xref: /freebsd/sys/dev/nvme/nvme_ns.c (revision 0bc2abddc8d4abb89a210f2bb113e9e7c2d4ce18)
1 /*-
2  * Copyright (C) 2012-2013 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <sys/disk.h>
35 #include <sys/fcntl.h>
36 #include <sys/ioccom.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/systm.h>
41 
42 #include <dev/pci/pcivar.h>
43 
44 #include <geom/geom.h>
45 
46 #include "nvme_private.h"
47 
48 extern int		nvme_max_optimal_sectorsize;
49 
50 static void		nvme_bio_child_inbed(struct bio *parent, int bio_error);
51 static void		nvme_bio_child_done(void *arg,
52 					    const struct nvme_completion *cpl);
53 static uint32_t		nvme_get_num_segments(uint64_t addr, uint64_t size,
54 					      uint32_t alignment);
55 static void		nvme_free_child_bios(int num_bios,
56 					     struct bio **child_bios);
57 static struct bio **	nvme_allocate_child_bios(int num_bios);
58 static struct bio **	nvme_construct_child_bios(struct bio *bp,
59 						  uint32_t alignment,
60 						  int *num_bios);
61 static int		nvme_ns_split_bio(struct nvme_namespace *ns,
62 					  struct bio *bp,
63 					  uint32_t alignment);
64 
65 static int
66 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
67     struct thread *td)
68 {
69 	struct nvme_namespace			*ns;
70 	struct nvme_controller			*ctrlr;
71 	struct nvme_pt_command			*pt;
72 
73 	ns = cdev->si_drv1;
74 	ctrlr = ns->ctrlr;
75 
76 	switch (cmd) {
77 	case NVME_IO_TEST:
78 	case NVME_BIO_TEST:
79 		nvme_ns_test(ns, cmd, arg);
80 		break;
81 	case NVME_PASSTHROUGH_CMD:
82 		pt = (struct nvme_pt_command *)arg;
83 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id,
84 		    1 /* is_user_buffer */, 0 /* is_admin_cmd */));
85 	case DIOCGMEDIASIZE:
86 		*(off_t *)arg = (off_t)nvme_ns_get_size(ns);
87 		break;
88 	case DIOCGSECTORSIZE:
89 		*(u_int *)arg = nvme_ns_get_sector_size(ns);
90 		break;
91 	default:
92 		return (ENOTTY);
93 	}
94 
95 	return (0);
96 }
97 
98 static int
99 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused,
100     struct thread *td)
101 {
102 	int error = 0;
103 
104 	if (flags & FWRITE)
105 		error = securelevel_gt(td->td_ucred, 0);
106 
107 	return (error);
108 }
109 
110 static int
111 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused,
112     struct thread *td)
113 {
114 
115 	return (0);
116 }
117 
118 static void
119 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl)
120 {
121 	struct bio *bp = arg;
122 
123 	/*
124 	 * TODO: add more extensive translation of NVMe status codes
125 	 *  to different bio error codes (i.e. EIO, EINVAL, etc.)
126 	 */
127 	if (nvme_completion_is_error(cpl)) {
128 		bp->bio_error = EIO;
129 		bp->bio_flags |= BIO_ERROR;
130 		bp->bio_resid = bp->bio_bcount;
131 	} else
132 		bp->bio_resid = 0;
133 
134 	biodone(bp);
135 }
136 
137 static void
138 nvme_ns_strategy(struct bio *bp)
139 {
140 	struct nvme_namespace	*ns;
141 	int			err;
142 
143 	ns = bp->bio_dev->si_drv1;
144 	err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done);
145 
146 	if (err) {
147 		bp->bio_error = err;
148 		bp->bio_flags |= BIO_ERROR;
149 		bp->bio_resid = bp->bio_bcount;
150 		biodone(bp);
151 	}
152 
153 }
154 
155 static struct cdevsw nvme_ns_cdevsw = {
156 	.d_version =	D_VERSION,
157 	.d_flags =	D_DISK,
158 	.d_read =	physread,
159 	.d_write =	physwrite,
160 	.d_open =	nvme_ns_open,
161 	.d_close =	nvme_ns_close,
162 	.d_strategy =	nvme_ns_strategy,
163 	.d_ioctl =	nvme_ns_ioctl
164 };
165 
166 uint32_t
167 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns)
168 {
169 	return ns->ctrlr->max_xfer_size;
170 }
171 
172 uint32_t
173 nvme_ns_get_sector_size(struct nvme_namespace *ns)
174 {
175 	return (1 << ns->data.lbaf[ns->data.flbas.format].lbads);
176 }
177 
