); 377 378 bp->bio_children = *num_bios; 379 bp->bio_inbed = 0; 380 cur_offset = bp->bio_offset; 381 rem_bcount = bp->bio_bcount; 382 data = bp->bio_data; 383 #ifdef NVME_UNMAPPED_BIO_SUPPORT 384 ma_offset = bp->bio_ma_offset; 385 ma = bp->bio_ma; 386 #endif 387 388 for (i = 0; i < *num_bios; i++) { 389 child = child_bios[i]; 390 child->bio_parent = bp; 391 child->bio_cmd = bp->bio_cmd; 392 child->bio_offset = cur_offset; 393 child->bio_bcount = min(rem_bcount, 394 alignment - (cur_offset & (alignment - 1))); 395 child->bio_flags = bp->bio_flags; 396 #ifdef NVME_UNMAPPED_BIO_SUPPORT 397 if (bp->bio_flags & BIO_UNMAPPED) { 398 child->bio_ma_offset = ma_offset; 399 child->bio_ma = ma; 400 child->bio_ma_n = 401 nvme_get_num_segments(child->bio_ma_offset, 402 child->bio_bcount, PAGE_SIZE); 403 ma_offset = (ma_offset + child->bio_bcount) & 404 PAGE_MASK; 405 ma += child->bio_ma_n; 406 if (ma_offset != 0) 407 ma -= 1; 408 } else 409 #endif 410 { 411 child->bio_data = data; 412 data += child->bio_bcount; 413 } 414 cur_offset += child->bio_bcount; 415 rem_bcount -= child->bio_bcount; 416 } 417 418 return (child_bios); 419 } 420 421 static int 422 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 423 uint32_t alignment) 424 { 425 struct bio *child; 426 struct bio **child_bios; 427 int err, i, num_bios; 428 429 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 430 if (child_bios == NULL) 431 return (ENOMEM); 432 433 for (i = 0; i < num_bios; i++) { 434 child = child_bios[i]; 435 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 436 if (err != 0) { 437 nvme_bio_child_inbed(bp, err); 438 g_destroy_bio(child); 439 } 440 } 441 442 free(child_bios, M_NVME); 443 return (0); 444 } 445 446 int 447 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 448 nvme_cb_fn_t cb_fn) 449 { 450 struct nvme_dsm_range *dsm_range; 451 uint32_t num_bios; 452 int err; 453 454 bp->bio_driver1 = cb_fn; 455 456 if (ns->stripesize > 0 && 457 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 458 num_bios = nvme_get_num_segments(bp->bio_offset, 459 bp->bio_bcount, ns->stripesize); 460 if (num_bios > 1) 461 return (nvme_ns_split_bio(ns, bp, ns->stripesize)); 462 } 463 464 switch (bp->bio_cmd) { 465 case BIO_READ: 466 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 467 break; 468 case BIO_WRITE: 469 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 470 break; 471 case BIO_FLUSH: 472 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 473 break; 474 case BIO_DELETE: 475 dsm_range = 476 malloc(sizeof(struct nvme_dsm_range), M_NVME, 477 M_ZERO | M_WAITOK); 478 dsm_range->length = 479 bp->bio_bcount/nvme_ns_get_sector_size(ns); 480 dsm_range->starting_lba = 481 bp->bio_offset/nvme_ns_get_sector_size(ns); 482 bp->bio_driver2 = dsm_range; 483 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 484 nvme_ns_bio_done, bp); 485 if (err != 0) 486 free(dsm_range, M_NVME); 487 break; 488 default: 489 err = EIO; 490 break; 491 } 492 493 return (err); 494 } 495 496 int 497 nvme_ns_construct(struct nvme_namespace *ns, uint16_t id, 498 struct nvme_controller *ctrlr) 499 { 500 struct nvme_completion_poll_status status; 501 int unit; 502 503 ns->ctrlr = ctrlr; 504 ns->id = id; 505 ns->stripesize = 0; 506 507 if (pci_get_devid(ctrlr->dev) == 0x09538086 && ctrlr->cdata.vs[3] != 0) 508 ns->stripesize = 509 (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size; 510 511 /* 512 * Namespaces are reconstructed after a controller reset, so check 513 * to make sure we only call mtx_init once on each mtx. 514 * 515 * TODO: Move this somewhere where it gets called at controller 516 * construction time, which is not invoked as part of each 517 * controller reset. 518 */ 519 if (!mtx_initialized(&ns->lock)) 520 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 521 522 status.done = FALSE; 523 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 524 nvme_completion_poll_cb, &status); 525 while (status.done == FALSE) 526 DELAY(5); 527 if (nvme_completion_is_error(&status.cpl)) { 528 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 529 return (ENXIO); 530 } 531 532 /* 533 * Note: format is a 0-based value, so > is appropriate here, 534 * not >=. 535 */ 536 if (ns->data.flbas.format > ns->data.nlbaf) { 537 printf("lba format %d exceeds number supported (%d)\n", 538 ns->data.flbas.format, ns->data.nlbaf+1); 539 return (1); 540 } 541 542 if (ctrlr->cdata.oncs.dsm) 543 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 544 545 if (ctrlr->cdata.vwc.present) 546 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 547 548 /* 549 * cdev may have already been created, if we are reconstructing the 550 * namespace after a controller-level reset. 551 */ 552 if (ns->cdev != NULL) 553 return (0); 554 555 /* 556 * Namespace IDs start at 1, so we need to subtract 1 to create a 557 * correct unit number. 558 */ 559 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 560 561 /* 562 * MAKEDEV_ETERNAL was added in r210923, for cdevs that will never 563 * be destroyed. This avoids refcounting on the cdev object. 564 * That should be OK case here, as long as we're not supporting PCIe 565 * surprise removal nor namespace deletion. 566 */ 567 #ifdef MAKEDEV_ETERNAL_KLD 568 ns->cdev = make_dev_credf(MAKEDEV_ETERNAL_KLD, &nvme_ns_cdevsw, unit, 569 NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d", 570 device_get_unit(ctrlr->dev), ns->id); 571 #else 572 ns->cdev = make_dev_credf(0, &nvme_ns_cdevsw, unit, 573 NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d", 574 device_get_unit(ctrlr->dev), ns->id); 575 #endif 576 #ifdef NVME_UNMAPPED_BIO_SUPPORT 577 ns->cdev->si_flags |= SI_UNMAPPED; 578 #endif 579 580 if (ns->cdev != NULL) 581 ns->cdev->si_drv1 = ns; 582 583 return (0); 584 } 585 586 void nvme_ns_destruct(struct nvme_namespace *ns) 587 { 588 589 if (ns->cdev != NULL) 590 destroy_dev(ns->cdev); 591 } 592