178 uint64_t
179 nvme_ns_get_num_sectors(struct nvme_namespace *ns)
180 {
181 	return (ns->data.nsze);
182 }
183 
184 uint64_t
185 nvme_ns_get_size(struct nvme_namespace *ns)
186 {
187 	return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns));
188 }
189 
190 uint32_t
191 nvme_ns_get_flags(struct nvme_namespace *ns)
192 {
193 	return (ns->flags);
194 }
195 
196 const char *
197 nvme_ns_get_serial_number(struct nvme_namespace *ns)
198 {
199 	return ((const char *)ns->ctrlr->cdata.sn);
200 }
201 
202 const char *
203 nvme_ns_get_model_number(struct nvme_namespace *ns)
204 {
205 	return ((const char *)ns->ctrlr->cdata.mn);
206 }
207 
208 const struct nvme_namespace_data *
209 nvme_ns_get_data(struct nvme_namespace *ns)
210 {
211 
212 	return (&ns->data);
213 }
214 
215 uint32_t
216 nvme_ns_get_stripesize(struct nvme_namespace *ns)
217 {
218 
219 	return (ns->stripesize);
220 }
221 
222 uint32_t
223 nvme_ns_get_optimal_sector_size(struct nvme_namespace *ns)
224 {
225 	uint32_t stripesize;
226 
227 	stripesize = nvme_ns_get_stripesize(ns);
228 
229 	if (stripesize == 0)
230 		return nvme_ns_get_sector_size(ns);
231 
232 	if (nvme_max_optimal_sectorsize == 0)
233 		return (stripesize);
234 
235 	return (MIN(stripesize, nvme_max_optimal_sectorsize));
236 }
237 
238 static void
239 nvme_ns_bio_done(void *arg, const struct nvme_completion *status)
240 {
241 	struct bio	*bp = arg;
242 	nvme_cb_fn_t	bp_cb_fn;
243 
244 	bp_cb_fn = bp->bio_driver1;
245 
246 	if (bp->bio_driver2)
247 		free(bp->bio_driver2, M_NVME);
248 
249 	if (nvme_completion_is_error(status)) {
250 		bp->bio_flags |= BIO_ERROR;
251 		if (bp->bio_error == 0)
252 			bp->bio_error = EIO;
253 	}
254 
255 	if ((bp->bio_flags & BIO_ERROR) == 0)
256 		bp->bio_resid = 0;
257 	else
258 		bp->bio_resid = bp->bio_bcount;
259 
260 	bp_cb_fn(bp, status);
261 }
262 
263 static void
264 nvme_bio_child_inbed(struct bio *parent, int bio_error)
265 {
266 	struct nvme_completion	parent_cpl;
267 	int			children, inbed;
268 
269 	if (bio_error != 0) {
270 		parent->bio_flags |= BIO_ERROR;
271 		parent->bio_error = bio_error;
272 	}
273 
274 	/*
275 	 * atomic_fetchadd will return value before adding 1, so we still
276 	 *  must add 1 to get the updated inbed number.  Save bio_children
277 	 *  before incrementing to guard against race conditions when
278 	 *  two children bios complete on different queues.
279 	 */
280 	children = atomic_load_acq_int(&parent->bio_children);
281 	inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1;
282 	if (inbed == children) {
283 		bzero(&parent_cpl, sizeof(parent_cpl));
284 		if (parent->bio_flags & BIO_ERROR)
285 			parent_cpl.status.sc = NVME_SC_DATA_TRANSFER_ERROR;
286 		nvme_ns_bio_done(parent, &parent_cpl);
287 	}
288 }
289 
290 static void
291 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl)
292 {
293 	struct bio		*child = arg;
294 	struct bio		*parent;
295 	int			bio_error;
296 
297 	parent = child->bio_parent;
298 	g_destroy_bio(child);
299 	bio_error = nvme_completion_is_error(cpl) ? EIO : 0;
300 	nvme_bio_child_inbed(parent, bio_error);
301 }
302 
303 static uint32_t
304 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align)
305 {
306 	uint32_t	num_segs, offset, remainder;
307 
308 	if (align == 0)
309 		return (1);
310 
311 	KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n"));
312 
313 	num_segs = size / align;
314 	remainder = size & (align - 1);
315 	offset = addr & (align - 1);
316 	if (remainder > 0 || offset > 0)
317 		num_segs += 1 + (remainder + offset - 1) / align;
318 	return (num_segs);
319 }
320 
321 static void
322 nvme_free_child_bios(int num_bios, struct bio **child_bios)
323 {
324 	int i;
325 
326 	for (i = 0; i < num_bios; i++) {
327 		if (child_bios[i] != NULL)
328 			g_destroy_bio(child_bios[i]);
329 	}
330 
331 	free(child_bios, M_NVME);
332 }
333 
334 static struct bio **
335 nvme_allocate_child_bios(int num_bios)
336 {
337 	struct bio **child_bios;
338 	int err = 0, i;
339 
340 	child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT);
341 	if (child_bios == NULL)
342 		return (NULL);
343 
344 	for (i = 0; i < num_bios; i++) {
345 		child_bios[i] = g_new_bio();
346 		if (child_bios[i] == NULL)
347 			err = ENOMEM;
348 	}
349 
350 	if (err == ENOMEM) {
351 		nvme_free_child_bios(num_bios, child_bios);
352 		return (NULL);
353 	}
354 
355 	return (child_bios);
356 }
357 
358 static struct bio **
359 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios)
360 {
361 	struct bio	**child_bios;
362 	struct bio	*child;
363 	uint64_t	cur_offset;
364 	caddr_t		data;
365 	uint32_t	rem_bcount;
366 	int		i;
367 #ifdef NVME_UNMAPPED_BIO_SUPPORT
368 	struct vm_page	**ma;
369 	uint32_t	ma_offset;
370 #endif
371 
372 	*num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount,
373 	    alignment);
374 	child_bios = nvme_allocate_child_bios(*num_bios);
375 	if (child_bios == NULL)
376 		return (NULL);
377 
378 	bp->bio_children = *num_bios;
379 	bp->bio_inbed = 0;
380 	cur_offset = bp->bio_offset;
381 	rem_bcount = bp->bio_bcount;
382 	data = bp->bio_data;
383 #ifdef NVME_UNMAPPED_BIO_SUPPORT
384 	ma_offset = bp->bio_ma_offset;
385 	ma = bp->bio_ma;
386 #endif
387 
388 	for (i = 0; i < *num_bios; i++) {
389 		child = child_bios[i];
390 		child->bio_parent = bp;
391 		child->bio_cmd = bp->bio_cmd;
392 		child->bio_offset = cur_offset;
393 		child->bio_bcount = min(rem_bcount,
394 		    alignment - (cur_offset & (alignment - 1)));
395 		child->bio_flags = bp->bio_flags;
396 #ifdef NVME_UNMAPPED_BIO_SUPPORT
397 		if (bp->bio_flags & BIO_UNMAPPED) {
398 			child->bio_ma_offset = ma_offset;
399 			child->bio_ma = ma;
400 			child->bio_ma_n =
401 			    nvme_get_num_segments(child->bio_ma_offset,
402 				child->bio_bcount, PAGE_SIZE);
403 			ma_offset = (ma_offset + child->bio_bcount) &
404 			    PAGE_MASK;
405 			ma += child->bio_ma_n;
406 			if (ma_offset != 0)
407 				ma -= 1;
408 		} else
409 #endif
410 		{
411 			child->bio_data = data;
412 			data += child->bio_bcount;
413 		}
414 		cur_offset += child->bio_bcount;
415 		rem_bcount -= child->bio_bcount;
416 	}
417 
418 	return (child_bios);
419 }
420 
421 static int
422 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp,
423     uint32_t alignment)
424 {
425 	struct bio	*child;
426 	struct bio	**child_bios;
427 	int		err, i, num_bios;
428 
429 	child_bios = nvme_construct_child_bios(bp, alignment, &num_bios);
430 	if (child_bios == NULL)
431 		return (ENOMEM);
432 
433 	for (i = 0; i < num_bios; i++) {
434 		child = child_bios[i];
435 		err = nvme_ns_bio_process(ns, child, nvme_bio_child_done);
436 		if (err != 0) {
437 			nvme_bio_child_inbed(bp, err);
438 			g_destroy_bio(child);
439 		}
440 	}
441 
442 	free(child_bios, M_NVME);
443 	return (0);
444 }
445 
446 int
447 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp,
448 	nvme_cb_fn_t cb_fn)
449 {
450 	struct nvme_dsm_range	*dsm_range;
451 	uint32_t		num_bios;
452 	int			err;
453 
454 	bp->bio_driver1 = cb_fn;
455 
456 	if (ns->stripesize > 0 &&
457 	    (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) {
458 		num_bios = nvme_get_num_segments(bp->bio_offset,
459 		    bp->bio_bcount, ns->stripesize);
460 		if (num_bios > 1)
461 			return (nvme_ns_split_bio(ns, bp, ns->stripesize));
462 	}
463 
464 	switch (bp->bio_cmd) {
465 	case BIO_READ:
466 		err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp);
467 		break;
468 	case BIO_WRITE:
469 		err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp);
470 		break;
471 	case BIO_FLUSH:
472 		err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp);
473 		break;
474 	case BIO_DELETE:
475 		dsm_range =
476 		    malloc(sizeof(struct nvme_dsm_range), M_NVME,
477 		    M_ZERO | M_WAITOK);
478 		dsm_range->length =
479 		    bp->bio_bcount/nvme_ns_get_sector_size(ns);
480 		dsm_range->starting_lba =
481 		    bp->bio_offset/nvme_ns_get_sector_size(ns);
482 		bp->bio_driver2 = dsm_range;
483 		err = nvme_ns_cmd_deallocate(ns, dsm_range, 1,
484 			nvme_ns_bio_done, bp);
485 		if (err != 0)
486 			free(dsm_range, M_NVME);
487 		break;
488 	default:
489 		err = EIO;
490 		break;
491 	}
492 
493 	return (err);
494 }
495 
496 int
497 nvme_ns_construct(struct nvme_namespace *ns, uint16_t id,
498     struct nvme_controller *ctrlr)
499 {
500 	struct nvme_completion_poll_status	status;
501 	int					unit;
502 
503 	ns->ctrlr = ctrlr;
504 	ns->id = id;
505 	ns->stripesize = 0;
506 
507 	if (pci_get_devid(ctrlr->dev) == 0x09538086 && ctrlr->cdata.vs[3] != 0)
508 		ns->stripesize =
509 		    (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size;
510 
511 	/*
512 	 * Namespaces are reconstructed after a controller reset, so check
513 	 *  to make sure we only call mtx_init once on each mtx.
514 	 *
515 	 * TODO: Move this somewhere where it gets called at controller
516 	 *  construction time, which is not invoked as part of each
517 	 *  controller reset.
518 	 */
519 	if (!mtx_initialized(&ns->lock))
520 		mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF);
521 
522 	status.done = FALSE;
523 	nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data,
524 	    nvme_completion_poll_cb, &status);
525 	while (status.done == FALSE)
526 		DELAY(5);
527 	if (nvme_completion_is_error(&status.cpl)) {
528 		nvme_printf(ctrlr, "nvme_identify_namespace failed\n");
529 		return (ENXIO);
530 	}
531 
532 	/*
533 	 * Note: format is a 0-based value, so > is appropriate here,
534 	 *  not >=.
535 	 */
536 	if (ns->data.flbas.format > ns->data.nlbaf) {
537 		printf("lba format %d exceeds number supported (%d)\n",
538 		    ns->data.flbas.format, ns->data.nlbaf+1);
539 		return (1);
540 	}
541 
542 	if (ctrlr->cdata.oncs.dsm)
543 		ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED;
544 
545 	if (ctrlr->cdata.vwc.present)
546 		ns->flags |= NVME_NS_FLUSH_SUPPORTED;
547 
548 	/*
549 	 * cdev may have already been created, if we are reconstructing the
550 	 *  namespace after a controller-level reset.
551 	 */
552 	if (ns->cdev != NULL)
553 		return (0);
554 
555 	/*
556 	 * Namespace IDs start at 1, so we need to subtract 1 to create a
557 	 *  correct unit number.
558 	 */
559 	unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1;
560 
561 /*
562  * MAKEDEV_ETERNAL was added in r210923, for cdevs that will never
563  *  be destroyed.  This avoids refcounting on the cdev object.
564  *  That should be OK case here, as long as we're not supporting PCIe
565  *  surprise removal nor namespace deletion.
566  */
567 #ifdef MAKEDEV_ETERNAL_KLD
568 	ns->cdev = make_dev_credf(MAKEDEV_ETERNAL_KLD, &nvme_ns_cdevsw, unit,
569 	    NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d",
570 	    device_get_unit(ctrlr->dev), ns->id);
571 #else
572 	ns->cdev = make_dev_credf(0, &nvme_ns_cdevsw, unit,
573 	    NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d",
574 	    device_get_unit(ctrlr->dev), ns->id);
575 #endif
576 #ifdef NVME_UNMAPPED_BIO_SUPPORT
577 	ns->cdev->si_flags |= SI_UNMAPPED;
578 #endif
579 
580 	if (ns->cdev != NULL)
581 		ns->cdev->si_drv1 = ns;
582 
583 	return (0);
584 }
585 
586 void nvme_ns_destruct(struct nvme_namespace *ns)
587 {
588 
589 	if (ns->cdev != NULL)
590 		destroy_dev(ns->cdev);
591 }
592